
POLITECNICO DI TORINO
Master’s Degree in

Computer Engineering - Embedded Systems

Master’s Degree Thesis

FPGA Acceleration in SmartNICs:
Porting and Performance Evaluation of

the Rosebud Framework

Supervisors

Prof. Luciano Lavagno

Michele Paolino

Virtual Open Systems SAS

Candidate

Alessandro Vargiu

Matr. 314294

A.A. 2024/2025

Abstract

Field Programmable Gate Arrays (FPGAs) have emerged as a consoli-
dated solution to address the challenges of high-performance networking
applications, used in cloud computing environments, datacenters and
telecommunication in general. The usage of FPGAs as accelerators for
Smart Network Interface Cards (smartNICs) provides a flexible solution
for tasks that require packet processing, such as deep packet inspection
and firewalls. The inherent high performance and flexibility benefits of
FPGAs are further improved by FPGA virtualization technology, which
enables multi-tenancy execution through the distribution of FPGA re-
sources, and by Partial Reconfiguration, which allows dynamic resource
allocation and isolation, in order to optimize hardware utilization.

Today, several open-source solutions provide smartNIC functionalities
to FPGAs, allowing the execution of tasks that are traditionally handled
by CPUs to be offloaded to FPGA dedicated hardware accelerators.
These solutions often provide network shells capable of 100Gbps+ speed,
allowing the development of custom packet-processing accelerators that
work on the lower layers of the network stack. However, many of
these solutions lack support for hardware virtualization, leading to
high virtualization overhead in software and lower hardware resource
utilization.

This thesis was conducted during an internship at Virtual Open
Systems in Grenoble, France, a company specialized in virtualization
for embedded systems and development of solutions for automotive
and cloud-computing environments. The company is interested in
developing an FPGA virtualization solution that enables virtual access
to custom hardware accelerators.

The study investigates a middlebox open-source framework, called
Rosebud, designed to help the deployment of hardware accelerators, pro-
viding a high-speed network shell and a software interface to allow easy
configuration and debugging of hardware accelerators. The research
evaluates Rosebud’s key features and its potential for future integra-
tion of virtualization capabilities. By deploying small RISC-V CPU

cores in the FPGA as control units, Rosebud enhances management of
accelerators at runtime. Furthermore, Partial Reconfiguration allows
accelerators to be programmed at runtime, maximizing flexibility of
FPGA resources and reducing deployment time of new accelerators,
which is a key problem in traditional FPGA development.

A porting procedure was performed in order to support the Alveo
U55C accelerator card, which was originally unsupported.

The evaluation of Rosebud is performed with a custom benchmark
that measures performance in a local network environment. An hard-
ware accelerator was developed and deployed to test its impact on peak
performance. The research demonstrates promising results for the use
of Rosebud as a basis for a virtualized networking infrastructure.

ii

i

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Premise and work introduction 1
1.2 Thesis outline . 2

2 Background 4
2.1 SmartNICs . 4

2.1.1 Packet Processing 5
2.2 FPGAs . 6

2.2.1 Architecture overview 6
2.2.2 LUTs . 8
2.2.3 Design Flow . 8

2.3 Partial Reconfiguration 12
2.3.1 Partial Bitstreams 14
2.3.2 Floorplanning 14

2.4 Virtualization and FPGAs 15
2.4.1 SR-IOV . 17

2.5 Alveo U55C card . 17
2.5.1 Network Interface 17
2.5.2 PCIe Interface 19
2.5.3 XCU55C Ultrascale+ FPGA 19
2.5.4 Clocking Structure 19

2.6 Related Works . 20

ii

3 Rosebud 23
3.1 Hardware Design . 24

3.1.1 RPU . 24
3.1.2 RISC-V core . 25
3.1.3 Load Balancer 26
3.1.4 Network shell 26
3.1.5 Software Interface 27

3.2 Implementation on Alveo U55C 28
3.2.1 Synthesis Constraints 29
3.2.2 Partial Reconfiguration setup 31
3.2.3 Floorplanning 32
3.2.4 Second Generation 3D IC Interconnect 36

4 Performance Benchmark 41
4.1 Partial Reconfiguration 41
4.2 Network performance 43

4.2.1 Results . 46
4.3 HW Accelerator Performance 47

4.3.1 Results . 49

5 Conclusions 50
5.1 Future Work . 51

A Synthesis Constraints 52

B Traffic generation 55

C CRC Accelerator 57

D Server side benchmark 59

Bibliography 61

iii

List of Tables

4.1 RPU reconfiguration latency 43

iv

List of Figures

2.1 Example of simple Logic Cell structure 7
2.2 Basic example of general FPGA architecture, showing

connections between CLBs 9
2.3 Partial Reconfiguration high-level architecture 13
2.4 SR-IOV model architecture 18
2.5 Clock tree structure in the Alveo U55C 20

3.1 Overview of Rosebud’s architecture 25
3.2 Highlight of Pblocks for each module 34
3.3 Closer view of the SLR1 region 36
3.4 Closer view of the SLR2 region 38
3.5 Dmesg output after bitstream loading 39

4.1 Alveo U55C connected to QSFP 100G cables 45
4.2 Packet forwarding 8 RPU vs. 1 RPU 46
4.3 Packet forwarding w/ CRC - 8 RPU vs. 1 RPU 48

v

Chapter 1

Introduction

1.1 Premise and work introduction
Today, the importance of computer networks to allow communication
and data sharing has become paramount. Datacenter infrastructures
have evolved and are now using technology such as FPGA-based accel-
erators, useful in cloud environments thanks to their reprogramming
capabilities, and virtualization, to enhance hardware resource utiliza-
tion and provide FPGA resources to multiple tenants. The flexibility
of FPGAs, that allows updates after deployment, makes them a great
solution to offload network processing in these infrastructures.

Virtual Open Systems is the company in which this thesis work was
developed. The company specializes in virtualization for embedded
systems and Linux software. Virtualization technology allows the
partitioning of FPGA resources, mapping device physical functions into
virtual functions, accessible through linux drivers by objects like virtual
machines or containers.

The company is interested in developing a solution that integrates
virtualization capabilities to hardware accelerators, in a networking con-
text. Virtualization is a broad term that includes several technologies,
all with the base principle of allocating physical resources to objects
like virtual machines and containers, dividing one physical resource
into multiple instances.

The partitioning of FPGA resources on a physical level is fully

1

Introduction

leveraged by the Partial Reconfiguration feature, that allows for the
allocation of reconfigurable partitions in the FPGA device. Each one
of these partitions can be reprogrammed at runtime, allowing a flexible
use of hardware resources.

The thesis work aims at the evaluation of Rosebud, an open-source
framework that provides an hardware networking infrastructure, a
software interface that abstracts the control of the hardware through the
use of 32-bit RISC-V cores, running strictly connected to reconfigurable
HW accelerators. The overall objective of the company is to investigate
the features of this solution and eventually integrate virtualization
capabilities to it.

The device used to test Rosebud is the Alveo U55C accelerator
card, an high performance computing card designed for datacenter
applications, containing a Xilinx Ultrascale+ FPGA. Since Rosebud
does not support the u55c, a board porting process was done to map the
card physical resources to the HDL components. A custom benchmark
was then created in order to measure the network performance of
Rosebud in the new environment and to evaluate its features. An
hardware accelerator was also developed and deployed to test the
impact of hardware overhead on peak network performance.

1.2 Thesis outline
This section outlines an overview of the thesis topics:

• Background contains all the knowledge necessary to understand
the thesis work. It starts with a simple briefing, that shows the
context in which the work manifests itself. Following, it is presented
an overview of FPGA technology and features such as partial
reconfiguration, virtualization technology, details about the Alveo
U55C board used in the project and a paragraph on the state-of-the-
art of existing FPGA solution for networking and virtualization.

• Rosebud describes the Rosebud framework, which is the middlebox
solution adopted in this work. A section is dedicated to describe
the challenges presented by porting a hardware design from one

2

Introduction

FPGA board to another, detailing the various steps conducted to
port Rosebud into the Alveo U55C, from logic synthesis to floorplan
planning and implementation.

• Performance benchmark contains the implementation of a cus-
tom benchmark that evaluates the performance of Rosebud, through
parameters such as bandwidth, latency and software overhead.

• Conclusions describes the conclusions for the thesis work and
improvements for future work.

3

Chapter 2

Background

2.1 SmartNICs

Network Interface Cards (NICs) are devices that allow computers
to connect to computer networks. They provide an interface through
which computers can communicate over the internet (or LAN networks).
Traditionally, NICs have been devices that handled basic network
functions, such as Ethernet frames transmission and basic error checking
functionalities, leaving more complex tasks (such as encryption, firewall
and traffic management) to the host CPU.

The increasing demands of modern networking applications, along
with the high-speed requirements for packet processing led to a new class
of devices, called Smart Network Interface Cards (SmartNICs).

Today, network link speeds are increasing rapidly and new technolo-
gies are being used, allowing network speeds from 10 Gbps to 100 Gbps
and beyond. CPUs on the other hand, struggle to keep up with these
rates, leading to performance bottlenecks. Performance improvement
of processors has reached a limit, in terms of power consumption and
dimension of transistors. Parallelism also provides limited performance
benefits (Amdahl’s law), and becomes almost useless in sequential exe-
cutions tasks. A solution to this problem is to offload complex tasks
from the CPU to hardware accelerators running on smartNICs. This
way, the CPU can allocate more resources on application-level tasks.

4

Background

Here are listed the main features and benefits provided by the uti-
lization of smartNICs:

• High performance: packet processing in smartNICs happens at
high line rate and the presence of hardware accelerators avoids all
the performance overhead problems related to CPUs.

• Energy Efficiency: using hardware dedicated accelerators, tasks
are performed faster and a lot of load is removed from CPU,
resulting in lower power consumption.

• Work Offload: Systems like datacenters traditionally use a lot of
processing power for infrastructure tasks (ex. packet processing),
offloading tasks to smartNICs allow the freed processing capability
to be used for application-level tasks.

There exist several solutions to implement hardware functions, from
Application Specific Integrated Circuits (ASICs), to FPGAs and Data
Processing Units (DPUs). This thesis will focus on FPGA networking
applications.

2.1.1 Packet Processing
Packet processing is one of the most important features provided by
SmartNICs. The existence of different types of architectures for smart-
NICs allow for high customization on these devices. SmartNICs can be
used in different environment, such as datacenters, cloud computing
infrastructures or general-purpose networks. Each environment presents
different challenges, leading smartNICs to implement different cate-
gories of functions, such as security functions or storage functions. An
example would be Deep Packet Inspection, used by Intrusion Detection
Systems (ex. Pigasus), which requires tasks like pattern recognition
using regular expressions (RegEx).

Incorporating small CPU cores, such as ARM-based CPUs, into
smartNICs helps running complex logic tasks that can benefit from
CPU execution pipelines. Having a dedicate CPU core inside the
smartNICs also helps with the benefit of work offloading from the host
CPU, as discussed earlier.

5

Background

2.2 FPGAs

Field-Programmable Gate Arrays (FPGAs) provide a flexible solution
to accelerate network applications. The advantage of FPGAs with
respect to ASICs is that FPGAs are programmable, meaning that the
hardware design can be changed and re-programmed on the FPGA. This
is not possible on ASICs, since the production of the circuit requires a
completed design that cannot be modified after production.

2.2.1 Architecture overview

The fundamental unit behind FPGA architecture is the CLB (Con-
figurable Logic Block). This is the basic unit used by FPGAs to
implement logic functions. CLBs contain a set of look-up tables, flip-
flops, adders and muxes. Look-up tables (LUTs) are a key component,
since they can implement any boolean function. The presence of flip-
flops enables storage capabilities, used in sequential logic. An example
of a CLB element is shown in Figure 2.1. CLBs are connected through
a routing matrix, containing vast array of configurable switches and
wires, used to establish the right connections, depending on the function
to be implemented. A high-level overview of the general architecture of
a FPGA die is shown in Figure 2.2.

Modern FPGAs also contains special-purpose resources other than
CLBs, such as DSP blocks, embedded memories or high-speed I/O
logic, in order to provide optimized resources for several applications,
such as Image Processing, Networking or Cryptography. FPGAs are
usually integrated inside development boards or SOCs (System on
Chip) containing high-speed multi-gigabit transceivers, interfaces such
as PCI Express or memory controllers and even processors cores (ARM,
MicroBlaze etc.). These components are tipically built using transistors
instead of memory cells, providing ASIC-level performance to the board,
without consuming base logic resources.

6

Background

Figure 2.1: Example of simple Logic Cell structure

7

Background

2.2.2 LUTs
Look-Up tables are small memory elements used to implement com-
binational logic functions. LUTs replace runtime computation with
simple array indexing. When inputs are provided, the LUT fetches
a precomputed result that correspond to the given inputs. LUTs are
often implemented using SRAM technology, multiplexers, or a combi-
nation of both. The key concept behind LUTs is that the outputs are
predefined for every possible combination of input signals. The LUT
stores the output values for all 2n combination of n inputs. For example,
a 3-input LUT has 23 = 8 possible input combinations, each tied to
a specific pre-determined output. This structure can be implemented
using a 8x1 multiplexer or a 8x1 SRAM memory, where selection signal
combinations are used as addresses for the SRAM module.

2.2.3 Design Flow
FPGA design flow begins with Hardware Description Languages (HDL),
such as VHDL, Verilog or SystemVerilog. Unlike traditional program-
ming languages, HDLs are used to create a description of the behavior
and structure of digital circuits. They are very similar to programming
languages in terms of control structures, keywords or expressions, but
the main difference relies on the concept of time and concurrency. HDLs
are designed to model parallel processes that execute concurrently, re-
flecting the behavior of real-world hardware circuits more accurately.
Similar to programming languages, HDL languages are compiled, but
the result of the compilation consists in a gate-level netlist. The pro-
duced netlist represents the logic gates and the connections between
them, defining a physical model.

1. Behavioral Simulation: At this stage, the code does not need to
be synthesizable yet, and the tests are performed without timing in-
formation about the components. This stage allows to test the logic
of the code and to verify that it behaves according to expectation.
Simulation tools typically allow to visually see how inputs, outputs
and internal signals behave, through waveforms. Languages such as

8

Background

Figure 2.2: Basic example of general FPGA architecture, showing
connections between CLBs

9

Background

Verilog also provide macros to verify the correctness of the outputs
using assertions and performing various checks, without resorting
to visual information, which is intrinsically less efficient. In practice,
the RTL code is tested through the use of testbenches, which are
HDL wrappers that instantiate the unit under test (UUT) and
contain a process that provides the correct input signals and verifies
the outputs.

2. Logic Synthesis: The purpose of this process is to convert HDL
code into a gate-level representation of the design, called gate-level
netlist. The synthesis tool analyzes the code and performs different
optimizations in order to improve the design with regards to timing,
area and power consumption. Additionally, technology mapping
is performed, in which the RTL logic constructs are mapped to
specific resources such as LUTs, memories and other components,
depending on the resources available in the target technology library.
After synthesis, it is possible to collect information by generating
reports, detailing information about resource utilization, timing
or power consumption. Timing reports are very important to
determine if the design is capable of operating at the desired clock
frequency, and if the chosen technology is capable of supporting
the requirements criteria. Simulation is also possible at this point,
using the post-synthesis netlist as UUT. This allows to check that
the netlist produced after synthesis is coherent with the initial
simulation results.

3. Place and Route: This process takes the synthetized design and
implements it on the target device. It is the most computationally
heavy stage in the design flow and it consists on several steps. Here
are shown the steps taken by Xilinx’s Vivado implementation tool:

• Logic Optimization: A series of checks are performed to avoid
issues such as undriven inputs or connectivity errors. Then,
a series of optimizations are performed on the logic, such as
Constant Propagation, in which constant values are propagated
throughout the logic, reducing or eliminating unnecessary logic

10

Background

(for example, an AND with a constant 0 input). Another
example is BUFG Optimization, in which global clock buffers
are inserted on clock nets and high-fanout non-clock nets to
improve reliability and performance of clock signal distribution.
Other optimizations are related to improve synthesis results,
such as area or power consumption.

• Placement: The Placer tool assigns cells from the netlist into
specific sites on the FPGA device fabric. Optimizations at
this step address the improvement oftiming slack, wirelength of
connections and minimization ofcongestion.
Before placing the primary logic, placement of clock and I/O
cells is done first. Global resources like clock buffers or clock
management components, such as MMCMs and PLLs are placed.
Synthesis can be repeated several times by the tool to refine
the results of each iteration. Examples of optimizations at this
stage are LUT Combining, retiming, Fanout Optimization and
moving Block RAM registers to improve critical paths.

• Routing: The tool attempts routing on all nets, determining
the exact paths for the interconnections between components.
A series of algorithms are implemented in order to establish
the optimal paths for signals, while ensuring the respect of
timing requirements. Typically this happens through multiple
iterations. Timing analysis is also performed to ensure the
meeting of timing constraints.

4. Bitstream generation: When routing is successful and it meets
timing, area and power requirements, the output netlist can be
converted into a bitstream (a long sequence of bits). Despite the
common misconception that these bits will "fill up" the basic cells
of the fpga device, a bitstream can be viewed, instead, as similar to
an executable program, containing an assembly-like instruction set
to describe the configuration process. The knowledge of bitstreams
format is not necessary to understand the programming of the fpga,
but it can be useful to do reverse engineering or bitstream readback.
Bitstreams are usually programmed into the fpga through interfaces

11

Background

such as JTAG or SPI. FPGA boards usually contain a flash memory
dedicated to store a bitstream, which can be read automatically at
the FPGA bring-up during a system reboot. With large designs,
bitstream generation and flashing can be time consuming and
interfaces such as PCI Express can be used for this purpose. This
process is better detailed in the Partial Reconfiguration section.

2.3 Partial Reconfiguration
Partial Reconfiguration is a feature of FPGA development that allows
dynamic modification of portions of hardware logic, while the other
portions of the design continue to operate. In Xilinx’s documentation,
Partial Reconfiguration is referred to as Dynamic Function eXchange
(DfX), but throughout this thesis, the first term will be used. Typically,
reconfiguration of an FPGA involves the loading of a full bitstream
into the FPGA’s flash memory. Partial Reconfiguration works with
partial bitstreams, reducing configuration time. PR works with the
PCIe interface, that provides higher data transfer rates than micro-USB
interfaces, generally used to write the flash memories of FPGAs. Partial
Reconfiguration is crucial for designs utilizing the PCI Express (PCIe)
interface. The PCIe specification requires devices on the PCIe bus to
be detectable by the host and respond within 100 milliseconds after
power is applied to the PCIe slot. Partial Reconfiguration helps the
deployment of large designs on FPGA, providing the possibility of base
functionalities to be activate at power-up and upload the rest of the
logic at a later stage.

The portion of design that remains active during Partial Reconfigu-
ration is called Static partition, which contains global logic and clocking
resources that must stay operational during the reconfiguration process.
The dynamic portion is called Reconfigurable partition.

One important aspect when creating reconfigurable designs is the
placement of the static logic. After the synthesis process, tools like
Vivado can display where the synthetized logic will be placed in the
target device. These regions should remain untouched during partial
reconfiguration. This is ensured if static logic and reconfigurable logic

12

Background

are physically separated on the FPGA.
The technique used to achieve this is called Hierarchical Design.

This approach breaks down the entire design into modular components.
Each module performs a specific function or represent a specific hard-
ware block, similarly to a real circuit. This allows synthesis tools to
synthesize components independently from each other, and in the case
of Partial Reconfiguration, it allows the synthesis of reconfigurable
modules separately from static logic.

Figure 2.3: Partial Reconfiguration high-level architecture

13

Background

2.3.1 Partial Bitstreams
Bitstreams are used to fill up the entire FPGA with information about
how each logic element inside should behave at runtime. Usually they
are imagined as series of bits which activate logic elements inside
the FPGA, but the reality is that the activation of the fabric logic
is done through a series of sequential commands at runtime. Given
the possibility of altering only some logic elements, it is allowed the
creation of partial bitstream. Partial bitstreams must be compatible
with the static logic, which means that the creation of static and partial
bitstreams is coupled. If the procedure is done correctly, the static logic
remains untouched while running.

2.3.2 Floorplanning
Floorplanning is the process of allocating resources, specifically design
components, to a specific region of the target fpga device. In a tra-
ditional design, the tools automatically place the components in the
device, based on the requirements.

Pblocks Pblocks are a set of physical constraints used to define a
reconfigurable region within the FPGA. When a Pblock is created, a set
of resources is allocated to it. This can be done using graphical tools,
that allows the placement of rectangular sites in the device regions (a
rectangular shape is recommended in order to avoid routing problems
caused by irregular shapes). These resources are allocated with the
purpose of being used by a reconfigurable module that will be placed in
that region. These resources can be used also by static logic for routing
purposes. This seems a little counterintuitive, however it is assured
that no conflict arise, even during the partial reconfiguration process.

Implementation Partial Reconfiguration requires a two step imple-
mentation, the first is called Parent Implementation, where the entire
design flow is executed, which includes the synthesis of the static logic
and the optimal placement of all the static components in the device.

14

Background

The next step is the Child Implementation, here the static logic synthesis
is skipped, since its placement will remain exactly the same. Only the
reconfigurable modules are synthetized at this step, since the synthesis
product from the previous run have been already generated. In the
implementation phase, the whole netlist is placed and routed again,
however the algorithm now takes into consideration the constraints on
the static logic, since its placement must be the same as the previous
run.

It is generally a good practice to perform an implementation of the
static logic alone, to see where the tools will place the logic in the target
FPGA. This provides a clearer view of how much space remains for the
reconfigurable regions.

When a reconfigurable module is selected and linked to a Pblock,
Vivado shows us the resources required by the module and the ones
that are present in the selected site. This way, it is possible to check if
the selected region contains all the necessary resources required by the
module instance. This detail will be better highlighted and shown in
the next chapter.

Another important best practice is to frequently perform Design
Rule Checks (DRC) after floorplan modifications. It is important to
perform them before starting the implementation process. Depending
on the complexity of the design, the placement and routing processes
can take several hours. Having errors or warnings highlighted early
can save a lot of time. If the process is successful, a series of partial
bitstream will be generated, each corresponding to a reconfigurable
module.

2.4 Virtualization and FPGAs

Virtualization generally refers to a set of technologies that divides a
physical device into multiple virtual version of itself, allowing each
virtual function, or object, to work as if it were a separate device.

15

Background

There are several types of virtualization, such as Hardware Virtu-
alization, Operating System Virtualization, allowing multiple isolated
operating systems to run on a single operating system kernel, Network
Virtualization, that abstracts physical network devices into multiple
virtual network devices.

Virtualization in FPGA is classified in three main categories [1]:
Resource level, Node level and Multi-node level.

Resource level refers to architecture and I/O virtualization. A re-
source on an FPGA can be a kernel or a general module, reconfigurable
or non-reconfigurable. In practice, this type of virtualization on an
FPGA makes it so that physical I/O resources on the FPGA are virtual-
ized into multiple channels at the user-level. The SR-IOV specification
allows a PCIe device to be virtualized into multiple physical (PF) or
virtual (VF) functions. In Xilinx FPGAs, this technology is offered
using the PCIe Integrated System IP, allowing easier integration of the
SR-IOV specification to FPGA shells.

Node level refers to the management of virtualized resources in an
FPGA. A simple example of this is a FPGA shell containing multiple
accelerators, that can be managed and assigned to virtual functions.

Multi-node level refers to the coordination of resources through
multiple FPGAs. This type of virtualization is not in the scope of the
thesis work context, so the focus will be on the previous categories.

In Node level virtualization, a common solution to achieve multiple
applications working on the same FPGA is the usage of multiple partial
regions. Using a symmetric approach, identically sized regions can be
placed on the FPGA, running independently from one another, each
one designed to be accessed by a single application. An asymmetric
approach could be used by more complex designs that require modules
to have different sizes. This approach requires more caution, since can
lead to internal fragmentation in the FPGA device.

Overall, this method provides a lot of flexibility and fast reprogram-
ming of resources in the FPGA, but it has been shown that it leads
to strong layout constraints regarding logic placement in the device.
Finding an optimal placement of the partial regions is not easy and it
is open to research.

16

Background

2.4.1 SR-IOV
Single Root I/O Virtualization interface is an extension of the PCI
Express specification. SR-IOV technology allows a physical device to
be shared among multiple virtual machines, or containers. A PCIe
physical function (PF) is associated with multiple virtual functions
(VFs), that can be accessed by the virtual machines. A VF can be
configured to access one or more physical resources of the device. An
example is a VF linked to a physical port in an FPGA or a VF linked
to a reconfigurable accelerator. SR-IOV bypasses hypervisor’s software
layer, reducing I/O access overhead in the emulation layer and leading
to improved latency and throughput. The high-level diagram in Figure
2.4 shows the concept of SR-IOV technology, highlighting the bypass
of the hypervisor that allows to improve virtualization overhead.

2.5 Alveo U55C card
The Alveo U55C card was used to implement Rosebud. It is an acceler-
ator card designed to do high performance workload in environments
such as datacenters, with applications ranging from data analytics to
machine learning. The card provides up to 200Gbps networking speed,
split in two QSFP28 ports, up to 100Gbps each. It also packs two
high bandwidth memory units, with a total capacity of 16GB, working
up to 460GB/s bandwidth. The main interface used to communicate
with the card is the PCIe interface, generally used to access internal
registers of IP blocks and to do partial reconfiguration. In this section,
the interfaces provided in this accelerator card are shown.

2.5.1 Network Interface
The Alveo U55C has two QSFP28 ports, or cages, with a 4-lane for-
mat. QSFP28 specification allow for a bitrate up to 100Gbps. Each
QSFP28 module has 4 channels, running at 25Gbps each. Xilinx’s GTY
transceiver are the serial communication modules that interfaces with
the optical interconnections of the QSFP28 specification and provide

17

Background

Figure 2.4: SR-IOV model architecture

18

Background

the digital signals to the fpga device. The two QSFP28 cages also
provide a clock source running at 161.1328125 Mhz that can be used
to feed several ethernet IPs.

2.5.2 PCIe Interface
The U55C implements a 16-lane PCI Express bus, performing data
transfers up to 8 GT/s (Giga Transfers per second) for PCIe Gen3 and
16 GT/s for Gen4. Xilinx provides IP blocks to interact easily with the
interface and enable advanced features, such as SR-IOV configuration
and Partial Reconfiguration functionalities.

2.5.3 XCU55C Ultrascale+ FPGA
The XCU55C is the Xilinx FPGA contained in the Alveo card. The fpga
device uses Stacked Silicon Interconnect (SSI) technology to combine
three super logic regions, each region providing independent sets of
resources, such as I/O cells, DSP blocks, RAM cells and others. The
usage of these super logic regions will be better detailed in the porting
chapter, during the floorplan phase.

2.5.4 Clocking Structure
Several clock sources are connected to the fpga device. Two 161.132
MHz clock sources are dedicated to Ethernet applications, as this spe-
cific clock frequency is generally used to interface with QSFP28 modules,
which support up to 100Gbps data rates. These two clocks sources are
generated by a programmable oscillator, along with a third clock source
running at 100Mhz, typically used for general-purpose IPs. If a different
clock frequency is required, IP modules such as PLLs or MMCMs can
be instantiated. These modules take the generated clocks as input,
producing an output of another required frequency. It is important to
understand that each source is usually dedicated for one specific region
of the device. This is crucial during pin assignment, since choosing
the wrong clock source can lead to problems in the implementation
stage, especially during routing, where timing requirements are met.

19

Background

A high-level representation of the U55C clock tree is shown in 2.5,
detailing the connections between the different clock sources and the
banks associated to the device regions.

Figure 2.5: Clock tree structure in the Alveo U55C

2.6 Related Works
As of today, several solutions exist to implement custom smartNICs on
FPGAs. Several solutions focus on providing a preconfigured hardware
shell that includes a basic networking stack infrastructure, enabling an
ethernet interface to the FPGA and minimal packet storage capabilities.
The main purpose of these projects is to easily allow the integration of

20

Background

hardware accelerators that realize more complex computation, enabling
complex networking functionalities.

Corundum is a full open-source platform that includes a high-speed
ethernet datapath up to 100Gbps and implements a full network stack,
with a DMA interface. The use of AXI interfaces allow for the easy
integration of new modules into the design. Except for the 100G MAC
implementation, which uses the Xilinx proprietary CMAC IP, every
other hard IP is fully open-source.

OpenNIC is a project that provides a basic NIC shell, based on the
100G CMAC IP, with linux drivers and support for DPDK drivers. It
contains the Xilinx QDMA IP, enabling multiple physical functions on
PCIe. The presence of the QDMA is interesting, since it enables the use
of multiple physical functions through PCIe and, though not supported
yet, can allow for virtualization capabilities to be implemented through
SR-IOV.

EasyNet implements a 100G TCP/IP network stack using Vitis-
HLS. It provides a network kernel, connected through AXI interface,
to a user kernel, allowing the implementation of external logic that
interacts directly with the TCP stack. The usage of Vitis allow the
user to eventually develop the user kernel in high-level languages such
as C/C++, avoiding the complexity of HDL languages.

All these solution helps prototype network platforms for hardware
accelerators, however virtualization is not supported. Solutions for
FPGA virtualization are found in academic and commercial fields.

An overview of the main techniques and categories of FPGA Virtu-
alization are found in this paper [1]. Here are some industrial solutions
for FPGA Virtualization:

SVFF [2], by Virtual Open Systems, is a Virtual Function Framework
that simplifies the management of virtual functions on FPGAs devices,
leveraging the SR-IOV support provided by the QDMA IP. This solution
allows the attachment and detachment of virtual functions to/from
virtual machines.

A solution that provides both an hardware and software framework is
shown in [3], where partial reconfigurable regions are offered as generic
cloud resources through OpenStack, allowing the User to boot custom

21

Background

accelerators in the same way a virtual machine is booted.
Feniks [4] is an FPGA operating system that provides an ab-

stracted interface for FPGA accelerators, providing direct resource
access through the PCIe bus. This research highlights the importance
of the PCIe interface as a solution to interact with FPGA resources in
environments that makes high use of virtualization, such as datacenters.
As an example, companies such as Microsoft started to implement
FPGA acceleration in their servers to improve performance of the Bing
search engine [5].

Optimus is an hypervisor that supports FPGA virtualization using
memory-shared architecture, providing FPGA resource multiplexing
through the isolation of virtual accelerator’s DMAs, with hardware-
software co-design.

[6] presents a framework that provides integration of hardware ac-
celeration in cloud environments using Partial Reconfiguration. A
case study shows the benefits in terms of efficiency to integrate PR
virtualized designs in cloud environments, in relation to other static
acceleration frameworks.

A solution that integrates Virtualization and sharing of reconfigurable
FPGA resources is shown in [7], in which a PR-based framework is
showcased on High Performance Reconfigurable Computers (HPRCs),
that are parallel computers with multiple FPGA sources.

RosebudVirt [8] emerged as a framework during the last stages
of this research. It is an enhancement of Rosebud, adding SR-IOV
capabilities and compatibility with Kubernetes and Docker.

22

Chapter 3

Rosebud
Rosebud is an open-source framework for FPGA middlebox implemen-
tations. A middlebox is a networking device that implements network
functionalities such as Packet Inspection, Firewall or Intrusion Detec-
tion. The goal of Rosebud is to abstract hardware components into a
single unit called RPU (Reconfigurable Packet-processing Unit). This
unit is a reconfigurable hardware block, designed to act as a network
accelerator. Its main function is to elaborate network traffic, more
specifically to handle packets. To control this unit, Rosebud integrates
RISC-V based CPUs, that are instantiated in the FPGA and allow de-
bugging via software, avoiding all the problems related to implementing
control logic in hardware. A memory architecture is built around the
RPUs, including memory blocks for storing packets and stack memories
to support programs running on the RISC-V cores.

In the context of smartNICs, Rosebud tries to help developing FPGA
designs in a way that is more similar to traditional software development.
FPGA development is slow, with processes such as placement and
routing take hours to complete. Furthermore, debugging capabilities on
FPGAs at run-time are poor. Typically, debugging is done at RTL level,
using simulations to test the design before implementing it on hardware.
The problem is that debugging networking designs at RTL level is
complicated, due to the difference in timing between simulation and
real hardware. Simulating a multi-gigabit network design could take
hours for the transmission of a couple thousands of packets, whereas

23

Rosebud

real hardware can process millions of packet per second. The presence
of the RISC-V core in Rosebud is designed to get easy access to internal
signals of the accelerators and to its internal memory structures, such
as the small memory buffers used for packet storage.

This section will explain the architecture of Rosebud, showing the
main hardware components and the software infrastructure.

3.1 Hardware Design

3.1.1 RPU
Rosebud’s design is centered around the RPU (Reconfigurable Packet-
processing Unit). Each RPU contains two main components: a RISC-V
core and an hardware accelerator. These two components communicate
through two memory structures: an I/O memory map between the core
and the accelerator, providing direct access to hardware registers by
the RISC-V core, and a shared memory module, primarily used to store
packets for processing.

The HW accelerators perform high time-consuming operations on
packets, reading them in a streaming manner (data is read n-bit at
a time). The RISC-V core, on the other hand, can access packet
data in a more flexible, random-access way, allowing it to fetch packet
headers or modify specific fields within the packet. This dual approach
creates a balance between high-speed streaming and flexible packet
processing. For this reason, the hardware accelerators use Xilinx’s Ultra-
Ram(URAM) modules. URAMs are physical blocks of high-latency
memory integrated in the FPGA fabric logic that can be pipelined to
hide the high latency. The importance of these Ultra-Ram modules will
be detailed further in the porting section, highlighting how the number
of URAM blocks in the U55C makes it very difficult to implement
certain types of accelerators, especially when aiming for a standard
number of RPUs to be allocated, such as 8 or 16. The RISC-V core,
instead, uses Block RAM (BRAM) modules, which are more abundant
in the FPGA fabric.

All RPUs are all placed inside partial regions, enabling them to be

24

Rosebud

reprogrammed at runtime, while the rest of the design still operate.
Partial Reconfiguration allows for versatile packet-processing func-

tionality. For example, an RPU initially configured to implement a
firewall accelerator can be reconfigured at run-time to perform other
tasks, such as hash computation or packet inspection. Each RPU is
contained in an isolated partial region. The partial regions are all
isolated and independent from each other, which means we can ad-
dress them separately, without affecting operations of other RPUs.
Partial reconfiguration is executed through Xilinx’s MCAP (Manage-
ment Configuration Access Port) drivers, where MCAP is an advanced
configuration interface designed for PCIe applications.

Figure 3.1: Overview of Rosebud’s architecture

3.1.2 RISC-V core
The RISC-V core is a softcore CPU that is used as a way to control
the hardware accelerator. Each allocated RPU in the FPGA contains a
small RISC-V core based on the VexRISC-V implementation. VexRISC-
V is an open source 32-bit version of a RISC-V processor, optimized
for FPGAs. The core runs at 250 Mhz, which is relatively slower with

25

Rosebud

respect to the 322 Mhz speed of the ethernet interface. This frequency,
however, is enough to handle 100 Gbps processing using the core alone,
for example using it as a packet generator.

This allows to concentrate only on CPU latency as a potential
limitation of the RISC-V core usage.

3.1.3 Load Balancer
Load balancing refers to the process of distributing computational
workload between different resources. In the context of networking, the
workload becomes the network traffic. Having a component dedicated
to this task helps speeding up performance and reduce latency.

Rosebud is designed to run with several RPUs working in parallel,
leading to the load balancer being very important to split the traffic
between RPUs, especially since it works at high-speed line rates.

The load balancer addresses the packets before sending them to the
RPUs, it interacts with the packet slots using descriptors, that indicates
the memory slot number. The enforcement of the load balancing policy
is done labeling the received packets, writing values indicating the target
RPU and the destination memory slot. An interface is provided which
allows to control the Load Balancer during runtime. This interface can
be used to enable or disable cores and provides access to a few status
registers.

3.1.4 Network shell
The network shell is based on Corundum, an open source FPGA design
that creates a NIC infrastructure and a virtual network interface,
through linux drivers. The networking infrastructure is composed of
several HDL modules. Rosebud uses a small set of these modules, such
as queue managers, PCIe modules, to allow connection to host DRAM,
and linux networking stack drivers. The physical ethernet interfaces
(QSFP modules) are connected to a 100G MAC module, provided by
Xilinx, called CMAC (Centralized MAC). This block handles the level
2 of the network stack, the data link layer. Network packets go through

26

Rosebud

this module and are handled by a packet distribution system, alongside
some FIFO modules, for buffering and streaming purposes. The CMAC
module provides up to 512 bits data width, allowing a throughput of
more than 100 Gbps:

Throughput = 512 bits × 322 × 106 Hz = 164.224Gbps (3.1)

Given that the U55C has two 100G QSFP ports and each ports has
a dedicated CMAC module, there are no stringent constraints from
an hardware point of view and we can expect to have up to 100Gbps
bandwidth on each port.

3.1.5 Software Interface
The purpose of the software interface in Rosebud is to control the RPUs.
Each RPU has one RISC-V CPU core and one hardware accelerator. A
custom C library called core.h is used in order to enable the CPU cores
to perform operations such as reading packets descriptors, forwarding
packets to specific interfaces and debug functionalities such as reading
timer values, useful in timestamping.

The libraries use a baremetal approach, with C functions writing
directly in MMIO regions, using memory addresses that belong to
hardware registers. The library code bypasses software abstractions
or high-level APIs and writes values into internal variables, containing
memory locations. Here is an example:

#define SEND_DESC (*((volatile struct Desc*)(IO_INT_BASE + 0x0008)))
#define SEND_DESC_TYPE (*((volatile unsigned char *)

‘(IO_INT_BASE + 0x0028)))
static inline void pkt_send(const struct Desc* output_desc)
{

SEND_DESC = *output_desc;
asm volatile("" ::: "memory");
SEND_DESC_TYPE = 0;

}

The pkt_send function, provided by the Rosebud library, is used in a
C program that runs in the risc-v cores to send a network packet outside

27

Rosebud

the RPUs. The Desc struct includes some fields indicating the port in
which to send the packet, the packet length and a tag, used to link a
specific RPU to a packet. The variable SEND_DESC is directly declared
as a specific memory location using offsets. asm volatile("" :::
"memory") is a technique used in low-level programming, in order to
prevent reorder of memory operations that the compiler might perform.
This instructions acts as a memory barrier, ensuring that memory
operations happening before this instruction must complete before other
instructions that follow it. The assignment of 0 to SEND_DESC_TYPE is
used to forward the packet to an ethernet interface.

Linux drivers

Rosebud provides a set of drivers for the linux network stack. These
drivers enable a virtual ethernet interface, so that Rosebud is seen
as a NIC on the network interface. This virtual interface is linked in
hardware to the PCIe interface.

3.2 Implementation on Alveo U55C
Rosebud provides support for the Alveo U200 and the VCU1525 FPGAs.
However, several modifications were required in order to implement
Rosebud on the Alveo U55C. Both the U200 and the U55C include
QSFP modules; however, they are controlled in a different way. The
U200 provides an interface that can directly access the QSFP control
signals through an I2C bus on the card, while the U55C can access the
same signals through the use of a Xilinx proprietary IP, called CMS
(Card Management System) subsystem. These signals provide access
to QSFP sensor data and control over reset and status signals. The
integration of this IP is not relevant for the scope of this work, therefore,
it was not integrated into the design. However, this addition could be
a feature to add in future work.

Porting FPGA designs to different platforms involves addressing
differences in logic resources (LUT, flip-flops), embedded memory blocks
(BRAM, URAM), DSP slices, clock management modules (MMCM,

28

Rosebud

PLLs) and dedicated hardware (CPUs, ethernet interfaces, HBM mod-
ules). These differences are handled through the modification of synthe-
sis and implementation constraints, thus performing a mapping between
the device resources and the RTL modules.

XDC (Xilinx Design Constraints) constraints are used to manage this
mapping. They are commands that use the TCL script language, used
by Vivado, and they are stored in .xdc files. These constraints control
the placement of resources, timing specifications and other details that
helps achieving optimal performance on the target FPGA.

3.2.1 Synthesis Constraints
Synthesis constraints are critical to define clock setups and timing
paths in the FPGA design. The tools automate a lot of these processes,
however, large designs containing multiple clocks and clock domains
require precise specifications in order to maximize coverage for timing
paths. Additionally, they perform an initial mapping of the hard blocks
provided by the target device, such as transceivers and clock sources.

The Alveo U55C documentation provides a template of a xdc file,
detailing the FPGA I/O pins and their purpose, along with an image
of the Clock Tree structure, that details the connections between GTY
banks and SLR regions with different I/O pins and clock sources.

The set_property command is used to associate netlist module
ports with specific FPGA pins.

Here is an example in which the reception signal of the QSFP
module’s positive lane is linked to an FPGA pin:

set_property -dict LOC AD51 [get_ports qsfp0_rx1_p]
AD51 refers to the specific I/O pin and qsfp0_rx1_p is the port

provided as input to the Ethernet module.
The full set of synthesis constraints is provided in Appendix A.
Both the QSFP modules and the PCIe interface require dedicated

clock sources. Using the clock tree diagram in Figure 2.5, the correct pin
assignment is made based on which bank the design is using. Vivado
automatically generates a clock object for the QSFP clock during the
synthesis process of the CMAC IP (the link layer block).

29

Rosebud

However, the primary clock for the PCIe interface must be created
manually:

create_clock -period 10.000 -name pcie_mgt_refclk_1
[get_ports pcie_refclk_p]

This command defines a 100Mhz clock signal as input to the PCIe
module. It tells Vivado about the port and frequency of an external
clock entering the FPGA and sets up the timing constraint. The PCIe
module also requires an external source for the reset signal, assigned to
pin BF41 in this case:

set_property PACKAGE_PIN BF41 [get_ports pcie_reset_n]
set_property IOSTANDARD LVCMOS18 [get_ports pcie_reset_n]
set_property PULLUP true [get_ports pcie_reset_n]
set_input_delay 0.000 [get_ports pcie_reset_n]
set_false_path -from [get_ports pcie_reset_n]

The set_property PACKAGE_PIN assigns the specified pin to the
reset port of the PCIe module.

set_property IOSTANDARD LVCMOS18 sets the input/output stan-
dard for the signal, ensuring that it operates at 1.8V logic levels. The
Alveo U55C documentation provides the values for each pin. The PULL
UP property enables an internal pull-up resistor on the pin, ensuring
that the reset signal defaults to a logic high when not being driven.

The set_input_delay command specifies the input delay on the
reset signal. Since reset signals does not require synchronization or
specific timing constraints, a delay of zero is used.

set_false_path informs the timing analysis engine that the path of
this reset signal should be ignored during the analysis. This is useful for
paths that do not respect specific timing requirements, usually needed
for the general logic. The reason is that reset signals do not need to
have timing constraints. This helps avoiding unnecessary warnings that
could be asserted by the tool.

Another module in Rosebud that requires an external clock source
is the startupe3 module. This a special-purpose primitive in Xilinx

30

Rosebud

FPGAs, used to interface the startup logic of the FPGA. The module
manages signals like:

GSR (Global Set/Reset is used to reset all the flip-flops in the design,
ensuring that during the start-up procedure, all registers are in a known
state.

PROG is used to trigger the FPGA configuration procedure. This is
useful in partial reconfiguration scenarios, in which certain parts of the
logic needs to be reset, to allow the reconfiguration of the FPGA at
runtime.

create_clock -period 20.000 -name cfg_mgt_refclk_1
[get_pins startupe3_inst/CFGMCLK]

This command sets up a 50 Mhz clock for the CFGMCLK port of the
startupe3 module.

3.2.2 Partial Reconfiguration setup
Projects that make use of Partial Reconfiguration must be converted,
enabling Dynamic Function eXchange.

A simple command is necessary to convert the project:

set_property PR_FLOW 1 [current_project]

This operation is irreversible, meaning that PR cannot be disabled
after using this command. To utilize PR, Vivado needs to know which
modules are reconfigurable. This is accomplished by creating partition
definitions, which associate specific modules to the designated partitions.
Here is shown the code that allocates partitions for the RPU and the
Load Balancer:

if{[llength [get_partition_defs pr_riscv]]==0}
then {

create_partition_def -name pr_riscv -module rpu_PR}
if{[llength [get_partition_defs pr_load_balancer]]==0}

then {
create_partition_def -name pr_load_balancer -module lb_PR

}

31

Rosebud

This code checks if the partition already exists and if it doesn’t, it
creates a new one. The -module argument is used to insert the name
of a reconfigurable module, linking it to the partition definition.

Partitions are used to compile parts of the design separately, improv-
ing code modularity and reducing compile times. The definition of the
partitions is done before logic synthesis.

3.2.3 Floorplanning
After the synthesis process, the netlist containing all the HDL compo-
nents is generated, and a top-level hierarchy is created. In DfX projects,
before starting the implementation process, it is necessary to define
the physical location of the reconfigurable modules in the target FPGA
device.

The floorplanning procedure consists in allocating reconfigurable
partitions to specific regions of the FPGA. A proper placement is
crucial because it ensures that the reconfigurable modules have sufficient
resources in order to function properly.

During PR, reconfigurable modules are swapped in and out within
specific regions of the FPGA. To load these modules into a partition,
a configuration object must be created. Here is shown how a PR
configuration object is created in Rosebud:

create_pr_configuration -name config_1 -partitions [list
core_inst/rpus[0].rpu_PR_inst:RPU_base
core_inst/rpus[1].rpu_PR_inst:RPU_base
core_inst/rpus[2].rpu_PR_inst:RPU_base
core_inst/rpus[3].rpu_PR_inst:RPU_base
core_inst/rpus[4].rpu_PR_inst:RPU_base
core_inst/rpus[5].rpu_PR_inst:RPU_base
core_inst/rpus[6].rpu_PR_inst:RPU_base
core_inst/rpus[7].rpu_PR_inst:RPU_base
core_inst/lb_PR_inst:LB_Hash]

core_inst is the name of the FPGA design top-level instance. All
modules are instantiated under this top-level module, with the exception

32

Rosebud

of the CMAC modules and some clock-related modules. The name
of this PR configuration is specified using the -name argument. The
-partitions [list ...] command defines the list of reconfigurable
partitions, i.e., the modules that will be swapped in and out of the
FPGA, dynamically.

The RPUs are are instantiated in an array, using the for generate
statement in Verilog. Each RPU instance is a reconfigurable module,
referred to as rpu_PR_inst. The last entry is the Load Balancer, which
is also a reconfigurable module. However, the Load Balancer cannot be
swapped dynamically. Because of its crucial role in the design, the rest
of the logic cannot operate without the Load Balancer.

The optimal placement of the static logic can be determined by
performing an implementation run, removing the reconfigurable logic
temporarily. This allows to identify the optimal regions in which the
static modules can be placed, ensuring an optimal usage of space.

The implemented design can be viewed in the Vivado GUI, select-
ing "Open Implemented Design" in the lateral menu. This opens an
interactive graphical representation of the FPGA layout, showing the
FPGA resources, such as DSP blocks, URAM modules, Slices and Clock
regions. The different cells are addressed using XY coordinates, used
for Pblock assignment in the TCL scripts.

Here is shown an example of creation of a Pblock, assigning slices
(basic logic elements) to it:

create_pblock Pblock_1
resize_pblock Pblock_1 -add {SLICE_X13Y0:SLICE_X41Y119}

The create_pblock command generates a Pblock, the virtual con-
tainer used to hold the logic of the modules that will be constrained to
a specific region.

resize_pblock specifies the physical location in which the Pblock
will be allocated and the type of resource that the module requires.

The implemented design figure can be leveraged to see the coordinates
of the static logic modules placed by Vivado, by drawing Pblocks around
them. When a Pblock is created, Vivado shows the coordinates of the
Pblock in the "Properties" window.

33

Rosebud

Figure 3.2: Highlight of Pblocks for each module

34

Rosebud

The placement of the reconfigurable modules is also constrained by
the location of hard IP blocks, such as the CMAC and the PCIe module.
These modules require specific I/O components that have fixed location
on the FPGA, such as the GTY transceiver banks.

Structure of the Alveo U55C FPGA

The Alveo U55C FPGA is organized into three Super Logic Regions
(SLRs), named SLR0, SLR1 and SLR2. Each region is a separated
FPGA die slice,containing an independent set of logic resources. The
regions are interconnected in the device through Stacked Silicon Inter-
connect technology. The three regions are highlighted in Figure 3.2:
SLR0 is the lower region, SLR1 is the middle region and SLR2 is the
higher one.

Components Placement in the U55C

Figure 3.2 shows the entire FPGA device and all the allocated Pblocks.
The CMAC is placed on the left side of SLR1. The placement

is constrained by the location of the GTY transceivers used for the
ethernet module, highlighted by the orange vertical line in the figure.

The PCIe module is placed on SLR0, on the right side. The Rosebud
implementation for the Alveo U200 manages to put all the static logic,
CMAC and PCIe included, on the middle region, allowing the RPUs to
be placed symmetrically on the other regions. In the U55C this is not
possible because it has a smaller FPGA die and the GTY transceivers
used by the PCIe IP are located on SLR0, instead of SLR1.

Another constraint is put on the FIFO modules used as buffers for the
CMAC. The primitives used by the CMAC to work with the QSFP GTY
transceivers are called GTYE4_CHANNEL and GTYE4_COMMON. Ultrascale
devices require also to allocate the associated BUFG_GT_SYNC and
BUFG_GT sites. All these components are part of what is defined
as Programmable Unit (PU) in Xilinx documentation. The location
of the GTY channels in the U55C is on the left side of SLR1, which
means the MAC_n_FIFOs Pblock is placed there. Figure 3.3 shows
the placement of all the remaining static logic. The location of the

35

Rosebud

remaining component is not constrained by specific criteria other than
the required set of resources.

Figure 3.3: Closer view of the SLR1 region

The placement of the PCIe module forces a shrink on the RPU3 and
RPU4 Pblocks, allowing less resources to be allocated to those RPUs.
The number of resources allocated to the RPUs determines the size of
the accelerators that can be allocated, which is already limited by the
smaller device size of the Alveo U55C. However, no performance issues
are found during the benchmark, as all the necessary resources needed
for basic functionality are still allocated.

3.2.4 Second Generation 3D IC Interconnect
Figure 3.2 shows the connections between the RPUs and the static
components of the design. Two sets of registers, highlighted by yellow
horizontal bars towards the center of the figure, are placed on the edge
of SLR regions. These two Pblocks called SLR0_edge and SLR2_edge,
contain registers that facilitate interconnection between Pblocks located
in different SLR regions.

36

Rosebud

As previously mentioned, each SLR region contains an independent
set of resources, including the clock signal routing. When a design
spans multiple SLR regions, Xilinx recommends the usage of dedicated
flip-flops that are placed in the interconnects between two regions.

The cells containing these dedicated flip-flops are called laguna cells,
each containing a TX flip-flop and a RX flip-flop. One of these Flip-
flops can be used for a connection between regions. For instance, if the
TX flip-flop (driver) is allocated for a Pblock in the SLR0 region, the
receiver module must use the RX flip-flop in its allocated laguna cell.

The code below shows the allocation of the set of registers used in
SLR0:

create_pblock SLR0_edge
add_cells_to_pblock [get_pblocks SLR0_edge]
resize_pblock [get_pblocks SLR0_edge] -add {LAGUNA_X0Y0:LAGUNA_X31Y117}
set_property EXCLUDE_PLACEMENT 1 [get_pblocks SLR0_edge]
set_property IS_SOFT FALSE [get_pblocks SLR0_edge]

The EXCLUDE_PLACEMENT is a placement constraint, that directs
Vivado to prevent the placement of additional logic within the Pblock,
to avoid resource allocation issues and conflicts with other logic elements.
The IS_SOFT property set to FALSE indicates that the Pblock is a
hard constraint. This means that the boundaries of the Pblock must
be strictly respected during the placement process.

In Ultrascale+ devices, Xilinx facilitates the allocation of laguna
resources, using the CLOCKREGION directive. Figure 3.4 shows how
an SLR is divided in squares called clockregions, indicated by XY
coordinates. If a Pblock borders are aligned with those of a clockregion,
the whole square can be allocated, allowing Vivado to improve the clock
placement of the design. Here is an example with the allocation of the
SLR2_edge Pblock:

create_pblock SLR2_edge
resize_pblock [get_pblocks SLR2_edge] -add {CLOCKREGION_X0Y8
CLOCKREGION_X1Y8 CLOCKREGION_X2Y8
CLOCKREGION_X3Y8 CLOCKREGION_X4Y8 CLOCKREGION_X5Y8
CLOCKREGION_X6Y8 CLOCKREGION_X7Y8}

37

Rosebud

set_property EXCLUDE_PLACEMENT 1 [get_pblocks SLR2_edge]
set_property IS_SOFT FALSE [get_pblocks SLR2_edge]

Figure 3.4: Closer view of the SLR2 region

The cells that belong to the Pblock are not shown for brevity. When
a Pblock is created, the command add_cells_to_pblock must be set
with the list of the module instances that are part of the module. Here
is the set of commands used to create the Pblock for one RPU:

create_pblock RPU_1
add_cells_to_pblock [get_pblocks RPU_1]
[get_cells -quiet [list {core_inst/rpus[0].rpu_PR_inst}]]
resize_pblock [get_pblocks RPU_1] -add {SLICE_X15Y2:SLICE_X54Y135}
resize_pblock [get_pblocks RPU_1] -add {DSP48E2_X1Y0:DSP48E2_X6Y47}
resize_pblock [get_pblocks RPU_1] -add {RAMB18_X1Y2:RAMB18_X2Y53}
resize_pblock [get_pblocks RPU_1] -add {RAMB36_X1Y1:RAMB36_X2Y26}
resize_pblock [get_pblocks RPU_1] -add {URAM288_X0Y4:URAM288_X0Y35}
set_property SNAPPING_MODE ON [get_pblocks RPU_1]

Here, the argument of the add_cells_to_pblock command contains
the instance of the RPU that is being allocated to the Pblock. The
whole hierarchy path is written. Then, the required logic elements
are added to the allocated resources. The RPUs require a set of DSP
blocks, BRAM modules and URAM modules, which are high-latency

38

Rosebud

modules provided in Ultrascale FPGAs. The list of resource requirement
is created by the Vivado synthesis tool, after the synthesis process,
in which the RTL code is compiled and a more accurate netlist is
generated.

Bitstream generation and design start-up

After the floorplan phases, it is crucial to perform Design Rule Checks
(DRCs) to identify potential critical warnings that might prevent the
completion of the implementation process. Following the implementa-
tion phase, a set of report is generated. These reports include crucial
information about timing, resource utilization and area. The reports
should be analyzed to verify whether the required timing constraints
are satisfied in the post-implementation netlist. Once requirements are
met, a bitstream is generated as a final procedure. In Vivado-based
projects, the hw_manager utility is used to program the FPGA with
the generated bitstream. TCL scripts are used to automate this process.

Bitstreams are loaded into the FPGA flash memory via the SPI inter-
face, through micro-USB ports attached to the Alveo card. The average
time for the flashing of a bitstream can take several seconds, depending
on the size of the bitstream. After the bitstream is successfully loaded,
the FPGA must be reset in order to run the new configuration.

The reset of a PCI slot is performed through the following command:

echo 1 > "/sys/bus/pci/devices/<dev_pci_address>/rescan"

This operation requires sudo privileges. The output of the dmesg
command can be checked to see if there are errors in the flash procedure.
Figure 3.5 shows dmesg output in case of success.

Figure 3.5: Dmesg output after bitstream loading

39

Rosebud

At this point, the new bitstream is running on the FPGA. The
status of the ethernet link is shown by the activity leds in the Alveo
QSFP ports. A yellow or green light indicates that the physical link is
functional and the CMAC IP core has established the link. In order to
establish the link, the other end of the 100G network cable must be
connected to a compatible device.

Core Programming

To execute software on the RISC-V cores, C programs are compiled
using the gcc compiler for RISC-V architectures. A special set of instruc-
tions, the rv32i_zicsr, is required for the VexRisc-v implementation.
Rosebud provides a C program, called rvfw.c, which initializes the
RPU memories and the Load Balancer and loads the compiled binary
of instructions into the cores.

40

Chapter 4

Performance Benchmark
Rosebud has been successfully implemented on the Xilinx Alveo U55C.
The Alveo U55C card was deployed on a SuperMicro server, equipped
with a Intel(R) Xeon(R) CPU E5-2623 v4, running at 2.60 Ghz. The
U55C was connected with a point-to-point connection to a Mellanox
ConnectX-4 adapter, running on another SuperMicro server, through a
100G DAC optical fiber cable.

The U55C was chosen as the platform for benchmarking the perfor-
mance of Rosebud, due to the company’s extensive experience with the
card in other projects.

The benchmark focuses on specific parameters that are essential to
investigate the integration of virtualization features on Rosebud, which
acts as a networking platform for hardware accelerators.

4.1 Partial Reconfiguration
To evaluate the efficiency of PR, the configuration latency is measured.
This latency represents the time required to configure the FPGA with
the partial bitstreams. The time required to reset a core before the
bitstream flashing is also considered part of the configuration time.

The FPGA is programmed with the partial bitstream using the
Management Configuration Access Port (MCAP) interface, accessible
through the PCIe slot. MCAP manages multiple configuration channels
that can be used to load different partial bitstreams into the FPGA.

41

Performance Benchmark

Each partial bitstream is associated with a reconfigurable module. The
MCAP interface is accessible through a set of drivers provided by Xilinx.

The library mcap_lib.h offers a specific function that automates the
programming of the partial bitstream:

MCapConfigureFPGA(mdev, bitfile, EMCAP_CONFIG_FILE);

In this function, mdev is the /dev entry, bitfile is the partial bitstream
file and EMCAP_CONFIG_FILE is a macro defined in the library header,
that addresses a default configuration file.

To measure the time required for this operation, the C function
clock_gettime(), available in Unix systems, offers high-resolution,

providing time in nanoseconds. The function is called before and after
the MCAP function. Then we can compute the difference between the
two times to provide the latency of the operation.

clock_gettime(CLOCK_MONOTONIC, &start_time);
MCapConfigureFPGA(mdev, bitfile, EMCAP_CONFIG_FILE);
clock_gettime(CLOCK_MONOTONIC, &end_time);

Since the function loads one bitstream at a time, a loop is used to
iterate the programming for each RPU.

As detailed in the Partial Reconfiguration section, the procedure
is done at runtime, while the static logic on the FPGA still operates.
The latency between the completion of partial reconfiguration and the
RPUs starting operating time is negligible, as the cores begin operating
immediately following the instruction load program execution. Conse-
quently, the entire configuration procedure latency can be effectively
regarded as the deployment time for the accelerator. Table 4.1 shows
the average latency for the whole configuration procedure, including:

1. Putting a core in the reset state

2. Flashing the bitstream on the FPGA

3. Loading the instructions into the RISC-V CORE

42

Performance Benchmark

RPUs Latency (avg.)
1 RPU 02.34 s
4 RPUs 09.02 s
8 RPUs 16.50 s

Table 4.1: RPU reconfiguration latency

In comparison, virtual machines (VM) boot times tends to be in
the order of seconds [9], with lightweight VMs having an average boot
time between 10 and 30 seconds and commercial cloud VMs having
boot times between 30 seconds and 1 minute. The deployment time
for the hardware accelerators in Rosebud is shown to be in the order
of seconds, starting from an average of 2.34 seconds for a single RPU.
The test was conducted with different presets of accelerators provided
in the Rosebud framework and with a new custom accelerator, shown
in the next sections.

This results highlight the efficiency of Rosebud’s reconfiguration
procedure in a virtualized environment. While not negligible, especially
for a high number of RPUs, the deployment time is shown to be in
a practical range, ensuring the availability of the accelerator to VMs
without significant delays. Thus, the minimal configuration time of the
accelerator is highly advantageous and crucial to system performance.

4.2 Network performance
In order to measure packet forwarding performance, Rosebud was used
as traffic generator, sending random packets over the ethernet interface.
A C program running on the RISC-V cores is used for packet generation,
with the RPUs working in parallel. The program is shown on appendix
B. On the reception side, a Mellanox adapter captured the packets.
The bandwidth was measured running a bash script on the server side,
using the tcpdump utility. The script code is shown in Appendix D.
First, tcpdump captures the packets in a pcap file. The file is read using
the tshark utility, with the -r option and the wc -l command, which

43

Performance Benchmark

counts the number of lines on the tcpdump output, corresponding to
the total number of packets captured. The awk command is used to
extract the timestamp of the first and the last packet. The value is
converted from the unix time format to seconds and the difference is
computed in order to find the duration of the test. The bandwidth is
then computed using the number of captured packets, the packet size
and the duration of the test, as shown in D.

Results revealed a heavy performance bottleneck, with an average
measured bandwidth of 7 Gbps. The performance bottleneck is caused
by the overhead on the linux kernel. The kernel performs a lot of context
switch operations during the capture process. Adding up the number of
dropped packets at the interface, the computation suggests an average
bandwidth of ∼ 25Gbps. These values are lower than expected and
indicate a saturation of the linux kernel interface, which is unable
to handle the throughput. Unfortunately, this issue is common and
showcased in several publications of 100G FPGA networking systems.
The problem is usually bypassed using custom interfaces that provide
a packet capturing agent at the FPGA interface.

A potential future work improvement to mitigate the performance
bottleneck and allow the bandwidth measurements using standard
linux tools, could be the integration of DPDK, which is a program
designed to bypass the linux kernel and perform the capture operation
directly in user space. For instance, the Xilinx’s OpenNIC prototype
provides a set of DPDK patched drivers compatible with the QDMA IP,
achieving traffic generation at rates of 100 Gbps. The drivers provided
by Rosebud could be improved in order to enable the usage of DPDK.

A second test was run using the internal statistics interface of Rose-
bud, which counts the number of bytes forwarded through the ethernet
interfaces. The original approach used in Rosebud’s publication and by
several FPGA 100G networking prototypes is to adopt a dual-FPGA
connection. Two FPGAs are connected to each other, one behaving as
client and the other one as server. Using this approach, the performance
issues in standard linux-based tools are bypassed. Given the availability
of only one Alveo U55C for these measurements, the second test was
run using a loopback approach, using half of the CPU cores to send

44

Performance Benchmark

the packets through one QSFP port and the other half to receive them
through the other QSFP port. The connection is shown in Figure 4.1.

Figure 4.1: Alveo U55C connected to QSFP 100G cables

The test measures the transmitted bytes for a certain time period and
then computes the bandwidth through a simple arithmetic conversion,
in order to obtain the value in Gbps. The test was conducted measuring
the bandwidth for different values of packet size, showing a logarithmic

45

Performance Benchmark

increase with respect to the size of the packet. Figure 4.2 contains a
graph that shows the forwarding rate for each packet size.

Figure 4.2: Packet forwarding 8 RPU vs. 1 RPU

4.2.1 Results
The results presented here were measured using a single QSFP port,
with an expected peak bandwidth of 100 Gbps. The highest performance
is achieved with packet size exceeding 1000 bytes. After this value,
the bandwidth gradually reaches a saturation value near the peak
throughput. The worst case is represented by 64-byte packets, achieving
around 40% of the maximum rate for one port (100Gbps). The peak
throughput reached by a single RPU is 25 Gbps, indicating that full
bandwidth on a QSFP port can be achieved with half the RPUs used

46

Performance Benchmark

for transmission and the other half for reception. This allows for peak
performance to be reached with the loopback setup.

4.3 HW Accelerator Performance

A simple hardware accelerator was developed in order to test network
performance in the presence of HW accelerators in the RPUs. The
accelerator was written in Verilog and performs Cyclic Redundancy
Check (CRC) computation, an operation commonly used at the link
layer (level 2) of the OSI model. Rosebud works at the link layer by
default, meaning that the CRC function is a suitable choice to quickly
test network performance in the presence of an HW accelerator. The
Verilog code for the accelerator is shown in Appendix C.

The accelerator accepts three input signals, data_in, data_in_clear
and data_in_valid. Rosebud provides a wrapper for accelerators, ab-
stracting the communication interface between the accelerators and the
RPUs. This wrapper contains a process that reads memory addresses
from the CPU cores and controls the clear and valid signals. The
interface of the CRC accelerator was adapted to follow this protocol,
allowing for a straightforward deployment into the RPUs.

The compute_crc function is the core of the accelerator. The CRC
algorithm is implemented using a behavioral Verilog coding style. This
design allows the synthesis tools flexibility to determine which hard-
ware implementation to use. Consequently, the latency of the operation
depends on the implementation choice of the tools. Given the combina-
torial nature of the CRC algorithm, more specifically the parallelization
capabilities of a for loop, it makes sense to assume that each byte of
input is processed in one clock cycle. The latency introduced by the
accelerators is expected to affect the network throughput, lowering the
peak performance shown in the base design. Figure 4.3 shows network
performance using the CRC accelerator. The test is done using the
loopback setup shown in the previous section.

47

Performance Benchmark

Figure 4.3: Packet forwarding w/ CRC - 8 RPU vs. 1 RPU

48

Performance Benchmark

4.3.1 Results
Results show peak performance at 80 Gbps. Compared to the base
forwarding test, the minimum packet size required to reach near peak-
throughput is increased. This can be attributed to the added latency
introducted by the hardware accelerator, which adds to the one of
the RISC-V cores. In both configurations, using 8 RPUs or 1 RPU,
saturation is reached for packets sizes of 2000 bytes or larger.

49

Chapter 5

Conclusions

This thesis focuses on Rosebud, a high-performance FPGA framework
that provides both a high-speed network shell and reconfigurable pro-
cessing units (RPUs) for hardware accelerators. Although Rosebud
does not provide virtualization by default, the conducted analysis and
evaluation in this research highlight the potential for implementing
a multi-tenant virtualization design. As part of this work, a porting
procedure was successfully performed, to add support for the Alveo
U55C accelerator card, which was previously unsupported. This pro-
cess involved the design synthesis for the U55C architecture and the
floorplanning procedure, necessary to optimize the placement of the
hardware components. The framework was then tested on the U55C,
focusing on the efficiency of the Partial Reconfiguration feature, used
to deploy hardware accelerators at run-time. Network performance
was evaluated in a local network setting, measuring peak forwarding
performance using the RISC-V CPU cores as traffic generators. Finally,
a hardware accelerator was developed and deployed in order to assess its
impact on the performance benchmarks. The results of these evaluations
demonstrate the framework’s potential in high-performance networking
environments. In particular, Rosebud’s architecture is demonstrated
to be suitable for supporting virtualization in future implementations,
enabling multi-tenant FPGA resource sharing and system efficiency.

50

Conclusions

5.1 Future Work
The presence of Xilinx PCIe subsystem IP offers an opportunity to
enable SR-IOV technology, through a simple hardware configuration
of the IP. Additionally, the reconfigurable units (RPUs) are suited for
integration in a virtualized environment that provides access to resources
through virtual functions. In the final stages of this research, a new
solution called RosebudVirt was published, integrating virtualization
capabilities into Rosebud. Although this product is closed-source,
preventing the possibility of testing it within this research, the presented
results align closely with the direction of this thesis, reinforcing the
idea of a multi-tenancy virtualized implementation of Rosebud.

51

Appendix A

Synthesis Constraints
Here are shown the constraints required in order to perform synthesis
of Rosebud on the Alveo U55C. The implementation constraints used
in the floorplan stage are not shown, to avoid redundancy.
QSFP28 Interfaces
set_property -dict {LOC AD51} [get_ports qsfp0_rx1_p]
set_property -dict {LOC AD46} [get_ports qsfp0_tx1_p]
set_property -dict {LOC AC53} [get_ports qsfp0_rx2_p]
set_property -dict {LOC AC44} [get_ports qsfp0_tx2_p]
set_property -dict {LOC AC49} [get_ports qsfp0_rx3_p]
set_property -dict {LOC AB46} [get_ports qsfp0_tx3_p]
set_property -dict {LOC AB51} [get_ports qsfp0_rx4_p]
set_property -dict {LOC AA48} [get_ports qsfp0_tx4_p]
set_property -dict {LOC AD42} [get_ports

qsfp0_mgt_refclk_1_p]

161 .1328125 MHz MGT reference clock (SI5394 OUT0)
create_clock -period 6.206 -name qsfp0_mgt_refclk [

get_ports qsfp0_mgt_refclk_p]

set_property -dict {LOC AA53} [get_ports qsfp1_rx1_p]
set_property -dict {LOC AA44} [get_ports qsfp1_tx1_p]
set_property -dict {LOC Y51} [get_ports qsfp1_rx2_p]
set_property -dict {LOC Y46} [get_ports qsfp1_tx2_p]
set_property -dict {LOC W53} [get_ports qsfp1_rx3_p]
set_property -dict {LOC W48} [get_ports qsfp1_tx3_p]
set_property -dict {LOC V51} [get_ports qsfp1_rx4_p]
set_property -dict {LOC W44} [get_ports qsfp1_tx4_p]

52

Synthesis Constraints

set_property -dict {LOC AB42} [get_ports
qsfp1_mgt_refclk_1_p]

161 .1328125 MHz MGT reference clock (SI5394 OUT1)
create_clock -period 6.206 -name qsfp1_mgt_refclk [

get_ports qsfp1_mgt_refclk_p]

PCIe Interface
set_property -dict {LOC AL2} [get_ports { pcie_rx_p [0]}]
set_property -dict {LOC AL11} [get_ports { pcie_tx_p [0]}]
set_property -dict {LOC AM4} [get_ports { pcie_rx_p [1]}]
set_property -dict {LOC AM9} [get_ports { pcie_tx_p [1]}]
set_property -dict {LOC AN6} [get_ports { pcie_rx_p [2]}]
set_property -dict {LOC AN11} [get_ports { pcie_tx_p [2]}]
set_property -dict {LOC AN2} [get_ports { pcie_rx_p [3]}]
set_property -dict {LOC AP9} [get_ports { pcie_tx_p [3]}]
set_property -dict {LOC AP4} [get_ports { pcie_rx_p [4]}]
set_property -dict {LOC AR11} [get_ports { pcie_tx_p [4]}]
set_property -dict {LOC AR2} [get_ports { pcie_rx_p [5]}]
set_property -dict {LOC AR7} [get_ports { pcie_tx_p [5]}]
set_property -dict {LOC AT4} [get_ports { pcie_rx_p [6]}]
set_property -dict {LOC AT9} [get_ports { pcie_tx_p [6]}]
set_property -dict {LOC AU2} [get_ports { pcie_rx_p [7]}]
set_property -dict {LOC AU11} [get_ports { pcie_tx_p [7]}]
set_property -dict {LOC AV4} [get_ports { pcie_rx_p [8]}]
set_property -dict {LOC AU7} [get_ports { pcie_tx_p [8]}]
set_property -dict {LOC AW6} [get_ports { pcie_rx_p [9]}]
set_property -dict {LOC AV9} [get_ports { pcie_tx_p [9]}]
set_property -dict {LOC AW2} [get_ports { pcie_rx_p [10]}]
set_property -dict {LOC AW11} [get_ports { pcie_tx_p [10]}]
set_property -dict {LOC AY4} [get_ports { pcie_rx_p [11]}]
set_property -dict {LOC AY9} [get_ports { pcie_tx_p [11]}]
set_property -dict {LOC BA6} [get_ports { pcie_rx_p [12]}]
set_property -dict {LOC BA11} [get_ports { pcie_tx_p [12]}]
set_property -dict {LOC BA2} [get_ports { pcie_rx_p [13]}]
set_property -dict {LOC BB9} [get_ports { pcie_tx_p [13]}]
set_property -dict {LOC BB4} [get_ports { pcie_rx_p [14]}]
set_property -dict {LOC BC11} [get_ports { pcie_tx_p [14]}]
set_property -dict {LOC BC2} [get_ports { pcie_rx_p [15]}]
set_property -dict {LOC BC7} [get_ports { pcie_tx_p [15]}]
set_property -dict {LOC AR15} [get_ports pcie_refclk_p]

53

Synthesis Constraints

set_property PACKAGE_PIN BF41 [get_ports pcie_reset_n]
set_property IOSTANDARD LVCMOS18 [get_ports pcie_reset_n]
set_property PULLUP true [get_ports pcie_reset_n]

create_clock -period 10 .000 -name pcie_mgt_refclk_1 [
get_ports pcie_refclk_p]

create_clock -period 20 .000 -name cfg_mgt_refclk_1 [
get_pins startupe3_inst / CFGMCLK]

#Input and Output delays
set_input_delay 0.000 [get_ports pcie_reset_n]
set_false_path -from [get_ports pcie_reset_n]

54

Appendix B

Traffic generation
This code runs on the RISC-V cores on the RPUs. Packet generation
and forwarding to ethernet interface is done by the cores.
include "core.h"

#define PKT_SIZE 1024

struct Desc packet;
unsigned int * pkt_data [16];

int main(void){

// initialization stuff for the load balancer
init_hdr_slots (16, 0x804000 , 128);
init_slots (16, 0x00000A , 16384);
set_masks (0 x30);

// this loop initializes the addresses for the packet ’s
slots and writes the core_id to the packet headers

for (size_t i=0;i <16;i++){
pkt_data [i] = (unsigned int *)(0 x01000000 +i *16384) ;
pkt_data [i][0] = core_id ();

}

packet.len = PKT_SIZE ;
packet.tag = 0;
if ((core_id ()&0x4)!=0)

packet.port = 0;

55

Traffic generation

else
packet.port = 0;

while (1){
for (i=0;i <16;i++) {

packet.data = (unsigned char *) pkt_data [i];
pkt_send (& packet);

}
}

return 1;
}

56

Appendix C

CRC Accelerator

module crc_acc #(
parameter CRC_WIDTH = 32,
parameter SEED = 32’ h04C11DB7

)
(

input wire clk ,
input wire rst ,

input wire [31:0] data_in ,
input wire [1:0] data_in_len ,
input wire data_in_valid ,
input wire crc_clear ,

output wire [31:0] crc_out
);

parameter OFFSET_WIDTH = $clog2(CRC_WIDTH);

reg [CRC_WIDTH -1:0] crc_reg = 32’ hFFFFFFFF ;
reg [OFFSET_WIDTH -1:0] offset_reg = 0;

function [31:0] compute_crc (input [31:0] data , input
[31:0] current_crc , input [1:0] len);

integer i, j;
reg [31:0] crc;
reg [7:0] data_byte ;
begin

57

CRC Accelerator

crc = current_crc ;
for (i=0; i<(len * 8);i=i+8) begin

// Extract byte
data_byte = data[i +: 8];
crc = crc ^ (data_byte << 24);
for (j=0;j <8;j=j+1) begin

if (crc [31]) begin
crc = (crc << 1) ^ SEED;

end else begin
crc = crc << 1;

end
end

end
compute_crc = crc;

end
endfunction

wire [31:0] crc_next = compute_crc (data_in , crc_reg ,
data_in_len);

// output is inverted
assign crc_out = ~ crc_reg ;

always @(posedge clk) begin
if (rst || crc_clear) begin

crc_reg <= 32’ hFFFFFFFF ;
offset_reg <= 0;

end else if (data_in_valid) begin
crc_reg <= crc_next ;
offset_reg <= offset_reg + data_in_len ;

end
end

endmodule

58

Appendix D

Server side benchmark

#!/ bin/bash

interface = ens5np0
packet_size =1500
output_file = capture .pcap

timeout 10 sudo tcpdump ’len = 1500 ’ -i ens5np0 -s 0 -w
capture .pcap

the next commands run tcpdump just to read from capture .
pcap

captured_packets =$(tshark -r $output_file | wc -l)

last_timestamp =$(tcpdump -r $output_file -q | tail -1 |
awk ’{print $1}’)

start_timestamp =$(tcpdump -r $output_file -q | head -1 |
awk ’{print $1}’)

convert timestamp in seconds
last_seconds =$(echo " $last_timestamp " | awk -F: ’{ printf

"%d\n", $1 *3600 + $2 *60 + $3 }’)
start_seconds =$(echo " $start_timestamp " | awk -F: ’{

printf "%d\n", $1 *3600 + $2 *60 + $3 }’)

duration =$((last_seconds - start_seconds))

bandwidth =$(echo " $captured_packets * $packet_size * 8 /
$duration " | bc)

59

Server side benchmark

gbps=$(echo " $bandwidth / 1000000000 " | bc)

echo " Bandwidth measured : $gbps Gbps per second"

60

Bibliography
[1] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. «A Survey on

FPGA Virtualization». In: 2018 28th International Conference on
Field Programmable Logic and Applications (FPL). 2018, pp. 131–
1317. doi: 10.1109/FPL.2018.00031 (cit. on pp. 16, 21).

[2] Stefano Cirici, Michele Paolino, and Daniel Raho. «SVFF: An Au-
tomated Framework for SR-IOV Virtual Function Management in
FPGA Accelerated Virtualized Environments». In: 2023 Interna-
tional Conference on Computer, Information and Telecommuni-
cation Systems (CITS). 2023, pp. 1–6. doi: 10.1109/CITS58301.
2023.10188786 (cit. on p. 21).

[3] Stuart Byma, J. Gregory Steffan, Hadi Bannazadeh, Alberto Leon-
Garcia, and Paul Chow. «FPGAs in the Cloud: Booting Virtualized
Hardware Accelerators with OpenStack». In: 2014 IEEE 22nd
Annual International Symposium on Field-Programmable Custom
Computing Machines. 2014, pp. 109–116. doi: 10.1109/FCCM.2014.
42 (cit. on p. 21).

[4] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu, Bojie Li,
Peng Cheng, Guo Chen, and Thomas Moscibroda. «The Feniks
FPGA Operating System for Cloud Computing». In: Proceed-
ings of the 8th Asia-Pacific Workshop on Systems. APSys ’17.
Mumbai, India: Association for Computing Machinery, 2017. isbn:
9781450351973. doi: 10.1145/3124680.3124743. url: https:
//doi.org/10.1145/3124680.3124743 (cit. on p. 22).

[5] Adrian M. Caulfield et al. «A cloud-scale acceleration architecture».
In: 2016 49th Annual IEEE/ACM International Symposium on

61

https://doi.org/10.1109/FPL.2018.00031
https://doi.org/10.1109/CITS58301.2023.10188786
https://doi.org/10.1109/CITS58301.2023.10188786
https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1145/3124680.3124743
https://doi.org/10.1145/3124680.3124743
https://doi.org/10.1145/3124680.3124743

BIBLIOGRAPHY

Microarchitecture (MICRO). 2016, pp. 1–13. doi: 10.1109/MICRO.
2016.7783710 (cit. on p. 22).

[6] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. «Virtu-
alized FPGA Accelerators for Efficient Cloud Computing». In: 2015
IEEE 7th International Conference on Cloud Computing Technol-
ogy and Science (CloudCom). 2015, pp. 430–435. doi: 10.1109/
CloudCom.2015.60 (cit. on p. 22).

[7] Esam El-Araby, Ivan Gonzalez, and Tarek El-Ghazawi. «Virtu-
alizing and sharing reconfigurable resources in High-Performance
Reconfigurable Computing systems». In: 2008 Second International
Workshop on High-Performance Reconfigurable Computing Technol-
ogy and Applications. 2008, pp. 1–8. doi: 10.1109/HPRCTA.2008.
4745683 (cit. on p. 22).

[8] Yiwei Chang and Zhichuan Guo. «RosebudVirt: A High-Performance
and Partially Reconfigurable FPGA Virtualization Framework for
Multitenant Networks». In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (2024), pp. 1–5. doi: 10.1109/TVLSI.
2024.3436017 (cit. on p. 22).

[9] Ridlo Auliya, Yen-Lin Lee, Chia-Ching Chen, Deron Liang, and
Wei-Jen Wang. «Analysis and prediction of virtual machine boot
time on virtualized computing environments». In: Journal of Cloud
Computing 13 (Apr. 2024). doi: 10.1186/s13677-024-00646-4
(cit. on p. 43).

62

https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/CloudCom.2015.60
https://doi.org/10.1109/CloudCom.2015.60
https://doi.org/10.1109/HPRCTA.2008.4745683
https://doi.org/10.1109/HPRCTA.2008.4745683
https://doi.org/10.1109/TVLSI.2024.3436017
https://doi.org/10.1109/TVLSI.2024.3436017
https://doi.org/10.1186/s13677-024-00646-4

	List of Tables
	List of Figures
	Introduction
	Premise and work introduction
	Thesis outline

	Background
	SmartNICs
	Packet Processing

	FPGAs
	Architecture overview
	LUTs
	Design Flow

	Partial Reconfiguration
	Partial Bitstreams
	Floorplanning

	Virtualization and FPGAs
	SR-IOV

	Alveo U55C card
	Network Interface
	PCIe Interface
	XCU55C Ultrascale+ FPGA
	Clocking Structure

	Related Works

	Rosebud
	Hardware Design
	RPU
	RISC-V core
	Load Balancer
	Network shell
	Software Interface

	Implementation on Alveo U55C
	Synthesis Constraints
	Partial Reconfiguration setup
	Floorplanning
	Second Generation 3D IC Interconnect

	Performance Benchmark
	Partial Reconfiguration
	Network performance
	Results

	HW Accelerator Performance
	Results

	Conclusions
	Future Work

	Synthesis Constraints
	Traffic generation
	CRC Accelerator
	Server side benchmark
	Bibliography

