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Abstract

The ability to generalize knowledge across similar environments is a key as-
pect of human intelligence. Unlike humans, current artificial intelligence
(AI) models struggle to extract structured, transferable knowledge from dy-
namic environments. DeepMind’s breakthrough results on Atari games have
demonstrated that pure sub-symbolic approaches, such as deep reinforce-
ment learning, lack true understanding: they optimize policies based on raw
pixel inputs but fail to generalize when minimal changes are introduced to
the environment. This brittleness—where even trivial modifications, such as
recoloring a paddle or shifting an object’s position, require retraining from
scratch—suggests that these models do not learn in the human sense but in-
stead rely on fragile heuristics. As argued by Melanie Mitchell, such systems
lack an internal “world model”, a structured representation of cause-effect
relationships that allows for reasoning and adaptation.

This thesis presents an alternative framework for capturing interpretable
knowledge about game dynamics without relying on opaque neural networks.
Instead of passively learning from vast amounts of data, our system actively
constructs structured models of object behavior using heuristic-based reason-
ing grounded in core knowledge. The method does not assume pre-defined
objects but begins with anonymous patches extracted from game frames,
identified solely by their fundamental properties (e.g., position, shape). A
set of heuristics then tracks these patches over time, recognizing persistent
entities and their interactions. Through rule inference, the system identi-
fies regularities in object behavior, reconstructing the underlying mechanics
governing the environment.

These structured representations are abstract and reusable, meaning they
could, in principle, transfer across related environments without requiring
retraining. Unlike deep learning models, which discard prior knowledge when
faced with novel conditions, our system retains and adapts its understanding
dynamically. This approach lays the groundwork for AI systems capable of
interpretable, human-like reasoning about interactive environments.

The model can potentially be integrated into reinforcement learning (RL)
frameworks, serving as an “internal world model” for agents in Dyna-like
architectures. Preliminary experiments indicate that leveraging structured
knowledge in planning improves sample efficiency and robustness to environ-
mental changes, suggesting promising directions for future work.
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Chapter 1

Introduction

It has been repeated extensively how much progress artificial intelligence has
made in recent years; thanks to a combination of devoted research, increased
computational power, and vast amount of data, deep learning models have
indeed achieved outstanding results in many fields, from text to video gener-
ation to 3D protein folding, even surpassing humans in some narrow tasks.
It is only fair to be proud of these successes, but to progress further we also
need to understand the limitations of these solutions.

Many researchers have highlighted that, despite being exceptionally capa-
ble in learning patterns that solve a given task, they still lack some crucial
aspects of what we usually intend as intelligence. One of the most prominent
critiques is the lack of understanding [77][48], which means that deep learn-
ing models learn how to solve tasks, without learning what the task is and
how they solve it; they do not develop an internal world model consisting of
concepts, hierarchies, and causal reasoning. Another discussed and possibly
related limitation is the lack of generalization [14]; most models are narrow
and brittle; to face novel challenges or changes in their environment, they
usually need fine-tuning or even retraining. Then, there is the problem of
their opacity [25]; while some techniques to try and understand which pat-
tern these models follow when making decisions are being studied, in most
cases they remain black boxes from the outside. This lack of transparency
limits AI in many fields that require reliability and accountability, such as
medicine, economy, and, in general, decision making.

The starting point of this thesis was to create a framework able to develop
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1 – Introduction

a structured and symbolic representation of its environment, providing ex-
plainability and interpretability, while investigating how to build an internal
world model. The initial case of study was DeepMind’s Atari-playing AI [49];
this model achieved superhuman performance in these classic video games
but perfectly showed the limitations mentioned above, specifically brittle-
ness [55], lack of generalization [46], and black-box nature; when even small
changes are made to the game environment, such as recoloring or resizing
an element, the model has trouble playing, showing how much it depends on
statistical patterns at the raw pixel level. Clearly, the objective of this re-
search was not to reach DeepMind’s performances but to lay the foundations
for a more structured and generalized learning framework.

Overall, this work investigates the open problem of learning, drawing from
Philosophy, Psychology, and Cognitive Science to highlight how the theme
influences artificial intelligence, and proposes a novel framework for captur-
ing interpretable knowledge about game dynamics using core knowledge and
symbolic learning. By constructing formal representations of elements and
their behaviors, the goal is to develop a robust understanding of in-game
mechanics that remains valid even when the environment is altered.

The proposed method defines a core knowledge base on fundamental con-
cepts such as shape, motion, and contact. The system process anonymous
visual elements extracted from game frames, identified solely by their in-
trinsic properties, and recognize persistent entities and their behaviors in
the environment, generalizing them in abstract and adaptive classes to rec-
ognize analogous entities in new games and environments. This approach
contributes to laying the foundations for AI systems capable of interpretable
human-like reasoning about interactive environments.

Atari games, particularly Arkanoid, serve as the primary case study be-
cause they are conceptually simple while still capturing key aspects of AI
behavior in interactive environments [17]; They provide an environment with
clear and discrete rules that can be learned and many similar others across
which knowledge could potentially be transferred. Furthermore, using these
environments leaves open the possibility to integrate reinforcement learning
in the frameworks, employing the inferred knowledge as an “internal world
model” for agents in Dyna-like architectures.
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Research Questions and Objectives

This thesis explores the following themes, some identified at the beginning
of the project and others that emerged during the development:

1. Understanding the ontological foundations of learning and how they re-
late to artificial systems.

2. Investigating the current limitations of deep learning approaches and the
proposed alternatives.

3. Exploring the potential role of core knowledge principles in symbolic and
neuro-symbolic AI models.

4. Design and implementation of a framework capable of constructing an
interpretable reconstruction of its environment from low-level perceptual
data.

5. Expanding the framework by drawing on insights from recent develop-
ments in cognitive science and AI research.
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Chapter 2

Background

2.1 Defining Learning

Before exploring what it means for a machine to learn, it is useful to analyze
how this theme is approached in humans. Learning is one of the most fun-
damental aspects of human cognition, yet its nature and mechanisms have
been widely debated in philosophy, psychology, and cognitive science. At its
core, it is defined as “the process of acquiring new and relatively enduring
information or behaviors” [51], but the means by which this happens remain
a topic of rich intellectual exploration. From ancient philosophical inquiries
to contemporary research in cognitive science, scholars have sought to define
learning in ways that capture its complexity.

Historically, the question of how knowledge is acquired has been framed
by the rationalism-empiricism debate, which considers whether learning is
primarily driven by innate structures of the mind or by experience and ob-
servation. This debate has deeply influenced modern learning theories, each
offering distinct perspectives on how knowledge is formed and internalized.
Moreover, the rise of artificial intelligence has intensified the need for new
approaches to learning, bridging traditional theories with advanced compu-
tational models that emulate human cognition.

This section briefly explores the philosophical and psychological founda-
tions of learning, beginning with the epistemological divide between ratio-
nalism and empiricism before examining how these perspectives shape con-
temporary learning theories and AI-driven models of knowledge acquisition.
By tracing the evolution of these ideas, we aim to understand what it truly
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2 – Background

means to learn in both human and artificial contexts.

2.1.1 Rationalism and Empiricism: The Enduring De-
bate

The debate between rationalism and empiricism has shaped the course of
epistemology for centuries, raising fundamental questions about the nature
and sources of human knowledge. Rationalists argue that certain knowledge
is innate or acquired through pure reason, whereas empiricists contend that
all knowledge originates in sensory experience. This philosophical divide,
which dates back to the early modern period, continues to influence con-
temporary discussions in epistemology, cognitive science, and even physics.
Although the historical opposition between these positions remains stark,
more recent analyses suggest that the rigid distinction between rationalism
and empiricism may be overstated, as elements of both are often interwoven
in theories of knowledge.

The Foundations of Rationalism

Rationalism, as articulated by philosophers such as René Descartes, Got-
tfried Wilhelm Leibniz, and Baruch Spinoza, holds that reason is the pri-
mary source of knowledge. Descartes, in his Meditations on First Philosophy
(1641), sought to establish knowledge on an indubitable foundation. Begin-
ning with his famous declaration “Cogito, ergo sum”, he argued that through
reason alone, one could arrive at certain truths independently of sensory ex-
perience. This is reflected in what has been called the Intuition/Deduction
Thesis, which asserts that some knowledge, such as mathematical truths,
can be grasped through rational insight and logical deduction rather than
empirical observation.

Leibniz, in New Essays on Human Understanding (1704), further sup-
ported rationalism by emphasizing the existence of innate knowledge, propo-
sitions that the human mind possesses independently of experience. He fa-
mously critiqued John Locke’s position by arguing that the mind is not a
tabula rasa (i.e., a blank slate), as Locke claimed, but rather contains prin-
ciples that structure experience. For Leibniz, mathematical truths, logical
principles, and moral laws are examples of knowledge that are not derived
from experience but rather exist a priori, as part of human cognition.
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Rationalists also point to the necessity of a priori knowledge in mathe-
matics and logic. As Immanuel Kant argued in his Critique of Pure Reason
(1781), mathematical statements such as “7 + 5 = 12” are synthetic a priori
judgments, meaning that they extend knowledge while being necessarily true,
yet they do not arise from experience. This suggests that human cognition
operates according to principles that cannot be reduced to empirical data
alone.

One of the strongest defenses of rationalism comes from the history of
mathematics itself. The development of non-Euclidean geometry by János
Bolyai, Carl Friedrich Gauss, and Nikolai Lobachevsky in the 19th century
revealed that mathematical reasoning can extend beyond empirical verifica-
tion. While Euclidean geometry had long been considered an unshakable
truth, independent mathematical reasoning demonstrated the logical con-
sistency of alternative geometries, some of which later found application in
Einstein’s theory of General Relativity.

The Empirical Challenge

In contrast, empiricists argue that all knowledge arises from experience. John
Locke, George Berkeley, and David Hume advanced this perspective, empha-
sizing that the mind at birth is a blank slate, acquiring knowledge only
through sensory perception. Locke, in particular, firmly denied the existence
of innate knowledge, insisting that all ideas come from either sensation (i.e.,
direct perception of external objects) or reflection (i.e., internal observation
of mental processes). He famously challenged rationalists to identify a sin-
gle universally accepted innate idea, arguing that no such knowledge exists
independent of experience.

Hume took empiricism further by questioning the very notion of causality.
In An Enquiry Concerning Human Understanding (1748), he argued that
the human mind does not perceive causation directly but instead infers it
from repeated associations of events. This radical skepticism undermined
the rationalist claim that we can arrive at necessary truths through pure
reason. According to Hume, what we consider necessary truths, such as
“the sun will rise tomorrow”, are merely habitual expectations based on past
experience, not logical certainties.

Empirical science has long supported this viewpoint, particularly through
its reliance on observation and experimentation. Galileo Galilei and Isaac
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Newton demonstrated that empirical evidence, rather than pure reason, is
the key to understanding the natural world. Newton’s Principia Mathematica
(1687) revolutionized physics by grounding it in empirical laws rather than
rationalist speculation. Modern science continues this legacy, with experi-
mental methods forming the backbone of disciplines ranging from quantum
mechanics to cognitive psychology.

A significant modern challenge to rationalism comes from research in cog-
nitive science. Studies have shown that even what appear to be innate con-
cepts may actually be shaped by experience. For example, Stanislas Dehaene,
in The Number Sense [13], argues that human mathematical abilities arise
from a biologically evolved “number sense” rather than purely rational intu-
ition. Similarly, experiments with infants suggest that while they may have
certain expectations about the physical world, these are best understood as
early learned responses rather than evidence of innate knowledge.

The Modern Synthesis: Reconciling Rationalism and Empiricism

While the historical debate between rationalism and empiricism presents
them as opposing schools of thought, contemporary philosophy and cog-
nitive science suggest a more nuanced picture. The traditional empiricist
rejection of innate knowledge has been softened by findings in developmental
psychology and neuroscience, which indicate that humans do have certain
built-in cognitive structures. However, these are increasingly seen as shaped
by evolutionary experience rather than as Kantian a priori truths.

At the same time, the rationalist emphasis on deductive reasoning remains
crucial, especially in fields like mathematics and logic, where empirical obser-
vation alone cannot account for all knowledge. The ability to grasp necessary
truths and construct abstract models that go beyond immediate experience
remains a central part of human cognition.

Ultimately, the persistence of the rationalism-empiricism debate, as noted
by Benjamin Murphy [50], suggests that neither position can fully account for
the complexity of human knowledge on its own. While rationalists correctly
highlight the necessity of logical reasoning and innate structures, empiricists
provide an essential corrective by emphasizing the role of experience and
scientific verification. As the study of knowledge continues to evolve, a more
integrative approach, one that acknowledges the contributions of both reason
and experience, seems to be the most promising path forward.
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2.1 – Defining Learning

2.1.2 From Epistemology to Learning Theories

From this historical debate many theories about how knowledge is acquired
have been derived, notably Behaviorism, Cognitivism, and Constructivism,
each reflecting a different assumption. These theories are of great interest in
the context of artificial intelligence, because they can be used to explain how
current models are learning and what they are still lacking.

Behaviorism: Learning as a Conditioned Response

Behaviorism, developed by Watson, Pavlov, and Skinner, is deeply rooted in
empiricist philosophy. It posits that all knowledge and learning result from
experience and interaction with the environment, rejecting the idea of innate
knowledge or rational intuition. According to behaviorists, the mind is a
blank slate at birth, and knowledge is acquired through conditioning and
reinforcement.

Classical conditioning, demonstrated by Pavlov’s famous experiments with
dogs, illustrates how learning occurs through repeated associations. When
a neutral stimulus, such as a bell, is paired with an unconditioned stimulus,
such as food, multiple times, it eventually elicits a conditioned response,
such as salivation. This principle applies to human learning as well, where
repeated exposure to stimuli leads to habitual responses.

Expanding on this, Skinner introduced operant conditioning, which de-
scribes learning as a process of reinforcement and punishment. Positive
reinforcement strengthens desired behaviors, while negative reinforcement
or punishment discourages undesired actions. In practice, this principle is
applied through rewards, grades, and feedback mechanisms, shaping agent
behavior through structured experiences.

Cognitivism and Constrictivism: Learning as Mental Processing

In the 20th century, drawing from rationalist epistemology, critiques to Be-
haviorism began to emerge; scholars, notably Bartlett and Piaget, started de-
veloping theories which argued that learning is not just a result of stimulus-
response but an internal process involving memory, problem-solving, and
structured thinking.
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Bartlett coined the term “schema”, representing a structured unit of knowl-
edge that is shaped by experience for a subject or an event. In parallel, also
Jean Piaget worked on the same theme and proposed his famous theory of
cognitive development. His work introduced the concept for which children
pass through distinct stages of learning, where they actively process infor-
mation and build internal mental models of reality. In this context, a child
could create an internal representation (i.e., schema) for a dog (e.g., four
legs, furry), mistake a cat for a dog because it fits the schema (i.e., assimi-
lation), then notice some differences (e.g., barking in contrast to meowing)
and change its understanding (i.e., accomodation), either by creating a new
schema or by modifying a pre-existing one.

From this foundation, two related yet distinct learning theories developed:
cognitivism and constructivism. Both theories emphasize the active role of
learners in processing and interpreting information, highlighting the impor-
tance of internal cognitive processes over passive absorption. However, they
diverge significantly in their views regarding knowledge creation. Cogni-
tivism conceptualizes knowledge as structured and objective, emphasizing
the role of cognitive functions such as memory, attention, and information
processing mechanisms. In contrast, constructivism considers knowledge to
be subjective, constructed by individuals as they engage dynamically with
their environment and social interactions.

Noam Chomsky further supported rationalist ideas with his theory of uni-
versal grammar. In his extensive work on language, he contrasted Skinner’s
Verbal Behavior (1957), starting the decline of linguistic behaviorism.

However, in these theories, empiricism is not discarded; experience is rec-
ognized to have a critical role in refining and shaping cognitive structures.
For example, Jerome Bruner’s discovery learning emphasized that learning
is a process guided by exploration, interactions and active problem-solving.

In summary, unlike behaviorism, which focuses on external reinforcement,
cognitivism and constructivism prioritizes internal understanding of expe-
riences, making them a bridge between rationalist and empiricist views of
learning. The difference stand in the fact that cognitivists assume that
knowledge can be structured and transmitted, while constructivists argue
that knowledge is always subjective and context-dependent, meaning that a
concept is shaped by individual experiences, social interactions, and cultural
backgrounds rather than being universally defined.
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Cognitive Science: An Interdisciplinary Understanding of Learning

Constructivist and cognitivist theories were part of a growing intellectual
movement called the “cognitive revolution”, which emerged in the mid-20th
century, culminating in the birth of cognitive science. The term cognitive
science was coined by Christopher Longuet-Higgins in a report on the state
of artificial intelligence, subsequently leading to the founding of the journal
Cognitive Science and the Cognitive Science Society. Since then, the aim
of this new field has been the interdisciplinary scientific study of the mind
and its processes, drawing from psychology, economics, artificial intelligence,
neuroscience, linguistics, and anthropology.

This subject investigates how beings acquire, represent, manipulate, and
use knowledge. Its scope bridges ancient philosophical questions about the
nature of thought and knowledge with modern computational models and
neuro-biological mechanisms.

Cognitive scientists often adopt a functionalist view, focusing on the roles
mental processes serve rather than on the exact physical forms they take.

A fundamental principle of cognitive science is that mental processes
should be examined across multiple levels of analysis. David Marr [43]
famously proposed three levels of understanding in information processing
systems: computational level (i.e., what is the task), algorithmic level (i.e.
representation of inputs, outputs and the process that manipulates them),
and implementational level (physical realization).

Classically, cognitive science focused primarily on internal cognitive pro-
cesses, notably memory, attention mechanisms, language processing, per-
ception, learning and consciousness, but, with time, social, cultural, and
emotional factors have been taken more in consideration.

In AI, cognitive science provides both inspiration and structure. Consider
the way language models function: they are trained to predict the next word
based on patterns in large data sets. But the underlying architecture, trans-
formers, attention mechanisms, and embeddings, are attempts to replicate
cognitive functions like working memory, attention allocation, and semantic
similarity. These mechanisms are not just engineering tricks; they are shaped
by decades of cognitive research on how humans process and generate lan-
guage.

In summary, cognitive science is both a theoretical inquiry into the na-
ture of knowledge and a practical toolkit for building intelligent systems.
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It studies perception, memory, reasoning, language, learning, emotion, and
consciousness, both in humans and machines. Its promise lies not only in
helping us understand ourselves but also in shaping the future of intelligent
technology

2.2 The Evolution of Learning in Artificial
Intelligence

The study of learning, once confined to philosophy and cognitive science,
has expanded into the realm of artificial intelligence, where machines are
now capable of processing information, recognizing patterns, and adapting
to new data. Just as human learning theories have been shaped by the debate
between rationalism and empiricism, AI development has been influenced by
similar tensions between explicit knowledge representation and data-driven
pattern recognition.

At its core, AI seeks to automate learning, a process that has tradition-
ally been considered a hallmark of human intelligence. Early AI systems
attempted to encode knowledge using strict logical rules, akin to rational-
ist reasoning, but struggled with flexibility and real world uncertainty. The
emergence of machine learning shifted the focus to data-driven learning, much
like empiricist approaches that prioritize experience and adaptation. More
recently, hybrid models, such as Neuro-Symbolic AI, attempt to combine rea-
soning with learning, echoing the Kantian synthesis that reconciles rational
structure with empirical input.

This section explores the evolution of AI through the lens of learning, trac-
ing its development from early symbolic reasoning systems to modern deep
learning frameworks. By examining how AI systems learn, whether through
explicit programming, data-driven adaptation, or reinforcement mechanisms,
we gain deeper insight into both the strengths and limitations of artificial in-
telligence as a model of cognition. Ultimately, understanding AI’s learning
mechanisms helps us contextualize its capabilities and constraints, as well
as the broader question of whether machines can truly replicate human-like
intelligence
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2.2.1 A Brief History of AI and Learning Models

The evolution of artificial intelligence has been marked by shifting paradigms
in how machines learn and process information. From its early foundations
in symbolic reasoning to the emergence of connectionist neural networks,
AI’s development reflects the ongoing tension between explicitly structured
knowledge and experience-driven adaptation. The epistemological divide be-
tween rationalism and empiricism, previously explored in human learning
theories, is mirrored in AI’s trajectory. This historical progression highlights
how different approaches to machine learning have shaped the field and in-
forms current research on AI.

The Symbolic AI Era

The earliest AI systems were built on the principles of symbolic reason-
ing, heavily influenced by rationalist epistemology. In this paradigm, intel-
ligence was understood as the ability to manipulate symbols according to
logical rules, mirroring the way rationalists believed human reasoning op-
erates independently of sensory experience. AI researchers attempted to
encode knowledge explicitly, designing systems that could reason through
logic-based inference rather than learning from raw data.

A foundational intellectual precursor to this approach was Alan Turing’s
formulation of the Turing machine [73], an abstract computational model
that demonstrated how symbolic manipulation could, in theory, simulate any
computation. Turing’s work provided a formal basis for the idea that reason-
ing and problem-solving could be reduced to rule-based symbol processing,
a notion that strongly influenced early AI research. Additionally, his 1950
paper, Computing Machinery and Intelligence [72], posed the question “Can
machines think?” and introduced what is now known as the Turing Test, a
behavioral criterion for assessing machine intelligence through symbolic com-
munication. Turing’s ideas legitimized the pursuit of machine reasoning and
set the philosophical and technical groundwork for symbolic approaches to
AI.

A landmark development in this era was the General Problem Solver [52],
created by Allen Newell and Herbert Simon, which aimed to model human
problem-solving using formal logic. This approach laid the foundation for
expert systems, such as MYCIN [67] in medical diagnosis, which functioned
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by following if-then rule-based logic to provide decisions. These systems rep-
resented knowledge in a way that was deterministic and explainable, mak-
ing them reliable for domains with well-defined rules; however, symbolic AI
had significant limitations, struggling with uncertainty, ambiguity, and brit-
tleness. Unlike humans, who can adapt to novel situations and generalize
beyond prior knowledge, symbolic AI lacked flexibility and learning capabil-
ities.

The Connectionist Revolution and Neural Networks

The limitations of symbolic AI led to a interest in empirical learning mod-
els, giving rise to connectionism, which drew inspiration from neuroscience
rather than formal logic. Unlike symbolic systems, which relied on explicit
knowledge encoding, connectionist models sought to simulate human learning
through networks of artificial neurons, aligning more closely with empiricist
theories of knowledge acquisition.

A major breakthrough came with the rediscovery of neural networks and
backpropagation. Although early neuron models had been proposed by War-
ren McCulloch and Walter Pitts in 1943 [44] and formalized into perceptrons
by Frank Rosenblatt in 1958 [63][62], they were initially dismissed after Mar-
vin Minsky and Seymour Papert (1969) [45] proved that they had severe
limitations in learning complex patterns. They were specifically referring to
single-layer perceptrons and their inability in learning not linearly separable
functions, but this resulted in a decline in interest and in fundings. However,
in the 1980s, multi-layer perceptrons were reintroduced thanks to the devel-
opment of backpropagation, which allowed to optimize the weights of hidden
layers. More than one scholar [37][76][64] derived backpropagation in that
period, because it represent an efficient application of Leibniz’s chain rule.

Unlike symbolic AI, which depended on handcrafted rules, neural net-
works could extract patterns from examples, making them particularly ef-
fective for pattern recognition tasks. Early applications included handwrit-
ten digit recognition and speech processing, where neural networks outper-
formed traditional rule-based approaches. However, these models required
large amounts of labeled data and computational resources, which at the
time limited their scalability.
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The Machine Learning Boom

At end of the century, as computers became popular and more powerful, the
era of big data began. One of the defining characteristics of this period was
the shift from knowledge-driven approaches to data-driven approaches. New
techniques emerged, such as support vector machines and random forests,
and began to be used for tasks like spam filtering, recommendation systems,
and fraud detection.

In 1997, the world chess champion was beaten by deepblue [8], a model
which combined traditional expert systems with machine learning approaches.
This was a great success, because chess had long been regarded as a good
measurement of intelligence.

The Deep Learning Era and AI Autonomy

Deep learning can be broadly described as the branch of machine learning
models that make use of multi-layered neural architectures, and while the
most prominent researches dates back to the previous century, it was only
after the diffusion of GPUs that they became competitive.

A major turning point came with AlexNet in 2012 [33], which used CNNs
[19] to achieve state-of-the-art performance in image classification. This
demonstrated that deep networks, when trained on large datasets and with
enough computational power, could outperform traditional machine learn-
ing approaches. Following this, architectures such as ResNet, VGG, and
EfficientNet further refined image recognition tasks, for example performing
face recognition.

In natural language processing, the evolution of recurrent neural networks
and, later, the introduction of transformers [74] led to breakthroughs in lan-
guage understanding. Models like GPT (i.e., Generative Pre-trained Trans-
former) [56] and BERT (i.e., Bidirectional Encoder Representations from
Transformers) [15] enabled AI to perform text generation, translation, and
question answering with human-like proficiency.

One of the latest achievement was the prediction of 3D protein folding by
DeepMind’s AlphaFold in 2018, later improved in 2021 [29].
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2.2.2 Major AI Frameworks and Learning Paradigms

As artificial intelligence has evolved, different learning paradigms have emerged,
each reflecting distinct approaches to how machines acquire knowledge. These
paradigms align, to varying degrees, with the previously mentioned episte-
mological perspectives. Some models, like supervised learning, rely on struc-
tured datasets and explicit guidance, akin to cognitivist approaches, while
others, like reinforcement learning, mirror behaviorist principles of learning
through interaction and feedback. Additionally, unsupervised and genera-
tive learning introduce elements of constructivism, where AI independently
discovers patterns and relationships within data.

This section explores the major learning frameworks that define contem-
porary AI, examining their mechanisms, strengths, and limitations. As AI
moves toward more autonomous and adaptable intelligence, these paradigms
will continue to shape the field, influencing the extent to which machines can
replicate human-like learning and reasoning.

Supervised Learning: Knowledge from Labeled Data

Supervised learning is one of the most widely used AI frameworks, where
models learn from explicitly labeled datasets, mapping inputs to correspond-
ing outputs. This paradigm is closely related to cognitivist theories of learn-
ing, who emphasize the structured organization of knowledge and system-
atic reasoning based on prior information. Just as humans acquire knowl-
edge through instruction, feedback, and correction, supervised learning trains
models through annotated examples, refining their ability to recognize pat-
terns and make predictions.

In supervised learning, an algorithm is fed pairs of input and output data,
learning a distribution that maps the inputs to the correct outputs. The
model iteratively adjusts its parameters by minimizing the difference be-
tween its predictions and the actual labels using loss functions (e.g., mean
squared error for regression, cross-entropy for classification). This process,
often optimized through gradient descent and backpropagation, enables AI
to improve its predictions over successive training cycles.

Supervised learning reflects how humans internalize knowledge through
structured instruction. Similarly to how a child learns to recognize objects by
being shown labeled pictures and corrected when making mistakes, drawing a
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parallel to cognitivist theories. However, unlike humans, who can generalize
from limited examples, traditional supervised learning requires large datasets
to achieve robust performance and are often limited to i.i.d (i.e., independent
and identically distributed) assumptions.

Unsupervised Learning: Discovering Patterns Without Labels

Unsupervised learning represents a fundamental shift in how AI acquires
knowledge, moving away from reliance on explicit labels and towards au-
tonomous pattern discovery. Unlike supervised learning, where models are
provided with predefined answers, unsupervised learning seeks to identify in-
trinsic structures in data without external guidance. This aligns closely with
constructivist theories of learning, which emphasize that knowledge is not
simply transmitted but actively constructed through experience.

At its core, unsupervised learning encompasses a range of techniques
that allow AI to extract meaningful representations from unstructured data.
These methods vary in their level of autonomy and complexity, ranging from
purely unsupervised approaches, such as clustering and dimensionality reduc-
tion, to self-supervised learning, where the model generates its own super-
visory signals, and generative learning, where AI creates new data samples
based on learned distributions. Each of these paradigms plays a distinct role
in the evolution of AI, contributing to its increasing abilities.

The most fundamental form of unsupervised learning involves finding hid-
den patterns or structures in raw data. This process, often referred to as
knowledge extraction, is crucial in tasks where there are no predefined cat-
egories or labels, requiring AI to make sense of information without explicit
supervision. One of the most widely used techniques in this domain is clus-
tering, which groups data points based on their similarities. K-means, DB-
SCAN, and hierarchical clustering are popular methods that allow AI to
segment data into meaningful clusters, a capability extensively used in cus-
tomer segmentation, anomaly detection, and biological data analysis. Simi-
larly, dimensionality reduction techniques like Principal Component Analysis
and t-SNE help AI uncover lower-dimensional structures in high-dimensional
datasets, making it possible to visualize complex data distributions and ex-
tract essential features.
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Moving forward, self-supervised learning (SSL) represents a hybrid ap-
proach that combines the autonomy of unsupervised learning with the struc-
tured guidance of supervised learning. Like unsupervised learning, it works
with raw, unlabeled data, but unlike unsupervised methods that only find
patterns, SSL creates its own predictive tasks to train a model, similar to su-
pervised learning, just without human-provided labels. To achieve this, SSL
generates pseudo-labels from the data itself (e.g., defining a task where the
model must predict missing or transformed parts of its input data). Origi-
nally, it was born as a way to initialize weights before fine-tuning the model
using supervised or unsupervised approaches, but the field rapidly evolved
and it is now been used as a standalone paradigm.

This approach has been particularly transformative in natural language
processing (NLP) and computer vision, where large amounts of data exist,
but labeled examples are expensive to obtain. For instance, in NLP, models
like BERT and GPT use self-supervised learning techniques such as masked
language modeling, where certain tokens in an input sequence are hidden,
and the model learns to predict them. Similarly, in computer vision, con-
trastive learning methods like SimCLR [9] and MoCo [26] teach models to
recognize images by learning whether different views of an object are similar
or different.

Unlike traditional unsupervised learning, which focuses on discovering nat-
ural patterns, self-supervised learning (SSL) actively trains models through
structured learning tasks. This approach aligns with constructivist theories
of learning, where knowledge is acquired by engaging in tasks that require
the learner to actively construct understanding. This approach has made AI
more data-efficient, enabling models to learn from raw data without requiring
human-labeled examples. However, challenges remain, such as designing the
right self-supervised tasks, which can be difficult, and the need for large-scale
computing power to train these models effectively.

As AI advances, self-supervised learning is becoming a crucial step toward
more autonomous intelligence, where models can learn not just to recognize
patterns but also to generate meaningful insights. This capability is further
extended by generative learning, which allows AI to move beyond recognition
and create new data, such as text, images, and even videos; it enables AI
to model the underlying structure of data and generate new records, which
reflect in AI ability to generate synthetic images, text, music, and even human
voices that follow the same patterns as real-world data.
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This paradigm is best demonstrated by models like Generative Adversarial
Networks (GANs) [21], Variational Autoencoders (VAEs) [31], and Diffusion
Models [69], which have shown remarkable success in creating realistic con-
tent across various fields.

Generative learning works by estimating the probability distribution of
real-world data and then sampling from it to generate new examples. In
GANs, a generator creates realistic outputs, while a discriminator evaluates
their authenticity, pushing both networks to improve through an adversarial
unsupervised process. VAEs, on the other hand, compress data into a simpli-
fied mathematical representation (i.e., latent space) and then reconstruct it,
enabling AI to generate diverse yet structured outputs. Similarly, diffusion
models are trained with a forward diffusion process, which gradually adds
noise, followed by a reverse denoising process, making them able to recon-
struct results coherent with the learned distribution from random gaussian
noise.

This technology has revolutionized AI applications in art, design, and
game development. Models like DALL·E [58] and Stable Diffusion [61] can
create (semi-)original artwork from text descriptions, while language models
like GPT-4 [53] generate coherent human-like text responses.

However, generative learning introduces ethical and practical challenges.
The ability of AI to create realistic synthetic media has raised concerns about
deepfakes, misinformation, and intellectual property rights. Additionally,
these models require large amounts of data, computational power and energy,
making them expensive and environmentally costly to train and use at scale.

Unsupervised learning, in its various forms, highlights
AI’s growing independence in acquiring and structuring knowledge. Specif-
ically, self-supervised and generative models are driving AI beyond rigidly
programmed behavior, allowing it to discover, represent, and even gener-
ate knowledge autonomously. As research progresses, these frameworks are
expected to play a key role in future AI advancements.

Reinforcement Learning: Learning Through Experience

Reinforcement learning (RL) is an adaptive learning framework where AI
agents interact with an environment, making decisions to maximize cumula-
tive rewards. Inspired by behaviorist psychology, RL closely parallels Skin-
ner’s operant conditioning, where learning occurs through trial and error,
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rewards, and punishments; this parallel highlights how the “reasoning” of
these models follow patterns emerged by reward-based adaptation rather
than an actual understanding of their environments.

In RL, an AI agent operates in a dynamic environment and follows a
policy, which is a strategy that dictates which actions to take based on the
current state. The learning process unfolds as follows:

• State Observation: The agent perceives its current environment or
receives the current state.

• Action Selection: The agent chooses an action based on its policy.

• Reward Feedback: The agent receives a reward or penalty based on its
action.

• Policy Update: The agent adjusts its strategy to maximize long-term
rewards.

Mathematically, RL is based on Markov decision processes [6] and employs
optimization techniques such as Q-learning [75], which search for optimal
policies that maximize the expected value of the total reward, and policy
optimization [78], which directly learn policies without explicitly learning
value estimates.

In recent years, reinforcement learning (RL) has been significantly en-
hanced by deep learning, giving rise to deep reinforcement learning. One of
the landmark models in this space is the Deep Q-Network (DQN) [49], which
combines Q-learning with deep neural networks. In DQN, the q-function
is replace by a neural network, which approximate the expected cumulative
reward for taking a certain action in a given state.

A notable example is AlphaGo [68], which in 2016 defeated human champi-
ons in the game of Go, an achievement demonstrating AI’s ability. Similarly,
RL has been widely tested in robotics, autonomous vehicles, and financial
trading systems.

In summary, RL operates within structured environments (i.e., repre-
sentable with a state) with well-defined rewards and focuses on learning poli-
cies for decision-making through interaction. As RL continues to integrate
with deep learning and scale to more complex settings, it holds promise for
solving a wide range of real-world problems requiring autonomous behavior.

24



Chapter 3

Challenges in Modern AI

As artificial intelligence continues to advance, its achievements grow ever
more impressive, yet its fundamental limitations remain deeply apparent.
Despite surpassing human capabilities in specific tasks, AI still lacks true
understanding, flexible reasoning, and reliability. Many researchers argue
that today’s AI models are not truly intelligent but rather powerful statistical
systems that excel in controlled environments yet break down when faced
with novel, ambiguous, or dynamic real-world situations.

3.1 Where AI Falls Short: Current Limita-
tions

This growing realization has sparked intense debate among AI theorists,
cognitive scientists, and machine learning pioneers. Figures such as Gary
Marcus, François Chollet, Melanie Mitchell, Yann LeCun, and others have
weighed in on why current AI falls short and what is required to bridge the
gap between mere pattern recognition and genuine intelligence.

3.1.1 The Illusion of Understanding

Recent advancements in artificial intelligence have been remarkable, espe-
cially in the domain of natural language processing. Models such as GPT-4
and BERT have achieved unprecedented performance on a variety of linguis-
tic tasks, from translation to question answering, showcasing near-human
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accuracy on standard benchmarks.
However, this impressive performance has led to considerable hype, with

some observers suggesting these large language models have begun to exhibit
genuine intelligence or understanding. Amid this optimism, it is essential to
critically examine such claims and remain cautious about the underlying
capabilities these models truly possess.

One influential critique labels such models as “stochastic parrots”, high-
lighting that their outputs, though seemingly intelligent, are merely sophisti-
cated statistical pattern-matching without genuine comprehension [7]. This
metaphor underscores the idea that LLMs generate text by predicting sta-
tistically probable word sequences, rather than through any deeper cognitive
understanding or intentionality.

Concrete evidence supporting this critique includes the common phenomenon
of model “hallucinations”, where LLMs confidently produce false or nonsen-
sical statements simply because they fit statistically plausible patterns [28].
These errors are being extensively studied in order to find a way to miti-
gate them. In contrast, some argue that hallucinations are intrinsic to these
models [4], stating that architectural improvements, dataset enhancements,
or fact-checking mechanisms are not enough to overcome this issue.

Another clear example can be found in AI-assisted content moderation,
where deep learning models are often used to enforce platform policies. So-
cial media platforms such as Facebook, YouTube, and X employ these auto-
mated moderation systems to scan vast amounts of text, images, and videos
for violations, including hate speech, incitement to violence, and misinforma-
tion. However, these AI moderation tools frequently struggle with context,
nuance, and cultural differences, leading to both over-censorship and under-
enforcement.

Melanie Mitchell notably argues on the shortcomings of contemporary AI
systems; she explored some recent solutions, providing clear explanations of
their mechanisms and of their current limitations in the book A Guide For
Thinking Human [46].

She expressed on Natural-Language Processing Systems, such as Conver-
sational, Image Generation and, Image Captioning models. She reported
how both text-based and image-based architectures failed when faced with
handcrafted adversarial inputs; these sentences or images are designed to be
comprehended easily by humans while confusing AI.
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For sentences this imply leveraging commonsense knowledge and context-
aware reasoning, such as the Winograd Schema Challenge [35], which is a
linguistic reasoning task designed to evaluate an AI’s ability to understand
context and ambiguity. This specific challenge involves sentences where the
meaning of a pronoun depends on commonsense knowledge. For example:

“The trophy did not fit in the suitcase because it was too big. What was
too big?”

A human immediately understands that “it” refers to “the trophy”, be-
cause we intuitively grasp the concept of size and spatial relationships. How-
ever, AI models often fail at these tasks because they do not have a conceptual
understanding of physical properties like size, weight, or space, they only de-
tect patterns in text sequences. The results in these kind of tests do not have
surpassed 70%; a human should tipically score 100%.

Another case of study treated by Mitchell were DeepMind’s game-playing
models, for which she highlighted an important consideration on the fact
that, while they use similar architecture for the different games, each one of
these models have to be extensively trained on a particular game and none of
this learned knowledge can be transferred, this make them extremely narrow
on their training environment; the idea behind training a model to play a
game is to test its ability in navigating and manipulating an environment,
but, since the real world is complex and simulations cannot be perfect, she
emphasizes that the ability to generalize knowledge to novel environment
should be taken more in consideration when evaluating these results.

In this context, Studies on DQN robustness [55] shows how when minor
visual changes are made, such as altering the background color or modifying
object positions, the AI completely fail to play the game. Unlike humans,
who understand the core mechanics of the game and can adjust to superficial
changes, the AI had memorized pixel patterns and reward functions without
developing an abstract understanding of the game’s rules.

Mitchell has more recently argued that the limitations faced by these mod-
els comes from their lack of an internal world model, meaning a structured
representation of concepts, objects, relationships, and causality essential for
genuine reasoning and understanding [47]. Without such a model, Mitchell
asserts, AI systems cannot reliably generalize knowledge to new contexts or
apply common-sense reasoning effectively.

A similar Discussion is made by Gary Marcus [42], which emphatizes the
need for robust models that move away from narrow task solving to more
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generalized and structured knowledge. He showed similar examples for these
limitations, suggesting that Hybrid-AI and neuro-symbolic approaches are
the next step forward.

Another point raised by Bender et all. [7] is the latest trend of increasing
model and dataset sizes to improve “intelligence”. They argue that expanding
model parameters and data volume merely improves benchmark scores by
better capturing superficial patterns rather than genuinely enhancing deeper
cognitive capabilities. Moreover, larger models and datasets incur substantial
environmental and financial costs.

Nonetheless, some experts argue a contrasting view: larger models could
eventually develop internal world models or conceptual understanding if sup-
plemented with novel architectural changes, explicit grounding, or improved
training techniques. Yann Lecun’s position [20], for example, is that we
should focus on using self-supervised learning to guide the emergence of an
internal world model in deep learning solutions. In this regard, recently some
studies seems to point out the emergence of preliminary forms of conceptual
coherence in latest architectures, but there is still no proof of actual under-
standing in AI.

In conclusion, despite impressive progress, current AI models remain lim-
ited in genuine understanding and reasoning capabilities. Future develop-
ments in AI should critically empathize the generalization capabilities of AI
systems and the development of an internal world model to understand con-
text, meaning and causality.

3.1.2 The Black Box Problem

AI’s limitations extend beyond its lack of understanding. One is the intrinsic
black-box nature of deep learning. Architectures become more complex and
powerful, but their decision-making processes remain difficult to interpret,
raising concerns about transparency, accountability, and fairness.

The lack of explainability is a well-known problem that hinder the appli-
cation of AI in different contexts. If an AI system denies a loan, misdiagnoses
a patient, or recommends a prison sentence, stakeholders need to understand
why.

Gary Marcus has been particularly vocal about this issue [41], arguing
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that AI’s reliance on statistical pattern recognition without structured rea-
soning makes it inherently unreliable. He contends that AI cannot be truly
trustworthy without interpretable decision-making mechanisms, advocating
for hybrid models that incorporate both neural learning and explicit symbolic
reasoning to ensure more transparent and verifiable outputs.

Bias is a related problem; it can be defined as a systematic error that reflect
or amplify inequalities found in training data. One real-world example comes
from hiring algorithms trained on corporate datasets, these have been found
to favor male candidates over women, reinforcing gender biases present in
historical hiring practices.

There are many types of biases [18] and researchers try to take them
into account when creating training datasets, but this is made difficult by
the scale of current datasets. They emerge because AI does not question or
correct the patterns it learns, it optimizes for accuracy based on existing data,
regardless of whether that data is biased. This connects with the previous
section, current AI simply replicates patterns without an understanding of
context, fairness, or moral considerations. The consequences of this can be
severe: biased AI systems risk amplifying societal inequalities, embedding
discrimination into automated decision-making at scale.

While remaining a problem even for human cognition, some biases in arti-
ficial intelligence could be mitigated with more explainable models by helping
demarcating where and how they emerge [57].

Bias and opacity of deep learning models represent a limitation that in-
volves both ethic and practical challenges in AI today. As these systems are
increasingly deployed in governance, healthcare, hiring, and finance, their
impact on society cannot be left unchecked. This translate to the need for a
more transparent decision making process, ones that can explain what factors
influenced the result.

3.1.3 How Do We Measure Intelligence?

Despite not being a limitation of machines themselves but rather a limitation
on our part, a still open problem is how to define and measure intelligence.
While AI has demonstrated extraordinary capabilities in specific domains, its
evaluation is largely based on narrow, task-specific benchmarks rather than a
comprehensive understanding of intelligence itself. This raises the question:
are we measuring intelligence, or just an AI’s ability to optimize for a specific
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test?
Traditional AI benchmarks, such as ImageNet for computer vision, GLUE

for natural language processing, and various reinforcement learning test suites,
have played a crucial role in driving AI advancements. However, these bench-
marks do not assess intelligence in a generalizable way. Instead, they encour-
age task-specific optimization, where AI models become exceptionally good
at one predefined challenge but struggle to adapt beyond it. This issue was
central to François Chollet’s argument in On the Measure of Intelligence
[10], where he criticized conventional AI evaluation methods for rewarding
brute-force computation and memorization rather than adaptive reasoning.
Chollet proposed that a more meaningful test of intelligence should focus
on an agent’s ability to generalize efficiently from minimal experience, a
skill that is central to human cognition but mostly absent in AI. The pro-
posed alternative is the Abstraction and Reasoning Corpus (ARC) [11]. This
framework emphasizes an agent’s ability to solve novel problems using lim-
ited prior information, reflecting human-like generalization from sparse data.
Rather than rewarding scale and data exposure, Chollet’s method prioritizes
efficiency, flexibility, and the reuse of abstract knowledge.

The debate over what constitutes intelligence, and on how it should be
assessed, remains one of the most fundamental open questions in AI research
and beyond. Even in psychology, intelligence remains a multifaceted and
debated concept. IQ tests, for example, capture some aspects of human
intelligence, such as pattern recognition and logical reasoning, but fail to
measure other essential components, including creativity, emotional intelli-
gence, and social intuition. If we struggle to quantify intelligence in humans,
it is no surprise that measuring intelligence in machines remains an elusive
challenge.

Shane Legg and Marcus Hutter, in their foundational work on universal
artificial intelligence [34], attempted to formalize intelligence as an agent’s
ability to succeed across a broad range of environments. Their definition
suggests that intelligence is not about mastering a single domain but about
adapting efficiently to many different kinds of problems, particularly those
that were not explicitly trained for; this is similar to Chollet’s definition
and also aligns with Alan Turing’s original perspective, which stated that
intelligence is not about what a system knows but what it can do when faced
with new and unpredictable challenges.

The lack of a universal way to measure intelligence remains one of the
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biggest obstacles to understanding whether AI is truly advancing. While AI
has become remarkably proficient at specific tasks, it remains unclear how
much progress has been made toward intelligence in a broader sense. As AI
systems grow more complex, the need for better, more meaningful evaluation
metrics will become even more urgent. Without them, we may struggle to
distinguish between machines that are truly intelligent and those that are
simply very good at playing the test.

3.2 Exploring New Frontiers: Research Di-
rections Toward True AI Learning

As discussed in the previous section, modern AI systems remain fundamen-
tally limited in their ability to learn and reason in a way that mirrors human
intelligence. Although deep learning models can recognize patterns and make
predictions, they struggle with abstraction, have difficulty adapting to new
information without extensive retraining, and lack a deeper understanding of
the world. This raises fundamental questions: What enables humans to learn
efficiently? Can AI develop innate cognitive structures rather than rely solely
on massive datasets? How can AI move beyond correlation-based learning
toward genuine reasoning and long-term knowledge retention?

Leading AI researchers have proposed different paths to address these lim-
itations. Yann LeCun [20] argues that AI should move toward self-supervised
learning, allowing models to construct hierarchical world representations
through prediction and abstraction, much like how humans learn from ex-
perience. Instead of relying solely on labeled data, self-supervised models
could form structured understandings of the world by continuously refining
their own internal representations. In contrast, Gary Marcus [42] critiques
the current deep learning paradigm as fundamentally flawed, emphasizing
the need for explicit cognitive structures and innate mechanisms, much like
those seen in human intelligence; he advocates for a neuro-symbolic approach,
in which deep learning is supplemented with rule-based reasoning and struc-
tured knowledge representations. Similarly, Melanie Mitchell [46] argues that
true AI intelligence requires mechanisms for analogy-making and abstraction,
skills that are central to human reasoning but largely absent from current AI
systems.

These perspectives highlight the need for AI to go beyond statistical
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pattern-matching toward more structured, adaptable, and explainable rea-
soning processes. This section explores key research directions that attempt
to bridge these gaps.

3.2.1 Core Knowledge: Learning from First Principles

As discussed in the previous chapter, the debate between empiricism and
rationalism finds a common ground in saying that living beings have some
innate form of knowledge (in this context, it isn’t important how this innate
knowledge came into being) and that they use those first concepts to create
new ones that are refined through experience. This perfectly align with
the current perspective in epistemology, describing innate structures that
have evolved throughout human history and that guide the formation of
knowledge.

Elizabeth Spelke, in her studies on the early cognitive development of
infants [70], coined the term Core Knowledge to represent innate systems
that allow newborns to develop advanced cognitive structures to navigate and
understand their environment. She recognized five core knowledge systems in
both human and non-human infants, each guiding a different understanding:

• Objects and their interactions (Object Representation)

• Agents and goal-directed actions

• Number and mathematical reasoning (number sense)

• Space and spatial navigation (intuitive geometry)

• Social relationships and interactions

The research in Core Knowledge Theory is ongoing and more systems have
been proposed.

Through these foundations, infants are able, for example, to perceive ob-
ject boundaries, shapes and expected behaviors. In early state of life, they do
not possess cognitive systems for representing and reasoning about specific
objects such as foods or artifacts, but they will eventually form those using
their Core Knowledge and their experience of the environment.

The idea of equipping AI systems with core knowledge priors has gained
attention as a promising path toward human-like generalization and robust-
ness, motivating researchers to explore whether the incorporation of core
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knowledge could serve as a foundation for more efficient learning. For in-
stance, Battaglia et al. [5] introduced Graph Networks, which use structured
relational representations to reflect human-like reasoning about object inter-
actions. These networks are designed to incorporate relational inductive bi-
ases—mirroring the way humans understand the physical world through core
object representations—and have been successfully used to improve general-
ization in physical reasoning tasks.

The goal is not to encode all possible knowledge into machines, but to
start from proven inductive biases, just as humans do. By grounding AI
in these conceptual primitives, we may bridge the gap between low-level
perception and high-level reasoning, fostering systems that learn more like
humans: efficiently, flexibly, and with minimal supervision.

3.2.2 Embracing Uncertainty: Causality in AI Learn-
ing

An essential question in AI is whether current systems truly comprehend why
events happen. Without understanding causality, models cannot capture the
mechanisms that drive change. Differentiating correlation from causation is
critical, as it allows AI to reason about interventions, anticipate outcomes,
and generalize beyond learned experiences. Without this capability, AI sys-
tems risk making unreliable or even harmful decisions when facing unfamiliar
scenarios.

Traditional deep learning focuses on statistical patterns, which can lead to
misleading conclusions. Without the ability to reason causally, AI systems
are limited to passive observation. Consider an AI trained to recommend
treatments based on medical records: it may observe that patients receiving a
certain drug tend to recover and infer the drug is effective. However, it might
overlook confounding factors, such as healthier patients being more likely to
receive that drug. True understanding comes from recognizing whether the
treatment itself caused recovery or if another variable explains both. This
distinction is crucial for safe and effective decision-making.

Furthermore, consider an AI analyzing loan approvals: it might find that
applicants from certain neighborhoods are more often denied loans and infer
risk based on location. However, without counterfactual reasoning, it cannot
ask, “Would this person have been approved if they lived elsewhere?” This
kind of reasoning is essential to avoid encoding systemic biases as causal
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facts. Without it, decisions may perpetuate unfair patterns under the guise
of data-driven logic.

Causal understanding also supports generalization. Imagine an AI trained
to detect manufacturing defects in one factory using visual cues correlated
with faults. When deployed in a different factory with different lighting
or materials, the same cues may no longer apply. However, if the AI had
learned the causal factors behind the defects—such as stress points or process
irregularities—it could transfer that knowledge and adapt effectively to the
new setting.

The concept of causality has evolved through centuries of philosophical
and scientific thought. Aristotle distinguished four types of causes—material,
formal, efficient, and final, laying an early framework for understanding cau-
sation in nature. In the Islamic Golden Age, philosophers like Avicenna de-
bated the nature of cause and effect, asserting necessary links between causes
and outcomes. In early modern Europe, Francis Bacon promoted empirical
investigation and inductive reasoning, emphasizing observation over specu-
lation, though without a formal causal theory. David Hume later challenged
the very notion of necessary causation, arguing that causality is inferred
from habit, not logical necessity, a view that sparked enduring debate. John
Stuart Mill responded with systematic approaches, such as the Method of
Agreement and the Method of Difference, to empirically investigate causal
relationships. These foundational ideas set the stage for later formalizations,
including Judea Pearl’s Structural Causal Models, a formal framework for
representing and reasoning about causality using directed graphs and do-
calculus [54].

Various methodologies have been proposed in attempts to introduce causal
reasoning into AI, aiming to move beyond surface-level pattern recognition
and toward systems that can potentially act on and explain cause-effect re-
lationships. Some of these efforts include:

• Causal Discovery Algorithms - These algorithms attempt to infer
causal relationships from raw observational data. Methods include:

– Granger Causality [22] – Determines if one time series predicts an-
other, commonly used in economics.

– PC Algorithm [71] – Uses conditional independence tests to con-
struct causal graphs.
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• Causal Reinforcement Learning [24] - Traditional reinforcement learn-
ing optimizes actions based on trial and error, but lacks an understanding
of why actions lead to rewards. Causal RL integrates structural causal
models into decision-making, allowing agents to reason about the effects
of their actions before executing them.

• Causal Generative Models [32] - Standard deep learning models are
trained to generate data based on statistical distributions. Causal gen-
erative models, such as CausalGAN, explicitly model causal dependen-
cies, allowing for better controllability and interpretability. Other, such
as Causal-enhanced neural networks, integrate symbolic causal reason-
ing with deep learning, enabling AI to perform structured interventions
rather than simply generating data based on past patterns.

• Causal Representation Learning [66] - Unlike standard machine learn-
ing, which learns feature correlations, causal representation learning
seeks to discover meaningful causal variables from raw data. This is
essential in domains like healthcare, where AI must identify the true
causes of diseases rather than just recognizing statistical associations.

Challenges remain: causal discovery often requires interventions, many
algorithms do not scale well, and integrating causality with deep learning
remains complex. Yet, the benefits, more robust, adaptive, and trustworthy
AI, make this a vital direction for future research.

To ground future progress in AI, it’s useful to distill some guiding ideas.
Core principles of causal reasoning [54] include:

• Correlation does not imply causation – Just because two variables co-
occur frequently does not mean that one causes the other.

• Interventions change the world - AI should be able to reason about the
consequences of its actions (e.g., what happens if I press this button?).

• Counterfactuals matter – AI should be able to imagine alternative sce-
narios (e.g., what if this patient had taken a different medication?).

• Generalization depends on causality – Learning causal relationships al-
lows AI to transfer knowledge to unseen situations, rather than memo-
rizing patterns that only apply in specific contexts.
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3.2.3 Learning That Lasts: Memory-Augmented Intel-
ligence

Traditional artificial intelligence models inherently lack explicit and persis-
tent memory mechanisms. Instead, they rely mainly on internal parameters
(i.e., weights) updated during training, implicitly encoding past data expe-
riences. Some models employ limited short-term memory through recurrent
architectures like Recurrent Neural Networks or Long Short-Term Memory
networks. However, these implicit memories do not function as explicit stor-
age systems, meaning that they cannot selectively recall specific information
and they also suffer from limited capacity and difficulties in retaining long-
term context.

The limitations of conventional architectures make a compelling case for
integrating explicit and persistent memory integrations, structures that more
closely resemble the human cognitive model of memory, capable of flexible
storage, retrieval, and manipulation of knowledge across time.

Several fields within artificial intelligence would have clear benefits from
robust, explicit memory augmentation:

• Natural Language Processing (NLP): Effective conversation agents and
text comprehension tasks depend heavily on context management and
on factual information. Retrieval Augmented Generation improves large
language models’ factual accuracy by incorporating information retrieval
before generating responses, but the knowledge base is external and can’t
be updated by the models. On the other hand, Context windows, used
in NLP models to maintain temporal consistency and reason on sequen-
tial inputs, can function like a sort of short working memory, but these
models still lack a a long-term memory making their underlying trans-
former architectures struggle with long input sequences and sequential
tasks.

• Reinforcement Learning: Two major ways in which an explicit long-
term memory augmentations would benefit reinforced learning are con-
text based decision making, using information such as states and past
actions, and episodic memory reasoning, using stored past experiences
to structure and understand new information or to infer the context and
adapt to it.

• Continual Learning: Many systems are trained over specific tasks and
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usually, if the task is changed, they need to go through retraining, which
mean to completely forget previously derived knowledge and train from
scratch, or fine-tuning, which doesn’t assure that previous knowledge
is maintained (i.e., catastrophic forgetting) when new information are
encoded. Memory augmentation that allow for selective and explicit
retrieval and modification of stored information would be a great advance
for most AI models.

• Complex Reasoning and Algorithmic Tasks: As reasoning and more sym-
bolic AI models emerge, there is the need for external memory in order
to store intermediate states and algorithmic logic simulation.

Recent advances in Memory-Augmented Neural Networks (MANNs) [65]
propose a reorientation of AI architectures, treating memory not as a byprod-
uct of training, but as a core computational resource. These systems partly
draw inspiration from psychological theories of memory, such as the Atkinson-
Shiffrin model [2], to create machines capable of flexible storage, selective
recall, and context-sensitive processing. While there have been contrasting
theories, this model is considered a good foundation in studying how human
memory works. In this context, memory can be seen as broadly divided into
working (short-term) memory and long-term memory, each serving distinct
functions:

• Working Memory - Temporarily holds information needed for immedi-
ate reasoning and task execution. It is capacity-limited and designed
for rapid retrieval and manipulation of information relevant to ongo-
ing activities. Working memory is still obscure despite the extensive
researches, but one regarded theory is the Baddeley-Hitch model [3],
which describe it as a multi-component system:

– Central Executive - Responsible for managing attention and coor-
dinating the activities of the other subsystems. The central executive
is believed to be involved in higher-level cognitive functions, such as
problem-solving, planning, and reasoning.

– Phonological Loop - Subordinate system that deals with auditory
and verbal information and prevents their decay by continuously
refreshing it in a rehearsal loop.

– Visuo-spatial Sketchpad - Subordinate system that manage vi-
sual and spatial information. Its tasks seems to be related to spatial

37



3 – Challenges in Modern AI

understanding and to construction and manipulation of visual im-
ages and mental maps, dealing with such phenomena as shape, color,
and texture.

– Episodic Buffer - Latest addition to the Baddeley-Hitch model,
it is believed to be the subordinate system in communication with
long-term memory and to bind phonological, visual, spatial, and
semantic information into unitary episodic representation for the
central executive to work with.

• Long-term Memory - Stores extensive amounts of information over long
periods, with virtually unlimited capacity. The current understanding
is that the long-term memory is divided in:

– Declarative (Explicit) Memory - Conscious and intentional recol-
lection of experiences, facts and concepts. These information can
be retrieved explicitly, with different amount of effort based on their
strength and complexity. Acquisition, consolidation, and retrieval
are the key processes. Declarative memory is further divided in
episodic memory, which stores actual past experiences along with
records of sensory-perceptual-conceptual-affective processing, and
semantic memory, which refer to general impersonal world knowl-
edge built upon past experiences. Semantic memory might contain
information about what a pizza is, while episodic memory might
contain a specific memory of me enjoying a pizza.

– Procedural (Implicit) Memory - Unconscious part of memory that
focus on implicit learning skills through repetition. When one indi-
vidual get better in a task only due to repetition, it is shown that no
new explicit memories form, instead unconscious procedural mem-
ories emerge. These memories are accessed and used without the
need for conscious control or attention. Most motor skills are stored
in this part of memory.

Studying these theories, several memory augmentation solutions have been
researched to address these needs, including:

• Retrieval Augmented Generation [36] - As mentioned above, it is an
integration that allow generative models to query an external knowledge
base and to add the retrieved sources to the inputs before generating
the response. It is a way to allows models to use domain-specific and

38



3.2 – Exploring New Frontiers: Research Directions Toward True AI Learning

access updated information. Unfortunately, these sources are static to
the model and they have to be reviewed accurately to not incur in mis-
information.

• Hopfield Network [27] - A form of recurrent neural network that dif-
fer from traditional RNN and as an auto-associative content-addressable
memory. It consist of a single layer where each neuron is connected to
all the others with a bidirectional weight and where the outputs are fed
back into its inputs. Patterns are associatively recalled by fixing cer-
tain inputs, and dynamically evolve the network to minimize an energy
function towards local minimum that correspond to stored patterns.

• Neural Turing Machines [23] - An extension of the concept of Tur-
ing Machine, with a NN controller interacting through attention-based
mechanisms with an external modifiable memory that emulate the infi-
nite tape in Turing’s vision. This architecture uses an attentional pro-
cess to read from and write to memory selectively and reason through
“rapidly-created variables”.

• Memory-Augmented Transformers [12] - Frameworks to enhance trans-
formers’ ability to process long-context, inspired by human memory pro-
cesses.

Without memory, AI remains reactive, bound to fixed context windows
and forgetful of the past. MANNs promise systems that are not only more
efficient but more general, capable of evolving knowledge, grounding their
inferences, and building models of the world that persist beyond a single
input or task. Ultimately, memory is not an add-on. It is foundational to
intelligent behavior. By drawing from cognitive science and computational
theory, memory-augmented architectures lay the groundwork for AI systems
that reason, remember, and adapt like humans do.

3.2.4 Making Sense of AI: Toward Explainability

Attempts to improve AI explainability have led to the rise of explainable AI
(XAI) initiatives. These techniques can be broadly categorized [1] into two
main types:
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• Intrinsic interpretability, where the model is inherently under-
standable due to its structure. This includes decision trees, linear mod-
els, and rule-based systems, where the reasoning behind predictions is
explicit.

• Post-hoc explanations, which apply explainability methods to com-
plex models (e.g., deep learning and ensemble methods) after training,
aiming to explain their internal workings without modifying their archi-
tecture.

On the side of Post-Hoc Explanations, researchers are developing tech-
niques to obtain interpretations of what influenced the results of deep learn-
ing models:

• Feature Attribution Methods, such as SHAP (i.e., Shapley Additive
Explanations) [38] and LIME (i.e., Local Interpretable Model-Agnostic
Explanations) [59], which identify the most influential features that con-
tribute to the prediction of a model. These methods help uncover biases,
improve debugging, and improve user trust.

• Attention-Based and Saliency Methods, commonly used in computer
vision and NLP, which highlight parts of the input that most influ-
enced the model’s decision. For example, in an image classification task,
saliency maps can reveal which regions of an image led to a certain
prediction.

• Surrogate models, where a simpler, interpretable model (e.g., a deci-
sion tree or linear regression) is trained to approximate the predictions
of a more complex model. This technique is useful for understanding the
general behavior of black-box models, but their fidelity to the original
model can be limited in highly nonlinear decision spaces.

• Concept-Based Explanations, which attempt to align AI reasoning
with human-understandable concepts rather than low-level features. Tech-
niques like TCAV (i.e., Testing with Concept Activation Vectors) [30]
help to understand which high-level concepts (e.g., “stripes” in an image
classifier) influence more the model output.

However, explainability remains an open challenge. Many deep learning
models, especially those in NLP and computer vision, are so complex and
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nonlinear that even their creators struggle to fully understand how they ar-
rive at specific outputs. This has led some experts to argue that rather than
trying to interpret inherently opaque models, AI research should focus on
building inherently interpretable architectures that align with human rea-
soning from the outset. Another aspect to consider is that explainability is
often a trade-off with model complexity and capabilities. Highly explainable
models (e.g., decision trees) may not always achieve the same level of accu-
racy and flexibility as deep learning architectures. Researchers are actively
working on methods to balance accuracy with explainability, aiming for AI
systems that are powerful and understandable.

The goal of Explainable AI is to ensure that humans can trust and collab-
orate effectively with AI systems, making them more accountable, fair, and
aligned with human reasoning; possibly with the same capabilities.

3.2.5 Neurosymbolic Integration: Bridging Logic and
Learning

Traditional AI has been shaped by two dominant paradigms: symbolic AI,
which relies on explicit rules and logic for structured reasoning, and neural
networks, which extract patterns from raw data without predefined struc-
tures. While symbolic AI offers explainability and formal reasoning, it strug-
gles with large-scale unstructured data. Neural networks, on the other hand,
excel at recognizing patterns in high-dimensional spaces but often function
as opaque “black boxes” stuck in their learned distribution.

Neurosymbolic AI seeks to combine the strengths of both approaches, inte-
grating the flexibility of neural learning with the precision and explainability
of symbolic reasoning. By embedding structured logic into learning architec-
tures, or conversely, enabling neural networks to manipulate symbols, these
hybrid models aim to achieve deeper reasoning, better generalization, and
more transparent decision-making.

Neurosymbolic AI has shown promise in different domains, particularly
in areas where both reasoning and learning are required. Key researches
include:

• Differentiable Inductive Logic Programming (dILP) [16] - Tradi-
tional Inductive Logic Programming learns symbolic rules from struc-
tured data by searching through a combinatorial space of possible logical
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hypotheses. This makes it computationally expensive and hard to scale.
dILP replaces this discrete search process with differentiable operations,
enabling gradient-based optimization. Logical rules are represented as
weighted constraints, allowing the system to softly select the best-fitting
rules rather than exhaustively searching for all possibilities. The advan-
tage of dILP is that it can learn first-order logic rules from raw data
while remaining interpretable, making it useful for reasoning tasks that
require structured decision-making.

• Neural Theorem Provers (NTPs) [60] - In classical theorem proving,
symbolic reasoning engines apply rigid inference rules to derive conclu-
sions from a knowledge base. NTPs replace these rigid operations with
neural embeddings, where logical predicates and terms are mapped into
a continuous vector space. Instead of explicitly unifying terms via hard
matching, NTPs use differentiable unification, allowing for approximate
matching of terms in learned latent spaces. This makes NTPs more
robust to noisy or incomplete data and enables AI to perform logical
reasoning over natural language statements and knowledge graphs with-
out requiring strict symbolic representations.

• Neural-Symbolic Knowledge Graphs [39] - Knowledge graphs store re-
lational information in symbolic form (e.g., entities and edges), but
they suffer from incompleteness and lack of adaptivity. Neural-symbolic
knowledge graphs integrate Graph Neural Networks or transformer-based
encoders to learn embeddings that preserve logical structure while en-
abling inference over missing or uncertain relationships. These models
allow AI to extend symbolic knowledge graphs with learned relational
patterns, making them suitable for applications where structured and
unstructured reasoning must be combined.

• Neuro-Symbolic Concept Learners [40] - which learns symbolic con-
cepts from raw perceptual input by separating neural feature extraction
from logical reasoning. It first maps input data (e.g., images or text) into
latent representations, then uses a probabilistic logic programming layer
to induce symbolic concepts from those representations. The key innova-
tion is its ability to perform compositional reasoning, which means that
it can generalize beyond training data by combining learned concepts
in novel ways. This architecture is particularly useful for vision-and-
language models that require explainability and structured understand-
ing.
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Despite these advances, neurosymbolic AI remains an evolving field with
significant challenges. Scaling these systems to real-world complexity re-
quires refining architectures that seamlessly combine learning and reasoning
while maintaining efficiency. Current research focuses on improving sym-
bolic abstraction learning, reducing computational overhead, and developing
models that can autonomously acquire and manipulate structured knowledge
without relying on predefined symbolic representations.

The long-term goal is to create AI that learns, reasons, and adapts in a way
that mirrors human intelligence, capable of not just recognizing patterns, but
understanding their meaning and applying logical inference to new problems.
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Chapter 4

Proposed Framework

The goal of this chapter is to present the framework developed throughout
this thesis, both in its conceptual evolution and in its current implementation.
The proposed system aims to infer symbolic and interpretable knowledge
about dynamic environments, specifically within the context of Atari-like
video games, without relying on deep learning or opaque statistical methods.

Rather than attempting to replicate state-of-the-art performance in game
playing, the framework focuses on exploring a cognitive-inspired alternative
for building internal world models. The motivation behind this work lies in
addressing key limitations of current AI systems, such as the lack of gener-
alization, interpretability, and adaptability to environmental changes.

4.1 Conceptual Foundations

This section provides some insights in the evolution of the themes and the
objectives of this thesis, from the analysis of the short-comings of the starting
idea to the definition of core design principles that guided the rest of the work.
It also includes a brief glossary of terms used in the rest of the text.

4.1.1 Evolution of the Idea

The initial concept for this work originated from a draft of a research paper
proposing an evolutionary approach to structured environment modeling,
inspired by principles from Core Knowledge theory. The aim of that work
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was to obtain human-interpretable representations of dynamic environments,
such as simple 2D video games, by combining low-level visual processing with
evolutionary learning mechanisms. The underlying hypothesis was that, by
evolving rule-based systems guided by heuristics related to innate cognitive
capacities, it would be possible to build a symbolic and structured description
of the environment, with minimal reliance on data-driven learning.

The evolutionary component was designed to optimize the symbolic rep-
resentation of the environment by selecting compact sets of object classes
and behavioral rules. The encoded heuristics provided the scoring system for
this process, while the evolutionary algorithm acted as a search procedure to
compress and refine these structures into a minimal explanatory model.

However, a deeper analysis of the system’s behavior revealed that the evo-
lutionary component, despite contributing to the exploration of candidate
solutions, ultimately hindered progress toward generalization. Since rules
and class assignments were evolved and then tested against fixed sequences of
patches, the resulting representations, though plausible within each scenario,
lacked the flexibility to adapt to new or unseen sequences. This contradicted
the broader goal of constructing an internal world model capable of accumu-
lating and reusing knowledge across environments. In contrast, a framework
aimed at modeling structured, generalizable knowledge should prioritize the
incremental construction of representations, building on previously inferred
behaviors in a coherent and extensible way.

Following this shift, the design of the framework moved toward a knowledge-
construction approach based on incremental and structured understanding.
Rather than relying on global optimization over static data, the goal became
to emphasize a step-by-step process, in which knowledge is progressively built
through symbolic structures as new behaviors and interactions are observed.

The idea evolved in the direction of a bottom-up perceptual base, an-
chored in core knowledge, combined with a top-down guidance mechanism,
where previously inferred knowledge informs the interpretation of new ob-
servations. In this model, symbolic structures such as object classes and
behavioral rules are not generated in isolation, but emerge from the inter-
action between incoming perceptual data and the system’s existing internal
model.

The current implementation of the framework follow an heuristic approach
and serve as a testbed for this approach. Although fragile and limited in
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scope, it successfully produced a symbolic representation of the game envi-
ronment from low-level visual patches, providing a concrete proof of concept
for the proposed direction.

The final phase of this work focused on identifying a set of conceptual ex-
pansions intended to bridge the gap between the initial implementation and
the broader framework envisioned. These proposals aim to refine the mod-
ules employed in the first implementation and to add top-down knowledge
guidance to the pipeline. While still in an early stage, they draw from recent
developments in both cognitive science and AI, and represent a step toward
a more complete and cognitively inspired system.

4.1.2 Core Design Principles

Parallel to the framework design, the review of literature on cognitive sci-
ence helped refine the design principles of the system, with a focus on core
knowledge, explainability and generalization.

Core Knowledge

Core Knowledge theory posits that human cognition is grounded in a small
number of domain-specific systems. These systems are considered to be evo-
lutionarily derived and to serve as foundational structures for learning and
reasoning. Based on extensive research in developmental psychology and
comparative cognition, four well-established core systems have been iden-
tified: representation of inanimate objects and their physical interactions,
representation of agents and goal-directed actions, numerical cognition, and
geometric reasoning about spatial layouts. A fifth system, concerning the
identification of social partners and group membership, has also been pro-
posed.

Among these, the system for object representation is the most extensively
documented and most directly relevant to the present framework. This sys-
tem provides a minimal set of spatiotemporal principles that allow agents to
perceive discrete objects within a continuous stream of sensory input. These
principles include:

• Cohesion: Objects move as connected and bounded wholes.

• Continuity: Objects follow continuous, unobstructed paths.
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• Contact: Objects interact through direct contact rather than at a dis-
tance.

In addition, the system supports basic concepts about shape and boundaries.
These capabilities allow even very young infants, and many non-human an-
imals, to segment scenes into meaningful units, track entities across frames,
and form basic predictions about their motion and interactions.

In the context of this thesis, Core Knowledge is employed as a source of
design principles. It is used to define a minimal, cognitively inspired set of
perceptual constraints that guide the system’s low-level interpretation of vi-
sual input. Specifically, the principles derived from Core Knowledge should
serve two purposes: first, to define the building blocks on which knowledge
is constructed; second, to provide the symbolic scaffolding upon which new
information, such as behavioral rules and class abstractions, can be struc-
tured.

Practically, these principles are encoded as heuristic mechanisms in the
processes of the framework. Visual patches are grouped and tracked over time
according to cohesion, continuity, and contact, forming the basis for object
persistence. As the system observes interactions, it begins to infer regularities
and structured symbolic representations. In this way, Core Knowledge acts
as both a structural prior and a generative constraint: it shapes the form of
knowledge that can be acquired, while remaining flexible enough to support
open-ended development.

Explainability

Explainability has emerged as a central concern in the development of artifi-
cial intelligence systems, particularly as machine learning models have grown
in complexity and opacity. While modern neural networks can achieve re-
markable performance, their decision processes are inscrutable. This lack of
transparency not only undermines trust, but also hinders debugging, evalua-
tion, and integration with other systems. In response, the field of explainable
AI (XAI) has proposed a range of strategies to enhance explainability.

Recent literature suggests that a promising direction lies in designing in-
trinsic interpretability across multiple levels of abstraction: from encoded
priors to internal knowledge representation and up to the modeling of the
external environment. Such a layered approach promotes transparency not
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only in decision outcomes, but also in the underlying mechanisms that gen-
erate them.

The framework presented in this thesis is structured to support explain-
ability at every level. Symbolic principles inspired by Core Knowledge serve
as explicitly defined priors, guiding the perception process and constraining
the form of the information inferred. All internal representations are en-
coded in human-readable structures, with processing steps that are discrete,
traceable, and transparent.

By committing to symbolic and modular representations, the system de-
liberately trades off some statistical flexibility in favor of interpretability,
debuggability, and alignment with human conceptual understanding. This
trade-off reflects the core motivation of the framework: to explore how struc-
tured knowledge can emerge from perception in a way that is not only func-
tional, but intelligible.

In this context, any future neuro-symbolic integration should adhere to
the same design principle. While neural components may eventually replace
or enhance specific modules, they should do so without compromising step-
by-step transparency or the inspectability of the internal reasoning process.

Generalization and Adaptability

The ability to generalize and adapt to novel situations is a hallmark of in-
telligent behavior. In both biological and artificial systems, the capacity to
extend knowledge beyond specific training instances is essential for robust
performance in dynamic environments. Despite major advances in statistical
learning, many state-of-the-art models remain highly sensitive to distribu-
tional shifts, superficial perturbations, or minor variations in input. This
brittleness seems to stem from a fundamental limitation: the absence of an
internal, structured model of the world that supports flexible reasoning and
learning.

Generalization in humans appears to be grounded in abstract represen-
tations that capture regularities across experience. These representations
are not tied to specific observations, but are organized around symbolic re-
lations, causal patterns, and conceptual structures. From this perspective,
adaptability is not simply the ability to re-train quickly, but the ability to
reuse and restructure prior knowledge to make sense of new situations with
minimal data.
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The framework proposed in this thesis is designed to move toward this type
of generalization, using internal representations that are symbolic, reusable,
and adaptable. These structures are intended to be transferable across sim-
ilar environments, enabling the system to interpret new scenarios without
starting from scratch. The goal is not to maximize generalization through
statistical generality, but to promote it through structured abstraction.

At its current stage, generalization and adaptability are still limited by the
immaturity of the core knowledge base. However, the framework is conceived
with the intent to support cumulative knowledge construction, allowing the
system to adapt by reorganizing its internal model in response to new evi-
dence.

In summary, generalization and adaptability in this framework are guiding
design principles. They inform the choice of symbolic representations and
guide the development of knowledge structures. The aim is to approach a
form of intelligence that grows through the accumulation and transformation
of structured knowledge, involving contextual and analogical reasoning.

4.1.3 Terminology

• Frame - In this context, frames are intended as visual screenshots of the
game environment.

• Property - Predefined as a core knowledge, it includes a name and a
method to compute its value.

• Patch - A visually coherent and distinct element extracted from a frame
and associated with computed properties. It is anonymous, representing
the state in which a non-yet-specified object appear at a given time.

• Event - Predefined as a core knowledge, it includes a name, the list of
involved properties and a method to test if it gets triggered.

• Unexpected change - Each change in property happening from subse-
quent patches associated to an object. The goal is to have them all
explained by rules.

• Object - Reconstruction of a sequence of Patches that is considered by
the system to have consistency and continuity. Events and unexpected
changes are computed considering it as a true object, with a behavior
to be explained.

50



4.2 – Proposed Implementation

• Rule - Symbolic and causal rule that describe a behavior of an object.
They are defined by a cause, a delay, an effect and some context-inferred
parameters.

• Class - Contain the rules and a generalization of the expected properties’
behavior. Objects assigned to a class have to conform.

• Individual - It is a possible explanation of the processed frames, it in-
cludes classes and objects. Together, they form a possible understanding
of the environment, with differences between each individual.

4.2 Proposed Implementation

This section presents the current state of the proposed framework, developed
following the core design principles introduced above. While still limited in
scope and functionality, this version propose a method that allow a symbolic
system to extract interpretable representations from a dynamic environment
using only low-level perceptual input.

The development focuses on a simplified scenario: a 2D game environment
which evolves frame by frame. These frames are processed through a pipeline
consisting of object tracking, rule inference and class generalization. The
system uses explicit heuristics inspired by the principles of Core Knowledge
to generate symbolic knowledge about object identity and behavior, which
are then used as guidance in the following iterations.

Although the framework is still evolving and presents several areas for
improvement, the results obtained from the preliminary implementation are
promising: it demonstrates the ability to generate a structured and inter-
pretable internal model of the environment, correctly identify persistent ob-
jects, infer interactions, and recognize primitive classes. This first iteration
is not intended as a final solution, but as a minimal and interpretable foun-
dation upon which more robust, generalizable, and adaptive components can
be developed.

The following sections describe the key modules of this framework, focus-
ing on their purpose, design, and current limitations.
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4.2.1 Patch Extraction

The environment that the system have to comprehend is represented as a se-
quence of discrete frames extracted from a game environment. These frames
have to be processed to obtain a set of non-overlapping visual units referred
to as “patches”. These patches constitute the system’s primary perceptual
input: anonymous minimal representations of visual elements that may cor-
respond to objects or object parts within the environment.

Rather than relying on actual visual processing or segmentation algo-
rithms, this initial version of the system operates on patches that are directly
extracted from a simulated environment. The simulation provides access to
information such as position and shape, which is used to construct simplified
patch representations without performing any form of visual recognition. As
a result, the system bypasses the challenges of real visual perception, such
as noise, occlusion, or ambiguity. This choice reflects the early focus of the
research, which prioritized symbolic modeling and knowledge representation
over perception. However, as the framework evolved and greater emphasis
was placed on cognitive plausibility, the limitations of this approach became
more evident.

The current patch extraction strategy serves as a placeholder: it allows
for rapid experimentation and controlled testing of higher-level components,
but does not align with the long-term vision of perceptual grounding.

Future iterations of the framework are expected to include a visual seg-
mentation module, in which patches are derived from raw pixel input under
the guidance of learned knowledge. This step is essential for testing the ro-
bustness of the system under realistic perceptual conditions and for further
developing the framework’s knowledge construction capabilities.

4.2.2 Object Formation

The object tracking module is responsible for reconstructing the identity
and continuity of objects over time based on sequences of visual patches.
Since the system receives no direct information about object permanence
or identity across frames, this component plays a critical role in forming
persistent representations of entities within the environment.

In this context, object tracking is performed using a set of interpretable
heuristics relying on predictions made using previously inferred knowledge

52



4.2 – Proposed Implementation

and on the concepts of spatial and temporal coherence encoded in the core
knowledge base. Each object is associated with an object class, which defines
a set of behavioral rules. By applying these rules in combination with the
object’s current properties (such as position, velocity, or state), the system
can predict the object’s future state in the environment. Each new patch
is compared to existing objects based on proximity, shape, and consistency
with expected behavior. When a sufficiently close match is found, the object’s
identity is updated to include the new patch. Specifically, patch-to-object
assignments fall into the following categories:

• Perfect Assignment - The object predicted the patch

• Possible Assignment - A patch and an object are assigned even if they
do not perfectly match, defining an unexpected change in the object

• No Direct Assignment - An object or a patches has no association,
including cases such as completely new object or the reappearance of a
disappeared object

Because the system analyzes frames sequentially, ambiguities frequently arise
in both patch assignments and preliminary interpretation of changes (dis-
tinct from causal explanations handled during rule inference). For example,
a change in position may indicate simple movement, or it could suggest an
acceleration that will become clearer over subsequent frames. Similarly, the
sudden appearance of a patch near another disappearing object raises com-
peting interpretations about continuity, occlusion, or replacement.

To manage such ambiguity, the system can maintain multiple competing
interpretations in parallel. These are represented as distinct, non-conflicting
configurations of objects and associated behaviors, each differing in assign-
ments, inferred events, or higher-level abstractions. This approach supports
flexibility without prematurely committing to a single explanatory path.

Each object is modeled as an episodic reconstruction, specific to the cur-
rent sequence of observations. It encapsulates a set of assigned patches, as-
sociated properties, observed events, and unexplained changes. Within this
framework, generalizable knowledge arises through object classes and behav-
ioral rules, while individual objects serve as their episodic instantiations.

In summary, the object formation process serves as the foundational layer
for symbolic understanding within the system. By combining heuristic track-
ing with predictive reasoning and structured ambiguity management, the
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system reconstructs coherent, temporally persistent entities from raw per-
ceptual input. These episodic object representations not only enable local-
ized interpretation of events but also ground the abstraction of generalizable
knowledge through object classes and behavioral rules, bridging perception
and conceptual understanding.

4.2.3 Rule Inference

The rule inference module is responsible for identifying and abstracting gen-
eral symbolic rules that describe dynamic relationships between events and
changes in objects. Its function is to detect regularities and to represent
them in a form that can be reused, interpreted, and eventually generalized
across environments.

Rule generation operates on the data accumulated during object track-
ing. As objects evolve across frames, they accumulate both observed events
and unexplained changes in their properties. While events are nominal, unex-
plained changes can involve numerical parameters and require generalization.

When a consistent co-occurrence is detected between one or more events
and a change in an object’s properties, a symbolic rule is generated. These
rules take the form of generalized expressions that relate symbolic events to
variable transformations. For example, if an object reverses its direction of
motion immediately after a contact, the system may infer a rule such as:

Contact_Right -0-> vx[i+1] = -1 * vx[i] + 0

In this way, the rule abstracts from the individual instance to a structural
regularity.

The generated rules are not tied to a specific episode, but are intended
to populate a growing knowledge base of general behavioral patterns. Rules
are stored symbolically and may later serve as priors or constraints in the
interpretation of new situations.

However, the current implementation relies on correlational analysis, and
does not yet reason about causality or counterfactuals. For example, it can-
not distinguish between a correlation due to co-occurrence and one based
on causal necessity. Addressing this limitation is part of the framework’s
envisioned development.

In summary, rule inference in the current framework is an initial step
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toward structured, reusable symbolic knowledge. It enables the system to
detect and represent regularities in the environment in a transparent and
generalizable form, while setting the stage for future integration of more
sophisticated causal reasoning methods.

4.2.4 Pruning

In the previous phases, the system was able to maintain multiple individ-
uals, each representing a different possible explanation of the environment.
However, since this process is intended to iterate through all frames and,
eventually, episodes, it must account for the fact that the number of individ-
uals could grow uncontrollably. Keeping all of them alive in parallel would
quickly become computationally unfeasible. For this reason, in the current
phase, individuals are evaluated based on the internal consistency of their
explanations, enabling the system to discard the least coherent interpreta-
tions.

Multiple factors are considered when computing a score for each individ-
ual. The first is the number of unexplained changes recorded in objects.
Since object-patch assignments may differ across individuals, the resulting
unexplained changes will also vary. Minimizing these changes corresponds to
finding the simplest and most coherent object-patch associations—for exam-
ple, a ball moving at constant speed is better explained by a single change
in velocity than by multiple unexplained position shifts.

The second factor assesses how well each individual adheres to object
classes and their behavioral rules. This includes evaluating whether property
constraints are respected and how many unexplained changes are correctly
predicted by the associated rules.

The final factor considers the overall complexity of the explanation, pe-
nalizing individuals that rely on a higher number of distinct rules or object
classes. This again favors simpler interpretations of the environment.

All individuals that share the highest score are preserved, while the others
are marked for removal. However, this elimination does not occur immedi-
ately. Instead, individuals are granted a grace period during which they can
potentially provide better explanations—particularly in cases where confir-
mation requires observing subsequent frames.

Overall, the design of this scoring system aims to balance the exploration of
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competing interpretations with the computational cost of maintaining them,
allowing the system to remain both flexible and efficient.

4.2.5 Generalization

A fundamental objective is the ability to generalize across diverse game envi-
ronments without extensive retraining. Generalization, in the context of our
framework, refers to the capacity of the structured symbolic representations
to adapt seamlessly to slight or significant variations in game dynamics. This
contrasts with discussed limitations in deep reinforced learning approaches,
which often exhibit brittleness, losing performance even under minimal visual
or mechanical changes.

In this context, generalization is achieved through the creation of classes
that abstract objects from their episodic existence. Classes are thought
as flexible blueprints encoding behavioral patterns of objects and of their
properties, defining relations that should be stable in related environments.
Specifically, information such as a property always being constant or the fact
that all the objects assigned to a class have the same shape can be used to
find similar objects in other environments and to help the evolution of their
understanding.

In this context, generalization is achieved through the formation of object
classes that abstract objects from their episodic existence. These classes
act as flexible blueprints, capturing both structural properties and recurring
behavioral patterns observed across instances. Simple regularities, such as a
property remaining constant or objects consistently reacting in the same way
can help the system to recognize similar entities in new environments and to
refine its understanding as new observations accumulate.

As previously mentioned, object classes are used to guide object formation
by enabling predictions about an object’s future state. This allows learned
classes to be carried over into new episodes, supporting the interpretation
of unfamiliar scenarios. In such cases, objects are not assigned to a class
immediately, but may exhibit behaviors that align with existing classes over
time. Once a consistent match is found, the association can be established,
and any unobserved behaviors can be inferred from the class definition.

The system must be capable of adapting its object classes as new behav-
iors are observed or as previously coherent patterns begin to diverge. When
certain instances consistently violate existing rules or introduce unexplained
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changes, this may indicate the need to revise the class, either by refining its
rules to incorporate the new behavior or by splitting it into more specific
classes to preserve internal consistency. These adjustments allow the sys-
tem to maintain robust and accurate generalizations, evolving its symbolic
structures without discarding previously acquired knowledge.

This mechanisms allow the system to maintain adaptability while pre-
serving interpretability, enabling knowledge gained in one scenario to inform
understanding in another. Rather than relearning from scratch, the system
can incrementally refine its internal model by comparing new observations
to prior symbolic structures. This supports a form of transfer learning that
is grounded in explainable components, object classes and their associated
rules, rather than opaque statistical features.
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Chapter 5

Experimental Evaluation

This section presents a preliminary implementation of the proposed frame-
work, alongside a set of initial experiments designed to assess its effectiveness
in supporting explainability, structured representation, and generalization
across similar environments.

The experimental setup focuses on a simplified version of the Atari game
Arkanoid, selected for its deterministic physics and discrete, interpretable
interactions. This controlled environment provides an ideal testbed for ob-
serving how the system forms and maintains object representations, infers
behavioral rules, and organizes entities into meaningful classes.

The analysis is primarily qualitative, emphasizing the internal consistency
and symbolic coherence of the system’s outputs. Preliminary observations are
also made regarding the model’s ability to retain and apply learned structures
when exposed to slight variations of the original environment, offering an
early indication of its potential for generalization without retraining.

5.1 Code Structure

The project is implemented in python and is organized into modular compo-
nents. The core/ folder contains the encoded core knowledge, such as events,
properties, and unexplained changes, as well as the structures that guide the
formation of knowledge, including rules, objects, classes, and individuals.
The heuristic/ module implements the flow for the evolution of the pop-
ulation. The arkanoid/ folder provides some simplified implementations of
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the game Arkanoid, which are used to generate sequences of frames for the
system to process. Utility scripts support debugging with manually crafted
patches and handle various auxiliary tasks. The script main.py serves as the
entry point for executing knowledge extraction.

5.1.1 Core Files

This module defines the key classes and abstractions used throughout the
project. Each file typically defines one or more classes that encapsulate
specific concepts:

• property.py: Defines the Property parent class and some encoded prop-
erties (Pos_x, Pos_y, Shape_x, Shape_y, Speed_x, and Speed_y).

• patch.py: Defines the Patch class, which represents a visually distinct
anonymous element in a frame, capturing properties at a given time step.

• unexplained.py: Contains the Unexplained class, which describes in-
ternal events occurring within objects, such as property changes or dis-
appearances.

• events.py: Contains the Event parent class and some hierarchical en-
coded events, such as global events, and Contact and its directional
variations.

• rule.py: Implements the logic to define and test abstract rules that
describe changes in object evaluating unexpected changes and events.

• object.py: Contains the Object class, representing an entity composed
of a sequence of patches across time. It stores properties, events, unex-
plained changes, global events, and the sequence of assigned patches.

• class.py: Defines classes that generalize objects and their behaviors.
Each class includes set of rules and a variance dictionary that maps
properties to their expected variability.

• individual.py: Manages specific explanations, consisting of a set of
non-overlapping objects and selected interpretations. This module is
mainly relevant for output generation, as individual-level processing is
handled in heuristic.py in this implementation.
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5.1.2 Execution Flow

To provide robust patch sequences for testing the framework, a simplified
environment representing the game Arkanoid is implemented in the
arkanoid_complete.py file. This script records the log of each game session,
including the anonymous elements present in the environment, and saves it
in the logs/ directory for later processing.

To generate a new episode, the user runs arkanoid_complete.py and
plays a game. Upon completion, a log file is automatically saved, containing
all relevant elements required by the framework.

The rest of the pipeline is launched from main.py, which first handles
the conversion of game logs into patch sequences and global events. It then
invokes the heuristic method and displays the resulting inferences.

Log extraction is straightforward, as the files already contain the neces-
sary information. The corresponding extraction method is implemented in
utils/need_imports.py.

Once patch sequences and global events have been obtained, the script
heuristic_initialization.py is executed.

heuristic_initialization is responsible for the initialization and frame-by-
frame evolution of the population based on the input data. Its main steps
are outlined below:

• Population Initialization - Tthe function creates a new population
by assigning one object per patch in the first frame. Each object encap-
sulates the patch’s properties and any associated global events.

– If previously inferred objects classes are available, the function re-
sumes from that state and use them to guide the identification of
objects.

• Frame-by-Frame Processing — For each new frame, a series of steps
is executed:

– Predicted Assignment of Patches to Objects: Existing objects at-
tempt to predict incoming patches based on property values (e.g.,
position, shape, or speed) and rules. Matches result in direct assign-
ments and object updates.
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– Evaluation of Object Unexpected Changes: Heuristics assess whether
non-assigned objects exhibit unexplained changes such as motion,
duplication, disappearance, or sudden reappearance. This involves:

∗ check_for_speed and check_for_property0_changes, which
detect variations in velocity or primary properties and formulate
hypothesis.

∗ detection of other unexpected changes, including Appearance,
disappearance, and overlapping).

Different views are tested creating new individuals.

– Rule Inference: New unexplained changes and events are used to
verify and update rules regarding objects.

– Population Pruning: Individuals are periodically scored based on the
number of unexplained events, the consistency of property evolution,
and the quality of inferred rules. Poorly performing individuals are
removed to maintain focus on the most plausible hypotheses.

– Prototype Summarization: The function summarize_into_prototypes
groups similar objects based on rule signatures and property vari-
ance. These clusters are abstracted into Class objects that capture
shared behavioral patterns across multiple instances.

• Conversion to Individuals After all frames are processed, the re-
maining object groups are converted into instances of the Individual
class. Each individual represents a complete interpretation of the input
sequence, along with a confidence score.

5.1.3 Result Structure

The results are saved in .txt format and contain, in order of score, a list of
individuals (one if a clear explanation has been found), along with the cor-
responding list of objects and their associated rules. The rules are presented
in a human-readable format, as is the composition of each object. Addition-
ally, ground-truth labels are included to verify whether the system correctly
grouped patches into coherent objects. Each individual also includes a sum-
mary in terms of object classes.
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5.2 Experiments

In this section, some tests made with this preliminary implementations are
described, comparing the representation inferred by the system with the rules
encoded in the environment.

As mentioned, the system receives frames of anonymous patches from the
environment, only containing low-level properties. One episode is intended
as the full sequence of frames that are extracted from the same game, repre-
senting the sequential evolution of a playthrough. The environments’ initial
ball position is randomized, to encounter different scenarios. Currently, three
environments have been tested:

• arkanoid_simple — basic example, with four walls and a ball

• arkanoid_complete — implementation of the arkanoid game, with four
walls, a ball, a paddle and 24 bricks

• arkanoid_complete_modified — branch of arkanoid_complete to which
some modifications are made on-demand, such as bigger bricks or a
quicker ball

Each of these environments saves a log containing elements and global events.
These logs can be processed as whole episodes or sequentially frame by frame.

To assess the goodness of the associations, the environments associate to
each patch a name which represent the object it belonged to in the scene.
These are not used during association and inference, but are printed in the
results to evaluate the representation.

the first experiment is made on arkanoid_simple.
The environment doesn’t have external interactions (i.e., the paddle), so

it is left to run and then stopped after a while, producing a log consisting of
804 frames.
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(a) frame 2 (b) frame 11 (c) frame 22 (d) frame 27

Figure 5.1: images from the arkanoid_simple environment

The log is passed as a whole to the system, which converge into one in-
dividual, describing five objects and inferring six rules for the object which
represent the ball. This representation is then generalized to the following
object classes:

Class 0:
Property Variance:

Pos_x: constant
Pos_y: constant
Shape_x: constant
Shape_y: constant

Rules:
No Rules

same_shape: False
Assigned Objects: [0, 1, 2, 3]
-----
Class 1:
Property Variance:

Pos_x: variable
Pos_y: variable
Shape_x: constant
Shape_y: constant
Speed_x: variable
Speed_y: variable

Rules:
game_start -0-> vx[i+1] = 0 * vx[i] + 1
game_start -0-> vy[i+1] = 0 * vy[i] + 1
Contact_Bottom -0-> vy[i+1] = -1 * vy[i] + 0
Contact_Right -0-> vx[i+1] = -1 * vx[i] + 0
Contact_Top -0-> vy[i+1] = -1 * vy[i] + 0
Contact_Left -0-> vx[i+1] = -1 * vx[i] + 0

same_shape: True
Assigned Objects: [23]
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The behaviors encoded in this simple environment are comprehended by
the system, which understand that:

• the ball start moving at the start of the game

• the ball invert its horizontal speed when making contact on the right or
on the left

• the ball invert its vertical speed when making contact on the top-side or
on the bottom-side

The second experiment involves the arkanoid_complete environment.
This time the game can actually be played by moving the paddle. The

recorded log is of a lose game with 498 frames.
The system converge to one individual, describing 30 objects and inferring

six rules for the object which represent the ball, two rules for the paddle and
one for the bricks. The generalization of the representation is the same for
the ball and for the walls, while two more object classes are generated:

Class 1:
Property Variance:

Pos_x: variable
Pos_y: constant
Shape_x: constant
Shape_y: constant

Rules:
left_arrow_pressed -1-> pos_x[i+1] = 1 * pos_x - 2
right_arrow_pressed -1-> pos_x[i+1] = 1 * pos_x + 2

same_shape: True
Assigned Objects: [28]
-----
Class 3:
Property Variance:

Pos_x: constant
Pos_y: constant
Shape_x: constant
Shape_y: constant

Rules:
Contact -2-> Disappearance

same_shape: True
Assigned Objects: [21, 27, 18, 6, 12, 24, 20, 9, 11, 15, 8, 4,
5, 7, 10, 13, 14, 16, 17, 19, 22, 23, 25, 26]
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Notably, if left_arrow_pressed and right_arrow_pressed are not recorded
in the logs, the representation is the same, but with no rules for the object
representing the paddle. This means that the system tries to infer what it
can, but that some behaviors need by nature more information to be inferred;
a system that does not possess information about the state of the left key
cannot infer the fact that it is the reason for which the paddle moves to the
left or not. At the same time, these rules are important, as they could guide
an agent that uses this representation as an internal model to make decisions
based on the predicted evolution of the environment after his choice of using
left_arrow_pressed.

(a) frame 1 (b) frame 15 (c) frame 34

(d) frame 70 (e) frame 80 (f) frame 181

Figure 5.2: Images from the arkanoid_complete environment showing key
events

To show the evolution of the Object Classes the third experiment uses
a log of arkanoid_complete stopping the processing of frames based on the
events happening on screen. The log is of a win in 1501 frames, shown in the
images.

At frame 0, there is one individuals that describes 30 objects (one for each
patch) and one object class with no specialization.
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Class 0:
Property Variance:

Pos_x: constant
Pos_y: constant
Shape_x: constant
Shape_y: constant

Rules:
No Rules

same_shape: False
Assigned Objects: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

At frame 1, the ball start moving and the system is uncertain; there are
four individuals, diverging in how to explain the change in the object repre-
senting the ball, if with a move or with a change in speed (for both axes).

At frame 2, the ball continues its motion; this means an higher score for
the individual that correctly predicted this behavior. The individuals are
still four, but one is stronger and the others live their grace period (1 frame
in this experiment).

At frame 3, the ball continues its motion. This time only one Individual
is left, describing 30 objects and two object classes, one representing the ball
and one not specialized.
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Class 0:
Property Variance:

Pos_x: constant
Pos_y: constant
Shape_x: constant
Shape_y: constant

Rules:
No Rules

same_shape: False
Assigned Objects: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
-----
Class 1:
Property Variance:

Pos_x: variable
Pos_y: variable
Shape_x: constant
Shape_y: constant
Speed_x: variable
Speed_y: variable

Rules:
game_start -0-> vx[i+1] = 0 * vx[i] + 1
game_start -0-> vy[i+1] = 0 * vy[i] + 1

same_shape: True
Assigned Objects: [30]

At frame 9, the paddle has moved and a new object class has been formed:

Class 1:
Property Variance:

Pos_x: variable
Pos_y: constant
Shape_x: constant
Shape_y: constant

Rules:
left_arrow_pressed -1-> pos_x[i+1] = 1 * pos_x - 2

same_shape: True
Assigned Objects: [34]

At frame 15, the ball has bounced off the paddle and a new rule has been
added:

Contact_Bottom -0-> vy[i+1] = -1 * vy[i] + 0
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At frame 34, the ball has bounced off a brick, which disappeared. One
new rule is generated for the disappeared brick.

Contact_Bottom -1-> Disappearance

The other bricks are still in the not specialized object class.
One the other hand, one rule for the ball is modified, making a wrong

assumption. As it has seen two contacts resulting in the same outcome, it
generalized them into one rule.

Contact -0-> vy[i+1] = -1 * vy[i] + 0

At frame 70, the ball has bounced off the right wall. This make for a
change in the rules assigned to the object representing the ball.

Contact_Bottom -0-> vy[i+1] = -1 * vy[i] + 0
Contact_Right -0-> vx[i+1] = -1 * vx[i] + 0
Contact_Top -0-> vy[i+1] = -1 * vy[i] + 0

At frame 80, another brick has disappeared. Now, all the bricks are put
inside the same prototype, but still with the rule

Contact_Bottom -1-> Disappearance

At frame 182, the ball has made contact with the left wall and a new rule
for the ball has been added.

Contact_Left -0-> vx[i+1] = -1 * vx[i] + 0

At frame 348, the ball hit a brick from the left and the system generalize
the rule for bricks to

Contact -1-> Disappearance

From this point, the objects’ prediction match the new patches and the
system representation is stable.

Another scenario is tested crafting an intangible brick. The ball first
overlap behind the brick, then it briefly disappear from view, to reappear
overlapping on the other side and continuing its movement. The heuristics
are still immature, but a rule
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Contact -0-> Overlap

is created, which stops the system from assuming that the ball disappeared
when behind the brick. This kind of behavior could benefit from more com-
plex rules and should be carefully studied when implementing the perception
part of the framework, possibly using top-down information to infer the ex-
istence of patches hidden by other elements.

Using the arkanoid_complete_modified environment, some experiments
are made to test the generalizability of the representation found by the sys-
tem.

First, the ball size is fivefold. The log of the game contains 186 frame.
Notably, with the ball this big more than one brick is destroyed at the same
time most of the times. The representation found is the same as the envi-
ronment with no changes, which is good, since the knowledge obtained from
the original could be used to infer the evolution of the modified version.

(a) frame 2 (b) frame 15 (c) frame 24 (d) frame 26

Figure 5.3: images from the arkanoid_complete_modified environment, with
a ball fivefold its original size

Then, another experiment involve modifying the ball speed, specifically
only its horizontal component. The result is similar, with only the rule on
starting speed getting modified to

game_start -0-> vx[i+1] = 0 * vx[i] + 2

This is good because the rules describing the rest of the behaviors are un-
changed, but it emphasize the need for context-aware parameters in the rules,
so that they can be adapted to various scenarios.

To test a case for which knowledge cannot be inferred,
arkanoid_complete_modified is changed so to make the ball vary its speed
almost randomly after each contact. In this case, the system finds the other
rules as before, but cannot infer meaningful behavior for the ball bounces
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Class 2:
Property Variance:

Pos_x: variable
Pos_y: variable
Shape_x: constant
Shape_y: constant
Speed_x: variable
Speed_y: variable

Rules:
game_start -0-> vx[i+1] = 0 * vx[i] + 1
game_start -0-> vy[i+1] = 0 * vy[i] + 1

same_shape: True
Assigned Objects: [30]

Going further, some preliminary test are made to transfer learning to new
eipsodes.

First the object classes are formed on arkanoid_simple and used to guide
the understanding of arkanoid_complete. The same two logs as before are
used to make a comparison; the representation follow a similar evolution, but
the ball is associated to its object class at frame 3 and it remains stable for
the rest of the episode. In contrast, before, 182 frames had to be processed
before obtaining a stable representation.

Using an episode from arkanoid_complete as base show similar results,
with the system stabilizing at frame 34 (i.e., when the first brick disappear),
instead of frame 348 as before. Similarly, the addition or subtraction of bricks
doesn’t change the understanding.
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Figure 5.4: Top: population evolution on arkanoid_complete starting from
scratch; Middle: population evolution drawing from arkanoid_simple; Bot-
tom: population evolution drawing from arkanoid_complete; the orange lines
mark where the representation got stable

By tweaking arkanoid_complete_modified, a test scenario is created with
two different sizes for bricks. In this case, the first group of bricks is assigned
to the object class representing a brick after one is destroyed at frame 40;
the rest after a brick of the second group is destroyed at frame 110. Differ-
ently, the usage of different sizes for all bricks confuses the system, which
doesn’t have common ground to associate them, making so that the bricks
are assigned only when being destroyed.

Another test is made passing from arkanoid_complete to the version of
arkanoid_complete_modified with changed horizontal speed. At first the
system cannot assign the ball to the correct object class, creating a new one
instead.
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Class 2:
Property Variance:

Pos_x: variable
Pos_y: variable
Shape_x: constant
Shape_y: constant
Speed_x: variable
Speed_y: variable

Rules:
game_start -0-> vx[i+1] = 0 * vx[i] + 2
game_start -0-> vy[i+1] = 0 * vy[i] + 1

same_shape: True
Assigned Objects: [30]

Then, after bouncing off the paddle, the system completes the class with
the information from the original.

Class 2:
Property Variance:

Pos_x: variable
Pos_y: variable
Shape_x: constant
Shape_y: constant
Speed_x: variable
Speed_y: variable

Rules:
game_start -0-> vx[i+1] = 0 * vx[i] + 2
game_start -0-> vy[i+1] = 0 * vy[i] + 1
Contact_Bottom -0-> vy[i+1] = -1 * vy[i] + 0
Contact_Right -0-> vx[i+1] = -1 * vx[i] + 0
Contact_Top -0-> vy[i+1] = -1 * vy[i] + 0
Contact_Left -0-> vx[i+1] = -1 * vx[i] + 0

same_shape: True
Assigned Objects: [30]

These tests only show preliminary results, as the system clearly needs a
more complex knowledge base and the integration of methods to facilitate
generalization between episodes, but they still works as a proof of concept
for the proposed framework. Specifically, the results shows how the system
require few interactions to make assumptions and how these can be changed
when faced with different scenarios.
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Chapter 6

Conclusion and Future
Work

This thesis has investigated critical limitations in contemporary artificial
intelligence approaches, specifically their brittleness, lack of reasoning, and
inherent opacity. It discussed how LLMs doesn’t use language in a meaningful
way and how current deep reinforcement learning models fail to develop
transferable, structured knowledge; with both problems highlighting their
reliance on fragile, statistical pattern-matching methods rather than genuine
causal understanding or conceptual reasoning.

Drawing from a interdisciplinary background, including philosophy, cog-
nitive science, and AI research, this thesis identified a growing consensus
around the need to move beyond purely sub-symbolic approaches. Scholars
like Melanie Mitchell and Gary Marcus have emphasized the importance of
combining structured, symbolic reasoning with neural methods to build more
robust, interpretable systems.

In response, this work introduced the foundations for a framework inspired
by Core Knowledge Theory. The proposed system constructs structured rep-
resentations of dynamic environments by identifying entities through funda-
mental properties and tracking their behaviors symbolically. By applying
abstract classes and rules, it shows potential for generalizing across related
environments, directly addressing the limitations of current methods.

Preliminary results suggest that this structured approach improves inter-
pretability, robustness, and explainability in dynamic contexts. However,
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challenges remain: the current implementation still lacks context-based rea-
soning, operates with an immature knowledge base, and risks computational
explosion. Furthermore, integration of causal reasoning remains an open
research question.

Future work will explore solutions to these limitations, some of which are
proposed below.

6.1 Future Directions

The current framework demonstrates the potential for constructing symbolic,
interpretable models of dynamic environments by grounding object tracking
and rule inference in core knowledge. While initial results show promise
in generalizing behavior and recognizing recurring structures across similar
game instances, several areas remain open for further development. These
proposed expansions aim to extend the framework’s capabilities, robustness,
and applicability.

6.1.1 Perception Module

A first critical addition concerns the introduction of an explicit perception
module into the framework. The inclusion of a semantic segmentation mech-
anism, guided by information derived from the predicted state of known
objects, would enable the system to extract anonymous patches from raw
frames. Once an object has been defined and its behavior modeled, its pre-
dicted future state in the environment can be used to direct attention mech-
anisms during the segmentation process, focusing computation on specific
regions of the screen where the object is expected to be. This integration
of perceptual input with top-down conceptual priors would significantly im-
prove the applicability and learning capability of the system.

6.1.2 Memory Integrations

Another key expansion involves the integration of a memory system. In its
current form, the framework stores rules and object classes without a clear
structure. This represents a significant limitation, particularly when learning
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across multiple episodes or adapting to dynamic environments. This mem-
ory system should encompass both semantic and episodic components. While
the semantic memory can function as a structured repository for inferred ob-
ject classes and generalized rules, the episodic memory could be designed to
store detailed information about specific and significant sequences of frames.
This would require the implementation of mechanisms for identifying pat-
terns that merit retention and efficiently retrieving past experiences based
on contextual similarity. The addition of such a memory structure would
open new possibilities for analogical and counterfactual reasoning, allowing
the system to compare current situations with prior experiences and, even-
tually, to simulate alternative outcomes. More broadly, it would support the
progressive refinement of knowledge over time, enabling the system to evolve
a coherent and context-sensitive understanding that persists across episodes.

6.1.3 Environmental States

A further conceptual enhancement involves modeling not just dynamics but
also states of the environment. Many real-world scenarios rely on hidden or
latent states to modulate object behavior. For example, a door might be
“locked” or a ball might be “energized”. These are not directly visible in
the frame but critically shape how objects interact. To account for this, the
framework should support episode-specific states: abstract variables that can
be modified by rules and, in turn, trigger rule conditions. These variables
would be initialized either explicitly or inferred from object behavior and
would evolve over time as consequences of interactions. Crucially, they would
allow rules to have memory across frames and context-dependence, making
it possible, for instance, to define that a collision with a power-up changes
the behavior of the ball in subsequent frames. This mid-level abstraction
between visual input and symbolic rules is essential for modeling complex,
state-dependent dynamics.

6.1.4 RL Integration

Another extension involves the integration of the framework into a Dyna-
style reinforcement learning architecture, a direction that has already begun
to be explored. The core idea is to employ the symbolic internal represen-
tation developed by the system as a predictive engine to guide the agent’s
internal simulation phase. In a traditional Dyna architecture, the agent
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maintains a model of the environment and uses it to simulate trajectories,
evaluating the outcomes of possible actions before interacting with the ac-
tual environment. In this context, the structured representation inferred by
the framework would serve as that internal simulator. As the agent observes
the environment, the incoming frames are encoded into states, capturing all
currently recognized objects and their properties. When the agent performs
an action, it is interpreted as an event within the representation, triggering
the relevant symbolic rules. These rules update the internal state accord-
ingly, simulating the expected evolution of the environment based on learned
object behaviors and interactions.

This simulation process could be iterated, allowing the agent to explore
hypothetical future states entirely within its internal world model. In doing
so, the symbolic framework functions not only as a planning mechanism
but also as an evaluative tool. When discrepancies arise between predicted
outcomes and actual observations, they reveal limitations or inaccuracies in
the internal model, prompting further refinement. In this sense, the symbolic
representation becomes both an engine for decision-making and a testable
hypothesis about the environment’s dynamics, one that evolves as the agent
gains experience.
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