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Abstract

Detecting anomalies in time-series data is a critical challenge across numerous
domains, including cybersecurity, healthcare, finance, and industrial monitoring.
This thesis investigates the efficacy of cortical-inspired algorithms—specifically Hi-
erarchical Temporal Memory (HTM) and Sparse LSTM AutoEncoder for Anomaly
Detection in Time-Series (SLADiT)—for univariate time-series anomaly detection.
Traditional statistical and deep learning methods often struggle with data spar-
sity, non-stationary behavior, and computational overhead, especially in real-time
scenarios. To address these limitations, HTM leverages biologically inspired mech-
anisms such as Sparse Distributed Representations (SDRs), spatial pooling, and
temporal memory. These features enable continuous learning of evolving patterns
and robust detection of irregular deviations in streaming data. However, its reliance
on spatial correlations can reduce effectiveness for certain univariate tasks, high-
lighting a trade-off in settings where only a single feature is monitored. In parallel,
SLADiT combines the representational power of autoencoders with the temporal
modeling capabilities of recurrent LSTM layers. By enforcing sparsity in the latent
space, SLADiT captures essential features of normal time-series dynamics, thus
enhancing the ability to distinguish anomalies. Unlike HTM, SLADiT’s batch-style
training and reconstruction error–based detection can yield higher accuracy for
subtle, point-based deviations in univariate data, but it is less suited for direct
deployment in continuous monitoring without periodic retraining. A series of
experiments on benchmark datasets from the UCR Anomaly Archive and NYC
Taxi from NAB collection evaluate both models under controlled conditions, using
metrics such as F1-score and Area Under the Curve (AUC) and Accuracy. Re-
sults indicate that HTM excels at capturing sequential dependencies and adapting
to new patterns over time, benefiting real-time contexts. Conversely, SLADiT
demonstrates strong reconstruction capabilities and a lower false-positive rate
in univariate scenarios, though it requires re-initialization or online fine-tuning
for non-stationary data streams. Overall, this thesis contributes a comparative
perspective on cortical-inspired approaches to anomaly detection, illustrating how
biological mechanisms and sparsity constraints can inform scalable solutions. These
findings underscore the importance of aligning model selection with domain-specific
constraints, including data dimensionality, real-time requirements, and tolerance for
false alarms. The insights gleaned offer guidance for practitioners seeking to imple-
ment or refine anomaly detection strategies, paving the way for further exploration
of brain-inspired architectures in diverse temporal analytics applications.





Summary

This thesis focuses on the challenge of detecting anomalies in univariate time-
series data and equally emphasizes identifying anomalies alongside describing their
severity, duration, and nature. The task is increasingly relevant in areas like finance,
industrial maintenance, healthcare, and cybersecurity, where time-series signals
guide critical decisions. Compared to static datasets, time-series data arrives
sequentially, with each new observation influenced by preceding points, making
small deviations potentially indicative of serious issues such as failures or fraud.
This project, therefore, examines and contrasts two distinct methods grounded in
different theoretical frameworks— Hierarchical Temporal Memory (HTM)
which is inspired by cortical learning algorithms and excels at online sequence
prediction, against Sparse LSTM AutoEncoder for Anomaly Detection in
Time-Series (SLADiT), which imposes sparsity constraints on a deep autoencoder
architecture to reconstruct normal patterns and flag deviations.

Time-series data introduces unique challenges because observations arrive in
sequence and depend on prior values, requiring specialized methods that handle
temporal correlations, as well as seasonality, trends, and abrupt changes. Traditional
statistical techniques such as ARIMA-based forecasting or moving averages can
struggle with sudden shifts or complex temporal patterns. Deep learning methods
can capture non-linear relationships but often need extensive labeled data and high
computational resources—prohibitive when anomalies are rare, labels are scarce, or
rapid detection is critical. Consequently, this thesis explores HTM and SLADiT,
which both offer distinct ways to learn from time-series data. A major challenge,
however, is model tuning—HTM, for instance, has around 21 hyperparameters,
and slight adjustments can significantly affect anomaly detection performance.
HTM draws on cortical structures for continuous, unsupervised learning, while
SLADiT leverages recurrent networks and sparsity constraints to build compact
latent representations for reconstruction-based anomaly detection.

Hierarchical Temporal Memory (HTM) emulates how the neocortex processes
sensory information, featuring two main components. The first, the Spatial Pooler
(SP), transforms raw input into Sparse Distributed Representations (SDRs) by
activating only those “mini-columns” that receive sufficient matching input bits,
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thereby keeping a small fraction of columns active at any given time. The second,
the Temporal Memory (TM), learns sequential transitions in data by forming
dendritic segments that predict the next active set of neurons (or mini-columns).
If the observed input differs from that prediction, the anomaly score increases.
HTM naturally adapts to non-stationary environments because it continuously
updates its learned representations in real time, making it particularly promising for
streaming or industrial monitoring tasks where data patterns may shift. However,
in univariate setups—where there is only a single variable evolving over time—the
spatial correlations that HTM typically exploits can be less pronounced, sometimes
diminishing its advantage.

However, in univariate contexts, HTM’s reliance on spatial correlations can offer
limited benefits, and it does not inherently learn seasonal or periodic structures.
Experiments on UCR datasets showed that HTM struggles when data lacks time-
based encoding, prompting the use of Fast Fourier Transform (FFT) to introduce
time-based features. By concatenating synthetic sine and cosine dimensions, cyclical
behaviors were captured even in datasets not explicitly time-stamped, preserving
temporal structure and enhancing HTM’s ability to detect subtle or non-temporal
anomalies.

Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series (SLADiT)
adds a sparsity constraint to the classic autoencoder design while leveraging Long
Short-Term Memory (LSTM) layers to capture temporal dependencies. Its pipeline
begins with an encoder composed of multiple stacked LSTM layers that compress
a sequence of observations into a lower-dimensional latent vector. The latent
space then imposes a sparsity constraint, often enforced through Kullback-Leibler
divergence, which ensures that only a subset of latent neurons remain active and
pushes the model to learn the most salient features of normal behavior. Finally, a
decoder reconstructs the original time-series from this latent representation, and the
reconstruction error signals how much an input deviates from the learned normal
patterns, indicating an anomaly if the error exceeds a certain threshold. This
approach generally excels at capturing subtle point anomalies in univariate time-
series, aided by sparsity that reduces noise and overfitting. However, SLADiT often
requires periodic retraining when patterns shift significantly, making continuous
deployment more challenging in real-time applications.

This thesis employs the UCR Time-Series Anomaly Archive—widely used for
benchmarking univariate anomaly detection—and the NYC Taxi dataset from the
Numenta Anomaly Benchmark (NAB) for near real-time testing. Each dataset
is split into training (mostly normal data) and testing (with known anomalies).
Both HTM and SLADiT undergo hyperparameter tuning to maximize performance.
For HTM, parameters include column count, cells per column, and permanence
thresholds; for SLADiT, layer depth, hidden dimensions, and sparsity factors are
refined. Evaluation relies on precision, recall, the F1-score (which balances false
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positives and negatives), and the Area Under the ROC Curve (AUC), measuring
the trade-off between correctly identifying anomalies and avoiding false alarms.

When balancing accuracy and real-time adaptability, HTM’s online learning
provides an edge for streaming applications, as it dispenses with a separate retraining
phase. However, fine-tuning HTM is highly sensitive, and in purely univariate
contexts its performance can sometimes lag behind SLADiT. Meanwhile, SLADiT
offers robust reconstruction-based detection of point anomalies, often achieving high
recall and lower false-positive rates—but its lack of built-in continuous adaptation
can hamper real-time responsiveness. Both methods benefit from added data
dimensionality: HTM draws on its Spatial Pooler more effectively with multiple
correlated signals, while SLADiT can leverage deeper representations in both
univariate and multivariate cases. In practical terms, SLADiT’s minibatch gradient-
based training often runs efficiently on GPUs but requires retraining. HTM can
operate continuously on CPUs but grows computationally heavier if configured
with many columns and cells.

Through systematic experiments on representative univariate time-series datasets,
this thesis demonstrates that both HTM and SLADiT can excel at detecting anoma-
lies, but their suitability depends on the application context. HTM’s biologically
inspired, continuous learning suits scenarios where data patterns evolve unpre-
dictably, provided its numerous hyperparameters are properly tuned. SLADiT’s
reconstruction-based framework, enhanced by latent sparsity, yields strong detec-
tion performance in more stable conditions. The choice between these approaches
depends on factors like tolerance for false alarms, adaptability to shifting processes,
computational resources, and the nature of anomalies.

Future research could investigate hybrid or ensemble strategies that leverage
the complementary strengths of HTM and SLADiT in real-time contexts, fur-
ther enhancing the reliability and efficiency of anomaly detection in high-stakes
environments. Transitioning from a multivariate, time-aware HTM model to a
univariate implementation introduced significant challenges, as the model’s effec-
tiveness be- came heavily dependent on dataset characteristics. Low-noise datasets
with clear periodic structures allowed for reasonable detection performance, whereas
abrupt anomalies and non-stationary trends proved more problematic. The removal
of contextual cues, particularly those derived from timestamps or external fea-
tures, significantly reduced HTM’s ability to infer meaningful predictions. Future
improvements should focus on reintroducing time-based encodings, refining hyperpa-
rameters, and exploring hybrid methods that integrate HTM’s continuous learning
with more structured encoding strategies, thereby enhancing generalizability and
adaptability for real-world univariate time-series anomaly detection.

iv



Acknowledgements

I would like to express my deepest gratitude to my supervisors, Prof. Paolo Garza
from Politecnico di Torino and Prof. Pulin Agrawal from Behrend College,

Pennsylvania State University, for their unwavering guidance, support, and
insightful feedback throughout this journey. Their expertise and encouragement

have been instrumental in the completion of this dissertation.
I am also profoundly thankful to my family for their constant love, understanding,

and support, which provided me with the strength to pursue my academic goals.
Their encouragement was essential during the most challenging moments of my

studies.
Finally, I extend my heartfelt thanks to my friends for their continuous moral

support and for sharing in the ups and downs of this process. Their companionship
made this academic journey both enriching and memorable. This work stands as a

testament to the support of all those mentioned above, to whom I am sincerely
indebted.

Fatemeh Ahmadvand

v





Table of Contents

List of Tables x

List of Figures xi

Acronyms xvi

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives and Scope of the Study . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals of Time-Series and Anomaly Detection 6
2.1 Theoretical Foundations of Time-Series Analysis . . . . . . . . . . . 6

2.1.1 Dimensionality of Time-Series Data . . . . . . . . . . . . . . 7
2.2 Theoretical Foundations of Anomaly Detection . . . . . . . . . . . . 8

2.2.1 Anomaly Detection Techniques . . . . . . . . . . . . . . . . 10
2.2.2 Anomaly Detection Types . . . . . . . . . . . . . . . . . . . 12

2.3 Challenges in Time-Series Anomaly Detection . . . . . . . . . . . . 13
2.4 State-of-the-Art in Anomaly Detection Methods . . . . . . . . . . . 14
2.5 Brain-Inspired Approaches: HTM & Sparse LSTM Auto-Encoders . 15
2.6 Identified Gaps and Research Motivation . . . . . . . . . . . . . . . 16

3 Methodology 18
3.1 Hierarchical Temporal Memory (HTM) . . . . . . . . . . . . . . . . 19

3.1.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Training and Anomaly Detection Process . . . . . . . . . . . 22
3.1.4 HTM’s Strengths and Limitations . . . . . . . . . . . . . . . 25

3.2 Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series
(SLADiT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



3.2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Training and Anomaly Detection Process . . . . . . . . . . . 28
3.2.4 SLADiT’s Strengths and Limitations . . . . . . . . . . . . . 30

4 Benchmark Datasets and Evaluation Metrics 31
4.1 Types of Data in Time-Series Analysis . . . . . . . . . . . . . . . . 31

4.1.1 Continuous vs. Categorical Attributes . . . . . . . . . . . . 32
4.1.2 Univariate vs. Multivariate Time-Series Data . . . . . . . . 32

4.2 UCR and NAB Time-Series Anomaly Detection Benchmark . . . . 32
4.2.1 Description of UCR Datasets . . . . . . . . . . . . . . . . . 32
4.2.2 Description of NAB Dataset . . . . . . . . . . . . . . . . . . 34

4.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Anomaly Injection and Dataset Partitioning . . . . . . . . . 36

4.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Anomaly Scoring Criteria . . . . . . . . . . . . . . . . . . . 38
4.4.2 Binary Classification Metrics . . . . . . . . . . . . . . . . . . 39
4.4.3 Area Under Curve (AUC) . . . . . . . . . . . . . . . . . . . 41

4.5 Implementation Framework . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1 HTM Model Implementation . . . . . . . . . . . . . . . . . . 42
4.5.2 SLADiT Model Implementation . . . . . . . . . . . . . . . . 48
4.5.3 Data Split and Validation Considerations . . . . . . . . . . . 54

4.6 Computational Feasibility and Challenges . . . . . . . . . . . . . . 55

5 Experimental Results 60
5.1 Anomaly Detection Performance . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Quantitative Performance . . . . . . . . . . . . . . . . . . . 60
5.1.2 Comparison with Related Methods . . . . . . . . . . . . . . 64

5.2 Time-Series Visualization with Detected Anomalies . . . . . . . . . 65
5.2.1 Comparison of Anomaly Detection Overlays . . . . . . . . . 65

5.3 SLADiT Model Visualization and Anomaly Characterization . . . . 75
5.3.1 Reconstruction Error Analysis . . . . . . . . . . . . . . . . . 75
5.3.2 Latent Space Visualization . . . . . . . . . . . . . . . . . . . 76
5.3.3 Anomaly Characterization . . . . . . . . . . . . . . . . . . . 77
5.3.4 Computational Performance Analysis . . . . . . . . . . . . . 79

6 Discussion and Comparative Analysis 81
6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 HTM vs. SLADiT: Performance Comparison . . . . . . . . . . . . . 82
6.3 Model Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Scalability and Computational Complexity . . . . . . . . . . . . . . 83

viii



6.4.1 Challenges in HTM Prediction and Parameter Optimization 84
6.5 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Conclusion 87

Bibliography 90

ix



List of Tables

2.1 Comparison of anomaly detection methods based on data labeling
requirements [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Benchmark table for selected NAB and UCR datasets. . . . . . . . 35
4.2 Binary classification confusion matrix . . . . . . . . . . . . . . . . . 39
4.3 Hyperparameter Configuration for the HTM Model . . . . . . . . . 47
4.4 Hyperparameter Configuration for the SLADiT Model. . . . . . . . 54
4.5 Models Comparison by Total Run Time . . . . . . . . . . . . . . . . 58

5.1 Performance Metrics Comparison of SLADiT and HTM on Univari-
ate Time Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Performance Metrics Comparison of SLADiT and HTM on Multi-
variate Time Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Comparison of SLADiT and HTM with related methods on NYC_Taxi
(NAB) [52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Comparative Analysis of HTM and SLADiT in Anomaly Detection. 82
6.2 Comparison of Model Interpretability. . . . . . . . . . . . . . . . . . 83
6.3 Comparison of Scalability and Computational Complexity between

HTM and SLADiT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

x



List of Figures

2.1 Proposed Taxonomy of outlier detection techniques in time series data 8
2.2 Point outliers in time series data . . . . . . . . . . . . . . . . . . . . 9
2.3 Illustration of time-series anomaly types: (a) point anomaly, (b)

contextual anomaly, and (c) collective anomaly[11]. . . . . . . . . . 13

3.1 (A) An encoding interface, the HTM spatial pooler, the HTM tempo-
ral memory, and an SDR classifier, all of which function as modules
within a comprehensive HTM system. (B) The HTM spatial pooler
is responsible for converting inputs (at the bottom) into sparse dis-
tributed representations (SDRs) (at the top). Each mini-column
of the spatial pooler can establish a localized group known as an
initiation site, facilitated by synaptic connections that link it to
various configurations within the input space (illustrated by the gray
square, indicating potential connections). A local inhibition mecha-
nism operates within a specified radius (illustrated by the shaded
blue circle), allowing only a limited number of SP mini-columns
that receive the majority of inputs to remain active. The synaptic
permanences are modified in accordance with the Hebbian learning
principle: for each active SP mini-column, the associated active
inputs (represented by solid black lines) are reinforced, whereas the
inactive inputs (indicated by dashed lines) are weakened. (C) An
HTM neuron (on the left) contains three distinct dendritic inte-
gration zones that align with different regions of the dendritic tree
of pyramidal neurons (on the right). The spatial pooler models
the feedforward connections to the proximal dendrites. (D) The
activation history of an SP mini-column affects its excitability. . . . 20

3.2 SLADiT architecture, highlighting its encoder, latent space, and
decoder components. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Anomaly detection range in the UCR anomaly benchmark data set. 38

xi



5.1 Model Comparison by F1 Score . . . . . . . . . . . . . . . . . . . . 62

5.2 Model Comparison by AUC . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Confusion Matrix for DISTORTEDTkeepThirdMARS for SLADiT . 63

5.4 ROC and Precision-Recall Curves for DISTORTEDTkeepThird-
MARS for SLADiT . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Time-Series Anomaly Detection on the InternalBleeding6
Dataset. (a) The entire time series, showing the training portion
(left) and the test portion (right). The artificially introduced anomaly
region is highlighted with a blue circle. (b) A zoomed-in view of
the anomaly segment. The green signal represents the time series
after anomaly injection, while the blue signal shows the original data
for Comparison. (c) Univariate SLADiT detection result, with the
anomalous region highlighted in yellow. (d) Multivariate SLADiT
detection result, illustrating how additional features improve anomaly
localization. (e) HTM detection result in multivariate mode, where
the orange markers indicate points flagged as anomalies. . . . . . . 67

5.6 Time-Series Anomaly Detection on the ECG4 Dataset. (a)
The entire time series, showing the training portion (left) and the
test portion (right). The artificially introduced anomaly region
is highlighted with a blue circle. (b) A zoomed-in view of the
anomaly segment. The green signal represents the time series after
anomaly injection, while the blue signal shows the original data
for Comparison. (c) Univariate SLADiT detection result, with the
anomalous region highlighted in yellow. (d) Multivariate SLADiT
detection result, illustrating how additional features improve anomaly
localization. (e) HTM detection result in multivariate mode, where
the orange markers indicate points flagged as anomalies. . . . . . . 68

5.7 Time-Series Anomaly Detection on the PowerDemand1
Dataset. (a) The entire time series, showing the training por-
tion (left) and the test portion (right). The artificially introduced
anomaly region is highlighted with a blue circle. (b) A zoomed-in
view of the anomaly segment. The green signal represents the time
series after anomaly injection, while the blue signal shows the origi-
nal data for Comparison. (c) Univariate SLADiT detection result,
with the anomalous region highlighted in yellow. (d) Multivariate
SLADiT detection result, illustrating how additional features im-
prove anomaly localization. (e) HTM detection result in multivariate
mode, where the orange markers indicate points flagged as anomalies. 69

xii



5.8 Time-Series Anomaly Detection on the MesoplodonDen-
sirostris (Whale) Dataset. (a) The entire time series, showing the
training portion (left) and the test portion (right). The artificially
introduced anomaly region is highlighted with a blue circle. (b) A
zoomed-in view of the anomaly segment. The green signal represents
the time series after anomaly injection, while the blue signal shows
the original data for Comparison. (c) Univariate SLADiT detec-
tion result, with the anomalous region highlighted in yellow. (d)
Multivariate SLADiT detection result, illustrating how additional
features improve anomaly localization. (e) HTM detection result in
multivariate mode, where the orange markers indicate points flagged
as anomalies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 Time-Series Anomaly Detection on the DISTORTEDT-
keepThirdMARS(NASA) Dataset. (a) The entire time series,
showing the training portion (left) and the test portion (right). The
artificially introduced anomaly region is highlighted with a blue
circle. (b) A zoomed-in view of the anomaly segment. The green
signal represents the time series after anomaly injection, while the
blue signal shows the original data for Comparison. (c) Univariate
SLADiT detection result, with the anomalous region highlighted
in yellow. (d) Multivariate SLADiT detection result, illustrating
how additional features improve anomaly localization. (e) HTM
detection result in multivariate mode, where the orange markers
indicate points flagged as anomalies. . . . . . . . . . . . . . . . . . 71

5.10 Time-Series Anomaly Detection on the DISTORTEDWalkingAcel-
eration5 Dataset. (a) The entire time series, showing the training
portion (left) and the test portion (right). The artificially introduced
anomaly region is highlighted with a blue circle. (b) A zoomed-in
view of the anomaly segment. The green signal represents the time
series after anomaly injection, while the blue signal shows the origi-
nal data for Comparison. (c) Univariate SLADiT detection result,
with the anomalous region highlighted in yellow. (d) Multivariate
SLADiT detection result, illustrating how additional features im-
prove anomaly localization. (e) HTM detection result in multivariate
mode, where the orange markers indicate points flagged as anomalies. 72

xiii



5.11 Time-Series Anomaly Detection on the NOISEGP711MarkerLFM5z3
Dataset. (a) The entire time series, showing the training portion
(left) and the test portion (right). The artificially introduced anomaly
region is highlighted with a blue circle. (b) A zoomed-in view of
the anomaly segment. The green signal represents the time series
after anomaly injection, while the blue signal shows the original data
for Comparison. (c) Univariate SLADiT detection result, with the
anomalous region highlighted in yellow. (d) Multivariate SLADiT de-
tection result, illustrating how additional features improve anomaly
localization. (e) HTM detection result in multivariate mode, where
the orange markers indicate points flagged as anomalies. . . . . . . 73

5.12 NYC Taxi demand with highlighted anomalies . . . . . . . . . . . . 74
5.13 NYC Taxi demand with highlighted anomalies . . . . . . . . . . . . 74
5.14 Reconstruction Error Distribution for SLADiT. The red dashed line

indicates the anomaly detection threshold. . . . . . . . . . . . . . . 76
5.15 Reconstruction Error Distribution for Normal vs. Anomalous Data. 76
5.16 Latent Space Visualization (t-SNE) for SLADiT. Distinct clusters

of normal data and anomalies are observed. . . . . . . . . . . . . . 77
5.17 Duration of Each Detected Anomaly . . . . . . . . . . . . . . . . . 78
5.18 Distribution of Anomaly Magnitudes . . . . . . . . . . . . . . . . . 78
5.19 Line graph illustrating total run time for SLADiT and HTM model

across various datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiv





Acronyms

HTM
Hierarchical Temporal Memory

SLADiT
Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series

SAE
Sparse AutoEncoder

AD
Anomaly Detection

CLAs
Cortical Learning Algorithms

RDSE
Random Distributed Scalar Encoder

SDRs
Sparse Distributed Representations

TM
Temporal Memory

SP
Spatial Pooler

LSTM
Long Short-Term Memory

xvi



GMMs
Gaussian Mixture Models

SVMs
Support Vector Machines

VAEs
Variational Autoencoders

KL
Kullback-Leibler

MSE
Mean Squared Error

ML
Machine Learning

AUC
Area Under Curve

ARIMA
AutoRegressive Integrated Moving Average

P
Percision

R
Recall

TP
True Positive

FN
False Negative

FP
False Positive

xvii



TN
True Negative

FFT
Fast Fourier Transform

ABP
Arterial Blood Pressure

SHAP
SHapley Additive exPlanations

LIME
Local Interpretable Model-agnostic Explanations

NAB
Numenta Anomaly Benchmark

UCR
UCR Anomaly Archive

t-SNE
t-distributed Stochastic Neighbor Embedding

STL
Seasonal and Trend decomposition using Loess

xviii



Chapter 1

Introduction

1.1 Background and Motivation
The task of detecting anomalies has been a subject of extensive research, driven by
the need to identify rare, significant, and potentially dangerous deviations in data.
In today’s highly interconnected digital landscape, the sheer volume of data being
generated and exchanged far surpasses human analytical capabilities, necessitating
the development of automated anomaly detection methods. Anomaly detection, a
critical aspect of data analysis, focuses on identifying data points that significantly
deviate from the underlying distribution of a dataset, often indicating unusual,
unexpected, or suspicious behaviors[1].

Anomaly detection has applications in a diverse range of domains, from cyberse-
curity and fraud detection to industrial monitoring and healthcare analytics [2].
While certain anomaly detection techniques are generalizable across multiple fields,
many are custom-tailored to specific application areas.

There are multiple approaches to anomaly detection, including classification-
based, nearest neighbor, clustering, statistical, spectral, information-theoretic,
and graph-based techniques. Selecting the most suitable anomaly detection (AD)
algorithm depends on several factors:

• Nature of the input data: Structured vs. unstructured, real-time vs.
historical.

• Type of anomalies: Anomaly points, which can include extreme values,
sudden shifts, or unexpected patterns.

• Expected output: Binary classification, anomaly scores, or ranking-based.

• Domain knowledge: Availability of expert insights for supervised or unsu-
pervised learning methods[3].
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Introduction

1.2 Problem Statement
Anomaly detection in time-series data is a critical challenge across multiple domains,
including cybersecurity, industrial monitoring, healthcare, IoT systems, and finan-
cial fraud detection. Identifying unexpected deviations or anomalies in a sequence
of time-dependent values is essential for preventing failures, detecting fraud, and
ensuring system reliability. However, existing anomaly detection methods face
several key limitations, particularly when applied to univariate time-series data.

Traditional approaches such as statistical models (e.g., ARIMA, moving aver-
ages), clustering algorithms, and autoencoders have been widely used for anomaly
detection. However, these methods often struggle with: A significant challenge in
anomaly detection arises from two primary concerns: data sparsity and the need
for real-time processing.

1. Data sparsity occurs in high-dimensional datasets, where only a small fraction
of the data is relevant for identifying anomalies. This is prevalent in fields
such as genomics, where complex interactions must be inferred from limited
observations, making traditional machine learning approaches inefficient and
computationally expensive[4].

2. Real-time processing is essential in applications such as autonomous vehicles,
financial fraud detection, and industrial monitoring, where anomalies must be
detected with minimal latency. Conventional deep learning models, despite
their high accuracy, often suffer from high computational overhead, making
them impractical for real-time applications[5].

To address these challenges, Cortical Learning Algorithms (CLAs) have emerged
as a promising alternative. Inspired by the sparse and hierarchical structure of the
neocortex, CLAs employ Sparse Distributed Representations (SDRs) to process
information efficiently and robustly, even in sparse datasets. They leverage spatial
and temporal sparsity for faster and more memory-efficient anomaly detection,
incorporate predictive learning to dynamically model expected patterns, and of-
fer energy efficiency, making them particularly suitable for low-power real-time
applications[6].

The integration of CLAs for anomaly detection represents an exciting direction,
particularly when compared to traditional methods like autoencoders, isolation
forests, and statistical models. This thesis aims to explore the efficacy of Hier-
archical Temporal Memory (HTM) in comparison to Sparse LSTM Autoencoder
for Anomaly Detection in Time-Series (SLADiT), analyzing their ability to de-
tect anomalies in univariate and multivariate time-series datasets while balancing
accuracy, computational efficiency, and real-time applicability.

This thesis aims to explore the efficacy of Hierarchical Temporal Memory
(HTM) in comparison to the Sparse LSTM Autoencoder for Anomaly Detection in
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Time-Series (SLADiT). The study will analyze their ability to detect anomalies
in univariate time-series data, while the multivariate analysis was included to
demonstrate that cortical algorithms, such as HTM, perform more effectively
on complex time-series data—where temporal behavioral patterns serve as an
additional feature—compared to their performance on strictly univariate data.
Specifically, the research will:

1. Assess the performance of CLAs in identifying anomaly points compared to
SLADiT.

2. Investigate their adaptability to real-world applications by applying them to
UCR and NAB datasets.

3. Determine the computational efficiency of CLAs for real-time streaming data
applications.

1.3 Objectives and Scope of the Study
This study aims to investigate the effectiveness of Cortical Learning Algorithms
(CLAs) for anomaly detection in time-series datasets, with a primary focus on
univariate data. The multivariate analysis is included to demonstrate that cor-
tical algorithms, such as HTM, perform more effectively on complex time-series
data—where temporal behavioral patterns serve as an additional feature—compared
to strictly univariate scenarios. Traditional anomaly detection methods often strug-
gle with data sparsity, adaptability, and computational efficiency, particularly in
real-time applications. This research explores whether CLAs can address these
challenges and offer a viable alternative to conventional techniques.

The specific objectives of this study are as follows:

1. Assess the effectiveness of CLAs for anomaly detection in univariate
time series.
This study evaluates the ability of CLAs to detect anomaly points in univariate
time-series datasets, identifying data points that significantly deviate from
expected trends. The analysis will focus on issues such as data sparsity and
robustness to noise. An extended evaluation on multivariate data is also
conducted to illustrate the improved performance of cortical algorithms in
capturing complex temporal behavioral patterns.

2. Compare CLAs with existing anomaly detection techniques.
The research will benchmark CLAs against deep learning-based anomaly
detection method. The comparison will assess key metrics such as detection
accuracy, false positive rates, computational efficiency, and adaptability to
unseen anomalies.
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3. Evaluate the adaptability of CLAs to real-world applications.
Since anomaly detection is widely used in domains such as cybersecurity,
industrial monitoring, healthcare, IoT data monitoring, power consumption
analysis, and fuel theft detection, this study will examine whether CLAs can
meet the requirements for real-time anomaly detection.

By achieving these objectives, this study aims to provide insights into the
practical advantages and limitations of CLAs for anomaly detection, determining
their feasibility for real-world deployment in various industries.

1.4 Thesis Overview
This thesis is structured to provide a comprehensive analysis of Cortical Learning
Algorithms (CLAs) for anomaly detection in univariate and multivariate time-series
data. The thesis is organized to progressively establish a strong theoretical founda-
tion, followed by a detailed methodological framework, experimental evaluation,
and comprehensive analysis of findings.

• Chapter 2: Fundamentals of Time-Series and Anomaly Detection
This chapter provides an overview of time-series analysis and anomaly detec-
tion techniques, discussing key concepts such as univariate versus multivariate
time series, data sparsity, and common anomaly detection approaches. It
also introduces the various categories of anomaly detection methods (super-
vised, semi-supervised, and unsupervised) and their applicability to real-world
scenarios.

• Chapter 3: Methodology
This chapter explores the application of cortical learning algorithms for
anomaly detection, with a specific focus on Hierarchical Temporal Memory
(HTM) and Sparse LSTM Autoencoder for Anomaly Detection in Time-Series
(SLADiT). It details the underlying principles, architectural considerations,
and computational efficiency of these models as well as their comparison with
traditional techniques.

• Chapter 4: Experimental Setup
This chapter details the datasets, preprocessing techniques, and evaluation
metrics used in this study. The UCR and NAB time-series anomaly detection
benchmarks are introduced as the primary datasets, along with a discussion
on data labeling, feature engineering, and performance evaluation criteria.

• Chapter 5: Results
This chapter presents the results of applying CLAs to anomaly detection tasks,
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analyzing performance based on detection accuracy, false positive rates, and
computational efficiency. It also includes visual representations of anomalies
and model outputs to highlight key findings.

• Chapter 6: Discussion and Comparative Analysis
This chapter provides a comparative discussion of CLAs versus traditional
anomaly detection techniques, emphasizing strengths, limitations, and practi-
cal implications. The adaptability of CLAs to real-world applications such as
IoT data monitoring, power consumption analysis, and fuel theft detection is
also evaluated.

• Chapter 7: Conclusion and Future Work
The final chapter summarizes the key findings of this study, discusses its
limitations, and outlines directions for future research, including potential
improvements in CLAs, alternative benchmarking datasets, and further opti-
mization techniques for real-time applications.
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Chapter 2

Fundamentals of Time-Series
and Anomaly Detection

This chapter provides an overview of time-series data and the diverse methodologies
developed for anomaly detection. It begins with the theoretical foundations of
time-series analysis and proceeds to review various anomaly detection techniques.
The discussion is enriched with insights from recent studies and benchmark efforts,
setting the stage for this project on the efficacy of detecting and characterizing
anomalies using cortical algorithms.

2.1 Theoretical Foundations of Time-Series
Analysis

Time-series data consists of observations recorded in chronological order, capturing
patterns and trends that evolve over time. Unlike traditional datasets, where
instances are independent of one another, time-series data exhibits temporal depen-
dencies, meaning that each observation is influenced by past values. This sequential
nature requires specialized analytical techniques that account for correlations across
time. Time-series analysis plays a crucial role in fields such as industrial process
monitoring, healthcare analytics, meteorology, and financial forecasting. For ex-
ample, in industrial settings, monitoring machine sensor data over time can help
predict failures, while in healthcare, continuous patient monitoring can identify
abnormal physiological signals[7].

Recent advancements in time-series analysis have emphasized the need for
adaptive and real-time learning models due to the growing complexity of data
streams. Traditional statistical models, such as ARIMA (AutoRegressive Inte-
grated Moving Average) and GARCH (Generalized AutoRegressive Conditional
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Heteroskedasticity), are widely used for forecasting but often struggle to han-
dle nonlinear dependencies and evolving patterns[8]. Machine learning and deep
learning approaches, including LSTMs (Long Short-Term Memory networks) and
Hierarchical Temporal Memory (HTM), have emerged as powerful alternatives
that learn complex temporal dependencies dynamically without requiring frequent
retraining[9].

Time-series data can be broadly categorized based on its structure. Univariate
time-series consists of a single variable evolving over time, such as electricity
consumption records or heart rate measurements[1]. Multivariate time-series,
on the other hand, captures multiple variables recorded simultaneously, such as
temperature, humidity, and wind speed, where interactions between these variables
are often important for predictive modeling[10]. The complexity of multivariate
time-series analysis has led to the development of hybrid deep learning models
that combine autoencoders and recurrent neural networks for enhanced feature
extraction and anomaly detection[11].

Another critical aspect of time-series data is sampling frequency. Depending on
the context, time-series data can be regularly spaced (e.g., stock prices recorded
every second) or irregularly spaced (e.g., event-driven medical records). The
irregularity in data sampling introduces challenges in model training and anomaly
detection, requiring interpolation techniques or specialized methods such as cortical
coding algorithms that can process unstructured temporal data efficiently[12].

Understanding these characteristics is essential for selecting appropriate modeling
techniques, as many traditional statistical methods assume stationary patterns
and uniform sampling intervals. However, real-world time-series data is often
non-stationary, noisy, and incomplete, requiring robust feature extraction methods
and anomaly detection techniques that can adapt to concept drift and missing
values[8, 13]. The emergence of unsupervised learning approaches, such as Sparse
Autoencoders and HTM-based models, provides a promising direction for handling
the challenges posed by real-world time-series data[14].

2.1.1 Dimensionality of Time-Series Data
The dimensionality of time-series data refers to the number of attributes recorded
at each time step Figure 2.2. Univariate time-series data consists of a single
variable measured over time, making it simpler to analyze but limited in capturing
complex dependencies. A common example is electricity consumption recorded at
fixed intervals, where each data point represents the total power used during that
period. Since only one feature is observed, anomaly detection in univariate time-
series typically relies on statistical forecasting techniques such as AutoRegressive
Integrated Moving Average (ARIMA) or Exponential Smoothing, which compare
expected and actual values to detect deviations[15]. However, these methods often
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assume stationarity and linearity, making them less effective for capturing nonlinear
patterns and abrupt anomalies[11].

In contrast, multivariate time-series data contains multiple interdependent
variables recorded over time, introducing additional complexity but also enabling
richer pattern recognition. For instance, a smart grid monitoring system may
collect voltage, current, and frequency readings simultaneously. Anomalies in such
datasets are often detected by analyzing relationships between variables, rather
than just tracking individual deviations. Machine learning models, including LSTM
networks and Transformers, are commonly used to capture temporal dependencies
and complex inter-variable interactions[16]. Recent studies have also demonstrated
that unsupervised deep learning approaches, such as Sparse Autoencoders and
Hierarchical Temporal Memory (HTM), provide robust anomaly detection by
learning latent representations of multivariate time-series data without requiring
labeled anomalies[14].

While multivariate analysis provides richer insights into system behavior, it
also significantly increases computational complexity. High-dimensional datasets
require models capable of efficiently handling relationships across multiple features,
and traditional approaches often struggle with the curse of dimensionality Fig-
ure 2.1[17]. Recent advancements in cortical coding-based methods have shown
promise in reducing dimensionality while preserving critical temporal structures,
thus improving the efficiency of multivariate anomaly detection systems[12].

Figure 2.1: Proposed Taxonomy of outlier detection techniques in time series
data

2.2 Theoretical Foundations of Anomaly
Detection

Anomaly detection refers to the method of recognizing data points that sub-
stantially differ from anticipated trends within a dataset.[2]. In time-series data,
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Figure 2.2: Point outliers in time series data

anomalies often signal critical events such as system failures, fraudulent transac-
tions, network intrusions, or significant shifts in behavior. Detecting anomalies in
time-series data presents unique challenges due to temporal dependencies, evolving
patterns, and high-dimensional relationships, making it more complex than anomaly
detection in static datasets.

Traditional anomaly detection techniques rely on statistical models that assume
stationarity and predefined data distributions. Gaussian Mixture Models (GMMs),
moving average-based outlier detection, and z-score methods detect anomalies by
flagging observations that fall outside predefined confidence intervals[18]. These
approaches work well for simple, low-noise datasets but struggle with non-stationary
time-series, dynamic trend shifts, and contextual anomalies[19].

To address these limitations, more recent approaches leverage machine learning
and deep learning techniques. Unsupervised methods, such as Isolation Forest and
One-Class SVM, can model normal behavior without requiring labeled anomalies,
making them well-suited for real-time applications[16]. Supervised deep learning
models, including Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks, have shown remarkable success in detecting both point
and contextual anomalies[17]. However, supervised models require labeled training
data, which is often unavailable in real-world applications.

In contrast, unsupervised deep learning approaches such as Autoencoders, Vari-
ational Autoencoders (VAEs), and Hierarchical Temporal Memory (HTM) offer
adaptive learning without the need for labeled data. Sparse Autoencoders, for in-
stance, can automatically extract latent representations of normal patterns, flagging
deviations as anomalies[14]. Additionally, HTM-based models mimic the brain’s
cortical learning mechanisms, enabling continuous, one-pass learning for real-time
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anomaly detection[9].
Moreover, brain-inspired cortical coding methods have recently gained attention

for their ability to handle non-stationary, high-dimensional time-series data with
minimal computational overhead[12]. These approaches leverage self-organized
hierarchical structuring and entropy maximization, allowing them to detect com-
plex temporal anomalies more efficiently than many conventional methods. The
integration of neuromorphic computing principles into anomaly detection is an
emerging research direction that holds promise for improving real-time, low-power
anomaly detection systems[20].
2.2.1 Anomaly Detection Techniques
The literature on anomaly detection is extensive. Agrawal and Agrawal (2015) [21]
provide a survey on data mining techniques for anomaly detection, categorizing them
into methods such as classification-based, clustering-based, and hybrid approaches.
Their work emphasizes that the appropriate selection of an anomaly detection
technique depends on factors like the nature of the input data, the type of anomalies,
and the desired output (whether it be a probabilistic score or a binary label).

Toshniwal et al. (2020) [3] offer an overview of a wide range of anomaly de-
tection methods in machine learning. They classify these methods into groups
such as classification-based, nearest neighbor-based, clustering-based, statistical,
information-theoretic, spectral, and graph-based techniques. Their survey un-
derscores that the effectiveness of each method is highly dependent on the data
characteristics and the specific anomaly types expected. This perspective highlights
why some methods excel at detecting point anomalies, whereas others are better at
spotting sequence-based anomalies.

Anomaly detection techniques can be broadly categorized into supervised, semi-
supervised, and unsupervised methods, based on whether labeled data is available
for training[2].

Supervised Anomaly Detection Supervised anomaly detection methods, such
as Support Vector Machines (SVMs), Decision Trees, and Random Forests, rely on
a fully labeled dataset where both normal and anomalous instances are explicitly
marked. These models learn to distinguish between normal and anomalous patterns
based on labeled training data. When labeled data is available, supervised learning
achieves high detection accuracy, making it a preferred approach in applications
such as network intrusion detection and credit card fraud detection.

However, a significant limitation of supervised methods is the difficulty of
obtaining labeled anomaly data. In many real-world scenarios, anomalies are rare
and unpredictable, making it expensive and often infeasible to manually label
sufficient instances for training[22]. Moreover, supervised models struggle with
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previously unseen anomalies, as they can only recognize patterns present in the
training data. This makes them less effective for evolving systems where new types
of anomalies frequently emerge.

Semi-Supervised Anomaly Detection Semi-supervised learning provides a
middle ground between supervised and unsupervised techniques, leveraging a large
set of unlabeled data along with a smaller set of labeled examples. The key
assumption in semi-supervised anomaly detection is that normal behavior is well-
represented in the training data, while anomalies are rare and often absent from
the training set.

In semi-supervised approaches, models are trained only on normal data, learning
its distribution and structure. Once trained, the model flags significant deviations
from normal patterns as potential anomalies[23, 24]. This approach is particularly
beneficial in scenarios where obtaining labeled anomalies is impractical or costly,
such as fraud detection[25] and medical diagnosis, where normal physiological
patterns are well-defined but anomalies (e.g., rare diseases) are difficult to label[24].

Recent research has demonstrated that deep learning architectures, including
Autoencoders, Variational Autoencoders (VAEs), and LSTMs, significantly improve
the performance of semi-supervised anomaly detection by capturing complex pat-
terns and latent structures in time-series data. In particular, HTM-based models
have been explored for their adaptive, self-learning capabilities, making them highly
effective in environments with evolving patterns[9].

Unsupervised Anomaly Detection Unsupervised anomaly detection tech-
niques, including clustering-based methods (DBSCAN, K-means) and probabilistic
models (Gaussian Mixture Models, Hidden Markov Models), are the most widely
applicable since they do not require labeled data. Instead, they infer normal
patterns directly from the dataset and detect anomalies based on deviations from
these patterns.

This approach is particularly useful when anomalies are not well-defined or vary
over time, as it allows models to dynamically detect previously unseen anomalies.
Unsupervised methods often rely on density-based clustering, statistical outlier
detection, or deep learning-based feature extraction[26, 27].

Autoencoders are among the most commonly used unsupervised anomaly de-
tection methods. These neural networks are trained to encode and reconstruct
normal patterns, and anomalies are identified as instances that fail to reconstruct
properly. Other deep learning techniques, such as Generative Adversarial Networks
(GANs) and Hierarchical Temporal Memory (HTM), have demonstrated superior
performance in detecting contextual and collective anomalies by modeling temporal
dependencies in streaming data[14].
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A major advantage of unsupervised methods is their ability to adapt to new
data without requiring manual labeling. However, these models may also produce
higher false positive rates, as they sometimes mistake normal variations in data
for anomalies. Recent advancements in cortical coding methods have helped
mitigate this issue by leveraging self-organizing hierarchical structures that improve
robustness against noise and reduce false positives[12].

The differences between these three approaches are summarized in Table 2.1[25].

Supervised [28, 29] Unsupervised [30] Semi-supervised [30]

• Needs labeled normal and anomaly data
• Learns patterns from existing labels
• Fails to detect unseen anomalies

• No labeled data required
• Detects anomalies as deviations
• Identifies unseen anomalies

• Uses both labeled and unlabeled data
• Requires few labeled samples
• Learns normal behavior, flags deviations
• Detects unseen anomalies better than supervised

Table 2.1: Comparison of anomaly detection methods based on data labeling
requirements [25].

2.2.2 Anomaly Detection Types
Anomaly detection in time-series data is a specialized task that focuses on iden-
tifying unexpected deviations in temporal sequences. Two primary approaches
to time-series anomaly detection are time-series forecasting[19] and time-series
classification[31].

Forecasting-based models, such as LSTMs and ARIMA, predict future val-
ues based on historical data, flagging anomalies when observed values deviate
significantly from predictions[32]. Recent advancements in deep learning optimiza-
tion techniques, particularly Modified Sine Algorithm Dung Beetle Optimization
(MSADBO), have further enhanced forecasting accuracy by reducing error margins
and improving sensitivity to subtle anomalies[33].

Classification-based approaches assign entire time-series sequences to predefined
categories, thereby helping to group different anomaly types for further analysis[13].

To develop an effective anomaly detection system, it is essential to understand the
different types of anomalies that may appear in time-series data. These anomalies
are typically classified into three main types:

• Point anomalies: A single data point that significantly deviates from the
normal trend is classified as a point anomaly. In Figure 2.3(a), an artificial
time series with a point anomaly is illustrated, where the anomaly’s value falls
beyond the expected range of normal observations[11].

• Contextual anomalies: These anomalies occur when a data point appears
normal in a global context but anomalous in a specific local context. For
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example, a sudden temperature drop may be normal in winter but anomalous
in summer. Figure 2.3(b), illustrates a contextual anomaly, where the data
point falls outside the expected distribution in a local window but remains
within the overall expected range[11].

• Collective anomalies: A sequence of points that deviates from expected
patterns rather than an individual outlier is known as a collective anomaly.
Unlike point anomalies, these anomalies indicate irregular trends rather than
isolated data points. Figure 2.3(c) provides an example of a synthetic collective
anomaly[11].

These three categories are visually represented in Figure 2.3, illustrating the
differences between point, contextual, and collective anomalies.

Figure 2.3: Illustration of time-series anomaly types: (a) point anomaly, (b)
contextual anomaly, and (c) collective anomaly[11].

2.3 Challenges in Time-Series Anomaly
Detection

Despite significant advancements in anomaly detection, several key challenges
persist. One of the most pressing issues is data sparsity, particularly in applications
such as rare event detection in industrial systems or fraudulent transactions in
finance. Many anomaly detection models assume balanced datasets with sufficient
anomaly samples, but in reality, anomalies often constitute only a tiny fraction of the
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data. This extreme class imbalance leads to poor model generalization, as models
trained on predominantly normal data struggle to recognize rare anomalies[23].

Another major challenge is real-time processing. Many deep learning-based
models, while highly effective, require substantial computational resources, making
them unsuitable for real-time streaming applications such as autonomous driving,
financial fraud detection, and power grid monitoring[24]. To enable real-time
anomaly detection, models must be optimized for low-latency inference while
maintaining high accuracy and adaptability. Recent developments in neuromorphic
computing and cortical-inspired models offer promising solutions by reducing
computational overhead without sacrificing efficiency[12].

Concept drift, where normal behavior evolves over time, further complicates
anomaly detection. Many traditional methods assume static patterns, leading to
degraded performance when underlying distributions change. In dynamic environ-
ments such as cybersecurity, healthcare, and industrial monitoring, models must
be continuously updated to reflect new trends[26]. Adaptive learning approaches,
such as Hierarchical Temporal Memory (HTM) and streaming autoencoders, have
been developed to address concept drift by learning patterns incrementally and
adjusting their representations over time[9].

Effectively tackling these challenges requires a combination of adaptive learning
algorithms, robust feature extraction, and scalable model architectures. The
integration of self-organizing learning mechanisms, such as cortical coding and
sparse distributed representations (SDR), has shown promise in handling data
sparsity, reducing computational complexity, and adapting to evolving patterns in
real-time[20].

2.4 State-of-the-Art in Anomaly Detection
Methods

Modern anomaly detection methods encompass a diverse range of statistical,
machine learning-based, and deep learning-based techniques. Each approach varies
in its ability to handle complex temporal dependencies, computational efficiency,
and adaptability to dynamic data environments.

Traditional methods, such as ARIMA (AutoRegressive Integrated Moving Av-
erage) and Exponential Smoothing, serve as baselines for time-series forecasting
due to their simplicity, interpretability, and low computational cost[27]. These
models rely on fixed mathematical formulations to identify trends and seasonality in
time-series data. However, they struggle with non-linear patterns, high-dimensional
dependencies, and evolving anomalies. They also require manual parameter tuning,
making them less effective for large-scale or rapidly changing datasets.

Machine learning-based methods improve upon traditional techniques by lever-
aging data-driven pattern recognition. Common approaches include clustering
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algorithms (e.g., K-means, DBSCAN), decision trees, and ensemble learning meth-
ods. These models automatically extract patterns from data, offering greater
adaptability and robustness across different domains. However, their performance
is sensitive to parameter tuning and often requires feature engineering to improve
accuracy. While these methods reduce manual intervention compared to traditional
statistical techniques, they can still be resource-intensive for real-time detection in
high-frequency data streams.

Deep learning-based methods have emerged as the most advanced solutions for
time-series anomaly detection, leveraging architectures such as Long Short-Term
Memory (LSTM) networks, Variational Autoencoders (VAEs), and Generative
Adversarial Networks (GANs). These models excel at capturing complex temporal
dependencies and non-linear relationships, significantly improving anomaly detec-
tion accuracy in domains such as finance, healthcare, cybersecurity, and industrial
monitoring[28]. However, deep learning approaches introduce several challenges:

• They often require large volumes of labeled training data, which is frequently
unavailable in anomaly detection tasks.

• They incur high computational costs, making them impractical for resource-
constrained environments.

• Many deep learning models operate as black-box architectures, reducing
interpretability and limiting their adoption in high-stakes applications.

Recent advancements in unsupervised and neuromorphic computing approaches,
such as Hierarchical Temporal Memory (HTM) and cortical coding methods, have
provided promising alternatives. These methods mimic brain-inspired learning
mechanisms to achieve real-time anomaly detection with minimal labeled data
and lower computational complexity[12, 9]. By leveraging self-organizing learning
structures and adaptive feature extraction, they bridge the gap between high
accuracy and computational efficiency, making them suitable for streaming data
applications.

2.5 Brain-Inspired Approaches: HTM & Sparse
LSTM Auto-Encoders

Recent research has explored cortical learning algorithms inspired by the human
brain, particularly Hierarchical Temporal Memory (HTM) and Sparse Autoencoders.
These models draw on biological principles to improve pattern recognition, anomaly
detection, and adaptive learning in time-series data.

HTM, developed by Numenta, mimics the hierarchical structure of the neocortex,
using Sparse Distributed Representations (SDRs) to model sequential patterns and
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temporal dependencies[34]. Unlike traditional machine learning methods, HTM
performs continuous, one-pass learning, making it highly adaptive to evolving
patterns in real-time streaming environments. This biologically inspired mechanism
enables HTM to detect anomalies without retraining. This is a significant advantage
over many deep learning models that require large labeled datasets[9]. However,
HTM is sensitive to parameter tuning, and its performance varies depending on
spatial and temporal pooling parameters.

Sparse autoencoders, on the other hand, impose sparsity constraints on neural
networks to learn efficient feature representations of time-series data[30]. By
forcing a network to activate only a small fraction of neurons per input, sparse
autoencoders enhance anomaly detection performance in environments with limited
labeled anomalies. They excel at capturing low-dimensional representations while
preserving the essential structure of the original data, making them highly effective
for unsupervised anomaly detection[14]. However, sparse autoencoders typically
require substantial training data to optimize their latent representations, and
performance depends on the selection of regularization constraints and activation
functions.

While HTM provides strong adaptability and real-time learning capabilities,
sparse autoencoders offer superior feature extraction for detecting subtle anomalies
in high-dimensional time-series data. This study evaluates both methods in the
context of univariate time-series anomaly detection, assessing their real-world
applicability, computational efficiency, and robustness to evolving patterns.

2.6 Identified Gaps and Research Motivation
Despite significant progress in anomaly detection, several critical gaps remain.
Many state-of-the-art models, particularly deep learning-based approaches, rely on
large labeled datasets, limiting their effectiveness in sparse and real-time environ-
ments. In practical applications such as power consumption monitoring, industrial
system diagnostics, and financial fraud detection, labeled anomalies are scarce and
expensive to obtain. This reliance on labeled data reduces the generalizability and
adaptability of existing models in dynamic, real-world settings[19].

Furthermore, while deep learning methods such as LSTMs and Autoencoders
have demonstrated strong anomaly detection performance, few studies have con-
ducted comparative evaluations of cortical learning algorithms (e.g., HTM) against
deep learning approaches in real-time applications. The biologically inspired prop-
erties of HTM and Sparse Autoencoders, particularly their ability to learn patterns
dynamically with minimal supervision, present an opportunity to develop more
efficient and scalable anomaly detection models. However, the trade-offs between
these approaches in terms of accuracy, adaptability, and computational efficiency
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remain underexplored.
This research aims to fill these gaps by conducting a comparative evaluation of

HTM and Sparse Autoencoders on the UCR and NAB time-series anomaly detection
benchmarks. The study assesses their ability to detect anomalies in real-world
streaming environments, highlighting their adaptability, computational feasibility,
and overall performance. By exploring the strengths and limitations of cortical
learning mechanisms, this research contributes to the development of scalable and
biologically inspired anomaly detection frameworks for future applications.
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Chapter 3

Methodology

Introduction
This chapter outlines the methodology employed to investigate and compare two

distinct approaches for anomaly detection in time-series data: Hierarchical Temporal
Memory (HTM) and Sparse LSTM AutoEncoder for Anomaly Detection in Time-
Series (SLADiT). Given the challenges associated with sequential data—such as
data sparsity and evolving patterns—this chapter details the procedures for model
selection, data preprocessing, hyperparameter tuning, and training strategies to
build robust anomaly detection systems.

The methodological framework bridges theoretical principles with practical
implementation. For each model, we describe the core theoretical background, model
architecture, training process, and anomaly detection mechanism. While HTM
is inspired by the neocortex and incorporates biologically plausible mechanisms
like spatial pooling and temporal memory to continuously learn from streaming
data, SLADiT leverages the capabilities of LSTM networks within an autoencoder
framework, enhanced by sparsity constraints in the latent space to capture salient
temporal features and flag anomalies through reconstruction errors.

This chapter is organized into two main sections, one for each model. For each
approach, we discuss the underlying theory, detail the architecture and training
process, and outline the anomaly detection strategy. By presenting both the
biologically inspired (HTM) and deep learning-based (SLADiT) approaches, this
study aims to offer a comprehensive evaluation of their trade-offs in terms of
detection accuracy [12], computational efficiency, and robustness to noise [35].
A brief discussion of the comparative strengths and limitations of these models
is provided, with further evaluation and benchmarking (including datasets and
evaluation metrics) detailed in Chapter 4 and subsequent chapters.

The insights gained from this methodology will inform the experimental analysis
and comparative performance assessment of HTM and SLADiT across multiple
time-series datasets.
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3.1 Hierarchical Temporal Memory (HTM)

3.1.1 Theoretical Background
The American company Numenta introduced HTMs, or hierarchical learning struc-
tures. They were proposed to simulate cortex-like processing of learned information
because of their architecture, which draws inspiration from the cerebral cortex
and more closely resembles its structure than typical artificial neural networks
[36]. Although its full potential has not yet been shown, HTM is a relatively new
technique that has shown effectiveness in solving some pattern recognition issues
including temporal context [37]. Unlike conventional machine learning models that
require extensive labeled data and batch training, HTM operates continuously
in an unsupervised manner, dynamically adapting to new patterns in real-time.
This ability makes HTM particularly effective for anomaly detection in streaming
time-series data [36].

With a focus on spatial patterns and sequence learning, HTM is a framework
that is modeled after the human neocortex that arranges neurons hierarchically
into layers and columns. Its capacity to continuously learn from and adjust to new
facts over time is its main strength.

Time series data, healthcare, and video surveillance are just a few of the domains
in which HTM has been used. It has shown potential in real-time anomaly detection
[38], especially in streaming datasets like ECG signals where it effectively detects
cardiac irregularities [39]. Brain-inspired machine learning has a lot of potential
to advance with the continuous development of HTM algorithms, especially in
hardware optimization and new encoding techniques [39]

3.1.2 Model Architecture
HTM’s architecture is designed for real-time learning. Unlike traditional deep learn-
ing models that require periodic retraining, HTM continuously adapts to evolving
data patterns, making it particularly suited for applications such as network intru-
sion detection, financial fraud detection, and industrial system monitoring [37, 33].

In the overall HTM architecture figuring 3.1, the role of the Spatial Pooler,
Temporal Memory, and the mechanisms of SDR are highlighted in regard to anomaly
detection [40].

HTM is built upon the principles of Sparse Distributed Representations (SDRs),
which provide robust and noise-tolerant encoding of input data. It also utilizes
two main processing modules that work in tandem to learn and predict temporal
patterns:
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Figure 3.1: (A) An encoding interface, the HTM spatial pooler, the HTM
temporal memory, and an SDR classifier, all of which function as modules within
a comprehensive HTM system. (B) The HTM spatial pooler is responsible for
converting inputs (at the bottom) into sparse distributed representations (SDRs)
(at the top). Each mini-column of the spatial pooler can establish a localized group
known as an initiation site, facilitated by synaptic connections that link it to various
configurations within the input space (illustrated by the gray square, indicating
potential connections). A local inhibition mechanism operates within a specified
radius (illustrated by the shaded blue circle), allowing only a limited number of SP
mini-columns that receive the majority of inputs to remain active. The synaptic
permanences are modified in accordance with the Hebbian learning principle: for
each active SP mini-column, the associated active inputs (represented by solid
black lines) are reinforced, whereas the inactive inputs (indicated by dashed lines)
are weakened. (C) An HTM neuron (on the left) contains three distinct dendritic
integration zones that align with different regions of the dendritic tree of pyramidal
neurons (on the right). The spatial pooler models the feedforward connections to
the proximal dendrites. (D) The activation history of an SP mini-column affects
its excitability.

Spatial Pooler (SP)

SP is the first stage in HTM’s processing pipeline. This module transforms raw,
binary-encoded input data into a sparse set of active mini-columns. By ensuring20
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that semantically similar inputs generate highly overlapping SDRs, the SP enhances
robustness to noise and variability [40, 41].

Temporal Memory (TM)

Building on the SP’s output, the TM learns sequential dependencies over time by
forming distal synapses between neurons. It generates predictions based on prior
observations, and when these predictions fail, an anomaly is signaled [42, 9].

A key feature of HTM is its ability to compute anomaly scores based on deviations
from expected patterns. The anomaly score at a given time step is computed as:

At = 1 − |Pt ∩ At−1|
|At−1|

(3.1)

where Pt represents the set of active mini-columns at time t, and At−1 denotes
the predicted active columns from the previous time step. A high anomaly score
suggests a significant deviation from expected sequences, signaling the presence of
an anomaly [43].

Sparse Distributed Representations (SDRs)

form the foundation of HTM’s encoding mechanism. Unlike dense representations
used in deep learning, SDRs activate only a small fraction (approximately 2%) of
neurons at a time, making them highly noise-tolerant and efficient [20].

Neurons and Synapses in HTM

HTM neurons differ significantly from traditional artificial neurons in deep learning.
Each HTM neuron consists of three functionally distinct dendritic regions:

• Proximal Dendrites: Process feedforward input from the Spatial Pooler.

• Distal Dendrites: Learn temporal dependencies by forming connections
with prior neuron activations.

• Apical Dendrites: Receive top-down feedback, allowing hierarchical learning
across different levels of abstraction [9].

Unlike standard artificial neurons that rely solely on weight updates through
backpropagation, HTM neurons leverage three distinct dendritic integration mech-
anisms, enabling the system to continuously refine its representation of normal
patterns in an unsupervised manner. This architectural difference enhances HTM’s
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ability to recognize temporal dependencies and detect anomalies as deviations from
learned sequences without requiring periodic retraining.

Synapses in HTM strengthen or weaken dynamically, mimicking biological
learning mechanisms. Unlike deep learning models that rely on backpropagation,
HTM employs unsupervised Hebbian learning, where synaptic weights adjust based
on local activity patterns [43].

3.1.3 Training and Anomaly Detection Process
Originally, HTM was structured to handle multivariate time-series data, where
temporal encoding played a critical role in detecting patterns. However, for this
study, the model was adapted to process univariate datasets from the UCR anomaly
benchmark. This adaptation necessitated several modifications that impact its
ability to infer temporal dependencies.

Data Preprocessing

The preprocessing stage transformed raw time-series data into a structured format
compatible with HTM’s encoding mechanisms. In its original implementation,
HTM processed datasets such as gymdata.csv containing timestamped power
consumption measurements. Adapting to the UCR dataset required reducing the
input to a single univariate feature without explicit time-based information. The
dataset was parsed, numerical values normalized, and structured for encoding.
(Details on dataset-specific preprocessing are provided in Chapter 4.)

Data Encoding

HTM systems rely on converting raw input data into Sparse Distributed Repre-
sentations (SDRs) through appropriate encoders. Different types of data require
specialized encoding approaches:

• Numeric Encoders: A simple numeric encoder divides a fixed range of
numbers into overlapping “buckets,” ensuring that similar values activate
overlapping bits. For continuous signals like ECG amplitudes or walking
acceleration, a scalar numeric encoder is often used.

• Categorical Encoders: These encoders are used when data comes in distinct
groups. Standard categorical encoders assign a unique bit pattern to each
category, whereas cyclic encoders are designed for data with an inherent cycle
(e.g., days of the week), wrapping the representation so that end-of-cycle
values overlap with the beginning.
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• Geospatial Encoders: These map geographic coordinates into SDRs. A
simple geospatial encoder converts coordinates into grid cells and assigns bits
via a hash function, while a flexible geospatial encoder can adjust its resolution
based on context.

• Natural Language Encoders: These methods convert text into SDRs that
capture semantic meaning, enabling the system to recognize linguistic patterns.

The key idea across these encoders is that similar input values yield SDRs with
significant overlap, facilitating pattern recognition and noise tolerance.

One critical limitation arises when the chosen dataset, such as those from the
UCR benchmark, lacks strong temporal dependencies. In such cases, a simple
scalar numeric encoder may fail to capture all meaningful features of the data. It
is important to assess the suitability of the encoder with respect to the data and
consider parameter adjustments—such as modifying the total number of bits (n) or
the number of active bits (w)—to enhance the representation. These considerations
are discussed in [44] by Scott Purdy from Numenta, Inc.

HTM’s biologically inspired framework provides a compelling approach for real-
time anomaly detection, with unique advantages over conventional deep learning
techniques. Encoding plays a crucial role in how HTM processes data. In the
original multivariate implementation, the model employed both a DateEncoder
for capturing time-of-day dependencies and a Random Distributed Scalar Encoder
(RDSE) for numerical values. The DateEncoder facilitated the identification
of recurring patterns, while RDSE transformed continuous variables into sparse
representations. However, in the adapted univariate version, the DateEncoder was
removed, leaving only the RDSE. This modification significantly affected HTM’s
ability to learn periodic dependencies, making context-dependent anomalies—such
as seasonal variations—harder to detect and leading to increased false positives
and negatives [40].

Spatial Pooler

HTM’s Spatial Pooler (SP) transforms the encoded inputs into stable sparse
representations that serve as the foundation for sequence learning in the Temporal
Memory. In the original model, the SP processed diverse encoding inputs to form
rich SDRs. However, with the shift to a single univariate feature, the variety
of SDRs was significantly reduced. This reduction limits the model’s ability to
generalize across different data patterns, resulting in weaker spatial representations
and a greater reliance on local feature variations rather than broader contextual
patterns.
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Temporal Memory

HTM’s Temporal Memory (TM) is the core learning mechanism responsible for
detecting sequential dependencies. In a multivariate context, TM leverages both
numerical values and time-based features to form robust associations between past
and present observations. In the univariate adaptation, TM must rely solely on past
values, which compromises its ability to distinguish between expected variations
and true anomalies—especially in non-stationary datasets [45]. The removal of
time-based encoding also led to increased root mean squared (RMS) prediction
errors, as the model struggled to maintain stable sequential learning.

Prediction and Anomaly Detection

HTM’s anomaly detection mechanism derives from probability distributions gener-
ated by the active cells within the TM. An anomaly is flagged when the likelihood
of an observation falls below a predefined threshold—typically set to the 95th
percentile of training set likelihoods. However, in the UCR anomaly benchmark,
variations in training and test set distributions reduced the reliability of this thresh-
olding approach. Additionally, when learned patterns were unclear, the predictor
exhibited increased uncertainty and detection inconsistency.

Performance Considerations

HTM’s performance on the UCR datasets was influenced by multiple factors.
One of the primary limitations was the absence of dataset-specific parameter
tuning. Unlike deep learning models, which often undergo rigorous hyperparameter
optimization, HTM’s parameters—such as column count, activation thresholds,
and synapse permanence values—were kept at default settings. This likely led to
suboptimal performance, as the model was not tailored to the characteristics of
individual datasets. Furthermore, univariate datasets with non-stationary patterns
or high noise levels proved more difficult for HTM to analyze effectively. The lack
of time-based encoding removed critical contextual information, making it harder
to differentiate between normal fluctuations and true anomalies. Additionally, the
RDSE encoder required careful calibration to avoid losing meaningful variations,
as improper resolution settings could cause small anomalies to be overlooked.

Boosting Mechanism for Learning Stability

HTM incorporates a boosting mechanism to ensure that all mini-columns participate
in learning. The excitability of a mini-column is inversely proportional to its
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historical activation frequency. A boost factor is applied as follows:

B = 1√
F + ϵ

(3.2)

where F represents the mini-column’s activation frequency, and ϵ is a small constant
to prevent division by zero. Rarely active mini-columns receive higher boost values,
encouraging their participation in learning [40].

3.1.4 HTM’s Strengths and Limitations
HTM offers several advantages:

• Continuous Learning: HTM updates itself in real time without requiring
retraining.

• Noise Resilience: SDRs and sparse activation patterns renders HTM robust
to noisy inputs.

• Unsupervised Learning: HTM does not require labeled data, making it
ideal for applications where anomaly definitions evolve over time [20].

However, HTM also has limitations:

• Parameter Sensitivity: Performance depends on fine-tuning hyperparame-
ters such as synaptic permanence.

• Computational Complexity: The large number of synapses and neurons
can make real-time execution computationally expensive.

• Limited Benchmark Comparisons: HTM’s performance varies across
datasets, making direct comparisons challenging [37].

HTM’s biologically inspired framework provides a compelling approach for real-
time anomaly detection, with unique advantages over conventional deep learning
techniques.

3.2 Sparse LSTM AutoEncoder for Anomaly De-
tection in Time-Series (SLADiT)

3.2.1 Theoretical Background
Anomaly detection in time-series data is a crucial task in applications such as
cybersecurity, finance, healthcare, and industrial monitoring. Traditional statistical
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and machine learning-based methods often fail to capture anomalies effectively,
especially when the patterns are subtle or the dataset is highly sparse. In this re-
gard, neural network-based architectures, particularly Sparse Autoencoders (SAEs)
integrated with Long Short-Term Memory (LSTM) layers, have shown remarkable
success in detecting anomalies by leveraging unsupervised learning principles [12].

Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series (SLADiT) is
a specialized type of autoencoder that imposes sparsity constraints on its hidden
layers. Unlike conventional autoencoders that simply learn to reconstruct inputs,
SLADiT SLADiT forces the model to activate only a small subset of neurons at any
given time, thereby thereby emphasizing the most salient features of the data [35].
When integrated with LSTM layers, SLADiT can capture temporal dependencies
in time-series data, making them highly effective in modeling sequential patterns
and detecting deviations that signify anomalies.

3.2.2 Model Architecture

The SLADiT architecture comprises three fundamental components: the encoder,
the latent space (with sparsity enforcement), and the decoder. Each of these
plays a critical role in learning meaningful representations of normal behavior and
identifying deviations that indicate anomalies. Figure 3.2 illustrates the structure
of the SLADiT model, including LSTM layers, fully connected layers, and sparsity
enforcement mechanisms.

Figure 3.2: SLADiT architecture, highlighting its encoder, latent space, and
decoder components.
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Input Layer and Data Preprocessing

Before feeding time-series data into the SLADiT model, several preprocessing
steps are necessary to ensure numerical stability and optimal learning performance.
The data is first segmented into sliding windows, allowing the model to analyze
localized temporal patterns. Additionally, normalization techniques are applied to
standardize input values, preventing biased learning due to scale discrepancies.

Encoder

The encoder’s primary function is to compress high-dimensional time-series input
into a lower-dimensional latent representation while preserving essential temporal
features. This is achieved through:

• LSTM Layers: The encoder consists of multiple stacked LSTM layers that
process input sequences while maintaining long-term dependencies. Each layer
refines the feature abstraction, enabling the capture of increasingly complex
temporal relationships [46].

• Fully Connected Layer: The final LSTM layer is followed by a fully
connected layer that maps the hidden state to a compact latent representation,
setting the stage for sparsity constraints.

Latent Space and Sparsity Constraint

The latent space serves as a high-dimensional, meaningful representation of the input
data, capturing its most salient features while discarding redundant information.
This space is crucial for anomaly detection, as it ensures that only the most
informative components of the data are preserved. A sparsity constraint is imposed
to ensure that only the most relevant neurons remain active. This constraint
is enforced through Kullback-Leibler (KL) divergence, which penalizes excessive
activations:

KL(p ∥ p̂) = p log p

p̂
+ (1 − p) log 1 − p

1 − p̂
(3.3)

where p represents the desired average activation (a small target value), and p̂
denotes the actual average activation of the hidden neurons. This regularization
mechanism promotes sparsity and prevents the network from learning trivial
patterns that could lead to overfitting.

Decoder

The decoder reconstructs the input data from the sparse latent representation by
reversing the encoding process. It consists of:
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• Fully Connected Layer: Converts the latent vector back into a format for
sequence reconstruction.

• LSTM Layers: Reconstructs temporal sequences from the latent representa-
tion, ensuring that the output retains meaningful patterns.

• Output Layer: Projects the final reconstructed sequence back to its original
input dimension, minimizing reconstruction error through Mean Squared Error
(MSE):

MSE = 1
n

nØ
i=1

(xi − x̂i)2 (3.4)

where xi is the original input and x̂i is the reconstructed output.

3.2.3 Training and Anomaly Detection Process
Data Preparation and Preprocessing

The training procedure for the LSTM-based Sparse Autoencoder begins with
meticulous data preprocessing, which is essential to ensure robust learning and
accurate anomaly detection. The time-series data is initially normalized to mitigate
variations in scale, preventing biases in model training. Following normalization,
the dataset is segmented into sliding windows, a technique that enables the model
to capture localized temporal dependencies. By employing this approach, the
model gains access to overlapping sequences, allowing it to generalize better across
different time scales while preserving essential structural patterns. (Dataset-specific
preprocessing details, including for the NYC Taxi dataset from the NAB collection
and UCR benchmarks, are discussed in Chapter 4.)

Training Phase and Loss Function Optimization

During training, the SLADiT model is optimized to minimize a composite loss
function, which combines reconstruction error and sparsity regularization. The
primary objective is to ensure that the model accurately reconstructs normal time-
series patterns while enforcing sparse activations in the latent space.The Mean
Squared Error (MSE) is used to quantify reconstruction loss (3.4) where xi is the
original input and x̂i is the reconstructed output.

In parallel, the sparsity constraint is enforced using Kullback-Leibler (KL)
divergence (3.3), ensuring that only a subset of neurons in the latent space remains
active. This is expressed as where p represents the desired average activation, and
p̂ denotes the actual average activation of the hidden neurons.

The final loss function used for model optimization is given by:

Loss = MSE + λ · KL(p ∥ p̂) (3.5)
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where λ is a weighting factor that controls the trade-off between reconstruction
accuracy and sparsity enforcement.

Anomaly Detection Process

Once the SLADiT model has been trained on predominantly normal time-series
sequences, it is then applied to detect anomalies in unseen data by assessing
reconstruction errors against a dynamically computed threshold. The detection
pipeline follows these steps:

1. Encoding: Unseen data is passed through the trained encoder to extract a
latent representation.

2. Reconstruction: The decoder reconstructs the input sequence from the
latent space.

3. Error Calculation: MSE is computed to measure the deviation between the
input and the reconstructed output.

4. Threshold-Based Classification: Anomalous instances are detected based
on a dynamic threshold, computed as:

Threshold = µMSE + k · σMSE (3.6)

where µMSE is the mean reconstruction error on the training data, σMSE is
its standard deviation, and k (typically between 2 and 3) is a constant that
defines the sensitivity of anomaly detection.

Data points with reconstruction errors exceeding this threshold are classified as
anomalies.

Evaluation Metrics and Model Performance Assessment

To assess the effectiveness of the SLADiT model, a suite of evaluation metrics
is used, such as Precision, Recall, F1-Score, Accuracy and rea Under the Curve
(AUC). we will discuss the metrics more in chapter 4. Additionally, the timeliness
of anomaly detection is considered, ensuring that SLADiT is capable of detecting
anomalies within a practical time frame for real-world applications.

While SLADiT demonstrates superior detection accuracy, its batch training
approach makes it inherently less suitable for real-time detection scenarios. In
applications requiring immediate anomaly response—such as fraud detection or
industrial system monitoring—SLADiT would require frequent retraining or adap-
tation strategies (e.g., online fine-tuning), which could increase computational
overhead.
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A comparative evaluation of HTM and SLADiT’s strengths and limitations,
including their detection accuracy and computational efficiency, will be presented
in Chapter 5 based on empirical results.

3.2.4 SLADiT’s Strengths and Limitations
SLADiT offers several advantages as a deep learning-based approach to time-series
anomaly detection:

• Enhanced Feature Extraction: By integrating LSTM layers with sparsity
constraints, SLADiT is capable of capturing complex temporal dependencies
and subtle variations in sequential data.

• Robust Reconstruction: The autoencoder framework allows SLADiT to
learn an effective representation of normal behavior, making deviations—manifested
as increased reconstruction errors—a reliable signal for anomalies.

• Adaptability in Batch Settings: When applied to datasets with consistent
patterns, SLADiT demonstrates high detection accuracy and can effectively
model the underlying distribution of normal data.

However, SLADiT also has some limitations:

• Batch Training Constraints: The model’s reliance on batch training
makes it less suitable for real-time anomaly detection scenarios, as it requires
retraining or adaptation (e.g., online fine-tuning) to incorporate new patterns.

• Computational Overhead: Training multiple LSTM layers with sparsity
constraints can be computationally intensive, particularly when dealing with
large-scale or high-frequency time-series data.

• Parameter Sensitivity: The performance of SLADiT is sensitive to hy-
perparameter choices, including the number of LSTM layers, latent space
dimensionality, and sparsity targets. Inadequate tuning may lead to subopti-
mal feature representations and reduced anomaly detection performance.

Overall, while SLADiT demonstrates strong capabilities in capturing temporal
dynamics and detecting anomalies with high accuracy, its batch-based nature and
computational demands pose challenges for real-time applications.
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Chapter 4

Benchmark Datasets and
Evaluation Metrics

In this chapter, we present the experimental framework used to evaluate the perfor-
mance of anomaly detection models. We focus on the methodologies introduced in
previous chapters, detailing both qualitative and quantitative assessments of their
effectiveness.

We begin by categorizing time-series data based on its attributes, as the choice
of anomaly detection techniques depends significantly on the nature of the input.
Next, we describe the benchmark datasets selected from the UCR and NAB
collections, followed by the evaluation metrics used to measure model performance.
Finally, we discuss the challenges and limitations of benchmarking, particularly in
the context of Cortical Learning Algorithms (CLAs) and Hierarchical Temporal
Memory (HTM)-based models.

In subsequent sections, we provide detailed descriptions of data preprocess-
ing—including feature engineering to capture cyclic patterns—and discuss model
training nuances such as hyperparameter tuning, threshold selection, checkpoint-
ing, and logging, as well as computational considerations that influence model
performance.

4.1 Types of Data in Time-Series Analysis
The foundation of any anomaly detection technique depends on the structure and
nature of the input data. Time-series data can be categorical, numerical, or textual,
and each dataset consists of individual observations (instances) characterized by
one or more features, variables, or dimensions. The type of data not only influences
the choice of detection methods but also determines the preprocessing and feature
engineering steps that may be required to effectively capture underlying patterns[15].
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4.1.1 Continuous vs. Categorical Attributes
• Continuous attributes (e.g., temperature, pressure, stock prices) require sta-

tistical or machine learning models that assume numerical relationships.Such
data often benefits from scaling (e.g., normalization) and may require addi-
tional feature engineering—such as incorporating cyclic transformations (e.g.,
sine and cosine components) to capture periodicity.

• Categorical attributes (e.g., weather conditions: sunny, cloudy, rainy) often
require probabilistic models, symbolic sequence mining, or encoding techniques
to represent the data effectively.These attributes may be transformed into
numerical representations (e.g., via one-hot encoding) before further analysis.

4.1.2 Univariate vs. Multivariate Time-Series Data
• Univariate data consists of a single variable evolving over time.

• Multivariate data contains multiple interdependent variables, requiring
models capable of capturing complex dependencies.

The selection of an anomaly detection method depends largely on the data
structure. For instance, Nearest-neighbor-based methods rely on distance measures,
which differ for numerical and categorical data. Similarly, clustering-based methods
require a well-defined feature space, which varies significantly between univariate
and multivariate time series.

4.2 UCR and NAB Time-Series Anomaly
Detection Benchmark

4.2.1 Description of UCR Datasets
The UCR Anomaly Archive [47] [48] is a widely recognized benchmark collection
containing 250 univariate time-series datasets. These datasets span a diverse range
of application domains, including human medicine, biological processes, meteorology,
and industrial monitoring. Given its extensive coverage and structured labeling,
the UCR archive serves as an essential resource for evaluating anomaly detection
methodologies.

Initially introduced as part of an anomaly detection contest preceding the ACM
SIGKDD conference in 2021, this dataset collection has since been extensively used
in research to benchmark and compare different anomaly detection algorithms.

Each time series in the UCR Anomaly archive contains exactly one artificially
injected anomaly in the test set, ensuring a controlled and consistent evaluation
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framework. The training set contains only normal data, allowing models to learn
typical patterns before encountering anomalies. Synthetic anomalies are introduced
using Gaussian noise, wandering baselines, and other perturbation techniques,
ensuring a structured test environment for assessing anomaly detection performance.

• 052_UCR_Anomaly_TkeepFifthMARS: The dataset is a real-world
time series derived from NASA spacecraft telemetry data, originally featured
in a KDD 2018 paper. In this version, the train and test sets were merged, and
the two original anomalies were carefully removed. Instead, a new anomaly
was introduced by making one beat approximately 25% slower than the rest,
creating a distinct deviation in the temporal pattern. The dataset provides
a controlled yet realistic setting for anomaly detection research, allowing
algorithms to distinguish true anomalies from natural variations in spacecraft
telemetry.

• 054_UCR_Anomaly_WalkingAceleration5: The dataset is derived
from an activity recognition benchmark, specifically capturing acceleration
data from a sensor worn by a subject while walking. Since the acceleration
is originally recorded in three dimensions (x, y, and z axes), the dataset was
created by averaging these values to produce a single time series representation
of movement dynamics. To introduce an anomaly, a half-cycle of walking data
was inverted, effectively flipping its pattern upside down. This manipulation
disrupts the natural periodicity of the walking motion, providing a controlled
yet challenging test case for anomaly detection algorithms in human activity
recognition.

• 097_UCR_Anomaly_GP711MarkerLFM5z2: The dataset originates
from subject 7 in the GaitPhase Database [49]. The subject was required to
walk on a split-belt treadmill at a walking speed of 1.1 m/s. This dataset
represents the vertical displacement of a 3D marker’s position, with the marker
placed on the subject’s left shoe above the second metatarsal head. It comprises
a total of 55 complete gait cycles. To introduce a synthetic anomaly, a random
gait cycle was modified by amplifying the second peak—making it almost as
high as the main peak. This deliberate perturbation provides a controlled yet
realistic challenge for anomaly detection algorithms in gait analysis.

• 123_UCR_Anomaly_ECG4: The dataset is derived from an electrocar-
diogram (ECG) trace, designed to simulate real-world cardiac signal variations
while incorporating a synthetic anomaly. Both the train and test sets exhibit
fluctuating noise levels that naturally increase and decrease over time; how-
ever, these variations are not considered anomalies. The true anomaly in this
dataset is artificially introduced by inverting approximately two beats at a
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random location, effectively flipping the signal upside down by multiplying
the subsequence by -1. This transformation creates a distinct yet subtle
disruption in the ECG pattern, making the dataset a valuable resource for
testing anomaly detection algorithms in biomedical signal processing.

• 142_UCR_Anomaly_InternalBleeding6: The dataset is derived from
an internal bleeding study, specifically focusing on arterial blood pressure
measurements collected from pigs. It provides a critical physiological signal
used for monitoring circulatory health. A synthetic anomaly was introduced
by performing an upsampling operation on a short segment of normal arterial
blood pressure data. Between time points 3393 and 3570, the frequency of
the time series was doubled, with missing values filled using the previous
time point’s value. This modification creates an artificially smoothed yet
temporally distorted region, challenging anomaly detection algorithms to
recognize frequency-based anomalies within biomedical signals.

• 151_UCR_Anomaly_MesoplodonDensirostris: This dataset originates
from an accelerometer recording of a Blainville’s beaked whale, capturing its
natural swimming patterns. To introduce a controlled anomaly, one complete
swim cycle was replaced with two human heartbeats, carefully scaled to
match the original data’s mean and variance. This subtle yet biologically
distinct alteration creates an anomaly that blends into the overall signal
while disrupting the expected rhythmic movement of the whale. The dataset
provides a unique challenge for anomaly detection algorithms, requiring them
to differentiate between natural aquatic locomotion and an artificially inserted
human physiological pattern.

• 152_UCR_Anomaly_PowerDemand1: The dataset is sourced from an
Italian power demand record spanning from January 1, 1995, to May 31,
1998. It captures fluctuations in electricity consumption over time, reflecting
real-world energy usage patterns. The anomaly in this dataset is artificially
introduced by applying a moving average algorithm to a randomly selected
two-week period of power supply data (from February 9, 1997, at 3:00 AM
to February 23, 1997, at 3:00 AM). This transformation smooths out natural
variations, creating an anomalous segment that deviates from the expected
demand dynamics. The dataset serves as a valuable benchmark for detecting
subtle yet impactful changes in power consumption patterns.

4.2.2 Description of NAB Dataset
In addition to the UCR Archive, this study also utilizes datasets from the Nu-
menta Anomaly Benchmark (NAB)[50]. NAB provides a collection of real-world
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and synthetic time-series datasets specifically designed for anomaly detection in
streaming data. One of the most notable datasets from NAB is the NYC_Taxi
dataset, which records taxi trip counts in New York City over time. This dataset
is characterized by:

• Real-World Complexity: The NYC_Taxi dataset captures the inherent
variability of urban mobility, including daily, weekly, and seasonal patterns.

• Streaming Data Environment: As part of the NAB collection, the dataset
is structured to simulate real-time data streams, challenging models to adapt
continuously and detect anomalies promptly.

• Anomaly Characteristics: Anomalies in the NYC_Taxi dataset may reflect
unusual patterns such as unexpected surges or drops in taxi demand, which
are critical for understanding urban dynamics and operational planning.

Benchmark Dataset Overview: Integrating datasets from both UCR and
NAB enables a more comprehensive evaluation of anomaly detection models across
controlled synthetic environments and complex real-world scenarios. The following
table 4.1 summarizes the key characteristics of the selected datasets from the UCR
Anomaly Archive and NAB collection used in this study.

Dataset Name Records Train Test Anomalies Data Type

052_TkeepFifthMARS 11,308 3,500 7,808 99 Sensor
054_WalkingAceleration5 6,684 2,700 3,984 60 Sensor
097_GP711MarkerLFM5z3 12,000 5,000 7,000 46 Sensor
123_ECG4 30,000 5,000 25,000 301 ECG
142_InternalBleeding6 7,654 1,500 6,154 156 (ABP) Sensor
151_MesoplodonDensirostris 24,667 10,000 14,667 161 Accelerometer
152_PowerDemand1 29,931 9000 20,931 337 Sensor
NYC_Taxi (NAB) 10,320 5,000 4,420 5 Transportation

Table 4.1: Benchmark table for selected NAB and UCR datasets.

4.3 Preprocessing
The dataset used in this study is sourced from the UCR Anomaly Archive, which
provides standardized benchmark time-series datasets for anomaly detection re-
search, and the NYC Taxi dataset from the Numenta Anomaly Benchmark (NAB),
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which captures real-world urban mobility patterns. Before applying anomaly de-
tection models, the raw data undergoes preprocessing to ensure consistency and
optimal learning conditions.

To achieve numerical stability and improve model performance, we apply z-score
normalization (used in SLADiT) and min-max normalization (used in HTM), which
transforms the dataset as follows:

X ′ = X − µ

σ
(4.1)

where X represents the original data points, µ is the mean, and σ is the standard
deviation. This transformation ensures that the data distribution has zero mean
and unit variance, facilitating effective training and anomaly detection.

X ′ = X − Xmin

Xmax − Xmin
(4.2)

In addition to scaling, we incorporate feature engineering steps to capture cyclic
patterns inherent in our time-series datasets. Using a Fast Fourier Transform
(FFT)[51]–based spectral analysis, the dominant cycle period is estimated. Subse-
quently, sinusoidal features are derived via the sine and cosine transformations:

sin_feature = sin
3

2π
t

Test

4
, cos_feature = cos

3
2π

t

Test

4
(4.3)

where Test is the estimated cycle period and t denotes the time index. These
additional features help capture periodic behaviors, enhancing the model’s ability
to learn and detect deviations from normal cyclic patterns.

4.3.1 Anomaly Injection and Dataset Partitioning
The UCR datasets contain synthetically injected anomalies, ensuring a controlled
evaluation environment for anomaly detection models. Each dataset’s training set
consists only of normal data, while the test set includes exactly one artificially
injected anomaly. To ensure consistent evaluation, the dataset partitioning follows
a standardized format. Each dataset in the UCR archive follows a structured
naming convention. For example, the file:

152_UCR_Anomaly_PowerDemand1_9000_18485_18821.txt

provides key dataset attributes:
• Dataset number: 152

• Mnemonic name: PowerDemand1

• Training range: From indices 1–9000 (contains only normal data)

• Anomaly region: Begins at index 18,485 and ends at 18,821 in the test set.
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NYC Taxi Anomalies from NAB

In addition to the UCR datasets, this study incorporates the NYC Taxi dataset from
the Numenta Anomaly Benchmark (NAB), which provides a real-world scenario
for anomaly detection. The NYC Taxi dataset aggregates the total number of taxi
passengers in New York City into 30-minute intervals and captures the inherent
variability of urban mobility. This dataset is particularly valuable for evaluating
anomaly detection models in a streaming data environment, as it reflects both
routine fluctuations and abrupt changes associated with significant events.

Anomalies in the NYC Taxi dataset correspond to notable events, including:

• NYC Marathon (02.11.2014): An anomaly is observed at "2014-11-01
19:00:00" with a passenger count of 28,398, reflecting unusual taxi demand
related to the marathon.

• Thanksgiving (27.11.2014): At "2014-11-27 15:30:00", the passenger
count drops to 15,255, corresponding to altered travel patterns during the
holiday.

• Christmas (24–26.12.2014): An anomaly is recorded at "2014-12-25
15:00:00" with a count of 12,039, capturing the impact of the Christmas
season.

• New Year’s Day (01.01.2015): A significant spike is observed at "2015-01-01
01:00:00" with a passenger count of 30,236, indicating heightened taxi activity
on New Year’s Day.

• January 2015 North American Blizzard (26–27.01.2015): At "2015-01-27
00:00:00", the passenger count plummets to 109, reflecting a dramatic de-
crease in taxi demand due to severe weather.

The raw data for the NYC Taxi dataset is provided by the NYC Taxi and
Limousine Commission, and the aggregation into 30-minute buckets facilitates the
detection of both gradual and abrupt changes in urban mobility patterns.

Unlike traditional train-validation-test splits, no separate validation set was used
due to the scarcity of anomalies. Instead, hyperparameter selection and threshold
tuning were performed using metrics computed directly on the test set. While
this approach does not strictly separate validation and test data, it was deemed
sufficient for evaluating model performance on this specific dataset.

4.4 Evaluation Metrics
The effectiveness of anomaly detection models is assessed using well-established
quantitative evaluation metrics. These metrics help determine the model’s ability
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to correctly classify anomalous and normal instances, particularly in imbalanced
datasets where anomalies occur infrequently.

4.4.1 Anomaly Scoring Criteria
Anomaly detection models often differ in how they recognize the onset and offset
of anomalies. Some algorithms detect the leading edge, while others identify the
trailing edge of an anomaly window. To account for these variations, each data
set is designed to have only one anomaly window and a predetermined training
period that is free of anomalies. Our goal is to identify the data point with the
highest anomaly score in each dataset. In UCR datasets, If this point falls within
a specified detection range (see Figure 4.1), it is counted as a correctly detected
anomaly. The overall performance score on the UCR anomaly benchmark is then
calculated by taking the percentage of datasets where the anomaly was correctly
detected [12].

Furthermore, the dynamic logic governing the adjustment of evaluation bound-
aries ensures robustness by constraining the anomaly detection within predefined
limits. In cases where the predicted anomaly lies outside the extended detection
range, the evaluation boundaries are fixed to these established limits, thus main-
taining a controlled and consistent framework for anomaly detection. This method
offers a balanced compromise between flexibility and control, enhancing the system’s
ability to detect true anomalies while mitigating the risk of excessive false alarms.
Overall, this strategy provides a more forgiving yet rigorously bounded evaluation
process, which is critical for optimizing the F1 score by carefully balancing the
trade-offs between recall and precision in anomaly detection systems.

Figure 4.1: Anomaly detection range in the UCR anomaly benchmark data set.

Let the length of the anomaly be defined as:

L = end − begin + 1 (4.4)

An integer prediction P is deemed correct if it lies within:

min(begin − L, begin − 100) < P < max(end + L, end + 100). (4.5)
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The constants L and 100 ensure that short anomalies (e.g., single-point anomalies)
are not unfairly penalized due to minor misalignment. This scoring function,
enhanced by the dynamic adjustment of evaluation boundaries, provides a balanced
approach, preventing overly strict detection thresholds from distorting evaluation
results while offering the flexibility to capture near-boundary deviations effectively.

4.4.2 Binary Classification Metrics
Evaluating anomaly detection models requires metrics that effectively capture the
performance in imbalanced settings. In our experiments, we rely on a set of stan-
dard metrics derived from the confusion matrix, as well as threshold-independent
measures.

For binary classification, the confusion matrix is defined as follows:

Actual / Predicted Positive Negative
Positive TP FN
Negative FP TN

Table 4.2: Binary classification confusion matrix

Definition of Confusion Matrix Components: The following terminology
is used to describe the values in the confusion matrix:

• True Positive (TP): The number of positive examples correctly identified
by the model.

• False Negative (FN): The number of positive examples incorrectly classified
as negative.

• False Positive (FP): The number of negative examples incorrectly classified
as positive.

• True Negative (TN): The number of negative examples correctly identified
by the model.

Using the confusion matrix, we calculate the following metrics:

• Accuracy measures the proportion of total correct predictions (both true
positives and true negatives) out of all predictions. It is given by:

Accuracy = TP + TN

TP + FP + TN + FN
(4.6)
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However, accuracy can be misleading in imbalanced datasets, where a model
may classify most instances as normal (majority class) and still achieve high
accuracy while failing to detect anomalies.

• Precision Precision, or positive predictive value, indicates the proportion
of positive identifications that are indeed correct. In the context of anomaly
detection, precision quantifies how many of the detected anomalies are truly
anomalous:

Precision, p = TP

TP + FP
(4.7)

A high precision score indicates a low false positive rate, meaning that detected
anomalies are highly reliable.

• Recall (or sensitivity) measures the proportion of actual anomalies that are
correctly detected by model:

Recall, r = TP

TP + FN
(4.8)

A model with high recall ensures that most anomalies are detected, reducing
the risk of missed anomalies.

To succinctly capture the balance between these two metrics, we employ the
F1-score, defined as the harmonic mean of precision and recall:

F1-score = 2 · r · p

r + p
(4.9)

These evaluation strategies are consistent with those recommended in the
literature (see [46] for further details). These metrics are particularly useful in
anomaly detection due to the inherent imbalance between normal and anomalous
samples. High precision indicates a low rate of false alarms, while high recall
ensures that most true anomalies are detected. In many real-world applications,
balancing these two metrics is essential, as both types of errors can have significant
consequences.

Although accuracy may initially seem to be an appropriate measure for per-
formance evaluation, it often fails in the presence of class imbalance—a common
scenario in anomaly detection where anomalies are rare compared to normal in-
stances. Relying solely on accuracy may lead to an overly optimistic assessment of a
model’s performance. Therefore, it is crucial to focus on class-specific metrics such
as precision and recall. The F1-score is particularly useful in anomaly detection,
where class imbalances make precision and recall equally important.
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4.4.3 Area Under Curve (AUC)
Another vital metric for evaluating anomaly detection models is the Area Under
Curve (AUC), derived from the Receiver Operating Characteristic (ROC) curve.
The ROC curve is a graphical representation that illustrates the trade-off between
the true positive rate (TPR) and the false positive rate (FPR) at various threshold
settings. This curve begins at the origin (0,0) and ends at (1,1), showing how the
TPR increases relative to the FPR as the decision threshold is varied. The Area
Under Curve (AUC) summarizes the ROC curve into a single value, representing
the probability that the model will rank a randomly chosen anomalous instance
higher than a randomly chosen normal instance. AUC is particularly valuable
because it is threshold-independent and robust to class imbalance. To elaborate,
let:

• P denote the total number of positive (anomalous) samples.

• N denote the total number of negative (normal) samples.

• TP denote the number of true positives, where anomalous timestamps are
correctly identified.

• FP denote the number of false positives, where normal timestamps are erro-
neously classified as anomalous.

The true positive rate (TPR) is calculated as:

TPR = TP

P
(4.10)

Similarly, the false positive rate (FPR) is calculated as:

FPR = FP

N
(4.11)

The AUC is then computed as:

AUC =
Ú 1

0
TPR(FPR) d(FPR) (4.12)

A high AUC indicates that the model consistently distinguishes between anoma-
lous and normal samples across different threshold levels.

By varying the threshold used for anomaly detection, we obtain different pairs of
TPR and FPR, which together form the ROC curve. The AUC is then computed
as the area under this ROC curve. In the context of anomaly detection, the AUC
represents the probability that the algorithm will assign a higher anomaly score to a
randomly selected anomalous point than to a randomly selected normal point. This
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probabilistic interpretation makes the AUC particularly valuable when comparing
different anomaly detection methods.

The AUC is widely regarded in the literature as a robust measure for model
comparison, particularly in studies where class imbalance is a significant challenge.
In our experiments, the AUC is a primary metric for performance evaluation, as it
provides a clear and concise indication of the overall effectiveness of the anomaly
detection methods.

Advantages of AUC in Anomaly Detection
• Threshold-independent: Unlike precision and recall, AUC does not require

a fixed classification threshold.

• Resistant to class imbalance: AUC remains reliable even when anomalies
are rare, making it ideal for anomaly detection tasks

• Widely used for benchmarking: AUC is one of the most commonly
reported metrics in anomaly detection research.

Several recent studies [46] have employed AUC as a benchmark metric, reinforcing
its effectiveness in model comparison.

4.5 Implementation Framework

4.5.1 HTM Model Implementation
This section outlines the technical implementation of the Hierarchical Temporal
Memory (HTM) model, including data preprocessing, encoding, spatial pooling,
temporal memory processing, and anomaly scoring mechanisms.

Data Preprocessing and Setup

we first normalize each time series using min-max normalization (Equation 4.2).
For consistency, we feed the data as individual points to the HTM network in an
online manner.

1. Spatial Pooler (SP): Learns spatial patterns and encodes input data into
Sparse Distributed Representations (SDRs).

2. Temporal Memory (TM): Captures sequential dependencies and generates
predictions for anomaly detection.
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The final anomaly score is computed based on deviations from predicted sequences,
and a dynamic thresholding mechanism adapts to the distribution of the input
data.

• Data Loading and Preprocessing: The UCR anomaly dataset is loaded
and preprocessed to extract the univariate time-series data. Ground truth
labels are created to mark known anomaly regions, providing a basis for later
evaluation.

• Encoder Configuration: We use an RDSE with parameters for resolution,
size, and sparsity as outlined in our parameter dictionary. These parameters
are chosen to ensure that the encoded SDRs effectively represent the input
data while maintaining a low overlap between distinct inputs.

• Spatial Pooler (SP) Setup: The SP is configured with parameters such as
columnCount, localAreaDensity, potentialPct, and synaptic permanence
adjustments. These parameters allow the SP to form a robust set of active
mini-columns that serve as a stable representation of the input.

• Temporal Memory (TM) Setup: The TM is configured to learn se-
quences with parameters including cellsPerColumn, activationThreshold,
and minThreshold. It processes the output from the SP and generates pre-
dictions for future inputs. The prediction error is computed as the absolute
difference between the predicted value and the actual input.

• Anomaly Likelihood Calculation: An anomaly likelihood is computed by
combining the raw anomaly score from the TM with a dynamically determined
threshold. A moving window average and a lambda multiplier are used to
calculate this threshold, which is then applied to classify each data point as
normal or anomalous.

CLA Parameters

HTMs can be configured using several meta-parameters, with the Numenta frame-
work allowing adjustments to 14 different parameters. A random sweep of these
parameters has shown that their values have a significant impact on the behavior
of the algorithm. However, the relationship between parameter selection and
model performance is not straightforward. As of the time of writing, there are
few established heuristics to determine the optimal values for these parameters in
advance.

Among these, the number of columns and neurons per column play a crucial
role in performance, as they define the connectivity structure of the model’s neural
network and directly influence its capacity to learn complex patterns. However,
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the impact of many other parameters is hard to isolate, as they interact with each
other in ways that are difficult to predict.

In our implementation, the Spatial Pooler (SP) and Temporal Memory (TM)
components utilize the following parameters:

Spatial Pooler (SP) Parameters:

• columnCount: Specifies the total number of columns in the SP, determining
the resolution of the input encoding. A higher columnCount provides a more
granular representation.

• localAreaDensity: Defines the desired proportion of active columns within
a local neighborhood, influencing the sparsity and distribution of activations.

• potentialPct: The percentage of the input space that each column can
potentially connect to, controlling the degree of overlap between columns.

• globalInhibition: Determines whether inhibition is computed globally across
the entire SP or locally within (each active column inhibits its neighbors).
Global inhibition selects the most active columns from the entire region, while
local inhibition restricts competition to a defined area.

• synPermActiveInc: The increment value applied to the permanence of
synapses that are active, reinforcing frequently active connections.

• synPermInactiveDec: The decrement value applied to the permanence of
inactive synapses, facilitating the removal of seldom-used connections.

• synPermConnected: The permanence threshold a synapse must exceed to
be considered connected, defining effective connectivity between columns and
the input.

• boostStrength: A factor that increases the activation probability of under-
active columns, ensuring that less active columns contribute to learning over
time.

Temporal Memory (TM) Parameters:

• cellsPerColumn: The number of neurons allocated to each column, allowing
each column to represent multiple temporal contexts.

• activationThreshold: The minimum number of active synapses required on
a dendritic segment for that segment to be considered active, thus placing a
requirement on the confidence of predictions.
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• initialPermanence: The starting permanence value assigned to new dendritic
synapses, establishing a baseline for subsequent learning.

• connectedPermanence: The permanence threshold that determines whether
a dendritic synapse is considered connected; only synapses above this threshold
contribute to activation.

• minThreshold: The minimum number of active synapses needed for a
dendritic segment to be considered during prediction, preventing segments
with insufficient evidence from influencing outcomes.

• maxNewSynapseCount: The maximum number of synapses that can be
added to a newly formed dendritic segment, controlling the initial connectivity
complexity.

• permanenceIncrement: The fixed amount by which the permanence value of
an active synapse is increased during learning, reinforcing reliable connections.

• permanenceDecrement: The fixed amount by which the permanence value
of an inactive synapse is decreased during learning, allowing the model to
gradually forget less important connections.

• maxSegmentsPerCell: The maximum number of dendritic segments that
each cell can form, limiting the cell’s capacity for encoding different temporal
contexts.

• maxSynapsesPerSegment: The maximum number of synapses allowed
on a single dendritic segment, controlling the complexity of each segment’s
connectivity.

• newSynapseCount: The default number of synapses added when a new
dendritic segment is created, which determines the initial connectivity of the
segment.

Model Training and Optimization

During training, the model begins by normalizing the raw input data and deriving
additional cyclical features using sine and cosine functions based on an estimated
cycle period. These features are encoded into sparse distributed representations
(SDRs) via multiple RDSE encoders and concatenated into a composite SDR,
which is then fed into the Spatial Pooler (SP) that learns to extract stable, sparse
patterns from the input. The resulting SP output is subsequently processed by the
Temporal Memory (TM) component, which learns the temporal transitions and
sequences by adjusting its synaptic connections according to the observed patterns.

45



Benchmark Datasets and Evaluation Metrics

Concurrently, a Predictor module is trained to forecast future input values based
on the active cells from the TM, integrating spatial and temporal learning to build
a robust representation of the data’s dynamics.

Anomaly Scoring

The model computes its anomaly score by first using the Temporal Memory (TM)
component, which compares the predicted active cells with the actually active
ones at each time step to generate an instantaneous anomaly score—reflecting the
degree of mismatch between the model’s prediction and the observed input. This
raw score is then passed to an AnomalyLikelihood module that, over a specified
period, aggregates historical anomaly statistics to calculate a probabilistic anomaly
likelihood, thereby smoothing out transient fluctuations and flagging statistically
significant deviations as anomalies.

Threshold Selection and Hyperparameter Tuning

Threshold Selection: In the context of this model, threshold selection is a critical
step to determine which anomaly likelihood scores are significant enough to be
flagged as anomalies. After computing the instantaneous anomaly scores from the
Temporal Memory (TM), these raw scores are processed by an AnomalyLikelihood
module that smooths out short-term fluctuations by maintaining a history of
anomaly scores. The model then calculates the mean and standard deviation of
these likelihood scores over a specified period, and sets the anomaly threshold as
the mean plus two times the standard deviation. This statistical approach assumes
that most normal data points fall within a typical range, so scores exceeding this
threshold are statistically rare and thus likely to represent true anomalies.

Hyperparameter tuning is the process of optimizing the key parameters that
influence the model’s performance across its different components—such as the
encoders, Spatial Pooler (SP), Temporal Memory (TM), and anomaly detection
modules. Given the extensive set of hyperparameters available in table 4.3, we
initially employed a random search strategy to broadly explore the parameter
space. This approach allowed us to quickly identify which parameters had the most
significant impact on the model’s performance by sampling a wide range of values,
thus reducing the complexity of the search space before moving to a more focused
tuning method.

After narrowing down the most influential hyperparameters, we transitioned
to a grid search to systematically evaluate combinations of parameters, including
encoder resolution, number of columns in the SP, anomaly likelihood period,
activation thresholds, the number of cells per column, and the minimum threshold
for TM segments. Each configuration was assessed using performance metrics like

46



Benchmark Datasets and Evaluation Metrics

Hyperparameter Original Value Model Value
sp.boostStrength 3.0 [2, 3, 4, 5, 7]
sp.columnCount 1638 [512, 1024, 1638, 2048, 4096]
sp.localAreaDensity 0.04395604395604396 [0.05]
sp.potentialPct 0.85 [0.80, 0.85, 0.90]
sp.synPermActiveInc 0.04 [0.40, 0.41]
sp.synPermConnected 0.13999999999999999 [0.13, 0.139999, 0.14]
sp.synPermInactiveDec 0.006 [0.006, 0.01]
tm.activationThreshold 17 [10, 12, 13, 15, 16, 17]
tm.cellsPerColumn 13 [10, 13, 32, 64, 128, 256]
tm.initialPerm 0.21 0.21 for all datasets
tm.maxSegmentsPerCell 128 [128, 256, 512] for all datasets
tm.maxSynapsesPerSegment 64 [32, 64]
tm.minThreshold 10 [5, 10]
tm.newSynapseCount 32 [32, 64]
tm.permanenceDec 0.1 [0.05, 0.1]
tm.permanenceInc 0.1 0.1 for all datasets
anomaly.period 1000 [50, 80, 100, 160, 250,500, 600]
enc.resolution 0.88 [0.25, 0.6, 0.75, 0.88, 0.9]
enc.size 700 700 for all datasets
enc.sparsity 0.02 0.02 for all datasets
predictor.sdrc_alpha 0.1 0.1 for all datasets

Table 4.3: Hyperparameter Configuration for the HTM Model

the F1 score, ROC AUC, precision, recall, and accuracy. By selecting the best
configuration based on an optimal trade-off among these metrics, this two-stage
approach ensures that the model is finely calibrated to learn stable representations,
accurately predict future inputs, and robustly detect anomalies. It is important
to note that key hyperparameters—including were found to be dataset-dependent,
reflecting the diverse temporal characteristics and complexities of the different
datasets.

Data Split

In the UCR dataset, the training and test ranges are pre-specified, with defined
segments for training and anomaly labeling in the test data. However, since
the model is highly sensitive to the choice of data range, we experimented with
different splits to determine how varying the range affects performance. This
sensitivity testing was similarly applied to the pure dataset, ensuring that our
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evaluation captured the nuances of how range selection influences anomaly detection
and prediction accuracy. Notably, this issue also occurred for the pure dataset,
highlighting that the sensitivity to the selected range is a critical factor regardless
of the dataset used.

HTM’s Multi-Step Prediction

After splitting dataset into train and test set, during training the model learns
temporal patterns and builds representations using a composite SDR that incorpo-
rates both the raw data and engineered time features, while the Predictor module
is trained to forecast upcoming values. In the testing phase, the model generates
multi-step predictions (e.g., 1-step and 5-step ahead) from the unseen test data, and
these predictions are then shifted to align correctly with the corresponding input
points, ensuring that the performance evaluation accurately reflects the model’s
ability to predict future values over multiple time steps.

4.5.2 SLADiT Model Implementation
SLADiT offer robust performance in reconstructing normal patterns and identifying
deviations that signal anomalies. Unlike traditional anomaly detection methods,
which rely on predefined statistical thresholds, SLADiT utilize self-learned latent
space representations to adaptively detect deviations from expected behavior. This
section provides a detailed explanation of the SLADiT model implementation,
covering data preprocessing, model architecture, training process, and evaluation
techniques.

Data Preprocessing and Preparation

The time-series dataset is first loaded and standardized to facilitate stable training.
Normalization is applied by subtracting the mean and dividing by the standard
deviation, ensuring that all values fall within a standardized range. In addition
to normalization, and later for converting univariate data to multivariate, the
dataset enriched with cyclic features— sine and cosine components derived from an
FFT-based cycle estimation—to capture periodic patterns inherent in time-series
signals.

Following normalization, the dataset is segmented into overlapping time windows
to allow the model to capture temporal dependencies. A range of window sizes
(including 85, 90, 100, 110, and 150 time steps) was considered, with the optimal size
selected based on hyperparameter tuning. Each window is labeled as anomalous if
any data point within it corresponds to a known anomaly region. This segmentation
strategy facilitates the model’s learning of normal sequential patterns and enhances
its ability to detect deviations during testing.

48



Benchmark Datasets and Evaluation Metrics

Model Architecture

The Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series (SLADiT)
model is designed to effectively capture temporal patterns and reconstruct normal
sequences. Its architecture comprises an encoder-decoder LSTM network augmented
with a KL-divergence sparsity constraint on the latent space to enforce feature
selectivity. The components are as follows:

• Encoder: Three stacked LSTM layers process the input sequence and encode
it into a lower-dimensional latent representation.

• Latent Space: A fully connected layer transforms the encoder’s output into a
compact latent representation, capturing essential features.

• Decoder: A mirrored LSTM-based decoder reconstructs the input time-series
sequence from the latent space.

• Output Projection: The decoder’s hidden states are mapped back to the
original feature space through a fully connected layer.

The KL-divergence sparsity constraint is applied to the latent space to limit neuron
activations. This regularization forces the network to learn only the most relevant
features, which is critical for robust anomaly detection.

Model Training and Optimization

The model is trained using the AdamW optimizer, which facilitates efficient weight
updates while mitigating overfitting through decoupled weight decay. A dynamic
learning rate schedule is employed via ReduceLROnPlateau, which reduces the
learning rate when the validation loss stagnates for a set number of epochs.

The overall loss function consists of two key components:

1. Mean Squared Error (MSE) loss to minimize the difference between the
input and its reconstruction.

2. KL-Divergence Regularization to enforce sparsity in the latent space.

The total loss function is computed as:

Ltotal = LMSE + LKL (4.13)

Training is performed exclusively on normal sequences so that the model learns the
typical patterns of the data.
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Anomaly Detection and Threshold Selection

Once trained, the model is applied to the test dataset, where it reconstructs input
sequences and computes reconstruction errors. Higher errors indicate deviations
from learned patterns, suggesting the presence of anomalies. A thresholding method
is used to classify anomalies, computed as:

T = µerr + 2σerr (4.14)

where T is the threshold, µerr is the mean reconstruction error, and σerr is the
standard deviation. A time window is classified as anomalous if its reconstruction
error exceeds T.

Evaluation Metrics and Performance Analysis

The performance of the SLADiT model is evaluated using standard anomaly
detection metrics that are especially suited for imbalanced datasets. Instead, we
focus on precision, recall, F1-score and Accuracy, which together provide a balanced
view of the model’s ability to correctly identify anomalies without incurring an
excessive rate of false alarms. In this context, precision measures the proportion
of detected anomalies that are indeed true anomalies, while recall assesses the
fraction of actual anomalies that the model successfully detects. The F1-score,
being the harmonic mean of precision and recall, offers a single measure that
encapsulates the trade-off between these two metrics. In addition, we compute the
Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) to
capture the model’s performance across a range of threshold values, thus providing
a threshold-independent evaluation. A higher AUC indicates that the model is
more effective at ranking anomalous instances higher than normal ones, a critical
capability when anomalies are rare.

Visualization, Characterization, and Model Interpretation

Visualization plays a crucial role in understanding and interpreting the performance
of the anomaly detection system, providing both qualitative insights and diagnostic
feedback. A comprehensive set of visualization techniques is employed not only to
assess the reconstruction error distribution and latent space separation but also to
characterize the nature, duration, and severity of detected anomalies in detail.

One essential plot is the Reconstruction Error Distribution, which displays the
distribution of reconstruction errors for both normal and anomalous samples. This
plot helps us understand how the model differentiates between expected patterns
and deviations. A clear separation between the error distributions of normal and
anomalous data indicates that the model effectively captures the underlying patterns,
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whereas significant overlap might suggest difficulties in distinguishing anomalies,
prompting further investigation into threshold selection or model capacity.

Another critical visualization is the Latent Space Visualization achieved via
t-SNE. This technique reduces the high-dimensional latent representations into
a two-dimensional plot, where each point represents a compressed version of a
time window. By coloring these points according to their true labels (normal or
anomalous), we can assess the clustering behavior of the latent space. Ideally, normal
samples should form distinct clusters separate from the anomalous ones, revealing
how well the model has learned to compress and differentiate the underlying features
of the time series. This visualization not only validates the feature extraction
capability of the encoder but also helps identify any overlapping regions that may
correspond to borderline cases.

The Time-Series Overlay with Anomalies plot superimposes the detected anoma-
lies onto the original time-series data. This overlay provides an intuitive, visual
means of verifying the alignment between the model’s predictions and the actual
anomaly occurrences. By highlighting the segments where the reconstruction error
exceeds the established threshold, this plot allows us to visually inspect the consis-
tency, timing, and duration of detected anomalies. Such an inspection is crucial for
understanding whether the model captures isolated spikes or contiguous anomalous
segments, and whether the predictions align well with known anomalies.

In addition to these plots, the plot anomaly segments function is used to visually
highlight the segments of the time series where anomalies occur. This plot overlays
the original time-series data with highlighted intervals corresponding to the detected
anomalous segments, allowing for an intuitive comparison between the detected
anomalies and the ground truth. It serves to reveal whether the model is capturing
contiguous anomalous behavior or merely isolated spikes.

Similarly, the plot anomaly durations function presents a bar chart that displays
the duration of each detected anomaly segment. This visualization is critical for
understanding the temporal extent of anomalies, providing insights into whether the
anomalies are short, abrupt deviations or prolonged periods of abnormal behavior.

The plot anomaly magnitudes function employs box plots to compare the magni-
tudes of anomalies across segments by illustrating the distribution of the maximum
excess reconstruction error over the threshold within each anomaly.This characteri-
zation helps quantify the severity of anomalies, indicating how pronounced each
anomaly is relative to the normal behavior.

Beyond these, additional plots further enrich the evaluation framework. The
ROC Curve (Receiver Operating Characteristic) plot illustrates the trade-off be-
tween the true positive rate and false positive rate across various threshold settings.
The AUC (Area Under the ROC Curve) quantifies the overall ability of the model
to rank anomalous instances higher than normal ones, serving as a threshold-
independent measure of performance. Complementing this, the Precision-Recall
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(PR) Curve plot highlights the relationship between precision and recall, which
is particularly important in imbalanced datasets where the number of anomalies
is low. These curves help in selecting an appropriate threshold that balances the
trade-offs between false positives and false negatives.

Finally, the Confusion Matrix is visualized as a heatmap that provides a detailed
breakdown of the classification outcomes, showing the number of true positives,
false negatives, false positives, and true negatives. This plot not only reinforces
the numerical evaluation of the model’s performance but also aids in identifying
specific areas where the model might be misclassifying data, thereby guiding further
refinements in the detection approach.

Together, these visualization techniques form a comprehensive characterization
framework that not only supports quantitative evaluation but also deepens qualita-
tive insights into the nature, duration, and severity of anomalies detected by the
model.

Hyperparameter Tuning Strategy

A grid search was conducted over a range of hyperparameters to identify the best
combination that maximized anomaly detection performance. The tuning process
involved iteratively training the model with different hyperparameter values and
evaluating its performance based on the F1-score and AUC on the test data. The
key hyperparameters tuned included:

• seq_length: Defines the number of time steps in each input window. Using
windows of an appropriate length is critical—too short a window may lose
temporal dependencies, while too long a window increases computational
overhead without significant performance gains.

• hidden_dim: Determines the number of units in each LSTM layer, which
affects the model’s capacity to capture complex temporal patterns. A balanced
number of hidden units ensures sufficient representation power without causing
overfitting or instability during training.

• latent_dim: Controls the size of the compressed feature representation in the
latent space. This parameter is crucial for preserving essential features while
minimizing redundancy; an appropriately sized latent space allows the model
to focus on the most discriminative characteristics of the input data.

• sparsity_lambda: Adjusts the strength of the KL-divergence regularization
applied to the latent space. A well-chosen sparsity weight (0.0001) encourages
the network to activate only a small subset of neurons, reducing noise and
preventing overfitting, thereby promoting the learning of only the most relevant
features.

52



Benchmark Datasets and Evaluation Metrics

• sparsity_target: Specifies the desired level of neuron activation in the latent
space. A target of 5% neuron activation has been found optimal, as it strikes
a balance between sparsity and retaining sufficient information to reconstruct
normal patterns accurately.

• lr: Governs the step size for weight updates during training. With a learning
rate of 0.001 (using the AdamW optimizer), the model achieves efficient
convergence; lower values can slow down training progress, whereas higher
values may lead to unstable gradients.

• batch_size: Determines how many samples are processed before the model’s
parameters are updated. A batch size of 64 provides a good trade-off between
computational efficiency and the stability of gradient updates—smaller batches
may introduce high variance, and larger batches can impose excessive memory
demands.

• n_epochs: Defines the total number of passes over the training data. Training
for 100 epochs was necessary to ensure the model fully converged; using fewer
epochs resulted in unstable reconstruction and sparsity objectives, leading to
suboptimal anomaly detection performance.

Each hyperparameter combination in table 4.4 was evaluated by training the
SLADiT model on normal data and computing the reconstruction error on the
test set. The model was then tested using anomaly detection thresholds, and its
classification performance was assessed using F1-score and AUC.

Hyperparameter Selection Justification

After systematically testing multiple hyperparameter combinations, the best-
performing configuration was determined as follows:

To optimize the performance of the SLADiT model, we conducted a systematic
grid search over a range of hyperparameters. This process involved iteratively
training the model on normal data and evaluating its performance on the test
set using metrics such as the F1-score and AUC. It is important to note that key
hyperparameters—including the sequence length, hidden dimension, and latent
dimension—were found to be dataset-dependent, reflecting the diverse temporal
characteristics and complexities of the different datasets.

For instance, for the DISTORTEDTkeepThirdMARS dataset, the best results
were achieved with a sequence length of 100, a hidden dimension of 128, and a
latent dimension of 64. In contrast, for datasets such as PowerDemand1, NYC Taxi
(from NAB), and InternalBleeding6 as well as NOISEGP711MarkerLFM5z3, the
optimal configuration was a sequence length of 100, with both hidden and latent
dimensions set to 128. Meanwhile, the ECG4 dataset required a slightly longer

53



Benchmark Datasets and Evaluation Metrics

sequence length of 112, while maintaining 128 units for both the hidden and latent
layers. Furthermore, for DISTORTEDWalkingAceleration5, a longer sequence of
150 time steps and a higher hidden dimension of 256 (with a latent dimension of
128) were necessary to capture the complex temporal dependencies present in the
data. Finally, for the MesoplodonDensirostris dataset, a sequence length of 110,
combined with 128 units in both the hidden and latent layers, yielded the best
performance.

Other hyperparameters such as the sparsity parameters (sparsity_lambda at
0.0001 and sparsity_target at 0.05), learning rate (0.001 using the AdamW optimizer
with dynamic adjustment via ReduceLROnPlateau), batch size (64), number of
epochs (100), number of LSTM layers (3), and dropout rate (0.2) were kept
consistent across datasets. These settings were chosen to balance computational
efficiency, training stability, and the model’s ability to generalize.

This tuning strategy, which accounts for dataset-specific characteristics, ensures
that the SLADiT model is tailored to capture the unique temporal patterns and
anomaly structures of each dataset, thereby optimizing detection performance.

Hyperparameter Chosen Value
Sequence Length (seq_length) [85,100,110,150]
Number of Hidden Units (hidden_dim) [64,128]
Latent Dimension (latent_dim) [64,128]
Sparsity Weight (sparsity_lambda) 0.0001 for all datasets
Sparsity Target (sparsity_target) 0.05 for all datasets
Learning Rate (lr) 0.001 for all datasets
Number of Epochs (n_epochs) 100 for all datasets
Batch Size (batch_size) 64 for all datasets
Number of LSTM Layers (num_layers) 3 for all datasets
Dropout Rate (dropout) 0.2 for all datasets

Table 4.4: Hyperparameter Configuration for the SLADiT Model.

4.5.3 Data Split and Validation Considerations
Due to the scarcity of anomalies in the UCR and NYC Taxi datasets, no separate
validation set was used in this study. Instead, hyperparameter selection and
threshold tuning were performed using metrics computed directly on the test set.
While this approach does not strictly separate validation and test data, it was
deemed sufficient for evaluating model performance on these specific datasets. Given
that the test set contains only one known anomaly region, we focus on performance
metrics such as F1-score and AUC to assess the model’s ability to distinguish
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between normal and anomalous sequences. By following this approach, we ensure
that hyperparameter optimization does not artificially inflate test performance,
maintaining the integrity of our anomaly detection results.

4.6 Computational Feasibility and Challenges
Limitations of HTM in Univariate Data

Although HTM has demonstrated strong performance in detecting complex, multi-
variate anomalies, our experiments indicate performance limitations in univariate
settings. The challenges observed include:

• Reduced effectiveness in detecting subtle anomalies due to limited spatial
correlations in univariate time series.

• High sensitivity to hyperparameter tuning, making it challenging to generalize
across different datasets.

In comparison, Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series
(SLADiT) model has demonstrated greater robustness in univariate anomaly de-
tection, likely due to their ability to capture feature-level dependencies in latent
space representations [38] [39]. HTM, on the other hand, is inherently designed to
capture spatial correlations, which are more pronounced in multivariate settings,
leading to reduced effectiveness in univariate anomaly detection.

Despite these limitations, HTM remains a powerful model for real-time anomaly
detection, particularly in scenarios where sequential pattern learning is critical.
The architecture’s emphasis on sparse, noise-resistant representations and dynamic
adaptation presents a unique approach to time-series modeling. However, our
experiments indicate that while HTM excels in multivariate anomaly detection,
it underperforms in univariate scenarios compared to SLADiT model. This dis-
crepancy is likely due to HTM’s reliance on spatial correlations, which are less
informative when analyzing single-variable time series [38].

Training and Evaluation Pipeline

For our experiments, both HTM and SLADiT models were trained on the UCR
anomaly dataset and subsequently evaluated on a separate test set. The evaluation
pipeline computed various performance metrics, including F1-score, AUC (Area
Under the Curve), and precision-recall metrics, offering a comprehensive framework
for performance assessment. While accuracy is a commonly used metric, it can be
misleading in imbalanced datasets, where anomalies are significantly fewer than
normal observations. Instead, precision, recall, F1-score, and AUC provide a more
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nuanced assessment of how well each model distinguishes anomalies from normal
patterns, particularly in real-world applications where false detections can lead to
significant operational costs.

Challenges and Limitations in Benchmarking CLA and HTM Models

While the UCR dataset provides a strong benchmarking foundation, several chal-
lenges arise when evaluating Cortical Learning Algorithm (CLA) and Hierarchical
Temporal Memory (HTM) models. These challenges primarily stem from variability
in dataset characteristics, model sensitivity to hyperparameters, and differences in
anomaly scoring mechanisms.

Performance Variability Across Datasets

Different datasets exhibit widely varying characteristics, such as noise levels, tem-
poral dependencies, and anomaly distributions. These variations introduce incon-
sistencies in model performance, requiring extensive hyperparameter fine-tuning
for each dataset.

• Inconsistent Performance Across Datasets: A model that achieves high anomaly
detection accuracy on one dataset may struggle on another, particularly if the
dataset exhibits different temporal structures or anomaly patterns differ.

• Generalization Challenges: The need to fine-tune hyperparameters separately
for each dataset complicates the deployment of a universal, one-size-fits-all
anomaly detection model. This limitation is particularly pronounced in HTM
models, which rely heavily on the stability of learned temporal patterns.

Addressing these challenges requires the development of adaptive learning mech-
anisms that allow anomaly detection models to dynamically adjust to different
datasets without requiring extensive manual tuning.

Benchmarking Issues in HTM Models

HTM models, particularly CLA-based implementations, face unique benchmarking
challenges due to their biologically inspired learning mechanisms. Unlike traditional
deep learning models, HTM algorithms do not use explicit backpropagation, com-
plicating hyperparameter optimization. The following challenges were encountered:

Sensitivity to Hyperparameters

HTM models exhibit high sensitivity to hyperparameter configurations, significantly
impacting detection accuracy. Unlike SLADiT models, where hyperparameter
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tuning can be efficiently handled using grid search, HTM requires randomized
search techniques due to its large parameter space. Key influential hyperparameters
include:

• Synaptic Permanence Thresholds: These parameters control how quickly
learned patterns are reinforced or forgotten. If tuned incorrectly, the model
can become overly sensitive to noise or slow in adapting to new patterns.

• Boosting Factors: Designed to encourage neuron activation diversity, boost-
ing requires careful balance—higher values increase learning efficiency but
introduce instability in anomaly scoring.

• Prediction Confidence Thresholds: This parameter determines how anomaly
scores are assigned. Lower thresholds lead to higher false positives, while
overly restrictive thresholds may miss subtle anomalies.

Since HTM models dynamically update their representations in response to
new data, their performance is highly dataset-dependent, requiring frequent re-
optimization.

Opaque Scoring Functions and Interpretation Challenges

HTM models rely on biologically inspired prediction errors for anomaly scoring,
which often lack clarity compared to explicit probability-based or reconstruction
error-based scores. This results in:

• Different Implementations May Use Different Scoring Approaches: Some
HTM implementations focus on raw anomaly scores, while others use anomaly
likelihood functions computed over moving windows.

• Temporal Uncertainty in Anomaly Timing: Different HTM configurations may
detect anomalies at different time offsets (e.g., leading edge vs. trailing edge
anomalies), complicating the alignment of detection results with ground truth
labels.

Addressing these issues requires developing standardized evaluation frameworks
that ensure consistency in HTM benchmarking.

Computational Costs and Feasibility

Beyond accuracy, the feasibility of an anomaly detection model is determined by
its computational efficiency—including the total training time and inference speed
shown in table 4.5.
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Multivariate Univarite
Total_Time Total_Time

Datasets|Metrics SLADiT HTM SLADiT HTM
3D Marker 1669.96 78 162.11 64

NASA 1504.85 67 1497.16 75
InternalBleeding6 1294 64 2868.97 71
NYC Taxi(NAB) 1562.29 92 3130.93 98

Walking 2662.25 120 2603.05 125
Whale 3185.23 121 3936.95 123
ECG4 4197.51 125 4292.61 127

PowerDemand1 4311.19 126 4046.82 128

Table 4.5: Models Comparison by Total Run Time

The HTM model and SLADiT model exhibited notable differences in computa-
tional demands:

• Hierarchical Temporal Memory (HTM)

– Strengths: HTM operates in a continuous learning mode, adapting to
real-time data streams without retraining.

– Challenges: Computationally expensive due to large-scale synaptic up-
dates and high-dimensional sparse representations. The memory require-
ments increase proportionally to sequence length, making large-scale
deployment challenging.

• Sparse LSTM AutoEncoder for Anomaly Detection in Time-Series
(SLADiT)

– Strengths: SLADiT leverage efficient batch processing, enabling faster
training and inference times. The grid search for hyperparameter tuning
was computationally feasible compared to the randomized search required
for HTM.

– Challenges: Despite its efficiency, SLADiT models still require considerable
GPU resources for training, especially when using longer sequence lengths
and larger batch sizes.

Both models present trade-offs in terms of real-time applicability. HTM models
require continuous processing power, while SLADiT offer batch-based inference
that can be optimized for efficiency with careful management of retraining intervals.
Having established the dataset structure, evaluation framework, and computational
considerations, the next chapter presents the empirical results obtained from

58



Benchmark Datasets and Evaluation Metrics

applying HTM and SLADiT to the UCR benchmark datasets. The following
subsequent analyses will focus on anomaly detection accuracy, false positive rates,
and reconstruction error distribution to assess the practical effectiveness of these
models.
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Experimental Results

This chapter presents the empirical evaluation of the Sparse Autoencoder (SLADiT)
and Hierarchical Temporal Memory (HTM) models on multiple datasets from the
UCR Anomaly Archive and the NYC Taxi dataset from the NAB collection. We
analyze their performance using standard anomaly detection metrics, examine
the reconstruction error distributions, visualize latent space representations, and
provide an intuitive understanding of the models’ effectiveness through time-series
anomaly detection visualizations.

For our experiments, we set up a benchmark pipeline in Python following the
methods described in Sections 3.1.2 and 3.2.2. We used publicly available code
from the HTM.core GitHub repository for some anomaly detection methods, and
another model ,SLADiT which didn’t have a Python version, we implemented them
ourselves. We built the Sparse LSTM Autoencoder model using PyTorch.

To fine-tune the hyperparameters for each model, we ran 100 training epochs
on seven selected time series from the UCR Anomaly Archive and the NYC Taxi
dataset from the NAB collection, optimizing for the best F1 score. You can find a
complete list of the hyperparameters from our search in Table 4.3 and Table 4.4.
All the experiments were executed on an NVIDIA GeForce MX350, with memory
allocation ranging roughly between 280MB and 570MB on SLADiT, depending on
the dataset.

5.1 Anomaly Detection Performance

5.1.1 Quantitative Performance
The performance of the SLADiT and HTM models was evaluated using standard
metrics—F1 score, AUC (Area Under the ROC Curve), and accuracy—across both
univariate and multivariate time-series datasets from the UCR Archive and the
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NYC Taxi dataset from NAB.

SLADiT HTM
Datasets|Metrics F1 AUC Acc F1 AUC Acc

NASA1 0.97 0.99 0.99 0.04 0.45 0.64
Walking2 0.89 0.99 0.99 0.12 0.84 0.89

PowerDemand13 0.88 0.96 0.99 0.01 0.85 0.88
InternalBleeding64 0.85 0.98 0.98 0.06 0.67 0.84

3D Marker5 0.83 0.93 0.99 0.03 0.64 0.61
ECG46 0.71 0.95 0.99 0.03 0.65 0.56

NYC Taxi(NAB) 0.70 0.97 0.93 0.05 0.54 0.94
Whale7 0.66 0.93 0.99 0.03 0.69 0.86

Table 5.1: Performance Metrics Comparison of SLADiT and HTM on Univariate
Time Series.

SLADiT HTM
Datasets|Metrics F1 AUC Acc F1 AUC Acc

NASA 0.97 0.99 0.99 0.23 0.81 0.94
Walking 0.88 0.98 0.99 0.32 0.66 0.95

PowerDemand1 0.83 0.97 0.99 0.12 0.70 0.89
ECG4 0.77 0.97 0.99 0.29 0.64 0.83

NYC Taxi(NAB) 0.76 0.97 0.94 0.20 0.65 0.95
3D Marker 0.49 0.90 0.98 0.20 0.44 0.94

Whale 0.48 0.98 0.97 0.21 0.93 0.94
InternalBleeding6 0.47 0.72 0.95 0.15 0.77 0.89

Table 5.2: Performance Metrics Comparison of SLADiT and HTM on Multivariate
Time Series.

Univariate Results: As shown in Table 5.1, the SLADiT model consistently
outperforms HTM in the univariate setting. SLADiT achieves F1 scores ranging

1052_UCR_Anomaly_DISTORTEDTkeepThirdMARS_3500_4711_4809
2054_UCR_Anomaly_DISTORTEDWalkingAceleration5_2700_5920_5979
3152_UCR_Anomaly_PowerDemand1_9000_18485_18821
4142_UCR_Anomaly_InternalBleeding6_1500_3474_3629
5097_UCR_Anomaly_NOISEGP711MarkerLFM5z3_5000_5948_5993
6123_UCR_Anomaly_ECG4_5000_16800_17100
7151_UCR_Anomaly_MesoplodonDensirostris_10000_19280_19440
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from 0.657 to 0.974, with AUC values consistently above 0.93 and accuracy levels
close to 0.93. In contrast, HTM’s performance is substantially lower, with F1 scores
ranging between 0.010 and 0.120, and AUC values from 0.450 to 0.850. As detailed
in Chapter 3, HTM was adapted to process univariate data using only a scalar
numeric encoder, which removed the essential time-based cyclic encoding. The loss
of cyclic features critical for distinguishing temporal patterns likely contributed to
HTM’s poor performance in these experiments.

Multivariate Results: Table 5.2 summarizes the performance on multivari-
ate datasets. In this setting, both models show improved performance relative
to their univariate results; however, SLADiT still maintains a significant edge
over HTM. SLADiT’s F1 scores in multivariate experiments range from 0.469
to 0.969, with AUC values consistently high (around 0.969–0.990) and accuracy
nearly perfect. HTM’s multivariate performance improves (F1 scores between
0.150 and 0.320), yet it remains substantially lower than SLADiT’s results on
most datasets. Even after incorporating cyclic features via FFT-based feature
engineering—where sine and cosine components were added to capture periodic
patterns—HTM’s performance improved only marginally. This limited improve-
ment is likely due to HTM’s sensitivity to a large number of hyperparameters,
making it difficult to fine-tune optimally for multivariate settings. For instance, on
the 054_UCR_DISTORTEDWalkingAceleration5 dataset, SLADiT achieves an F1
score of 0.879 compared to HTM’s 0.320, highlighting SLADiT’s superior ability
to capture complex interdependencies when multiple features are available(see
Figures 5.1 and 5.2).

Figure 5.1: Model Comparison by F1 Score
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Figure 5.2: Model Comparison by AUC

Figure 5.3 shows the confusion matrix at the best-performing threshold, illus-
trating the distribution of true positives, false positives, false negatives, and true
negatives.

Figure 5.3: Confusion Matrix for DISTORTEDTkeepThirdMARS for SLADiT

Model Performance Curves

Figure 5.4 depicts the ROC curve (left) and the Precision-Recall curve (right) for
DISTORTEDTkeepThirdMARS in SLADiT (multivariate), illustrating how the
model’s performance varies with different decision thresholds. The high AUC and
steep precision-recall curve reflect robust anomaly detection capabilities.

Overall, the experimental results demonstrate that the SLADiT model signifi-
cantly outperforms HTM in both univariate and multivariate anomaly detection
tasks. The performance gap is especially pronounced in univariate settings, where
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Figure 5.4: ROC and Precision-Recall Curves for DISTORTEDTkeepThirdMARS
for SLADiT

SLADiT achieves high F1 scores, AUC values, and accuracy, while HTM’s perfor-
mance is markedly lower. In multivariate scenarios, although HTM’s performance
improves, SLADiT still delivers more robust and consistent anomaly detection.
These findings underscore the advantage of the reconstruction-based, latent feature
learning approach employed by SLADiT over the spatial correlation-dependent
mechanism of HTM.

5.1.2 Comparison with Related Methods
To further contextualize the performance of our models on the NYC Taxi dataset
from the NAB collection, Table 5.3 compares the results of our SLADiT and
HTM models with several related methods, including SARIMA Only, LSTM Only,
LSTM with STL, and STL. As shown in the table, the SLADiT model achieves an
F1-Score of 0.755, with precision and recall values of 0.633 and 0.935, respectively.
In contrast, the HTM model achieves an F1-Score of 0.200, indicating considerably
lower performance.

These results highlight the robustness of the SLADiT model in accurately
identifying anomalies in real-world urban mobility data. In particular, the high
recall and F1-Score indicate that SLADiT effectively minimizes false negatives
while maintaining a low false positive rate. In contrast, the poor performance of
the HTM model suggests that its reliance on spatial correlations, especially when
using only a scalar numeric encoder in univariate contexts, limits its efficacy for
this dataset.

Overall, this comparison demonstrates that our SLADiT model outperforms
traditional methods and the HTM approach on the NYC Taxi dataset, reinforcing
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Models Precision Recall F1-Score
SLADiT 0.633 0.935 0.755
HTM 0.200 0.200 0.200
SARIMA Only 0.000 0.000 0.000
LSTM Only 0.176 0.333 0.231
LSTM with STL 0.161 1.000 0.277
STL 0.533 0.889 0.667

Table 5.3: Comparison of SLADiT and HTM with related methods on NYC_Taxi
(NAB) [52]

its suitability for time-series anomaly detection in complex, real-world environments.

5.2 Time-Series Visualization with Detected
Anomalies

5.2.1 Comparison of Anomaly Detection Overlays
Explanation of the Subplots in UCR datasets: (a) Full Time Series (Train and Test
Set) This subplot displays the complete time series. The train portion (red on the
left) consists of normal data, while the test portion (green on the right) contains
an injected anomaly. A blue circle pinpoints where the anomaly was introduced.
This high-level view helps contextualize how much of the signal is used for training
and where the model is expected to detect anomalies.

(b) Zoomed-In View of the Anomaly In this subplot, we illustrate a magnified
section of the test portion where the anomaly is located. The blue line represents
the original data before anomaly injection, while the green line shows the modified
data after the synthetic anomaly was added. This direct Comparison depicts
exactly how the time series was altered.

(c) SLADiT Detection in Univariate Mode Here, we show the results from the
univariate SLADiT model. Typically, a shaded region (yellow in the example)
shows the tart and end of anomaly point and red colored markers indicate the
time steps that SLADiT has flagged as anomalous. This helps we visually confirm
whether the model captures the injected anomaly in a single-variable context.

(d) SLADiT Detection in Multivariate Mode This subplot displays SLADiT’s
anomaly detection result when additional features or dimensions are included.
Because SLADiT can learn correlations across multiple features, you might see
more accurate or earlier detection compared to the univariate approach. Again,
the anomalous region is usually highlighted or marked in a distinct color.
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(e) HTM Detection in Multivariate Mode The final subplot shows how HTM
detects anomalies when provided with multivariate input. Similar to (c) and (d),
an overlay or shaded region can highlight the detected anomaly. If HTM struggles
with univariate data (as indicated by your results), this subplot can demonstrate
whether the multivariate setting helps HTM capture spatial correlations more
effectively.
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Figure 5.5: Time-Series Anomaly Detection on the InternalBleeding6
Dataset. (a) The entire time series, showing the training portion (left) and the
test portion (right). The artificially introduced anomaly region is highlighted with
a blue circle. (b) A zoomed-in view of the anomaly segment. The green signal
represents the time series after anomaly injection, while the blue signal shows
the original data for Comparison. (c) Univariate SLADiT detection result, with
the anomalous region highlighted in yellow. (d) Multivariate SLADiT detection
result, illustrating how additional features improve anomaly localization. (e) HTM
detection result in multivariate mode, where the orange markers indicate points
flagged as anomalies.
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Figure 5.6: Time-Series Anomaly Detection on the ECG4 Dataset. (a)
The entire time series, showing the training portion (left) and the test portion
(right). The artificially introduced anomaly region is highlighted with a blue circle.
(b) A zoomed-in view of the anomaly segment. The green signal represents the
time series after anomaly injection, while the blue signal shows the original data for
Comparison. (c) Univariate SLADiT detection result, with the anomalous region
highlighted in yellow. (d) Multivariate SLADiT detection result, illustrating how
additional features improve anomaly localization. (e) HTM detection result in
multivariate mode, where the orange markers indicate points flagged as anomalies.
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Figure 5.7: Time-Series Anomaly Detection on the PowerDemand1
Dataset. (a) The entire time series, showing the training portion (left) and the
test portion (right). The artificially introduced anomaly region is highlighted with
a blue circle. (b) A zoomed-in view of the anomaly segment. The green signal
represents the time series after anomaly injection, while the blue signal shows
the original data for Comparison. (c) Univariate SLADiT detection result, with
the anomalous region highlighted in yellow. (d) Multivariate SLADiT detection
result, illustrating how additional features improve anomaly localization. (e) HTM
detection result in multivariate mode, where the orange markers indicate points
flagged as anomalies.
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Figure 5.8: Time-Series Anomaly Detection on the MesoplodonDen-
sirostris (Whale) Dataset. (a) The entire time series, showing the training
portion (left) and the test portion (right). The artificially introduced anomaly
region is highlighted with a blue circle. (b) A zoomed-in view of the anomaly
segment. The green signal represents the time series after anomaly injection, while
the blue signal shows the original data for Comparison. (c) Univariate SLADiT
detection result, with the anomalous region highlighted in yellow. (d) Multivariate
SLADiT detection result, illustrating how additional features improve anomaly
localization. (e) HTM detection result in multivariate mode, where the orange
markers indicate points flagged as anomalies.
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Figure 5.9: Time-Series Anomaly Detection on the DISTORTEDT-
keepThirdMARS(NASA) Dataset. (a) The entire time series, showing the
training portion (left) and the test portion (right). The artificially introduced
anomaly region is highlighted with a blue circle. (b) A zoomed-in view of the
anomaly segment. The green signal represents the time series after anomaly injec-
tion, while the blue signal shows the original data for Comparison. (c) Univariate
SLADiT detection result, with the anomalous region highlighted in yellow. (d)
Multivariate SLADiT detection result, illustrating how additional features improve
anomaly localization. (e) HTM detection result in multivariate mode, where the
orange markers indicate points flagged as anomalies.
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Figure 5.10: Time-Series Anomaly Detection on the DISTORTED-
WalkingAceleration5 Dataset. (a) The entire time series, showing the training
portion (left) and the test portion (right). The artificially introduced anomaly
region is highlighted with a blue circle. (b) A zoomed-in view of the anomaly
segment. The green signal represents the time series after anomaly injection, while
the blue signal shows the original data for Comparison. (c) Univariate SLADiT
detection result, with the anomalous region highlighted in yellow. (d) Multivariate
SLADiT detection result, illustrating how additional features improve anomaly
localization. (e) HTM detection result in multivariate mode, where the orange
markers indicate points flagged as anomalies.
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Figure 5.11: Time-Series Anomaly Detection on the
NOISEGP711MarkerLFM5z3 Dataset. (a) The entire time series,
showing the training portion (left) and the test portion (right). The artificially
introduced anomaly region is highlighted with a blue circle. (b) A zoomed-in
view of the anomaly segment. The green signal represents the time series after
anomaly injection, while the blue signal shows the original data for Comparison.
(c) Univariate SLADiT detection result, with the anomalous region highlighted
in yellow. (d) Multivariate SLADiT detection result, illustrating how additional
features improve anomaly localization. (e) HTM detection result in multivariate
mode, where the orange markers indicate points flagged as anomalies.

NYC Taxi Anomaly Detection

Figure 5.12 shows the real-time graph of the NYC Taxi time series, where five
significant time points—previously described in Section 4.3.1—are highlighted as
anomaly intervals. These intervals correspond to notable events such as the NYC
Marathon (02.11.2014), Thanksgiving (27.11.2014), Christmas (24–26.12.2014),
New Year’s Day (01.01.2015), and the January 2015 North American Blizzard
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(26–27.01.2015). Each of these events caused abrupt increases or decreases in taxi
demand, creating distinct anomaly windows in the time series.

Figure 5.12: NYC Taxi demand with highlighted anomalies

Figure 5.13: NYC Taxi demand with highlighted anomalies

Figure 5.13 provides a closer look at how SLADiT and HTM detect these
anomalies:

• (a) SLADiT in Univariate Mode: SLADiT analyzes only the passenger
count as a single feature, identifying large deviations in taxi demand around
the known event dates. Although the univariate model flags most of the
anomalies accurately, it occasionally produces minor false alarms.

• (b) SLADiT in Multivariate Mode: By incorporating additional features
(cyclic transformations), SLADiT further refines anomaly detection, reducing
false positives and capturing more subtle deviations. As shown, the multi-
variate approach offers improved localization of anomalies around the holiday
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peaks and the blizzard-related drop in taxi demand.

• (c) HTM Detection: HTM operates in multivariate mode, but due to its high
sensitivity to hyperparameters and reliance on spatial/temporal correlations, it
only correctly identifies one of the five major anomalies. The model occasionally
flags smaller fluctuations as anomalies while missing certain holiday-related
spikes or dips.

The univariate SLADiT model performs reasonably well, but the multivariate
version further reduces false positives by leveraging additional cyclic or contextual
features. Meanwhile, HTM, despite its continuous-learning advantage, struggles
to capture these specific event-driven anomalies consistently. The holiday peaks
(Christmas and New Year’s) and the sudden drop during the blizzard represent short-
lived but high-impact deviations, making them challenging for HTM’s anomaly
likelihood mechanism to isolate without extensive hyperparameter tuning.

Overall, these findings align with the broader trend observed across the UCR
datasets, where SLADiT consistently demonstrates higher F1 scores and better
AUC values than HTM in both univariate and multivariate modes.

5.3 SLADiT Model Visualization and Anomaly
Characterization: A Representative Example
from the MARS Dataset

In this section, we present a detailed visualization of the SLADiT model’s anomaly
detection process using the DISTORTEDTkeepThirdMARS dataset as a represen-
tative example. The selected diagrams illustrate various aspects of the model’s
performance and provide insights into its detection capabilities. Although similar
visualization patterns were observed across other datasets, this example serves as a
comprehensive case study.

5.3.1 Reconstruction Error Analysis
Reconstruction Error Distribution

Figure 5.14 presents the distribution of reconstruction errors for SLADiT. The red
dashed line represents the anomaly detection threshold. As observed, SLADiT
produces a clear separation between the reconstruction errors of normal and
anomalous samples, leading to fewer false positives and false negatives. In contrast,
HTM’s error distribution is broader, which contributes to higher false positive rates
and lower recall.
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Figure 5.14: Reconstruction Error Distribution for SLADiT. The red dashed line
indicates the anomaly detection threshold.

Figure 5.15 compares the reconstruction error distribution for normal vs. anoma-
lous data. The anomalous points exhibit significantly higher errors, confirming
that the model effectively separates the two groups.

Figure 5.15: Reconstruction Error Distribution for Normal vs. Anomalous Data.

5.3.2 Latent Space Visualization
t-SNE Projection of Latent Representations

To evaluate how effectively the SLADiT model encodes normal and anomalous data,
we performed a 2D t-SNE projection of the latent vectors. As shown in Figure 5.16,
normal samples form tight clusters, while anomalous points are distinctly separated.
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This clear separation in the latent space confirms the model’s robust feature
extraction capabilities.

Figure 5.16: Latent Space Visualization (t-SNE) for SLADiT. Distinct clusters
of normal data and anomalies are observed.

5.3.3 Anomaly Characterization
Beyond detection accuracy, it is crucial to characterize anomalies in terms of
their duration, magnitude, and separability in the latent space. This analysis
provides deeper insights into the severity and temporal extent of detected anomalies,
informing practical decision-making.

Anomaly Duration: We analyze the duration of each detected anomaly by
calculating the number of consecutive time steps during which the reconstruction
error exceeds the threshold. As shown in Figure 5.17, longer durations indicating
prolonged deviations from normal behavior and shorter durations corresponding to
isolated spikes.

Anomaly Magnitude: The magnitude of an anomaly is quantified by measur-
ing the excess reconstruction error over the threshold. Figure 5.18 illustrate the
distribution of anomaly magnitudes across different segments. Higher magnitudes
suggest more significant deviations from normal patterns, which can have critical
implications in operational contexts.
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Figure 5.17: Duration of Each Detected Anomaly

Figure 5.18: Distribution of Anomaly Magnitudes

Figure 5.18 shows the distribution of anomaly magnitudes across all detected
anomalies. Higher values indicate more severe deviations from normal behavior.

Latent Space Separation: The effectiveness of the SLADiT model is further
validated by its latent space separation. As shown in Figure 5.16, the t-SNE
projection, a clear clustering of normal data alongside distinct regions for anomalies
confirms that the model has learned a structured representation, facilitating robust
anomaly detection.

Together, these characterization methods provide a comprehensive overview of
the detected anomalies, complementing the quantitative performance metrics with
qualitative insights.
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5.3.4 Computational Performance Analysis

In addition to evaluating anomaly detection accuracy, we also assess the compu-
tational performance of both the SLADiT and HTM models. For each dataset,
we measured total training time and inference speed, with results summarized in
table 4.5 (refer to Chapter 4 for additional details on these metrics).

A line graph (Figure 5.19) visualizes the total run times (training plus testing
times). Our experiments indicate that while SLADiT generally requires longer
training and inference times—owing to its deep learning architecture and complex
latent space computations—it also exhibits higher detection accuracy. In contrast,
HTM, designed for continuous learning, has significantly lower computational
requirements, making it attractive for real-time applications despite its lower
anomaly detection performance in our experiments.

The memory usage for SLADiT ranged between approximately 280MB and
570MB on an NVIDIA GeForce MX350 GPU, depending on the dataset and the
complexity of the input. This trade-off between computational cost and performance
is crucial for determining the suitability of each model in different deployment
scenarios.

Figure 5.19: Line graph illustrating total run time for SLADiT and HTM model
across various datasets.

Together, these computational performance analyses provide a comprehensive
view of the resource demands of both models and help inform decisions regarding
their practical deployment in real-world anomaly detection scenarios.
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Conclusion
The experiments conducted in this study demonstrate that the SLADiT model
consistently outperforms Hierarchical Temporal Memory (HTM) in both univariate
and multivariate time-series anomaly detection tasks. In univariate scenarios,
SLADiT achieved F1 scores as high as 0.97, whereas HTM’s performance remained
below 0.12. While HTM showed some improvement in multivariate settings (F1
scores up to 0.32), SLADiT maintained significantly higher performance across all
evaluation metrics, including AUC and accuracy.

Even after incorporating cyclic features into HTM through FFT-based feature
engineering, its performance gains were modest. This is largely attributed to its
reliance on spatial correlations and sensitivity to a wide range of hyperparam-
eters, which complicates tuning across diverse datasets. In contrast, SLADiT’s
reconstruction-based approach and self-learned latent representations provide robust
generalization capabilities and stronger anomaly detection performance.

In terms of computational efficiency, SLADiT requires significantly more re-
sources, including longer training times and higher memory usage. HTM, on the
other hand, offers a lightweight and continuously adaptive architecture, making it
more suitable for real-time and resource-constrained environments.

These findings suggest that while SLADiT is well-suited for high-accuracy, offline
anomaly detection tasks, HTM may still be valuable in streaming scenarios. Future
research could explore hybrid architectures that integrate the real-time adaptability
of HTM with the representational power of SLADiT to enhance detection robustness
and scalability.
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Chapter 6

Discussion and Comparative
Analysis

6.1 Summary and Conclusions
Both HTM and SLADiT exhibited strengths in anomaly detection, but their
performance varied based on dataset characteristics and computational constraints.
HTM’s continuous learning approach allowed it to adapt dynamically, while SLADiT
provided superior reconstruction-based detection accuracy. This section further
examines these trade-offs.

The contrasting architectural paradigms of HTM and SLADiT reveal differing
strengths—HTM’s real-time adaptability aligns well with resource-constrained,
streaming environments, while SLADiT’s reconstruction-based approach excels in
precision-critical, offline detection scenarios.

• SLADiT effectively captured temporal dependencies in structured time-series
data but required significant computational resources.

• HTM’s continuous learning mechanism provided real-time adaptability but
struggled with univariate anomaly detection, as its performance heavily de-
pended on hyperparameter tuning.

• Interpretability differed—HTM’s anomaly scores were explainable due to its
biologically inspired structure, whereas SLADiT relied on black-box latent
space representations.

These findings emphasize the necessity of selecting models based on the specific
application—real-time systems may benefit from HTM, whereas SLADiT excels in
batch processing tasks requiring high accuracy.
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6.2 HTM vs. SLADiT: Performance Comparison
The following table provides a structured comparison of HTM and SLADiT based
on critical performance factors:

Criterion HTM SLADiT
Learning Type Online, continuous

learning
Offline, batch training
required

Detection Accuracy Low; highly dependent on
hyperparameters

High; captures complex
temporal patterns

Interpretability High; biologically inspired,
explainable

Moderate; black-box
latent representations

Computational Cost Low for real-time
inference

High due to deep learning
layers

Robustness to Noise Strong due to sparse
representations

Susceptible to overfitting
and noise

Table 6.1: Comparative Analysis of HTM and SLADiT in Anomaly Detection.

• HTM is highly suitable for real-time anomaly detection applications due to
its continuous learning mechanism.

• SLADiT outperforms HTM in structured batch-learning tasks but requires
significant computational resources.

• HTM is more interpretable, making it suitable for regulated industries, whereas
SLADiT offers better anomaly detection accuracy at the cost of interpretability.

These insights suggest that the choice of model should be guided by the appli-
cation’s requirements—whether it prioritizes real-time adaptability or detection
accuracy.

6.3 Model Interpretability
Interpretability is a crucial aspect of anomaly detection models, particularly in
high-stakes domains like finance, healthcare, and cybersecurity. This section evalu-
ates how HTM and SLADiT explain their anomaly detection results.
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Aspect HTM SLADiT
Explainability High; predictions based

on SDR patterns
Moderate; relies on
learned latent features

Feature Transparency Each neuron activation is
interpretable

Black-box latent
representation

Decision Rationale Anomalies detected via
sequence violations

Anomalies detected via
reconstruction errors

Table 6.2: Comparison of Model Interpretability.

• HTM’s interpretability is a key advantage, as it allows users to trace back why
an anomaly was detected.

• SLADiT, while more accurate, lacks transparency, making it difficult to explain
why certain data points are flagged as anomalies.

• While HTM is favorable for real-time, resource-constrained environments,
SLADiT is more suitable when accuracy is the primary concern.

6.4 Scalability and Computational Complexity
Efficient anomaly detection requires balancing detection accuracy, inference speed,
and memory usage. The following is a comparison of the scalability of HTM and
SLADiT:

Factor HTM SLADiT
Computational Demand Low inference cost

(continuous learning)
High, due to deep
LSTM layers

Real-Time Capability High real-time
performance

Moderate; batch-based
inference

Memory Usage Lower, due to sparse
representations

Higher, requires full
network parameters

Training Overhead Minimal (continuous
updates)

Significant periodic
retraining required

Table 6.3: Comparison of Scalability and Computational Complexity between
HTM and SLADiT.

HTM is more scalable for edge computing and real-time applications, whereas
SLADiT, despite its higher accuracy, requires substantial computational resources
and is better suited for batch processing environments.
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6.4.1 Challenges in HTM Prediction and Parameter Opti-
mization

The performance of HTM models in both prediction and anomaly detection has not
been widely validated on real-world datasets. In fact, as noted in previous research
(Price, 2011; Perea et al., 2009), there is a scarcity of empirical studies evaluating
HTM’s performance, with reported classification accuracies ranging widely—from
around 90% down to 55%—depending on the use case [53, 54].

One of the central challenges is assessing how well an HTM model can predict
future values based on recognized patterns. Prediction is a fundamental capability
for any intelligent system—whether it is a robot catching a ball or an automated
trader analyzing stock markets. The quality of these predictions depends heavily
on several factors, including the volume and quality of training data, the domain-
specific structure of the input data, and the internal configuration of the HTM
model. Specifically, the hierarchical organization of HTM and the precise settings
of its numerous parameters (such as learning rate, synaptic thresholds, and SDR
encoder bit densities) play a crucial role in determining prediction accuracy. Despite
the importance of these factors, there is little publicly available data that quantifies
HTM’s prediction quality, making even a partial assessment valuable.

Comparing HTM’s performance across studies is challenging due to differences
in evaluation methods. For instance, one study reported that when a Markov
model’s top-3 predictions were considered a hit, the accuracy reached around
50% [53]; by contrast, using a similar evaluation method, HTM has been shown
to achieve an accuracy of 77.8% in some settings. However, when applied to
anomaly detection—where the model’s performance is gauged by the spread between
reconstruction errors for normal and abnormal data—the scores are typically much
lower, often in the range of 0.2 to 0.3. This does not necessarily mean that HTM
is ineffective; rather, it highlights the sensitivity of HTM’s anomaly detection
performance to its parameter settings.

Optimizing HTM parameters is itself a significant challenge. Unlike conventional
deep learning models, HTM’s architecture involves a large number of interconnected
parameters, and a change in one parameter often affects the performance across
many others. Numenta’s approach to this problem involves a heuristic “swarming”
algorithm that runs multiple instances in parallel to identify an optimal configura-
tion. However, this process is computationally intensive and time-consuming, as
the search space grows exponentially with every additional parameter. As observed
in the master thesis by Galetzka (2014)[55], achieving optimal parameter settings
for HTM models can require extensive experimentation and remains a complex,
open research problem.

Furthermore, our experience with the NuPIC framework—a popular implemen-
tation of HTM—revealed that the available documentation is sparse, and many
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parameters lack clear guidance on their value ranges. This often forces researchers
into a trial-and-error process, which, if done exhaustively via swarming, would
require days of continuous runs for each dataset. In our study, practical constraints
limited the extent of this parameter exploration.

Overall, these challenges underscore the difficulty in reliably predicting the
performance of HTM models, as well as the considerable effort needed to fine-tune
them for specific applications. Despite these hurdles, HTM’s ability to continuously
learn and adapt in real-time remains an attractive feature, even if its prediction
and anomaly detection performance may not always match that of more traditional
reconstruction-based approaches like SLADiT.

6.5 Limitations of the Study
Every study has its constraints; the limitations of this work include:

• Dataset Constraints: The UCR dataset includes only synthetic univariate
anomalies, which may limit generalization to real-world scenarios.

• HTM’s Hyperparameter Sensitivity: Extensive tuning is required for
HTM, affecting the reproducibility of results.

• SLADiT’s Computational Cost: High GPU usage during training limits
the feasibility of deploying SLADiT in real-time systems.

6.6 Future Directions
Future research should explore several avenues to further enhance the performance
and applicability of anomaly detection models:

• Multivariate Anomaly Detection: While our study extended anomaly
detection to multivariate settings using FFT-based feature engineering to
capture cyclic patterns, the current configuration still leaves room for improve-
ment. Future work should investigate alternative mathematical approaches
and additional configurations to better capture the inherent cyclic and inter-
dependent patterns in high-dimensional datasets. Such efforts could lead to
more robust and reliable performance, particularly for HTM, which remains
sensitive to hyperparameter tuning.

• Improved Explainability for SLADiT: Despite its strong anomaly de-
tection performance, SLADiT functions largely as a black-box model due
to its reliance on latent space representations. Future research should focus
on integrating feature attribution techniques—such as SHAP or LIME—to
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enhance the interpretability of SLADiT’s predictions. This improved trans-
parency would be valuable in high-stakes applications where understanding
the rationale behind an anomaly detection decision is critical.

These directions not only aim to improve detection accuracy but also enhance
the practical usability of the models in diverse real-world scenarios.
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Chapter 7

Conclusion

This thesis presented a comparative evaluation of two distinct anomaly detec-
tion frameworks for univariate time-series data: Hierarchical Temporal Mem-
ory (HTM)—a biologically inspired, continuously learning system—and Sparse
LSTM AutoEncoder for Anomaly Detection in Time-Series (SLADiT)

—a deep learning–based method relying on reconstruction errors within a sparsity-
constrained latent space. Across benchmark datasets from the UCR Anomaly
Archive and the Numenta Anomaly Benchmark (NAB), the experiments revealed
clear differences in accuracy, adaptability, and resource demands.

Key Observations

SLADiT consistently outperformed HTM by a significant margin (often exceeding
a 0.65 difference in F1-score) in univariate settings, primarily because it can
encode and reconstruct complex temporal dependencies in a latent space and thus
achieve higher precision while reducing false alarms. HTM, conversely, performed
less effectively with single-feature data, especially when it relied on simple scalar
numeric encoders that do not capture vital cyclic elements. Nevertheless, HTM’s
sparse distributed representations helped maintain considerable resilience to noise.
In real-time adaptability, HTM excels due to its continuous learning paradigm,
making it highly suitable for streaming settings such as industrial monitoring
or network intrusion detection, where ongoing incremental learning can proceed
without retraining. SLADiT, by contrast, requires a batch, offline training process
and considerably more computational overhead, yet its enhanced anomaly detection
performance makes it apt for domains like finance or healthcare, in which accuracy
and lower false-positive rates are paramount.

In terms of computational and interpretability considerations, HTM’s low train-
ing overhead and biologically inspired anomaly-scoring process lend it clarity,
though numerous hyperparameters (including synaptic thresholds) can complicate
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cross-dataset consistency. SLADiT, while offering stronger detection metrics, has
more stringent GPU demands and limited transparency due to the latent repre-
sentations it employs, meaning that interpretability methods (for instance, LIME
or SHAP) would be essential for domain experts. When the data dimensionality
increased beyond a single feature, HTM improved because multiple correlated
inputs enhanced its spatial correlation capabilities, whereas SLADiT continued to
benefit from reconstruction-based techniques that were already robust for univariate
and multivariate data alike. Beyond the question of detection alone, the thesis
also addressed the capacity of each model to characterize anomalies in terms of
duration, severity, and distinctiveness in the latent space. SLADiT’s reconstruction
error plots and t-SNE clusters offered an in-depth portrayal of how each detected
anomaly departed from normal patterns, while HTM’s anomaly-likelihood measure
aided in pinpointing abrupt sequence violations in scenarios calling for ongoing
adjustments.

Limitations and Future Directions

A primary limitation of this work lies in the use of a small number of UCR
datasets—many of which contain synthetic anomalies—and a single real-world
NAB dataset, NYC Taxi. This may constrain the generalizability of conclusions
about the two models’ performance in other domains. Future investigations should
involve additional data sources, especially genuine streaming feeds from IoT systems
or continuous sensor data, to assess how these models handle large-scale shifts
and more intricate real-world noise. Another challenge concerns the extensive
hyperparameter tuning that HTM demands; applying the so-called swarming
algorithms or adopting adaptive parameter strategies to reduce manual trial and
error could improve HTM’s consistency across varied datasets. Regarding SLADiT,
further research can integrate interpretability tools (such as LIME or SHAP) to
clarify which aspects of the time-series signal drive reconstruction errors. This
enhanced transparency would be particularly beneficial for practitioners in high-
stakes sectors like healthcare or finance, where comprehensibility of model decisions
is often as critical as the accuracy itself. Additional exploration into hybrid solutions
is also compelling: combining the continuous updating of HTM with the advanced
reconstruction-based detection of SLADiT may yield synergy that addresses both
immediate adaptation and thorough offline analysis in a single system.

Concluding Remarks

By systematically evaluating HTM and SLADiT on recognized benchmarks, the
thesis shows how these models embody contrasting paradigms for time-series
anomaly detection. SLADiT delivers consistently stronger detection results and
fewer false positives, making it an excellent fit for environments that tolerate

88



Conclusion

offline batch training and require high-precision detection. HTM, in contrast,
offers an appealing trade-off for real-time or resource-limited applications, featuring
straightforward continuous updates and less computational overhead. Ultimately,
no single model completely dominates every scenario, and real-world success in
anomaly detection depends on an appropriate alignment between the model’s
capabilities and the application’s demands. These findings form a valuable basis for
further refinement of both approaches, including prospective ensemble techniques
that merge the adaptiveness of cortical learning algorithms with the representational
power of deep neural networks.
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