
Politecnico di Torino

M.Sc. in Computer Engineering

Integrating Solid Project into
Native Android Development

Candidate: Erfan Gholami

Supervisors: Prof. Antonio Vetro’

Ing. Yashar Pourmohammad

Academic Year 2024/25





Abstract

With the rapid growth of digital platforms, user privacy, security, and data ownership
have become major concerns. The Solid project, introduced by Tim Berners-Lee,
tackles these issues by separating data from applications, giving users full control
over their personal information through Personal Online Data Stores (Pods). While
Solid has been widely adopted in web development, integrating it into native Android
applications presents several challenges due to a lack of tools, and platform limitations.
This thesis explores these challenges and provides a structured solution for making
Solid work seamlessly within the Android ecosystem and providing libraries to
Android developers to integrate their applications into Solid.

The study begins by analyzing Solid’s architecture, and the lack of existing tools
that properly support Solid integration. To address these issues, a new approach
is introduced: a modular framework designed to bring Solid into the Android
development workflow. The solution consists of three main components:

• Solid Android API, which handles authentication (via OpenID Connect),
resource management, and Data Modules.

• Android Solid Services, a dedicated app which uses background service that acts
as a central hub for authentication and data retrieval, reducing the complexity
for third-party apps.

• Solid Android Client, a lightweight library that developers can use to easily
integrate Solid functionality into their applications without having to deal with
low-level implementation details.

To demonstrate the effectiveness of this solution, an address book application was
developed as a practical use case. This app securely stores and manages address book
information using Solid Pods, proving that Solid can be successfully integrated into
native Android development while maintaining security, privacy, and interoperability.
The evaluation of this approach highlights its benefits, such as improved user control
over data and reduced reliance on centralized storage, but also reveals areas for
improvement, including API optimizations, and performance enhancements for mobile
environments.

This research contributes to the broader effort of bringing Solid technology to
Android platform by providing a concrete, working solution in Android development.
Future work includes refining the API for better usability, extending support for
additional Solid features, and exploring new mobile applications that can benefit
from Solid pods. By enabling seamless Solid integration in Android, this study lays
the groundwork for a more privacy-focused and user-controlled mobile experience.

3



Acknowledgment

To my brother, who we live with his alive memories

4



Contents

1 Introduction 7

1.1 What is Solid project? . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Impact of Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Digital Sovereignty . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Importance of Solid in Android Ecosystem . . . . . . . . . . . . . . . 10

2 Problem Definition 12

2.1 Solid Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Android App Development and Solid . . . . . . . . . . . . . . . . . . 13

2.3 Existing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Defining Desired Solution . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Final Solution 16

3.1 Integrate Existing Tools into the Android . . . . . . . . . . . . . . . . 16

3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Shared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 NonRDFSource . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 RDFSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.4 SolidContainer . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.5 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.6 SettingTypeIndex . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.7 WebId . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.8 Contact Data Module . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Solid Android API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Resource Management . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 User Repository . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.4 Solid Contacts Data Module . . . . . . . . . . . . . . . . . . . 38

3.4.5 How to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Android Solid Services . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.2 Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Solid Android Client . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Solid SignIn Client . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.2 Solid Resource Client . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.3 Solid Contacts Data Module . . . . . . . . . . . . . . . . . . . 55

3.6.4 AIDL Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.5 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.6 How to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5



4 Usecase 64
4.1 Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Login and Settings . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 Adress Books . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Address Book . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.4 Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.5 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Analyzing Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Limitations and Future Works 72
5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion 74

Bibliography 75

List of Source Codes 76

List of Figures 77

Glossary 78

Acronyms 80

6



1 Introduction

In the era of data exploration and explosion, data privacy and “who access what” is
becoming increasingly important. Every day, billions of users share (produce) their
data on social media and other applications on their computers, phones, and other
smart gadgets. The collection of these data makes a complete info pack about any
individual. The majority of big-tech companies that provide these services, such as
Meta, which owns Facebook, Instagram, and WhatsApp, use these data for ads and
sales which brings questions such as “How much users’ data is important?”, “Can
we manage our data on the internet?” and many others. After the exploitation of
World Wide Web (WWW), many services and platforms were shaped, and because
of the lack of interoperability between those platforms, users are disempowered.
They cannot for example easily share Facebook photos with LinkedIn colleagues.
To achieve these things, users must choose between moving their activities to one
platform or duplicating their data in different places. From developers’ perspective,
when a developer writes apps that involve personal data, things are more complicated
than they should be[1]:

• Because there is no interoperability across data systems, developers must figure
out how to get access to data, even if that data already exists in other places.
This usually involves integration with dozens of APIs and using custom clients
and protocols to access the data.

• Apps need to have a secure identity mechanism so people can log in, which
today either means relying on incompatible identity solutions offered by large
vendors or deploying your own.

• Custom data models, protocols, and authorization mechanisms must be devised
and used to store and manage application data. This comes with its own unique
set of challenges in the form of security and compliance with legal requirements.

To ease these burdens, developers require standard interfaces for identity and autho-
rized data access, into which multiple providers can plug in. That allows developers
to no longer worry about solving secure identity and storage themselves: instead, they
can rely on spec-compliant third-party services. Rather than having to integrate with
specific bespoke platforms, developers can build for the standard and can responsibly
reuse data from existing storage servers rather than having to set up their own. For
these matters, some projects have started, mostly among the open-source community,
to provide solutions on data/service decoupling and give more freedom to users
on what to do with their data or where to save it. One of these tries is the Solid
project which was started by Sir Tim Berners-Lee, one of the creators of the Internet
network. In this chapter, these technologies have been described and talked about
their importance in itself and with other ecosystems, specifically Android phones,
and in the end, the topics of upcoming chapters have been described.

1.1 What is Solid project?

Solid is an open standard for structuring data, digital identities, and applications
on the Web. Solid aims to support the creation of the Web as Sir Tim Berners-Lee
originally envisioned it when he invented the World Wide Web at CERN in 1989.

7



Tim sometimes refers to Solid as “the web - take 3”[2] — or Web3.0 — because Solid
integrates a new layer of standards into the Web we already have. The goal of Solid is
for people to have more agency over their data. Solid solves the mentioned problems
by decoupling identity, data, and applications. For aligning interfaces between these
three parties, we need standards for identity and authorized data access. As a
result, any application can work with any identity provider and any data storage
provider. This means that users can manage their data and identity separately from
the platform, service, or application they use. Also, for developers, it means that
they will develop their apps independently from the identity and data providers and
they would not be worried about storing and collecting data. Solid protocol is a
network between IDPs, Data Storages (servers), and Clients (Applications). These
decentralized secure data storages are called Pods. Entities control access to the
data in their Pods. Entities decide what data to share and with whom (be those
individuals, organizations, applications, etc.), and can revoke access at any time. To
store and access data in a Pod, Solid-enabled applications use standard, open, and
interoperable data formats and protocols. Solid has the following properties which
give users and developers great value:

• The app functionality is all in the client.

• Any App can work with any Pod. The user typically chooses which Pod.

• The server does not care which app is running so long as it is authenticated
and authorized.

• Changes to app functionality require just the re-release of the client and no
changes to the server.

Once the Solid Protocol specification is stable, then new interoperable apps can
be created by rolling out new “client-client” specs for each domain such as contacts,
medical data, financial data, and so on. Any kind of data can be stored in a Solid Pod
— from structured data to files that one might store in a Google Drive or Dropbox
folder. What makes Solid special is the ability to store data in a way that promotes
interoperability. Specifically, Solid supports storing Linked Data. Structuring data as
Linked Data means that different applications can work with the same data. All data
in a Solid Pod is stored and accessed using standard, open, and interoperable data
formats and protocols. Solid uses a common, shared way of describing things and
their relationships to one another that different applications can understand. This
gives Solid the unique ability to allow different applications to work with the same
data. With Solid’s Authentication and Authorization systems, one can determine
which people and applications can access their data. Entities can grant or revoke
access to any slice of their data as needed. Consequently, entities can do more with
their data, because the applications they decide to use can be granted access to a
wider and more diverse set of information. And just as one can share their data with
others, others can also share their data in return. This creates rich and collaborative
experiences across a combination of both personal and shared data.

1.2 Impact of Solid

Solid can be analyzed from different aspects:

8



1.2.1 Accessibility

The fact that the user can use multiple alternative apps means that differently, abled
users will be able to use apps that do the same thing in very different ways, for
example, conversational apps and graphics-based apps accessing the same data. Solid
Apps are mostly web apps, and so all the knowledge and importance and techniques
and guidelines which apply to Web Apps and PWAs also apply to Solid Apps.

1.2.2 Security

Protecting user data in the Solid system is of utmost importance. The Solid proto-
col requires encryption for all transmissions, ensuring data safety during transfer.
Encryption at rest and within processing also plays a pivotal role in security devel-
opment. However, it’s essential to emphasize that these measures are related to, yet
distinct from, the network protocol. Strong authentication using keys is naturally
part of the access controls to establish a foundation for trustworthy personal data
storage, based on principles of confidentiality, integrity, and availability achieved
within the Solid system. The Solid protocol introduces an innovative market for Pods
that serves a diverse range of organizations such as commercial enterprises, nonprofit
entities, and government agencies. Within this market, these organizations provide
a variety of Pod products, each tailored to specific needs and preferences. Notably,
these products differ not only in their functionalities but also in the levels of security
they offer, catering to a wide spectrum of users with varying safety requirements.
Apps like social networks, which can use Solid to store their distinct sets of sensitive
data in a Pod, make a very compelling case for improving online safety. While users
must ensure the safety of their Pod data and will have many options and services
available to do so, the Solid approach fundamentally minimizes their vulnerability to
attacks on the data stores as each Pod is isolated from every other Pod. Consequently,
users on Pods face less risk, benefiting directly by isolation from the usual news
of large-scale indiscriminate breaches. Moreover, a Pod setup empowers users to
easily migrate their data without losing app functionality (low or no exit barriers),
taking it to a safer (more representative of their needs) environment should they
deem their current provider to be compromised. Privacy value, which is increasing
yet currently bottled up and depressed by steep exit barriers, will greatly expand
the app development market as safer data storage options are enabled by the Solid
protocol.

1.2.3 Privacy

The Solid protocol upends the traditional notions of user privacy compared to the
prevalent online ad-based systems of the past. Solid’s architectural design prioritizes
data privacy by default, marking a paradigm shift in how user information is handled.
Within a Solid Pod, data is inherently private, creating a secure digital enclave where
users maintain control over their information, deciding whether to share it broadly or
selectively with specific groups like family or healthcare providers. Acknowledging the
pivotal role of user consent in meaningful data exchanges with services, Solid systems
seamlessly integrate consent management into data-sharing flows. This involves
clear and user-friendly processes for users to grant permission for the processing
of specific data sets by designated entities for predefined purposes. Solid further

9



simplifies compliance with regulations like the General Data Protection Regulation
(GDPR), streamlining the development of systems that adhere to stringent privacy
standards. The introduction of the ability to understand the purpose of how data is
being used underscores Solid’s commitment to user-centric privacy and also provides
for when regulators are going to make AI safe. Users not only control data access
but also gain clarity regarding the context and purpose of its usage, controlling
processing even for knowledge systems, through transparent consent mechanisms,
achieving a delicate balance between privacy and utility. Solid offers a measured
and user-oriented approach to privacy, demonstrating that effective privacy measures
seamlessly coexist with and enhance digital services. It provides a perspective where
privacy is an integral aspect of the user experience without the need for repetitive,
tiresome, and explicit summaries.

1.2.4 Digital Sovereignty

The ability of a user to be a first-class participant in their digital identity management,
their digital sovereignty, is crucial. This need has driven a lot of investment in systems
like blockchain, where everyone stores everything, or IPFS, where everyone stores
a randomized fraction of other people’s data. The Solid Protocol better answers
this need to re-empower people, by using and extending existing web protocols and
efforts.

1.3 Importance of Solid in Android Ecosystem

With the widespread of smartphones, the number of internet users and the amount of
data produced had a rapid increase. Being able to connect to the Internet wirelessly,
increasing in computation power of mobile phones, and providing OSs with a variety
of features and APIs and many other reasons made this growth. During this phase,
a lot of big tech companies started using users’ data in secret such as the scandal in
2012[3] that showed Facebook used the data of 700,000 users without their consent or
attempts by Google and Amazon to patent devices that listen for emotional changes
in human voices[4] are examples for this fact. According to BBC research[5], 77% of
people feel vulnerable to having multiple providers holding their personal information,
and given that there has been a massive increase (+68%) in major data breaches[6]
since 2020 and 2021 alone, this is understandable. These facts show enough the
importance of data privacy on mobile phones. Also, about 72% of mobile phone users
use smartphones with Android OS[7]. So, Integrating Solid project into the Android
ecosystem makes a big change for developers to develop native apps, making it more fa-
miliar to users and having more opportunities for application development with Solid.

In chapter 2, we will talk about data formats used in Solid, Android development
in general, and the problem of integrating Solid technology in native Android devel-
opment. Besides that, we will have a look at Android developers’ needs for Solid
and expected APIs. In the end, existing tools for development have been described
and analyzed.
In chapter ??, the experimental solution of integrating existing libraries into Android
and trying to integrate with Solid with the help of these libraries has been discussed.
From this trial, we understand some parts should be rewritten for the Android
ecosystem.

10



In chapter 3, the final solution with the architecture and different modules of the
project with implementation details has been shown.
Chapter 4 is dedicated to developing an Address Book Android app based on results
as a real-world use case and how Data modules can help us make data management
more abstract for developers who want to take advantage of Solid in Android apps.
For knowing the limitations of the work in the sense of practicality and integration,
chapter 5 is the place that can be referred to. In addition, there are a lot of oppor-
tunities for development in this field in the future and for other members of the
open-source community to continue afterward.
In the end, we have an overall conclusion of the work in chapter 6.

11



2 Problem Definition

2.1 Solid Architecture

Before solving the problem, we must examine Solid architecture, components, in-
teractions, data types, standards, and other necessary details to find the best Solid
solution for mobile phones. The Figure 1 shows an overview of the Solid ecosystem.

Figure 1: Simplified version of Solid Architecture

1. WebID is an HTTP URI representing an agent such as an organization, a user, or
a software. When a WebID is dereferenced, the server provides a representation
of the WebID Profile in an RDF document which uniquely describes an agent
denoted by a WebID. WebIDs are an underpinning component in the Solid
ecosystem and are used as the primary identifier for users and applications[8].

2. Authentication with the Solid server is done with Solid OpenID Connect
(Solid-OIDC), which is performed by an OpenID provider.

3. Personal Online Data Stores (Pods) are the containers where data is saved/re-
trieved. Once data is saved, the owner of the Pod (agent) can control access to
the resource. Pods can be hosted locally by user or using Pod providers. Here
are details of Pod elements:

3.1 Pod provider: The entities in charge of hosting Pods, like a cloud stor-
age (Google Drive or Dropbox). Each provider follows the regulations
depending on the country and region in the world for storing data and
third-party access, as these storages are at a physical level and located
in a geographical place. For example, refer to the Inrupt Pod Provider
(https://start.inrupt.com/profile).

12



3.2 resource storage: Pod’s storage allocated to users data. This data can be
in two formats:

• Non-Resource Description Framework (Non-RDF) such as images,
.pdf, and other files.

• Resource Description Framework (RDF) such as JSON-LD or Turtle
which are data formats for preserving LD(core of solid data operation).

No matter which type of file the user saves, all would be stored as files
similar to those on clouds and personal computers. The data on the pod
comes from any solid compatible that the user uses.

3.3 Linked Data Platform (LDP container): Pods having the possibility of
working with LDPs. Pods contains public and private LDP containers,
each one with different access control regulations for defining what data
is public and what has to stay private.

3.4 Access Control allows users to define who accesses what.

3.5 Access Control List (ACL) is a document containing a list of agents
accessing what data and when. This helps Pods find out who can access
data.

3.6 Representational State Transfer (REST) service: Allows other entities to
interact with the pod with RESTful data management (based on HTTP).

The process is this way: the user starts by asking the IDP to be identified.
After doing the process with Solid-OIDC, they would get the certificate (through
a browser) and be used by a third-party application to present to the user’s Pod
provider and access the data with REST functions. Here, we can see the flow of the
whole process[9] in Figure 2.

Because the data stored in Solid Pods are application-independent, they should
be stored in a format that different apps can consistently read. For this reason,
developers need to use a defined solid vocabulary or custom-defined vocabulary
known as ontologies. These vocabularies can define the properties. In this way,
each subject has a property and property value. All these subjects are IRIs in the
system, like an address or a URL to a website; it shows the location of the stored
file. For example, ”user” is the subject, ”eye color” is the property, and ”green” is
the property value. At least one or more triple of IRI, property, and property-value
s can be linked together and form an RDF resource. An RDF resource then can
be presented in different languages such as Turtle, N-Triples, N-Quads, RDF/XML,
RDF/JSON, JSON-LD etc.[10]. Depending on the environment we are working in,
we can choose a representation format.

2.2 Android App Development and Solid

With the birth of touch screens, the mobile phone industry had a boost and created
a new market. Among all the players, Google and Apple could continue to dominate
almost the entire mobile phone market. As we can see, almost everyone has at
least one smartphone run by one of the mentioned vendors. Because of Android’s
open-source nature, it has been developed to be integrated with different vendors
with more possibility of modifications and getting more popular. Google continues
supporting Android, and almost every year, there is a new version of Android with

13



Figure 2: Solid Authentication Flow

new features that support the ecosystem’s needs, such as foldable devices, wearable
gadgets, cars, etc. A big part of these updates includes SDKs and APIs for developers
to make new applications with needed features. In recent years, there has been a
significant change in how an Android app develops; the new Jetpack collection has
almost different parts of app development and is compatible with each other, making
the creation of the Android app even more straightforward. Before this project, there
wasn’t any SDK or library to integrate Solid into Android development. In case a
developer wanted to do so, he had to do the communication with basic REST APIs
provided by the Pods in raw HTTP, handling authentication with IDP, creating
sessions, translating Linked Data retrieved from Pods into readable data formats in
Android such as JSON, and much more features that does not existed. So, the lack
of any tool for developers could be sensed, which is the first point of app creation
and introduction to 3.98 B users worldwide.

2.3 Existing Tools

Most tools are developed for web applications in JavaScript and some for Java
clients such as Inrupt Java Client[11] library. As this library is written for the Java
environment and Android supports Java, it can be imported into the project and
used. There are some problems with using this library in Android, which will be

14



described in more detail in the next chapter because of Java usage in Java-based
projects and the Android ecosystem. We do not have pure Java in Android, and
some classes do not exist or have been changed in the implementation. For instance,
the class ClassLoader has a different implementation. It has been used by some
dependencies of Inrupt Java Client[11] library, such as Jena, which is responsible for
working with Linked Data. So, some of the classes can be used, and others should
be rewritten for Android.

2.4 Defining Desired Solution

By analyzing the structure of Solid, we find out that any Android application that
wants to use Solid has to do the authentication, save the authentication details,
and then use the credential to retrieve data. Here, it is understood that there is a
need for a package that encapsulates the authentication. As each app will import
this package and log in to solid (in the first use in the optimal conditions), there
would be many logins that the user faces, which is not optimal in the sense of user
experience. So, it came up with the idea of having a main service app, the same as
Google Service, that the user logs in to once, and any third-party app that wants to
connect to Solid would ask for this app. The app would need a dialog such as ”App
X wants to access your pod. Do you allow?” which is much better than multiple
login processes and sessions.
After having a successful authentication process, there would be a Bearer or DPoP
token (Depending on the way of handling OpenID), which can be used to call
Pod REST APIs. For any request (GET, POST, PUT, DELETE), headers must
be formed, the network body needs to be initialized, the function needs to be
called, and the response and any possible error must be handled. So developers
need another layer that helps them manage data on the Pod. Again, as apps are
not responsible for authentication, the service app should perform the operations
and retrieve the results for the third-party apps through Android Inter-Process
Communication. Based on the Android solution, this can be done via ’Services’
which is one of the four main components of Android (Activity, Service, Broadcast
Receiver, Content Provider). In conclusion, the solution should contain an Android
application responsible for authentication, saving credentials locally, and refreshing
them, using the credentials for accessing data and providing at least one Android
Service for other third-party apps to get their requested data. In addition, there
should be a library that developers need to import to have the functionality of
’Connect to Solid’ and resource management via Android Services; the functions
should be predefined and dynamic to handle any data.

15



3 Final Solution

3.1 Integrate Existing Tools into the Android

For the authentication and resource management part, we started using Inrupt Java
Client[11] and different modules in the library. For authentication, it came out that
it is incompatible with Android as it does not contain Android elements such as
Activity to send requests to a browser and return to the app. So instead of using
the Authentication module, we imported OpenID Android AppAuth library[12],
which is also compatible with Solid as Solid, also using OpenID configuration for
the authentication process. The whole authentication process has been described in
Authentication section.
In Resource Management, we can create a Client object to interact with a pod.
However, the response should be in ByteStream or String because RDF-defined
types use Jena or JSONB or Jackson as the parser of the data which all of them
are not compatible with Android. We had a trial of using Desugaring in Android
and trying to fork Jena and adapt it to Android, but it failed because of a couple of
reasons:

• ClassLoader used in both libraries and changing them means having many
dependencies that will not be updated as we will be responsible for changing
them.

• In Inrupt Java Client[11] library also Java system calls have been used which
is not presented in Android. So, it would need to change too.

So we decided to use ByteStream as the body of our HTTP requests and use another
library such as Titanium JSON-LD[13], which converts ByteStream of data presented
in Turtle into JSON-LD which can be used in Android.

3.2 Architecture

The project has four modules:

• Shared

• SolidAndroidApi

• SolidAndroidClient

• app

The internal module Shared is responsible for sharing standard definitions across
the project, such as data classes and network response types. All other modules
mentioned above will use data classes and tools existing in this module.

The module Solid Android API is another package responsible for authentication
with Solid-OIDC server and communicating with the Solid server for accessing
resources. Also, SolidContactsDataModule is a Solid DataModule for contacts
present here. This data class is a higher-level resource that encapsulates how an
RDF resource converts to a Contacts data class. This library is used in app module
and exported for other developers to connect directly to Solid in their apps.

16



The package Android Solid Services contains an Android app in which users will
log in to their pods by using Solid Android API library as a single point of login and
third-party apps who want to connect to Solid without dealing with authentication
and resource management will use Solid Android Client library in their apps and all
the requests pass through this app using Android inter-process communication.

Finally, Solid Android Client module is another library that is exported, and
developers can import it into their apps as a second and easier option, using defined
interfaces to request a login and other resources and data modules already imple-
mented into the project. All the functions presented here use .aidl definitions to
ask Android Solid Services app to handle the requests.

The general scheme of the project architecture can be seen in Figure 3.

Figure 3: The overall architecture of Android Solid Services project with its modules
and points of interacting with external parties.

3.3 Shared

This module contains shared classes and resources that are used across other modules
in the project and has the following main base definitions:

3.3.1 Resource

Resource interface definition has been showed in the code 1. It inherits from
AutoCloseable as the resources will be read and written as a Stream. It also
inherits from Parcelable, which is a way of serialization in the Android ecosystem
for reading, writing, or passing among different processes. The functions inside this
interface will be used as:

• getIdentifier():URI: is responsible for returning the address of a resource
in the form of URI.

• getContentType():String: this method will return the content type of the
resource such as application/ld+json, */*, and text/turtle.

17



• getHeaders():Headers: will return headers of resource in a API call. For
now, there is no detailed implementation for this part.

• getEntity():InputStream: will give the content of the resource in the form
of a Stream.

In general, we have three general-purpose resources that inherit from the Resource
interface:

• NonRDFSource which is used for resources, not in the form of RDF.

• RDFSource for resources which are Linked Data.

• SolidContainer for containers, similar to folders, that contain other resources.
This class inherits from RDFSource, so it indirectly inherits from Resource.

1 interface Resource : AutoCloseable, Parcelable {

2 fun getIdentifier(): URI

3 fun getContentType(): String

4 fun getHeaders(): Headers

5 @Throws(IOException::class)

6 fun getEntity(): InputStream

7 }

Code Snippet 1: Resource interface definition

3.3.2 NonRDFSource

NonRDFSource is used for representing resources not in the form of RDF. It im-
plements functions mentioned in Resource interface definition and the ones in
Parceable as follows:

18



1 private constructor(inParcel: Parcel) {

2 this.identifier = URI.create(inParcel.readString())

3 this.contentType = inParcel.readString()!!

4 this.headers = Gson().fromJson<Headers>(inParcel.readString(),

object : TypeToken<Headers>() {}.type),→

5 this.entity = inParcel.readString()!!.byteInputStream()

6 }

7 ...

8 override fun writeToParcel(dest: Parcel, flags: Int) {

9 dest.writeString(identifier.toString())

10 dest.writeString(contentType)

11 dest.writeString(Gson().toJson(headers))

12 dest.writeString(getEntity().bufferedReader().use {

it.readText() }),→

13 }

Code Snippet 2: The way NonRDFSource writes to a Parcel object and reads from
it to construct a new one

These implementations are important as they will pass objects between AndroidSolidServices
app and other third-party apps.
The content of this resource is saved as an InputStream.

3.3.3 RDFSource

RDFSource is used to represent RDF resources. Same as NonRDFSource, it implements
needed functions and creates a dataset to store the resource’s content. Writing and
reading from a Parcel object acts as shown in code 3.

19



1 private constructor(inParcel: Parcel) {

2 this.identifier = URI.create(inParcel.readString())

3 this.headers = Gson().fromJson<Headers>(inParcel.readString(),

object : TypeToken<Headers>() {}.type),→

4 this.mediaType =

Gson().fromJson<MediaType>(inParcel.readString(), object :

TypeToken<MediaType>() {}.type)

,→

,→

5 this.dataset = JsonLd.toRdf(JsonDocument.of(inParcel.readString ⌋

()!!.byteInputStream())).options(JsonLdOptions().apply {,→

6 isRdfStar = true

7 }).get()

8 this.itselfSubject = inParcel.readString()!!

9 }

10 ...

11 override fun writeToParcel(dest: Parcel, flags: Int) {

12 dest.writeString(identifier.toString())

13 dest.writeString(Gson().toJson(headers))

14 dest.writeString(Gson().toJson(mediaType))

15 dest.writeString(JsonLd.fromRdf(RdfDocument.of(dataset)).get(). ⌋

tString()),→

16 dest.writeString(itselfSubject)

17 }

Code Snippet 3: The way RDFSource writes to a Parcel object and reads from it to
construct a new one

The function getEntity() converts the stored dataset to an InputStream object
shown in code 4. JsonDocument created out of the dataset then compacted it with
or without a context document and asked the RDF processor to return its stream of
bytes.

1 override fun getEntity(): InputStream {

2 val toBeCompactDoc = JsonDocument.of(JsonLd.fromRdf(RdfDocument ⌋

.of(dataset)).get().toString().byteInputStream()),→

3 val compacted = JsonLd.compact(toBeCompactDoc,

contextDocument).get(),→

4 return compacted.toString().byteInputStream()

5 }

Code Snippet 4: The way RDFSource overrides getEntity() function

In dataset:RdfDataset property of the class, attributes have been stored in a
triple of subject-predicate-object, which subject refers to the URI of the attribute,
predicate to the key of the attribute and object to the real value of it. As an example
for expressing the nationality of Alice, the subject would refer to ”Alice,” predicate
to ”Nationality,” and object to ”Italian.”

20



For adding a new attribute, we can use addTriple function as shown 5. It gets a
triple and the maximum number of recurrences of the attribute defined in the triplet.
After checking the existing attribute, it is decided whether to add it. As the current
dataset object is static, it needs to recreate the current dataset and add a new one.
For completing the above example, Alice can have another nationality, so the value
maxNumber would be the maximum number of nationalities she can have. For her
birthday, as it is unique, this value must be 1.

1 fun addTriple(triple: RdfTriple, maxNumber: Int = 1) {

2 val currentItemSize = dataset.defaultGraph.toList().filter {

3 it.subject.equals(triple.subject) &&

it.predicate.equals(triple.predicate),→

4 }.size

5 if(currentItemSize < maxNumber) {

6 dataset.add(triple)

7 return

8 } else {

9 val all = dataset.defaultGraph.toList()

10 val newDateset = rdf.createDataset()

11 all.forEach {

12 if (!it.subject.equals(triple.subject) ||

!it.predicate.equals(triple.predicate)) {,→

13 newDateset.add(it)

14 }

15 }

16 newDateset.add(triple)

17 dataset = newDateset

18 }

19 }

Code Snippet 5: Add an attribute to a RDFSource.

In order to remove an attribute from the dataset, clearProperties function
with the implementation in 6 can be called. It checks for all occurrences of the
attribute and then creates a new dataset excluding the attribute.

21



1 fun clearProperties(

2 predicate: String,

3 subject: String = itselfSubject

4 ) {

5 val allWithProperties = dataset.defaultGraph.toList().filter {

6 it.subject.value == subject && it.predicate.value ==

predicate,→

7 }

8 if (allWithProperties.isNotEmpty()) {

9 val all = dataset.defaultGraph.toList()

10 all.removeAll(allWithProperties)

11 val newDateset = rdf.createDataset()

12 all.forEach {

13 newDateset.add(it)

14 }

15 dataset = newDateset

16 } else {

17 //No need to clear as we already know it does not exist

18 }

19 }

Code Snippet 6: Remove an attribute from a RDFSource.

Two functions findAllProperties and findProperty have been used to locate
and return properties. The implementation can be seen in code 7.

1 fun findAllProperties(predicate: RdfResource): List<RdfValue> {

2 return dataset.defaultGraph.toList()

3 .filter{ it.predicate.value == predicate.value }

4 .map { it.`object` }

5 }

6 ...

7 fun findProperty(predicate: RdfResource): RdfValue? {

8 return dataset.defaultGraph.toList()

9 .find{ it.predicate.value == predicate.value }

10 ?.`object`

11 }

Code Snippet 7: Find attributes inside a RDFSource.

3.3.4 SolidContainer

SolidContainer refers to resources in a Solid Pod which contains other resources.
This class is a special case of a RDFSource resource, which constructs a list of
resources inside it during its construction. The implementation can be seen in the
code 8. Inside, it used SolidSourceReference data class for referencing a resource

22



with an identifier and a list of types. The types can be one of three base resource
definitions described above in 3.3.1.

1 dataset?.defaultGraph?.toList()?.filter {

2 it.predicate.equals(contains) && it.subject.value ==

getIdentifier().toString(),→

3 }?.forEach {

4 val identifier = it.`object`

5 val types = dataset.defaultGraph.toList().filter {

6 it.subject.equals(identifier) &&

it.predicate.equals(rdfType),→

7 }.map { it.`object`.value }

8 containerRes.add(SolidSourceReference(identifier.value, types))

9 }

Code Snippet 8: SolidContainer constructor

This class has some specific methods, such as
getContained():List<SolidSourceReference> which returns a list of resources
inside it and getLabel():String? that gives container’s name.

3.3.5 Profile

Profile data class is responsible for holding the user’s authentication state, user
info, and his WebID. The class definition can be seen in code 9. AuthState is a
part of net.openid.appauth library and contains, authentication state, tokeId,
accessToken, refreshToken , and other necessary information during authentication
processes. WebId data class inherits from RDFSource and has information about the
logged-in user such as his oidcissuer, Pod storage addresses, privateTypeIndex ,
and publicTypeIndex.

1 data class Profile(

2 var authState: AuthState = AuthState(),

3 var userInfo: UserInfo? = null,

4 var webId: WebId? = null

5 )

Code Snippet 9: Profile data class definition

3.3.6 SettingTypeIndex

SettingTypeIndex is a RDFSource which hols type index of a Pod, working like a
mapping point when need to find something in the pod, as in instance, when a user
needs to get Address Books in the pod, will refer to this index and find URIs of all
the address books existing. It can be private or public, and external entities can
access it. This document has two type keys, first TypeIndex and then for the private
resource it is UnlistedDocument, and ListedDocument for the public index.

23



Any new index inside needs three triples: one for TypeRegistration, one for
identifying the type of class it is referring to, and finally, the last one referring to the
instance. As an example, it can be seen how it adds an AdressBook to its indexes in
code 10.

These two implementations that inherit from SettingTypeIndx and can be used
to locate indexes in a Pod, PrivateTypeIndx and PublicTypeIndex

1 fun addAddressBook(addressBook: String) {

2 val id = UUID.randomUUID().toString()

3 val subject = rdf.createIRI("${getIdentifier()}#${id}")

4 addTriple(rdf.createTriple(subject, typeKey, typeRegistration))

5 addTriple(rdf.createTriple(subject, forClass, AddressBook))

6 addTriple(rdf.createTriple(subject, instance,

rdf.createIRI(addressBook))),→

7 }

Code Snippet 10: addAddressBook function in SettingTypeIndex

3.3.7 WebId

This RDFSource resource contains general information about a user Pod such as the
addresses of PrivateTypeIndex, PublicTypeIndex, storages, and oidcissuer. It
has two static functions shown in code 11 for converting to a JsonString and vice
versa; Used for saving and retrieving data stored in this class on local storage.

24



1 fun writeToString(webId: WebId?): String? {

2 if (webId == null) {

3 return null

4 }

5 return JsonObject().apply {

6 addProperty(KEY_IDENTIFIER,

webId.getIdentifier().toString()),→

7 addProperty(KEY_TYPE, webId.getContentType())

8 addProperty(KEY_DATASET, webId.getEntity().toPlainString())

9 }.toString()

10 }

11

12 fun readFromString(objectString: String): WebId {

13 val obj = JsonParser.parseString(objectString).asJsonObject

14 return WebId(

15 URI.create(obj.get(KEY_IDENTIFIER).asString),

16 MediaType.of(obj.get(KEY_TYPE).asString),

17 JsonLd.toRdf(JsonDocument.of(obj.get(KEY_DATASET).asString. ⌋

byteInputStream())).get(),,→

18 )

19 }

Code Snippet 11: writeToString(...) and readFromString(...)

implementations

It also has other functions, as shown in the code 12.

1 fun getTypes(): List<URI> { ... }

2

3 fun getOidcIssuers(): List<URI> { ... }

4

5 fun getRelatedResources(): List<URI> { ... }

6

7 fun getStorages(): List<URI> { ... }

8

9 fun getPrivateTypeIndex(): String? { ... }

10

11 fun getPublicTypeIndex(): String? { ... }

12

13 fun getProfileUrl(): String { ... }

Code Snippet 12: writeToString and readFromString implementations

3.3.8 Contact Data Module

Data Modules are a higher level of a RDFSource for abstracting details of imple-
mentation and handling property management of a resource. As an example, the

25



Contact data module has been implemented in this project. It has four main data
classes with respective RDFSource classes. There is another additional data class for
holding two different lists of public and private address books. Each AddressBook

has a title and contains a list of Contacts and Groups. Each Contact has a name
and a list of phone numbers and emails. However, a group is defined by its title and
a list of contacts that are a part of it. All these classes are Parcelizable for passing
between Android processes.

1 @Parcelize

2 data class AddressBookList(

3 val publicAddressBookUris: List<String>,

4 val privateAddressBookUris: List<String>,

5 ): Parcelable

6

7 @Parcelize

8 data class AddressBook(

9 val uri: String,

10 var title: String,

11 var contacts: List<Contact>,

12 var groups: List<Group>,

13 ): Parcelable {

14 companion object {

15 fun createFromRdf(

16 addressBookRdf: AddressBookRDF,

17 nameEmailIndexRdf: NameEmailIndexRDF,

18 groupsIndexRdf: GroupsIndexRDF

19 ): AddressBook {

20 return AddressBook(

21 uri = addressBookRdf.getIdentifier().toString(),

22 title = addressBookRdf.getTitle(),

23 contacts = nameEmailIndexRdf.getContacts(

24 addressBookRdf.getIdentifier().toString()

25 ),

26 groups = groupsIndexRdf.getGroups(

27 addressBookRdf.getIdentifier().toString()

28 )

29 )

30 }

31 }

32 }

Code Snippet 13: AddressBookList and AddressBook definitions

26



1 @Parcelize

2 data class FullContact(

3 val uri: String,

4 val fullName: String,

5 val emailAddresses: List<Email>,

6 val phoneNumbers: List<PhoneNumber>,

7 ): Parcelable {

8 companion object {

9 fun createFromRdf(contactRdf: ContactRDF): FullContact {

10 return FullContact(

11 uri = contactRdf.getIdentifier().toString(),

12 fullName = contactRdf.getFullName(),

13 emailAddresses = contactRdf.getEmails(),

14 phoneNumbers = contactRdf.getPhoneNumbers()

15 )

16 }

17 }

18 }

Code Snippet 14: FullContact definition

1 @Parcelize

2 data class FullGroup(

3 val uri: String,

4 val name: String,

5 val contacts: List<Contact>,

6 ): Parcelable {

7 companion object {

8 fun createFromRdf(groupRdf: GroupRDF): FullGroup {

9 return FullGroup(

10 uri = groupRdf.getIdentifier().toString(),

11 name = groupRdf.getTitle(),

12 contacts = groupRdf.getContacts()

13 )

14 }

15 }

16 }

Code Snippet 15: FullGroup definition

3.4 Solid Android API

This module, which is also exported as an Android library, is responsible for authen-
tication and resource management. It also provides some functions for handling the
Contacts data module and an interface for storing Profile on Android local storage
via SharedPreferences.

27



3.4.1 Authentication

An interface has been initialized named Authenticator, which has basic methods
for doing authentication.
First, one of two functions createAuthenticationIntentWithWebId() or
createAuthenticationIntentWithOidcIssuer() creating an Intent for starting the
authentication flow that can be used by calling Android startActivityForResult()

function. After completing the auth process in a browser, the user uses, the result
can be passed to submitAuthorizationResponse() function. In case of a successful
login, this function will get a token and WebId data class, which contains some
information related to WebID issuer and address(es) of Pod location(s). For further
uses, getLastTokenResponse() function can be used to get a valid token - in case
of invalidity of the token, request a fresh token and return it. getProfile() is
responsible for returning Profile data class, which has all the information related
to the authentication state, WebID, and other information. In the case of a not-
authenticated user, some parameters will be null.
For signing out and finishing an authenticated session,
getTerminationSessionIntent() can be used with an Intent to be used in a
browser. The class AuthenticatorImplementation implements Authenticator

interface and has some private functions as well. Here are some important parts of
the implementations that have been shown in codes 16, 17, 18, 19, 20, and 21:

1 private suspend fun getAuthorizationConf(

2 oidcIssuer: String

3 ): Pair<AuthorizationServiceConfiguration?,

AuthorizationException?>{,→

4 return suspendCoroutine { cont ->

5 AuthorizationServiceConfiguration.fetchFromIssuer(Uri.parse ⌋

(oidcIssuer)) { serviceConfiguration, exception ->,→

6 cont.resume(Pair(serviceConfiguration, exception))

7 }

8 }

9 }

Code Snippet 16: getAuthorizationConf() implementation that gets
configuration of the WebID issuer

28



1 private suspend fun registerToOpenId(

2 conf: AuthorizationServiceConfiguration,

3 redirectUri: String,

4 ) {

5 val regReq = RegistrationRequest.Builder(

6 conf,

7 listOf(Uri.parse(redirectUri))

8 ).setAdditionalParameters(mapOf(

9 "client_name" to "Android Solid Services",

10 "id_token_signed_response_alg" to conf.discoveryDoc!!.idTok ⌋

enSigningAlgorithmValuesSupported[0],,→

11 ))

12 .setSubjectType("public")

13 .setTokenEndpointAuthenticationMethod("client_secret_basic")

14 .setGrantTypeValues(listOf("authorization_code",

"refresh_token")),→

15 .build()

16

17 val res = suspendCoroutine { cont ->

18 authService.performRegistrationRequest(regReq) { response,

ex ->,→

19 cont.resume(response)

20 }

21 }

22 updateRegistrationResponse(res)

23 }

Code Snippet 17: registerToOpenId() method implementation that requests to
OpenID by passing oidc-issuer configuration and the app’s redirect URI

29



1 private suspend fun requestToken()

2 : Pair<TokenResponse?, AuthorizationException?> {

3

4 val result : Pair<TokenResponse?, AuthorizationException?> =

5 if (profile.authState.lastAuthorizationResponse != null) {

6 suspendCoroutine { cont -> authService.performTokenRequest( ⌋

profile.authState.lastAuthorizationResponse!!.createTok ⌋

enExchangeRequest(),ClientSecretBasic(profile.authState ⌋

.lastRegistrationResponse!!.clientSecret!!)) {

tokenResponse, exception ->

,→

,→

,→

,→

7 updateTokenResponse(tokenResponse, exception)

8 cont.resume(Pair(tokenResponse, exception))

9 }

10 }

11 } else {

12 Pair(null, profile.authState.authorizationException)

13 }

14 return result

15 }

Code Snippet 18: Requesting a token for the first time after having a successful
authentication

30



1 override suspend fun createAuthenticationIntentWithOidcIssuer(

2 oidcIssuer: String,

3 redirectUri: String,

4 ) : Pair<Intent?, String?> {

5

6 val conf = getAuthorizationConf(oidcIssuer)

7

8 return if (conf.first != null) {

9

10 registerToOpenId(conf.first!!, redirectUri)

11

12 if (profile.authState.lastRegistrationResponse != null) {

13 val builder = AuthorizationRequest.Builder(

14 conf.first!!,

15 profile.authState.lastRegistrationResponse!!.client ⌋

Id,,→

16 ResponseTypeValues.CODE,

17 Uri.parse(redirectUri))

18

19 val authRequest = builder

20 .setScopes( "webid", "openid", "offline_access",)

21 .setPrompt("consent")

22 .setResponseMode(AuthorizationRequest.ResponseMode. ⌋

QUERY),→

23 .build()

24

25 val authIntent = authService.getAuthorizationRequestInt ⌋

ent(authRequest),→

26 Pair(authIntent, null)

27 }

28 else {

29 Pair(null, "can not register to OpenId")

30 }

31 } else {

32 Pair(null, "can not get access to web-id issuer

configurations."),→

33 }

34 }

Code Snippet 19: Creating an authentication Intent

31



1 override suspend fun submitAuthorizationResponse(

2 authResponse: AuthorizationResponse?,

3 authException: AuthorizationException?

4 ) {

5 updateAuthorizationResponse(authResponse, authException)

6 if (authException == null && authResponse != null) {

7 requestToken()

8 profile.userInfo = getUserInfoFromIdToken()

9 profile.webId = getWebIdProfile(profile.userInfo!!.webId)

10 userRepository.writeProfile(profile)

11 }

12 }

Code Snippet 20: Handling authorization response after completing the login in the
browser

32



1 private fun parseIdToken(idToken: String, config: OpenIdConfig):

JwtClaims {,→

2 return try {

3 val builder = JwtConsumerBuilder()

4

5 // Required by OpenID Connect

6 builder.setRequireExpirationTime()

7 builder.setExpectedIssuers(true, *arrayOfNulls<String>(0))

8 builder.setRequireSubject()

9 builder.setRequireIssuedAt()

10

11 // If a grace period is set, allow for some clock skew

12 if (config.expGracePeriodSecs > 0) {

13 builder.setAllowedClockSkewInSeconds(config.expGracePer ⌋

iodSecs),→

14 } else {

15 builder.setEvaluationTime(NumericDate.fromSeconds(Insta ⌋

nt.now().epochSecond)),→

16 }

17

18 // If an expected audience is set, verify that we have the

correct value,→

19 if (config.expectedAudience != null) {

20 builder.setExpectedAudience(true,

config.expectedAudience),→

21 } else {

22 builder.setSkipDefaultAudienceValidation()

23 }

24

25 // If a JWKS location is set, perform signature validation

26 if (config.publicKeyLocation != null) {

27 val jwks =

HttpsJwks(config.publicKeyLocation.toString()),→

28 val resolver = HttpsJwksVerificationKeyResolver(jwks)

29 builder.setVerificationKeyResolver(resolver)

30 } else {

31 builder.setSkipSignatureVerification()

32 }

33

34 val consumer = builder.build()

35 consumer.processToClaims(idToken)

36 } catch (ex: InvalidJwtException) {

37 throw OpenIdException("Unable to parse ID token", ex)

38 }

39 }

Code Snippet 21: Getting JwtClaims object by idToken which contains user’s
WebID

33



3.4.2 Resource Management

An interface has been declared for interacting with Solid Pod, which can be seen in
code 22.

1 interface SolidResourceManager {

2

3 suspend fun <T: Resource> read(

4 resource: URI,

5 clazz: Class<T>,

6 ): SolidNetworkResponse<T>

7

8 suspend fun <T: Resource> create(

9 resource: T

10 ): SolidNetworkResponse<T>

11

12 suspend fun <T: Resource> update(

13 newResource: T

14 ): SolidNetworkResponse<T>

15

16 suspend fun <T: Resource> delete(

17 resource: T,

18 ): SolidNetworkResponse<T>

19

20 suspend fun deleteContainer(

21 containerUri: URI

22 ): SolidNetworkResponse<Boolean>

23 }

Code Snippet 22: Definition of SolidResourceManager interface with its functions

In the code 22, the first four functions are the main functions for interacting with
resources in a Pod and the function deleteContainer() defined for SolidContainer
separately because the way Solid Pods delete containers is a recursive approach. The
URI input parameters are the address of the working resource. The implementation
of the output, SolidNetworkResponse<T>, is shown in code 23 which handles generic
types. In case of a successful call, it returns Success with the data field containing
the resource. If there is a problem in processing the request, an Error object with
an error code and error message will be returned. This will happen, for example,
when the user asks to read a resource that does not exist, and the user will get an
error code 404 with a proper message. Sometimes, the call will face a failure because
of an internet connection or similar issues, and an Exception will be returned to the
caller.

34



1 sealed class SolidNetworkResponse<T> {

2 data class Success<T>(val data: T) : SolidNetworkResponse<T>()

3 data class Error<T>(val errorCode: Int, val errorMessage:

String) : SolidNetworkResponse<T>(),→

4 data class Exception<T>(val exception: Throwable) :

SolidNetworkResponse<T>(),→

5 ...

6 }

Code Snippet 23: SolidNetworkResponse<T> implementation

Class SolidResourceManagerImplementation implements the interface shown
in code 22. As an example, function read() has been shown in code 24.
For the inputs, URI of the resource and the class type of the the resource have
to be passed in lines 2 and 3. In line 7, we call handleTokenRefreshAndReturn()
function to get the latest valid token of the authenticated user to be included in the
GET call. Then, we construct the network request with the token and the Accept

response type. If the resource is a subclass of RDFSource, the accept type will be
JSON-LD, otherwise we get it as ByteStream (*/*). In line 16, we make the network
call to the Solid server and return the result.

35



1 override suspend fun <T: Resource> read(

2 resource: URI,

3 clazz: Class<T>,

4 ): SolidNetworkResponse<T> {

5

6 try {

7 val tokenResponse = handleTokenRefreshAndReturn()

8

9 val request = Request.newBuilder()

10 .uri(resource)

11 .header(HTTPHeaderName.ACCEPT, if

(RDFSource::class.java.isAssignableFrom(clazz))

HTTPAcceptType.JSON_LD else HTTPAcceptType.ANY)

,→

,→

12 .header(HTTPHeaderName.AUTHORIZATION,

"${tokenResponse?.tokenType}

${tokenResponse?.idToken}")

,→

,→

13 .GET()

14 .build()

15

16 val response: Response<InputStream> = client.send(

17 request,

18 Response.BodyHandlers.ofInputStream()

19 )

20

21 return if (response.isSuccessful()) {

22 SolidNetworkResponse.Success(constructObject(response,

clazz)),→

23 } else {

24 SolidNetworkResponse.Error(response.statusCode(),

response.body().toPlainString()),→

25 }

26 } catch (e: Exception) {

27 return SolidNetworkResponse.Exception(e)

28 }

29 }

Code Snippet 24: Reading a resource from a Pod and convert it to type T which
inherits from Resource

The implementation of the function constructObject() mentioned in code 24
has been shown in code 25. This function will construct the resource based on
its type. First, we get the response type from the header and then convert the
response to a String in line 7. In line 8, the resource type will be checked and,
in the case of being a SolidContainer, enters the if body. Otherwise, it will be
checked for RDFSource type; if not, behave as if it is a NonRDFSource. In line 10,
the function provideNormalizedDoc() has been called to build a complete path of
container URI. In case of being a RDFSource, the Dataset will be created in line

36



17. Finally, no matter the type, we get clazz constructor, make the object with its
input parameters, and return the created object of the resource.

1 private fun <T> constructObject(

2 response: Response<InputStream>,

3 clazz: Class<T>

4 ): T {

5 val type =

response.headers().firstValue(HTTPHeaderName.CONTENT_TYPE),→

6 .orElse(HTTPAcceptType.OCTET_STREAM)

7 val string = response.body().toPlainString()

8 if (SolidContainer::class.java.isAssignableFrom(clazz)) {

9 val dataSet = JsonLd

10 .toRdf(provideNormalizedDoc(string.byteInputStream()))

11 .get()

12 return clazz.getConstructor(URI::class.java,

MediaType::class.java, RdfDataset::class.java,,→

13 Headers::class.java)

14 .newInstance(response.uri(), MediaType.of(type),

dataSet, null),→

15 }

16 else if (RDFSource::class.java.isAssignableFrom(clazz)) {

17 val dataSet = JsonLd

18 .toRdf(JsonDocument.of(string.byteInputStream()))

19 .rdfDirection(JsonLdOptions.RdfDirection.I18N_DATATYPE)

20 .mode(JsonLdVersion.V1_1)

21 .produceGeneralizedRdf()

22 .get()

23 return clazz.getConstructor(URI::class.java,

MediaType::class.java, RdfDataset::class.java,

Headers::class.java

,→

,→

24 ).newInstance(response.uri(), MediaType.of(type),

dataSet, null),→

25 } else {

26 return clazz.getConstructor(URI::class.java,

String::class.java,

InputStream::class.java).newInstance(response.uri(),

type, string.byteInputStream())

,→

,→

,→

27 }

28 }

Code Snippet 25: Implementation of function constructObject()

3.4.3 User Repository

This simple interface has two functions, as shown in the code 26. A default imple-
mentation is also provided in the same package, and the way it reads/writes the
user’s profile is demonstrated in the code 27.

37



1 interface UserRepository {

2 fun readProfile(): Profile

3 fun writeProfile(profile: Profile)

4 }

Code Snippet 26: UserRepository definition

1 override fun readProfile(): Profile {

2 val profile = Profile()

3 val stateString =

sharedPreferences.getString(PROFILE_STATE_KEY, null),→

4 val webIdString =

sharedPreferences.getString(PROFILE_WEB_ID_DETAILS_KEY,

null)

,→

,→

5 if (!stateString.isNullOrEmpty()) {

6 profile.authState = AuthState.jsonDeserialize(stateString)

7 }

8 profile.userInfo = Gson().fromJson(sharedPreferences.getString( ⌋

PROFILE_USER_INFO_KEY, null), UserInfo::class.java),→

9 if (!webIdString.isNullOrEmpty()) {

10 profile.webId = readFromString(webIdString)

11 }

12 return profile

13 }

14

15 override fun writeProfile(profile: Profile) {

16 sharedPreferences.edit().apply {

17 putString(PROFILE_STATE_KEY,

profile.authState.jsonSerializeString()),→

18 putString(PROFILE_USER_INFO_KEY,

Gson().toJson(profile.userInfo)),→

19 putString(PROFILE_WEB_ID_DETAILS_KEY,

writeToString(profile.webId)),→

20 apply()

21 }

22 }

Code Snippet 27: UserRepository main functions implementation

3.4.4 Solid Contacts Data Module

As mentioned in section 3.3.8, Data Modules are using built-in data classes of Kotlin
instead of RDFSource classes. So this interface has been defined as a middleware to
translate classes related to AddressBook from/to RDFSource. The abstract functions
can be seen on the code 28, 29 and 30.
The class SolidContactsDataModuleImplementation has the implementation of

38



these functions, and it uses SolidContactsDataModuleHelper to collect data for
each request by calling base functions in Resource Management and translate them.

1 //region AddressBooks

2 suspend fun getAddressBooks(

3 webId: String

4 ): DataModuleResult<AddressBookList>

5

6 suspend fun createAddressBook(

7 title: String,

8 isPrivate: Boolean = true,

9 storage: String,

10 ownerWebId: String,// TODO: we need default value

11 container: String? = null,

12 ) : DataModuleResult<AddressBook>

13

14 suspend fun getAddressBook(

15 addressBookUri: String,

16 ): DataModuleResult<AddressBook>

17

18 suspend fun renameAddressBook(

19 addressBookUri: String,

20 newName: String,

21 ): DataModuleResult<AddressBook>

22

23 suspend fun deleteAddressBook(

24 addressBookUri: String,

25 ownerWebId: String,

26 ): DataModuleResult<AddressBook>

27 //endregion

Code Snippet 28: SolidContactsDataModule definition - AddressBook-related
function

39



1 //region Contacts

2 suspend fun createNewContact(

3 addressBookString: String,

4 newContact: NewContact,

5 groupStrings: List<String> = emptyList(),

6 ) : DataModuleResult<FullContact>

7

8 suspend fun getContact(

9 contactString: String

10 ): DataModuleResult<FullContact>

11

12 suspend fun renameContact(

13 contactString: String,

14 newName: String,

15 ): DataModuleResult<FullContact>

16

17 suspend fun addNewPhoneNumber(

18 contactString: String,

19 newPhoneNumber: String,

20 ): DataModuleResult<FullContact>

21

22 suspend fun addNewEmailAddress(

23 contactString: String,

24 newEmailAddress: String,

25 ): DataModuleResult<FullContact>

26

27 suspend fun removePhoneNumber(

28 contactString: String,

29 phoneNumber: String,

30 ): DataModuleResult<FullContact>

31

32 suspend fun removeEmailAddress(

33 contactString: String,

34 emailAddress: String,

35 ): DataModuleResult<FullContact>

36

37 suspend fun deleteContact(

38 addressBookUri: String,

39 contactUri: String,

40 ): DataModuleResult<FullContact>

41 //endregion

Code Snippet 29: SolidContactsDataModule definition - Contacts-related
functions

40



1 //region Groups

2 suspend fun createNewGroup(

3 addressBookString: String,

4 title: String,

5 contactUris: List<String> = emptyList(),

6 ): DataModuleResult<FullGroup>

7

8 suspend fun getGroup(

9 groupString: String,

10 ): DataModuleResult<FullGroup>

11

12 suspend fun deleteGroup(

13 addressBookString: String,

14 groupString: String

15 ): DataModuleResult<FullGroup>

16

17 suspend fun addContactToGroup(

18 contactString: String,

19 groupString: String,

20 ): DataModuleResult<FullGroup>

21

22 suspend fun removeContactFromGroup(

23 contactString: String,

24 groupString: String,

25 ): DataModuleResult<FullGroup>

26 //endregion

Code Snippet 30: SolidContactsDataModule definition - Groups-related function

3.4.5 How to use

This library has been published to Maven Central and can be imported. Devel-
opers must import it with the latest version (currently 0.2.0) into their app-level
build.gradle.kts file as shown in code 31.

1 dependencies {

2 ...

3 implementation("com.pondersource.solidandroidapi:solidandroidap ⌋

i:0.2.0"),→

4 }

Code Snippet 31: Importing Solid Android API library to a third-party application

Then, by doing step-by-step processes presented in 32, a single instance of
com.pondersource.solidandroidapi.Authenticator can be obtained. With this
instance, the developer can call the functions afterward one by one to pass the user

41



through the authentication process. After doing a successful login, the developer can
do CRUD operations by getting an instance of
com.pondersource.solidandroidapi.SolidResourceManager and calling meth-
ods respectively in code 33. For using the Contacts data module, the developer has to
get an instance of com.pondersource.solidandroidapi.SolidContactsDataModule
and call functions presented in Solid Contacts Data Module. A sample of how to use
it is mentioned in code 34. Note that the function extractResult() can be used to
extract the data module content from DataModuleResult<T> data class.

1 val auth: Authenticator =

AuthenticatorImplementation.getInstance(context),→

2 ....

3 val intent = auth.createAuthenticationIntentWithWebId(

4 USER_WEB_ID, APP_REDIRECT_URL)

5

6 //Use the code below or any other way to start an intent and get

the result. This implementation is the old way; if you were

using AndroidX or Compose, this way of calling

startActivityForResult would be different.

,→

,→

,→

7 startActivityForResult(intent, INTENT_CODE)

8 ...

9 @override

10 fun onActivityResult(request code: Int, resultCode: Int, data:

Intent) {,→

11 if (requestCode == INTENT_CODE) {

12 if (resultCode == RESULT_OK) {

13 //Update authorization response

14 auth.submitAuthorizationResponse(

15 AuthorizationResponse.fromIntent(intent),

16 AuthorizationException.fromIntent(intent)

17 )

18

19 //Check if user login was successful

20 if(auth.isUserAuthorized()) {

21 val userProfile = authenticator.getProfile()

22 }

23 }

24 }

25 }

26

Code Snippet 32: Using Solid Android API library in a third-party application for
doing the authentication with Solid-OIDC

42



1 val srm: SolidResourceManager =

SolidResourceManagerImplementation.getInstance(context),→

2

3 //Creating a resource in the user's pod

4 val createResult = srm.create(YOUR_RESOURCE_INSTANCE)

5

6 //Getting a resource from the user's pod. The second parameter

refers to the class to which the resource will be cast. It can

be NonRDFSource, RDFSource, SolidContainer, or any other data

class that inherits from one of these classes.

,→

,→

,→

7 val readResult = srm.read(URI.create(YOUR_RESOURCE_INSTANCE_URL),

NonRDFSource::class.java),→

8

9 //Updaing a resource in the user's pod

10 val updateResult = srm.update(YOUR_UPDSATE_RESOURCE_INSTANCE)

11

12 //Deleting a resource from the user's pod

13 val deleteResult = srm.delete(YOUR_RESOURCE_INSTANCE)

Code Snippet 33: Using Solid Android API library in a third-party application for
accessing resources

1 val scdm: SolidContactsDataModule =

SolidContactsDataModuleImplementation.getInstance(context),→

2

3 //Get all Address Books

4 val addAddressBooks =

scdm.getAddressBooks(auth.getProfile().userInfo!!.webId),→

5

6 //Getting a contact

7 val contactDetails = scdm.getContact(contactUri).extractResult()

8

9 //Rename a contact with a new name

10 scdm.renameContact(contactUri, newName)

11

12 //Getting a group details

13 scdm.getGroup(groupUri)

Code Snippet 34: Using Solid Android API library in a third-party application for
using Contacts data module

3.5 Android Solid Services

This module is dedicated to the Android app installed on the user’s device. It is in
charge of being the single source of truth for third-party apps that are connecting to

43



solid via Solid Android Client. The code architecture is MVVM and uses different
libraries such as:

• Hilt for dependency injection within the app.

• Jetpack Compose that is used for creating the app’s UI.

• Jetpack Datastore to save user’s info and Access Grants locally.

• Navigation for navigating between different screens in the app.

• Coroutine to do operations and API calls asynchronously.

• Kotlin Serialization to serialize and deserialize working objects.

3.5.1 Screens

This app has four main screens as described below and a Startup page with the
responsibility of checking the user’s state at the application’s opening stage and
deciding to show Login or Main.

3.5.1.1 Login

Login page is shown when the user runs the app and has not logged into his Solid
pod or logged out previously. It has a button element to log into Inrupt Solid pod
space. It uses Solid Android API library for authentication. Same process as code 32
used, and in case of a successful login, transfer the user to the Main page; otherwise,
stay on this page.
It uses androidx.activity.compose.rememberLauncherForActivityResult for
starting an Intent. Two hardcoded variables AUTH_APP_REDIRECT_URL and
OIDC_ISSUER_INRUPT_COM used for indicating the return URL from the browser
page after finishing the authentication step and address of the Inrupt OIDC issuer,
respectively.

In Figure 4a, a screenshot of the login page can be seen with
Login with Inrupt.com button which by clicking, moves the user forward to Fig-
ure 4b. In this page that shows on a browser that the user has chosen, the login
page of the pod provider will be shown. Entering the correct username and password
logs into the pod and shows Figure 4c. The user has been asked to give permission
to the Android Solid Servies app or deny it. In case of allowing, Main will pop up;
otherwise, it will come back to Login page.

44



(a) Login page (b) Transfering the user to
a browser with the login
page of the pod provider

(c) App permission request
after user logged in his pod

space

Figure 4: Android Solid Services - Login page

3.5.1.2 Main

The main page will be shown after a successful login or entering the app that has
already been authenticated. Here, the WebID of the user has been shown with a
drop-down menu of all pod spaces connected to that specific WebID. Figure 5 shows
the status of this page.

45



Figure 5: Android Solid Services - Main page

3.5.1.3 Setting

In the Settings page, the user can log out from the account by Logout button and
relogin with the same or other different pods. A view of the page can be seen in
Figure 6.

Figure 6: Android Solid Services - Settings page

46



3.5.1.4 Access Grants

In the Access Grants tab, the user can see and manage applications to which he has
given permission. It contains a list of all applications with their icon, name, and
package name. A dialog will pop up by clicking Revoke Permission, and the user
can revoke the permission from the selected app. They can be seen in Figure 7a
and Figure 7b. When a developer uses Solid Android Client library to integrate
with Solid, while they ask for permission, a dialog same as Figure 7c will pop up by
Android Solid Services app and allow the user to decide to give that third-party app
permission or not.

(a) Access Grants page (b) Revoking permission
from an already-accessed

app

(c) Request permission
from a third-party app

Figure 7: Android Solid Services - Access Grants page

3.5.2 Repositories

3.5.2.1 Access Grant

This repository is created to manage access grants of third-party apps, and it
provides the functions in code 35. It can check whether an app has permission
or not, permit an app, revoke it, and return a list of all apps that have access
granted. These functionalities are used in Access Grants screen. There is an
implementation for this interface named AccessGrantRepositoryImplementation,
which uses AccessGrantLocalDataSource interface that handles access grants locally
with SharedPreferences in Android.

47



1 interface AccessGrantRepository {

2 fun hasAccessGrant(appPackageName: String): Boolean

3 fun addAccessGrant(appPackageName: String, appName: String)

4 fun revokeAccessGrant(appPackageName: String)

5 fun grantedApplications(): List<GrantedApp>

6 }

Code Snippet 35: AccessGrantRepository interface definition

3.5.2.2 Resource Permission

ResourcePermissionRepository is used to check each third-party app has access
to which resources with which type of access grants such as CREATE, READ, UPDATE
and DELETE. Only one function is shown in 36. For the current implementation,
which is done by ResourcePermissionRepositoryImplementation, all apps that
log in via Android Solid Services app have access to all resources with all permission
types.

1 interface ResourcePermissionRepository {

2 fun hasAccess(

3 resourceClaimantPackageName: String,

4 resourceUrl: String,

5 permissionType: PermissionType

6 ): Boolean

7 }

Code Snippet 36: ResourcePermissionRepository interface definition

3.5.3 Services

Services in Android Solid Services refers to the APIs that it provides to other apps to
connect to it through Android Interprocess Communication. There are also instances
of Service which run in the background without any user interface. Services here have
been divided into three different parts for specific features. This feature has been
used to communicate with this app in Solid Android Client library. In other words, a
third-party app that uses Solid Android Client library will use these functions under
the hood to ask Android Solid Services for authentication, resource management,
and data modules.

3.5.3.1 Authenticator Service

This service provides an implementation for IASSAuthenticatorService. Solid
SignIn Client starts this service and calls the functions presented here, and under the
hood, it uses functions provided by Authentication and Access Grant. The system
call getCallingUid() used in this call is for retrieving the caller’s third-party app’s
user ID to get the name, package name, and icon. The implementations for methods
hasLoggedIn, isAppAuthorized and disconnectFromSolid can be seen in code 37.

48



Also, how it handles a login request is demonstrated in 38. Line 10 checks if the
user has logged into his pod before, and Line 11 checks if the calling app has been
authorized before. If yes, it calls onResult function of the callback with value true
which means granted. Show the dialog in 7b if no. In line 2, it checks if the app has
permission to show the dialog; it calls system call canDrawOverlays() function by
passing Android Solid Services app’s context object.

1 override fun hasLoggedIn(): Boolean {

2 return authenticator.isUserAuthorized()

3 }

4

5 override fun isAppAuthorized(): Boolean {

6 return accessGrantRepository.hasAccessGrant(packageManager.getN ⌋

ameForUid(getCallingUid())!!),→

7 }

8 override fun disconnectFromSolid(callback: IASSLogoutCallback) {

9 val packageName =

packageManager.getNameForUid(getCallingUid())!!,→

10 lifecycleScope.launch {

11 accessGrantRepository.revokeAccessGrant(packageName)

12 callback.onResult(true)

13 }

14 }

Code Snippet 37: hasLoggedIn, isAppAuthorized and disconnectFromSolid

methods implementations

49



1 override fun requestLogin(callback: IASSLoginCallback) {

2 if (Settings.canDrawOverlays(this@ASSAuthenticatorService)) {

3 val packageName =

packageManager.getNameForUid(getCallingUid())!!,→

4 val name = packageManager.getApplicationLabel(

5 packageManager.getApplicationInfo(

6 packageName,

7 0

8 )

9 ).toString()

10 if (hasLoggedIn()) {

11 if (isAppAuthorized()) {

12 callback.onResult(true)

13 } else {

14 showLoginDialog(

15 packageManager.getNameForUid(getCallingUid())!!,

16 name,

17 callback

18 )

19 }

20 } else {

21 callback.onError(SOLID_NOT_LOGGED_IN, "User has not

logged in."),→

22 }

23 } else {

24 callback.onError(DRAW_OVERLAY_NOT_PERMITTED, "Android Solid

Services doesn't have permission to draw overlay. Please

ask user to enable overlay drawing for Android Solid

Services in app settings.")

,→

,→

,→

25 }

26 }

Code Snippet 38: requestLogin method implementation

3.5.3.2 Resource Service

This service provides an implementation for IASSResourceService, which runs by
Solid Resource Client. Inside, it used Authentication, Resource Management and Re-
source Permission. It uses functions provided by Resource Management, catches the
response or its error, and returns it to the caller using IASSRdfResourceCallback

and IASSNonRdfResourceCallback callbacks. The implementation of the function
create is shown in code 39 to show how it maps them. Method handleBasicExceptions
controls the basic requirements such as LoggedIn user and having permission for
the caller app. In case of not satisfying these basics, calls onError function of the
callback with the error; otherwise, calls create function in Resource Management
and returns the result with the callback.

50



1 override fun create(resource: NonRDFSource, callback:

IASSNonRdfResourceCallback) {,→

2 handleBasicExceptions(

3 resource.getIdentifier().toString(),

4 packageManager.getNameForUid(getCallingUid())!!,

5 PermissionType.CREATE,

6 { code, message ->

7 callback.onError(code, message)

8 }

9 ) {

10 lifecycleScope.launch(Dispatchers.IO) {

11 val result =

12 solidResourceManager.create(resource)

13 when(result) {

14 is SolidNetworkResponse.Success -> {

15 callback.onResult(resource)

16 }

17 is SolidNetworkResponse.Error-> {

18 callback.onError(UNKNOWN, result.errorMessage)

19 }

20 is SolidNetworkResponse.Exception-> {

21 callback.onError(UNKNOWN,

result.exception.message),→

22 }

23 }

24 }

25 }

26 }

Code Snippet 39: create method implementation

3.5.3.3 Data Modules Service

This service is the implementation for IASSDataModulesService and
IASSContactsModuleInterface which called by Solid Contacts Data Module. It is
the same as the other two services in 3.5.3.1 and 3.5.3.2. It provides an instance of
IASSContactsModuleInterface by calling solidandroidclientaidlcontacts()

method of IASSDataModulesService. This instance’s responsibility is to provide a
one-to-one implementation of the interface method to return it to Solid Contacts
Data Module.

3.6 Solid Android Client

This is one of the modules in this project and is also exported as an Android library
in both Maven Central and Github. The responsibility of this library is to provide
some APIs for third-party apps to connect to Android Solid Services and finally to
the user’s Solid pod. It provides functionalities of Solid Android API library with

51



the difference that Android Solid Services will do all the work and the APIs would be
more straightforward. For instance, for authentication, the developer does not need
to ask the user for authentication for every app and pass the user through entering
username and password and doing Solid-OIDC. So it works this way: a user installs
Android Solid Services app and signs into his pod, and this app becomes the single
source of truth. All other third-party apps, including this library, will use provided
APIs for requesting access grants with much simpler UX, resources, and contact data
modules.

3.6.1 Solid SignIn Client

This singleton class provides authentication-related functionalities. In the time of
construction, it starts running Authenticator Service using Intent demonstrated in
code 40 and a callback to observe the connection of the service.

1 private val serviceConnection = object : ServiceConnection {

2 override fun onServiceConnected(className: ComponentName,

service: IBinder) {,→

3 iASSAuthService =

IASSAuthenticatorService.Stub.asInterface(service),→

4 connectionFlow.value = true

5 }

6

7 override fun onServiceDisconnected(className: ComponentName) {

8 iASSAuthService = null

9 connectionFlow.value = true

10 }

11 }

12 ...

13 val intent = Intent().apply {

14 setClassName(

15 ANDROID_SOLID_SERVICES_PACKAGE_NAME,

//com.pondersource.androidsolidservices,→

16 ANDROID_SOLID_SERVICES_AUTH_SERVICE //com.pondersource.and ⌋

roidsolidservices.services.ASSAuthenticatorService,→

17 )

18 }

19 context.bindService(intent, serviceConnection,

Context.BIND_AUTO_CREATE),→

Code Snippet 40: Starting Authenticator Service from Solid Android Client

It has a method named authServiceConnectionState that returns a Flow of
the service connection state to observe the connection and, if the service has been
connected, call the desired functions.

checkConnectionWithASS function checks if the Android Solid Services app has
been installed, the service has been connected, and the user has already logged in

52



his pod, and the continuing procedure has been passed to in the input, otherwise
throwing an Exceptions.

For getting access permission, requestLogin method can be called with a callback
that has two parameters of granted and exception for returning the result.

For disconnecting from an already-connected app, disconnectFromSolid can be
called, which inside calls the input callback with the result of disconnecting.

If a third-party app has already connected to Solid and the user relaunches the
app, a developer can call getAccount() function, and if the result is not null, they
can proceed to show functionalities. If it is null, the developer needs to make a login
request. It also may throw an Exception from Exceptions in case something goes
wrong.

The signature of the functions above can be seen in code 41.

1 fun authServiceConnectionState(): Flow<Boolean> {...}

2

3 fun checkConnectionWithASS(onContinue: () -> Unit) {...}

4

5 @Throws(Exception::class)

6 fun getAccount() : SolidSignInAccount? {...}

7

8 fun requestLogin(callBack: (Boolean?, SolidException?) -> Unit)

{...},→

9

10 fun disconnectFromSolid(callBack: (Boolean) -> Unit) {...}

Code Snippet 41: SolidSignInClient public functions signature

3.6.2 Solid Resource Client

Like other classes that connect to a service in Android Solid Services, this class needs
to bind to the correspondence service via an Intent. The code in 40 has been repeated
here because the service address differs with value com.pondersource.androidsolidservices.services.ASSResourceService
and the service type is IASSResourceService. It also has a function that returns
Flow<Boolean> that observes the service connection state. Here, this method is
called resourceServiceConnectionState.
IASSRdfResourceCallback and IASSNonRdfResourceCallback is also used here to
get resource results from the service. The caller also uses SolidResourceCallback<T>,
which is a generic callback and has two methods as other callbacks, and the result
type is T that should be inherited from one of RDFSource or NonRDFSource.

This class has five main functions named getWebId, read, create, update, and
delete. getWebId takes a callback of type SolidResourceCallback<WebId> and
beneth, calls getWebId method from IASSResourceService; The result is a type
of RDFSource and then construct WebId. The other four methods somehow work
similarly internally but with different methods. First, they check that the input
object is a type of RDFSource or NonRDFSource and then call the respective function
for that type in the IASSResourceService. As a use case, the method read has
been shown in 42.

53



1 fun <T: Resource> read(resourceUrl: String, clazz: Class<T>,

callback: SolidResourceCallback<T>) {,→

2 checkBasicConditions()

3 if (RDFSource::class.java.isAssignableFrom(clazz)) {

4 iASSAuthService!!.readRdf(resourceUrl, object:

IASSRdfResourceCallback.Stub() {,→

5 override fun onResult(result: RDFSource) {

6 if (clazz.isInstance(result)) {

7 callback.onResult(result as T)

8 } else {

9 val returnValue = //create an instance of class

clazz,→

10 callback.onResult(returnValue)

11 }

12 }

13 override fun onError(errorCode: Int, errorMessage:

String) {,→

14 callback.onError(handleSolidResourceException(error ⌋

Code, errorMessage)),→

15 }

16 })

17 } else if (NonRDFSource::class.java.isAssignableFrom(clazz)) {

18 iASSAuthService!!.read(resourceUrl, object:

IASSNonRdfResourceCallback.Stub() {,→

19 override fun onResult(result: NonRDFSource) {

20 if (clazz.isInstance(result)) {

21 callback.onResult(result as T)

22 } else {

23 val returnValue = //create an instance of class

clazz,→

24 callback.onResult(returnValue)

25 }

26 }

27 override fun onError(errorCode: Int, errorMessage:

String) {,→

28 callback.onError(handleSolidResourceException(error ⌋

Code, errorMessage)),→

29 }

30 })

31 } else {

32 throw SolidResourceException.NotSupportedClassException("Ob ⌋

jects which are RDFSource or NonRDFSource or inherited

from them can be read.")

,→

,→

33 }

34 }

Code Snippet 42: read() function implementation in SolidResourceClient

54



3.6.3 Solid Contacts Data Module

Like the other two above, this class starts a service and observes its connection. All
data modules are provided in one service with the name IASSDataModulesService,
and instances of each data module interface can be taken from here. As only Contacts
Data Modules has been implemented, this interface has only one method named
getContactsDataModuleInterface(). So when it starts the service, via Intent,
same as above, it takes the Contacts interface as soon as it has connected. As shown
in IASSContactsModuleInterface, there are various methods to be called from this
interface; each has a similar one in this class.

The functions working with this data module are suspend and should be called
from the background thread or using a Coroutine. As all Services are sequen-
tial methods and need a callback to get the result, beneath the methods here,
a suspendCoroutine has been initialized to convert sequential programming into
asynchronous. For instance, getAddressBook function can be analyzed based on
code shown in 43. The function input is a string that refers to the desired address
book uri. Inside the function, it checks the service connectivity and throws proper
Exceptions in case it has not been connected. The call getAddressBook function
from IASSContactsModuleInterface with an on-call instantiated callback to get
the result from the service and then return it to the coroutine. The inline function
suspendCoroutine makes this call an asynchronous method.

1 suspend fun getAddressBook(

2 uri: String,

3 ): AddressBook? {

4 checkService()

5 return suspendCoroutine { continuation ->

6 iASSContactsModuleInterface!!.getAddressBook(uri, object :

IASSContactModuleAddressBookCallback.Stub() {,→

7 override fun valueChanged(addressBook: AddressBook?) {

8 continuation.resume(addressBook)

9 }

10 })

11 }

12 }

Code Snippet 43: getAddressBook(...) implementation in
com.pondersource.solidandroidclient.sdk.SolidContactsDataModule

3.6.4 AIDL Definitions

In the Android environment, different applications can communicate with a standard
language named Android Interface Definition Language (AIDL); before any commu-
nication, an app should define the functions and parameters to tell other applications
how to call, and other apps should also know about these definitions. In this project,
these definitions have been declared in com.pondersource.solidandroidclient

package and in aidl subfolder. This is because Android Solid Services has the
implementation of these interfaces, and third-party apps that include Solid Android

55



Client in their source code need to know about these definitions. The main interface
definitions are as follows:

3.6.4.1 IASSAuthenticatorService

This interface is used to request an access grant from Android Solid Services app.
The functions are used as follows, and the code can be found in 44:

• hasLoggedIn():Boolean checks if user has logged into Android Solid Services
app.

• isAppAuthorized():Boolean checks whether the calling third-party app is
authorized to access the logged-in Solid pod or not.

• requestLogin(callback:IASSLoginCallback) is used to ask Android Solid
Services app from the calling third-party app to give access to the pod.

• disconnectFromSolid(callback:IASSLogoutCallback) is used to request
from the calling third-party app to disconnect from the already-accessed Solid
pod.

1 interface IASSAuthenticatorService {

2 boolean hasLoggedIn();

3 boolean isAppAuthorized();

4 void requestLogin(IASSLoginCallback callback);

5 void disconnectFromSolid(IASSLogoutCallback callback);

6 }

Code Snippet 44: IASSAuthenticatorService definition

3.6.4.2 IASSResourceService

This interface is designed for requesting a resource from Android Solid Services
app. A function is also added for more straightforward use to get the user’s WebId.
Then, four functions for CRUD operations on NonRDFSource and another four for
RDFSource. The interface definition is shown in code 45. in keyword is for input
objects.

56



1 interface IASSResourceService {

2 void getWebId(IASSRdfResourceCallback callback);

3 void create(in NonRDFSource resource,

IASSNonRdfResourceCallback callback);,→

4 void createRdf(in RDFSource resource, IASSRdfResourceCallback

callback);,→

5 void read(String resourceUrl, IASSNonRdfResourceCallback

callback);,→

6 void readRdf(String resourceUrl, IASSRdfResourceCallback

callback);,→

7 void update(in NonRDFSource resource,

IASSNonRdfResourceCallback callback);,→

8 void updateRdf(in RDFSource resource, IASSRdfResourceCallback

callback);,→

9 void delete(in NonRDFSource resource,

IASSNonRdfResourceCallback callback);,→

10 void deleteRdf(in RDFSource resource, IASSRdfResourceCallback

callback);,→

11 }

Code Snippet 45: IASSResourceService definition

3.6.4.3 IASSContactsModuleInterface

This interface has a map of functions in Solid Contacts Data Module with the
difference that parameters and structure changed due to AIDL limitations. The
source code of this interface can be seen in codes 46 and 47.

57



1 interface IASSContactsModuleInterface {

2

3 void getAddressBooks(IASSContactModuleAddressBookListCallback

callback);,→

4 void createAddressBook(

5 String title,

6 boolean isPrivate,

7 IASSContactModuleAddressBookCallback callback,

8 @nullable String storage,

9 @nullable String ownerWebId,

10 @nullable String container

11 );

12 void getAddressBook(String uri,

IASSContactModuleAddressBookCallback callback);,→

13 void deleteAddressBood(

14 String uri,

15 @nullable String ownerWebId,

16 IASSContactModuleAddressBookCallback callback

17 );

18 void createNewContact(

19 String addressBookUri,

20 in NewContact newContact,

21 in List<String> groupUris,

22 IASSContactModuleFullContactCallback callback

23 );

24 void getContact(

25 String contactUri,

26 IASSContactModuleFullContactCallback callback

27 );

28 void renameContact(

29 String contactUri,

30 String newName,

31 IASSContactModuleFullContactCallback callback

32 );

33 void addNewPhoneNumber(

34 String contactUri,

35 String newPhoneNumber,

36 IASSContactModuleFullContactCallback callback

37 );

38 void addNewEmailAddress(

39 String contactUri,

40 String newEmailAddress,

41 IASSContactModuleFullContactCallback callback

42 );

Code Snippet 46: IASSContactsModuleInterface definition - part 1

58



1 void removePhoneNumber(

2 String contactUri,

3 String phoneNumber,

4 IASSContactModuleFullContactCallback callback

5 );

6 void removeEmailAddress(

7 String contactUri,

8 String emailAddress,

9 IASSContactModuleFullContactCallback callback

10 );

11 void deleteContact(

12 String addressBookUri,

13 String contactUri,

14 IASSContactModuleFullContactCallback callback

15 );

16 void createNewGroup(

17 String addressBookUri,

18 String title,

19 in List<String> contactUris,

20 IASSContactModuleFullGroupCallback callback

21 );

22 void getGroup(

23 String groupUri,

24 IASSContactModuleFullGroupCallback callback

25 );

26 void deleteGroup(

27 String addressBookUri,

28 String groupUri,

29 IASSContactModuleFullGroupCallback callback

30 );

31 void addContactToGroup(

32 String contactUri,

33 String groupUri,

34 IASSContactModuleFullGroupCallback callback

35 );

36 void removeContactFromGroup(

37 String contactUri,

38 String groupUri,

39 IASSContactModuleFullGroupCallback callback

40 );

41 }

Code Snippet 47: IASSContactsModuleInterface definition - part 2

59



3.6.4.4 IASSRdfResourceCallback and IASSNonRdfResourceCallback

These two callbacks return results from Solid Resource Client inside Solid An-
droid Client. Both of them have two methods named onResult and onError in
which the second method is identical in both cases and the first method has differ-
ent input types; RDFSource for IASSRdfResourceCallback and NonRDFSource for
IASSNonRdfResourceCallback. As an example of how they look, the source of
IASSRdfResourceCallback has been shown in 48.

1 interface IASSRdfResourceCallback {

2 void onResult(in RDFSource result);

3 void onError(int errorCode, String errorMessage);

4 }

Code Snippet 48: IASSRdfResourceCallback interface definition

3.6.5 Exceptions

When a third-party app uses this library, apart from general Exceptions, one of
these specific Exceptions can be thrown:

• SolidAppNotFoundException: If user has not installed Android Solid Services
app on their phones.

• SolidNotLoggedInException: Thrown when the user has not logged in his
pod in Android Solid Services.

• SolidServiceConnectionException: If the library can not connect to one of
the services in Services.

• SolidServicesDrawPermissionDeniedException Shown when Android Solid
Services App does not have permission to draw overlay; it can be asked the
user to enable it from the app permissions section in settings.

• NotSupportedClassException: Thrown when a developer asks for a resource
that is not inherited from either NonRDFSource or RDFSource.

• NullWebIdException: When WebId is null.

• NotPermissionException: Appear when the third-party app cannot access
the requested resource.

• UnknownException: Thrown when the Exception is none of the above use
cases.

3.6.6 How to use

This library, the same as Solid Android API, has been published to Maven Central
and can be imported. Developers must import it with the latest version (currently
0.2.0) into their app-level build.gradle.kts file as shown in code 49.

60



1 dependencies {

2 ...

3 implementation("com.pondersource.solidandroidclient:solidandroi ⌋

dclient:0.2.0"),→

4 }

Code Snippet 49: Importing Solid Android Client library to a third-party
application

After importing the library and syncing the project, before using Solid Resource
Client or Solid Contacts Data Module, the developer needs to check the authentication
state with Android Solid Services. A sample code in 50 has been provided.

1 val ssc: SolidSignInClient = Solid.getSignInClient(context)

2 COROUTINES_SCOPE.launch {

3 ssc.authServiceConnectionState().collect { hasConnected ->

4 if(hasConnected) { //The Auth service is connected and

functions can be called,→

5 try {

6 if(ssc.getAccount() != null) { //The app already

has the permission and can work with pod

resources

,→

,→

7 } else {

8 //The app needs to ask permission

9 ssc.requestLogin { granted, exception ->

10 if (exception == null) {

11 if (granted == true) { //Have

permission to get use pod

resources

,→

,→

12 } else { //The user refused to permit

this app,→

13 }

14 } else { //Exception handling

15 }

16 }

17 }

18 } catch (e: Exception) {

19 //Exception handling

20 }

21 } else {

22 //Can not connect to the Auth service

23 }

24 }

25 }

Code Snippet 50: How to use SolidSignInClient in a third-party application

61



After being sure the user gave the permission, a developer can do CRUD operations
by using Solid Resource Client. To do so, we can check the service connectivity
status and do the desired operation on a resource. For example, a developer can
take inspiration from the code in 51.

1 val src: SolidResourceClient = Solid.getResourceClient(context)

2 src.resourceServiceConnectionState().collect { hasConnected ->

3 if(hasConnected) {

4 //The service has been connected

5 src.getWebId(object: SolidResourceCallback<WebId>{

6 override fun onResult(webid: WebId) {//Ready to use

webid},→

7 override fun onError(exception:

SolidException.SolidResourceException) {//Exception

handling}

,→

,→

8 })

9

10 val myCallback = object: SolidResourceCallback<MyObject>{

// class MyObject: RDFSource,→

11 override fun onResult(myObject: MyObject) {/*Ready to

use myObject*/ },→

12 override fun onError(exception:

SolidException.SolidResourceException) {/*Exception

handling*/ }

,→

,→

13 }

14 solidResourceClient.read(MY_OBKECT_URI_ON_POD,

MyObject::class.java, myCallback),→

15 solidResourceClient.create(myObject, myCallback)

16 solidResourceClient.update(myObject, myCallback)

17 solidResourceClient.delete(myObject, myCallback)

18 } else {

19 //The service has not been connected yet

20 }

21 }

Code Snippet 51: How to use SolidResourceClient in a third-party application

For using Solid Contacts Data Module, a developer can do the same procedure but
with SolidContactsDataModule class. A sample of using it has been demonstrated
in 52.

62



1 val scdm: SolidContactsDataModule =

Solid.getContactsDataModule(context),→

2 scdm.contactsDataModuleServiceConnectionState().collect {

hasConnected ->,→

3 if(hasConnected) {

4 //The service has been connected

5 COROUTINE_SCOPE.launch {

6 val allAddressBooks = scdm.getAddressBooks()

7 val firstPrivateAddressBook = scdm.getAddressBook(allAd ⌋

dressBooks.privateAddressBookUris[0]),→

8 val contact = scdm.getContact(firstPrivateAddressBook.c ⌋

ontacts[0].uri),→

9 val group =

scdm.getGroup(firstPrivateAddressBook.groups[0].uri),→

10 //Other functions in the Contacts Data Module can be

called the same as above,→

11 }

12 } else {

13 //The service has not been connected yet

14 }

15 }

Code Snippet 52: How to use SolidContactsDataModule in a third-party
application

63



4 Usecase

This chapter is dedicated to developing a use case that shows how the results are
used. The use case is an Android application for contacts named Solid Contacts. It
uses Solid Android Client library to develop an application working with address
books and contacts and storing them in the user’s Solid pod. This project can be
accessed through its Github repository. For developing this app, these libraries have
been used:

• Hilt for dependency injection

• Navigation for creating navigation graphs for different screens

• Jetpack Compose for creating UI

• Solid Android Client for connecting to Solid pod and using Solid Contacts
Data Module for working with Address books.

It has features such as:

• Connect to user’s Solid pod

• Viewing public and private address books

• Adding a new address book

• Adding a contact or group to an address book

• Removing a contact or group from an address book

• Seeing a contact or group details

This application has been developed by referring to A solution in 3.

4.1 Screens

4.1.1 Login and Settings

The Login page shows a button with ”Connect to Solid” text and uses Solid SignIn
Client to request a login. After logging in, it transfers the user to Adress Books page.
Also, there is a button on the Settings page that again uses Solid SignIn Client for
disconnecting from the pod. Two screenshots from these two pages can be seen in
Figure 8.

64

https://github.com/pondersource/Solid-Contacts


(a) Login page (b) Settings page

Figure 8: Solid Contacts - Login and Settings pages

4.1.2 Adress Books

On this page, all the users’ private and public address books on their pod will be
shown. Figure 9a and Figure 9b show private and public address books when they
are empty, while Figure 9c and Figure 9d demonstrate when there are some private
and public address books. For creating a new address book, the plus button on
the bottom right corner can be clicked, and a dialog such as Figure 9e will pop up
with the address book’s name field and a checkbox for making it private or public.
Tapping on one of the address books transfers the user to the Address Book page.

65



(a) Empty private address
books page

(b) Empty public address
books page

(c) Private address books
page

(d) Public address books
page

(e) Add a new
AddressBook

Figure 9: Solid Contacts - AddressBooks pages

4.1.3 Address Book

This page shows details about the current address book. On top, the name can be
seen, and in the top right corner, there is a red bin icon which, by clicking, shows a

66



dialog to the user, same as Figure 10a and the user can decide to delete it or cancel
the deletion. By clicking on the plus button in the bottom right corner, two other
buttons will appear, same as Figure 10b, that the user can add a contact or group to
his address book. ”Add Contact” transfers the user to Figure 11a, and ”Add Group”
navigates him to Figure 12a. Two tabs show lists of contacts and groups already
existing in the address book. They have been shown in Figure 10c and Figure 10d.
By tapping a contact, it goes to the contact’s details in Figure 11b, and tapping on
a group item results in showing a group page in Figure 12b.

67



(a) Delete address book
dialog

(b) Add a new contact or
group button

(c) Contacts list tab (d) Groups list tab

Figure 10: Solid Contacts - AddressBook pages

68



4.1.4 Contact

Contact consists of two pages, one for creating a new contact and another for showing
contact details. Figure 11a refers to the page where the user can put a name, a phone
number, and an email for a new contact and include or exclude groups that are in
the same address book by tapping the plus or cross icon on the right side of the
group item. The cross button on the top left corner of the page results in discarding
entered information and returning to the previous page, and ”Save” creates the
contact. All details of the selected contact are visible on the contact details page
that can be seen in Figure 11b. Tapping the red bin button on the top right side
of the screen results in contact deletion, and turning back to the previous page will
allow the back button to navigate back in the navigation graph.

(a) Add a new contact page (b) Contact details page

Figure 11: Solid Contacts - Contact pages

69



4.1.5 Group

For groups in an address book, like Contacts, two pages exist: One for creating a new
one and the other for showing group details. In the ”Create Group” page showing in
Figure 12a, the user can set a title and include or exclude contacts existing in the
address book into the group, and by tapping ”Save,” create the group. In Figure 12,
which shows the group name and its members, use has some abilities such as deleting
it or clicking a member item and transferring to Figure 11b to see member details.

(a) Add a new group page (b) Group details page

Figure 12: Solid Contacts - Group pages

4.2 Analyzing Solution

This app shows a small use case for using Solid in the Android environment. The
main feature is that all data will be saved in the user’s pod, and he can edit or
delete it at any time with this app or any other application that has been integrated
into Solid. It has the highest level of privacy as a user can manage the data at any

70



given time, and no third party can store his data. If we compare it to other contact
providers such as Google or Apple, the user can delete the data on these platforms,
but he can not be sure whether it has been deleted from the platform’s server. It
is also a shift in the apps as it decouples the service and the data; Apps would be
more service, and the data they need can be fed from the user’s pod with the user’s
permission.

71



5 Limitations and Future Works

5.1 Limitations

Some limitations affected the speed of the work progress, the quality of the results,
and the features provided.

The first main obstacle is the lack of any library that works with Linked Data.
Most tools have been developed for web-based applications, and those written for
Java environment have many conflicts with the Android development ecosystem.
Also, the library used in this work, Titanium JSON-LD[13], lacks enough features,
data conversion, and a variety of data format support. It made it difficult to work
only with JSON-LD with an incomplete set of functions for creating a dataset from
and Resource Description Framework (RDF) resources.

The second significant limitation is the features provided by Inrupt Java Client[11]
library, which can not be used for handling authentication and authorization in the
Android environment and can not save the state of the user based on Client classes
provided. It made it more challenging to save the user state and added overhead of
low-level token requests and token refreshing. Also, resource management is limited
to working with Streams and not higher level classes such as RDF resources, which
have been provided in this library due to using incompatible libraries such as Jena.

Another limitation caused by third-party libraries is that OpenID Android
AppAuth library [12] handles authentications only based on Bearer tokens and
not DPoP ones, which are a requirement in some Solid pod providers.

Due to the open source characteristics of Solid, different WebID and Pod providers
use different versions of Solid server. These different versions use some features that
do not exist in previous versions or vice versa. Data modules in the Solid community
are still experimental and do not have an all-agreed standard. This work just started
around some simple and small use cases such as Contacts, Calendar, Bookmarks,
etc., and it needs more work to support complex data formats and be included in
this work, too.

The Solid community is a small community mostly focused on web application
solutions. During the work, there were many deadlocks that no one could help with,
making the job much slower and taking more time than planned.

5.2 Future Works

There are many open fields regarding future work, such as overcoming some of the
limitations or providing new features.

Developing a RDF-based processor library dedicated to Android or even mobile
environment, developed by tools such as Kotlin Multiplatform, can help have a more
straightforward way of working with Linked Data (LD) resources and having more
functions for different uses.

Expanding OpenID open-source implementation in the Android environment to
support more secure standards such as DPoP token.

The work in this project provides the basic functionalities. It has an open field
for many features such as adding new data modules, adding offline-first, improving
APIs provided to developers, improving the useability of Android Solid Services app,
and others.

72



Adding support for Solid Access Control List (ACL) in Android and integrated
into this project to manage sophisticated use cases of sharing resources with third-
party applications or even entities outside the Solid ecosystem.

This groundwork can be used to develop user-centric applications that focus on
providing some services based on users’ data in their pods. At this moment, there is
an initial effort to use this work and create an open-source digital wallet for users
that totally depends on data provided by users in their pod spaces.

73



6 Conclusion

This thesis focused on integrating the Solid project into native Android development,
tackling the challenges of integrating a data-based and privacy-first solution into
the Android ecosystem. Solid gives users control over their data through Personal
Online Data Stores (Pods), but its current ecosystem is primarily built around web
technologies and web applications. Integrating Solid project with Android requires
resolving several obstacles, such as authentication complexities, incompatibility of
existing tools developed by Solid community and open-source projects, and the lack
of direct support for Solid’s protocols in Android’s development environment.

To overcome these issues, a modular solution was developed with three key
components: Solid Android API, Android Solid Services, and Solid Android Client.
The Solid Android API enables authentication, resource management, and Contacts
data module support, while the Android Solid Services Android app acts as a central
authentication point on the user’s phone, making it easier for third-party applications
to interact with Solid Pods. The Solid Android Client provides a streamlined way for
developers to integrate Solid into their Android applications without dealing with
the complexities of authentication and data management.

A practical use case—a Solid-powered address book application—was implemented
to test the solution. The results showed that it is possible to integrate Solid into
Android while maintaining security, privacy, and interoperability. However, challenges
remain, such as optimizing performance for mobile environments, adding more
functionalities for the app and libraries, extending support for different LD formats,
improving compatibility with existing Solid libraries, and making the development
process more intuitive for Android developers.

Despite all these challenges, this project is the basis for bringing Solid project into
Android development. Future work could involve refining the current APIs, producing
documentation for developers, and adding other data modules. Work of Solid project
adoption in the mobile ecosystem achieves the desired goal of giving users more
control over their data management throughout the Internet and enhancing privacy.

74



Bibliography

[1] Tim Berners-Lee. TAG Explainer for Solid. url: https://timbl.solidcommunity.
net/2023/03%20EWADA/TAGExplainerforSolid.html.

[2] Tim Berners-Lee. The Web - Take 3. url: https://solidproject.org/
take3.

[3] Wikipedia. Facebook–Cambridge Analytica data scandal. url: https://en.
wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_

scandal.

[4] Katrina Brooker. “I Was Devastated”: Tim Berners-Lee, the Man Who Created
the World Wide Web, Has Some Regrets. url: https://www.vanityfair.
com/news/2018/07/the-man-who-created-the-world-wide-web-has-

some-regrets.

[5] Eleni Sharp. Personal data stores: building and trialling trusted data services.
url: https://www.bbc.co.uk/rd/blog/2021-09-personal-data-store-
research.

[6] Chris Morris. Data Breaches Continue to Skyrocket in 2022. url: https:
//www.nasdaq.com/articles/data-breaches-continue-to-skyrocket-

in-2022.

[7] Ahmed Sherif. Market share of mobile operating systems worldwide 2009-
2024, by quarter. url: https://www.statista.com/statistics/272698/
global- market- share- held- by- mobile- operating- systems- since-

2009/#statisticContainer.

[8] Solid Community Group. Solid Protocol. url: https://solidproject.org/
ED/protocol#webid.

[9] Solid Community Group. Solid-OIDC. url: https://solidproject.org/TR/
oidc.

[10] Solid Community Group. Solid Technical Reports. url: https://solidproject.
org/TR.

[11] Inrupt. Inrupt Java Client. Version 1.2.0. url: https://github.com/inrupt/
solid-client-java.

[12] OpenID. OpenID Android. Version 0.11.1. url: https://github.com/openid/
AppAuth-Android.

[13] https://github.com/filip26. Titanium JSON-LD 1.1 Processor & API. Ver-
sion 1.4.1. url: https://github.com/filip26/titanium-json-ld.

[14] Wikipedia. Intent (Android). url: https : / / en . wikipedia . org / wiki /
Intent_(Android).

75

https://timbl.solidcommunity.net/2023/03%20EWADA/TAGExplainerforSolid.html
https://timbl.solidcommunity.net/2023/03%20EWADA/TAGExplainerforSolid.html
https://solidproject.org/take3
https://solidproject.org/take3
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://www.vanityfair.com/news/2018/07/the-man-who-created-the-world-wide-web-has-some-regrets
https://www.vanityfair.com/news/2018/07/the-man-who-created-the-world-wide-web-has-some-regrets
https://www.vanityfair.com/news/2018/07/the-man-who-created-the-world-wide-web-has-some-regrets
https://www.bbc.co.uk/rd/blog/2021-09-personal-data-store-research
https://www.bbc.co.uk/rd/blog/2021-09-personal-data-store-research
https://www.nasdaq.com/articles/data-breaches-continue-to-skyrocket-in-2022
https://www.nasdaq.com/articles/data-breaches-continue-to-skyrocket-in-2022
https://www.nasdaq.com/articles/data-breaches-continue-to-skyrocket-in-2022
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/#statisticContainer
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/#statisticContainer
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/#statisticContainer
https://solidproject.org/ED/protocol#webid
https://solidproject.org/ED/protocol#webid
https://solidproject.org/TR/oidc
https://solidproject.org/TR/oidc
https://solidproject.org/TR
https://solidproject.org/TR
https://github.com/inrupt/solid-client-java
https://github.com/inrupt/solid-client-java
https://github.com/openid/AppAuth-Android
https://github.com/openid/AppAuth-Android
https://github.com/filip26/titanium-json-ld
https://en.wikipedia.org/wiki/Intent_(Android)
https://en.wikipedia.org/wiki/Intent_(Android)


List of Source Codes

1 Resource interface definition . . . . . . . . . . . . . . . . . . . . . . . 18
2 The way NonRDFSource writes to a Parcel object and reads from it

to construct a new one . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 The way RDFSource writes to a Parcel object and reads from it to

construct a new one . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 The way RDFSource overrides getEntity() function . . . . . . . . 20
5 Add an attribute to a RDFSource. . . . . . . . . . . . . . . . . . . . . 21
6 Remove an attribute from a RDFSource. . . . . . . . . . . . . . . . . 22
7 Find attributes inside a RDFSource. . . . . . . . . . . . . . . . . . . . 22
8 SolidContainer constructor . . . . . . . . . . . . . . . . . . . . . . . 23
9 Profile data class definition . . . . . . . . . . . . . . . . . . . . . . . 23
10 addAddressBook function in SettingTypeIndex . . . . . . . . . . . . 24
11 writeToString(...) and readFromString(...) implementations . 25
12 writeToString and readFromString implementations . . . . . . . . 25
13 AddressBookList and AddressBook definitions . . . . . . . . . . . . 26
14 FullContact definition . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15 FullGroup definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
16 getAuthorizationConf() implementation that gets configuration of

the WebID issuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
17 registerToOpenId()method implementation that requests to OpenID

by passing oidc-issuer configuration and the app’s redirect URI . . . . 29
18 Requesting a token for the first time after having a successful authen-

tication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
19 Creating an authentication Intent . . . . . . . . . . . . . . . . . . . . 31
20 Handling authorization response after completing the login in the

browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
21 Getting JwtClaims object by idToken which contains user’s WebID . 33
22 Definition of SolidResourceManager interface with its functions . . . 34
23 SolidNetworkResponse<T> implementation . . . . . . . . . . . . . . 35
24 Reading a resource from a Pod and convert it to type T which inherits

from Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
25 Implementation of function constructObject() . . . . . . . . . . . . 37
26 UserRepository definition . . . . . . . . . . . . . . . . . . . . . . . . 38
27 UserRepository main functions implementation . . . . . . . . . . . . 38
28 SolidContactsDataModule definition - AddressBook-related function 39
29 SolidContactsDataModule definition - Contacts-related functions . . 40
30 SolidContactsDataModule definition - Groups-related function . . . 41
31 Importing Solid Android API library to a third-party application . . 41
32 Using Solid Android API library in a third-party application for doing

the authentication with Solid-OIDC . . . . . . . . . . . . . . . . . . . 42
33 Using Solid Android API library in a third-party application for

accessing resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
34 Using Solid Android API library in a third-party application for using

Contacts data module . . . . . . . . . . . . . . . . . . . . . . . . . . 43
35 AccessGrantRepository interface definition . . . . . . . . . . . . . . 48
36 ResourcePermissionRepository interface definition . . . . . . . . . 48

76



37 hasLoggedIn, isAppAuthorized and disconnectFromSolid meth-
ods implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

38 requestLogin method implementation . . . . . . . . . . . . . . . . . 50
39 create method implementation . . . . . . . . . . . . . . . . . . . . . 51
40 Starting Authenticator Service from Solid Android Client . . . . . . . 52
41 SolidSignInClient public functions signature . . . . . . . . . . . . . 53
42 read() function implementation in SolidResourceClient . . . . . . 54
43 getAddressBook(...) implementation in com.pondersource.solidandroidclient.sdk.SolidContactsDataModule 55
44 IASSAuthenticatorService definition . . . . . . . . . . . . . . . . . 56
45 IASSResourceService definition . . . . . . . . . . . . . . . . . . . . 57
46 IASSContactsModuleInterface definition - part 1 . . . . . . . . . . 58
47 IASSContactsModuleInterface definition - part 2 . . . . . . . . . . 59
48 IASSRdfResourceCallback interface definition . . . . . . . . . . . . . 60
49 Importing Solid Android Client library to a third-party application . 61
50 How to use SolidSignInClient in a third-party application . . . . . 61
51 How to use SolidResourceClient in a third-party application . . . . 62
52 How to use SolidContactsDataModule in a third-party application . 63

List of Figures

1 Simplified version of Solid Architecture . . . . . . . . . . . . . . . . . 12
2 Solid Authentication Flow . . . . . . . . . . . . . . . . . . . . . . . . 14
3 The overall architecture of Android Solid Services project with its

modules and points of interacting with external parties. . . . . . . . . 17
4 Android Solid Services - Login page . . . . . . . . . . . . . . . . . . . 45
5 Android Solid Services - Main page . . . . . . . . . . . . . . . . . . . 46
6 Android Solid Services - Settings page . . . . . . . . . . . . . . . . . . 46
7 Android Solid Services - Access Grants page . . . . . . . . . . . . . . 47
8 Solid Contacts - Login and Settings pages . . . . . . . . . . . . . . . 65
9 Solid Contacts - AddressBooks pages . . . . . . . . . . . . . . . . . . 66
10 Solid Contacts - AddressBook pages . . . . . . . . . . . . . . . . . . . 68
11 Solid Contacts - Contact pages . . . . . . . . . . . . . . . . . . . . . 69
12 Solid Contacts - Group pages . . . . . . . . . . . . . . . . . . . . . . 70

77



Glossary

Activity is a fundamental Android component that manages the user interface and
interactions of an application. 15, 16

Bearer token is a type of token used for authentication and authorization and
is used in web applications and APIs to hold user credentials and indicate
authorization for requests and access. 15, 72

Broadcast Receiver is one of the components in Android that enable apps to
listen for and respond to broadcast messages from other apps or the system
itself. 15

Content Provider is a way for different Android apps to share information with
each other. 15

Coroutine A coroutine is a concurrency design pattern that you can use on Android
to simplify code that executes asynchronously. 44, 55

Desugaring allows lower API levels to work with new Java libraries. 16

DPoP Demonstrating Proof of Possession (DPoP) is a relatively simple mechanism
for sender-constraining access tokens. It gives a way to tie an access token to
the client that originally receives it from the authorization server. This means
that the access token is no longer a bearer token. 15, 72

Hilt Hilt is a dependency injection library for Android that reduces the boilerplate
of doing manual dependency injection in Android projects. 44, 64

Intent in the Android operating system is a software mechanism that allows users
to coordinate the functions of different activities to achieve a task[14]. 28, 31,
44, 52, 53, 55, 76

IPFS InterPlanetary File System (IPFS) is a modular suite of protocols for organiz-
ing and transferring data, designed from the ground up with the principles of
content addressing and peer-to-peer networking. Because IPFS is open-source,
there are multiple implementations of IPFS. While IPFS has more than one
use case, its main use case is for publishing data (files, directories, websites,
etc.) in a decentralised fashion. 10

Jackson is a high-performance JSON processor for Java. Its developers extol the
combination of fast, correct, lightweight, and ergonomic attributes of the library.
16

Jena is a Java framework for building Semantic Web applications. It provides an
extensive Java libraries for helping developers develop code that handles RDF,
RDFS, RDFa, OWL and SPARQL in line with published W3C recommenda-
tions. Jena includes a rule-based inference engine to perform reasoning based
on OWL and RDFS ontologies, and a variety of storage strategies to store RDF
triples in memory or on disk. 15, 16, 72

78



Jetpack is a suite of libraries to help developers follow best practices, reduce
boilerplate code, and write code that works consistently across Android versions
and devices so that developers can focus on the code they care about. 14

Jetpack Datastore Jetpack DataStore is a data storage solution that allows you
to store key-value pairs or typed objects with protocol buffers. DataStore uses
Kotlin coroutines and Flow to store data asynchronously, consistently, and
transactionally. 44

Jetpack Compose Jetpack Compose is Android’s recommended modern toolkit
for building native UI. It simplifies and accelerates UI development on Android.
44, 64

JSONB is a PostgreSQL data type used for holding semi-structured data in the
Spanner PostgreSQL dialect. JSONB holds data in JavaScript Object Notation
(JSON) format, which follows the specification described in RFC 7159. 16

Kotlin Multiplatform Kotlin Multiplatform is a technology that allows developers
to create applications for various platforms and efficiently reuse code across
them while retaining the benefits of native programming. The applications will
run on iOS, Android, macOS, Windows, Linux, and more.. 72

Kotlin Serialization Kotlin Serialization is a cross-platform and multi-format
framework for data serialization—converting trees of objects to strings, byte
arrays, or other serial representations and back. 44

Maven Central Maven Central, as part of the build automation tool Apache Maven,
is the primary software registry and repository for Java components, libraries,
and frameworks, as well as Java Virtual Machine (JVM) languages. 41, 51, 60

Navigation Navigation is a framework for navigating between ’destinations’ within
an Android application that provides a consistent API whether destinations
are implemented as Fragments, Activities, or other components. 44, 64

N-Quads is a line-based, plain text format for encoding an RDF dataset. RDF
1.2 N-Quads introduces triple terms as a fourth kind of RDF term which can
be used as the subject or object of another triple, making it possible to make
statements about other statements. 13

N-Triples is a line-based, plain text format for encoding an RDF graph. 13

OpenID Connect is an interoperable authentication protocol based on the OAuth
2.0 framework of specifications (IETF RFC 6749 and 6750). It simplifies the
way to verify the identity of users based on the authentication performed by an
Authorization Server and to obtain user profile information in an interoperable
and REST-like manner. 12, 15, 16, 28, 29, 76

RDF/JSON represents a set of RDF triples as a series of nested data structures.
13

79



RDF/XML is a syntax defined by the W3C, to express (i.e. serialize) an RDF
graph as an XML document. 13

Service in Android are a fundamental component of the Android operating system,
designed to run long-running operations in the background without a user
interface. 15, 48

Turtle Terse RDF Triple Language (Turtle) is a syntax and file format for expressing
data in the Resource Description Framework (RDF) data model. 13, 16

Acronyms

AC Access Control. 13

ACL Access Control List. 13, 73

AI Artificial Intelligence. 10

AIDL Android Interface Definition Language. 55, 57

API Application Programming Interface. 7, 10, 14, 15, 18, 44, 48, 51, 52, 72

CRUD Create, Read, Update and Delete. 42, 56, 62

GDPR General Data Protection Regulation. 10

HTTP HyperText Transfer Protocol. 12, 13, 14, 16

IDP Identity Provider. 8, 13, 14

IRI Internationalized Resource Identifier. 13

JS JavaScript. 14, 80

JSON JavaScript Object Notation. 14, 80

JSON-LD JavaScript Object Notation for Linked Data. 13, 16, 35, 72

JVM Java Virtual Machine. 79

LD Linked Data. 8, 13, 14, 15, 18, 72, 74

LDP Linked Data Platform. 13

MVVM Model, View, ViewModel. 44

Non-RDF Non-Resource Description Framework. 13

OS Operation System. 10

80



Pod Personal Online Data store. 8, 9, 12, 13, 15, 22, 23, 24, 28, 34, 36, 72, 76

Pods Personal Online Data Stores. 3, 8, 9, 12, 13, 14, 34, 74

PWA Progressive Web App. 9

RDF Resource Description Framework. 12, 13, 16, 18, 19, 72

REST Representational State Transfer. 13, 14, 15

SDK Software Development Kit. 14

Solid-OIDC Solid OpenID Connect. 12, 13, 16, 42, 76

UI User Interface. 44

URI Uniform Resource Identifier. 12, 17, 20, 23, 29, 34, 35, 36, 76

URL Uniform Resource Locator. 13, 44

WebID Web Identity. 12, 23, 28, 33, 45, 72, 76

WWW World Wide Web. 7

81


	Introduction
	What is Solid project?
	Impact of Solid
	Accessibility
	Security
	Privacy
	Digital Sovereignty

	Importance of Solid in Android Ecosystem

	Problem Definition
	Solid Architecture
	Android App Development and Solid
	Existing Tools
	Defining Desired Solution

	Final Solution
	Integrate Existing Tools into the Android
	Architecture
	Shared
	Resource
	NonRDFSource
	RDFSource
	SolidContainer
	Profile
	SettingTypeIndex
	WebId
	Contact Data Module

	Solid Android API
	Authentication
	Resource Management
	User Repository
	Solid Contacts Data Module
	How to use

	Android Solid Services
	Screens
	Repositories
	Services

	Solid Android Client
	Solid SignIn Client
	Solid Resource Client
	Solid Contacts Data Module
	AIDL Definitions
	Exceptions
	How to use


	Usecase
	Screens
	Login and Settings
	Adress Books
	Address Book
	Contact
	Group

	Analyzing Solution

	Limitations and Future Works
	Limitations
	Future Works

	Conclusion
	Bibliography
	List of Source Codes
	List of Figures
	Glossary
	Acronyms

