
POLITECNICO DI TORINO

Master’s degree
in Computer Engineering

Master’s Degree Thesis

Well-being App: Designing a Secure and
Scalable Backend for a Mobile
Health and Wellness Solution

Supervisor Candidate
prof. Maurizio Morisio Domenico Gagliardo

Academic Year 2024-2025

Abstract

The spread of smartphones and wearable devices across the years have contributed to the

development of new technologies. Wearable devices, thanks to the possibility of monitoring

the user and collecting data, have made possible technology integration especially in the

health sphere. However, sedentary lifestyle remains a common and widespread problem.

The health app project aims to address this challenge through the implementation of a

mobile application, called Well Being App. The goal is to develop an application capable

of providing functionalities which encourages the user to be more active with daily goal to

meet, but also by prompting him to insert information periodically, in order to improve

his lifestyle and achieve the best health condition possible. All this was done by providing

intuitive charts to visualize the data, a user friendly way to insert data, as well as a quiz

and a notification s ystem t o e ngage t he u s er. Furthermore, s ign-up i nformation together

with activity goals are easily accessible and editable, and wearable integration has been

made, all coupled with a multi language support, to provide a better user experience and

make the application more intuitive and easy to use.

Health guidelines set by leading organizations in the field were firstly considered in framing

the application, moving then into how technology can help achieve an healthier lifestyle. By

having that in mind, the requirements (both functional and non-functional) were defined.

From that point, also the architecture was consequently defined, a nd t he t echnology stack

chosen. Flutter covered the frontend part while Google Firebase the backend, chosen since

it provides a comprehensive solution for real-time database, authentication, and cloud

storage, as well as an easy integration with flutter. A fter t hat f ollows t he implementation

of the system architecture, with the contributions made on the application, particularly

on the backend part. Finally, the application system performance were assessed and the

achieved results were discussed, as well as possible future enhancements and potential new

features.

Key Words:

Health, Sedentary Lifestyle, Wearable Devices, Google Firebase SDK, Mobile Application,

Flutter, User Engagement, System Architecture, System Performance.

2

Contents

Introduction . 5
1 Health and Well Being . 6

1.1 Guidelines . 7
1.1.1 Physical Activity Guidelines . 7
1.1.2 Healthy Diet Guidelines . 8

1.2 Technology Role in Health . 9
1.2.1 Smartphone Applications . 10
1.2.2 Wearable Devices . 12

2 System Specifications . 13
2.1 System Requirements . 13
2.2 System Design and Architecture . 18

2.2.1 System Design . 18
2.2.2 System Core Architecture . 19

3 Technology Stack . 22
3.1 Frameworks . 22

3.1.1 Flutter . 22
3.1.2 React . 23

3.2 Programming Languages . 24
3.2.1 Dart . 24
3.2.2 Javascript . 25
3.2.3 Groovy . 26
3.2.4 Yaml for flutter pub package manager . 27

3.3 Automation Dependencies Tools . 28
3.3.1 Pub Package Manager . 28
3.3.2 Gradle . 29
3.3.3 Npm . 30

3.4 Integrated Development Environment . 30
3.4.1 Core features . 31
3.4.2 New features . 34

3.5 Code Editor . 35
3.6 Google Firebase . 36

3.6.1 Authentication Service . 36
3.6.2 Cloud Firestore Database . 36
3.6.3 Cloud Storage . 37
3.6.4 Performance Monitoring . 37
3.6.5 Crashlytics . 37

3.7 Dependencies . 38
3.7.1 health . 38
3.7.2 workmanager . 38
3.7.3 awesome_notifications . 39
3.7.4 l10n . 39
3.7.5 firebase . 40

4 System Implementation . 41
4.1 Firebase . 41

4.1.1 Firebase Authentication . 41
4.1.2 Cloud Firestore Database . 43

4.2 User OnBoarding and Registration . 46
4.3 State Handling . 47
4.4 Home Page . 48

4.4.1 Health Data Source . 48
4.4.2 Database Data Source . 48

4.5 Health Measures Page . 50
4.5.1 Health Data Source . 50
4.5.2 Database Data Source . 51

4.6 Personal Information Page . 52

3

4.7 Learn Page . 53
4.8 MultiLanguage . 54
4.9 Health Data Backup with Cloud Storage . 55
4.10 Notifications . 58
4.11 Application Parameters . 60
4.12 Web Application . 61

5 System Outcomes and Enhancements . 63
5.1 Achieved Performances . 63

5.1.1 Startup Time . 63
5.1.2 API Calls . 64

5.2 Crashlytics . 65
5.3 Future Developments . 66

Bibliography . 68
List of Figures . 69

4

Introduction

The work that is being presented in the next pages is based on two main arguments: the

importance of following a healthy lifestyle and how technology can help in achieving this

goal. Infact, our project work along with my colleagues concerned the implementation

of a mobile application suited for achieving a good lifestyle. The application, composed

both by a frontend part and a backend one, allow the users to track their data regarding

metrics like nutrition, as well as physical activity, sleep and emotional state. These data

can be either inserted manually in an easy way or collected through a wearable device, and

are intuitively displayed through charts. The application still requires the user to insert

his basics information (username, age, sex, weight, height), which can be modified later

in a dedicated section, together with his activity goals. The application also integrates

a quiz gamification approach through a specific section of the app, that allow the users

to be more engaged, but also learn and deepen their knowledge about the topic. Finally,

a notification system to prompt the user into inserting information is included, as well

as multi language support in order to provide a better user experience. In addition, a

web application was also conceived to assist the admin into editing some application

parameters and to help him into lesson and quizzes management. The thesis is then

structured in 5 chapters: the first one deepen the health and well being topic, considering

the guidelines that literature has found over the years of studying the topic. It then focuses

on how technology can help us in achieving a better lifestyle, by considering which are

the main software and hardware tools that can be used, such as smartphone application

and wearable devices that allow to collect data and share them with application to create

a more complete picture of the user’s health. The second chapter covers the system, by

firstly consider the requirements related to it (both functional and non-functional) and

then moving to the system architecture, designed consequently. The third chapter focuses

on the technology stack, covering framework, programming languages, automation tools,

the IDE, and backend technlogies and integrations. The fourth chapter then talks about

the practical implementation of the application system, by focusing on the backend system.

Finally, the fifth chapter talks about the performance of the application system, and then

concludes the work by considering the achieved results and the future work that can be

done to improve the application.

5

1 Health and Well Being

Health is one of the most important, if not the most important aspect of a person’s life.

For this reason, over the years, different organisations have established guidelines on how

to stay healthy, thus increasing people’s life expectancy and quality of life. Among these,

the most widely worldwide recognized is the World Health Organization (WHO) [1] that

provides several guidelines not only in term of physical activity, covering also other health

aspects.

As far as concerns the physical activity, the WHO estimates that 1 in 3 adults and 4 in

5 adolescents do not do enough physical activity, with adolescents girls less active than

adolescents boys and with inactivity levels that increases after 60 years of age. This level

is expected to rise due to country economic development (more use of technology, change

of cultural values and more sedentary behaviour). This trend sadly keep going in the

wrong direction, despite the fact that physical activity has countless benefits, like reducing

the risk of heart disease, cancer, diabetes, hypertension and depression.

• Children and Adolescents:

– Regular physical activity enhances fitness, cardiometabolic health, bone

strength, cognitive and mental health while reducing body fat.

– Sedentary behavior leads to increased adiposity, poorer cardiometabolic health,

behavioral issues, and reduced sleep duration.

• Adults and Older Adults:

– Active adults experience lower body fat, risks of all-cause mortality, cardio-

vascular diseases, hypertension, specific cancers, and type-2 diabetes. They also

enjoy improved mental health, cognitive function, and sleep quality.

– Sedentary lifestyles are associated with higher mortality rates and increased

incidences of chronic diseases like cardiovascular issues and cancer.

• Pregnant and Post-Partum Women:

– Engaging in physical activity decreases the risks of pre-eclampsia, gestational

hypertension, gestational diabetes, excessive weight gain, newborn complications,

and postpartum depression, while having no negative effects on birth weight or

stillbirth risk.
Active vs Sedentary lifestyle[2].

6

Food is also crucial in order to be healtier. Having a healthy diet helps to prevent several

diseases (like heart disease, diabetes and cancer) and also malnutrition in all its forms.

However, care has to be taken in choosing the right food sources that have good quality

and avoid processed foods. Eating noble foods like fruits, vegetables, legumes, nuts, and

whole grains, while limiting the intake of salt, sugar, and fats, is the key to a healthy diet.

For all these reasons, both physical activity and diet are strongly promoted by the WHO

through his global action plan, by calling international partners, private sector and also

civil society to take action in order to support them.

1.1 Guidelines

1.1.1 Physical Activity Guidelines

As far as concerns the physical activity, the WHO gives some recommendation based on

the age group [3]:

• 5-17 years:

– Should do at least 60 minutes of physical activity with moderate/vigorous-

intensity daily (of course more than 60 minutes provides additional benefits), as

well as bone-strengthening and muscle-strengthening activities.

• 18-64 years:

– Should do at least 150 minutes of physical activity with moderate-intensity in a

week or at least 75 minutes of physical activity with vigorous-intensity in a week

or an equivalent combination of both (increasing moderate-intensity will provide

additional benefits), but also muscle-strengthening activities by involving major

muscle groups.

• 65 years and above:

– Should do at least 150 minutes of physical activity with moderate-intensity in a

week or at least 75 minutes of physical activity with vigorous-intensity in a week

or an equivalent combination of both (increasing moderate-intensity will provide

additional benefits), recruiting major muscle groups with muscle-strengthening

activities but also including exercises to enhance balance and prevent falls in case

of poor mobility.

7

1.1.2 Healthy Diet Guidelines

Regarding having an healthy diet, also here the WHO gives some guidelines, emphasizing

that a good diet includes legumes, fruit, vegetables, animal sources foods (like meat, fish,

eggs, and milk), cereals (like wheat and barley) and also tubers (like potato and yam). It

also gives some further recommendations[4]:

• Babies and young children breastfeeding:

– Breastfeeding promotes healthy growth, as well as having long-term benefit, like

reducing the risk of developing noncommunicable diseases, overweight, obesity.

From birth until 6 months of life is important to feed the baby only with

breastmilk, while from 6 months to 2 years of age is important to introduce also

additional complementary foods, while still breastfeeding.

• Eat lots of vegetables and fruit:

– These foods are rich in vitamins, minerals, dietary fiber, antioxidants and plant

protein, which help to prevent heart disease, stroke, diabetes, obesity and some

cancers.

• Eat less fat:

– Fats and oils are concentrated source of energy, so it is important to limit them,

especially saturated and industrially-produced trans-fat that can increase the

risk of stroke and heart disease. To avoid gaining weight in an unhealthy way

because of them, care has to be taken in using unsaturated vegetable oils (like

olive oil) instead of animal fats or oils high in saturated fats (like butter or palm)

and in any case fat consumption should not exceed 30% of total energy intake.

• Limit sugars:

– Sugar consumption should be the 10% of total energy intake. This should be

achieved by limiting soft drinks, soda and other drinks high in sugars (fruit juices

or yogurt drinks) and also by avoiding the consumption of processed foods high

in sugars (like cookies, cakes, chocolate). Better to choose fresh fruits instead of

them.

8

1.2 Technology Role in Health

Having clear in mind the importance of an healthy lifestyle and a good dieting, it is

also important the role that technology can have in this. Even though it is still possible

to achieve a good lifestyle without technology, it has to be said that using technology

sure makes it easier across several aspects. Several researches in this aspect have been

performed by the National Institutes of Health (NIH) [5], an american health organization

driven by the U.S. Department of Health and Human Services. The NIH found notable

improvement in diet and activity habits with usage of mobile technology.

They took 204 adult people that met those constraints:

• Being obese or at least overweight.

• Having a diet high in saturated fat and low in fruits and vegetables.

• Perform a small amount if daily physical activity.

• Having lots of sedentary time.

then they divided these people into four groups, where each one had a specific diet.

Furthermore, a mobile device was given to them and they had to enter their diet and

activity data into the device for a 20-week follow-up period. Coaches would then receive

the data during this period to monitor these people, as well as contacting them in order

to provide encouragement and support towards an healthy change. The results found

overall improvements in all four groups, emphasizing how technology can improve a fitness

journey, also as a means to provide support and motivation [6].

Another aspect in which technology surely can help is about measurements: during physical

activity and dieting, several aspects require measurements: the amount of calories burned,

the heart rate during physical activity, the amount of calories taken, as well as the types

of food consumed, their macronutrients (carbohydrates, proteins and fats) and so on. On

this matter, technology can provide several tools to help, like smartphone applications or

wearable devices.

In the first place, technology helps in easing the process of performing measurements

and gather those data (both for physical activity and dieting) that can be boring to do

repetitively for us humans. In the second place, technology can provide a more accurate

measurement of those data, more difficult to achieve manually. Related to this aspect, a

study of the NIH showed how physical activity measurements taken by devices proved to

be more punctual compared to the one taken manually with a diary [7].

9

1.2.1 Smartphone Applications

Moving to the technological tools that can be employed, smartphones surely are one of the

most used devices and they allow to exploit several aspects related both to dieting and

physical activity. Also here a study of the NIH [8] showed that users were more stimulated

into following a healthy diet, particularly liking applications that were quick and easy

to administer, and those that increase awareness of food intake and weight management.

Even though work has to be made to increase food awareness, the study recognizes the

importance of smartphone applications in this aspect. Dually another study has been

done also on physical activity [9], showing that smartphone apps can be efficacious in

promoting physical activity. Also in this case users tend to prefer applications that are

user-friendly, thanks to their capability of automatically track physical activity (e.g., steps

taken), track progress toward physical activity goals, as well as be flexible enough to be

used with different types of physical activity. Countless of these smartphone applications

are available to support an healthy lifestyle. They are cross-platform, so they can be used

on both Android and IOS devices, in order to reach the largest audience possible. Here are

some of the most popular applications, where for each the main features and the feature

that distinguishes the application from other on the market are listed:

App Name Features (Distinguishing Features In Bold)

MyFitnessPal Food logging with a large database, barcode scanning,

calorie and macro tracking, personalized insights,

exercise logging, and integration with other apps.

Share and View Your Diary with Others.

Fitbit Step tracking, heart rate monitoring, sleep analysis,

GPS tracking, food logging, and activity reminders.

Comprehensive health metrics tracking,

including stress levels and Active Zone

Minutes.

10

Google Fit Step counting, activity tracking, heart points,

integration with health apps, and customizable fitness

goals. Collaborates with the American Heart

Association and WHO for heart health

insights.

Nike Training Club Guided workout programs, personalized fitness plans,

workout tracking. Free access to a variety of

workouts, from yoga to high-intensity interval

training.

Strava GPS tracking for running, cycling, performance

metrics, social sharing, and route planning.

Community-focused with support for sharing

routes and competing with others.

Noom Weight loss coaching, food logging, biometric tracking,

and habit-building tools. Focus on the

psychological aspects of diet and health for

long-term results.

JEFIT Exercise logging, workout planning, personalized

workout, and performance tracking. Training

optimization with advanced analytics.

Cronometer Nutrition tracking, biometrics tracking, diary and

diary groups, and micronutrient breakdown.

Advanced nutrient tracking suitable for

specific diets.

Lifesum Food tracking, calorie counting, diet plans, water

tracking, and nutrient breakdown. Visual and

user-friendly meal planning tailored to dietary

preferences.

Yazio Calorie counting, meal planning, recipes, nutrition

tracking, and progress reports. Extensive recipe

database and meal planning features.

Table 2: Overview of popular diet and fitness apps with distinguishing features highlighted

11

1.2.2 Wearable Devices

Considering the Wearable Devices, even though they are less used compared to smartphones,

their usage is growing more and more. Furthermore they are a good tool in order to track

physical activity and dieting. Their main advantage is that they can be worn on the body,

like a watch or a bracelet, but they are equipped with sensors allowing to collect data

about the body, like the heart rate, the number of steps taken, the calories burned, the

quality of sleep, and so on. They can also be connected to a smartphone in order to share

the collected data, so that the user can have a more detailed view of his health status.

Given their diffusion, applications have been introducing a way to connect to these devices,

in order to exploit their data. This has been done by carefully considering their diffusion

[10].

Figure 1: Wearable diffusion by major brands [10].

12

2 System Specifications

2.1 System Requirements

By defining the system functional requirements, the application key functionalities to

implement were identified, by considering also existing applications (see table 1) that

represent standards on the health and fitness market. Security, usability as well as

other important aspects were considered, leading to the definition of the non-functional

requirements. The requirements can be classified as follows:

FR1 User Management

FR 1.1 Registration Allow a user to register through google or by defining

his credentials. Additionally, allow an user to enter his

demographics (age,sex,...) and body (height,weight,...)

data when the registration is in progress.

FR 1.2 Login

Management

Allow a user to log in into his account with the

methods that he had set up and allow also to change

the password, including the possibility to recover it in

case he forgot it.

FR 1.3 Account

Management

Allow a user to log out from his account and delete it.

Allow to add either google or classic credential

method as login method, in case he hadn’t used

before.

FR 1.4 Home Page Allow a user to visualize data regarding his steps,

food, sleep and emotional state. Allow also to

visualize data that exceeds the user goals differently

(they visually differ from the other ones).

13

FR1 User Management

FR 1.5 Learn Page Allow the user to take lessons and then related quizzes

to assess his preparation on the topic through the

learn page. The user can browse the lesson and his

topics, then take the corresponding test if he wants.

FR 1.6 Health Measures

Page

Allow a user to view his vital metrics by using charts

organized in different tabs instead of raw values, for a

better understanding.

FR 1.7 Personal

Information Page

Allow a user to edit some of his personal measures

(provided at registration time) and add his activity

goals, used as upper bound into the charts of the

Home Page.

Table 3: Overview of Functional Requirements related to the User Management.

FR2 Admin Management

FR 2.1 Admin

Application

Allow the admin to use a web application in order to

modify system metrics.

FR 2.2 Login/Logout Allow the admin to login into the web application, as

well as to logout.

FR 2.3 Parameters Edit Allow the admin to edit the application parameters

set up and shown to users.

FR 2.4 Application

Lessons

Allow the admin to manage the lessons that are

provided to the users inside the application.

FR 2.5 Application

Quizzes

Allow the admin to manage the quizzes that

corresponds to the lessons and are provided to the

users inside the application.

Table 4: Overview of Functional Requirements related to the Web Application provided
to the Admin.

14

FR3 Notification System

FR 3.1 Notification

System

Allow a user to receive notification with different

frequencies to prompt him into inserting data

regarding food, emotional aspect, balance capability,

strength capability.

FR 3.2 Notification

Parameters

Allow a user to receive notification based on common

users parameter, but also personalized based on some

personal parameter.

FR 3.3 Body Balance

Notification

Allow a user to receive notification to prompt him to

insert data regarding his balance capability, such as

balance test on one leg at a time or tandem walk.

FR 3.4 Body Strength

Notification

Allow a user to receive notification to prompt him to

insert data regarding his strength capability, such as

number of squats, abdominals and push ups, as well

as a grip strength test.

FR 3.5 Emotional

Notification

Allow a user to receive notification to prompt him to

insert data regarding his emotional aspect by

following the panas guidelines.

FR 3.6 Food Notification Allow a user to receive notification to prompt him

into inserting data regarding his consumed food, with

a different frequency, compared to the others.

FR 3.7 Assessment Allow a user to visualize a periodic assessment

produced thanks to the data that were previously

inserted.

Table 5: Overview of Functional Requirements related to the Notification System provided
to the User.

15

FR4 Data Management

FR 4.1 Data Sources Employing as main app data source Health Connect

(Health data management and integration platform

developed by Google), while still keeping Google

Firebase as additional data source where needed.

FR 4.2 Health Data

Source

The system must retrieve and display users’ health

data relating to steps and sleep on the home page, as

well as their heart and lung data in health measures

page.

FR 4.3 Google Firebase

Data Source

The system must retrieve and display users’ health

data related to emotional state and food on the home

page. Also weight, waist circumference, grip, balance

and strength data are retrieved from this data sources

and showed in the health measures page. Finally,

lessons and quizzes are fetched and showed in the

learn page, as well as profile and goals data are also

fetched and showed into personal information page.

FR 4.4 Health Data

Backup

The system must add the necessary logic to perform a

backup of the users’s health data.

Table 6: Overview of Functional Requirements related to the Data Management.

16

As far as concerns the non-functional requirements, we can classify them as follows:

NFR Type Description

NFR1 Reliability The system should ensure at least 80% accuracy and

functionality over the course of a year.

NFR2 Portability The application must be capable of running on

Android devices.

NFR3 Security Robust login mechanisms should be implemented to

protect user data and limit access only to authorized

individuals.

NFR4 Usability The application should be intuitive enough for users

of all ages and skill levels, requiring minimal training.

NFR5 Data Privacy User data must adhere to OAUTH for secure data

handling.

NFR6 Performance The app should smoothly load and handle user

interactions within two seconds under typical

conditions in order to achieve an optimal user

experience.

NFR7 Interoperability The application should seamlessly connect with

third-party platforms like Health Connect,

maintaining data accuracy and improving

functionality.

NFR8 Localization The app should support at least English and Italian

languages, adapting content and formats (e.g., date,

currency) accordingly.

NFR9 Modularity The app’s architecture should support modular

development to facilitate future updates without

impacting the entire codebase.

Table 7: Overview of Non-Functional Requirements related to the system.

17

2.2 System Design and Architecture

2.2.1 System Design

While designing the system, the main components have been chosen in order to provide a

clear and intuitive application system, as well as a robust and secure backend.

For the frontend application part, cross-platform frameworks have been analyzed, having in

mind the possibility to extend the application also to IOS platform. Flutter, React Native

and Xamarin were considered, but Flutter has been chosen, thanks to the possibility to

develop a single codebase for both Android and IOS, and also for his strong support by

Google who created it, that makes it a stable and reliable system, as well as a big community

and an official package repository where tons of libraries can be found. Considering the

web application, among several frameworks available (like React, Angular, Vue.js) React

has been chosen, given his diffusion, simplicity and modularity.

Regarding the backend part, different alternatives were considered, also based on the

frontend and our requirements:

• AWS Amplify, set of tools and services provided by Amazon Web Services (AWS)

to build secure and scalable mobile applications. It comes with a suite of services

that streamline the development process, like authentication, storage, GraphQL and

REST APIs as well as analytics.

• Express, fast and minimalist web framework built on top of Node.js, which is a

javascript runtime.

• Microsoft Azure, cloud computing service that provides a wide range of cloud

services, like analytics, storage, and networking. It allows developers to build, deploy,

and manage applications through Microsoft-managed data centers.

• Spring Boot, a Java-based framework used to create stand-alone, production-grade

applications, which simplifies the development of new applications by providing code

and configuration through annotations.

• Firebase, comprehensive app development platform by Google that provides a variety

of tools and services to help developers build high-quality apps quickly.

18

Among them, Express was immediately discarded despite its simplicity, because it mainly

focuses an APIs, does not provide authentication and it is not as rich of services as the

others, so it does not fit our needs. Spring Boot was also discarded, given the need to

setup external service for authentication (like keycloak IAM) and maintain a server where

the backend could run. AWS Amplify and Microsoft Azure were also closer to our needs,

but Firebase was chosen, thanks to his Flutter support and seamless integration (since

both made by Google) and thanks to the variety of services it provides: Cloud Firestore

as a data source, the Authentication system, Cloud Storage system as well as a suite of

services to monitor the application (such as Performance and Crashlytics).

2.2.2 System Core Architecture

Focusing on the system core architecture, it can consequently be summarized as follows:

Figure 2: Overview of the System Core Architecture.

19

We can identify the core architecture with the following components:

• Android Phone that represent the physical smartphone, along with his operating

system, our application installed and health connect installed, used to manage in an

unified way the health data on Android.

• Cloud Firestore Database server, firebase service employed as a data source for

the application logic, containing needed data, such as profile information.

• Firebase Authentication server, firebase service employed in order to perform and

enforce authentication.

• Cloud Storage server, firebase service employed to store the backup of the health

data for each user (see table 6 FR 4.4).

• A Personal Computer along with his operating system and a web application that

allows the admin to authenticate and to interact with the Cloud Firestore Database,

in order to modify the application parameters for users, as well as manage lessons

and quizzes that are then showed to them.

20

In addition to this architecture, the system can be further enriched by integrating a

wearable device, that can be a very useful tool to gather data, as previously explained in

section 1.2.2. In this scenario the wearable device will be connected to the smartphone:

Figure 3: Overview of the Mobile System Architecture, enriched with a wearable.

In this case the architecture has been extended with the wearable device, along with

his operating system, that through bluetooth connection can communicate with the

smartphone. On the smartphone side, the wearable application will be able to retrieve the

data from the wearable device to then sync with the Health Connect data management

service.

21

3 Technology Stack

3.1 Frameworks

3.1.1 Flutter

Figure 4: Logo of
the Flutter
Framework.

In order to develop the mobile application, the flutter framework was

employed. Flutter is an open-source framework created by Google. It

allows to build applications that are natively compiled for mobile, web,

embedded and desktop from a single codebase. The flutter code compiles

into ARM, Intel machine code or JavaScript, depending on the machine

for better performance on any device. It gives also the possibility to fine control the

layout to be able to create a customized, adaptive design that look and feel great on

any screen. It is also very productive from the developer point of view, thanks to the

hot reload feature, that allows to see the changes in real-time without losing any state.

The developer experience is also enhanced by automated testing and developer tools that

further allow to build production-quality apps. Among these the most relevant are widget

and layout inspectors, network and memory profilers, extensive docs, the pub package

manager (see section 3.3.1) as well as lots of pre-built widgets and layouts in the SDK. The

framework is widely known for its stability and reliability: infact, it is used by Google who

made it but also trusted by other well-known brands around the world, and maintained

by a community of developers, giving the possibility to collaborate on the open source

framework, contribute to the package ecosystem on pub.dev, and find help whenever it is

needed. The framework also offers a seamless integration with google services, allowing

to streamline development and reach a wider audience. Among these services Firebase,

Google Ads, Google Play, Google Pay, Google Wallet, Google Maps stand out. The

framework is based upon Dart (see section 3.2.1) as programming language [11]. To

practically use Flutter, just the Flutter SDK is needed, which includes the full Dart SDK,

and then any text-editor or integrated development environment (IDE), combined with

Flutter’s command-line tools. However, most popular options that include also a guided

setup are Android Studio, IntelliJ IDEA, and Visual Studio Code [12].

22

3.1.2 React

Figure 5: Logo of
the React
Framework.

In order to develop the web application, the react framework was em-

ployed. React is an open-source javascript library that aims to build

user interfaces based on components. Maintained by facebook, his main

advantage lies on the fact that it only re-renders those parts of the

page that have changed, avoiding unnecessary re-rendering of unchanged

DOM elements through the usage of the Virtual DOM, used as an

in-memory data-structure cache to compute the resulting differences.

The framework adheres to the declarative programming paradigm: the

developer design views for each state of an application, and react will handle update and

render of the components when some data changes. Among react main characteristics we

have the components, which are modular and can be reused: a react application comes with

many layers of components, rendered to a root element in the DOM using the react DOM

library. These components are tipically written in JSX (an extension to the JavaScript

language syntax). Also react hooks are a core feature, which are essentially functions that

let developers "hook into" react state and lifecycle features from function components.

They have specific rules (like they can be called only at the top level and from react

function) and some built-in hooks are already provided, like useState, useEffect. Since

react does not come with built-in support for routing, third-party libraries can be used to

handle routing (define routes, manage navigation, and handle URL changes) as well as

other client-side functionalities [13].

23

3.2 Programming Languages

3.2.1 Dart

Figure 6: Logo of
the Dart
Programming
Language.

The programming language on which Flutter is based upon and that

makes possible most of his features is dart. Dart is a client-optimized

language for making fast apps on any platform. It offers the most

productive programming language for multi-platform development, along

with a flexible execution runtime platform. Dart is the foundation of

Flutter, but also helps in several core delevoper tasks like formatting,

analyzing and testing code. Among his features, the most interesting surely is the instant

hot reload, that thanks to the Dart VM reflect immediately any code change, and the

possibility to build application for different devices but from a single codebase.

Figure 7: Overview of all the devices that dart is able to reach.

As we can see from fig. 7, the devices covered by a single code base range from embedded

devices, to mobile and laptop devices (by using Dart VM with just-in-time (JIT) com-

pilation and an ahead-of-time (AOT) compiler) and to web applications, with his web

compiler that translate Dart into JavaScript or WebAssembly. Additionally, the language

is type safe, so it uses static type checking to ensure that a variable’s value always matches

the variable’s static type. This is done without sacrificing flexibility, since the language

24

still permits the use of a dynamic type combined with runtime checks, which can be useful

during experimentation or for code that needs to be especially dynamic, through the usage

of the dynamic keyword. The language has also built-in null safety, so values can’t be

null unless the programmer explicitly say they can be. In this way dart can protect from

null exceptions at runtime through static code analysis. Unlike other null-safe languages,

this non-nullability is also retained at runtime, so if dart determines that a variable is

non-nullable, that variable can never be null. The language also comes with a mature and

complete async-await syntax for UI with event-driven code, all paired with a concurrency

system based on dart isolates (separate memory-isolated threads of execution used to

achieve concurrency). Dart comes with a rich set of libraries, ranging from core libraries

(dart:core) to the ones to parse json (dart:convert), for concurrency (dart:isolate),

web (package:web) and so on [14].

3.2.2 Javascript

Figure 8: Logo of
the Javascript
Programming
Language.

Javascript is a high-level, often just-in-time compiled language that

represents the core technology to build web applications. Among his

characteristics has dynamic typing, prototype-based object-orientation,

and first-class functions. It is multi-paradigm, supporting event-driven,

functional, and imperative programming styles. It comes with APIs to

work with text, dates, regular expressions, standard data structures, and

the Document Object Model (DOM). JavaScript is a single-threaded

language, based on the event loop approach. The runtime processes

messages from a queue one at a time, and it calls a function associated

with each new message, creating a call stack frame with the function’s arguments and

local variables, which will shrink and grow based on the function’s needs. When the call

stack is empty and the function completed, javascript proceeds to the next message in the

queue. In order to execute javascript code, a software component that executes the code

called javascript engine is needed. These engines are tipically developed by web browser

vendors: in fact, they tipically provide a runtime system, to enable interaction with a

broader environment. The runtime system includes the necessary APIs for input/output

operations, such as networking, storage, and graphics, and provides the ability to import

scripts [15].

25

3.2.3 Groovy

Figure 9: Logo of
the Groovy
Programming
Language.

Groovy is an object-oriented programming language, with dynamic

typing for the Java Platform, alternative to the Java language. It

can also be employed as a scripting language, intended to manage

application automations for the Java Platform. The language also has

features similar to languages such as Python, Ruby, Perl, and Smalltalk.

Based on the Java platform, the language uses a Java-like syntax, based

on curly brackets and is dynamically compiled in bytecode via the Java

Virtual Machine. The Groovy compiler can be used to generate standard Java bytecode

to interoperate seamlessly on any Java project. Among his features, the interoperability

with java (java files are valid groovy files) makes him very versatile, and groovy code

can also be more compact. It is characterized by object-oriented features (like operator

overloading and polymorphic iteration) as well as safe navigation operator ?. to check

automatically for null pointers. The latest versions add the support to newer features

like modularity, static compilation, type checking and multicatch blocks. Groovy has also

native support of markup languages such as XML and HTML by using an inline Document

Object Model (DOM) syntax. A Groovy script is fully parsed, compiled, and generated

all before execution (similarly to Python and Ruby) and differently from Java, a groovy

source code file can be executed as an uncompiled script under some circumstances[16].

Groovy is also used in the Gradle build system (see section 3.3.2), which is the official

build system for Android applications, and it is used to define the build configuration and

dependencies for the android part of the project.

26

3.2.4 Yaml for flutter pub package manager

Figure 10: Logo
of the Yaml
Language.

YAML is a data serialization language that is human readable. His

common usage regards configuration files and applications where data

is being stored or transmitted. The language targets many of the same

communication applications as Extensible Markup Language (XML) but

his minimal syntax differs from Standard Generalized Markup Language

(SGML). The language also supports JSON style inside the same file. In

Yaml custom data types are allowed but tipically they are not needed,

since the language natively encodes scalars (strings, integers, and floats),

lists, and associative arrays (so maps, dictionaries or hashes) all based on the Perl language.

In particular, there is the possibility for both lists and associative arrays to form nested

structures. It reuses escape sequences like in C and uses whitespace wrapping for multi-line

strings like in HTML. Read and write support of Yaml is available for many programming

languages and editors, where their extension is tipically .yaml or .yml. Regarding the

syntax, whitespace indentation is used for denoting structure like in Python and typically

uses UTF-32 encoding in order to have JSON compatibility. It is possible to comment a

line with the # character, use strings with single or double quotes, and specify lists and

arrociative arrays respectively through square brackets ([...]) or curly braces ({...})[17].

In the project, Yaml is used to define the dependencies in the pubspec.yaml file, which is

the configuration file for the Flutter pub package manager (see section 3.3.1).

27

3.3 Automation Dependencies Tools

3.3.1 Pub Package Manager

For managing flutter dependencies in our project, the pub package manager has been

employed. It uses a .yaml file (pubspec.yaml) to list the dependencies and has a command-

line interface that works both for flutter framework and dart programming language (in

our case we exploited it with flutter). The syntax is relatively simple and it works by

using the pub command followed by a subcommand.

There are several subcommands that are divided into three main categories, based on

functionalities[18]:

• Managing Package Dependencies: in this category the most relevant are the get

or upgrade commands, that respectively fetch or upgrade the dependencies that are

used by a package. Also other commands are available, like downgrade to downgrade

the dependencies at their lowest version for testing, or dually upgrade that upgrades

the dependencies to their highest version.

• Running command-line apps: in this category fall the global command, which

allows to make a package globally available, so that is possible to run scripts from his

bin directory (the directory must also be added to the PATH variables).

• Deploying packages and apps: the publish command here is used to share

developed dart packages with the community. This is done by uploading the package

to the pub.dev website, acting as a package repository where all developer can

download the published packages.

28

https://pub.dev/

3.3.2 Gradle

Figure 11: Logo
of the Gradle
Automation
Tool.

For managing dependencies/plugins in our project on the android side,

gradle has been employed. Gradle is a build automation tool for software

development which uses either Groovy or Java/Kotlin as language (in

our case we leveraged on Groovy). It offers support for all phases of a

build process, from compilation to verification, dependency resolving but

also test execution, source code generation, packaging and publishing.

Gradle is a multi-language tool, supporting languages like Java, Kotlin, Groovy, Scala, C,

C++ and Javascript. Gradle operates with his own domain-specific language in contrast

with the maven approach with XML. It has been designed to handle multi-project builds,

that can be very large. Infact, it supports a series of build tasks that can run serially

or in parallel, and build components can be also cached. Regarding his main features,

gradle follows a convention (folder structure of the project, standard tasks and their order

as well as dependency repositories) over configuration approach and all the build phases

can be described in short configuration files. All conventions can still be overriden if it

is necessary. One crucial gradle component is the plugin, that allow to integrate a set

of configurations and tasks into a project, and can be either downloaded from a central

plugin repository or custom-developed[19].

Figure 12: Gradle operating flow [20].

29

3.3.3 Npm

Figure 13: Logo
of the NPM
Automation
Tool.

For managing dependencies/plugins in our project on the web side, npm

has been employed. Npm is a package manager for the JavaScript pro-

gramming language and the default package manager for the JavaScript

runtime environment Node.js. It consists of a command line client in-

terface and an online database of public and paid-for private packages,

called the npm registry. The command line client interface allows users

to consume and distribute JavaScript modules that are available in the

registry and the available packages can be browsed and searched via the npm website.

When used as a dependency manager for a local project, npm can install, in one command,

all the dependencies of a project through the package.json file. Inside this file each

dependency can specify a range of valid versions: this to allow developers to auto-update

their packages and at the same time avoiding unwanted breaking changes. Npm also

provides the package-lock.json file which has the entry of the exact version used by the

project after evaluating semantic versioning in package.json. [21].

3.4 Integrated Development Environment

Figure 14: Logo
of the Android
Studio IDE.

As Integrated Development Environment for the mobile application,

Android Studio has been employed. Android Studio is the official IDE for

Android app development, but it seamlessly supports flutter through the

flutter plugin. Based upon JetBrains’ IntelliJ IDEA software, it inherites

most of his features (like code completion, refactoring, debugging but

also built-in tools and a plugin ecosystem). These features, combined

with the fact that it is available for download for windows, macOs and

linux, has helped to make it one of the most used IDE (together with

VsCode) on this field. Android Studio is licensed under the Apache license but it ships

with some SDK updates that are under a non-free license, so it is not completely open

source. The supported languages are Java, Kotlin (the actual Google’s preferred language

for Android app development), C++ and more with extensions, such as Go and Dart[22].

30

3.4.1 Core features

Several are the core features, based on IntelliJ Idea and then further extended and enriched,

that made this IDE a de-facto standard on mobile development:

The Intelligent code editor feature have been further extended to enhance the de-

velopers productivity. Particularly focused on the Android side, there is a clean Project

Structure, where each project contains one or more modules (Android App, Library and

Google App Engine Modules), each one with source code files and resource files. The

Android App module in particular contains the manifest, the source code and then all the

non-code resources in the res folder. Then, regardless of the mobile platform, Android

Studio includes Debug and profile tools that help in debugging and improving the perfor-

mance of code, including inline debugging and performance analysis tools. It is possible to

leverage on inline debugging to enhance code walkthroughs in the debugger view with inline

verification of references, expressions, and variable values. Also the Performance Profiler

allows to easily track memory and CPU usage, find deallocated objects, optimize graphics

performance, locate memory leaks and analyze network requests. The Memory Profiler can

be used instead to track memory allocation and watch where objects are being allocated

when you perform certain actions, since can be useful to optimize the app performance and

memory use by adjusting the method calls. Also heap dump is allowed in a specific format,

to analyze memory usage and find memory leaks. A solid Code Inspection system is also

provided. At compile time, the IDE automatically runs configured lint checks and other

IDE inspections to help you easily identify and correct problems with the code quality. The

lint tool checks the project source files for potential bugs and optimization improvements

for correctness, security, performance, usability, accessibility, and internationalization.

In addition to that, IntelliJ code inspections validates annotations to streamline coding

workflow. Finally, there is a Log System to view adb output and device log messages when

building or running the app and also an Annotation System is supported to annotate

variables, parameters, and return values to help find bugs, such as null pointer exceptions

and resource type conflicts [23].

The Flexible Gradle Build System is employed, with specific Android capabilities

provided by the Android Gradle Plugin. Leveraging on the Gradle flexibility allows us to

easily manage dependencies, then also customize, configure, and extend the build process,

as well as create multiple APKs. All this without modifying the app core source files, only

31

the gradle files (either using groovy or kotlin). By going deeper into the build system it

is possible to clearly distinguish some of the main aspects: the build types, that define

certain properties that Gradle uses when building and packaging your app (for example,

the debug build type enables debug options and signs the app with the debug key, while

the release build type signs your app with a release key for distribution). At least one

build types must be defined and the IDE creates debug and release build types by default;

The product flavors that are different versions of your app (like free and paid one) that

can be released to users: they can be customized to use different code and resources while

sharing the common parts. The dependencies are managed through the local file system

and remote repositories: this eliminates the need to manually search, download, and copy

binary packages into the project. Related to the APKs, the Code and resource shrinking

tool allow to shrink code and resources by using its built-in shrinking tools and applying

the appropriate set of rules: as result the APK size may be reduced significantly. Finally,

the multiple APK support allows to automatically build different APKs that contains only

the code and resources needed for a specific screen density or Application Binary Interface

(ABI)[24].

The Android Emulator simulates Android devices on the computer so that it is easy

to test an application on a variety of devices and Android API levels without needing

to have each physical device. In most cases, the emulator is the best option to test an

application on Android (alternatively it is possible to deploy the application on a physical

device). Using the Emulator offers flexibility, since it is able to simulate lots of devices and

comes also with predefined configurations for Android phone, tablet, Wear OS, Android

Automotive OS, and Android TV devices. It also offers high fidelity because it offers

almost all capabilities of a real android device, such as phone calls, messages, location,

play store, networks, sensors and much more. Finally, on some aspects (like data trasfer)

it is possible to gain speed, since data tranfer is higher to the emulator compared with a

real device speed on USB. Each instance of the Android Emulator uses an Android virtual

device (AVD) to specify the Android version and hardware characteristics of the simulated

device and each AVD work as a separate device (it is treated independently from the

others). Each AVD’s data is stored inside a specific directory (directory then used to

load the data when booting it up). It is also possible to test an application with WearOs

32

Devices by using the Wear OS pairing assistant that provides a step-by-step guide through

pairing Wear OS emulators with physical or virtual phones directly in the IDE. Use the

emulator is pretty simple: it is possible to simulate the touch with the mouse in the same

way and use the provided buttons on the emulator panel for additional functionalities[25].

Figure 15: The target device menu[25].

The APK Analyzer gives more insight into the APK/Android Bundle composition once

the build has been completed. By leveraging on this tool it is possible to reduce the

debugging time related to DEX files and resources in the app and help reduce the APK

size easily. APKs are files that follow the ZIP file format, and the APK Analyzer displays

each file or folder as an expandable entity that can be used to to navigate into folders. For

each entity three metrics are shown: Raw File Size (entity contribution to the total APK

size), Download Size (estimated compressed size of the entity as it would be delivered by

Google Play) and the percentage of Total Download Size (how much that entity impact

on the overall APK size). The tool also allow to view the AndroidManifest.xml file, to

understand any changes that might have been made to your app during the build. For

example, since product flavors and libraries have their own manifest file, this is then

merged with the application and the tool helps in visualizing it. It also provides some

lint capabilities, with warnings or errors that appear in the top-right corner. The APK

Analyzer also provides a DEX file viewer that allows to see underlying information in the

DEX files (class, package, total reference, and declaration counts), which can assist in

33

deciding whether to use multidex or how to remove dependencies to get below the 64K

DEX limit (Also the possibility to Filter the DEX file tree view is provided). Through the

APK Analyzer there is also the possibility to see code, resource entities and textual/binary

files inside the final APK, since during the build process shrinking rules can alter the

code, and image resources can be overridden by resources in a product flavor. Finally, the

tool allows to compare different files: specifically, the tool allows to compare the size of

the entities in two different APK or app bundle files, and this is particularly useful to

understand why the app increased in size compared to a previous release[26].

Figure 16: File sizes in the APK Analyzer[26].

3.4.2 New features

As a result of the massive involvement of artificial intelligence and cloud computing, by

moving all into the cloud, also Android Studio has adapted by integrating two new major

features into the IDE[27]:

• Gemini, coding assistant powered by artificial intelligence, that can understand

natural language. Helps into achieving more productivity by generating code, finding

relevant resources, learning best practices. However it has to be said that like any AI

model, it might provide inaccurate, misleading, or false informations while presenting

them confidently.

• A Web Version of the IDE (in early access preview), that leverages on IDX (web-

based workspace for full-stack application development made by google itself). It

could be used as a convenient way to open up samples but also to open an existing

project on Github inside the browser.

34

Figure 17: Example of the Gemini feature usage through the tab in android studio.

3.5 Code Editor

Figure 18: Logo
of the VsCode
Code Editor.

In order to develop the web application part of the system, VsCode was

employed. VsCode is a fully-customizable code editor that streamline

the development experience with features like IntelliSense, debugging

and web version. It allows to install extensions to add additional services

and customize itself. VsCode is fully customizable, with the possibility

to change theme colors, defining customization profiles and easily switch

between them. Also sync settings across VsCode instances on different

devices is possible. It supports almost every major programming lan-

guage and given to his lightweight nature and portability, can run also on the web browser.

It comes also with a built-in terminal and git version control support, and more recently

also artificial intelligence support was added through the copilot extension, that allows to

edit multiple file through copilot, given a description of what we want to build, as well as

giving code suggestions, that can be either accepted or rejected [28].

35

3.6 Google Firebase

Google Firebase is a backend comprehensive solution that allows to build, deploy and

run an application. It comes with already-made extensions for common use cases, and

it is easy to integrate on IOS, Android, and Web. It is a platform developed by Google,

composed of several services, each one with a specific purpose: the employed services used

for satisfy the system requirements will be covered.

3.6.1 Authentication Service

The Firebase Authentication service allows to perform a simple, multi-platform sign-in by

providing backend services, easy-to-use SDKs, and ready-made UI libraries to authenticate

users. It provides an easy authentication system by supporting several platforms and

authentication methods (email and password accounts, phone auth, as well as Google,

Apple, Facebook and more). It also simplifies the sign-in and onboarding experience for

end users thanks to FirebaseUI Auth component, that implements the best practices for

authentication on mobile devices and websites. It allows to setup a working authentication

system for an application in under 10 lines of code, including account merging, and applies

Google’s internal expertise into adopting a comprehensive security system [29].

3.6.2 Cloud Firestore Database

The Cloud Firestore Database service is a NoSQL document database that allows to

store, sync, and query data for an application on a global scale. Given the fact that is

a NoSQL database, it lets structure the data freely with collections and documents and

easily retrieve them by using expressive queries. It allows to build serverless app through

a mobile and web SDKs and a comprehensive set of security rules, but it still provides

support for traditional client libraries like Node and Python. It comes with a notification

system that communicates data changes to easily build collaborative experiences and

realtime apps, and also with an offline mode so that users can change their data at any

time. The system (powered by Google’s storage infrastructure) is fully scalable, allowing

to focus on the application without worrying about servers and consistency. Finally, the

declarative security language and the integration with firebase authentication allows to

setup a strong user-based security [30].

36

3.6.3 Cloud Storage

The Cloud Storage is a powerful, simple, and cost-effective service that allows through the

client SDKs to store images, audio, video, or other user-generated content. Is designed to

store and serve contents quickly and easily. It is a scalable service, allowing to effortlessly

grow from prototype to production and automatically scale up computing resources with

cloud functions. Also with this service, a strong user-based security is enforced with an

integration with firebase authentication through the SDK APIs for Cloud Storage [31].

3.6.4 Performance Monitoring

The Performance Monitoring service, available both for mobile and web applications,

allows to measure app network requests, screen rendering times, as well as custom and

automated traces to gain insights of the app performance. This tool allows to keep track

of the performance on different app versions as new features are delivered or configuration

changes are made, with a dashboard that makes it easy to focus on the most important

metrics. A monitoring of data like app version and device allows to understand how the app

performs from the users’ point of view. There is the possibility to closely monitor HTTP/S

requests by analyzing response time, success rate as well as payload size, particularly

useful for critical requests. Thanks to that, understand where performance issues take

place and address them is easier [32].

3.6.5 Crashlytics

The Crashlytics service, integrable with mobile and unity apps, allows to obtain a real

time crash, error report and analysis to help keep the apps running flawlessly. The tool

starts capturing crashes and groups them into manageable issues based on the impact

on real users,so that it is easier to prioritize what to fix first. AI-powered insights helps

understand why a crash happened and help to get to the root cause faster. Crashlytics

works seamlessly with industry-standard tools including Jira, Slack, BigQuery, and with

integrations for Android Studio it is possible to view the data directly in the IDE, making

it easy to debug crashes. Contextual informations about the crashes are displayed, like

the timeline of events leading up to app crashes to quickly reproduce bugs and uncover

the root cause [33].

37

3.7 Dependencies

This section will cover the major dependencies that have been used in the project, with a

focus on background features and firebase.

3.7.1 health

The health library was used to fetch health data from the devices to successfully use them.

This library is a wrapper for Apple’s HealthKit on iOS and Google’s Health Connect on

Android, and enables reading and writing operations from/to Apple Health and Google

Health Connect. All the library functionalities are managed through a singleton Health

instance, which supports lots of operations.

However, for our purposes, we mainly exploited:

• Permission handling operations to access health data, through the hasPermissions

method to check the permissions and the requestAuthorization method to request

them.

• Read operations (through the getHealthDataFromTypes method) to read the needed

health data.

No write operations have been adopted, as the wearables or applications adopted by

the users are synchronized and write data directly to Google’s Health Connect, since it

constitute the standard: from it health will then retrieve the data. The employed version

is the 11.1.0 [34].

3.7.2 workmanager

The workmanager library, used to perform the health data backup (see table 6 FR 4.4), is

a powerful solution for managing background tasks in Flutter applications. It allows to

schedule and execute tasks even when the app is not actively running, useful for tasks such

as periodic data synchronization, notifications, and other background operations. The

package provides a simple API to schedule background tasks at specific intervals or under

certain conditions, with the possibility to specify retry policies for failed tasks, ensuring

robustness in the face of temporary issues. These tasks are executed efficiently, having

minimal impact on the device resources and battery life. The employed version is the 0.5.2

[35].

38

3.7.3 awesome_notifications

The awesome notifications library, used to implement the notification system for the

users (see table 5), allows to implement custom local and push notifications on Flutter

with real-time events. It allows to keep the user engaged, thanks to the possibility of

creating notifications with different layouts, images, sounds and so on. Real-time events

are delivered at Flutter level code, leaving the possibility to the programmer to handle

them. It gives the possibility of scheduling periodic or single notifications, is easy-to-use

and highly customizable, including also the possibility to translation (see table 7 NFR8).

The employed version is the 0.10.0 [36].

3.7.4 l10n

The l10n library, used to implement the localization of the application (see table 7 NFR8),

allows to easily localize the application in multiple languages with a straightforward setup,

through the definition of some configuration files and the .arb files, where the translations

content are stored (one file per language).

39

3.7.5 firebase

Regarding firebase, given the variety of services that it offers, several dependencies have

been employed in the project to cover all the functionalities needed:

• firebase_core: the base dependency for the firebase services, and it is required to

use the Firebase Core API, which enables connection to multiple Firebase apps. The

employed version is the 3.6.0.

• firebase_auth: dependency enabling classic authentication with email/password as

well as identity providers like Google, Facebook and Twitter through the Firebase

Authentication API. The employed version is the 5.3.1.

• firebase_ui_auth, a dependency that provides pre-built widgets, already integrated

with the variety of the Firebase Auth providers. The employed version is the 1.10.0.

• firebase_ui_oauth_google, a dependency that allows to authenticate with Google

through Oauth protocol, by specifying it as authentication provider. The employed

version is the 1.12.14.

• firebase_storage: dependency for Firebase Cloud Storage service, allowing to easily

store and retrieve files from it through the Firebase Cloud Storage API. The employed

version is the 12.3.4.

• firebase_crashlytics: dependency for Firebase Crashlytics that allows, through the

Firebase Crashlytics API usage, to report uncaught errors to the Firebase console.

The employed version is the 4.3.3.

• firebase_performance: dependency for Google Performance Monitoring for Fire-

base, allowing to monitor traces and HTTP/S network requests and their parameters

(like response time) through the Firebase Performance API. The employed version is

the 0.10.1+3.

Regarding the web application dependencies, only the firebase [37] dependency has

been employed, giving access to both authentication and cloud firestore database, in order

to perform the operations. The employed version is the 11.3.1.

40

4 System Implementation

This section will discuss about the system implementation by firstly focusing on the

backend part of the mobile application, moving then to consider also parameters editing,

so the web application part that allows to do that.

4.1 Firebase

4.1.1 Firebase Authentication

Setting up the Authentication was pretty straightforward, as also previously explained

(see section 3.6.1). All it took was going to the firebase console in the project settings and

register both the mobile application and the web one. After that, in the authentication

tab the desired Sign-in providers have been manually enabled (in our case email/password

and Google). The firebase platform and the underlying google structure handled the rest

by generating both the API keys to access the firebase services and the OAuth 2.0 clients

to authenticate the users.

In case of the email/password authentication approach, also email templates have been

employed:

• Email address verification: once a user signs up, a confirmation email is sent to

verify his registered email address.

• Password reset: in case a user forgets his password, he can request a password

reset email.

• Email address change: in case a user change his email address, a confirmation

email is sent to the original address, so that the user can review the change.

41

At this point for the mobile client side the firebase dependencies (in particular fire-

base_ui_auth and firebase_ui_oauth_google) have been employed to perform the au-

thentication and the sign-in process. The already well made components provide the

possibility to sign-in or eventually register in case the user is not already registered, as

well as manage the user profile once logged in. They are also highly customizable, allowing

us to change the UI to match the app’s theme. As additional logic, only the authenti-

cation state had to be handled in order to redirect the user to the home page once the

authentication is successful. This has been done through a StreamBuilder widget, having

as source stream FirebaseAuth.instance.authStateChanges(), that notifies about the

user’s sign-in state. In this way, any change is listened and if the user signs in or out the

interface is updated coherently.

About the web application client instead, no already-made components were available.

The react createContext and useContext hooks have been employed to handle the

authentication state: it was done by using a context in the react application and providing

it at the root level so that the whole application could access the authentication state.

This state is updated after performing authentication operations and the components that

depend on it are updated accordingly, allowing to display the edit parameters screens once

authentication is performed. A profile management screen like the mobile one has not

been implemented, since it is an admin interface.

Figure 19: Authentication Screens of the mobile client (sign in and profile management)
on the left and of the web client on the right.

42

4.1.2 Cloud Firestore Database

Taking into account the data-related requirements (see table 6), the database has been

implemented accordingly by storing all the data in the most efficient way possible.

The database structure is as follows:

• The users collection, used to manage main users informations, with each document

having the following fields:

– The UID field, that uniquely identifies the user.

– The goals field (composed of calories, sleep and steps as inner fields) that

represents the user’s goals.

– The language field, that represents the app language set and preferred by the

user.

– The metrics field (composed of birthDate, height, nickname, sex, waist

circumference, weight and wearable as inner fields) that represents the user’s

personal information.

• The user_data collection, used to manage additional users informations, with each

document having the following fields:

– The userId field, that links those data with the corresponding user.

– The current_notification field that used in combination with the

notification_counter field allows to implement the notification logic (see

section 4.10 for more details).

– The lastBackupDate field, that saves the last time that the user performed a

backup of his data.

– The weightData array field that stores the user’s weight information, implement-

ing an history of this metric, with the most recent present in the users collection

for each user. Each element of the array has the date and weight fields.

– The waistCircumferenceData array field that stores the user’s waist circumfer-

ence information, implementing an history of this metric, with the most recent

present in the users collection for each user. Each element of the array has the

date and waist circumference fields.

– The emotionalData array field that stores the user’s emotional information.

Each element of the array has the date, negative and positive fields.

43

– The bodyTestBalanceData array field that stores the user’s body balance in-

formation. Each element of the array has the date, leftLeg, rightLeg and

tandemWalk fields.

– The bodyTestStrengthData array field that stores the user’s body strength

information. Each element of the array has the date, absCount, gripTest,

pushUpCount and squatCount fields.

– The completedLessons array field that stores the user’s completed lessons infor-

mation. Each element of the array is the lessonId to which it refers to and a

completedPills boolean array field used to store how many pills of the lesson

have been read (true) or not (false).

– The completedQuizzes array field that stores the user’s completed quizzes

information. Each element of the array is the quizId: if present means that user

has completed that quiz.

• The foodRecords collection, used to manage the food informations for the users,

with each document having the following fields:

– The userID field, that links those data with the corresponding user.

– The date field, storing the food entry recording date.

– The foodGroup field, that identifies the type of food (like water, vegetables and

so on).

– The amount field, that represents the food quantity (e.g. 250 ml if a liquid food

or 250 gr if a solid food).

• The lessons collection, used to manage the available lessons for the users, with each

document having the following fields:

– The id field, that uniquely identifies the lesson.

– The quizId field, that links the quiz related to that lesson.

– The title field, that represents the lesson title.

– The titleIta field, that represents the italian lesson title.

– The pills array field, that represents the list of pills that the lesson is made up

of, where each element is a single pill.

– The pillsIta array field, that essentially is the italian version of the above

pills field.

44

• The quizzes collection, used to manage the available quizzes for the users, with each

document having the following fields:

– The id field, that uniquely identifies the quiz.

– The questions array field, that represents the questions of that quiz. Each

questions has the questionText, correctAnswer fields and possibleAnswers

array field, that respectively represents the question, the correct answer and the

list of possible answers, where each element is an answer.

– The questionsIta array field, that essentially is the italian version of the above

questions field.

• The notifications_text collection, used to manage the mobile application parameters

displayed for the users and editable by the admin through the web application. It is

composed of 3 documents:

– The first document, that contains two fields called coach_name and

assessment_period that represents the name of the app assistant and the length

of the assessment perios (in days) used for the notification cycle (see section 4.10

for more details).

– The second document, that contains several strings fields used to customize the on-

Boarding experience of the user as well as the data insertion operations. We have

up to three fields for the onBoarding (onBoarding1,onBoarding2,onBoarding3),

7 fields for the body test balance data insertion (body_test_balance1 up to

7), 6 fields for the body test strength data insertion (body_test_strength1

up to 6), one field for the emotional data insertion (emotional_life_test),

one field for the assessment (assessment) and one field for the food insertion

(daily_reminder_food).

– The third document, that similarly to what has been done with the lessons and

quizzes, contains the italian version of the second document.

45

4.2 User OnBoarding and Registration

As explained before (see section 4.1.1), the user registration and sign-in process is mainly

managed by the firebase authentication service. However, some additional initialization

steps are required, in order to setup all the documents needed in the database collections

for the user, once is registered for the first time. When the user registers for the first

time and it interact with ui authentication components of firebase, instead of displaying

the main page of the application, the user is redirected to the onBoarding page. Here

essentially almost all the information needed to initialize the user document inside the

users collection (see section 4.1.2) are asked to be inserted. The proper validation is

enforced in case of input errors, preventing the user from proceeding and when the user

inserted all the data, all the needed documents and fields for that user are created and the

home page is displayed.

Figure 20: Function Called at the end of the onBoarding process to setup all the needed
documents/fields for the user.

Only the goals are not asked to be inserted in the onBoarding process to avoid make it too

long and boring. They have a default value and can be edited in the personal information

page at any time.

46

4.3 State Handling

All the mobile application states are kept in a class called HomeDataProvider that extends

the ChangeNotifier, implementing the best practises regerding the flutter state manage-

ment and allowing the interface to be updated accordingly whenever some state changes.

It is instantiated at the root level of the application with the ChangeNotifierProvider

widget that creates a ChangeNotifier and passed down to all the widgets that need to

access the data. These widgets can easily access the shared instance by using a Consumer

widget, that consumes the above ChangeNotifierProvider allowing to access the instance

as well as the context and child. All the relevant states, including the ones to populate

the charts (both coming from health as data source or the database) were kept in this

class, ensuring a clean state management and an organized code.

Figure 21: HomeDataProvider instantiation at the root level of the app (left) and example
of accessing the instance (right).

47

4.4 Home Page

The home page of the application was designed by allowing the user to have access to his

steps, food, sleep and mood data, in which both the database and the health data sources

have been employed. While health data are already gathered by the phone/wearable

device and provided (is the case of steps and sleep), for food and mood there is also the

possibility to let the user insert the data. Considering this aspect, for food and mood the

database has been employed as data source instead. Also a DateBar component is present

in this page as an utility component, easily allowing to change the selected date, as well

as the time period (day,week,month) and view the corresponding data.

4.4.1 Health Data Source

As said before, for steps and sleep data, the health data source has been employed. For

steps and sleep data, two different states are kept as lists (currentActivityDataPoints

and currentSleepDataPoints). When, through the health package, the data are retrieved

based on the selected date these states are set, and the charts are updated and populated

accordingly. For these two metrics, also a chart threshold is set through the users goals,

so that the user can see if he is reaching his goals or not. In case the goal is met or also

surpassed, the bar appears yellow and with a dotted border, so that the user can easily

see the difference.

4.4.2 Database Data Source

For food and mood data instead the database has been employed. For food the approach is

still the same, except for the data source: a list state is kept (currentNutritionDataPoints),

data are fetched also based on the date and chart are updated. For mood instead simply

the two positive and negative mood values are kept, computed as the average on the

selected timespan (positiveMoodPoint and negativeMoodPoint). In case of food data the

threshold like steps and sleep is available. For both food and mood, the user can insert

the data through the app with dedicated forms. In case of food, the user can insert the

food group and the amount, while for mood the user can insert the positive and negative

mood values, according to the PANAS scale. The employed collections are foodRecords

for food and user_data for mood (the emotionalData array field).

48

Figure 22: Home Page charts (left) and example of health data fetch for the steps (right).

Figure 23: Example of database data fetch for the emotional data (left) and corresponding
database fields (right).

In the food and sleep charts we can also see the overflow of the related goals in one

particular day that makes the bar appear differently.

49

4.5 Health Measures Page

In the health measures page the user can see additional data about his health.

A tab subdivision has been made to obtain a clearer view of the data:

• Lungs-related data tab, composed of:

– Oxygen Saturation chart, representing the oxygen saturation in the blood.

– Respiratory Rate chart, representing the number of breaths per minute.

• Heart-related data tab, composed of:

– Resting Heart Rate chart, representing the resting heart rate, measured in breaths

per minute.

– Heart Rate Variability chart, representing the variation in time between heart-

beats.

• Body-related data tab, composed of:

– Weight chart, measured in kilograms.

– Waist Circumference chart, mesured in centimeters.

– Body Balance chart, composed of the left leg, right leg and tandem walk tests,

all measured in seconds.

• Strength-related data tab, composed of:

– Grip Strength chart, measured in kilograms.

– Waist Circumference chart, mesured in centimeters.

– Body Strength chart, composed of the abs count, push up count and squat count,

all measured in repetitions.

Also here the DateBar component is present to change the selected date, as well as the

time period (day,week,month) and view the corresponding data.

4.5.1 Health Data Source

For the first two tabs (lungs and heart), the health data source has been employed. All those

data are directly retrieved through the health package, similarly to the home page steps

data. We have four list states (currentOxygenDataPoints, currentBreathRateDataPoints,

currentHeartRateVariabilityDataPoints and currentRestingHeartRateDataPoints) that are

set when the data are retrieved based on the selected date. Also in this case, the charts

who depend on these states are updated and populated accordingly.

50

4.5.2 Database Data Source

For the last two tabs instead (body and strength), the database has been employed,

particularly the user_data collection, that contains the array fields weightData,

bodyTestBalanceData, waistCircumferenceData and bodyTestStrengthData. Except

for the data source the approach is still the same: four list states (currentWeightDataPoints,

currentWaistCircumferenceDataPoints, currentBodyBalanceDataPoints and currentBodyS-

trengthDataPoints) are kept, data are fetched based on the date and charts are updated.

The user has also the possibility to insert the data with dedicated forms, giving the

possibility to have an hystorical view of metrics like weight and understand eventual

improvement or worsening.

Figure 24: Health Measures Page on Body-related data tab (left), detailed view of the
Body Balance chart (center) and his corresponding database fields (right).

51

4.6 Personal Information Page

In this page the user has the possibility to edit part of his metrics as well as editing his goals.

Since those metrics are acquired in the onBoarding phase, they are all handled through

the database and stored in the user-generated document inside the users collection, in

particular in the metrics field.

Also in this case, in order to have a clearer view of the data, there is a tab split into:

• Personal Measures tab, composed of almost all the users metrics. Metrics not

present in this page are the weight and the waistCircumference, since they can be

added in the healthMeasures page, where in addition the historical view of them is

displayed. The present metrics are freely editable at any time after user registration,

except for the birthDate, only displayed for obvious reasons.

• Goals tab, composed of the users goals, freely editable at any time after user

registration. The goals are used to set the threshold of the charts in the home page,

so that the user can see if he is reaching his goals or not.

Figure 25: Personal Information Page with Personal Measures tab (left), Goals tab
(center) and corresponding database field (right).

Both the metrics and goals are updated in the database when the user changes them by

using the SetOptions(merge: true) method, so that only the fields that are changed

are updated without affecting the whole document.

52

4.7 Learn Page

In the learn page the user has the possibility to browse the available lessons and learn

new things. The lessons and quizzes are managed through the lessons and the quizzes

collections, where the single lesson references the quiz through the quizId field. Other

additional fields are also used to store information of the single user. Infact, each lesson is

composed of several pills, and the completedPills field is employed (see section 4.1.2):

when the user reads a certain pill of a lesson, the corresponding array field is updated

with a true value, with an index correspondance between the pill and the boolean field

in the array. In this way the user can see how many pills of a lesson he has read and

how many are still to read, and only when all the pills have been read the whole lesson

is marked as read. Regarding the quiz instead, to leave the user with more freedom, it

can be taken at any time, but the quiz is marked as completed (the quizId is added to

the completedQuizzes array field still in user_data) only if the user completes it with

success. Both lessons and quizzes supports localization and have their italian traslation

stored in the pillsIta and questionsIta fields respectively. The user will be able to see

this version by changing the default language of the app.

Figure 26: User View of the Lessons and Quizzes (left), of a lesson in detail (center) and
the related database fields to handle pills reading (right).

In this example we can see the pills handling, since for the sleep lesson only pills 1 and 3

are read (same array fields set to true), while for the nutrition lesson all the pills are read.

Both quiz however are completed with success and added to the completedQuizzes field.

53

4.8 MultiLanguage

Also the multilanguage feature has been implemented, in order to satisfy the localization

requirement (see table 7 NFR8). Implementing this feature required additional fields on

the database, as well as additional management on the application side. As explained

previously (see section 4.1.2) an additional field was added for each user document inside

the user_data collection called language, used to store the current language selected by

the user (english by default). Also other fields were added to handle multilanguage: for

the lessons and quizzes the pillsIta and questionsIta fields were added, while for the

notifications an additional document in the notifications_text collection was employed,

that contains the italian version of the parameters. The user will be able to see either the

english or italian version by changing the default language of the app through a dropdown

on the top right of the screen (see fig. 19 middle image), and changing his language value

will imply a change of the whole app language.

As application side setup, the l10n.yaml file and l10n folder were created. The first file

was used to configure the default directory where the .arb files (traslation files) will be

stored (the l10n directory), as well as the default traslation file to pick (app_en.arb)

and the output .dart file that contains the localization code. This because running the

build with all the files configured will produce auto-generated locale output .dart files

for all supported locales, that can be imported and then used. Inside the l10n folder

the l10n.dart file was defined, which contains a class with an array field named all,

containing all the supported locales (only en for english and it for italian), as well as

the traslation files (app_en.arb and app_it.arb) that contains the traslation of the app

strings in the two languages.

The multilanguage support was handled from the MyApp root component by setting the

locale, defined as a HomeDataProvider state that can be changed at any time (see fig. 21

right side): this allowed to change the language also during the onBoarding process, so that

the user can see the app in his preferred language from the beginning, and the language

setting persists also after registration.

Once implemented that, all it took was defining the traslation strings in the .arb files

with a key/value format, and referring them throughout the whole application. The

AppLocalizations.of(context) method was employed to access the traslation strings,

allowing to traslate the whole application in the selected language.

54

For example, given the learn key, having value Learn in english and Impara in italian, the

AppLocalizations.of(context)!.learn will return Learn or Impara based on the se-

lected language.

Figure 27: .arb files structure definition (top) and usage example of the multilanguage
feature (bottom).

4.9 Health Data Backup with Cloud Storage

In order to perform the backup of the health data and satisfy the related requirement (see

table 6 FR 4.4), the cloud storage service has been employed. The main reason lies behind

the fact that health data can be pretty large, so using the Cloud Firestore Database to

store them would be inefficient and expensive. For this reason the health data if the users

are stored on the cloud storage into JSON files, one for each backup. The backup task is

performed thanks to the flutter workmanager library by running a background task that

allows to execute the backup even if the mobile app is not opened or actively used in that

moment. However, since these tasks run on a separate background isolate, retrieving the

health data directly there is not possible due to permission issues. For this reason, the

backup implementation is structured into three phases:

55

1. In the first phase, that takes place at each application startup, the

performLocalBackup function is called. This function retrieves the health data in

the main isolate (that has the permission) through the health library. The fetch

timespan goes from the lastBackupDate field (taken from the user_data collection

for each user) to Datetime.now() and the data are stored into a JSON file in the

local storage of the device, named with Datetime.now().toIso8601String() to

guarantee univocity. After that the lastBackupDate field is coherently updated to

Datetime.now(). This local backup is performed with a daily frequency, so if the

app is opened more than once a day or simply no data are available the function

returns immediately, avoiding to increase the frequency or to create an empty file.

2. In the second phase, that takes place immediately after the first one, the workmanager

background task is scheduled through the scheduleBackupTask function. The task

is a periodic task with the same frequency of the local backup (daily). Also in this

case, if the app is opened more than once a day, even if the function is called multiple

times, the task id guarantees that the periodic task is still scheduled once.

3. In the third phase, that takes place when the workmanager background task trig-

gers and is executed, Firebase is initialized in the background isolate and the

performStorageBackup function is called. This function loops through the JSON

files saved in the local storage of the device and it uploads them to the storage. In case

of successful upload, these files are marked for deletion and a second loop proceeds

to delete them from the local storage of the phone. In case of failure, the files are

not deleted and they will be uploaded when the task will be triggered again. These

files are saved on the cloud storage in a folder named with the userID to guarantee

univocity and to avoid conflicts between different users’ backups, while the filename

is also unique, since it is the same that was defined in the performLocalBackup

function.

56

Figure 28: Cloud Storage view of the users folder, uniquely named with userIds(left)
and view of a single user folder containing the JSON files of the backup, where each file is
uniquely named with the timestamp (right).

Figure 29: Sample content of a json file of the backup, containing the health data of the
user.

57

4.10 Notifications

In order to satisfy the notifications requirements (see table 5), a notification system was

designed and implemented. The notification system was designed with a cyclical behaviour.

The number of days that a full cycle of notification takes to go across all phases depends on

the assessment_period parameter inside the notifications_text collection, editable

by the admin. Infact, the scheduling of each notification during the different phases is

not immediate but depends on the assessment_period field and it is calculated based on

that (assessment_period/4 for each phase).

The main cycle is composed of four phases, with the current_notification field initialized

to the first phase, and employed to identify the current one. The phases are the following:

1. In the first phase, the first notification is sent and prompts the user to complete a test

in order to assess his balance capabilities. In this case, the current_notification

field has as value body_test_balance.

2. Once the user inserted his body balance data, the current_notification field is

updated to body_test_strength and the second phase begins. Another notification

will be sent, in this case to assess the physical strength of the user.

3. Once the user inserted his body strength data, the current_notification field is

updated to emotional_life_test and the third phase begins. Another notification will

be sent, in this case to assess the mood and emotional status of the user.

4. Once the user inserted his emotional data, the current_notification field is updated

to assessment and the last phase begins. Another notification will be sent, in this

case opening an assessment based on the data provided by the user instead of

prompting him to insert data, so that the user can see a period assessment each

assessment_period days. At this point the cycle restarts from the first phase.

For all those phases there is of course the possibility to ignore the notification by discarding

it. In this case to further prompt the user into an active participation, the same notification

is rescheduled with an higher frequency. Howewer, this is performed for a limited amount

of times, and that is where the notification_counter field comes into: each time an

user discard a notification the counter is incremeted for a maximum of three times (from

0 to 2 included). When the counter reaches the maximum value, the notification is not

rescheduled anymore and that specific phase is skipped, moving to the next one and

resetting the counter to 0.

58

A separate lifecycle is used to manage the food interaction instead: in this case the

frequency is daily, and in case the user discards the notification, it is simply rescheduled

again.

The NotificationService class was employed to handle this logic, with two main meth-

ods to handle the two separate lifecycles: scheduleNotification for the main cycle

and scheduleFoodNotification for the food cycle. These methods are called ad each

application startup to schedule the notification, handling the case where the notifications

have already been scheduled. Before these two methods the initializeNotification

method is called to initialize the notifications and setup the listeners to handle notification

creation, opening and discarding. To practically schedule the notifications and use the

listeners the awesome_notifications API have been employed.

Figure 30: Example of the notifications sent (left), of the food form opened from the
notification (right) and function call at application startup (bottom).

59

4.11 Application Parameters

The application parameters were employed to customize the app behaviour and the user

experience. These parameters were used to perform the onBoarding, but also for the input

forms (food form, body balance form, emotional forn and so on), present both in the

graphs (giving the possibility to the user to enter data) and in the notifications, since the

same widgets were used in both cases.

Coming to their usage, it is possible to make a practical distinction by using the

notifications_text collection documents to understand how they were used (see sec-

tion 4.1.2):

1. Firstly the parameters document and the user metrics were considered: the

assessment_period and coach_name parameters were firstly fetched, together with

the user wearable device (wearable field, available for each user inside the users

collection metrics field, among user personal information) and the username, directly

fetched from the authentication session inside the application.

2. Then, considering the other two documents of the notifications_text, one of the

two was fetched, depending on the language. At this point, since each string field

contains placeholders for the parameter mentioned at step 1, a pre-processing step

was performed to replace those placeholders with the actual values, in order to obtain

fields customized with the admin parameters (coach_name and assessment_period)

but also user-tailored with the specific username and wearable device.

The whole parameter logic is based upon the fetchNotificationsText function. Here

the user language is fetched. Then the four parameters, initialized with default values,

are fetched and overriden when the fetchParameters function is called. After that, the

fetchNotificationsText retrieves the notifications_text parameters based on the

language and the replacePlaceholders function is executed for each string field to replace

the fields correctly. All those function are defined and present in the HomeDataProvider

class in order to be easily accessible in the whole application, wherever these parameters

are needed.

60

Figure 31: Parameter fetch flow.

4.12 Web Application

To cover the admin requirements (see table 4) and allow the edit of the application

parameters and the lessons/quizzes management, a react web application was employed.

The application leverages on the firebase dependency [37] to enforce both authentication

(see section 4.1.1) and parameters editing.

The application easily allows the admin to find which parameter to edit through a sidebar,

that highlights the different parameters so that the admin can easily find them. The

application also allows to change the language of the app through a dropdown, so that

the admin can see the italian version of the parameters when it is needed, to edit them

accordingly. In that case, speaking of parameters, only editing is possible and no deletion

can be performed through the application.

Considering lessons and quizzes management instead, there is the possibility to add, edit

and delete them. The addition and deletion operations have been done atomically in a

transaction, in order to add lesson and quiz together, as well as deleting them together. This

in order to link the lesson with the quiz through the quizId field and avoid inconsistencies,

like a quiz with no lesson or viceversa, which would have required at least a dedicated

screen to let the admin link them together. Additional sections have been added to the

sidebar to allow to perform these operations. In particular there are the Add Lesson/Quiz

section, to add a lesson with the corresponding quiz. Then the Lessons section to view,

edit and delete the lessons along with the quizzes, and the Quizzes section to view and

edit the quizzes (see fig. 19, the logged web client).

61

The edit operations were performed with the updateDoc method, that allows to update

only the fields provided without affecting the rest of the document, while the add and

delete operations were performed transactionally, respectively with transaction.set and

transaction.delete methods.

Figure 32: Example usage of parameters update (body_test_balance).

Figure 33: Lessons And Quizzes database operations.

62

5 System Outcomes and Enhancements

5.1 Achieved Performances

Once the system features were delivered, a particular focus was made on the performances

in order to meet the NFR6 (see table 7). This was possible through the usage of the

Performance Monitoring tool provided by the Firebase platform.

5.1.1 Startup Time

The performance tool allowed to monitor the application startup time as main metric of

relevance. The library allowed an easy monitoring implementation by creating a trace

instance, call his start method, perform the application startup and then call the stop

method. The timespan considered was 60 days, the largest one allowed. The trend is

positive, since the data fetch operations are called only for the shown data, and not for

the whole dataset. However, it has to be said that peak values found were over 2 seconds:

that was the case when the backup task severely impacted on the metric performances

(performLocalBackup method, see section 4.9). In any case, the 90th percentile response

time relative to the metric is 971 ms, so well under 2 seconds.

Figure 34: Performance analysis of the startup time metric, with very good results.

63

5.1.2 API Calls

Also the API calls were monitored, in order to understand the impact of the data fetching

operations on the overall performances. Also in this case the timespan considered was 60

days, and each API call was monitored with a trace object, like the application startup.

Without focusing on a specific API, on average the results were pretty good, since we had

an average response time of 176 ms and an increasing performance trend of the 25.48%.

Figure 35: Performance of the API calls.

Figure 36: Monitoring example on the deleteFood API call.

64

5.2 Crashlytics

Also the Crashlytics tool has been helpful, thanks to the crash monitoring and the

possibility to deeply analyze the log related to detected errors. Thanks to this tool

provided by the Firebase platform, a bug in the Health Data Backup (see section 4.9) was

detected and fixed consequently. This allowed an improvement of the overall application

stability, passing from a 93.7% crash-free users to a 100% crash-free users. Even though is

not a big improvement and the percentage was already high, it is still worth to mention.

Figure 37: Crash-free users and session in the last 90 days, with the bug present (left)
and in the last 30 days, after the bug fix (right).

65

5.3 Future Developments

Rarely a system can be considered perfect. There is always room for improvement in

several aspects, so of course a future development can be done on this side.

Having said that, other than improvement on current features, other possible new features

have been considered in this system, that can definitely make it different, allowing to stand

out from the competition:

• Ios Integration: the system is already designed to be intrinsically cross-platform

from a smartphone point of view (since flutter is cross-platform and supports IOS).

For this reason, from a theoretically point of view, the IOS support should already

be present in the system. However, the system has not been tested practically on

IOS devices. This because a mac, an IOS device and an apple watch are needed to

test the system in its entirety, and these devices were not in our possession. For

this reason IOS was not covered in the elaborate and should be tested to assess the

effective cross-platform support.

• Personal Coach: integrate another component in the system architecture acting

as a personal coach by generating personalized health and fitness recommendations.

The goal would be to provide data-driven, actionable, and behavior-changing insights

tailored to the user. This would be possible thanks to the integration of a Large

Language Model (LLM) that can generate personalized recommendations based on

the user’s data. In fact, the backup feature already present and integrated into the

system has been developed precisely to allow this data to be used in the LLM model,

in order to provide user-tailored insights and guaranteee the best user experience

possible.

• Personal Coach App Integration: once developed and deployed the personal

coach, the next step would be integrating it inside the application: infact, this should

be the purpose of the recommend page (reachable through the central button in

the bottom navigation bar), that has been added to the app, in addition to the

home, health measures, personal information and learn pages. This page will be

used to integrate the LLM model in the future, by inserting some recommendations

generated by the model. It would also be useful to have the possibility to chat with

the personal coach, in order to ask for clarifications or to have more information

about the recommendations provided.

66

Bibliography

[1] World Health Organization (WHO), https://www.who.int/ [6].
[2] WHO Physical Activity Benefits, https://www.who.int/en/news-room/fact-

sheets/detail/physical-activity [6].
[3] WHO Physical Activity Guidelines, https://www.who.int/publications/i/item/

9789240015128 [7].
[4] WHO Healthy Diet Guidelines, https://www.who.int/initiatives/behealthy/

healthy-diet [8].
[5] National Institutes of Health (NIH), https://www.nih.gov/ [9].
[6] NIH mobile technology studies, https : / / www . nih . gov / news - events / news -

releases/nih- funded- study- examines- use- mobile- technology- improve-
diet-activity-behavior [9].

[7] NIH Comparison of Self-Reported and Device-Based Measurements, https : / /
pubmed.ncbi.nlm.nih.gov/33920145/ [9].

[8] NIH Smartphone Applications for Promoting Healthy Diet and Nutrition, https:
//pubmed.ncbi.nlm.nih.gov/26819969/ [10].

[9] NIH Smartphone Applications for Promoting Physical Activity, https://pubmed.
ncbi.nlm.nih.gov/27034992/ [10].

[10] Global wearable band market in Q2 2024, https://www.canalys.com/newsroom/
worldwide-wearable-band-market-Q2-2024 [12].

[11] Flutter Framework, https://flutter.dev/ [22].
[12] Flutter Framework, https://docs.flutter.dev/get-started/install/windows/

mobile [22].
[13] React Framework, https://en.wikipedia.org/wiki/React_(software) [23].
[14] Dart Programming Language, https://dart.dev/overview [25].
[15] Javascript Programming Language, https://en.wikipedia.org/wiki/JavaScript

[25].
[16] Groovy Programming Language, https://en.wikipedia.org/wiki/Apache_

Groovy [26].
[17] Yaml Language, https://en.wikipedia.org/wiki/YAML [27].
[18] Pub Package Manager, https://dart.dev/tools/pub/cmd [28].
[19] Gradle Build Tool, https://en.wikipedia.org/wiki/Gradle [29].
[20] Gradle Basics, https://docs.gradle.org/current/userguide/gradle_basics.

html [29].
[21] NPM, https://en.wikipedia.org/wiki/Npm [30].
[22] AndroidStudio IDE, https://en.wikipedia.org/wiki/Android_Studio [30].
[23] AndroidStudio Code Editor Feature, https://developer.android.com/studio/

intro [31].

67

https://www.who.int/
https://www.who.int/en/news-room/fact-sheets/detail/physical-activity
https://www.who.int/en/news-room/fact-sheets/detail/physical-activity
https://www.who.int/publications/i/item/9789240015128
https://www.who.int/publications/i/item/9789240015128
https://www.who.int/initiatives/behealthy/healthy-diet
https://www.who.int/initiatives/behealthy/healthy-diet
https://www.nih.gov/
https://www.nih.gov/news-events/news-releases/nih-funded-study-examines-use-mobile-technology-improve-diet-activity-behavior
https://www.nih.gov/news-events/news-releases/nih-funded-study-examines-use-mobile-technology-improve-diet-activity-behavior
https://www.nih.gov/news-events/news-releases/nih-funded-study-examines-use-mobile-technology-improve-diet-activity-behavior
https://pubmed.ncbi.nlm.nih.gov/33920145/
https://pubmed.ncbi.nlm.nih.gov/33920145/
https://pubmed.ncbi.nlm.nih.gov/26819969/
https://pubmed.ncbi.nlm.nih.gov/26819969/
https://pubmed.ncbi.nlm.nih.gov/27034992/
https://pubmed.ncbi.nlm.nih.gov/27034992/
https://www.canalys.com/newsroom/worldwide-wearable-band-market-Q2-2024
https://www.canalys.com/newsroom/worldwide-wearable-band-market-Q2-2024
https://flutter.dev/
https://docs.flutter.dev/get-started/install/windows/mobile
https://docs.flutter.dev/get-started/install/windows/mobile
https://en.wikipedia.org/wiki/React_(software)
https://dart.dev/overview
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Apache_Groovy
https://en.wikipedia.org/wiki/Apache_Groovy
https://en.wikipedia.org/wiki/YAML
https://dart.dev/tools/pub/cmd
https://en.wikipedia.org/wiki/Gradle
https://docs.gradle.org/current/userguide/gradle_basics.html
https://docs.gradle.org/current/userguide/gradle_basics.html
https://en.wikipedia.org/wiki/Npm
https://en.wikipedia.org/wiki/Android_Studio
https://developer.android.com/studio/intro
https://developer.android.com/studio/intro

[24] AndroidStudio Build System Feature, https://developer.android.com/build
[32].

[25] AndroidStudio Emulator Feature, https://developer.android.com/studio/run/
emulator [33].

[26] AndroidStudio APK Analyzer Feature, https://developer.android.com/studio/
debug/apk-analyzer [34].

[27] AndroidStudio New Features, https://developer.android.com/studio [34].
[28] VsCode Code Editor, https://code.visualstudio.com/ [35].
[29] Firebase Authentication, https://firebase.google.com/products/auth?_gl=1*

1ifvla4*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcw
gJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds [36].

[30] Cloud Firestore, https://firebase.google.com/products/firestore?_gl=1*
c76szm*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwg
JYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds [36].

[31] Cloud Storage, https://firebase.google.com/products/storage?_gl=1*
1ifvla4*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcw
gJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds [37].

[32] Performance Monitoring, https://firebase.google.com/products/performan
ce?_gl=1*1hhc75t*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP
4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
[37].

[33] Crashlytics, https://firebase.google.com/products/crashlytics?_gl=1*
1hhc75t*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcw
gJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds [37].

[34] Health Library, https://pub.dev/packages/health [38].
[35] Workmanager Library, https://medium.com/@nandhuraj/background-task-au

tomation-in-flutter-unleashing-the-power-of-workmanager-20c5e610cfbf
[38].

[36] Awesome Notifications Library, https://pub.dev/packages/awesome_notificati
ons [39].

[37] React Firebase Dependency, https://www.npmjs.com/package/firebase [40, 61].

68

https://developer.android.com/build
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/debug/apk-analyzer
https://developer.android.com/studio/debug/apk-analyzer
https://developer.android.com/studio
https://code.visualstudio.com/
https://firebase.google.com/products/auth?_gl=1*1ifvla4*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/auth?_gl=1*1ifvla4*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/auth?_gl=1*1ifvla4*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/firestore?_gl=1*c76szm*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/firestore?_gl=1*c76szm*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/firestore?_gl=1*c76szm*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/storage?_gl=1*1ifvla4*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/storage?_gl=1*1ifvla4*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/storage?_gl=1*1ifvla4*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/performance?_gl=1*1hhc75t*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/performance?_gl=1*1hhc75t*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/performance?_gl=1*1hhc75t*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/crashlytics?_gl=1*1hhc75t*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/crashlytics?_gl=1*1hhc75t*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://firebase.google.com/products/crashlytics?_gl=1*1hhc75t*_up*MQ..&gclid=Cj0KCQjwpf2IBhDkARIsAGVo0D3BsyWTPDfP4LLkcA0rcwgJYQ97HunsvJtSWmV9fQUoolB5HNwdz8QaAjU8EALw_wcB&gclsrc=aw.ds
https://pub.dev/packages/health
https://medium.com/@nandhuraj/background-task-automation-in-flutter-unleashing-the-power-of-workmanager-20c5e610cfbf
https://medium.com/@nandhuraj/background-task-automation-in-flutter-unleashing-the-power-of-workmanager-20c5e610cfbf
https://pub.dev/packages/awesome_notifications
https://pub.dev/packages/awesome_notifications
https://www.npmjs.com/package/firebase

List of Figures

1 Wearable diffusion by major brands. 12

2 Overview of the System Core Architecture. 19

3 Overview of the Mobile System Architecture, enriched with a wearable. . . 21

4 Logo of the Flutter Framework. 22

5 Logo of the React Framework. 23

6 Logo of the Dart Programming Language. 24

7 Overview of all the devices that dart is able to reach. 24

8 Logo of the Javascript Programming Language. 25

9 Logo of the Groovy Programming Language. 26

10 Logo of the Yaml Language. 27

11 Logo of the Gradle Automation Tool. 29

12 Gradle operating flow. 29

13 Logo of the NPM Automation Tool. 30

14 Logo of the Android Studio IDE. 30

15 The target device menu. 33

16 File sizes in the APK Analyzer. 34

17 Example of the Gemini feature usage through the tab in android studio. . . 35

18 Logo of the VsCode Code Editor. 35

19 Authentication Screens of the mobile client (sign in and profile management)

on the left and of the web client on the right. 42

20 Function Called at the end of the onBoarding process to setup all the needed

documents/fields for the user. 46

21 HomeDataProvider instantiation at the root level of the app (left) and

example of accessing the instance (right). 47

22 Home Page charts (left) and example of health data fetch for the steps (right). 49

23 Example of database data fetch for the emotional data (left) and corre-

sponding database fields (right). 49

69

24 Health Measures Page on Body-related data tab (left), detailed view of the

Body Balance chart (center) and his corresponding database fields (right). 51

25 Personal Information Page with Personal Measures tab (left), Goals tab

(center) and corresponding database field (right). 52

26 User View of the Lessons and Quizzes (left), of a lesson in detail (center)

and the related database fields to handle pills reading (right). 53

27 .arb files structure definition (top) and usage example of the multilanguage

feature (bottom). 55

28 Cloud Storage view of the users folder, uniquely named with userIds(left)

and view of a single user folder containing the JSON files of the backup,

where each file is uniquely named with the timestamp (right). 57

29 Sample content of a json file of the backup, containing the health data of

the user. 57

30 Example of the notifications sent (left), of the food form opened from the

notification (right) and function call at application startup (bottom). . . . 59

31 Parameter fetch flow. 61

32 Example usage of parameters update (body_test_balance). 62

33 Lessons And Quizzes database operations. 62

34 Performance analysis of the startup time metric, with very good results. . . 63

35 Performance of the API calls. 64

36 Monitoring example on the deleteFood API call. 64

37 Crash-free users and session in the last 90 days, with the bug present (left)

and in the last 30 days, after the bug fix (right). 65

70

Acknowledgements

Thinking about the journey I have made in those years, as well as all the people who

helped make it so, makes me very excited and leaves me speechless. If I got here, besides

myself, I owe it to all these people.

I thank my supervisor, Prof. Maurizio Morisio, for his availability and his support

during the internship and thesis.

I thank my parents, Gaetano and Maria, for all the sacrifices they have made, and

that allowed me to get where I am. Without their help I would certainly not be here now.

Even if not involved with university and actual projects, I would like to thank my

closest friend for their precious company: Vincenzo Petrillo, childhood friend of a lifetime,

but also Alberto Contaldi for his madness and Giuseppe Romano.

I thank my colleagues and friends:

• Gaetano, also known as Tanucc/TanoDev, for all the laughs and moments of study

and fun shared together.

• Alessandro, also known as the Regal Queen, for his regal presence during many

moments of study and fun, and all the laughs shared together.

• Davide, also known as DaveBreaks, for the many moments of fun shared together

(not of study since he tortured me with the grammar and the padding, but I still love

him).

• I would also like to thank Giorgio and Giuseppe (also known as LoHacker) for their

company and the many laughs shared together.

Together we shared most of the study days, and I thank them for making it less strenuous,

and certainly more fun, between one laugh and the other. We also shared all the effort

and difficulties of this course, and we managed to overcome them together.

I thank all of you with whom I have shared a part of myself and my journey.

	Introduction
	Health and Well Being
	Guidelines
	Physical Activity Guidelines
	Healthy Diet Guidelines

	Technology Role in Health
	Smartphone Applications
	Wearable Devices

	System Specifications
	System Requirements
	System Design and Architecture
	System Design
	System Core Architecture

	Technology Stack
	Frameworks
	Flutter
	React

	Programming Languages
	Dart
	Javascript
	Groovy
	Yaml for flutter pub package manager

	Automation Dependencies Tools
	Pub Package Manager
	Gradle
	Npm

	Integrated Development Environment
	Core features
	New features

	Code Editor
	Google Firebase
	Authentication Service
	Cloud Firestore Database
	Cloud Storage
	Performance Monitoring
	Crashlytics

	Dependencies
	health
	workmanager
	awesome_notifications
	l10n
	firebase

	System Implementation
	Firebase
	Firebase Authentication
	Cloud Firestore Database

	User OnBoarding and Registration
	State Handling
	Home Page
	Health Data Source
	Database Data Source

	Health Measures Page
	Health Data Source
	Database Data Source

	Personal Information Page
	Learn Page
	MultiLanguage
	Health Data Backup with Cloud Storage
	Notifications
	Application Parameters
	Web Application

	System Outcomes and Enhancements
	Achieved Performances
	Startup Time
	API Calls

	Crashlytics
	Future Developments

	Bibliography
	List of Figures

