POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

([TTTH
\{\ 1859 ol
-\ ,z’

Master’s Degree Thesis

Enhance Security with Robots and
Artificial Intelligence

Supervisors Candidate

Prof. Giuseppe Bruno AVERTA Francesco P. CARMONE
PhD. Francesca PISTILLI

Ing. Claudio CHIEPPA

April 2025

Alla mia famiglia

Summary

Ensuring security in critical infrastructures, industrial sites, and remote areas
requires advanced Al-driven solutions, as traditional methods—such as fixed cam-
eras and human patrols—suffer from limitations in adaptability, coverage, and
reliability. A key component of any Al-based surveillance system is the dataset
used for training, as the accuracy and robustness of anomaly detection models
heavily depend on the quality and diversity of training data. This thesis focuses on
the development of an Al-powered perception system capable of real-time object
detection and anomaly recognition, addressing the critical challenge of dataset
acquisition. To overcome the scarcity of labeled data, a synthetic dataset was
generated using the Al-based model FLUX.1-schnell. This approach ensured
a diverse and representative dataset, improving the generalization capabilities
of the neural network in complex surveillance scenarios. The perception system
runs on an NVIDIA Jetson Orin Nano 8 GB and employs NVIDIA DeepStream to
efficiently process video streams in real time. Object detection is performed using a
YOLO-based neural network, with optimized inference running on the edge device.
The processed data, including detected objects, bounding boxes, and timestamps,
is transmitted via the Kafka communication protocol to a central server, where
it is visualized through a web application. This enables real-time monitoring and
historical review of detected events, improving situational awareness and response
times.

By focusing on Al-driven perception and dataset generation, this work con-
tributes to the advancement of autonomous surveillance systems. The integration
of synthetic data augmentation, edge Al processing, and real-time streaming en-
hances the reliability and scalability of automated security solutions, laying the
groundwork for future developments in intelligent monitoring technologies.

11

Acknowledgements

La stesura di questo documento non segna solo la conclusione di sei mesi di tesi in
azienda, ma la chiusura di un capitolo molto piu ampio, iniziato nel tardo 2018 e
giunto oggi al suo epilogo, nell’aprile 2025. E stato un percorso segnato da difficolta
immense, rimorsi, incertezze e angosce. Un cammino fatto di ferrea disciplina,
routine, bilanci e strategia.

Desidero innanzitutto ringraziare il prof. Giuseppe Bruno Averta per il suo
immediato sostegno. Un sentito ringraziamento va a Claudio Chieppa e a Concept
Reply per la fiducia accordatami nell’utilizzo di tecnologie avanzate e strumenti di
valore, permettendomi di esplorare soluzioni concrete con responsabilita e liberta.

Rivolgo un pensiero speciale a mia madre, mio padre e mia sorella Clara per
essere sempre rimasti al mio fianco, anche nei momenti piu bui, con un sostegno
incondizionato, tanto materiale quanto emotivo, e per cui provo un profondo ma
silenzioso affetto.

A TIsabel, il cui affetto genuino mi ha restituito una stabilita a lungo cercata. A
ICARUS e ai suoi membri, i primi a mostrarmi cosa significhi affrontare problemi
reali, lontani dai tomi e dai discorsi altisonanti, dove il valore di una soluzione si
misura nella sua capacita di far funzionare un sistema. A Claudio Macaluso, che
negli ultimi mesi mi ha fatto provare cosa significhi avere un fratello. A Samuele
Giannetto e Stimone Voto, sempre presenti nel mio periodo in azienda, pronti ad
ascoltare i miei deliri e voli pindarici. A Simone Carena e Ludovica Mazzucco, con
cui ho condiviso giornate estenuanti dedicate ai progetti. Ai Re Magi — Francesca
Fusco, Michele Ferrero, Alessio Cappello, Angelo Gennuso, Marco Rosa Gobbo
(Marcorogo), Edoardo Cavallotti, Federico Ghiglione, Letizia Licitra — non solo
per la loro amicizia, ma per avermi accolto con naturalezza in un momento in cui
ne avevo piu bisogno. Dopo un anno a Pisa in cui tutto cio che davo per certo —
accademicamente e socialmente — era crollato, con loro ho ritrovato la leggerezza
di costruire un gruppo senza sforzo, senza pretese.

E infine, a te, lettore, che hai dedicato il tuo tempo a sfogliare queste pagine.

II1

Table of Contents

Introduction

1.1 Goal and Problem Statement
1.2 Stateof the Art
1.3 Content Overview

System Components Overview

2.1 Hardware
2.1.1 Intel RealSense d435i
2.1.2 Jackal UGV Rover
2.1.3 UniTree Go2
2.1.4 Workstationo
2.1.5 Laptop

2.2 The NVIDIA DeepStream SDK
2.2.1 DeepStream vs GStreamer + OpenCV
2.2.2 DeepStream vs Pipeless
2.2.3 Conclusions on DeepStream

2.3 Jetson Orin Nano and Nvidia Jetpack

Setup Jetson L
2.3.1 Overall Architecture

Computer Vision

3.1 Imtroduction to Computer Vision

3.2 Choosingamodel

3.3 Dataset
3.3.1 Obtaining the images

Webscrapingo o
3D Modelling
Generative AI - Flux.1
Prompt Engineering
Classification Results
3.3.2 C(lassification and labelling

v

4 DeepStream Pipeline

4.1 Pipeline Structure
Configuration file

Writing a pipelinein C

4.1.1 Pipelines
Simplified URI Pipeline

Simplified Video Source Pipeline

Simplified Double Video Source Pipeline

Simplified Triple Video Source Pipeline

Debuggable Patrolling Pipeline

Patrolling Pipeline

TensorRT Engine
4.2 Server e Endpoint L
5 Results
5.1 Model Performance
5.2 Jetson e
5.2.1 Results and Analysis
5.2.2 Cameras
6 Conclusions and Future works
List of Tables
List of Figures
A Prompts
Bibliography

23
24
25
27
27
27
27
28
28
28
29
29
29

31
32
33
34
35

37

39

40

42

50

Chapter 1

Introduction

1.1 Goal and Problem Statement

Security has always been a fundamental human concern, leading to the development
of various protective measures throughout history. Today, ensuring the safety of
critical infrastructures, industrial plants, and remote areas remains a pressing
challenge. Traditional patrolling methods, relying on human guards and fixed
surveillance cameras, suffer from limitations in coverage, reaction time, and analyti-
cal capacity. Automating repetitive security tasks through Al-driven surveillance is
a natural evolution, offering continuous 24/7 monitoring, minimizing human errors,
and improving threat detection. However, the effectiveness of such Al systems
hinges on one crucial factor: the availability of high-quality training data.

This thesis focuses on developing an autonomous patrolling system that leverages
Al-powered perception to detect predefined objects and behaviors in real time.
The core challenge lies in training an Al model capable of accurately identifying
anomalies, unauthorized individuals, or security threats. Achieving this requires
a well-curated dataset that captures the complexity of real-world surveillance
scenarios. However, collecting and labeling large-scale security datasets is costly,
time-consuming, and often impractical due to privacy concerns and the rarity of
real security incidents. To overcome this, a synthetic dataset was generated using
Al-based techniques, ensuring a diverse and comprehensive training set without
the limitations of traditional data collection. The proposed system integrates an
AT inference pipeline running on an NVIDIA Jetson Orin Nano 8GB, leveraging
NVIDIA DeepStream for real-time video analysis. Object detection is performed
using a YOLO-based neural network, trained on the synthetically generated dataset
to improve generalization across different environments. Once detected, security
events—such as anomalies or intrusions—are transmitted via the Kaftka commu-
nication protocol to a remote monitoring system. A web-based interface enables

1

Introduction

security personnel to visualize real-time alerts, access historical data, and respond
effectively to potential threats. By focusing on Al-driven perception and synthetic
data generation, this thesis addresses the fundamental challenge of training re-
liable security models without the need for extensive real-world data collection.
The resulting system provides a scalable, adaptable, and cost-efficient surveillance
framework that enhances security operations while reducing reliance on manual
patrols.

1.2 State of the Art

Security robots have been increasingly adopted in recent years to enhance surveil-
lance capabilities in urban environments. In 2017, the K5 Model robot was deployed
in Los Angeles, CA, contributing to a reduction in crime incident reports and an
increase in arrests. This demonstrates the potential effectiveness of autonomous
security systems in real-world scenarios [1]. A more recent study [2] presents
a security robot with a highly similar architecture to the one described in this
thesis, integrating a ROS2 layer for autonomous navigation. The system leverages
computer vision techniques to detect violent behavior, recognize weapons and
hazardous objects, and identify individuals. Upon detecting a critical incident,
the robot triggers an alarm and transmits the relevant data to a central security
server, where a web-based interface enables security personnel to monitor events
in real time. The detection pipeline is built upon the YOLOv8 neural network, a
widely adopted architecture for real-time object detection. Another crucial aspect
of these autonomous security systems is their ability to log and communicate
incident reports. While functional, such an approach raises concerns regarding
scalability and maintainability, as it tightly couples the detection module with the
communication layer. A more flexible and modular solution may be preferable for
long-term deployment and integration with existing security infrastructures. One
of the key challenges in designing a security system is defining what constitutes an
intruder or a security threat. Previous works, such as [2] and [3], have explored
this issue, utilizing various approaches that range from vision-based detection to
audio analysis. However, defining an intruder remains a non-trivial problem, highly
dependent on environmental context and operational constraints. A fundamental
contribution of this thesis lies in the dataset generation process, which serves as
the backbone for training and validating the detection models. A novel workflow
was developed using ComfyUI to automate the generation of large-scale synthetic
datasets tailored to specific security tasks. This workflow has been tested exten-
sively in the context of detecting broken fences, a scenario relevant to perimeter
security. However, due to its modularity, the same pipeline can be easily adapted
to different use cases with minimal effort. Since the entire data generation and

2

Introduction

labeling process has been systematized, switching to a new task would require
less than a week, making this approach highly scalable and flexible for various
applications.

1.3 Content Overview

This thesis explores the implementation of an Al-based detection system, inte-
grating computer vision techniques with an efficient processing pipeline. The
System Components Overview (2) chapter presents the hardware and software used,
detailing the rationale behind each choice and discussing potential alternatives for
specific components. The Computer Vision (3) chapter provides a foundational
understanding of neural networks and their role in object detection. It highlights
the importance of high-quality datasets, the risks of overfitting, and strategies for
dataset preparation. Additionally, it explores how generative Al can be leveraged to
augment training data. The DeepStream Pipeline (4) chapter details the inference
pipeline, responsible for processing input sources, running Al-based detection, and
transmitting results. It examines the different configurations and optimizations
applied to improve efficiency. The Results (5) chapter evaluates the system’s
performance, analyzing the neural network’s effectiveness across different setups
involving one, two, and three cameras. It also assesses resource consumption,
including energy, memory, and video memory, ensuring compliance with system
constraints. The Conclusions and Future Work chapter (5) summarizes the key find-
ings and discusses potential improvements, outlining directions for future research
and development.

Chapter 2

System Components
Overview

This chapter describes the technologies used throughout the thesis, which are
considered hardware and software, as well as why certain choices were made and
what component can be replaced.

System Components Overview

2.1 Hardware

The key elements main of this system are: a camera to capture a video stream, a
board to process such data and has internet access for external communication,
and a mobile robotic platform. Each component is widely available from numerous
manufacturers, offering similar quality at competitive prices. The system is platform-
agnostic, meaning it can be integrated with any mobile robot as long as it is powered
and has internet access. A Jetson device was chosen specifically in order to leverage
the DeepStream SDK (see 2.2) and its advantages for this application.

2.1.1 Intel RealSense d435i

An ideal video camera would support multiple resolutions, have different framerates
to allow for experiments in various setups, have a low energy consumption, high ISO
sensitivity to operate in low-visibility conditions, while maintaining a competitive
price.

Table 2.1: Intel RealSense d435i Colour Spaces and Resolutions

Color Space 640x480 1280x720 1920x1080

RGB v v v
YUV2 v v

Infrared (IR) v v v
Depth v v v

Throughout the thesis, the pipeline developed utilzes the YUV2 colour space,
ignoring the other webcam capabilities.

Table 2.2: Intel RealSense d435i Supported Resolutions and FPS for the YUV?2
colour space

FPS 424x240 640x480 848x480 960x540 1280x720 1920x1080

60 v v v v v

30 v v v v v v
15 v v v v v v
6 v v v v v v

System Components Overview

2.1.2 Jackal UGV Rover

Jackal 2.1 is a small, fast, entry-level field robotics research platform. It has an
onboard computer, GPS and IMU fully integrated with ROS for out-of-the-box
autonomous capability. As with all Clearpath robots, Jackal is plug-and-play
compatible with a huge list of robot accessories to quickly expand your research
and development.

Figure 2.1: Clearpath Jackal at Reply Area 42

Size and Weight

External Dimensions 508 x 430 x 250 mm
Internal Dimensions 250 x 100 x 85 mm
Weight 17 kg
Maximum Payload 20 kg

Table 2.3: Clearpath’s Jackal Physical specifications

6

System Components Overview

Speed and Performance

Max Speed 2.0 m/s

Run Time (Basic Usage) 4 hours User Power

5V at bA, 12V at 10A, 24V at 20A

Drivers and API ROS 1 Noetic, ROS 2 Humble

Table 2.4: Clearpath Jackal Performance specifications

2.1.3 UniTree Go2

Go2 is an entry level robotic platform with canine shape and dynamics, it’s equipped
with a Standard Ultra-wide 4D LIDAR for maps generation, a battery capacity
increased to 8,000mAh [4].

Figure 2.2: Unitree Go2 at Reply Area 42

Size and Weight

External Dimensions 70x31x400mm
Weight 15 kg
Maximum Payload 10 kg

Table 2.5: Unitree Go2 Physical specifications [5]

7

System Components Overview

Speed and Performance

Max Speed 3.7m/s
Run Time (Basic Usage)! 1.5 hours
Maximum Slope 30°

Drivers and API Proprietary?

Table 2.6: Unitree performance specifications of the system [5]

During the measurement process, the Jackal encountered a technical issue
that could not be resolved within the timeframe of this thesis. Consequently,
development and testing had to be continued on an alternative platform. Due to
the nature of this module, the migration was seamless and required no additional
code modifications.

2.1.4 ‘Workstation

Training, fine-tuning, or performing inference with a neural network is a computa-
tionally demanding task that requires powerful GPUs, large-capacity RAM, and
multi-threaded CPUs to handle the complex matrix operations optimized by the
graphics card. Laptops are generally unsuitable for such workloads. Therefore, I
relied on a high-performance workstation for these tasks. The workstation used
was equipped with 64GB of DDR5 RAM, an NVIDIA RTX 4090 GPU, and a
13th-generation Intel Core i7 processor. This system was utilized both for training
the neural network (5.1) and for running Flux.1 to generate images (3.3.1).

2.1.5 Laptop

Although the Jetson runs a fully-fledged Ubuntu Desktop, it is neither intended
nor well-suited for desktop use. Instead, the majority of the code was developed
on a ThinkBook (2023) equipped with an AMD Ryzen 7 7730U processor with
Radeon Graphics and 32GB of RAM, running an Arch Linux distribution. This
same machine was also used to evaluate the performance of the AI model with the
.pt format.

2 Available ROS2 Integration. Nobody in the company managed to get them to run though.
8

System Components Overview

2.2 The NVIDIA DeepStream SDK

The NVIDIA DeepStream SDK is a comprehensive streaming analytics toolkit
designed for Al-driven multisensor processing, video, audio, and image analysis.
Built on GStreamer, an open-source framework widely adopted for its compatibility
and flexibility in processing various multimedia streams, DeepStream provides
powerful capabilities for real-time analytics. To use DeepStream in an application,
developers construct a pipeline, which can be implemented through Python or C++
code or configured via key-file format configuration files based on the freedesktop
specifications. These files allow enabling or disabling components, modifying their
properties, and customizing other settings, as documented in the official guides.
DeepStream excels at handling multiple video streams simultaneously and achieves
high inference speeds. Rather than processing a single frame at a time, it batches
multiple frames or bjects together, optimizing processing efficiency. This batching
leverages the parallel computing power of GPUs, reducing latency and increasing
throughput. However, for applications that do not required continuous data acqui-
sition or rely on batch processing of static datasets—such as pre-recorded videos
or images—DeepStream might introduce unnecessary complexity and overhead. In
such cases, a simpler alternative like OpenCV may be more suitable.

2.2.1 DeepStream vs GStreamer + OpenCV

GStreamer is an open-source multimedia framework widely used in the GNU
software stack and the open-source ecosystem. DeepStream builds upon GStreamer,
extending its capabilities with specialized plugins optimized for Al inference. Unlike
DeepStream, GStreamer alone lacks native support for inference engines and must
be combined with OpenCV to process video frames through Al models. OpenCV
is a versatile open-source library that provides a broad set of tools for image and
video processing. A key advantage of OpenCV is its flexibility in handling custom
data loaders, enabling tailored video input and preprocessing pipelines. Its open-
source nature allows seamless integration with other libraries, full access to source
code, and easier debugging and customization. However, for real-time inference
on NVIDIA hardware, DeepStream is significantly more efficient. DeepStream
is specifically optimized for GPU acceleration, whereas OpenCV, though highly
flexible, does not offer the same level of performance in high-throughput AI tasks.

2.2.2 DeepStream vs Pipeless

Pipeless is an open-source framework designed to simplify the development of
computer vision applications by abstracting the complexity of GStreamer. Unlike
DeepStream, which requires developers to manually construct GStreamer pipelines,

9

System Components Overview

Pipeless allows the implementation of Python hooks that are automatically trig-
gered at the right time, significantly reducing the development effort. With its
Apache 2.0 license, Pipeless offers full access to the source code for debugging and
customization. It features an extensible plugin system and supports distributed
frame processing, enabling scalability without GPUs by adding workers on differ-
ent machines. While DeepStream provides optimized performance for real-time,
GPU-accelerated applications, Pipeless focuses on developer accessibility, allowing
functional applications to be created in minutes with minimal code. DeepStream
has a steeper learning curve and closed-source limitations, whereas Pipeless is open-
source and highly extensible. Scalability in Pipeless is built-in, whereas DeepStream
requires additional configurations. For rapid prototyping or non-GPU-dependent
projects, Pipeless offers a more accessible alternative.

2.2.3 Conclusions on DeepStream

A simple test setup was designed to compare DeepStream and Pipeless (GStreamer
+ OpenCV) using an identical hardware configuration and the same YoloV1iim
model, with weights provided by Ultralytics. The input video consisted of a 12-
second clip, where each object class appeared sequentially, ensuring a consistent
evaluation across both frameworks (Figure 4.1).

Metric DeepStream | Pipeless (GStreamer + OpenCV)
Average FPS 29.99 29.99

CPU Usage (%) 16 97

GPU Usage (%) 91 153

Table 2.7: Comparison between DeepStream and Pipeless (GStreamer + OpenCV)
using a basic pipeline. Although inference time and speed were not directly
measured, GPU usage indicates that DeepStream offloads most computations to
the GPU, whereas Pipeless relies heavily on CPU processing.

DeepStream’s superior speed stems from its GPU acceleration and optimized
parallel processing, making it highly suitable for real-time applications. However,
its main drawback is its exclusive reliance on NVIDIA hardware, rendering it
unusable on non-NVIDIA platforms. Given the available hardware and the real-
time requirements of this thesis, DeepStream was selected for its efficiency in
handling inference workloads and delivering low-latency object detection.

3Similar results were observed when measuring idle power consumption with the Jetson
powered on.

10

System Components Overview

2.3 Jetson Orin Nano and Nvidia Jetpack

NVIDIA Jetson is a series of embedded computing boards from Nvidia. The Jetson
TK1, TX1 and TX2 models all carry a Tegra processor (or SoC) from Nvidia
that integrates an ARM architecture central processing unit (CPU). Jetson is a
low-power system and is designed for accelerating machine learning applications
[6]. Given the mentioned features and qualities, combined with the accessible
price, the choice fell on the NVIDIA Jetson Orin Nano 8GB. The alternatives were
unnecessarily more expansive for qualities that weren’t require.

AI Performance 67 TOPS
GPU 1024-core NVIDIA Ampere arch, GPU, 32 Tensor Cores
GPU Max Frequency 1020 MHz

Table 2.8: Technical Specifications for Jetson Orin Nano 8GB

The physical hardware comes along with the DeepStream SDK [7] and JetPack
SDK [8]. The version used in this thesis is JetPack 6.1, which granted a Ubuntu
22.04 with a Linux Kernel (Tegra) 5.15, also known as Jetson Linux 36.3. The whole
range of installed packages, can be consulted in here on the official documentation.
I chose the last available SDK as it promised the best performances out of the
previous iterations, documentation and examples up-to-date.

Setup Jetson

Flashing the NVIDIA Jetson requires booting up the board in recovery mode. To
do so, install the NVIDIA SDK Manager on a Ubuntu host, add a jumper among
the PINs 9 and 11 of the Jetson, connect the board to the host, and then proceed
with the installation [9].

2.3.1 Overall Architecture

The overall system architecture is centered around the NVIDIA Jetson. One or
more video cameras can be connected to it, after which the AI model’s inference
is executed within the DeepStream pipeline. The pipeline is also responsible for
transmitting the detection vectors to a server using the communication protocol
Kafka. A human operator can access this data through the web application, as
detailed in 4.2. The integrated components are summarized in Figure 2.3.

The obtained architecture is modular, as it allows for the replacement of indi-
vidual components while keeping the rest of the system intact. Other available
choices for the robot included the Boston Dynamics SPOT and Unitree’s Go2, or
any other model as long as the NVIDIA Jetson can be powered. The architecture

11

https://docs.nvidia.com/jetson/archives/jetpack-archived/jetpack-61/install-setup/index.html#upgradable-compute-stack

System Components Overview

Jetson

Operator
Host PC

Figure 2.3: System Architecture

is scalable in height, as a more powerful integrated computer can replace the Orin
Nano to accommodate a more demanding Al model; it is scalable in width, as exact
copies of the same system and hardware can be deployed with the same running
codebase and integrated seamlessly. Finally, the system is easy to configure, as it
relies on accessible configuration files that enable significant modifications with
minimal intervention, even for personnel without coding experience. The mean
power consumption is available in Section (5).

12

Chapter 3
Computer Vision

After defining the idea of Computer Vision and introducing the concept of Neural
Networks, this chapter describes the importance of high quality data, the concept
of overfitting, how to prepare a dataset and how generative Al can be used to
enhance data.

13

Computer Vision

3.1 Introduction to Computer Vision

Computer Vision is an inter-disciplinary field which aims to give computers the
ability to acquire, analyze, process and understand data of digital images, in
order to produce numerical or symbolic information with the aid of geometry,
computer science, statistics, and learning theory. Images can assume various
forms, as point clouds from LiDARs, video sequences, 3D scans, 2D images et
cetera. The past two decades have seen a massive improvement of feature extraction
techniques, largely largely driven by neural networks — computational models loosely
inspired by biological brains. These networks, particularly deep learning models
like convolutional neural networks (CNNs), have excelled at learning complex,
non-linear relationships in data, which are challenging to model using traditional
analytical methods. Such machine learning algorithms produce in output a vector
of data that can be later reinterpreted. The most common approaches to object
detection can be divided into two categories:

1. Single-Shot Detection Methods: These methods skip the region proposal stage
and directly predict object classes and bounding boxes in a single step, making
them faster and more efficient.

2. Two-Stage Methods: These methods first identify regions of interest (ROIs),
or candidate regions—areas that might contain the desired object. These ROIs
are then passed into another neural network to classify the object and refine

the bounding box. Prominent examples of such networks include R-CNN, Fast
R-CNN, and Faster R-CNN.

Two-stage methods tend to be more accurate but are also more computationally
intensive, which makes them less suitable for applications requiring low latency,
such as the one described in this thesis. For this reason, I utilized YOLO (You
Only Look Once), due to its accessibility through the Ultralytics library and
its proven performance in real-time applications. The output of this network
is a vector that includes the class of the detected object and its bounding box,
represented as normalized floats between 0 and 1. A CNN extracts features from
the dataset images through a series of convolutional layers, which apply filters to
detect patterns such as edges, textures, and shapes. These features are progressively
combined to form higher-level representations. The quality of the dataset directly
impacts performance; a good dataset is one that is diverse, well-annotated, and
representative of the real-world conditions the model will encounter. Diversity
ensures the model generalizes well, proper annotations provide accurate learning
signals, and representativeness prevents biases that could lead to poor predictions
during inference.

14

Computer Vision

3.2 Choosing a model

In the field of object detection, a wide range of models exist, each with its own
strengths and trade-offs. Among them, two-stage methods like Faster R-CNN,
which was previously discussed in Section 3, have been widely adopted due to their
high accuracy. Other alternatives include RetinaNet, which leverages a focal loss
function to improve performance on hard-to-detect objects, and SSD (Single Shot
MultiBox Detector), known for its balance between speed and precision [10].

A comparative study conducted by researchers in Korea evaluated the per-
formance of RetinaNet-50 and RetinaNet-101 against YOLOv3, concluding that
while RetinaNet offered competitive detection capabilities, YOLOv3 significantly
outperformed it in terms of inference speed [11]. Similarly, an analysis by Indian
researchers referenced multiple object detection architectures, including R-CNN,
Fast R-CNN, and Faster R-CNN, highlighting that despite their accuracy, their
inference times were prohibitively slow for real-time applications.

Given these considerations, I opted for YOLOvV11, as it provides a well-balanced
trade-off between speed and accuracy, making it particularly suitable for real-time
detection tasks. Additionally, the Ultralyics implementation [12] of YOLO stands
out due to its extensive documentation and integrated suite for training, validation,
and testing, streamlining the development process.

3.3 Dataset

No publicly available dataset met the specific requirements of this work. The
scarcity of suitable datasets for security fence inspection has also been noted in
previous studies [13]. To address this gap, I created a custom dataset by integrating
web scraping, 3D rendering, and generative Al, each explained in the following
chapters. At that stage the model was not generalizing well as expected, as it
had a limited size and was missing diverse data, as highlighted in 3.3.1. This lead
to the use of flux.1, a generative Al model 3.3.1, to generate the needed corner
cases. At this point, building the dataset was a continuous iteration that involved
the identification of missing data, the addition of freshly generated, classified and
labelled data into the dataset, and testing the model. The definitive dataset version
contained 4232 images, of which 2320 were anomalies, and the rest was background,
as shown in 3.1.

3.3.1 Obtaining the images

Data directly impacts model performance. A diverse and well-varied dataset is
essential for ensuring good generalization during inference. Increasing the amount
of data in a dataset does not always improve its quality. In fact, it can lead to

15

Computer Vision

Anomalies

N

rbther Backgrounds

—

Fences Backgrounds

Figure 3.1: Dataset Composition: Anomaly (54.8%), Fences Backgrounds (34.2%),
Other Backgrounds (11%)

a condition called owverfitting, where the model learns the features of the training
data so precisely that it struggles to generalize to new, unseen data. One effective
approach to enhancing the diversity of a dataset is data augmentation, which
consists applying transformations to existing data to create variations without
collecting additional samples. Common augmentation methods include rotating,
flipping, cropping, or altering the brightness, contrast, and colors of images. These
manipulations mimic the natural variations seen in real-world scenarios, exposing
the model to a broader range of conditions and making it more robust. For example,
an augmented dataset might simulate variations in lighting, camera angles, or object
positions, helping the model better handle such variations during inference.

Webscraping

The first approach involved web scraping, an action which consists of automatically
downloading images from web sources using a Python script. After collecting the
images, each image was kept or discarted if they passed these heuristics: a. the
image size is below 40KB in size, b. the image is lower than 440px in width or
height, c. the image is already present in the dataset.

After this initial filtering, I manually reviewed the dataset, eliminating images
that were irrelevant, repetitive, or lacked diversity. This method proved to be time-
efficient; however, beyond a certain point, the collected images exhibited significant

16

Computer Vision

redundancy. Even when varying the prompt language, search location, and search
engine, the retrieved results remained largely unchanged. More importantly, the
number of images containing holed fences was so low that it was statistically
insignificant. Nonetheless, web scraping contributed to the diversity of background
images, incorporating elements such as intact fences, glass doors, stained glass,
and railings. In total, 1300 out of 1912 web-scraped images were classified as
backgrounds, representing the majority of background samples in the dataset.

3D Modelling

The second approach involved modeling one or more scenes that encompassed
various perspectives, edge-case scenarios, lighting conditions, and obstructions
to generate a realistic dataset. While this approach was promising, it proved to
be time-consuming, as [had little experience in 3D modeling, despite producing
high-quality images. The meshes were freely available online, and my role was
limited to setting up the scene, lighting, and camera views. For each scene, I
rendered six different frames. The software used was Blender, an open-source tool
for 3D modeling. The primary reason this approach was ultimately discontinued
was its lack of scalability: while manually modeling each scene for a limited number
of classes might have been feasible, it was not a generalizable solution.

AT TR
TR

A\

]
r'll)\)}}}\

il

7/
Wi

A\
I 7
LALRL L T

Figure 3.2: Rendered images

Generative Al - Flux.1

Despite the data augmentation techniques discussed in Section 3.3, certain types of
data remain rare, costly, or impractical to collect. These include extreme edge cases,
uncommon object configurations, and scenarios influenced by specific environmental
conditions. In such instances, generative networks can be leveraged to synthetically
produce these rare cases, enhancing dataset diversity and completeness.

17

Computer Vision

Different models’ output given the same prompt!. From left to right:
flux.1-schnell[l4], stable-diffusion-v1.5[15].

Flux is a family of text-to-image models that generates images from natural
language prompts, developed by Black Forest Labs. The family employs a hybrid
architecture combining multimodal and parallel diffusion transformer blocks, scaled
to 12 billion parameters [16]. Flux is available in three different flavours:

e Schnell: An open-source variant released under the Apache License
e Dev: A source-available version under a non-commercial license.

e Pro: A proprietary version accessible via API licensing.

Flux.1 is a computationally demanding model, which required execution on
the workstation described in Section 2.1. Initially, I developed a Python script to
perform inference based on a given prompt. However, I later discovered ComfyUT,
which provided a more efficient and structured approach. After fine-tuning the
parameters to achieve an optimal balance between image quality and inference time,
I finalized the workflow and parameter configuration presented in the following
pages. For the initial prototyping phase, I utilized the schnell model due to
its faster inference speed. Subsequently, I transitioned to the dev model, as it
consistently produced objectively superior results under identical conditions. On
average, the time required to generate a single image was approximately 12.8
seconds.

ComfyUI works by defining a workflow, a succession of nodes with unique capa-
bilities and parameters. The workflow developed for image generation is represented

18

Computer Vision

in Figure 3.3. The process begins with the DualCLIPLoader, which processes the
prompt using the models t5xx1l fp16.safetensors and clip_l.safetensors.
The textual input is then encoded through the CLIPTextEncoderFlux, where a
guidance value of 100.0 ensures that the generated output adheres as closely as
possible to the given prompt. The generation starts from random noise, which
serves as the initial input for the sampling process. The Euler sampler is employed
to refine the image generation, working in conjunction with the sgm_uniform
scheduler. This scheduler is configured with 50 — in some prompts increased to
75 — and a denoise value of 1.00, ensuring a controlled and effective progression
towards the final output. All these parameters are forwarded to the VAE node
that contains the flux model, that generates the images in form of tensors that are
later converted into a .png image.

Figure 3.3: The ComfyUI workflow used to generated images.

For each prompt, I generated a images batches and then proceeded to classify
and label them as described in 3.3.2. The results are available in Section 3.3.1.

Prompt Engineering

I tested a total of 51 prompts. Each prompt consisted of two inputs: a CLIP
prompt, a shorter description of, and T5 prompt, a more complex description that
would all the nouances of the scene. If the CLIP input is not given, that field will
use the T5 prompt. I did not test what would happen if the CLIP and T5 had two
totally different and contrasting description. I generated a number images for each
prompt, usually 320, classified them and decided wether to generate more images,
or keep editing the prompt until I reached more satisfactory results. This approach
lead to the formation of three groups by thematic similarities, described in 3.1

1. Holes; The logic applied was to mention the hole, the material, the position,
and a bigger hole as I believed it would make them easier to generate. These

19

Computer Vision

Anomaly Background Trash

Figure 3.4: An example of image classification

groups resulted in prompts 015 and 002 yielding the best results due to the
use of keywords pierced, damaged, holed, ruined, showing signs of intrusions,
intruders.

. Distance; The previous prompts generated a good amount of high quality
images, that often had a front-faced POV. Since the robot wouldn’t walk that
close to the fence, the dataset images needed a bigger amount of fences seen
from a further distance.

. Background complexity; the previous prompts provided a good amount of
data, but when testing the robot on real-case scenarios, the detection were
often unsatisfactory, unless the background had a uniform background. To
address this issue, I focused on making more complex backgrounds, while
keeping a distant, pierced fence, while Reduce the presence of artifact.

Prompt IDs Anomalies’ Reason

Group 1 001 — 011 1008 Holed and cut fences
Group 2 015 — 039 750 Distant point of view
Group 3 040 — 051 155 Increase background complexity

Table 3.1: Grouping of prompts based on thematic similarities

2Number of images containing at least one anomaly: not all generated pictures had only one
anomaly.

20

Computer Vision

Classification Results

Although I tested 51 different prompts, not all of them performed equally. Some
generated more backgrounds than anomalies, some were too monotonous, and some
didn’t generate any meaningful data. A graph showing the percentage of anomalies
per-prompt is Figure 3.4. The total amount of generated images was 45425, and
among those only 1913 were classified as anomaly. More details about each prompt
including the percentages of anomalies and backgrounds is available in Appendix

A.

Anomaly Percentages per Prompt with Group Colors

15.63%

938%

ntage (%)

7.47%

625% 6.25%

2 1.88%

1.56%

0 I I
Py ~
2

Figure 3.5: Percentage of anomalies over all the generated images, sorted by
percentage

3.3.2 Classification and labelling

The images generated by flux. 1 were manually classified as anomaly i.e. a damaged
fence a background, i.e. an image without anomalies corner-case, or trash, i.e.
images whose generation wasn’t real due to the presence of artifacts or unrealistic
composition, materials, or unnatural lighting. An example of classification is
available at 3.4. The classification happened with a software I developed, Sorter,
which is freely available on GitHub [17]. Once all the images was classified, I
manually labelled the anomaly class with label-studio [18]. Once the images were
classified T labelled them using the FOSS software Label Studio [18] to help assigning
the bounding boxes to the anomalies. The overall amount of time.

21

Computer Vision

7

W,

Y

Wl

KX
)

7

)

iy
U

4
w

\\

W

ity

Prompt 008

Prompt 002

Prompt 006 ,,

VO v v
) et »

“.N,i e B
N,Lrb.ﬂm.vnalﬂ\.

‘e
RN

Prompt 025

®e

KR
= OO IR
e & 5
oo

P sy

e

I
st seseseses
Y S
35359
353555
3533558

Propt 015

0305050505008
1959595950 050505024
<> 105 20009505000
\cW‘MQNONQNO‘-WO.OOOA

AN
RS

>
3
<
o
)
S
)

&
x

‘u«nmc.wcmomo%o4.n
202950990502 "
205030 50503000%

X
XS
X

X
S

Prompt 048 Prompt 051

Prompt 044

Sample anomalies from different prompt outputs. First row: group 1,

6

Figure 3

third row: group 3

second row: group 2,

22

Chapter 4
DeepStream Pipeline

A pipeline is the component responsable for acquiring a source, running the inference
of the Al model, generate the detection vectors and finally send it with broker. This
chapter explains in detail the plugins into play, and the different configurations
developed for the tests.

23

DeepStream Pipeline

4.1 Pipeline Structure

The pipeline is a tree of plugins, each receiving the output of the previous one,
except for the source plugin and other special cases. Data flows between plugins
through caps and capsfilter, which define buffer capabilities to ensure desired
properties before passing data forward.

Caps can be automatically negotiated [19], or be manually set when constructing
a pipeline from scratch. A capsfilter defines the media type and format of
data within a pipeline, restricting the types of caps allowed. It ensures that only
specific formats, such as YUV, RGB, or H.264, are used before reaching a decoder or
processing element, making it crucial when setting media formats after a source
element like a camera or file source. A pad connects elements, allowing data flow
between them. Elements communicate by linking their pads, where source pads
output data and sink pads receive it. While pads exist throughout GStreamer, they
are explicitly visible in certain elements like nvv4l2decoder and nvstreammux,
due to how GStreamer handles linking and dynamic elements. Pads can be static,
remaining unchanged throughout an element’s lifetime, or dynamic (request pads),
created only when needed. Here is an explaination of the plugins used in the various
pipelines 4.1.1

o Gst-v4l2src Camera source, raw format depend on the device used.
e Gst-urisourcebin URI source, usually a .h264 or .h265 video

o Gst-h264parser parses the source video into a raw format that has to be
converted by Gst-vidconv or Gst-nvvidconv

e Gst-vidconv and Gst-nvvidconv. It’s used to ensure that a set of raw
formats are supported — including the YUV2 colour space used by the Intel
RealSense2.1.1 — and are converted into a format readable by the following
plugins; in particular by converting the video feed into NV12 buffers that are
readable by the the streammux plugin. In case we have a camera with raw
format in nvvideoconvert, GStreamer plugins’ capability negotiation shall
be intelligent enough to reduce compute by vidconv doing passthrough [19]

o Gst-nvstreammux, it forms a batch of frames from one or multiple input
sources, and forward them to the inference plugin.

o Gst-nvinfer, inference engine, often called PGIE, runs the inference over
the input batches and returns metadata that includes the eventually found
bounding boxes.

24

DeepStream Pipeline

o Gst-nvtracker, allows the use of a low-level tracker library to track the
detected objects over time persistently with unique IDs, gets as input the
output of Gst-nvinfer

o Gst-tee, a plugin that forwardes an input over two branches, see Figure 4.5
for an example.

o Gst-nvdsosd it draws bounding boxes, text, arrows, lines, circles and region
of interest (Rol) polygons.

o Gst-msgconv converts metadata into a message payload based on a schema.
Its output is the input Gst-nvmsgbroker plugin.

o Gst-msgbroker a plugin that sends payload messages to the server using a
specified communication protocol. The out-of-the-box supported protocols are:
Kafka, Azure IOT, AMQP, REDIS, MQTT. Moreover, DeepStream allows its
support through a custom implementation of the adapter interface.

These elements can be combined to produce a working pipeline that extracts the
raw buffers from the video feed, runs the inference, and shows the results on screen
and/or sends them with a communication protocol. The NVIDIA DeepStream
SDK offers multiple ways for creating such pipeline, described in the subsections
below.

Configuration file

The simplest way to generate a pipeline by setting up a .txt configuration file
that can be run with deepstream-app -c config.txt. The deepstream-app
command invokes a C code that reads the configuration file and dynamically
generates a pipeline applying the specified configurations listed in [20]. This offers
a fast way to prototype pipelines, and I used them extensively for testing reasons.
However, this approach leaves no space for accessing the pipeline data, which
excludes — among many other possibilities — the chance of sending images. An
example configuration file is represented in 4.1.

25

DeepStream Pipeline

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5

[source0]

enable=0

type=1
camera-width=640
camera-height=480
camera-fps-n=30
camera-fps-d=1
camera-v4l2-dev-node=4

[streammux]

gpu-id=0

live-source=1

batch-size=1
batched-push-timeout=40000
width=640

height=480
nvbuf-memory-type=0

[osd]

enable=1

gpu-1id=0

text-size=8
text-color=1;1;1;1
text-bg-color=0.4;0.4;0.4;0.4
font=Serif
nvbuf-memory-type=0

[primary-gie]

enable=1
model-engine-file=../models/detector_11m_v6_fpl6.engine
config-file../src/testing_pipeline_cfg_pgie.txt

[sinkO]
enable=1
type=222
sync=0
width=640
height=480
plane-id=1
source—-id=0

Table 4.1: Example pipeline, equivalent to the one simplified camera pipeline
described in 4.2

26

DeepStream Pipeline

Writing a pipeline in C

To solve that problem and to have a better understanding of the data flow and the
variables involved, I had to code either in C or Python the pipeline. Among the two
choices, I chose C as it is the officially supported language, and DeepStream docs
uses C examples, instead of the Python wrapping. In contrast to the configuration
file, it is much harder to maintain, requires manual intervation for setting caps
correctly.

4.1.1 Pipelines

The next sections will show the pipelines used for testing and for deployment. I
grouped by color the plugins by their functionality. The green plugins are used for
getting the video input, the orange plugin for the artificial intelligence model, the
blue are for communication, the pink for showing the output to screen (on screen
device), and fiannally the grey are uncategorized.

Simplified URI Pipeline
H h264parser |gumd uridecodebin [emmd nvstreammux e T;iglfs)r H
Figure 4.1: Simplified URI Pipeline, a minimal pipeline using a URI source

The most basic pipeline used throughout the thesis, it takes a video in format
.h264, and runs the inference on it.

Simplified Video Source Pipeline

| vasouce B nwiscory [msveanmo B e R

Figure 4.2: Simplified Video Source Pipeline, a minimal pipeline using a camera
video feed

Same as 4.1, but it takes a camera video feed.

27

DeepStream Pipeline

Simplified Double Video Source Pipeline

h264source e h264parser H
nvinfer :
@ — =

h264source [ommwd h264parser —>

Figure 4.3: Pipeline used for testing the loss of performances with three camera
feeds

Same as 4.2, but the two branches allow the stream of two different cameras

Simplified Triple Video Source Pipeline

h264source |gmmmd h264parser _)ﬂ

. nvinfer .
h264source |[ammmed h264parser |[emmmed nNvvidconv Femmd NVStreammux | (PGIE) —) sink
h264source |[mmmd h264parser —)J

Figure 4.4: Pipeline used for testing the loss of performances with three camera
feeds

Same as 4.2, but the two branches allow the stream of three different cameras

Debuggable Patrolling Pipeline

(—)H R 4>
4 nvinfer
VAl2source g NVVIACONV g NVStreammux e (PGIE) g NVviracker tee
R N - R

Figure 4.5: Pipeline used for testing before deployment, featuring a tracker, a
communication broker, and video-screen output

It features a single video feed, a tracker to assign unique IDs to the detected
objects, and then the data is forwarded in two directions, in one it gets converted
to a message format and sent through the Kafka communication protocol; while
the other branch shows the camera feed and the detections on screen. Unlike the

28

DeepStream Pipeline

previous ones, this one wasn’t dynamically generated, as doing so wouldn’t allow
for encapsulating custom data, such as the encoded image, in the message.

Patrolling Pipeline

m nvvidconv w e nvvtracker nvmsgconv nvmsgbroker sink

Figure 4.6: Pipeline used during deployment, featuring a tracker and a communi-
cation broker

Identically to the previous one, but the branch containing the OSD has been
disabled.

TensorRT Engine

In DeepStream, the .engine file format is a serialized TensorRT model optimized
for deployment on NVIDIA GPUs. This format allows for efficient inference
by leveraging hardware acceleration and reducing the overhead associated with
model execution. The .engine file must be generated from a compatible model
format, such as .onnx, before it can be used within a DeepStream pipeline. To
convert the .pt model into .onnx format, I relied on the method provided by
MarcosLuciano [repo:marcos-luciano]. Once the .onnx file is obtained, it can be
passed to the model-onnx-file field within the DeepStream configuration. When
executed, the pipeline automatically generates the corresponding .engine file,
making the process seamless. An alternative approach involved using the trtexec
binary located at /opt/nvidia/bin/tensorrt/trtexec, which allows for direct
conversion of .onnx models to TensorRT format. However, despite experimenting
with different parameter configurations — including specifying input size and
tensor input/output names — I was unable to produce a functional model. The
only method that consistently worked was the one provided by MarcosLuciano’s
repository, which also supplied the necessary library for custom YOLO inference.
Without this library, running the model within DeepStream would not have been
possible.

4.2 Server e Endpoint

DeepStream provides a message broker plugin that natively supports Kafka, as
described in Section 4.1. For the purposes of this thesis, the Jetson itself was used
as the Kafka and Zookeper servers. However, this approach introduces unnecessary
computational overhead and increases the Jetson’s power consumption and CPU
usage. Ideally, the server should be a separate machine to optimize efficiency.

29

DeepStream Pipeline

"version" : "4.0",

"id" : "390",

"@timestamp" : "2025-01-22T15:09:58.929Z",

"sensorId" : "CAMERA_ID",

"objects" : [
"41102.319(336.9871192.717|446.415|broken fence",
"51496.585|77.7915|599.111]173.693|broken fence",
"6|94.3388170.42041210.8731197.156 | broken fence",
"71269.562|65.048]394.132|209.711|broken fence",
"81261.0671308.1721396.738|474.889|broken fence"

1,

"customMessage" : [
"image; jpg;1920.0x1080.0;2025-01-22T15:09:58.924Z;9j/
4AAQSKZJRgABAQAAAQABAAD/2uBDAAMCAgMCAgMDAWMEAWMEBQgFB
QQEBQoHBw. . ."
]
}

Table 4.2: Example of a sent Kafka message. The customMessage field has been
trimmed down for this representation. Originally it was 588.476 characters long.
The objects array contain the unique ID attached by the tracker, the bounding box
coordinates, and the class name

The detection module is capable of functioning without an active server, but in
such cases, all unsent data is lost, as it is not stored persistently. This limitation
is one of the issues highlighted in Section 6. Assuming the server is operational,
the Jetson transmits a message once per second, even in the absence of detections.
In such instances, the messages contain mostly empty fields, with the exception
of those shown in Figure 4.2. The image data is stored in the customMessage
field as a Base64-encoded string and transmitted to the server. Upon receiving
a message, the system searches for the customMessage field. If it is absent, the
message is discarded. Otherwise, the encoded image is extracted, decoded, and
stored locally for easy access. The operator can then access the web application,
which automatically retrieves and displays the image along with bounding boxes
and associated metadata. Additionally, the interface provides access to previous
detections for further analysis.

30

Chapter 5

Results

Results concerning the components of the system. I will analyze the Neural Network
performances, considering various setups with one, two and three cameras, as well
as the energy, memory and video memory consumption, while adhering to the
system constraints.

31

Results

5.1 Model Performance

These experiments were conducted using the .pt model file on the laptop described
in the Hardware section (2.1), rather than directly on the Jetson device. This
decision was made due to the constraints imposed by DeepStream, which does not
provide a straightforward method for extracting detection data in a structured
manner. The only viable alternative would have been to develop a custom pipeline
from scratch, incorporating only the essential plugins needed for inference and
implementing a custom data retrieval algorithm that would have lowered the
performances. However, as discussed in previous sections, designing such a pipeline
is a time-consuming process that requires extensive configuration and debugging.
Given the scope and time constraints of this thesis, prioritizing model evaluation
on a more flexible development environment was the most practical choice. The
accuracy results obtained from these tests are presented in Figure 5.1.

Synthetic 1 i Area 422

Figure 5.1: Inference results for three different models n(orange), s(green),
m(blue). The models n and s show identical accuracies and bounding boxes.

For testing purposes, I selected four synthetically generated images and four real-
world examples, each containing a single object to be detected. The corresponding
inference results are presented in Figures 5.1 and 5.2. In some cases, the models
detected multiple objects within the same image; however, any additional detections
consistently exhibited confidence scores below 0.45. In a real-world deployment
scenario, such low-confidence detections would typically be discarded through
thresholding to ensure only reliable inferences are considered.

Notably, models s and n produced almost identical accuracy values across all test

32

Results

Model Accuracies by Image

1.0
Model n
B Model s
HEEE Model m
0.8 1
0.6
>
o
e
3
v
O
<
0.4 4
0.2 1
0.0 T
13 ™
R &W &6’ & o »@’» u”ﬁ v
3 e e & 2 2 2 2
& & & & & W W W
)) 2 2

Images

Figure 5.2: Accuracies for each model grouped by image.

images, despite having different parameter counts. This behavior is unexpected, as
a higher number of parameters generally correlates with improved representational
capacity and inference performance. The reason for this phenomenon remains
unclear and may warrant further investigation. In contrast, model m consistently
outperformed both s and n across all test cases, as anticipated. This result aligns
with expectations, given that model m is designed with a larger capacity and greater
computational complexity, which typically enables more precise object detection.

5.2 Jetson

The goal of this section is to determine the optimal model size for inference on the
Jetson platform, considering hardware constraints and the specific use case.

This analysis compares different model sizes in terms of power consumption,
RAM usage, CPU and GPU load. The Jetson can operate in two power modes:
15W and 7W. In the lower power mode, the system engages power efficiency
optimizations to extend operational time. Moreover, RAM usage must remain
below 8GB. The Neural Network training times are negligible due to minimal
variation. Power consumption varies depending on the robot’s configuration and

33

Results

workload. It is important to note that the recorded consumption values are expected
to be higher than those observed in real-world deployment due to the active Ubuntu
X11 session, required for running the experiments, and by the polling active every
second, introduced for collecting data.

The models are nano(n), small(s), medium(m). Each one of them has been
either not quantized (FP32), or quantized to FP16. This leaves us with 6 models
to compare for a given dataset. All results are compared against an idle baseline
to ensure a clear understanding of additional resource usage introduced by model
inference, and evaluated using the same video feed to ensure replicability.

5.2.1 Results and Analysis

tector_11n_v6_fpl6
etector_115_v6_fpl6
etector_11m_v6_fp16

aaaaa

2600
@
Z
> 2500
:
= 2400

Mean CPU Load

10 15 20 25 30 35 40 a5 50
System Time (s)

Figure 5.3: Comparing three different models trained under the same dataset

As expected, smaller models tend to consume less energy than larger models.
However, an unexpected observation is that the small and nano models exhibit
nearly identical power consumption. Similar trends happen for the FP32 model.

o FP16 quantized models exhibit, on average, a 5% increase in CPU load.
e FP16 nano and small models consume less power than any FP32 model.

e FP16 medium consumes power at levels comparable to all FP32 models

34

Results

10000 — idle

~—— detector_11n_v6_fp32
9000 —— detector_115_v6_fp32
—— detector_11m_v6_fp32

6000 —~——

Memory C

— idle
~—— detector_11n_v6_fp32
—— detector_115_v6_fp32

—\ = detector_11m_v6_fp32

— CPUidle)

~— CPU detector_11n_v6_fp32)
—— CPU detector_115_v6_fp32)
—— CPU detector_11m_v6_fp32)

(MB)
2R
g 8 3

Mean CPU Load

GPU Load

GPU Load (%)

10 15 20 25 30 35 40 a5 50
System Time (s)

Figure 5.4: Pipeline used during deployment, featuring a tracker and a communi-
cation broker

o Memory usage, GPU load, and CPU load remain unaffected by an increased
number of detections

These findings highlight the importance of selecting an appropriate model size
based on power and efficiency requirements

5.2.2 Cameras

It is expected that as the number of cameras in the system increases, the pipeline’s
performance will degrade due to the increased computational load required to
process multiple images simultaneously—determined by the batch-size parameter.
To assess this impact, the largest model without quantization (FP32) was selected
as a reference, and FPS values were collected through polling. The pipeline
configuration for two cameras is shown in Figure 4.3, while the configuration for
three cameras is depicted in Figure 4.4.

Data was collected for the following configurations, both with two and three
cameras, for each of the three models (n, s, m):

» 640x480, 60 FPS

. 960x540, 30 FPS
35

Results

FPS Performance, 3 cameras, 1920x1080, 30FPS

304

284

N
o

—— lIdeal behaviour
—— Model m
—— Model s
—— Model n

FPS Count

N
i

224

201

Frame

Figure 5.5: FPS performances using three cameras, a FHD resolution capped at
30FPS.

« 1920x1080, 30 FPS

Each configuration successfully maintained the expected FPS. The only excep-
tion, and the most notable case, was the setup with three cameras—comprising two
Intel RealSense D345i cameras connected via USB 3.1 and one via USB 2.0—which
exhibited significant performance drops across all models. The corresponding
results are illustrated in Figure 5.5.

36

Chapter 6

Conclusions and Future
works

The camera utilized in this thesis has not been leveraged to its fullest potential, as
only the YUV color space was explored, leaving other features, such as the infrared
(IR) capabilities, unutilized. Incorporating IR functionality could significantly
enhance the system’s performance in low-light or nighttime conditions, where
standard visible light imaging often fails. This improvement would expand the
system’s operational scenarios, enabling effective 24/7 surveillance in outdoor
environments.

Due to unforeseen challenges in development and semantic ambiguities, the
detection of intruders and PPE compliance had to be excluded from the system.
Ideally, the implementation would have leveraged DeepStream’s architecture, em-
ploying a primary GPU inference engine (PGIE) to detect humans and multiple
secondary GPU inference engines (SGIEs) to analyze PPE compliance. During
working hours, the PGIE would identify human presence, while SGIEs would deter-
mine whether individuals were wearing the required PPE. Any person without PPE
would be flagged as suspicious, requiring human operator assessment. Outside of
working hours, any detected person would automatically be classified as an intruder.
However, this approach presents a fundamental semantic issue: how should an
intruder be defined? The initial solution—classifying anyone without PPE as
suspicious—was a convenient but flawed implementation. It is easily circumvented
and does not account for contextual nuances, ultimately rendering it an unreliable
criterion for intrusion detection.

A critical area for improvement is the interaction between the Jetson module,
a central server, and the web application. The current architecture assumes a
reliable network connection between these components. However, in practical
deployments, network instability or disconnections could impact real-time anomaly

37

Conclusions and Future works

detection and response. Future implementations should consider optimizing data
synchronization mechanisms between the Jetson and the central server to mitigate
potential latency issues. Moreover, the integration of the web application with the
central server should be refined to ensure that real-time alerts and anomaly reports
are consistently delivered, regardless of connectivity interruptions.

Additionally, the use of OpenRMF (Open Robotics Middleware Framework)
presents an opportunity for more efficient robot fleet coordination and task alloca-
tion. Integrating OpenRMF into the system could improve multi-robot collabora-
tion, path planning, and scheduling, further enhancing the scalability of security
operations. This would enable a more adaptive patrolling system where multiple
robots operate in sync while minimizing redundant coverage.

The current patrolling algorithm is a primitive point-to-point navigation strategy
that relies solely on the robot’s perception and local planning. While obstacle
avoidance is handled by the robot’s onboard systems, the implementation does not
incorporate higher-level path optimization strategies. Future work should focus on
developing a more advanced patrolling algorithm that incorporates predictive path
planning, dynamic obstacle avoidance, and adaptive route adjustments based on
detected anomalies.

Moreover, the module relies entirely on the robot’s self-awareness regarding
battery status and operational constraints. This assumption limits proactive
energy management strategies that could optimize mission duration and minimize
downtime. Future enhancements should explore predictive battery monitoring
and automated return-to-base protocols to prevent mission failures due to power
depletion. The system also assumes that the robot remains continuously connected
to the internet, with the Jetson module connected to the same network. The current
implementation relies on Ubuntu’s Wi-Fi auto-connection feature, which, while
generally reliable, introduces a vulnerability: should connection errors occur, such
as expired credentials, manual intervention is required. This limitation highlights
the need for an automatic fallback mechanism, such as mobile network failover or
periodic reconnection attempts, to ensure uninterrupted system operation. Another
limitation lies in the system’s response when an anomaly is detected. Currently,
if the robot encounters difficulty in identifying a particular anomaly, it does not
attempt to move closer for further investigation. This limitation stems from the
lack of integration between the Jetson’s detection module and the robot’s movement
system. A more sophisticated implementation should enable dynamic anomaly
investigation, where the robot autonomously repositions itself to obtain a better
perspective when detection confidence is low. This would significantly improve
anomaly verification and reduce false positives.

Addressing these challenges and incorporating these improvements would en-
hance the system’s robustness, adaptability, and real-world applicability, ultimately
making it a more effective solution for autonomous security monitoring.

38

List of Tables

2.1
2.2

2.3
24
2.5
2.6
2.7

2.8
3.1
4.1

4.2

Intel RealSense d435i Colour Spaces and Resolutions 5
Intel RealSense d435i Supported Resolutions and FPS for the YUV2

colour space)
Clearpath’s Jackal Physical specifications 6
Clearpath Jackal Performance specifications 7
Unitree Go2 Physical specifications [5] 7
Unitree performance specifications of the system [5] 8

Comparison between DeepStream and Pipeless (GStreamer + OpenCV)
using a basic pipeline. Although inference time and speed were not
directly measured, GPU usage indicates that DeepStream offloads
most computations to the GPU, whereas Pipeless relies heavily on

CPU processing. 10
Technical Specifications for Jetson Orin Nano 8GB 11
Grouping of prompts based on thematic similarities 20

Example pipeline, equivalent to the one simplified camera pipeline
described in 4.2o 26
Example of a sent Kafka message. The customMessage field has
been trimmed down for this representation. Originally it was 588.476
characters long. The objects array contain the unique ID attached
by the tracker, the bounding box coordinates, and the class name . 30

39

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

3.6

4.1
4.2

4.3

4.4

4.5

4.6

5.1

5.2
5.3

Clearpath Jackal at Reply Area 42 6
Unitree Go2 at Reply Area 42 7
System Architectureo 12
Dataset Composition: Anomaly (54.8%), Fences Backgrounds (34.2%),
Other Backgrounds (11%) 16
Rendered images 17
The ComfyUI workflow used to generated images. 19
An example of image classification 20
Percentage of anomalies over all the generated images, sorted by
percentage L L 21
Sample anomalies from different prompt outputs. First row: group

1, second row: group 2, third row: group 3 22
Simplified URI Pipeline, a minimal pipeline using a URI source . . 27
Simplified Video Source Pipeline, a minimal pipeline using a camera
video feed 27
Pipeline used for testing the loss of performances with three camera

feeds 28
Pipeline used for testing the loss of performances with three camera

feeds 28
Pipeline used for testing before deployment, featuring a tracker, a
communication broker, and video-screen output 28
Pipeline used during deployment, featuring a tracker and a commu-
nication broker o L 29

Inference results for three different models n(orange), s(green),
m(blue). The models n and s show identical accuracies and bounding

boxes. 32
Accuracies for each model grouped by image. 33
Comparing three different models trained under the same dataset . 34

40

List of Figures

5.4

9.5

Pipeline used during deployment, featuring a tracker and a commu-
nication broker L
FPS performances using three cameras, a FHD resolution capped at

41

Appendix A

Prompts

This appendix shows the prompts used to generate images as explained in Section
3.3.1. Each table below lists in order the prompt ID, the total amount of images
generated T, the number of images classified as anomalies A, the number of images
classified as backgrounds B, the T5 and CLIP prompts, and an eventual comment
on their results.

ID 2 T 2616 A 211 (8.07%) B 110 (4.20%)

T5: A wide panoramic view of a chain-link fence made of metal with a section that has been cut or torn, creating
a hole in the center. The edges of the cut area have uneven and bent, giving the impression of forced entry and
vandalism. The fence is held up by sturdy metal posts, and there is a latch mechanism visible near the top,
suggesting it may be part of a gate. The chain-link pattern consists of diamond-shaped openings created by
interwoven metal wires.

CLIP: A broken chain-link fence with a hole and bent edges

Comment: Monotonous and close POV

ID 3 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A wide panoramic view of a chain-link fence made of metal with several sections that have been cut or torn,
creating multiple holes of varying sizes. The edges of the cut areas are uneven and bent, suggesting forced entry
and vandalism. The fence is held up by sturdy metal posts, and there is a latch mechanism visible near the
top, indicating it may be part of a gate. The chain-link pattern consists of diamond-shaped openings created by
interwoven metal wires

CLIP: A broken chain-link fence with multiple holes and bent edges

42

Prompts

ID 4 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A wide panoramic view of a chain-link fence made of metal with a section that has been cut or torn, creating
a hole. The edges of the cut area have uneven and bent, giving the impression of forced entry and vandalism.
The fence is held up by sturdy metal posts, and there is a latch mechanism visible near the top, suggesting it
may be part of a gate.

CLIP: A vandalized and broken chain-link fence with a hole

ID 5 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A wide panoramic view of a chain-link fence made of metal with a section that has been cut or torn,
creating a hole. The edges of the cut area are clean, uneven and bent, giving the impression of a forced entry
and vandalism. The fence is held up by sturdy metal posts.

CLIP: A vandalized and broken chain-link fence with a hole

ID 6 T 3097 A 139 (4.49%) B 188 (6.07%)

T5: A wide panoramic view of a chain-link fence made of metal with a section that has been cut or torn,
creating a hole. The edges of the cut area are clean, uneven and bent, giving the impression of a forced entry
and vandalism, but without a sign of corrosion. The fence is held up by sturdy metal posts.

CLIP: A vandalized and broken chain-link fence with a hole

Comment: Better than 002, diversified POV, sometimes unnecessairly close, overall not too satisfying

ID7 T 1600 A 30 (1.88%) B 17 (1.06%)

T5: A wide panoramic view of a chain-link fence made of metal with a section that has been cut or torn, creating
two holes. The edges of the cut area are clean, uneven and bent, giving the impression of a forced entry and
vandalism. The fence is held up by sturdy metal posts.

CLIP: A vandalized and broken chain-link fence with two holes

Comment: Similar to 002

ID 8 T 4096 A 314 (7.67%) B 215 (5.25%)

T5: A bottom up view of a chain-link fence made of metal with a section that has been cut or torn, creating a
hole. The edges of the cut area are clean, uneven and bent, giving the impression of a forced entry and vandalism,
but without a sign of corrosion. The fence is held up by sturdy metal posts.

CLIP: A vandalized and broken chain-link fence with a hole

Comment: Bottom-up POVs, often too close, sometimes it breaks the wall behind without touching the fence,
making an interesting corner-case for backgrounds

ID 11 T 4096 A 314 (7.67%) B 215 (5.25%)

T5: A detailed wide panoramic view of a chain-link fence in an outdoor setting, showcasing significant wear
and damage. The fence features bent and frayed wires, with areas of rust highlighting its age and exposure to
the elements. The surrounding environment appears subdued, with muted tones suggesting overcast lighting or
an abandoned area. The composition focuses on the texture and decay of the fence, emphasizing the rugged,
weathered look of the materials and the overall sense of neglect in the scene

CLIP: A weathered chain-link fence with visible damage, bent wires, rusted edges, and an outdoor setting with
muted tones

Comment: Mostly monotonous backgrounds

43

Prompts

ID 15 T 320 A 26 (8.13%) B 7 (2.19%)

T5: A wide-angle view of a chain-link fence stretching across the frame, made of metal with visible damage
where a section has been cut or torn, forming an irregular hole. The surrounding environment appears expansive
and open, and the fence is supported by sturdy posts, with the damaged area being a focal point.

CLIP: A wide view of a vandalized chain-link fence with a large hole.

Comment: Nice POVs but monotonous pictures

ID 16 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A distant, panoramic view of a chain-link fence that has a large, irregular hole. The metal wires around
the hole are bent and uneven, suggesting deliberate damage. The fence is framed by sturdy posts, and the
background reveals a broad, outdoor environment.

CLIP: A distant perspective of a damaged chain-link fence spanning the frame.

Comment: Mostly trash, front-faced POV. Unlike previous iterations, less trash

ID 17 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A far-reaching view of a metal chain-link fence spanning across the landscape, showing a prominent hole
where the wires have been forcibly cut or torn. The clean but uneven edges of the damage are striking, while the
surrounding area is characterized by open skies and muted tones.

CLIP: A broad view of a chain-link fence with a torn section and bent wires.

Comment: tutto immondizia, pov dritto in faccia. A diff di prompt016 I'immondizia ¢ piu "piccola’

ID 18 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A distant view of a chain-link fence, showcasing its weathered appearance and a large torn section. The
hole has jagged, bent edges, with the surrounding area offering a wide perspective of an outdoor setting.
CLIP: A wide-angle shot of a vandalized chain-link fence with visible damage.

Comment: Similar to 017

ID 19 T 3520 A 263 (7.47%) B 7 (0.20%)

T5: A wide-angle scene of a chain-link fence with a prominent hole near the center. The fence extends far into
the distance, emphasizing its scale, and the damaged section shows bent and uneven edges, suggesting recent
vandalism.

CLIP: A faraway perspective of a chain-link fence with a large, irregular hole.

Comment: Interesting distant POVs, less trash than usual, amazing backgrounds

ID 20 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A far and distant view of a chain-link fence with visible damage, including a large, irregular hole. The bent
and uneven wires contrast with the sturdy metal posts holding up the structure, against an expansive outdoor
setting.

CLIP: A faraway perspective of a chain-link fence with a large, irregular hole

ID 21 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A far and distant view of a chain-link fence with visible damage, including a large, irregular hole. The bent
and uneven wires contrast with the sturdy metal posts holding up the structure, against an expansive outdoor
setting

CLIP: A distant scene of a chain-link fence with torn wires and a wide environment.

Comment: All monotonous backgrounds, no trash but no holes either...

44

Prompts

ID 22 T 320 A 3 (0.94%) B 1 (0.31%)

T5: A panoramic outdoor view of a metal chain-link fence, featuring a significant tear or hole. The wide
perspective highlights the length of the fence, with its damaged area adding visual interest in the open space.
CLIP: A chain-link fence with a noticeable hole, viewed from a wide angle.

Comment: Mostly close front-faced POV

ID 23 T 320 A 3 (0.94%) B 0 (0.00%)

T5: An outdoor setting with a chain-link fence stretching far across the frame, marked by a torn section with
bent and uneven wires. The expansive view emphasizes the surrounding environment as much as the damaged
structure.

CLIP: A far, outdoor view of a vandalized chain-link fence with a prominent tear

Comment: Same as 022

ID 24 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A wide, distant view of a vandalized chain-link fence, highlighting a torn hole with frayed and bent metal
wires. The scene emphasizes the expanse of the fence and its integration into the open outdoor landscape.
CLIP: A wide perspective of a broken chain-link fence in an expansive outdoor setting

Comment: Same as 022

ID 25 T 2080 A 69 (3.32%) B 0 (0.00%)

T5: A sweeping view of a long chain-link fence extending across an open outdoor environment, with a torn
section creating an irregular and jagged hole. The damage appears deliberate, with bent and uneven wires
forming sharp edges, while the surrounding scene emphasizes the broad, expansive landscape under muted light.
The sturdy metal posts hold up the fence, contrasting with the fragile, damaged section that serves as the focal
point

CLIP: A wide view of a damaged chain-link fence with a jagged hole in an open outdoor setting.

Comment: Diversified, distant front POV, with some bottom-up POVs. Some trash but less than usual, the
background is always cloudy

ID 26 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A broad view of a weathered chain-link fence stretching across the landscape, featuring a prominent,
vandalized section where a large hole disrupts the uniformity of the wires. The torn edges are bent and uneven,
but free of rust, suggesting recent damage. The setting is expansive, with the fence dividing the open space and
standing out as the primary feature of the composition

CLIP: A panoramic view of a broken chain-link fence dividing an expansive outdoor area

Comment: Nice front POV, but mostly trash

ID 27 T 640 A 20 (3.13%) B 0 (0.00%)

T5: A front-facing, wide-angle view of a chain-link fence stretching horizontally across the scene, made of metal
and featuring a visible hole at its center. The torn section is irregular, with bent and uneven wires suggesting
intentional damage. The surrounding environment is open and expansive, emphasizing the rugged texture of the
metal fence against a muted, outdoor background. The fence is supported by sturdy vertical posts, which frame
the damaged section clearly.

CLIP: A front-facing, wide view of a damaged chain-link fence with a torn hole in an expansive outdoor setting.

Comment: Similar to 026

45

Prompts

ID 28 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A frontal, panoramic view of a long chain-link fence spanning across the frame, with a large, jagged hole
interrupting its structure near the center. The damaged wires are bent outward, forming sharp and uneven edges
that stand out against the clean, sturdy metal posts supporting the fence. The surrounding area is vast and
open, with the wide composition emphasizing the fence as the focal point.

CLIP: A front-facing, panoramic view of a broken chain-link fence with a prominent hole in an open area.

ID 29 T 320 A 0 (0.00%) B 0 (0.00%)

T5: A straight-on, wide-angle view of a chain-link fence extending across the entire scene. The fence features a
large, irregular hole near its center, with frayed wires bent and curling outward, suggesting deliberate vandalism.
The sturdy metal posts frame the damaged section, while the expansive, outdoor setting highlights the scale and
structure of the fence against the muted tones of the background.

CLIP: A wide, front-facing view of a chain-link fence with a large torn hole in an expansive outdoor setting.

ID 30 T 3200 A 90 (2.81%) B 0 (0.00%)

T5: A front-facing wide-angle view of a chain-link fence stretching across the frame, made of metal with visible
damage where a section has been cut or torn, forming an irregular hole. The surrounding environment appears
expansive and open, and the fence is supported by sturdy posts, with the damaged area being a focal point.
CLIP: A front-facing wide view of a vandalized chain-link fence with a large hole.

ID 31 T 3200 A 158 (4.94%) B 0 (0.00%)

T5: An expansive view of a metal chain-link fence with a torn section creating a small hole. The fence stretches
across the scene, held by firm metal posts, and the damage appears intentional yet not corroded. The composition
emphasizes the open space around the fence.

CLIP: A panoramic view of a damaged chain-link fence in an urban area.

ID 32 T 3200 A 117 (3.66%) B 0 (0.00%)

T5: An expansive view of a metal chain-link fence with a torn section creating a small hole. The background is
filled with scattered construction materials, equipment, and debris. The fence stretches across the scene, held by
firm metal posts, while the damaged area contrasts with the cluttered industrial setting behind it.

CLIP: A damaged chain-link fence in front of a busy construction site with scattered materials.

Comment: Some holes, too close POV

ID 33 T 3200 A 0 (0.00%) B 0 (0.00%)

T5: An expansive view of a metal chain-link fence with a torn section creating a small hole. The background
consists of dense urban elements, including graffiti-covered walls, parked cars, and a mix of residential and
commercial buildings. The fence stretches across the scene, partially blending with the chaotic cityscape behind
it.

CLIP: A damaged chain-link fence in a crowded urban street filled with cars and buildings.

ID 34 T 3200 A 0 (0.00%) B 0 (0.00%)

T5: An expansive view of a metal chain-link fence with a torn section creating a small hole. Behind it, an
overgrown junkyard is visible, filled with abandoned vehicles, rusted machinery, and scattered tires. The fence
stretches across the chaotic background, its damage adding to the sense of neglect.

CLIP: A damaged chain-link fence in front of an overgrown junkyard with abandoned cars and machinery.

46

Prompts

ID 35 T 64 A 0 (0.00%) B 0 (0.00%)

T5: An expansive view of a metal chain-link fence with a torn section creating a small hole. The fence stretches
across the scene, held by firm metal posts, and the damage appears intentional yet not corroded. The background
is an industrial laboratory with machines and desks.

CLIP: A panoramic view of a damaged chain-link fence in an industrial factory.

Comment: Nice backgrounds but too close POVs

1D 36 T 32 A 0 (0.00%) B 0 (0.00%)

T5: A sweeping view of a long chain-link fence extending across an industrial environment, with a torn section
creating many irregular and jagged hole. The damage appears deliberate, with bent and uneven wires forming
sharp edges. The sturdy metal posts hold up the fence, contrasting with the fragile, damaged section that serves
as the focal point

CLIP: A wide view of a damaged chain-link fence in an industrial environment.

Comment: Nice POVs but the background is too simple and virtually no background. Maybe I should increment
the step size?

ID 37 T 32 A1 (3.13%) B 0 (0.00%)

T5: A sweeping view of a long chain-link fence extending across an industrial environment, with a torn section
creating many irregular and jagged hole. The damage appears deliberate, with bent and uneven wires forming
sharp edges. The sturdy metal posts hold up the fence, contrasting with the fragile, damaged section that serves
as the focal point

CLIP: A wide view of a damaged chain-link fence in an industrial environment.

Comment: Migliorato ma lo sfondo ¢ troppo semplice, e troppe immagini sono di background

ID 40 T 32 A 5 (15.63%) B 1 (3.13%)

T5: A chain-link fence with visible damage, featuring a torn section forming an irregular hole. The scene is
set in a cluttered industrial area with heavy machinery, metal shelves, workbenches, and scattered tools. The
background includes large industrial buildings, storage containers, and dim artificial lighting casting shadows on
the worn concrete floor

CLIP: A damaged chain-link fence with a large hole in an industrial area filled with machinery and scattered
equipment

Comment: Steps size increased to 75. Pretty pictures; complex background, holes are way too big

ID 41 T 32 A 2 (6.25%) B 0 (0.00%)

T5: A chain-link fence with a noticeable tear, forming an opening in the middle. The fence is situated within
a vast industrial complex filled with workstations, tool racks, conveyor belts, and mechanical components.
Overhead pipes run across the ceiling, while flickering industrial lights cast a cold glow over the scene. The
atmosphere is dusty, with signs of wear and disrepair visible throughout the facility

CLIP: A broken chain-link fence with a large gap, located inside an industrial facility with workstations,
scattered tools, and overhead pipes

Comment: Steps size increased to 75. Similar to 040

47

Prompts

ID 42 T 32 A 3 (9.38%) B 1 (3.13%)

T5: A chain-link fence with an irregularly cut hole, standing between the viewer and a busy industrial workspace.
Beyond the fence, the area is packed with desks covered in blueprints and tools, metal shelves filled with spare
parts, and machinery in various states of assembly. The walls are lined with old, rusted lockers, and dim
fluorescent lights create a harsh contrast between illuminated areas and deep shadows

CLIP: A vandalized chain-link fence with a hole, enclosing an industrial workspace cluttered with desks,
machinery, and storage units

Comment: Steps size increased to 75. Amazing pictures but zero holes, the fence is just interrupted

ID 43 T 32 A 0 (0.00%) B 1 (3.13%)

T5: A weathered chain-link fence with visible signs of tampering, including a few small but deliberate cuts in the
metal mesh. Behind it, an industrial complex with shipping containers, forklifts, and workbenches, illuminated
by cold artificial lights. Graffiti and worn-out warning signs are posted along the fence, adding to the sense of
abandonment

CLIP: A rusty chain-link fence with small, irregular holes, revealing a cluttered industrial yard filled with
stacked crates, scattered tools, and dimly lit warehouses in the background

Comment: Steps size increased to 75. Nice backgrounds

ID 44 T 32 A1 (3.13%) B 3 (9.38%)

T5: A battered chain-link fence with several small openings, as if someone had attempted to break through
multiple times. Beyond it, a narrow alleyway packed with debris, old machinery, and exposed pipes. The scene
is dimly lit by neon reflections from nearby shop signs, contrasting with the dull, corroded metal of the fence
CLIP: A damaged metal fence with torn sections, standing in front of an urban alley filled with dumpsters,
graffiti-covered walls, and flickering neon signs

Comment: Steps size increased to 75. No broken fences, unique cyberpunk atmosphere.

ID 45 T 32 A 0 (0.00%) B 0 (0.00%)

T5: A construction area enclosed by a tall chain-link fence, partially cut in certain spots, allowing a glimpse
of the chaotic worksite beyond. Stacks of wooden planks, piles of bricks, and idle excavators create a dense
background. A "No Trespassing" sign hangs loosely, barely holding onto the rusted wire mesh.

CLIP: A fenced-off construction site with a chain-link barrier showing signs of forced entry, surrounded by
heavy equipment and scattered debris

Comment: Nice complex backgrounds but no holes

ID 46 T 64 A 0 (0.00%) B 0 (0.00%)

T5: A chain-link fence with large sections cut away, the metal edges bent outward as if someone had forcefully
pushed through. Some parts of the fence are held together with haphazardly wrapped wires, while others dangle
loosely. Behind it, an industrial facility with towering pipes, stacked wooden pallets, and old workbenches,
illuminated by harsh artificial lighting.

CLIP: A heavily vandalized chain-link fence with multiple jagged holes and torn sections, barely standing in
front of a cluttered industrial yard filled with rusted machinery, scattered tools, and flickering warning lights

48

Prompts

ID 47 T 64 A 0 (0.00%) B 0 (0.00%)

T5: A chain-link fence that has been repeatedly cut and patched, but remains visibly compromised. Several
sections are missing, with sharp metal strands curling inward. Near the base, the fence has been bent and
partially ripped from the ground. Beyond it, a dimly lit alleyway filled with debris, exposed pipes, and neon-lit
storefronts casting a chaotic blend of colors onto the worn pavement

CLIP: A breached metal fence with gaping holes and twisted wires, standing in front of a dark alleyway cluttered
with graffiti-covered dumpsters, broken glass, and old construction materials

Comment: Steps size increased to 75.

ID 48 T 3200 A 134 (4.19%) B 75 (2.34%)

T5: A deteriorated chain-link fence surrounding a construction area, its metal wires severely bent and cut,
leaving gaps large enough for someone to slip through. One section leans at an awkward angle, held up only by
a single rusted post. Beyond the damaged barrier, a chaotic worksite with piles of bricks, broken scaffolding, and
machinery covered in dust, all lit by dim floodlights casting long shadows
CLIP: A security fence torn open in multiple places, barely holding together in front of an abandoned construction
site filled with overturned barriers, heavy equipment, and scattered debris

Comment: Steps size increased to 75. Nice POVs, nice holes, all night ambience. Great backgrounds, holes are
too big.

ID 49 T 64 A1 (1.56%) B 0 (0.00%)

T5: A worn-down chain-link fence surrounding an active industrial yard, showing clear signs of tampering.
Several small but deliberate cuts in the metal mesh create narrow gaps, just wide enough for a person to squeeze
through. Beyond the damaged barrier, the site is cluttered with heavy machinery, workbenches covered in tools,
and towering stacks of shipping containers, all under the bright midday sun

CLIP: A chain-link fence with multiple small breaches, its metal wires bent and severed, enclosing a busy
industrial site with machinery, stacked containers, and scattered tools

Comment: Steps size increased to 75. Easy background and no holes

ID 50 T 64 A 4 (6.25%) B 0 (0.00%)

T5: A chain-link fence in disrepair, enclosing a sprawling urban scrapyard. The mesh is punctured by multiple
small holes, some appearing hastily cut, others showing signs of rust-induced breakage. Though not immediately
obvious, the breaches are large enough for someone determined to squeeze through. Inside, the yard is a chaotic
mix of abandoned cars, metal scraps, and wooden pallets, with sunlight casting sharp shadows on the rough
concrete ground

CLIP: A vandalized fence with small openings, partially collapsed in places, enclosing a dense urban scrapyard
filled with rusted vehicles, piles of metal, and scattered wooden pallets

ID 51 T 64 A 5 (7.81%) B 0 (0.00%)

T5: A worn but still-standing chain-link fence marks the perimeter of a storage facility, showing clear evidence
of tampering. The metal mesh is frayed and severed in multiple spots, with narrow openings just wide enough
for an intruder to slip past. Beyond the fence, a bustling industrial yard is visible, filled with neatly stacked
crates, rusted barrels, and forklifts maneuvering between storage units. The harsh daylight highlights the texture
of the rough pavement and the dust settling in the air

CLIP: A damaged industrial fence with narrow cutouts, standing in front of a storage facility packed with large
crates, barrels, and forklifts in motion

Comment: Steps size increased to 75. Simple background, nice holes.

49

Bibliography

S.F. Capital. Knightscope: Slow Rise of the Robots (rating upgrade). 2017
(cit. on p. 2).

Robert Soler, Alae Moudni, Gabriel Roskowski, Xinrui Yu, Mikhail Gor-
mov, and Jafar Saniie. « Autonomous Patrol and Threat Detection Through
Integrated Mapping and Computer Vision». In: 2024 IEEFE International
Conference on Electro Information Technology (eIT). 2024, pp. 398-403. DOL:
10.1109/eIT60633.2024.10609884 (cit. on p. 2).

N. Hemavathy, K. Arun, R. Karthick, A. P. Srikanth, and S. Venkatesh. «Night
Vision Patrolling Robot with Sound Sensor using Computer Vision Tech-
nology». In: International Research Journal of Engineering and Technology
(IRJET) 7 (2020) (cit. on p. 2).

Unitree Go2. URL: https://www.unitree.com/go2 (cit. on p. 7).

Unitree Go2 Brochure. URL: https://static.generation-robots.com/
media/brochure-unitree-go2-en.pdf (cit. on pp. 7, 8).

NVIDIA Jetson for Next-Gen Robotics. The title refers generically to the
family AGX. URL: https://www.nvidia.com/en-us/autonomous-machine
s/embedded-systems/jetson-orin/ (cit. on p. 11).

NVIDIA DeepStream SDK. URL: https://developer.nvidia.com/deepst
ream-sdk (cit. on p. 11).

NVIDIA JetPack SDK. URL: https://developer.nvidia.com/embedded/
jetpack (cit. on p. 11).

Install Jetson Software with SDK Manager. URL: https://docs.nvidia.
com/sdk-manager/install-with-sdkm-jetson/index.html (cit. on p. 11).

Dr. Divyakant Meva John Anand. « A Comparative Study of Various Object
Detection Algorithms and Performance Analysis». In: International Journal
of Computer Sciences and Engineering 8 (Oct. 2020). DOI: 10.26438/ijcse/
v8110.158163 (cit. on p. 15).

50

https://doi.org/10.1109/eIT60633.2024.10609884
https://www.unitree.com/go2
https://static.generation-robots.com/media/brochure-unitree-go2-en.pdf
https://static.generation-robots.com/media/brochure-unitree-go2-en.pdf
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack
https://docs.nvidia.com/sdk-manager/install-with-sdkm-jetson/index.html
https://docs.nvidia.com/sdk-manager/install-with-sdkm-jetson/index.html
https://doi.org/10.26438/ijcse/v8i10.158163
https://doi.org/10.26438/ijcse/v8i10.158163

BIBLIOGRAPHY

Kim Youngseop Lee Yong-Hwan. « Comparison of CNN and YOLO for Object
Detectiony. In: Journal of the Semiconductor Display Technology (2020)
(cit. on p. 15).

Ultralytics’ YOLOv11. URL: https://docs.ultralytics.com/it/models/
yolol1/ (cit. on p. 15).

Jiirgen Beyerer Nils Friederich Andreas Specker. «Security Fence Inspection at
Airports Using Object Detectiony». In: Winter Conference of Applied Computer
Vision 2024 (WACV °24) (2023) (cit. on p. 15).

black-forest-labs/FLUX.1-schnell. URL: https://huggingface.co/black-
forest-labs/FLUX.1-schnell (cit. on p. 18).

stable-diffusion/stable-diffusion-vi-5. URL: https://huggingface.co/stabl
e-diffusion-vi-5/stable-diffusion-v1-5 (cit. on p. 18).

Announcing Black Forest Labs. URL: https://blackforestlabs.ai/annou
ncing-black-forest-labs/ (cit. on p. 18).

enfff/sorter. Software developed leveraging GTK4 and Libadwaita. Tested
on Arch Linux x86_ 64, Gnome 47.4, WM: Mutter (Wayland). URL: https:
//github.com/enfff/sorter (cit. on p. 21).

Label Studio. An Open Source Data Labeling Platform. URL: https://
labelstud.io/ (cit. on p. 21).

GStreamer Negotiation capabilities. URL: https://gstreamer . freedeskt
op.org/documentation/additional/design/negotiation.html (cit. on
p. 24).

GStreamer Negotiation capabilities. DeepStream allows the use of configuration
files for generating dynamically pipelines. These configuration files have a
rigid structure and accept the settings specified in this documentation. URL:
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/
DS_ref_app_deepstream.html#configuration-groups (cit. on p. 25).

51

https://docs.ultralytics.com/it/models/yolo11/
https://docs.ultralytics.com/it/models/yolo11/
https://huggingface.co/black-forest-labs/FLUX.1-schnell
https://huggingface.co/black-forest-labs/FLUX.1-schnell
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://blackforestlabs.ai/announcing-black-forest-labs/
https://blackforestlabs.ai/announcing-black-forest-labs/
https://github.com/enfff/sorter
https://github.com/enfff/sorter
https://labelstud.io/
https://labelstud.io/
https://gstreamer.freedesktop.org/documentation/additional/design/negotiation.html
https://gstreamer.freedesktop.org/documentation/additional/design/negotiation.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_ref_app_deepstream.html#configuration-groups
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_ref_app_deepstream.html#configuration-groups

	Introduction
	Goal and Problem Statement
	State of the Art
	Content Overview

	System Components Overview
	Hardware
	Intel RealSense d435i
	Jackal UGV Rover
	UniTree Go2
	Workstation
	Laptop

	The NVIDIA DeepStream SDK
	DeepStream vs GStreamer + OpenCV
	DeepStream vs Pipeless
	Conclusions on DeepStream

	Jetson Orin Nano and Nvidia Jetpack
	Setup Jetson
	Overall Architecture

	Computer Vision
	Introduction to Computer Vision
	Choosing a model
	Dataset
	Obtaining the images
	Webscraping
	3D Modelling
	Generative AI - Flux.1
	Prompt Engineering
	Classification Results

	Classification and labelling

	DeepStream Pipeline
	Pipeline Structure
	Configuration file
	Writing a pipeline in C

	Pipelines
	Simplified URI Pipeline
	Simplified Video Source Pipeline
	Simplified Double Video Source Pipeline
	Simplified Triple Video Source Pipeline
	Debuggable Patrolling Pipeline
	Patrolling Pipeline
	TensorRT Engine

	Server e Endpoint

	Results
	Model Performance
	Jetson
	Results and Analysis
	Cameras

	Conclusions and Future works
	List of Tables
	List of Figures
	Prompts
	Bibliography

