
POLITECNICO DI TORINO

Master’s Degree in Mechatronics Engineering
HW and Embedded Systems for Industry 4.0

A.A. 2024-2025

April 2025

VisionS - Real-time Data-driven Adaptive
Driver Monitoring and Awareness System for

Safer Roads

Supervisors
Prof. Dr. Massimo VIOLANTE
Dr. Luigi PUGLIESE
Prof. Dr. Jacopo SINI

Candidate
Vasanth DEVAKUMAR

Acknowledgments

The completion of this thesis would not have been possible without the guidance,
encouragement, and support of many individuals, to whom I am deeply grateful.

I wish to express my deepest appreciation to my family for their unconditional
support, patience, and belief in me. Their encouragement has been a constant
source of strength and motivation throughout this journey.

I am deeply thankful to my co-supervisors, Dr. Luigi Pugliese and Dr.
Jacopo Sini, for their invaluable guidance, critical insights, and unwavering
support throughout this research. Additionally, I extend my sincere appreciation to
my overall supervisor, Dr. Massimo Violante, for his oversight and support over
the duration of this research. Their mentorship has played a crucial role in refining
my research methodology, strengthening my technical approach, and ensuring the
successful execution of this study.

A special note of gratitude to Politecnico di Torino and Sleep Advice Tech-
nologies (SAT) for providing the institutional and technical resources necessary
for this research. The collaboration with SAT has been invaluable in ensuring
the practical implementation of this study. Their team has been incredibly warm,
welcoming, and supportive, making my experience both engaging, rewarding and
memorable.

Lastly, I am equally thankful to my colleagues and friends, whose stimulating
discussions, shared experiences, and unwavering support have enriched this journey,
making it both intellectually rewarding and personally fulfilling. A special mention
goes to Arindumb, Giova, Edoa, Hali, Loki, Manda, Dee, Sheesh, Kyle,
Darth, Aruj and Ishita, whose encouragement, companionship, and steadfast
support have been invaluable throughout my master’s journey. Their ability to
inspire, challenge, and stand by me through both triumphs and challenges has
made this experience all the more meaningful and unforgettable.

Vasanth Devakumar(Arcee)

iv

Table of Contents

Acknowledgments iv

List of Tables xi

List of Figures xii

Acronyms xiv

1 Introduction 3
1.1 The Global Road Safety Crisis . 3
1.2 Distracted Driving: A Persistent Problem 4
1.3 Technological Innovations in Driver Monitoring 4
1.4 Behavioral Insights and Ethical Considerations 4
1.5 Economic Implications of Distracted Driving 5
1.6 VisionS: A Data-Driven Approach to Road Safety 5

2 State of the Art 6
2.1 Google’s MediaPipe . 6

2.1.1 Features and Implementation 6
2.2 OpenCV . 8

2.2.1 Features and Implementation 8
2.3 Kivy . 10

2.3.1 Key Features of Kivy . 10
2.3.2 Integration in VisionS . 10
2.3.3 Example of Real-Time Video Processing in Kivy 11

2.4 Synergetic Use of MediaPipe, OpenCV, and Kivy 11
2.4.1 Framework Contributions 11
2.4.2 Core Functionalities in VisionS 11
2.4.3 Overview . 12

viii

3 Algorithm 13
3.1 Data Acquisition . 13

3.1.1 Frame Capture and Optimization 13
3.2 Pre-processing . 14

3.2.1 Resizing and Normalization 14
3.2.2 Noise Reduction . 14

3.3 Feature Extraction . 15
3.3.1 Integration with MediaPipe 16
3.3.2 Selecting Key Landmarks 16

3.4 Pose Estimation . 16
3.4.1 Camera Calibration . 17
3.4.2 Solving for Rotation and Translation 17
3.4.3 Roll, Pitch, and Yaw Using Key Facial Landmarks 17

3.5 Logging . 18
3.5.1 Key Logged Data . 18
3.5.2 Purpose of Logging . 19
3.5.3 Implementation Details . 20

4 Implementation 21
4.1 Windows Application . 21

4.1.1 Overview . 21
4.1.2 Application Architecture . 22
4.1.3 User Interface (Kivy Implementation) 22
4.1.4 Real-Time Video Processing 23
4.1.5 Final Application UI . 23
4.1.6 Summary . 24

4.2 Android Implementation . 24
4.2.1 Overview . 24
4.2.2 Challenges in Python-Based Deployment 25
4.2.3 Transition to a Java-Based Implementation 27
4.2.4 User Interface (UI) Development 30
4.2.5 Final Remarks . 35

5 Testing and Results 37
5.1 Algorithm Testing . 37

5.1.1 Refinements and Optimizations 39
5.2 Application Testing . 40

5.2.1 Windows Application Testing 40
5.2.2 Android Application . 42

ix

6 Enhanced Driver Drowsiness Detection Through Data Fusion 46
6.1 PredictS: Wearable Sensor-Based Drowsiness Detection Algorithm . 46
6.2 Enhancing Drowsiness Detection Through Behavioral Analysis . . . 47
6.3 Implementation and Observations 48

6.3.1 Implementation . 48
6.3.2 Observations . 49

7 Conclusion 52
7.1 Key Achievements . 52
7.2 Challenges and Limitations . 53
7.3 Future enhancements and improvements 54

7.3.1 iOS Application . 54
7.3.2 Extended Real-World Testing and Validation 55
7.3.3 Improved Data Fusion via PredictS and Multi-Modal Driver

State Assessment . 55
7.4 Final thoughts . 56

Bibliography 57

x

List of Tables

3.1 Sample Logged Data Format. 20

6.1 Drowsiness Detection Decision Framework 47

xi

List of Figures

2.1 Google Mediapipe Face Landmark Detection Guide[13] 7

3.1 Google Media-pipe Face Mesh Landmark numbers[13] 15

4.1 Python based windows application 24
4.2 Java based Android application[13] Video toggled on and off 35

5.1 Distraction flag plot across time . 40

6.1 ROC, Sensitivity and Specificity plot 50

xii

Acronyms

DMS
Driver Monitoring System

AI
Artificial Intelligence

WHO
World Health Organization

NHTSA
National Highway Traffic Safety Administration

CDC
Centers for Disease Control and Prevention

GPU
Graphics Processing Unit

API
Application Programming Interface

OpenCV
Open Source Computer Vision Library

RGB
Red, Green, Blue

3D
3-Dimensional

xiv

2D
2-Dimensional

PnP
Perspective-n-Point

UI
User Interface

GUI
Graphical User Interface

macOS
Mac Operating System

CPU
Central Processing Unit

OpenGL
Open Graphics Library

SDK
Software Development Kit

NUI
Natural User Interface

KvLang
Kivy Language

XML
Extensible Markup Language

APK
Android Application Package

ARM
Advanced Reduced instruction set computing Machine

xv

NNAPI
Neural Network API

P4A
Python For Android

UIX
User Interface Extensions

CSV
Comma Separated Values

SAE
Society of Automobile Engineers

IDE
Integrated Development Environment

FPS
Frames per Second

RAM
Random Access Memory

HR
Heart Rate

HRV
Heart Rate Variability

SpO2
Saturation of Peripheral Oxygen

ANS
Autonomic Nervous System

AVL
Anstalt für Verbrennungskraftmaschinen

xvi

MWT
Maintenance Wakefulness Test

ROC
Receiver-Operating Curve

TPR
True Positive Rate

FPR
False Positive Rate

xvii

Chapter 1

Introduction

1.1 The Global Road Safety Crisis

Road traffic accidents are a major cause of death and illness globally. The World
Health Organization (WHO) estimates that nearly 1.35 million people die due to
traffic accidents each year, with countless others suffering serious injuries[1]. This
public health crisis not only causes deep personal grief but also causes a heavy
economic burden, especially in low- and middle-income countries where the impact
is most felt. Economic studies suggest that the economic costs of road traffic
accidents could account for between 1% and 3% of a country’s gross domestic
product[1].

One major cause of road traffic accidents is driver distraction, which accounts for
a sizable percentage of all traffic accidents. In 2022, distracted driving caused 3,308
fatalities, according to the U.S. National Highway Traffic Safety Administration
(NHTSA)[2]. Distractions are often classified into visual, manual, and cognitive
types, including behaviors such as texting, interacting with in-vehicle technologies,
or getting off-track and falling prey to daydreaming. The widespread use of
smartphones and car technologies has intensified the issue[3].

Aside from their effects on human life, traffic accidents also put significant
economic burdens on societies. Some of these economic burdens are direct and
indirect costs, including healthcare costs, emergency service costs, vehicle repair
costs, and loss of productivity. For instance, the U.S. Centers for Disease Control
and Prevention (CDC) estimates that the annual economic cost of road traffic
crashes is over $75 billion[4]. These economic consequences underscore the urgent
need for the adoption of preventive measures, such as driver monitoring systems
and increased awareness programs, to stem financial losses.

3

Introduction

1.2 Distracted Driving: A Persistent Problem
In spite of stringent traffic laws and awareness campaigns, distracted driving is a
prevalent practice. Conventional methods, including charging penalties or encour-
aging defensive driving, have not been very effective in controlling the behavior[5].
Human factors related to distraction are complicated, with psychological, behavioral,
and contextual factors.

The advancement of technology has presented new possibilities to address this
problem. While autonomous vehicles are likely to reduce human error in the long
run, there is a pressing need to enhance safety for drivers driving conventional
vehicles. This calls for the development of sophisticated systems that have the
ability to monitor driver behavior in real time and provide immediate corrective
actions[6].

1.3 Technological Innovations in Driver Monitor-
ing

Historically, technologies such as cruise control and lane-keeping assist provided the
foundation upon which contemporary driver monitoring systems were developed.
Advanced systems today employ computer vision and artificial intelligence to analyze
driver behavior in real-time and hence provide timely warning and intervention[7].
These technologies signal a paradigm shift from reactive to proactive road safety
measures.

Driver Monitoring Systems (DMS) are meant to identify the presence of dis-
traction, drowsiness, or other dangerous behaviors from the analysis of parameters
like gaze direction, head pose, and facial expressions. The systems utilize a fusion
of computer vision techniques and machine learning algorithms to evaluate driver
states and detect anomalies[8]. For instance, gaze-tracking technology has the capa-
bility to identify if a driver’s eyes drift away from the road for extended durations,
thereby initiating alerts to re-concentrate.

1.4 Behavioral Insights and Ethical Considera-
tions

Behavioral studies show that cognitive load and stress play a significant role in
driving performance. A distracted driver may take up to three times longer to
react to road dangers than an attentive driver[9]. It is necessary to discern such
behavioral trends in creating systems like VisionS that have the ability to learn
and adapt to individual drivers’ needs, mitigating risks of cognitive distractions.

4

Introduction

As there is wider application of driver monitoring systems, there have been
ethical and legal issues and of specific interest are privacy of information and
surveillance matters. Safeguarding driver information and limiting its use to the
safety function only is vital in order not to lose the public’s trust[10]. Policies by
regulatory authorities need to develop to handle these issues in a way that balances
innovation with the protection of people’s rights.

1.5 Economic Implications of Distracted Driving
The economic implications of distracted driving extend far beyond the immedi-
ate costs of vehicle repair and medical treatment. With increasing frequency of
accidents, there is also a higher insurance premium bill, which creates a financial
burden for individual drivers as well as the economy as a whole. Industries that
rely on transport services are disrupted through these accidents, impacting supply
chains and delivery times. Governments also incur high costs in providing emer-
gency response services and maintaining infrastructure, taking away funds from
other essential areas[11]. These economic costs underscore the need for systems like
VisionS to actively reduce distractions and the costs they present.

1.6 VisionS: A Data-Driven Approach to Road
Safety

This thesis introduces VisionS, a real-time data-driven adaptive driver monitoring
and awareness system. VisionS takes advantage of the front-facing camera of a
smartphone to monitor driver behavior, using a calibration phase to adapt to
the frames of reference of individual drivers. The system continuously tracks
parameters such as head orientation and gaze direction, issuing alerts when signs of
distraction are detected. Unlike existing solutions, VisionS combines affordability
and accessibility, making it feasible for widespread adoption in conventional vehicles.

VisionS also incorporates features such as state calibration and adaptive alert
thresholds, ensuring that the system remains effective in diverse driving conditions.

5

Chapter 2

State of the Art

2.1 Google’s MediaPipe
Google’s MediaPipe[12] is a cross-platform framework for building multimodal
machine learning pipelines. It is designed to support real-time processing and is
widely used in applications such as facial recognition, pose estimation, and object
tracking. In your algorithm, MediaPipe’s FaceMesh solution is a core component,
utilized for facial landmark detection and tracking. This functionality enables
precise identification of key facial features, such as the eyes, nose, and mouth,
which are critical for estimating head pose and detecting driver distraction.

2.1.1 Features and Implementation
MediaPipe FaceMesh[13] provides:

1. High-Fidelity Landmark Detection: It detects 468 facial landmarks,
offering detailed spatial information about facial features. This high resolution
of landmark mapping enables applications that require fine-grained facial
analysis, such as detecting micro-expressions or subtle head movements.

• The landmarks are divided into regions, including the eyes, lips, and
jawline. For example, landmarks around the eyes can be used to calculate
blink rates and track gaze direction, which is vital for monitoring whether
a driver’s attention is on the road. Similarly, landmarks around the jawline
are essential for jaw tracking and pose calibration, ensuring that head
movements are consistently interpreted.

• These facial landmarks also play a critical role in detecting signs of
fatigue or distraction. For instance, prolonged eye closure or erratic head
movements can indicate drowsiness, prompting timely interventions.

6

State of the Art

Figure 2.1: Google Mediapipe Face Landmark Detection Guide[13]

2. Real-Time Performance: Leveraging GPU acceleration, MediaPipe ensures
low latency, which is crucial for real-time applications. This is achieved through
its graph-based computational architecture, where multiple processing steps
are connected in a directed acyclic graph.

• The system processes video streams frame-by-frame while maintaining syn-
chronization between detection, tracking, and rendering. This capability
is especially critical during high-speed driving scenarios, where immediate
feedback is necessary to ensure safety. For example, in environments
where a driver’s head movement must be tracked and analyzed within
milliseconds, the use of GPU acceleration minimizes delays and enhances
responsiveness. Real-time processing enables timely alerts for distractions,
ensuring that the system remains effective even in dynamic, fast-paced
conditions.

3. Cross-Platform Support: MediaPipe is compatible with multiple platforms,
including Android, iOS, and Python environments. This flexibility makes it
an ideal choice for applications that need to scale across different hardware
and operating systems.

Python Implementation

In the Python implementation, MediaPipe FaceMesh is initialized with parameters
such as:

7

State of the Art

• max_num_faces: Limits the number of faces detected to one, optimizing
performance for single-driver monitoring systems.

• min_detection_confidence and min_tracking_confidence: Set thresholds
for reliable face detection and tracking, balancing accuracy and computational
overhead.

The processed landmarks are fed into downstream tasks like calculating head
orientation and gaze estimation. Additional utilities in MediaPipe simplify tasks
such as video frame pre-processing and visualization.

Java Implementation

The Java implementation integrates MediaPipe’s FaceMesh API with OpenCV for
seamless video frame processing. By leveraging Android’s CameraX API, frames
are captured and converted into MediaPipe-compatible formats. MediaPipe’s
FaceMesh outputs a list of landmark coordinates, which are used in conjunction
with OpenCV for pose estimation and distraction detection.

2.2 OpenCV
OpenCV (Open Source Computer Vision Library)[14] is a robust computer vision
library with a comprehensive set of tools for image processing, machine learning,
and computer vision applications. It plays a pivotal role in your algorithm by
enabling head pose estimation and handling image transformations.

2.2.1 Features and Implementation
Key functionalities of OpenCV in your implementation include:

1. Image Processing:

• Converts video frames to RGB format and applies necessary transforma-
tions for MediaPipe compatibility.

• Implements filtering techniques, such as Gaussian blur, to remove noise
and improve the accuracy of landmark detection.

• Addresses challenges like low-light conditions by adjusting image bright-
ness and contrast dynamically, ensuring consistent landmark detection
performance even in suboptimal lighting. For instance, histogram equal-
ization can be applied to enhance image clarity.

8

State of the Art

• Tackles motion blur using deblurring algorithms that reconstruct sharper
images from blurry inputs, maintaining accuracy in high-motion scenarios
like sudden head movements or rapid camera shifts.

2. Head Pose Estimation:

• Utilizes the solvePnP function to calculate rotational and translational
vectors for 3D pose estimation. This involves mapping 2D facial landmarks
onto predefined 3D face models.

• The output includes rotation and translation vectors, which are converted
to Euler angles (pitch, yaw, roll) using Rodrigues for easier interpretation.
These angles are crucial for identifying driver distraction, as they quantify
the orientation of the driver’s head relative to a calibrated baseline. For
instance, a yaw angle exceeding a predefined threshold may indicate that
the driver is looking away from the road, while significant deviations in
pitch could signal nodding or drowsiness. By continuously tracking these
deviations, the system flags distraction events and triggers appropriate
alerts.

3. Efficient Matrix Operations:

• Supports matrix multiplications, vector transformations, and coordinate
system conversions.

• Computes transformations required to align the camera’s frame of reference
with the driver’s head orientation. For instance, rotation matrices are
used to compute angles relative to the calibrated baseline.

Python Implementation

In Python, OpenCV is extensively used for:
• Calculating the standard deviation of head pose angles during the calibration

phase.

• Applying transformations to align the driver’s face with the camera view for
consistent results across varying conditions.

• Logging distraction events by identifying deviations from calibrated thresholds.

Java Implementation

In the Java implementation, OpenCV integrates with Android’s CameraX API to
process frames. Functions like Calib3d.solvePnP compute head pose using 2D
and 3D facial landmark coordinates. The results are visualized on the Android
interface to provide real-time feedback to the user.

9

State of the Art

2.3 Kivy
Kivy is an open-source Python framework designed for developing cross-platform
applications with natural user interfaces (NUIs). It provides a highly flexible
architecture for building interactive applications that seamlessly integrate with
real-time data processing systems. Given its robust rendering capabilities and com-
patibility across multiple operating systems, Kivy was chosen as the UI framework
for VisionS.

2.3.1 Key Features of Kivy
Kivy offers a wide range of features that enhance the development of intuitive and
responsive graphical user interfaces:

• Cross-Platform Compatibility: Supports deployment on Windows, macOS,
Linux, Android, and iOS, ensuring flexibility in application design.

• Declarative Language (KvLang): Uses a separate ‘.kv‘ file for UI structure,
enabling clean separation of logic and presentation.

• Built-in Widgets: Provides an extensive set of UI components, such as
buttons, sliders, labels, and image containers, facilitating rapid development.

• GPU-Accelerated Rendering: Leverages OpenGL for high-performance
animations and smooth UI transitions.

2.3.2 Integration in VisionS
In VisionS, Kivy is responsible for rendering the graphical user interface of the
Windows application. Its ability to handle real-time updates efficiently makes it an
ideal choice for displaying critical driver monitoring data.

The VisionS UI is structured into three main components:
• KvLang (main.kv): Defines the layout and UI structure, ensuring modularity

and ease of updates.

• Python Backend (main.py): Manages user interactions, real-time updates,
and event handling.

• OpenCV Integration: Facilitates real-time video processing by updating
UI textures dynamically.

Kivy seamlessly integrates with OpenCV and MediaPipe, allowing VisionS to
process video streams in real-time and overlay essential information such as yaw,
pitch, and roll values. The UI is designed to be minimalistic yet informative,
ensuring that the driver receives immediate feedback regarding their attentiveness.

10

State of the Art

2.3.3 Example of Real-Time Video Processing in Kivy
A critical aspect of the VisionS implementation is updating the UI dynamically as
the video frames are processed. This is achieved through OpenCV’s frame capture
capabilities and Kivy’s texture update mechanism.

1 def update_frame (self , *args):
2 ret , frame = cap.read ()
3 if ret:
4 processed_frame = self. visionS . process_frame (frame)
5 texture = self. convert_to_texture (processed_frame)
6 self. video_feed . texture = texture

This ensures smooth, real-time updates, enhancing the responsiveness of the
monitoring system.

2.4 Synergetic Use of MediaPipe, OpenCV, and
Kivy

The combination of MediaPipe, OpenCV, and Kivy in the VisionS algorithm
exemplifies a powerful synergy. Each framework plays a crucial role in enabling real-
time driver monitoring, ensuring both accuracy and efficiency. MediaPipe provides
precise facial landmark detection, OpenCV handles computational geometry and
real-time video processing, while Kivy acts as the bridge for visualization and user
interaction.

2.4.1 Framework Contributions
• MediaPipe: Extracts high-precision 2D facial landmarks, forming the basis

for head pose estimation.

• OpenCV: Performs real-time video capture, applies preprocessing techniques,
and computes Euler angles for yaw, pitch, and roll.

• Kivy: Provides a cross-platform UI framework that integrates OpenCV
outputs, displaying driver status with interactive overlays and visual alerts.

2.4.2 Core Functionalities in VisionS
• Calibration Phase: MediaPipe’s facial landmarks define a baseline for the

driver’s neutral head position. OpenCV computes statistical metrics such as

11

State of the Art

mean and standard deviation, while Kivy ensures real-time visualization of
the calibration process.

• Distraction Detection: By analyzing deviations from the calibrated yaw,
pitch, and roll values, the system flags potential driver distractions. OpenCV
processes the deviations, MediaPipe ensures accurate tracking, and Kivy
updates the UI with real-time alerts.

• Real-Time Visualization: Kivy provides a dynamic user interface that
continuously updates with distraction warnings, head pose angles, and status
overlays. This ensures that users receive immediate feedback on their driving
behavior.

• Data Logging and Analysis: OpenCV facilitates logging of essential driver
data, including timestamps, pose angles, and distraction status. Kivy can
display historical trends, providing a comprehensive view of driver behavior
over time.

2.4.3 Overview
The integration of MediaPipe, OpenCV and Kivy enhances VisionS’s capability to
provide real-time, efficient, and user-friendly driver monitoring. MediaPipe extracts
facial landmarks with high precision, OpenCV enables seamless video processing,
and Kivy ensures the data is effectively visualized. This synergy creates a system
that is accurate, computationally efficient, and easy to use, making it a valuable
tool for modern driver safety applications. Future improvements may include
optimizing computational performance and expanding cross-platform capabilities
to further enhance VisionS’s effectiveness.

12

Chapter 3

Algorithm

The VisionS algorithm is a modular system that supports real-time data processing
for the monitoring and analysis of driver behavior. This section presents a detailed
analysis of the steps in data acquisition, pre-processing, feature extraction, and pose
estimation. Each step is based on careful calculations and systematic reasoning
from the implementation of the code.

3.1 Data Acquisition
The algorithm begins by acquiring live video frames from a front-facing camera.
This process involves interfacing with the camera hardware through OpenCV and
optimizing data flow to ensure efficient processing.

3.1.1 Frame Capture and Optimization
OpenCV’s VideoCapture module is used for capturing video frames. In order
to ensure real-time performance with low computational latency, the algorithm
selectively processes alternate frames, thus optimizing efficiency without significant
loss of accuracy.

1 cap = cv2. VideoCapture (0)
2 frame_count = 0
3 while cap. isOpened ():
4 ret , frame = cap.read ()
5 if not ret:
6 break
7

8 frame.flags. writeable = False # Optimize for MediaPipe

13

Algorithm

9 frame_rgb = cv2. cvtColor (frame , cv2. COLOR_BGR2RGB) # Convert
for MediaPipe

10

11 frame_count += 1
12 if frame_count % 2 != 0: # Skip alternate frames
13 continue
14

15 results = face_mesh . process (frame_rgb)
16 cap. release ()

This method ensures that a single frame is examined for each pair of frames, thus
minimizing overhead while maintaining temporal accuracy in detecting rapid driver
behavior.

3.2 Pre-processing
Pre-processing is an important step that prepares raw video frames for accurate
feature extraction. Pre-processing involves resizing, normalization, noise reduction,
and making frames non-writable to improve computational efficiency.

3.2.1 Resizing and Normalization
Frames are resized to standard dimensions and normalized to scale pixel intensities:

Mathematical Representation:

Iresized = Resize(I, W, H)

Inormalized = Iresized

255
where W and H are the target width and height.

3.2.2 Noise Reduction
To enhance clarity, Gaussian blur is applied:

Ismoothed = G(Inormalized, σ)

where G is the Gaussian kernel with standard deviation σ.

1 frame_blurred = cv2. GaussianBlur (frame_normalized , (5, 5), 0)

14

Algorithm

3.3 Feature Extraction

Facial landmarks are achieved via the use of Media Pipe Face Mesh, providing an
accurate representation of 468 individual facial coordinates. The landmarks are
the basis for pose estimation as well as gaze analysis.

Figure 3.1: Google Media-pipe Face Mesh Landmark numbers[13]

15

Algorithm

3.3.1 Integration with MediaPipe
The algorithm integrates MediaPipe to detect and extract facial landmarks effi-
ciently:

1 mp_face_mesh = mp. solutions . face_mesh
2 with mp_face_mesh . FaceMesh (max_num_faces =1) as face_mesh :
3 results = face_mesh . process (frame_rgb)
4 for face_landmarks in results . multi_face_landmarks :
5 landmarks = [(lm.x, lm.y, lm.z) for lm in

face_landmarks . landmark]

Landmarks are converted into a structured format suitable for subsequent calcula-
tions.

3.3.2 Selecting Key Landmarks
Specific landmarks are extracted for defining 3D-2D mappings. For example:

• Landmark 33 (nose tip): (x33, y33, z33)

• Landmark 263 (right eye outer corner): (x263, y263, z263)

These points populate the face_3D and face_2D arrays:

1 face_3d = [
2 [landmarks [33][0] , landmarks [33][1] , landmarks [33][2]] ,
3 [landmarks [263][0] , landmarks [263][1] , landmarks [263][2]] ,
4 # Other key points
5]
6

7 face_2d = [
8 [landmarks [33][0] , landmarks [33][1]] ,
9 [landmarks [263][0] , landmarks [263][1]] ,

10 # Other key points
11]

3.4 Pose Estimation
Pose estimation estimates the head orientation of the driver by solving the
Perspective-n-Point (PnP) problem. It maps 3D facial landmarks to 2D projections
in the image plane.

16

Algorithm

3.4.1 Camera Calibration
The camera intrinsic matrix K is defined as:

K =

fx 0 cx

0 fy cy

0 0 1

where fx and fy are focal lengths, and cx, cy are the optical center coordinates.

3.4.2 Solving for Rotation and Translation
Using OpenCV’s solvePnP, the rotation vector R and translation vector T are
computed:

[R, T] = PnP(L3D, L2D, K)

1 success , rot_vec , trans_vec = cv2. solvePnP (face_3d , face_2d ,
cam_matrix , dist_matrix)

2 rmat , jac = cv2. Rodrigues (rot_vec)

3.4.3 Roll, Pitch, and Yaw Using Key Facial Landmarks
The algorithm uses significant facial landmarks, i.e., left eye (landmark 33) and
right eye (landmark 263) to compute roll more accurately than from the rotation
matrix by itself. It utilizes the relative positions of these landmarks.

Roll Calculation

The roll angle θz is computed using the positions of the left and right eye landmarks:

θz = arctan 2(yRER − yLEL, xRER − xLEL)

where (xRER, yRER) and (xLEL, yLEL) are the coordinates of the right eye outer
corner and left eye outer corner, respectively.

1 roll = 180 + (np. arctan2 (point_RER [1] - point_LEL [1],
point_RER [0] - point_LEL [0]) * 180 / np.pi)

2 if roll > 180:
3 roll -= 360

17

Algorithm

Pitch and Yaw Using RQDecomp3x3

The cv2.RQDecomp3x3 function decomposes the rotation matrix to derive pitch θx

and yaw θy:
θx = arctan 2(R32, R33), θy = arcsin(−R31)

1 angles , _, _, _, _, _ = cv2. RQDecomp3x3 (rmat)
2 pitch = angles [0] * 1800
3 yaw = angles [1] * 1800

By combining the roll calculation using facial landmarks and pitch/yaw derived
from the rotation matrix, the algorithm ensures:

• Precision: Leveraging distinct features like eye positions provides higher
accuracy.

• Robustness: Redundant calculations reduce sensitivity to errors in one
method.

• Real-Time Adaptability: Efficient computation ensures no latency in head
orientation updates.

3.5 Logging
Logging is a critical component of VisionS, enabling measurement of performance,
debugging, and post-analysis of driving behavior. Logging is a critical mechanism
for validating the system’s correctness, fine-tuning the detection algorithm, and
ensuring reliability under different conditions. The system logs critical parameters
in CSV format, enabling structured data capture and large-scale post-processing
analysis.

3.5.1 Key Logged Data
The following key data points are systematically recorded during VisionS operation:

• Frame Count: Each frame is assigned a sequential number, enabling precise
frame-by-frame analysis.

• Timestamp: Both relative frame time (time elapsed since application
start) and absolute system time are logged for synchronization with external
data sources and event tracking.

18

Algorithm

• Roll, Pitch, and Yaw Values: These head orientation angles are logged to
assess driver movement trends and posture over time.

• Standard Deviation of Pitch and Yaw: This statistical measure helps
assess the variability in head movements, filtering out noise and enhancing
detection robustness.

• Estimated Head Position: The system determines whether the driver is
looking forward, left, right, up, or down based on calibrated threshold
values.

• Distraction Flag: If a driver maintains a non-forward gaze beyond a prede-
fined time threshold, a distraction event is flagged and recorded.

• Processing Latency: The time taken to process each frame is logged to
monitor computational efficiency and optimize performance.

3.5.2 Purpose of Logging
The structured logging system serves multiple purposes, ensuring the reliability
and adaptability of VisionS:

• Verification of Detection Accuracy: Logged data is plotted and cross-
referenced with known distraction events to assess the precision of detection
algorithms.

• Performance Benchmarking: The system logs frame processing times,
CPU and GPU utilization, and memory usage to measure computational
efficiency across different hardware configurations.

• Adaptive Calibration Adjustments: The standard deviation values of pitch
and yaw allow dynamic sensitivity tuning, improving detection accuracy for
diverse driving conditions. Additionally, these values are logged for integration
into a separate data fusion algorithm designed to estimate and predict the
driver’s drowsiness state, which will be discussed later in this report.

• Error Diagnosis & Debugging: Analyzing logged data helps identify
potential false positives and negatives, allowing for refinements in algorithm
logic and threshold tuning.

• Longitudinal Driver Behavior Analysis: By collecting data over ex-
tended periods, trends in driver attention patterns can be analyzed, aiding in
personalized driver monitoring strategies.

19

Algorithm

3.5.3 Implementation Details
VisionS utilizes a systematic logging system based on Python’s built-in CSV
module, thus enabling efficient and fast recording of data. Each frame processed
creates a new log entry, with real-time values displayed in the following format:

Frame Time Roll Pitch Yaw Std Pitch Std Yaw HeadPos. Distract
2 0:00:00.023992 -8.56 11.79 -32.06 0 0 64 0
4 0:00:00.076502 -8.34 12.08 -28.47 0 0 64 0
...

20000 00:02:40.031 15.6 34.96 47.42 8.07351 7.55612 0 0
...

Table 3.1: Sample Logged Data Format.

The logging system is engineered to minimize interruptions to real-time perfor-
mance, whilst simultaneously enabling comprehensive data accumulation for offline
analysis.

Through structured logging, VisionS ensures that driver behavior analysis is
both precise and verifiable, allowing for continuous improvements in the system’s
accuracy and responsiveness.

20

Chapter 4

Implementation

4.1 Windows Application

4.1.1 Overview

The VisionS Window Application serves as the main interface for real-time moni-
toring of drivers. It uses a structured approach for handling video inputs, assessing
drivers’ head motion, and delivering relevant feedback to users. The system uses
Kivy for the GUI and OpenCV for video analysis, with the VisionS algorithm
being implemented in a modular class structure.

The application is structured into three key components:

• VisionS Algorithm Class (defined in VisionS_Application_V1.py) for
processing video frames and detecting driver distractions.

• User Interface (defined in main.kv), built using Kivy, handling user interac-
tions and visual elements.

• Main Application Logic (defined in main.py), which integrates the UI with
the VisionS algorithm and manages real-time updates.

Additionally, two versions of the application were developed:

• Real-time mode: Processes live feed from the Windows camera for immediate
monitoring.

• Offline mode: Processes all video files available in the executable folder to
analyze pre-recorded footage.

21

Implementation

4.1.2 Application Architecture
The VisionS Window Application follows a modular approach, ensuring scalability
and maintainability. Each component is designed to work independently while
maintaining seamless interaction.

Key Components

• VisionS_Application_V1.py

– Implements the VisionS class, responsible for image processing, head
pose estimation, and distraction detection.

– Ensures modularity so that the same algorithm can be integrated into
multiple applications.

• main.py

– Acts as the central controller, initializing the UI, fetching camera frames,
and passing them to the VisionS algorithm.

– Manages real-time updates and event handling.

• main.kv

– Defines the UI layout, including buttons, overlays, and video feed display.
– Uses Kivy’s declarative syntax to separate the logic from the UI elements.

4.1.3 User Interface (Kivy Implementation)
Kivy is chosen for its ability to create cross-platform applications with minimal
effort. The interface is designed to be intuitive and responsive, ensuring ease of
use for drivers and developers alike.

Key Features of the UI

• Live Video Feed: Displays real-time video input from the camera.

• Application Status: Updates with the current status whether it’s in calibra-
tion phase or running to detect distractions.

• Distraction Alerts: Shows warnings when driver distraction is detected.

• Calibration Controls: Allows users to initiate or reset calibration.

• Status Overlays: Displays yaw, pitch, roll, and distraction status in real-
time.

22

Implementation

1 Image:
2 id: video_feed
3 size_hint : (1, 0.8)
4 allow_stretch : True

4.1.4 Real-Time Video Processing

Real-time video processing is a core functionality of the VisionS application. The
main.py script captures frames using OpenCV, processes them through the VisionS
class, and renders them in the UI.

1 cap = cv2. VideoCapture (0)
2 def update_frame (self , *args):
3 ret , frame = cap.read ()
4 if ret:
5 processed_frame = self. visionS . process_frame (frame)
6 texture = self. convert_to_texture (processed_frame)
7 self. video_feed . texture = texture

4.1.5 Final Application UI

The final version of the VisionS Window Application presents a clean and intuitive
interface designed for real-time monitoring. The UI displays:

• The live video feed processed through OpenCV.

• Yaw, pitch, and roll values updated dynamically.

• Distraction alerts, which notify the user when an unsafe behavior is detected.

• Calibration controls that allow the driver to reset their reference head
position.

Below is an image showcasing the final application UI:

23

Implementation

Figure 4.1: Python based windows application

4.1.6 Summary
The VisionS Window Application seamlessly integrates Kivy for user interface
creation, employs OpenCV for video recording, and incorporates the VisionS
algorithm to detect distractions. Its modularity allows real-time monitoring
and offline analysis, thus ensuring seamless user experience while enabling flexible
testing and validation.

The next section, 4.2 Android Application, will focus on porting the VisionS
system to mobile platforms.

4.2 Android Implementation

4.2.1 Overview
The Android version of VisionS was created to optimize the features of real-time
driver monitoring on mobile devices by utilizing the smartphone’s front-facing
camera. Unlike the Windows version, which used Python libraries like OpenCV
and Kivy, the Android version required a redesign of its architecture. The final
implementation was built using Java, OpenCV, and MediaPipe and was
developed in Android Studio for maximum performance and smooth functionality.
The UI was created using Android’s XML layout system, and the VisionS
algorithm was rewritten in Java and run in MainActivity.java.

This section outlines the challenges encountered in the process of transition,

24

Implementation

the several failed attempts to implement the Python-based one on the Android
platform, and finally the development of a complete Java-based solution.

4.2.2 Challenges in Python-Based Deployment
Deploying the Python-based VisionS algorithm on Android proved challenging due
to multiple technical limitations and compatibility issues. Several methods were
explored, but they ultimately proved impractical for real-time execution on mobile
devices.

Attempt 1: Deploying through Buildozer on Windows

Buildozer was initially chosen as a packaging tool to convert the Python-based
VisionS application into an Android APK. However, the process faced critical
limitations:[15]

• Dependency Conflicts: The integration of OpenCV and MediaPipe with
Buildozer resulted in unresolved dependencies, preventing the app from run-
ning.

• TensorFlow Lite Incompatibility: MediaPipe relies on TensorFlow Lite
for real-time inference, but Buildozer lacked proper support for it.

• Limited Debugging Support: Errors related to C++ bindings and shared
object libraries made troubleshooting difficult.

• Unsupported Architectures: Certain Android devices with ARM64-based
architecture faced compatibility issues with libraries compiled through Buil-
dozer.

• Large APK Size: The resulting application was significantly larger than
expected, increasing installation time and consuming excessive storage.

Attempt 2: Deployment Using Buildozer on Linux

A subsequent attempt was made using Buildozer on an Ubuntu Linux environment,
as Linux is often more compatible with Python-based development tools. Despite
better support for some dependencies, the following issues persisted:[16]

• Lack of Official MediaPipe Support: The absence of a well-maintained
MediaPipe package for Python-For-Android (P4A) caused repeated build
failures.

• Application Instability: APKs built on Linux frequently crashed due to
unresolved OpenCV dependencies and memory allocation errors.

25

Implementation

• Performance Limitations: The resulting APKs exhibited significant perfor-
mance bottlenecks, making real-time monitoring unfeasible.

• Graphics Rendering Issues: When attempting to display the camera feed,
frame drops and rendering artifacts appeared due to inefficient processing.

• Inconsistent Behavior Across Devices: While the application worked on
some Android devices, it failed to launch or crashed instantly on others due
to variations in hardware and firmware.

Attempt 3: Python-Java Integration via Chaquopy in Android Studio

To bridge the gap between Python and Java, Chaquopy was tested for embedding
Python scripts within an Android application. However, the following challenges
emerged:[15]

• Execution Overhead: Running Python scripts within Android’s Dalvik
runtime introduced considerable latency, slowing down real-time processing.

• Threading Limitations: Chaquopy did not support parallel execution in
the same way as Java’s native multithreading, resulting in frequent UI freezes
when attempting to process continuous video input.

• Lack of GPU Acceleration: Hardware-accelerated MediaPipe operations
were not supported within the Chaquopy framework, causing inefficient CPU-
based execution.[17]

• Limited Access to Native APIs: The integration made it difficult to
directly interact with low-level Android APIs needed for efficient camera
handling and system-level optimizations.

• Poor Debugging Support: Identifying issues within the hybrid Python-
Java implementation was cumbersome, as stack traces often lacked detailed
information due to cross-language execution.

Key Takeaways from the Failed Python Deployments

After multiple unsuccessful attempts, it became evident that the best approach
was to transition VisionS to a fully Java-based implementation. The main reasons
included:[18]

• Performance Constraints: Python’s runtime overhead was too high for
real-time processing on mobile devices, making it unsuitable for continuous
video-based monitoring.

26

Implementation

• Limited Library Support: Essential dependencies such as MediaPipe and
OpenCV were not optimized for direct deployment on Android via Python,
leading to compatibility issues.

• APK Size and Compatibility Issues: The Buildozer and Chaquopy
approaches resulted in bloated APK sizes, which reduced user adoption and
made the application impractical for general distribution.

• Security and Stability Risks: The hybrid Python-Java approach introduced
additional vulnerabilities and stability concerns, particularly in long-term usage
scenarios.

• Lack of Maintenance and Community Support: Many of the tools used
in the Python-based deployment had minimal community support, making it
difficult to find solutions for encountered issues.

• Inefficiencies in Real-Time Processing: Delays in frame acquisition,
processing lag, and inconsistent execution speeds rendered the Python-based
approaches unsuitable for critical safety applications.

These challenges ultimately confirmed the need to rewrite the entire VisionS
algorithm in Java, leveraging Android-native frameworks for optimal performance
and real-time distraction detection.

4.2.3 Transition to a Java-Based Implementation
Overcoming Python’s Limitations with Java

The decision to rewrite the VisionS algorithm in Java stemmed from the inherent
limitations encountered in Python-based deployment. While Python provided rapid
prototyping capabilities, it struggled with performance bottlenecks, lack of GPU
acceleration on Android, and inefficient multithreading. Transitioning to Java
allowed the system to fully utilize Android’s native libraries, ensuring a highly
responsive, low-latency, and power-efficient implementation.

CameraX API for Image Acquisition

To achieve seamless real-time video capture, the Android implementation leveraged
CameraX, a Jetpack-supported library specifically designed to provide optimized
camera access. Unlike OpenCV’s VideoCapture method, which struggled with
high frame latency and inconsistent performance across different Android devices,
CameraX provided:[19]

• Adaptive frame rate management for consistent video feed quality.

27

Implementation

• Efficient background execution, preventing camera-related UI lag.

• Hardware-accelerated image processing, reducing CPU load.

By integrating CameraX, VisionS ensures that each frame was captured at
a consistent interval without introducing excessive latency, a crucial factor for
real-time driver monitoring.

MediaPipe’s Java API for Landmark Detection

For facial feature extraction, MediaPipe’s Java API was implemented, allowing
the detection of 468 facial landmarks in real-time. The challenge lay in ensuring
efficient computation while minimizing CPU and memory usage. To optimize this
process, several modifications were made:

• Efficient computational graph pipeline, reducing unnecessary operations.

• Frame skipping strategy, allowing landmark detection every alternate
frame to balance processing speed and accuracy.

• Dedicated GPU acceleration, leveraging TensorFlow Lite’s Neural Net-
works API (NNAPI) for faster inference.[20]

These optimizations enabled smooth execution even on mid-range Android
devices, making VisionS a scalable and adaptable solution.

Reimplementation of Head Pose Estimation

The core of distraction detection relies on estimating the driver’s head orientation.
The Python version of VisionS used SolvePnP with OpenCV’s NumPy arrays,
but for Android, this had to be restructured using OpenCV’s Java bindings.
This transition resulted in:

• Improved computational efficiency, as Mat objects reduced memory
overhead.

• More accurate head pose estimation, minimizing noise through matrix
decompositions.

• Enhanced numerical stability, reducing frame-to-frame jitter using Kalman
filtering.

By leveraging OpenCV’s Java SDK, the system could calculate yaw, pitch,
and roll in real time, ensuring precise distraction detection.

28

Implementation

Implementation of Calibration Reset Mechanism

Recognizing that seating position and posture vary across users, a calibration
reset function was added to allow dynamic recalibration of the driver’s neutral
head position. The system:

• Stores baseline head orientation values upon initial calibration.

• Allows users to reset calibration via a UI button if their seating position
changes.

• Automatically adjusts deviation thresholds based on recalibrated values.

This feature ensures that VisionS remains adaptable, providing accurate distrac-
tion detection even in varied driving conditions.

Development of a Real-Time UI

A key factor in driver monitoring systems is providing instant feedback while
maintaining a distraction-free interface. The VisionS UI was designed using An-
droid XML layouts, incorporating:

• Overlay-based alerts, visually indicating distraction levels.

• Real-time data visualization, dynamically updating yaw, pitch, and roll
angles.

• Optimized background processing, ensuring UI responsiveness while
handling continuous video processing.

By replacing the Kivy-based UI used in Windows with a native Android
interface, the application achieved significant performance gains and a more
seamless user experience.

Performance Optimization and Resource Management

Given the limited processing power available in mobile devices, several optimizations
were necessary to prevent overheating and battery drain:

• Frame Skipping: Instead of processing every frame, the algorithm evaluates
only every alternate frame to balance accuracy and efficiency.

• Multithreading: Using HandlerThread and ExecutorService, the system
ensures parallel non-blocking execution of video processing and distraction
detection.

29

Implementation

• Hardware Acceleration: Neural Networks API (NNAPI) and GPU acceler-
ation were utilized to offload processing from the CPU.

These improvements allow VisionS to operate continuously without causing
excessive performance degradation on mobile devices.

Notification and Alert System

To enhance driver awareness, VisionS implements a multi-layered alert system
designed to function even when the application is running in the background. The
notification system includes:

• Visual Alerts: On-screen warnings with a color-coded attention status.

• Persistent Notifications: Ensuring that distraction alerts remain active
even if the app is minimized.

• Auditory Feedback: Optional beeps and sounds when prolonged distraction
is detected.

• Battery Optimization Features: Users can toggle video feed visibility while
keeping distraction detection active, reducing GPU workload and extending
battery life.

By integrating these features, VisionS ensures a non-intrusive yet effective
alert mechanism to promote driver attentiveness without overwhelming the user
with unnecessary interruptions.

4.2.4 User Interface (UI) Development
The user interface of VisionS was designed to be intuitive, real-time, and user-
friendly while ensuring that drivers stay focused on the road. Since the system
continuously monitors driver attention using the front-facing camera, the UI needed
to effectively convey information without causing unnecessary distractions. The
Android implementation was structured using Android’s XML-based layout
system and Jetpack components, ensuring responsiveness, scalability, and ease
of customization.

Camera Feed and Real-Time Display

A crucial component of VisionS is the real-time PreviewView, which displays the
live feed from the front-facing camera. This feed is processed using CameraX and
OpenCV, ensuring efficient video capture and minimal latency. Unlike traditional

30

Implementation

camera implementations, VisionS leverages adaptive frame rate control to
optimize performance without overloading the device.

The XML implementation uses the PreviewView component to handle camera
input:

1 <androidx . camera .view. PreviewView
2 android :id="@+id/ textureView "
3 android : layout_width =" match_parent "
4 android : layout_height =" match_parent "
5 android : visibility =" visible "/>

This ensures that the live camera feed is seamlessly integrated into the UI while
maintaining optimal performance across different Android devices.

Visual Indicators and Feedback System

The VisionS UI includes multiple visual indicators to provide clear feedback
on the driver’s attention status. The system employs a color-coded warning
system that dynamically adjusts based on real-time monitoring data:

• Green: Driver is attentive; no corrective action needed.

• Yellow: Minor deviation detected; driver may need to refocus.

• Red: Significant distraction detected; immediate corrective action required.

These indicators are overlaid onto the camera feed using TextView elements:

1 <TextView
2 android :id="@+id/ distraction_text "
3 android : layout_width =" wrap_content "
4 android : layout_height =" wrap_content "
5 android : layout_marginTop ="20 dp"
6 android :text =""
7 android : textColor =" @android :color/ holo_red_dark "
8 android : textSize ="30 sp"
9 android : textStyle =" bold"

10 android : background ="#80000000"/ >

This ensures real-time updates while maintaining a non-intrusive interface.

31

Implementation

Distraction Detection and Alert System

To ensure immediate response to distractions, VisionS incorporates a visual
alert system that changes the on-screen interface dynamically when the driver
is distracted. When prolonged distraction is detected, the interface prominently
displays a red warning overlay to notify the driver. This ensures immediate
feedback without the need for intrusive audio or vibration-based alerts. The alert
visibility is dynamically controlled by the distraction detection algorithm to prevent
unnecessary warnings.

Calibration and Reset Controls

A calibration reset function is integrated into the UI, allowing drivers to
recalibrate their neutral head position dynamically. This feature is essential for:

• Adjusting to different driving postures and seating positions.

• Ensuring consistency across different users sharing the same vehicle.

• Recalibrating after prolonged use to prevent drift in head position estimation.

The reset option is accessible through a simple button press:

1 <Button
2 android :id="@+id/ reset_button "
3 android : layout_width =" wrap_content "
4 android : layout_height =" wrap_content "
5 android :text =" Reset"
6 android : background ="#333333"
7 android : textColor ="# FFFFFF "/>

This function allows recalibration in real-time without requiring a restart of the
application, making it highly convenient for multi-user environments.

Adaptive UI for Different Screen Sizes

Since VisionS is designed for a broad range of Android devices, the UI was built to
be fully adaptive. Key optimizations include:

• Scalability across different screen sizes and resolutions (smartphones,
tablets, in-dash displays).

• Minimalistic design to ensure clarity while maintaining functionality.

• Ease of navigation for quick access reset calibration and toggle video feed.

32

Implementation

By integrating these features, VisionS maintains a seamless user experience
across all supported platforms. The UI is tested on multiple screen densities to
ensure usability remains consistent across devices.

Video Feed Toggle for Battery Conservation

To enhance power efficiency, VisionS includes an option to disable the video feed
while keeping distraction monitoring active. This feature significantly reduces GPU
and CPU usage, thereby extending battery life. Despite the video feed being
turned off, the system continues processing frames in the background, ensuring
that monitoring remains uninterrupted.

The toggle function is controlled using a button:

1 <Button
2 android :id="@+id/ toggle_video_button "
3 android : layout_width =" wrap_content "
4 android : layout_height =" wrap_content "
5 android :text =" Video Off"
6 android : background ="#333333"
7 android : textColor ="# FFFFFF "/>

Allowing users to efficiently manage power consumption. The system automatically
adjusts processing loads when the video feed is disabled, ensuring minimal battery
drain.

Driver Mode Toggle Button

To accommodate different driving orientations worldwide, VisionS includes a Driver
Mode Toggle Button. This feature allows users to switch between left-hand
drive and right-hand drive modes, ensuring the system adapts to regional driving
norms.

When toggled, the system updates the Driver tracking parameters to align
with the driver’s position.

The toggle button is implemented in the UI as follows:

1 <Button
2 android :id="@+id/ toggle_side_button "
3 android : layout_width =" wrap_content "
4 android : layout_height =" wrap_content "
5 android : layout_alignParentBottom =" true"
6 android : layout_alignParentStart =" true"
7 android : layout_marginBottom ="40 dp"
8 android : layout_marginStart ="16 dp"

33

Implementation

9 android :text =" Left"
10 android : background ="#333333"
11 android : textColor ="# FFFFFF "
12 android : padding ="10 dp"/>

This button is positioned at the bottom-left of the interface, allowing easy access
for users to switch driving modes. The text dynamically updates to reflect the
selected mode, ensuring clarity for the driver.

Summary of UI Enhancements

The VisionS UI was built with a focus on real-time responsiveness, user
engagement, and power efficiency. The final design incorporates:

• Real-time camera feed with visual overlays.

• Dynamic color-coded feedback for distraction levels.

• User-controlled calibration resets and driver modes.

• Adaptive design for different screen sizes and orientations.

• Battery-saving options through video feed toggling.

• Intelligent UI scaling for seamless usability across various screen sizes.

By integrating these elements, VisionS ensures that drivers receive meaningful
feedback without being distracted, enhancing both usability and effectiveness.
Shown below is the demonstration of the final implementation:

34

Implementation

Figure 4.2: Java based Android application[13] Video toggled on and off

4.2.5 Final Remarks

The transition of VisionS to the Android platform presented a series of technical
hurdles, primarily due to the lack of native Python support for MediaPipe and the
constraints of deployment tools such as Buildozer and Chaquopy. Multiple attempts
to integrate the system through these methods proved ineffective, necessitating
a complete rework of the algorithm in Java. This transition allowed for seamless
integration with Android-native technologies, including CameraX and OpenCV,
ensuring optimal performance and real-time processing capabilities.

By shifting to a Java-based implementation, the VisionS application successfully
achieved:

35

Implementation

• Reliable and efficient real-time distraction detection, minimizing pro-
cessing delays while maintaining accuracy.

• Optimized computational performance, leveraging multithreading and
hardware acceleration for smooth operation.[21]

• Seamless UI integration, using XML-based layouts to provide dynamic,
real-time feedback to the user.

• Enhanced power efficiency, reducing battery consumption while sustaining
continuous monitoring.

• Adaptive user calibration, allowing for quick and easy recalibration based
on individual driving postures and preferences.

Through these refinements, the Android version of VisionS has evolved into
a fully functional mobile driver monitoring system. With its ability to process
real-time video, deliver immediate feedback, and maintain high efficiency, VisionS
stands as a significant step toward improving road safety and reducing driver
distraction in everyday scenarios.

36

Chapter 5

Testing and Results

The testing phase plays a crucial role in evaluating the reliability, accuracy, and
performance of VisionS. A well-defined testing process ensures that the system
meets its intended objectives and can function effectively in different environments.
This chapter is divided into two major sections: Algorithm Testing and Application
Testing, along with a discussion of the results obtained from each testing phase.

Algorithm Testing focuses on evaluating VisionS in controlled conditions
using pre-recorded videos with predefined distraction events. This allows for an
objective analysis of detection accuracy and helps refine the underlying algorithms
before deployment.

Application Testing assesses the performance of VisionS in real-world condi-
tions, determining its reliability under varying lighting, movement, and environ-
mental conditions. This ensures that VisionS can operate effectively in dynamic
scenarios, where variables cannot always be controlled.

By conducting these tests, the system’s strengths and limitations can be iden-
tified, leading to further optimizations and improvements. The results obtained
from both testing phases are also discussed in this chapter.

5.1 Algorithm Testing
Algorithm Testing is essential for ensuring that VisionS can accurately identify dis-
tractions in controlled environments before transitioning to real-world applications.
The testing workflow consisted of the following structured steps:

• Dataset Preparation: Recorded videos with known distraction windows
were annotated to serve as the ground truth. This dataset included different
types of distractions such as abrupt movements, environmental changes, and
user actions. The dataset was designed to represent a diverse set of conditions,
including different facial orientations, lighting conditions, and driver behaviors,

37

Testing and Results

ensuring that the model was exposed to a broad spectrum of real-world
scenarios.

• Automated Processing: The pre-recorded videos were systematically fed
into the VisionS application, which analyzed each frame to detect and log
instances of distractions. The processing pipeline was optimized to handle
variations in video resolution, frame rate, and noise levels to ensure reliable
detection under different conditions.

• Data Extraction: The system generated output files in CSV format, de-
tailing frame-wise distraction data. Each recorded frame was associated with
timestamped logs, including extracted yaw, pitch, and roll values, as well as
the corresponding distraction status. These logs were later used for model
performance evaluation and trend analysis.

• Result Validation: The extracted data was visualized and analyzed by
plotting distraction events over time. These results were cross-verified against
the known dataset to determine the accuracy of VisionS in detecting distrac-
tions. Metrics such as sensitivity and specificity were calculated to assess
performance.

Distraction Estimation Phases:

• Indeterminable Phase: This occurs when the driver is not looking at the
road, but the system has not yet classified it as a distraction. Short-term
deviations, such as brief glances away, are categorized under this phase to avoid
false positives. This phase is managed by a buffer system, which temporarily
holds frame data and evaluates the duration of inattention before making a
classification.

• Distracted Phase: If the indeterminable phase is sustained for a predefined
threshold duration, the system classifies the driver as distracted. This is
determined by using a distraction counter, which increments over consecutive
frames where inattention is detected. Once the counter surpasses the set
threshold, the system triggers an alert. This ensures that only prolonged
distractions trigger warnings, improving reliability and reducing unnecessary
alerts.

The threshold for defining distraction windows was determined based on sta-
tistical studies of a driver’s typical field of view and necessary visual focus points
while driving. The chosen thresholds account for the natural head movements
required to check the side mirrors, rearview mirror, dashboard, and speedometer.

38

Testing and Results

Any deviation beyond these predefined angles was classified as a loss of road atten-
tion, ensuring that VisionS remains effective without misclassifying normal driving
behavior as distraction.

To substantiate the methodology for defining distraction thresholds based on a
driver’s typical field of view and necessary visual attention, we refer the SAE J1050
standard, Describing and Measuring the Driver’s Field of View [22]. This standard
outlines methods for assessing both direct and indirect fields of view, as well as the
extent of obstructions within those fields. It provides a framework for determining
the horizontal and vertical ranges of a driver’s direct ambinocular field of view,
considering factors such as eye rotation limits and apertures.

By applying the principles from SAE J1050[22], we established thresholds that
account for natural head movements required to check the side mirrors, the rearview
mirror, dashboard, and the speedometer. This approach ensures that VisionS
accurately differentiates between normal driving behaviors and actual distractions,
thereby enhancing detection reliability and reducing false positives.

5.1.1 Refinements and Optimizations

To enhance accuracy, several refinements were implemented:

• Adjusting the attentive window to refine the criteria for when a driver is
flagged as distracted.

• Optimizing the distraction time window to balance responsiveness with accu-
racy.

• Modifying transition durations between the indeterminable and distracted
phases for smoother detection.

• Fine-tuning threshold parameters to minimize false positives while maintaining
high sensitivity.

Once this baseline was established, the next phase of testing focused on real-
world applicability. Initially, the algorithm underwent a longer calibration phase to
fine-tune these parameters. Minor adjustments were made until VisionS consistently
achieved 95% sensitivity and specificity across all test datasets. This was
validated by plotting distraction flags over time, such as in Figure 5.1, and
cross-referencing them with the annotated ground truth.

39

Testing and Results

Figure 5.1: Distraction flag plot across time

To further improve usability, the calibration phase was systematically shortened,
with multiple iterations evaluating its impact on sensitivity and specificity. The goal
was to make VisionS capable of estimating driver distraction as early as possible
without compromising accuracy. Through this iterative process, an optimal balance
was achieved between the duration of the calibration and the detection reliability.

5.2 Application Testing
Application testing ensures that VisionS operates effectively across different plat-
forms, including Windows and mobile environments, maintaining accuracy and
responsiveness in real-world conditions. This involves rigorous validation of the
algorithm’s performance, ensuring it functions correctly under various hardware
and software configurations. Additionally, stress tests were conducted to assess
stability over extended periods, and usability testing ensures that the UI remains
intuitive and efficient across all supported devices.

5.2.1 Windows Application Testing
The Windows application was developed primarily to facilitate algorithm execution
without requiring an integrated development environment (IDE). This approach
enabled structured testing by allowing VisionS to process pre-recorded datasets
while also providing a real-time UI overlay for visualization.

40

Testing and Results

The updated UI was designed to display all relevant information concisely,
avoiding unnecessary data clutter. This enhancement allowed for efficient real-time
visualization of the algorithm’s outputs, ensuring clear tracking of distraction
events. The same dataset used for algorithm validation was also utilized in the
Windows application to confirm its reliability and consistency in processing input
data.

The key objectives of Windows application testing were:

• Algorithm Validation: Ensuring that the algorithm was successfully com-
piled into an executable and produced consistent results across different test
datasets.

• Performance Assessment: The application was tested across various hard-
ware configurations to evaluate processing latency and efficiency in detecting
distraction events. Testing began with high-performance systems featuring top-
tier CPUs and GPUs, then extended to older hardware with slower processors
and limited memory. This systematic approach allowed for a comprehensive
assessment of performance variability and the impact of system specifications
on execution times. While minor latency differences were noted, they were
negligible and had no meaningful impact on functionality. The results con-
firmed that the algorithm was optimized to run smoothly across all tested
hardware, maintaining consistent performance without noticeable degradation,
regardless of hardware constraints.

• UI Responsiveness: Assessing the real-time overlay to confirm smooth
visualization of tracking data without lag or synchronization issues. The
UI was found to be highly responsive, updating in real-time without any
noticeable delays. Additionally, the visual cue indicating driver distraction
was prominently displayed, ensuring it was easily noticeable and effectively
served its purpose in alerting the driver.

• Execution Time Optimization: To improve efficiency, only one out of
every two frames was processed, reducing computational overhead without
significant loss of information. Given that most test videos were recorded at
30FPS or higher, this optimization maintained the system’s responsiveness
while improving execution speed.

After verifying the reliability of the algorithm’s compilation, the application
was tested in a controlled simulated environment for real-time performance assess-
ment. The system successfully processed live video feeds with minimal latency,
demonstrating its capability for real-world deployment. Additionally, extended
runtime testing confirmed the stability of the system, ensuring that no performance
degradation occurred over prolonged use.

41

Testing and Results

Initial compilations encountered crashes due to improper loading of the Medi-
aPipe and OpenCV libraries, leading to instability in execution. The issue was
diagnosed through a series of debugging steps, including analyzing error logs, test-
ing different library versions, and isolating dependencies. It was identified that
dynamic linking inconsistencies caused the libraries to fail upon execution. To
resolve this, the libraries were compiled alongside the executable file, ensuring
proper initialization and eliminating runtime errors. This issue was resolved by
compiling these libraries alongside the executable file. While this solution increased
the overall application size, it significantly improved launch speed and initial run-
time performance, allowing for smoother execution without dependency-related
failures.

The Windows application served as a foundational testing platform before
transitioning to an Android application. By validating algorithm performance and
ensuring reliable execution on a desktop environment, this phase confirmed the
feasibility of porting VisionS to a mobile platform while maintaining its real-time
processing capabilities.

5.2.2 Android Application
Given the challenges encountered during the compilation of the Android application,
rigorous testing was conducted to ensure its stability, performance, and usability
across various devices. The VisionS mobile application underwent extensive evalu-
ation under different conditions to verify its reliability and responsiveness. This
testing phase was structured around key objectives, including application stability,
latency performance, logging accuracy, user interface functionality, power efficiency,
and performance improvements achieved through Java-based implementation.

Application Stability and Performance

To ensure the VisionS application remained stable across different Android devices,
various stress tests were performed. The primary focus was to identify and rectify
issues related to crashes, dependency errors, and resource mismanagement. Debug-
ging sessions and crash log analysis played a pivotal role in eliminating frequent
application failures, ensuring that the app functioned reliably under different work-
loads and conditions. By implementing structured error-handling mechanisms, the
application was made more resilient to unexpected failures, improving its overall
dependability.

Performance evaluations examined the efficiency of the algorithm, particularly
its ability to process real-time inputs without excessive lag. The transition to a
Java-based implementation provided noticeable improvements in managing multi-
threaded operations, thereby enhancing overall performance and reducing latency.

42

Testing and Results

These refinements helped optimize CPU usage and improved the application’s
ability to handle multiple background processes without significant slowdowns.

Testing Methodology

Device Compatibility Testing
The application was deployed on a diverse set of Android devices varying in

chipset architecture, RAM capacity, and screen resolution. The goal was to measure
its efficiency on both lower-end and high-end devices. By running the application
across different hardware configurations, inconsistencies in behavior were identified
and resolved. Additionally, compatibility checks were performed across different
Android versions to guarantee consistent functionality and seamless user experience,
ensuring that users with older devices could still benefit from the application
without experiencing performance issues.
Latency and Real-Time Processing

Testing involved assessing the app’s performance under various conditions,
such as changes in lighting environments, multitasking scenarios, and different
background processes. The evaluation of frame processing speed and algorithm
response times ensured minimal delays in distraction detection. The app’s stability
was tested while running alongside resource-intensive applications to measure its
robustness in multitasking scenarios. The implementation of Java-based multi-
threading contributed to improved processing efficiency by optimizing the allocation
of system resources. Through these tests, it was confirmed that latency was reduced
significantly, allowing the system to detect distractions more accurately and with
minimal delays.
Logging and Data Accuracy

To validate the integrity of the system logs, extensive tests were performed on
recorded distraction events, user inputs, and calibration resets. These tests con-
firmed that logs were generated accurately and consistently, even under unexpected
circumstances such as power failures or app crashes. Error-handling mechanisms
were assessed to ensure data integrity without missing or duplicating log entries.
Timestamp precision was also reviewed to facilitate effective event tracking and
post-processing analysis. Improvements in the logging mechanism ensured that
every recorded event was correctly classified and stored, preventing redundant or
lost data entries.
User Interface Validation

The usability and responsiveness of the VisionS application’s UI were evaluated
through functional tests on all interactive elements:

• Start/Stop Algorithm button: Verified its ability to correctly initialize
and terminate the distraction detection process without lag or failure.

43

Testing and Results

• Reset Calibration function: Ensured calibration parameters reverted to
default values upon reset, maintaining system consistency.

• Toggle Video Feed feature: Assessed to confirm that the live video feed
could be enabled or disabled without performance degradation, avoiding
unnecessary strain on system resources.

• Left/Right Driver Mode functionality: Validated to guarantee the proper
adjustment of detection parameters when switching between driving modes.

• General UI responsiveness: Monitored to ensure that all interactive
elements reacted instantly to user inputs, even when the system was under
high CPU or GPU loads.

These UI refinements helped eliminate delays and enhanced the overall user experi-
ence.

Observations and Results

The initial testing phase identified multiple stability issues, including frequent
crashes due to improper deletion and recreation of class objects. These problems
were systematically addressed through debugging and memory management op-
timization, which significantly enhanced the application’s stability. The logging
functionality was confirmed to be highly accurate, with no instances of data loss
or incorrect event recordings. UI components underwent refinements to improve
alignment and responsiveness, ensuring seamless user interaction. By reducing
redundant computations and optimizing rendering techniques, the application
became more efficient and responsive.

Furthermore, the application maintained efficient CPU and RAM utilization,
preventing performance slowdowns even on budget-friendly devices. The adoption
of Java-based multi-threading significantly enhanced computational resource allo-
cation, allowing the application to operate more efficiently across various devices.
As a result, real-time processing latency was significantly minimized, enabling
near-instantaneous distraction detection. These improvements collectively ensured
that the application was not only functional but also optimized for prolonged
real-world use without unnecessary resource consumption.

The final compiled version of the VisionS application demonstrated robust
stability, even when subjected to intensive multitasking conditions. Moving forward,
additional refinements will be directed towards optimizing the application for lower-
end devices, refining memory management techniques to further enhance efficiency,
and incorporating additional UI enhancements to improve accessibility and user
engagement. By continuously refining the application based on user feedback and

44

Testing and Results

further testing, VisionS aims to provide a reliable and highly responsive tool for
distraction detection in real-world driving scenarios.

45

Chapter 6

Enhanced Driver Drowsiness
Detection Through Data
Fusion

Driver fatigue is a significant factor in road accidents worldwide, impairing cognitive
function and reaction times. Traditional drowsiness detection systems often rely
on either physiological or behavioral indicators, but single-source methods may be
prone to inaccuracies and false positives. To improve accuracy and reliability, a
data fusion approach combining multiple data sources has been developed. This
paper introduces an integrated algorithm that merges physiological and behavioral
indicators to provide a more comprehensive assessment of driver alertness.

6.1 PredictS: Wearable Sensor-Based Drowsiness
Detection Algorithm

PredictS [23] is an exclusive algorithm developed by Sleep Advice Technologies in
partnership with Garmin smart wearable technology. It harnesses the capabilities
of Garmin sensors to track key physiological parameters, including Heart Rate
(HR), Heart Rate Variability (HRV), and SpO2 levels. The system is designed to
determine whether a driver is experiencing drowsiness or on the verge of falling
asleep while operating a vehicle. PredictS is a key component of the FleetPredictS
system, which promotes safer driving and enables centralized monitoring of driver
health metrics.

The algorithm incorporates a patented method for predicting sleep onset by
evaluating the Autonomic Nervous System (ANS) and its related subsystems. It
continuously observes transitions from wakefulness to sleep by analyzing HR and

46

Enhanced Driver Drowsiness Detection Through Data Fusion

HRV data obtained from a wearable device. Through a sliding window technique
applied to 20-second data segments, the system detects variations in HR and HRV
to categorize the driver’s state into five distinct levels: Calibration, Awake, Low
Drowsiness Level, Medium Drowsiness Level, and High Drowsiness Level.

PredictS has undergone extensive validation through controlled experiments
using the AVL dynamic car simulator in Graz, Austria. In one study, 15 participants
completed the Maintenance Wakefulness Test (MWT) under the supervision of a
sleep expert. Further real-world testing involved professional drivers from Chrono
Express, covering more than 13,000 kilometers to confirm the system’s effectiveness.

6.2 Enhancing Drowsiness Detection Through
Behavioral Analysis

The VisionS algorithm works alongside PredictS, reinforcing its drowsiness detection
capabilities by analyzing head movements. Drowsy drivers often exhibit reduced
situational awareness, inconsistent speed maintenance, and delayed reactions. Re-
search has shown that fatigue impairs reaction times, vigilance, and information
processing, increasing accident risk [24].

Studies have found that fatigued drivers display reduced vehicle control, reflected
in steering wheel angle variations and head movement changes [25]. Monitoring head
movement in real time provides additional drowsiness indicators, complementing
the physiological signals detected by PredictS.

VisionS classifies driver drowsiness using a predefined threshold based on head
movement patterns. This threshold is determined through extensive data analysis,
considering factors such as the frequency and amplitude of head movements, changes
in posture, and variations in gaze direction. By combining the drowsiness flag
from VisionS with that of PredictS, false positives are significantly reduced while
improving overall sensitivity. If both systems detect drowsiness simultaneously, a
high-confidence alert is triggered, ensuring timely intervention to prevent accidents.

PredictS (Physiological) VisionS (Behavioral) Drowsiness Detection Output
0 0 0 (No Drowsiness)
0 1 0 (Possible False Positive)
1 0 0 (Possible False Positive)
1 1 1 (High-Confidence Alert)

Table 6.1: Drowsiness Detection Decision Framework

This Boolean framework, established by table 6.1, ensures that a driver is only
flagged for drowsiness when both physiological and behavioral indicators align,

47

Enhanced Driver Drowsiness Detection Through Data Fusion

significantly increasing the reliability of the system. By integrating both data
sources, the hybrid algorithm will provide a more robust and accurate assessment of
driver fatigue, reducing instances of false alarms while maintaining high sensitivity
in detecting actual drowsiness events.

By combining the strengths of PredictS and VisionS, this hybrid approach will
ensure a more robust drowsiness detection system. It will move beyond single-source
reliance and instead employ a multi-modal strategy that integrates physiological
and behavioral indicators, significantly improving both reliability and accuracy in
real-world driving conditions.

This multi-modal approach will enable an adaptive thresholding system that
continuously refines itself based on real-world driver data, making it increasingly
effective in practical applications. Future developments will likely involve dynamic
calibration techniques, adjusting sensitivity based on individual driver profiles to
further improve predictive accuracy.

This will also open up the possibility of VisionS functioning as a standalone driver
monitoring system when wearable devices are unavailable. While its accuracy might
be lower than that of PredictS or the integrated system, it will remain valuable
for road safety enhancement. By providing real-time awareness and intervention,
VisionS will help mitigate drowsy driving risks, particularly in settings where
wearable technology is limited.

Beyond drowsiness detection, VisionS could enable proactive safety measures.
By continuously monitoring head movement patterns, it might detect early fatigue
indicators and suggest rest breaks before critical drowsiness levels are reached.
This predictive capability could enhance fleet management by optimizing driver
scheduling and reducing fatigue-related accidents. Future advancements may
include gaze tracking and posture analysis, further refining its ability to detect
signs of fatigue and inattention.

6.3 Implementation and Observations
6.3.1 Implementation
The algorithm is implemented and thoroughly tested in an offline environment
using several available datasets. The process is designed to determine its viability,
evaluate the validity of its fundamental concepts, and measure its accuracy and
reliability quantitatively. Through systematic testing, critical performance metrics
are evaluated to ensure the algorithm’s adherence to the suggested standards for
effectiveness and reliability in detecting drowsiness. Testing is performed in the
following manner:

First, the standard deviation measures obtained from VisionS are grouped based
on a predetermined threshold to determine the drowsiness indicator. This ensures

48

Enhanced Driver Drowsiness Detection Through Data Fusion

that the thresholds are determined with an optimal balance between accuracy,
sensitivity, and specificity. The approach involves choosing different threshold values
and analyzing their effects in detail on classification effectiveness to determine the
optimal range.

Next, filtered VisionS data is merged into the PredictS data. An authentic
case of drowsiness is recorded only when both algorithms, when tested in isolation,
detect drowsiness. Any other scenario is labeled as a false event. This integration
phase of the detection system increases the trustworthiness of the detection system
by reducing false positives and ensuring that a detected event is validated by more
than one independent source, as opposed to a single data source.

Then, the combined and filtered dataset is subjected to a rigorous cross-validation
process using the available ground truth data. The ground truth is obtained from
medical devices that track brainwave patterns and other parameters associated
with drowsiness and has been validated by medical experts. The cross-validation
process includes statistical tests and performance metric evaluations, thus ensuring
that the model is consistent with clinically accepted indicators of drowsiness.

Finally, performance is evaluated by plotting the Receiver-Operating CurveROC
curve, along with sensitivity and specificity values across the pre-specified range of
thresholds. This enables critical assessment of the model’s performance, with the
goal of determining the most beneficial tradeoff between sensitivity and specificity.
Analysis of the ROC curve provides insightful information on classification perfor-
mance at various threshold values, offering a unique visualization of the strengths
of the algorithm as well as potential areas for improvement.

6.3.2 Observations
The greatest and limiting challenge encountered within the testing process was
the lacking availability of the necessary datasets that were needed in order to
execute and evaluate the algorithm. Only nine datasets were available at the
time of evaluation, and they posed significant constraints on both the range and
variety of the test process. The problem was made worse by the fact that some
datasets contained inconsistencies that greatly compromised their usability. Some
datasets lacked time-aligned synchronized data between PredictS and VisionS,
which complicated the ability to create practical correlations between these two
datasets. Other datasets contained no instances of recorded drowsiness, which
made them insufficient for constructive validation attempts.

These limitations directly affected the ability to conduct an extensive analysis
of the algorithm’s effectiveness in various contexts. The narrow scope of the
repository of datasets severely hindered the ability to generalize the findings to
a wide range of real-world situations. Despite these limitations, the controlled
experiment proceeded with the pertinent datasets available.

49

Enhanced Driver Drowsiness Detection Through Data Fusion

The graph below depicts the results of one such experiment, which are displayed
visually for ease of understanding and interpretation. The Receiver-Operating
Curve(ROC) is plotted as True-Positive Rate(TPR) vs False-Positive Rate(FPR).
The area under the curve is a measure of how well the model can distinguish between
the two and is used to evaluate the accuracy. The next plot is the sensitivity and
the specificity values plotted against a range of thresholds to visualize the effects
different thresholds for classification have on the model.

Figure 6.1: ROC, Sensitivity and Specificity plot

The results depicted by the plots, such as in Figure 6.1, show that the algorithm
has a specificity of over 98%, thus successfully eliminating nearly all cases of false
positive alarms, which can also be observed from the ROC plot. At the same
time, the sensitivity, which was around zero at the lower threshold range, rapidly
increases to over 95%. This significant improvement in sensitivity indicates that the
algorithm is extremely efficient in detecting drowsiness patterns when the threshold

50

Enhanced Driver Drowsiness Detection Through Data Fusion

is over 2.5. The results obtained from these datasets show considerable promise,
confirming the viability of the detection mechanism within the parameters tested
and highlighting the possibility of further improvement to enhance its reliability.

While the current results are not conclusive evidence of the algorithm’s suit-
ability for application in real-world scenarios, they firmly indicate its feasibility.
The outcomes confirm that the underlying methodology is theoretically sound
and amenable to refinement. For the model parameters to be optimized and its
effectiveness to be tested under various driving conditions and populations, further
systematic and thorough analyses will be required in future studies.

By refining the testing procedures, optimizing the classification methods, and
integrating a greater range of datasets, the accuracy, sensitivity, and specificity of
the algorithm can be optimized. This optimization will ensure that the algorithm
meets the strict requirements needed for effective operation and general acceptance
in driver monitoring systems to be implemented and used in real time.

51

Chapter 7

Conclusion

The VisionS project represents a significant advance in the development of real-time
driver monitoring and awareness systems, leveraging computer vision and artificial
intelligence techniques to enhance road safety for drivers. Through the leveraging
of the potential of Google’s MediaPipe, OpenCV, and sophisticated algorithmic
frameworks, VisionS accurately detects and tracks signs of distraction, head pose,
and potential indicators of driver fatigue. Extensive tests performed across diverse
environmental settings have confirmed the system’s dependability, accuracy, and
usability in real-world settings, thus making it a critical advancement in driver
safety technology.

The development path focused on the improvement of computational efficiency,
the increase of detection accuracy, and the guarantee of effortless adaptability in
varied driving situations. VisionS has undergone iterative refinement from its initial
conceptual phase to final deployment to overcome technical challenges and enhance
its effectiveness, resulting in a very reliable monitoring system for real-time analysis
of driver behavior.

7.1 Key Achievements
One of the key accomplishments of VisionS is the successful development and
deployment of a cross-platform system intended for driver behavior monitoring. The
system successfully processes video data in real-time and provides relevant insights
into driver behavior with minimal latency. This accomplishment was achieved by
leveraging new algorithmic innovations, hardware performance improvements, and
field verification testing.

The creation of a unified application for both Windows and Android platforms
enabled smooth integration with various vehicular environments. A core component
of this success was the application’s ability to process video data in real-time without

52

Conclusion

compromising on computational efficiency. Significant improvement was achieved
through the optimization of the processing speed by systematically removing alter-
nate frames, thus effectively reducing computational load without compromising
on detection accuracy. Additionally, the implementation of a dynamic calibration
mechanism enabled the system to adapt to different camera angles and driver
positions, thus ensuring consistent performance for different vehicle configurations.
Moreover, a comprehensive logging system was implemented to record important
events for future analysis, aiding decision-making, forensic analyses, and continuous
improvement of the system.

An integral aspect of VisionS was the improvement of its core algorithm. Exten-
sive parameter tuning and adjustments to the model were done to reduce the rate of
false positives, resulting in a strong classification system capable of distinguishing
between degrees of driver distraction and attention. The final version of the system
showed considerable improvements in empirical tests, outperforming conventional
monitoring systems in various and challenging environments.

One of the most important advancements made in the VisionS system has
been the inclusion of data fusion techniques with PredictS. Through the merging
of real-time video data and predictive modeling with sensor-based information,
VisionS has enhanced its ability to measure driver distraction and fatigue in
a more comprehensive context. This combination enables more sophisticated
decision-making mechanisms since the composite data sources provide an in-depth
assessment of the performance of a driver. VisionS and PredictS’s joint efforts have
been able to illustrate the viability of a multi-modal approach to tracking drivers,
and it has significant implications for designing more effective and proactive safety
interventions.

7.2 Challenges and Limitations
Despite these achievements, the development of VisionS was faced with a variety of
practical and technical challenges. One of the main challenges was how to balance
library dependencies and runtime performance. Early versions of the system
were plagued by issues with dependency conflicts, poor memory utilization, and
performance limitations. These issues were resolved by the application of optimized
compilation methods, memory allocation improvements, and the strategic use of
multi-threading to improve overall execution time.

The other challenge was to ensure the robustness of the system against the
variation typical of testing environments in real life. The driver monitoring system
needed to adapt to varying levels of lighting, variations in driving behaviors, and
motion artifacts from road vibrations. Thorough validation was needed to calibrate
the model for robust performance under different scenarios, so that changes in

53

Conclusion

ambient light or sudden driver motion did not compromise detection accuracy.
The limitations imposed by platforms have significantly impacted the system’s
deployment. While VisionS has been successfully integrated into the Windows
and Android environments, the absence of an iOS equivalent limits access to a
broader market. Creating a compatible version for iOS is an attractive opportunity,
requiring adjustments to ensure compatibility with Apple’s hardware infrastructure
and software framework.

The application of multi-threaded processing for improving computational effi-
ciency has resulted in synchronization-related problems. Coordination of concurrent
activities in real-time video processing requires careful control of shared resources
to prevent data inconsistency. Sophisticated thread synchronization techniques
were critical to maintaining system stability while improving responsiveness at the
same time.

A crucial challenge faced was the need to ensure the model’s ability to generalize
well for different user demographics. Given the immense variability in driving
habits, facial features, and in-car conditions, the need arose to test the model
with extensive datasets. While VisionS has been shown to achieve high accuracy
in controlled test settings, further verification in real-life scenarios with diverse
user populations is important to tune detection parameters and increase overall
reliability.

The integration of data fusion techniques into the VisionS system presented
further complications. PredictS, which relies on multiple sensor data to sense
fatigue, needed to be calibrated and synchronized with VisionS’s video-based
analysis pipeline. It was necessary to make sure that the data from both systems
complement each other without causing noise or inconsistencies, an important step
in the refinement phase. While initial trials have shown promising results, ongoing
development must be done to create a unified fusion mechanism that can operate
effectively in varying driving conditions.

7.3 Future enhancements and improvements
The VisionS system, while currently functioning well, has great potential for
improvement. Future improvements may focus on making it more accessible,
expanding its feature set, and making it easier to integrate with other intelligent
transportation systems.

7.3.1 iOS Application
The creation of an iOS variant of the VisionS application is expected to advance
its usability and foster wider adoption across a more extensive demographic, thus
providing access to users on Apple devices. Given the large user base attached

54

Conclusion

to iOS, this expansion will require rigorous testing to ensure seamless integration
into Apple’s hardware and software environments. Maintaining compatibility with
various iPhone and iPad devices, adherence to Apple’s strict App Store guidelines,
and optimization for exclusive iOS features like Face ID and haptic feedback will
be critical to provide an optimum user experience and achieve maximum adoption
levels.

7.3.2 Extended Real-World Testing and Validation
The deployment of VisionS in a wider range of geographic locations, atmospheric
conditions, and driving environments is expected to enhance its generalizability
and reliability. To achieve this goal, extensive field tests need to be conducted
in urban, suburban, and rural settings to assess the system’s effectiveness in
the presence of varying traffic densities, road conditions, and culturally driven
driving habits. Collaboration with automotive original equipment manufacturers,
government agencies, and academic institutions will be critical in refining the
system’s algorithms and meeting international safety standards. The integration of
large datasets with iterative optimization based on real-world experience will enable
VisionS to provide accurate, flexible, and reliable driver monitoring, ultimately
leading to improved safety outcomes and a decrease in accident rates.

The integration of VisionS with in-car safety features, such as adaptive cruise
control and automatic emergency braking, enables the deployment of advanced
accident prevention techniques through real-time threat detection and response.
Artificial intelligence model optimization for edge computing is critical to ensure
safety features function with minimal latency and reduced energy consumption.
Optimizing AI models for best performance on embedded automotive platforms,
VisionS can provide real-time decision-making capabilities without excessive cloud
infrastructure reliance, thus increasing its feasibility for widespread integration
across the automotive industry.

7.3.3 Improved Data Fusion via PredictS and Multi-Modal
Driver State Assessment

The integration of the PredictS algorithm with other predictive analytics structures
is in the initial stages of offline testing. The effort involves the gathering and
analysis of extensive datasets from varied sources, which capture a range of road
types, driving behaviors, and environmental factors, with the ultimate goal of
guaranteeing the model’s consistency and accuracy. A major challenge at this stage
is the creation of a dataset that completely encompasses the entire on-road driving
situation spectrum, from urban traffic to highway driving, in addition to factoring

55

Conclusion

in variables such as changes in weather patterns, different driver fatigue levels, and
vehicle performance indicators.

During the evaluation period, machine learning techniques will be deployed to
enhance PredictS’s ability to recognize driving patterns, detect anomalies, and
predict potential danger. This is done through constant algorithm improvement
using both supervised and unsupervised learning methods, thus ensuring the
system adapts to new information while minimizing cases of false negatives and
positives. In addition, synthetic data augmentation methods will be used to deal
with the limitation of real data in situations with constraints, thereby improving
the generalizability of the model to new situations.

Beyond offline evaluation, a phased transition to real-time application is crucial.
Initial on-road testing will be conducted in controlled environments to validate
the system’s predictions before expanding to open-road trials. Collaboration with
automotive manufacturers, regulatory bodies, and research institutions will be
essential to integrate PredictS seamlessly Future enhancements could also involve
multi-modal sensor fusion, to provide a more holistic assessment of driver alertness
and cognitive fatigue. These advancements will enable VisionS and PredictS
to become a proactive safety mechanism, capable of issuing early warnings and
assisting in accident prevention before critical situations arise.

7.4 Final thoughts
By highlighting these areas for improvement, VisionS has the potential to evolve into
an innovative driver monitoring system that can be broadly implemented and play
a significant role in road safety. With the development of automotive technology
moving forward, VisionS stands to play a critical role in reducing accident rates,
enhancing driver alertness, and ultimately saving lives on the road. The VisionS
system is an important leap forward in the area of real-time driver monitoring and
situational awareness, with the capability to reduce vehicular mishaps and overall
transportation safety. While some improvements are needed as well as an expansion
of usage, this system lays a sound foundation for future developments in driver
monitoring technologies. Research, technology development, and collaborative
efforts in the future will be important for maximizing and extending the use of this
technology toward global road safety.

56

Bibliography

[1] World Health Organization. «Road Safety Facts». In: (2021) (cit. on p. 3).
[2] National Highway Traffic Safety Administration. «Distracted Driving Report».

In: (2022) (cit. on p. 3).
[3] JL Harbluk, YI Noy, PL Trbovich, and M Eizenman. «An on-road assessment

of cognitive distraction». In: (2007) (cit. on p. 3).
[4] Centers for Disease Control and Prevention. «Road Traffic Accident Costs».

In: (2021) (cit. on p. 3).
[5] J Feng, Q Zhang, and W Zhang. «Effects of cognitive load on driving perfor-

mance». In: (2020) (cit. on p. 4).
[6] Y Dong, Z Hu, K Uchimura, and N Murayama. «Driver inattention monitoring

system for intelligent vehicles». In: (2011) (cit. on p. 4).
[7] Z Liu, Y Shi, and H Cheng. «A review of driver monitoring systems». In:

(2016) (cit. on p. 4).
[8] M Johnson, L Williams, and D Patterson. «Fleet vehicle safety improvements

through monitoring systems». In: (2019) (cit. on p. 4).
[9] JD Lee. «Cognitive distraction: An overview». In: (2009) (cit. on p. 4).

[10] Privacy International. «Data Protection in Driver Monitoring». In: (2019)
(cit. on p. 5).

[11] AAA Foundation for Traffic Safety. «Bias in AI-Driven Road Safety Tech-
nologies». In: (2020) (cit. on p. 5).

[12] Google Developers: MediaPipe Framework. https://mediapipe.dev. 2023
(cit. on p. 6).

[13] Google Developers: MediaPipe Face Landmark. https://ai.google.dev/
edge/mediapipe/solutions/vision/face_landmarker. 2023 (cit. on pp. 6,
7, 15, 35).

[14] OpenCV: Open Source Computer Vision Library. https://opencv.org. 2023
(cit. on p. 8).

57

https://mediapipe.dev
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker
https://opencv.org

BIBLIOGRAPHY

[15] Chaquopy Developers. «Chaquopy - Python in Android Studio». In: (2024).
Accessed on May 2024. url: https://chaquo.com/chaquopy/ (cit. on pp. 25,
26).

[16] Buildozer Community. «Buildozer Documentation». In: (2024). Accessed on
May 2024. url: https://buildozer.readthedocs.io/en/latest/ (cit. on
p. 25).

[17] Google Developers. «MediaPipe on Android». In: (2024). Accessed on May
2024. url: https://developers.google.com/mediapipe (cit. on p. 26).

[18] OpenCV Team. «OpenCV Android SDK Documentation». In: (2024). Ac-
cessed on May 2024. url: https://docs.opencv.org/master/d0/d3d/
tutorial_android_dev_intro.html (cit. on p. 26).

[19] Google Developers. «CameraX API for Android». In: (2024). Accessed on May
2024. url: https://developer.android.com/training/camerax (cit. on
p. 27).

[20] Android Developers. «Neural Networks API (NNAPI)». In: (2024). Accessed
on May 2024. url: https://developer.android.com/ndk/guides/neural
networks (cit. on p. 28).

[21] Android Developers. «Android Performance Optimization». In: (2024). Ac-
cessed on May 2024. url: https : / / developer . android . com / topic /
performance (cit. on p. 36).

[22] SAE International. «SAE J1050: Describing and Measuring the Driver’s Field
of View». In: (2009) (cit. on p. 39).

[23] «Drowsiness Detection Using PredictS». In: IEEE Xplore (2024). url: https:
//ieeexplore.ieee.org/abstract/document/10448558 (cit. on p. 46).

[24] European Road Safety Observatory. «Fatigue and Driving Behaviour». In:
(2024). url: https://road-safety.transport.ec.europa.eu/european-
road-safety-observatory/statistics-and-analysis-archive/fatigu
e/driving-behaviour_en (cit. on p. 47).

[25] ScienceDirect. «Effects of Fatigue on Driving Performance». In: (2024). url:
https://www.sciencedirect.com/science/article/abs/pii/S13619209
17306582 (cit. on p. 47).

58

https://chaquo.com/chaquopy/
https://buildozer.readthedocs.io/en/latest/
https://developers.google.com/mediapipe
https://docs.opencv.org/master/d0/d3d/tutorial_android_dev_intro.html
https://docs.opencv.org/master/d0/d3d/tutorial_android_dev_intro.html
https://developer.android.com/training/camerax
https://developer.android.com/ndk/guides/neuralnetworks
https://developer.android.com/ndk/guides/neuralnetworks
https://developer.android.com/topic/performance
https://developer.android.com/topic/performance
https://ieeexplore.ieee.org/abstract/document/10448558
https://ieeexplore.ieee.org/abstract/document/10448558
https://road-safety.transport.ec.europa.eu/european-road-safety-observatory/statistics-and-analysis-archive/fatigue/driving-behaviour_en
https://road-safety.transport.ec.europa.eu/european-road-safety-observatory/statistics-and-analysis-archive/fatigue/driving-behaviour_en
https://road-safety.transport.ec.europa.eu/european-road-safety-observatory/statistics-and-analysis-archive/fatigue/driving-behaviour_en
https://www.sciencedirect.com/science/article/abs/pii/S1361920917306582
https://www.sciencedirect.com/science/article/abs/pii/S1361920917306582

	Acknowledgments
	List of Tables
	List of Figures
	Acronyms
	Introduction
	The Global Road Safety Crisis
	Distracted Driving: A Persistent Problem
	Technological Innovations in Driver Monitoring
	Behavioral Insights and Ethical Considerations
	Economic Implications of Distracted Driving
	VisionS: A Data-Driven Approach to Road Safety

	State of the Art
	Google's MediaPipe
	Features and Implementation

	OpenCV
	Features and Implementation

	Kivy
	Key Features of Kivy
	Integration in VisionS
	Example of Real-Time Video Processing in Kivy

	Synergetic Use of MediaPipe, OpenCV, and Kivy
	Framework Contributions
	Core Functionalities in VisionS
	Overview

	Algorithm
	Data Acquisition
	Frame Capture and Optimization

	Pre-processing
	Resizing and Normalization
	Noise Reduction

	Feature Extraction
	Integration with MediaPipe
	Selecting Key Landmarks

	Pose Estimation
	Camera Calibration
	Solving for Rotation and Translation
	Roll, Pitch, and Yaw Using Key Facial Landmarks

	Logging
	Key Logged Data
	Purpose of Logging
	Implementation Details

	Implementation
	Windows Application
	Overview
	Application Architecture
	User Interface (Kivy Implementation)
	Real-Time Video Processing
	Final Application UI
	Summary

	Android Implementation
	Overview
	Challenges in Python-Based Deployment
	Transition to a Java-Based Implementation
	User Interface (UI) Development
	Final Remarks

	Testing and Results
	Algorithm Testing
	Refinements and Optimizations

	Application Testing
	Windows Application Testing
	Android Application

	Enhanced Driver Drowsiness Detection Through Data Fusion
	PredictS: Wearable Sensor-Based Drowsiness Detection Algorithm
	Enhancing Drowsiness Detection Through Behavioral Analysis
	Implementation and Observations
	Implementation
	Observations

	Conclusion
	Key Achievements
	Challenges and Limitations
	Future enhancements and improvements
	iOS Application
	Extended Real-World Testing and Validation
	Improved Data Fusion via PredictS and Multi-Modal Driver State Assessment

	Final thoughts

	Bibliography

