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Summary

This thesis work focuses on the development of a new attention

mechanism with the goal of tailoring the Transformer architecture

to multivariate time series. In particular, two attention mecha-

nisms were compared: the classical one, commonly used in ’vanilla’

transformers, and the one we introduced, that we will refer to as

’cross-attention’. The latter is a modification aimed to improve

the projection representation in the attention to learn the most

critical features for multivariate time series forecasting.Therefore

we introduced two main use cases for embeddings to evaluate the

performance of cross-attention in both long and short sequences.

In the first scenario, the input sequence consists of embeddings

spanning 12 hours, with the goal of predicting the following hour.

This experiment allows us to assess how well cross-attention cap-

tures long-term dependencies and temporal patterns over extended

periods. However, while it may effectively retain information over

time, its responsiveness to early events could be improved.

The second use case extends the input sequence to 47 hours,

again predicting the subsequent hour. This test helps determine

whether our cross-attention mechanism can enhance its under-

standing of daily cycles and potentially identify weekly trends.

The main challenge is to not dilute the attention of transformer

to the most relevant points by increasing the sequences length and

up the model complexity. Furthermore, we propose a solution to

mitigate the capacity of the model to learn to copy patterns in the

data rather than to learn dynamics of time series, which is one
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of common time-series forecasting issues. This thesis explores a

solution based on the state-of-the-art transformer model and the

comparison of different Attention mechanisms characterized dif-

ferent computations time and accuracy result in the defined use

cases.
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1 Introduction

In an era where data-driven solutions are reshaping industries, time

series analysis has emerged as a pivotal tool for deriving action-

able insights from sequential data. This thesis explores the appli-

cation of a new kind of attention mechanism, that we call Cross-

Attention. This approach aims to enhance the performance of pre-

dictive transformer models for time dependent data. Conducted in

collaboration with a private non-profit foundation based in Turin,

Italy, this research bridges the gap between academic innovation

and real-world application, driving product advancements and so-

cietal impact.The host organization, renowned for fostering innova-

tion, has a strategic focus on leveraging advanced methodologies to

address practical challenges. My work contributes to this vision by

exploring a new way to optimize energy consumption monitoring,

a critical area in the global push for sustainable energy practices.

As a master’s student at Politecnico di Torino (PoliTo), I was en-

trusted with the opportunity to align my academic expertise with

the mission of the foundation. This collaboration highlights the

symbiotic potential of academia and industry, where theoretical

frameworks can be tested and adapted to meet pressing practical

demands. The thesis is structured to guide the reader through

a comprehensive understanding of the topic. It begins in Sec-

tion 2 with a review of the literature, offering a critical analysis

of existing work on transformers for time series data. Section 5

details the methodology, the design, and implementation of the

cross-attention mechanism tailored for energy monitoring. Sub-
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CHAPTER 1. INTRODUCTION

sequently, in Section 7, the results and discussion are presented,

including their implications for industry and society. Finally, the

conclusion and future work are presented in Section 8, where the

potential for scaling and adapting this approach to other domains

is outlined.

Cross Attention Transformer



2 Background

2.1 Multivariate Time-Series (MTS)Forecasting

A time series is a sequence of data points collected or recorded at

regular time intervals. It reflects how a variable evolves over time.

A MTS refers to a dataset where multiple variables are recorded

over time, capturing their evolution simultaneously. Unlike Uni-

variate Time Series, which tracks a fluctuations in a single variable

over time, multivariate data involve several interdependent vari-

ables that may influence each other.This approach is particularly

useful when analyzing complex systems in which multiple factors

interact, such as financial markets, climate patterns, or industrial

processes. By considering multiple variables together, multivariate

time series models can uncover deeper insights, improve predictive

accuracy, and reveal relationships that wouldn’t be apparent when

analyzing each variable separately.

2.2 Why Forecasting Time Series

The process of predicting future events,trends, or outcomes based

on historical data, patterns,and analysis is called forecasting. It

helps in making informed decisions by estimating what might hap-

pen next. Time-series forecasting is essential to predict future

values based on historical data. It is crucial for planning, decision-

making, and understanding trends and patterns in various do-

mains. Forecasting helps mitigate risks, allocate resources effec-

tively, and make informed decisions. Here are some phenomena

14



CHAPTER 2. BACKGROUND

that describe time-series :

• Stock market prices

• Weather patterns

• Electricity consumption

• Economic indicators (e.g., GDP, inflation rates)

• Patient vital signs in healthcare (e.g., heart rate, blood pres-

sure)

Figure 2.1: Data registered from Traffic
Count .

Figure 2.2: Bike-share Customer satis-
faction Data.

2.3 The Forecasting of Multivariate Time-Series and

leveraging Machine Learning

MTS Forecasting involves predicting future values of multiple re-

lated time-series variables simultaneously. Unlike univariate fore-

casting, it considers the interdependencies among variables to im-

prove predictive accuracy.Here where Machine Learning models

come into play:

• Enhanced Prediction Accuracy: By leveraging relationships

between variables, multivariate forecasting produces more re-

liable predictions.

Cross Attention Transformer



CHAPTER 2. BACKGROUND

• Dynamic Systems Modeling: AI uses multivariate time-series

data to analyze complex systems where variables influence

each other.

• Real-Time Decision Making: Applications in fields like health-

care and finance rely on AI models to process multivariate data

and provide instant insights.

• Enables Advanced Models: Techniques like deep learning (e.g.,

LSTMs, transformers) can process multivariate data for supe-

rior performance in forecasting tasks.

2.4 Challenge of Multivariate Time-Series Forecast-

ing

MTS Forecasting presents unique challenges due to the complex-

ity of handling multiple interdependent variables. Identifying and

modeling the relationships among these variables is difficult, espe-

cially when the data exhibits non-linear patterns, missing values,

or irregular time intervals. The high dimensionality of multivari-

ate data increases computational demands and the risk of over-

fitting, requiring sophisticated techniques such as deep learning

with transformer architectures to manage these issues effectively.

Additionally, external factors such as noise, environmental changes

(e.g., climate, temperature), or unexpected events can significantly

affect forecasting accuracy, complicating its applications in dy-

namic real-world scenarios such as healthcare, finance, and energy

management.

2.5 What is Transformer

The Transformer is a deep learning architecture introduced by

Vaswani and al. [1]that processes sequential data using self-attention

mechanisms instead of traditional recurrence-based approaches.

Cross Attention Transformer



CHAPTER 2. BACKGROUND

Unlike RNNs and LSTMs, which handle sequences step by step,

Transformers eliminate this constraint, enabling parallel compu-

tation and making it easier to capture long-range dependencies.

Their architecture is built around MH-A, Positional Encod-

ing, and Feedforward Layers, which work together to effi-

ciently model complex patterns in data. Thanks to these advan-

tages, Transformers have become a cornerstone of modern deep

learning, powering breakthroughs in natural language processing,

computer vision, and beyond.

2.6 Attention Mechanism

Central to Transformer, is the self-attention module. It can be

viewed as a fully connected layer with weights that are dynami-

cally generated based on the pairwise similarity of input patterns.

As a result, it shares the same maximum path length as fully con-

nected layers, but with a much less number of parameters, mak-

ing it suitable like hierarchical recurrent attention networks [2] for

modeling long-term dependencies.

2.6.1 self-Attention (SA)

The input matrix X is projected into three distinct representa-

tions: queries (Q), keys (K), and values (V ), using learned weight

matrices WQ, WK , and W V . The transformation is defined as

follows:

Q = XWQ, K = XWK, V = XW V (2.1)

The matrices WQ, WK , and W V are learned during training

through backpropagation. These transformations allow the model

to extract optimal representations, enabling it to effectively cap-

ture relationships between tokens.

Cross Attention Transformer



CHAPTER 2. BACKGROUND

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.2)

Where:

• Q(query): What we are looking for.

• K(keys): What we are comparing to.

• V(values): What we use to construct the output.

• dk : is the dimension of the keys and queries in each attention

head.

Sometimes called intra-attention SA is a cornerstone of the trans-

former architecture, a model widely used in natural language pro-

cessing, time series analysis, and other domains. At its core, at-

tention allows the model to focus selectively on relevant parts of

the input data while processing it. This is particularly useful for

handling sequential Data such as time series, where dependencies

across different time steps are essential. In time series, attention

helps:

→ Capture long-term dependencies by focusing on all time steps

simultaneously.

→ Highlight key time points that contribute most to future pre-

dictions.

→ Reduce the reliance on fixed-length representations, improving

model flexibility.

Cross Attention Transformer



CHAPTER 2. BACKGROUND

Figure 2.3: Attention Mechanism.

2.6.2 Multi-Head-Attention (MH-A)

MH-A (Fig. 2.3)runs multiple self-attention mechanisms in paral-

lel to improve learning. The number of heads h is greater than

1, allowing the Transformer to focus on different parts of the in-

put representation simultaneously. Each head learns a different

projection of Q,K, V using separate weight matrices:

Qi = XWQ
i , Ki = XWK

i , Vi = XW V
i , for i = 1, . . . , h.

(2.3)

Each head captures unique relationships or patterns within the

data, enabling the model to learn richer representations compared

to a single-head attention mechanism. The outputs of all heads

are then concatenated and projected using a final weight matrix

WO:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O. (2.4)

headi = Attention(XWQ
i , XWK

i , XW V
i ) (2.5)

Cross Attention Transformer



3 Problematic addressed

3.1 Motivation

This study aims to improve the way the embedding space of the

time- series input features is handled by vanilla transformer. Tra-

ditional implementations of the Transformer process all embed-

dings uniformly, without distinguishing between different types of

features inherent in multivariate time series data. Specifically, in

multivariate settings, data can often be decomposed into two fun-

damental categories:

1. **Value features**: These capture the characteristics of

individual variables (e.g., temperature, pressure, or sales volume)

across the dataset.

2. **Time features**: represent a temporal ”label” of each

point in the time series that is important because it relates to

external facts that influence the trend of the energy consumption

time series.

Current attention mechanisms in the Transformer do not in-

herently differentiate between these feature types. As a result,

they fail to treat value-feature attention and time-feature attention

separately, which can lead to suboptimal representation learning.

Even in cases where features are explicitly separated, it is common

practice to concatenate or sum the attention of ’value-features’

(e.g., weather parameters like temperature, wind speed) and ’time-

features’ (e.g., day of the week, day of the year, month) as input

to the model. However, existing methods do not sufficiently allow

time features to influence value features. This oversight potentially

20



CHAPTER 3. PROBLEMATIC ADDRESSED

limits the model’s ability to fully capture and utilize the intricate

relationships within multivariate time series data.

One significant drawback to take into account when working on

this project is the self-attention mechanism in a standard trans-

former, which has a time and memory complexity of O(N²). Our
aim is to prevent this from causing any disruptions in the cross-

attention mechanism, where N denotes the length of the input time

series. This poses a serious computational challenge when process-

ing long sequences—such as those spanning days, weeks, or even

months—since the growing sequence length drastically increases

the dimensionality of the embeddings.

3.2 Solution impact for the organization

This challenge is particularly relevant in the context of the orga-

nization where this research is being conducted. The enterprise

heavily relies on accurate and interpretable time series forecast-

ing for mission-critical applications such as demand prediction,

resource optimization, and anomaly detection. The limitations of

existing methods in capturing nuanced interactions between value

and time features have become a bottleneck in achieving the de-

sired levels of forecasting accuracy and robustness.

To address this issue, the objective of this thesis is to design

and develop a custom attention mechanism that explicitly distin-

guishes and independently processes value-feature attention and

time-feature attention. The proposed approach aims to enhance

the model’s ability to learn specialized attention patterns for each

feature type, enabling a more precise and context-aware represen-

tation of multivariate time series data. By subsequently combin-

ing these distinct attention outputs, the model can leverage the

strengths of both perspectives, leading to improved forecasting

performance.At the same time, while this issue is acknowledged,

Cross Attention Transformer
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it is not directly addressed in detail in this study.

Cross Attention Transformer



4 Datasets

In this section, we present the Dataset used in this study. The

dataset contains measured data on an energy system to predict

its energy consumption. The data were collected from various

sources, from sensors and recording systems, and cover a coherent

time period. The datas spans from 2016 to 2018, recorded at an

hourly frequency.This Dataset is essential to train and evaluate

the Transformer model designed as part of this research.

4.1 Features Description

The dataset consists of 17,420 observations and 8 variables,

described in the table below:

Table 4.1: Description of the Dataset Variables
Variable Description Type Unit
date Timestamp of the measurements Date/Time -
HUFL High Upper Flow Level Numeric kWh
HULL High Upper Low Level Numeric kWh
MUFL Middle Upper Flow Level Numeric kWh
MULL Middle Upper Low Level Numeric kWh
LUFL Low Upper Flow Level Numeric kWh
LULL Low Upper Low Level Numeric kWh
OT Outdoor temperature recorded during measure-

ment
Numeric °C

The regression model takes the past values of all these variables

as explanatory parameters in a sequence and predicts their values

for the next hour

23



CHAPTER 4. DATASETS

4.1.1 Exploratory Data Analysis

The dataset has been analyzed to provide key descriptive statistics

for the numerical variables, as shown in the table below:

Table 4.2: Descriptive Statistics of Key Variables
Variable Min Max Mean Std Dev
HUFL -22.71 23.64 7.38 7.07
HULL -4.76 10.11 2.24 2.04
MUFL -25.09 17.34 4.30 6.83
MULL -5.93 7.75 0.88 1.81
LUFL -1.19 8.50 3.07 1.16
LULL -1.37 3.05 0.86 0.60
OT -4.08 46.01 13.32 8.57

∗ The outdoor temperature values (OT) vary from -4.08 °C to

46.01 °C, which illustrates a wide climatic range.

∗ The levels of energy consumption (for example, HUFL, HULL,

MUFL) show significant variations, suggesting an interesting

dynamic for modeling.

In (Fig.4.2), the data presented for the model generally exhibit

the characteristics of a time series, with a clear and consistent

seasonality observable across each input parameter. Additionally,

an identifiable trend can be seen in the curves, further reinforcing

the reliability and stability of the sensor recordings.

4.2 Data Preprocessing

Here, is the description of the preprocessing steps applied to the

dataset used in this study. The dataset is designed to prepare the

data for training and testing a model based on Cross Attention

mechanisms an traditional Attention with time series forecasting.

Before training the model, the following preprocessing steps were

performed:

• Handling of missing values, if present.

Cross Attention Transformer



CHAPTER 4. DATASETS

• Outlier detection and treatment for energy usage and temper-

ature variables.

• Normalization of variables to ensure compatibility with the

transformer model.

4.2.1 Time Features Representation

It is essential to encode temporal components appropriately to

help the model learn cyclic dependencies effectively. On the mat-

ter Recent advancements like Informer [3] address long sequence

dependencies efficiently.In fact imestamps in the format (yyyy-

mm-dd-h) represent cyclical temporal data:

- **Hour**: 11 PM and midnight are numerically distant when

encoded as integers, yet they are conceptually adjacent in time.

- **Day**: Monday and Sunday should be considered neighbors

in numerical representation.

- **Month**: December and January must be treated as close,

particularly in the context of winter. Since our transformer model

is designed to capture intricate relationships within data, it is es-

sential to integrate this cyclical structure. This is because:

• The self-attention mechanism needs to recognize that certain

hours or days are naturally correlated.

• Proper encoding prevents misleading patterns that might arise

from an improper numerical representation of time.

Cyclic Encoding of Hour:

A naive approach to encoding time-related features would be

to use raw hour values (e.g., 0 to 23 for hours of the day). How-

ever, this representation is problematic for machine learning mod-

els because it introduces artificial discontinuities. For instance,

in a simple numerical encoding, hour 23 and hour 0 appear dis-

tant (numerically 23 units apart), even though they are actually

adjacent in the cyclic nature of time.

Cross Attention Transformer
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To address this issue, we employ cyclic encoding using sine and

cosine transformations:

Hoursin = sin

(
2π

Hour

24

)
(4.1)

Hourcos = cos

(
2π

Hour

24

)
(4.2)

This transformation maps each hour onto a continuous unit

circle, preserving the cyclic nature of time. Consequently:

• The Euclidean distance between consecutive hours remains

consistent, avoiding abrupt jumps between 23 and 0.

• The model can better capture periodic patterns in energy

surveillance sensor data, improving predictive accuracy.

• Feature interactions become more meaningful, allowing the

model to generalize time-dependent patterns more effectively.

Cyclical Encoding of Months:

To effectively represent the cyclical nature of months in numer-

ical models, we use sinusoidal transformations:

month sin = sin

(
2π × month

12

)
(4.3)

month cos = cos

(
2π × month

12

)
(4.4)

One of the key advantages of this encoding is that it effectively

captures seasonal variations in energy consumption. For instance,

heating demand surges during winter months, while air condition-

ing usage spikes in summer.

A major limitation of treating months as simple numerical val-

ues (e.g., 1 for January, 12 for December) is that it fails to reflect

Cross Attention Transformer
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their cyclical nature. In reality, December and January are con-

secutive months, yet a naive numerical encoding would place them

at opposite ends of the scale (1 and 12), making them appear un-

related. By applying sine and cosine transformations, we ensure

that adjacent months are represented in a way that preserves their

natural continuity.

Cyclical Encoding of Days:

To properly account for the cyclical nature of weekdays in nu-

merical models, we use trigonometric transformations as follows:

day sin = sin

(
2π × day of week

7

)
(4.5)

day cos = cos

(
2π × day of week

7

)
(4.6)

Energy consumption patterns vary significantly between week-

days and weekends. For example, office buildings tend to use far

less electricity on Saturdays and Sundays compared to workdays.

A common pitfall of treating days of the week as simple categor-

ical numbers (e.g., 1 for Monday, 7 for Sunday) is that it ignores

their cyclic structure. This results in an artificial gap between Fri-

day and Monday, despite these days being consecutive in reality.

By leveraging sine and cosine transformations, we ensure that the

representation correctly reflects their natural continuity, making

adjacent days appear close in the feature space.

By integrating cyclic encoding into our regression transformer

model, we ensure that time-based dependencies are well-preserved,

ultimately enhancing the forecasting performance for energy mon-

itoring applications.

4.2.2 Feature Engineering: Capturing Non-Linear Relationships

Since we anticipated non-linear relationships, we applied trans-

formations to the environmental variables to better capture these
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effects. Specifically, we created derived features by implementing

quadratic terms and interaction effects.

Quadratic Terms : To model potential quadratic patterns

in the data, we introduced the squared term for the outdoor tem-

perature:

OT 2 = (Outdoor Temperature)2 (4.7)

This allows the model to capture non-linear variations in tem-

perature effects, which may not be adequately represented by a

simple linear term.

Interaction Features: To account for the combined influ-

ence of multiple environmental factors, we created interaction terms.

One such interaction is between outdoor temperature (OT) and

another variable, LUFL:

Interaction Term = OT × LUFL (4.8)

4.3 Splitting the Dataset

The dataset is divided (Fig.4.1) into training, validation, and test-

ing sets with proportions of 65%, 15%, and 20%, respectively. The

division ensures that the temporal order is maintained.
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Figure 4.1: split dataset.

4.4 Normalization with RobustScaler

To eliminate discrepancies in scale and variance across the various

features of the multivariate time series, adjustments are made with

Robust-scaler to ensure consistency and uniformity in their repre-

sentation. The numeric columns (excluding the Datetime column)

are normalized using RobustScaler. The training data is used

to fit the scaler, which is then applied for both validation and test-

ing data. The transformed data is recombined with the datetime

column for sequence generation. The RobustScaler transforms the

data using the following formula:

Xscaled =
X −median(X)

IQR(X)
(4.9)

where:

• X is the original value of the variable,

• median(X) is the median of the data,

• IQR(X) (Interquartile Range) is defined as:
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IQR(X) = Q3 −Q1 (4.10)

which represents the interquartile range.
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Figure 4.2: Tuned Data for Training.
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5 Methods and Materials

In this section, we are going to explore methods and tools used to

perform training and test. All task were performed on the same

dataset using different sequence data and embedding. First of all,

let us talk about the data sequences we made for each task, then

we explore the pipeline used to make the predictions.

5.1 Cross Attention design

The figure (Fig.5.2)illustrates the data pipeline, with the Cross-

Transformer playing a central role in the process. In the following

sections, we will break down each transformation that occurs at

different nodes within the pipeline, explaining them in detail.

5.1.1 Sequence Construction

For time series forecasting, the model requires structured sequen-

tial inputs, meaning each sample must include a historical window

of past observations to predict future values. This is implemented

using a sliding window technique in a custom function.

Generating the sequences:

• A sequence with length input(seq length) consecutive time

steps (corresponding to 23,12,47 hours) is extracted as the

input window.

• The immediate next time step (1 hour ahead) is designated as

the target output for prediction.
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• This process is repeated across the dataset, resulting in over-

lapping sequences that allow the model to learn temporal de-

pendencies effectively.

Mathematically, for a given starting index i, the input and tar-

get values are defined as follows:

Xi = {xi, xi+1, ..., xi+seqlength} (5.1)

Yi = xi+seqlength+1 (5.2)

where Xi represents the input sequence and Yi corresponds to

the expected output.

Each sequence-target pair is then converted into a PyTorch ten-

sor, ensuring efficient computation and compatibility with deep

learning models.

Creating DataLoaders:

To facilitate efficient batch processing, the generated sequences

are organized into PyTorch DataLoaders. These enable:

• Shuffling of training data to enhance generalization and pre-

vent overfitting.

• Sequential processing of validation and test data to preserve

temporal order.

Each batch consists of 32 samples, striking a balance between

computational efficiency and effective learning.

5.1.2 Embedding Layers

The embedding process (Fig.5.1)is designed with two distinct com-

ponents:

1. Temporal Embedding: Extracting Time-Based Fea-

tures

2. Feature Embedding: Transforming Other Input

Variables
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Temporal Embedding: Capturing Time-Dependent Patterns

The first stage of the embedding mechanism is dedicated to pro-

cessing temporal information from the dataset’s timestamp. The

key steps in this process are as follows:

• Isolating the DateTime Component: The timestamp values,

are extracted separately from the rest of the dataset.

• Conversion to DateTime Format: Since numerical times-

tamps are not inherently meaningful, they are reshaped and

transformed into a standard Pandas DateTime format. This

conversion enables efficient feature extraction.

• Deriving Temporal Features: Leveraging the Gluonts library,

a variety of time-related characteristics—such as the hour of

the day and the day of the week—are computed. These fea-

tures allow the model to identify periodic trends within the

data.

• Linear Projection: Once extracted, these temporal attributes

are processed through a fully connected layer. This transfor-

mation maps the features into a higher-dimensional space of

size dmodel, ensuring that meaningful temporal representations

are learned.

Feature Embedding: Processing Other Input Variables

The second stage of the embedding process involves encoding the

remaining input features, which are distinct from the temporal

component.

• Extracting the Features: Apart from the timestamp values,

the remaining attributes of the input sequence consist of nu-

merical values that characterize the dataset. These features

are isolated for independent processing.
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• Linear Transformation: To bring these attributes into the

same representational space as the temporal features, they are

passed through a separate fully connected layer. This opera-

tion projects them into a dmodel-dimensional space, enabling

consistent integration with the temporal embeddings.

By keeping the two embeddings separate, the model gains flex-

ibility in processing temporal and feature-based information in-

dependently, which can be particularly beneficial when applying

mechanisms such as cross-attention.

Figure 5.1: Embedding pipeline’s .

5.1.3 Positional Encoding

After input embedding separation, both temporal and numerical

features embedding are encoded positionally, although timestamps

benefit significantly more from positional encoding compared to

numerical embedding. WaveNet [4] introduced causal convolu-

tions to capture long-term dependencies in sequential data, which

inspired positional encoding in Transformers.Although WaveNet is

designed for audio, the idea of efficiently capturing long-term de-

pendencies without using RNNs inspired Transformers and their
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positional encodings. The objective is to incorporate positional

information into the input embeddings using sinusoidal and cosine

functions, enabling Transformers to distinguish the positions of el-

ements within a sequence. It helps capture the temporal structure

inherent in the information. By leveraging sine and cosine func-

tions, the model can effectively generalize to sequences longer than

those encountered during training.

5.1.4 Keys,Query and Values Projection Layers

The Projection Layers play a pivotal role in reshaping the initial

inputs into representations that are well-suited for the multi-head

attention mechanism. These layers leverage fully connected linear

transformations to learn projections that map the input data into

a higher-dimensional space before attention is applied. Each pro-

jection takes an input vector of fixed dimension and transforms it

into a representation whose size corresponds to the input dimen-

sion multiplied by the number of attention heads. This step is

crucial for enabling the model to process information from mul-

tiple perspectives simultaneously and allows parallel computation

across multiple attention heads, improving efficiency and expres-

siveness.

• Value Self-Attention Projections:

Qv = XvW
v
Q, Kv = XvW

v
K, Vv = XvW

v
V (5.3)

• Time-to-Value Attention Projections:

Qt = XtW
t
Q, Kt = XtW

t
k, Vt = XtW

t
v (5.4)

• special projection: An extra projection, denoted as W v
k’,

is introduced to capture transversal information, further en-

riching the model’s capacity to extract relevant features across

different contexts.

K ′
v = XvW

v
K’ (5.5)
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Note: W v
K and W v

k’ are two different Key projections of Xv.

5.1.5 Compute Scores Attentions

• Value Self-Attention (scoresv): This is Attention be-

tween the representations of the same modality and learn the

interdependence between values in the same sequence. By

applying the (Vv) projection, the context is derived

scoresv = softmax

(
QvK

⊤
v√

dk

)
(5.6)

• Time-to-Value Attention (scorestv): This represents the

cross-attention between different modalities and captures the

interdependence between timestamps and values. A new con-

text is subsequently formed through the (Vv) projection.

scorestv = softmax

(
QtK

′
v
⊤

√
dk

)
(5.7)

• Time-to-Time Attention (scorestt): This is Attention

between the representations of the same modality and captures

the relationships between different timestamps in the same

sequence.The (Vt) projection is then used to construct the

context.

Ascorestt = softmax

(
QtK

⊤
t√

dk

)
(5.8)

5.1.6 Transformer Outputs

After computing the dot-scaled product scores and applying the

weights to the values (V), each context score head generates its own

representation. These individual outputs are then concatenated to

form a unified representation. Finally, a linear transformation is

applied to reduce the dimensionality, producing the final output.

This step effectively integrates information from all context heads,
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ensuring a well-structured output that is optimized for the next

stages of the model

• Value Embedding: Before producing the final output from

the Transformer, we apply a weighted combination of the con-

texts generated by cross-attention to obtain a more refined

and well-balanced representation.

Emvalue = Scoresv ∗ Vv + Scorestv ∗ Vv

• Time Embedding:

Emtime = Scorestt ∗ Vt

Benefits of This Approach

• Customized Representations: Separate projections (Kv

and K ′v) allow learning different aspects of value-features.

• It has a time decoder of personal attention:it is a

mechanism that allows the model to focus on key moments in

time to improve its forecasts.

Figure 5.2: Cross Attention Mechanism.
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5.2 Custom Loss Function

We decided to design a custom loss function(Fig.5.3) integrates

the standard MSE error with an additional penalty designed to

discourage the model from consistently predicting the last observed

value.

Figure 5.3: custom loss.

5.2.1 Mean Squared Error (MSE)

The primary loss component employed in the model is the Mean

Squared Error (MSE), mathematically defined as follows:

LMSE =
1

N

N∑
i=1

(ypred,i − ytrue,i)
2 (5.9)

where:

• ypred,i represents the predicted value for the i-th time step.

• ytrue,i denotes the corresponding ground truth value.

• N signifies the total number of elements in the prediction

window.
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This function measures the average squared difference between

predicted and actual values, penalizing larger deviations more heav-

ily.

5.2.2 Regularization Term: Preventing Predictive Stagnation

An additional penalty term is incorporated to mitigate the model’s

tendency to generate predictions excessively close to the last ob-

served input point, xlast. This term is formulated as:

Lpenalty =
1

N

N∑
i=1

(ypred,i − xlast,i)
2 (5.10)

where xlast,i represents the final input value prior to forecast-

ing. The intuition behind this regularization is to encourage the

model to learn meaningful temporal patterns rather than simply

extrapolating the last known value, a common pitfall in time series

forecasting.

5.2.3 Final Loss Function Formulation

The overall loss function integrates the standard MSE loss with

the additional penalty term, weighted by a learnable parameter α:

Ltotal = LMSE +
α

Lpenalty
(5.11)

Here, α is a trainable parameter that dynamically adjusts the

weight of the penalty term during training.

5.2.4 Impact of the Additional Penalty on Time Series Fore-
casting

The inclusion of Lpenalty serves as a corrective mechanism to dis-

courage the model from generating overly conservative forecasts

that merely replicate past observations. Without this penalty, the
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model might converge to a trivial solution where predictions re-

main excessively close to xlast, particularly in cases of noisy or

slow-moving time series.

By inversely scaling the penalty term, the loss function strongly

penalizes scenarios where the predicted values are nearly identical

to the last observed input. This encourages the model to capture

actual temporal dynamics rather than defaulting to a naive persis-

tence model. However, it is crucial to address potential numerical

instabilities arising from small denominator values in α
Lpenalty

. To

mitigate this issue, a small constant ϵ is typically added, yielding

a revised formulation:

Ltotal = LMSE +
α

Lpenalty + ϵ
(5.12)

where ϵ is a small positive value (e.g., 10−6) to prevent division

by zero and avoid numerical instability.

5.3 Algorithms and Models

Deep Transformer models have shown promising results in time

series forecasting[5], surpassing alternative neural models such as

CNNs and RNNs.Therefore, Transformer-based models have the

potential to model complex dynamics of time series data that are

challenging for sequence models.

5.3.1 Vanilla Transformer

As noted in the Introduction, we will analyze two separate mod-

els to evaluate the effectiveness of our redesigned Cross-Attention

mechanism. The first model(Fig.5.4) is based on the Vanilla Trans-

former architecture, which is widely utilized across various machine[6]

learning tasks due to its strong capability to capture long-range de-

pendencies and interactions within sequential data[7]. This makes

it particularly well-suited for time series modeling.
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Figure 5.4: Vanilla Transformer.

5.3.2 Custom Transformer:Module Level Variant

In their study, Park et al. [8] demonstrated the effectiveness of

Transformer-based models for electricity demand forecasting by

proposing a modified multi-head Transformer model.

The Module Level Variant Transformer (Fig.5.5) retains the core

architecture of the Vanilla Transformer but introduces structural

modifications aimed at enhancing efficiency and capturing long-

range dependencies in time series forecasting. Unlike the standard

Transformer, which applies uniform attention across the entire se-

quence, this variant includes:

• A modular attention mechanism that distinguishes between

short-term and long-term dependencies [5].
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• Optimized attention mechanisms such as Sparse Attention [3]

and Grouped Query Attention to improve computational effi-

ciency [1].

• Feature separation between temporal variables and energy-

related data, improving forecasting accuracy [8].

Recent studies have demonstrated the effectiveness of such adap-

tations in time-series forecasting [9], particularly in energy con-

sumption prediction [8].

Figure 5.5: Module level variant Transformer.
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6 Experiments

6.1 Vanilla Transformer And Custom Transformer

In this experiment that focused on the vanilla Transformer and

the cross attention Transformer, we trained both models using

the dataset and the data processing described in Section 4. The

objective is to evaluate its performance and assess effectiveness of

the cross attention architecture compared with the standard self

attention.

6.2 Sequence Lenght Test

6.2.1 Short Sequence Test

The model was designed to forecast the values feature of the next

hour using daily classification sequence inputs, initially with a 12-

hour window and later expanded to 23 hours. The primary ob-

jective is to assess whether the model effectively captures rapid,

localized variations.

6.2.2 Long Sequence Test

Additionally, the new model’s performance was evaluated in an

extended prediction scenario spanning two days. Specifically, we

tested a 47-hour input sequence to predict one hour ahead, allow-

ing us to analyze how previous days influence the model’s forecast-

ing accuracy.
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6.3 Model Initialization and Hyperparameters

The work of Wen et al. (2017) on multi-horizon forecasting may

be relevant in certain aspects of the optimization and training the

model. Because his work provide [10] adaptive mechanisms to

optimize sequence forecasting. For the Transformer model utilized

in this study we configured with carefully selected hyperparameters

to balance performance and computational efficiency. The key

settings include:

• dmodel = 80 : The embedding dimension, determining the size

of the feature representation.

• nhead = 1 : A single attention head is used to maintain model

simplicity and reduce computational overhead.

• num layers = 2 : The number of layers in the Transformer’s

encoder stack.

• dim feedforward = 128 : The size of the feedforward network

within each encoder block.

• seq len = 23: The length of the input sequences, correspond-

ing to past observations used for predicting the next time step.

• dropout = 0.3 : The dropout rate applied to mitigate overfit-

ting.

• num epochs = 300 : The maximum number of training epochs.

• learning rate = 0.0001 : The initial learning rate for gradient

updates.

• patience = 20 : The number of consecutive epochs without

improvement before triggering early stopping.

To optimize the learning process, the AdamW optimizer is

employed. This algorithm extends Adam by incorporatingweight
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decay, which acts as a form of L2 regularization, preventing ex-

cessive parameter updates and improving generalization.

6.3.1 Learning Rate Scheduling with Warmup

A linear learning rate scheduler with warmup, imple-

mented using the Hugging Face transformers library, is inte-

grated to ensure a smooth optimization process:

• Warmup phase: The learning rate is gradually increased

at the beginning of training to stabilize the model and prevent

erratic updates.

• Decay phase: After the warmup period, the learning rate

gradually decreases, preventing large weight updates that

could destabilize convergence.

The scheduler is defined as follows:

num warmup steps = 0.1× total steps (6.1)

total steps = num epochs× number of batches per epoch (6.2)

During training, weight updates follow this sequence:

1. Compute the loss gradient via backpropagation: loss.backward().

2. Update model parameters using AdamW: optimizer.step().

3. Adjust the learning rate according to the scheduler: scheduler.step().

6.3.2 Training with Early Stopping

To prevent overfitting and optimize training duration, we create

the eval early() function that implements an early stopping

strategy, which monitors the validation loss and halts training

if no improvement is observed for a predefined number of epochs

(patience).
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6.3.3 Training Workflow

1. Iterate over epochs until reaching the maximum limit or trig-

gering early stopping.

2. For each batch in the training dataset:

(a) Compute model predictions on the input sequence.

(b) Calculate the MSE integrated in WeightedLoss

function between predictions and true values.

(c) Perform backpropagation to compute gradients.

(d) Update model parameters using AdamW.

(e) Adjust the learning rate using the scheduler.

3. After each epoch, evaluate the model on the validation set

with MSE loss .

4. Save the model if it achieves a new lowest validation loss.

5. If validation loss does not improve for patience consecutive

epochs, training stops early to prevent unnecessary com-

putation.

6.3.4 Evaluation on the Test Set

Once training is complete, the best-performing model (i.e.,

the one with the lowest validation loss) is loaded from the saved

checkpoint (best model.pth) and evaluated on the test dataset

using the evaluate test set() function.

Evaluation Workflow

1. Disable gradient updates by setting the model to evalu-

ation mode (model.eval()).

2. Iterate over test batches:

(a) Generate predictions for each input sequence.
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(b) Compute the test loss (MSE).

(c) Store the actual values (ytrue) and predictions (ypred) for

further analysis.

3. Compute key performance metrics:

• Root Mean Squared Error (RMSE): Measures the

square root of the mean squared differences between pre-

dictions and actual values.

• Mean Absolute Error (MAE): Computes the aver-

age absolute difference between predicted and true values.

• R2 (Coefficient of Determination): Evaluates how

well the model explains variance in the target variable,

with values closer to 1.0 indicating better fit.

6.4 Training Duration Measurement

To assess computational efficiency, the total training time is recorded

and displayed in a structured format:

1. Calculate elapsed time in seconds.

2. Convert to hours, minutes, and seconds.

3. Display the total training duration as:

Training Duration: Xh Ym Zs (6.3)
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7 Results and Discussion

7.1 Evaluation Metrics

To compare and assess the performance of transformer models

regression we use 4 metrics . Let us first remind the concept of the

used metrics.

7.1.1 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) measures the average magni-

tude of the errors between predicted and actual values, without

considering their direction. It is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (7.1)

where yi represents the actual values, ŷi represents the predicted

values, and n is the number of observations. MAE provides an in-

tuitive measure of prediction accuracy, where lower values indicate

better performance.

7.1.2 Mean Squared Error (MSE)

The Mean Squared Error (MSE) quantifies the average squared

difference between predicted and actual values. It is given by:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (7.2)

MSE penalizes larger errors more heavily than MAE due to

the squaring term, making it particularly useful for highlighting
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significant deviations.

7.1.3 Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) is the square root of the

MSE, providing an error metric with the same unit as the target

variable:

RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)2 (7.3)

RMSE is widely used because it gives a more interpretable mea-

sure of model accuracy by maintaining the same unit as the original

data.

7.1.4 Coefficient of Determination (R2)

The R2 score, or coefficient of determination, evaluates the pro-

portion of variance in the target variable that is explained by the

model. It is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(7.4)

where ȳ is the mean of the actual values. An R2 value close to

1 indicates a good fit, while a value close to 0 suggests that the

model does not explain much of the variance in the data.

These metrics collectively provide a comprehensive evaluation

of our models, helping to analyze absolute and relative errors in

predictions.

7.2 Results

This section provides a summary of the results from all the exper-

iments conducted across various use cases. After completing the
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training phase, the resulting model was saved as a .pt file (Py-

Torch) and subsequently tested on a dataset that was normalized

using parameters derived from the training data.

7.2.1 Comparative Evaluation of Transformer Model Perfor-
mance

This section provides a comparative analysis of the results obtained

from both the Vanilla Transformer and the Custom Transformer

models in the context of multivariate time series forecasting. The

evaluation is based on key performance metrics, including RMSE,

MAE, R2 score, test loss, and training time. To ensure stability,

both models were trained using input sequences of the same length

of 23 hours. The table bellow report the performance of models.

Table 7.1: Comparative Metric Values of the Models
Metrics RMSE MAE R2 Test Loss Training-Time(min)
Vanilla Transformer 0.4414 0.2942 0.7834 0.1950 28mm 36s
Custom Transformer 0.4411 0.2849 0.7884 0.1949 29 mm 24s

Prediction Accuracy

The predictive accuracy of the models is assessed using the Root

Mean Squared Error (RMSE) and Mean Absolute Error (MAE),

and both models exhibit very similar error metrics, as reflected

in Table 7.1 . However,as shown in Table 7.1 the Custom

Transformer demonstrates a slight advantage, achieving a lower

Mean Absolute Error (MAE) of 0.2849 compared to 0.2942 for

the Vanilla Transformer. Furthermore, the coefficient of deter-

mination (R2) is marginally higher for the Custom Transformer

(0.7884 vs. 0.7834), suggesting that the modified attention mech-

anism enhances the model’s ability to capture underlying patterns

within the dataset.

The improvement in R2, which measures the proportion of vari-

ance explained by the model, indicates that the custom architec-
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ture learns the relationships among the input features effectively ,

leading to slightly better predictive performance.

Generalization Capability

An essential aspect of model evaluation is its ability to gener-

alize well to unseen data. The Custom Transformer exhibits a

marginally lower test loss (0.1949) compared to the Vanilla Trans-

former (0.1950), suggesting a slight enhancement in generalization.

Although this difference is minimal, it implies that the modifica-

tions in the attention might contribute to better feature represen-

tation and learning. However, it is also possible that this observed

improvement is not solely attributable to the architectural changes

but is instead influenced by the applied feature engineering tech-

niques.

Computational Efficiency

A notable trade-off between the two models is computational effi-

ciency. The Custom Transformer requires a longer training dura-

tion (29 minutes 24 seconds) compared to the Vanilla Transformer

(28 minutes 36 seconds). This increase in training time is likely due

to the additional complexity introduced by the modified attention

mechanism, which involves multiple matrix operations. Further-

more, the need to propagate additional information between the

attention heads may contribute to the increased computational

load. While this trade-off is relatively minor in an experimen-

tal setting, it could become significant in real-world applications

where efficiency is a critical factor.

Discussion and Recommendations

From a performance standpoint, the Custom Transformer appears

to offer a slight edge in accuracy and generalization. If the primary

objective is to achieve the highest possible predictive accuracy, this

architecture may be a preferable choice. However, if computational
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efficiency is a primary concern, the Vanilla Transformer might be

more suitable, as the observed performance gains from the Cus-

tom Transformer are relatively minor. Overall, the results indicate

that the Custom Transformer shows slight advantages in terms of

accuracy and generalization, these improvements come at the cost

of increased training time. The choice of model should therefore be

guided by the specific requirements of the application, balancing

predictive performance and computational efficiency.
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Figure 7.1: Vanilla’s Prediction Visualization.
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Figure 7.2: Vanilla’s Training Curve.

The graphical visualization of the Vanilla Transformer in Fig. 7.1

struggles to effectively capture the intra-specific characteristics of

the features. However, the HUFL and MUFL features exhibit a

predicted curve that closely aligns with the actual values. Addi-

tionally, the learning curve in Fig. 7.2 consistently declines before

stabilizing, indicating that the model is successfully learning and

enhancing its ability to recognize general patterns within the data.
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Figure 7.3: New Transformer Prediction Visualization.

Cross Attention Transformer



CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.4: New Transformer Training Curve.

The graphical analysis of the new Transformer (Fig. 7.3) high-

lights its difficulty in effectively capturing the intra-specific char-

acteristics of the features. However, there is a noticeable improve-

ment in its ability to align predicted values more closely with ac-

tual ones. Additionally, the learning curve (Fig. 7.4) shows a slight

crossover, indicating that the model is indeed learning. However,

the presence of limited parameters restricts its capacity to fully

grasp broader patterns, ultimately affecting its generalization abil-

ity.
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7.2.2 Comparative Analysis of Model Performance on Different
Sequence Lenght

Here, we examine a comprehensive evaluation of the Custom Trans-

former model’s performance when trained with both short and

long embedding sequences. The comparison is based on key per-

formance indicators, including RMSE, MAE, R2, test loss, and

training time.Two training configurations were evaluated and the

performance are summarize are in the tables bellow:

• A 12-hour sequence length used to predict the values of

the 13th hour sequence. (Table 7.2).

• A 47-hour sequence length used to predict the values of

the 48th hour sequence. (Table 7.3).

Table 7.2: Metric Values on Short Embedding New Transformer test
Metrics RMSE MAE R2 Test Loss Training-Time(min)
Custom Transformer 0.4539 0.3000 0.7802 0.2063 11mm 29s

Table 7.3: Metric Values on Long Embedding New Transformer test
Metrics RMSE MAE R2 Test Loss Training-Time(min)
Custom Transformer 0.4395 0.2911 0.7953 0.1936 29mm 55s

The results from both experiments allow us to assess how se-

quence length influences model accuracy, generalization, and com-

putational efficiency.

7.2.3 Performance with Short Embedding Sequences

As illustrated in Table 7.2, the model trained on short embed-

dings demonstrates an RMSE of 0.4539 and an MAE of 0.3000.

The R2 score of 0.7802 suggests that the model captures a sub-

stantial portion of the dataset’s variance. However, the test loss

is relatively higher (0.2063), which may indicate a slightly weaker

generalization ability compared to the long embedding variant. A
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key advantage of this approach is the significantly reduced training

time just 11 minutes and 29 seconds—making it a computationally

efficient option.

7.2.4 Performance with Long Embedding Sequences

On the other hand, as shown in Table 7.3, the Custom Transformer

trained with long embeddings achieves superior results across al-

most all metrics. The RMSE drops to 0.4395, while the MAE

improves to 0.2911, reflecting enhanced predictive accuracy. More-

over, the R2 value increases to 0.7953, indicating a better ability

to explain variations within the dataset. Additionally, the test loss

decreases to 0.1936, further supporting the idea that using longer

embeddings improves generalization. However, this improvement

comes at the cost of increased computational demand, with the

training time extending to 29 minutes and 55 seconds.

7.2.5 Comparison and Insights

The results reveal a trade-off between accuracy and computa-

tional efficiency. While the long embedding model delivers bet-

ter predictive performance, it requires considerably more training

time. The improvements seen in the long embedding variant may

stem from its ability to capture longer-range dependencies within

the data. Furthermore, the feature engineering techniques em-

ployed—such as sinusoidal encoding for time-related variables and

interaction terms like OT 2 and OT × LUFL—likely contributed

to the model’s enhanced learning capabilities.

When choosing between short and long embeddings, the deci-

sion should be guided by the available computational resources

and the specific accuracy requirements of the task. If speed and

efficiency are the priority, the short embedding approach is a viable

choice. However, for applications that demand greater precision

and generalization, the long embedding configuration offers a dis-
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tinct advantage.

Moving forward, several aspects warrant further investigation:

• Assessing the impact of embedding lengths beyond the ones

tested in this study.

• Exploring the effect of increasing the number of attention

heads (nhead) on model performance.

• Conducting an ablation study to isolate the contributions of

individual feature engineering techniques and attention mech-

anisms.

These investigations could provide deeper insights into optimiz-

ing transformer-based models for time-series forecasting in energy

management applications.
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Figure 7.5: Long Sequence Training Prediction.
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Figure 7.6: Long Sequence Training Curve.
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Figure 7.7: Short Sequence Training Prediction.
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Figure 7.8: Short Sequence Training Curve.

The prediction plots for the new Transformer model (Fig.7.5)

on long sequences and (Fig.7.7) short sequences show notable dif-

ferences between long and short sequences. This is likely due to

the fact that fluctuations in this time series data are particularly

prominent on a daily scale. Consequently, the transformer’s atten-

tion mechanism seems to effectively capture significant variations

between days, depending on the sequence length.

However, the difference in slope between the learning loss and

validation loss in (Fig.7.6) for the long sequence, compared to

(Fig.7.8) for the short sequence, suggests that in both cases, the

training and validation losses do not fully converge. Moreover,

the curves do not follow a strictly decreasing trend and exhibit

irregular fluctuations, underscoring the difficulties of training long

sequences with the current Transformer architecture. These in-
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consistencies point to a potential issue of overfitting during long-

sequence training. The difficulties encountered in training long

sequences may stem from suboptimal choices of hyperparameters

in relation to the training environment, making optimization more

complex. Further fine-tuning of these parameters could be neces-

sary to enhance model stability and overall performance.

Cross Attention Transformer



8 Conclusion

The development of a specialized attention mechanism tailored for

multivariate time series forecasting aims to improve the learning

capabilities of Transformers when applied to the energy monitoring

forecasting. This study has shown that refining the conventional

attention framework—by incorporating a cross-attention mech-

anism that separately processes temporal features and energy-

related variables enhances the model’s ability to learn intricate

dependencies while reducing challenges such as pattern repetition

and overfitting. A comparative analysis between the standard

Transformer and the proposed custom architecture indicates that,

although both models demonstrate comparable generalization ca-

pabilities, the custom approach delivers a modest improvement in

predictive accuracy and feature representation, albeit at the cost

of greater computational demand. Furthermore, experiments in-

volving embedding dimensions and sequence lengths highlight the

inherent trade-offs between computational efficiency and forecast-

ing precision, revealing that longer sequences facilitate improved

long-term pattern recognition while introducing optimization com-

plexities.

Looking ahead, several promising avenues could further refine

Transformer-based forecasting for multivariate time series datafor

the instance, Brown et al. [6] highlighted how Transformers can

be adapted beyond NLP into time series and forecasting tasks.

Future research could explore more adaptable attention mecha-

nisms that can dynamically adjust to varying sequence lengths
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while preserving computational efficiency. Additionally, incorpo-

rating external contextual factors—such as weather patterns, eco-

nomic trends, or anomaly detection techniques—could enhance the

model’s predictive capabilities. Another compelling direction in-

volves developing hybrid architectures that integrate Transformer

models with convolutional or recurrent layers to better capture

both localized fluctuations and hierarchical temporal structures.

Advancing these methodologies could extend the applicability of

this approach beyond energy management to other domains requir-

ing high-precision forecasting, including financial markets, health-

care analytics, and industrial process optimization.
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