
POLITECNICO DI TORINO

Master’s Degree in
Computer Engeneering

Master’s Degree Thesis

KNOWLEDGE DISTILLATION FOR SEMANTIC
SEGMENTATION APPLIED TO AUTONOMOUS
DRIVING IN ADVERSE WEATHER CONDITION

Supervisors Candidate
Prof. Paolo Garza Federico Bussolino
Dott. Edoardo Arnaudo
Dott. Marco Galatola
Dott. Stefano Bergia

Academic year 2024-2025





To my parents and my
brother, who supported
me during this journey.



Summary

Semantic segmentation is a fundamental perception task for autonomous driving systems,
lot of works compare their result in a clear weather in daylight scenario using Cityscapes
dataset, however one of the main challenges of autonomous driving nowadays is to build
systems that are robust to adverse weather. Another important factor to take into ac-
count when it comes to semantic segmentation is that most state-of-the-art architectures
are not designed to run in real-time on an embedded system that can also have limited
memory. For this reason, this work first evaluates real-time architectures on ACDC, a
popular adverse weather dataset, then after selecting one of the best performing model
on this dataset, proposes to improve the real-time network using different teacher-student
knowledge distillation techniques. The experiments first highlight several improvements
in term of model compression using a network with reduced number of parameters without
significant performance loss. We then conduct other experiments using a network capable
of low-latency inference obtaining a distilled model that perform well on ACDC.
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Chapter 1

Introduction

Autonomous driving is a sector that has received particular attention in the industry and
research community in recent years due to a series of factors like potential increase in
road safety, increased mobility and accessibility, more comfort for driver and rise of new
business models related to autonomous vehicles. Those systems can help drivers by reduc-
ing reaction times and avoiding possible human errors caused by distraction or fatigue.
Furthermore, the use of advanced sensors such as RADAR and LiDAR can significantly
enhance scene understanding, potentially outperforming human perception in challenging
conditions such as low visibility at night, improving safety and reliability. Autonomous
cars can improve accessibility to private transportation for people who aren’t able to drive
granting them greater independence. Commercial interest in autonomous driving extends
beyond the growing enthusiasm of consumers for this innovative technology. It also opens
the door to new business models, such as the deployment of self-driving robo-taxis.

Despite the enthusiasm, the deployment of this technology still faces several challenges
that prevent the adoption of those systems in different environments and weather condi-
tions. Today, autonomous vehicles that better face all adverse weather conditions usually
make use of many sensors, increasing the cost of production of the vehicle. Other missing
key point in order to achieve a higher level of autonomy of those vehicles are, in increasing
order of complexity: the capability to navigate without a surrounding smart infrastruc-
ture, in absence of GPS signal or with lack of road sign and markings. In addition, off-road
navigation remains a largely unexplored and underdeveloped area.

To have an idea about the current progress in this field, the standard SAE J3016 1.1
defines the level of automation of self-driving vehicle. Current autonomous vehicles can
reach Level 4 autonomy, which means that vehicles can navigate in well-defined places in
relatively good lighting and weather conditions.

1.1 Objective of the thesis

The objective of this thesis is to build a robust deep learning model to allow a computer
to correctly perceive the surrounding scene in adverse weather conditions, such as night,
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Introduction

Figure 1.1: SAE J3016 standard, levels of automation

fog, rain, and snow, with a particular focus on low-latency, using only monocular cam-
era images. The focus on low-latency in those systems is closely tied to the fact that
deep learning algorithms are deployed on edge devices. These devices, often constrained
by the need to minimize deployment costs, operate within the power limits imposed by
battery systems, with limited computational power. In this scenario, optimizing for low
latency becomes critical in maintaining real-time performance while ensuring that these
algorithms can run efficiently on hardware with restricted resources.

Another key factor that can reduce the cost of production of autonomous driving sys-
tems is the usage of low-cost sensors, so camera sensors are sometimes preferred over
LiDAR. An additional point in favor of using cameras to detect objects is the fact that
RADAR are less good at detecting object details and boundaries, so they are less suitable
for a task like lane detection. As a downside, camera is more subject to adverse weather
and low-light conditions, hence another objective of the thesis is finding computer vision
algorithms that perform well in those conditions.

12



1.2 – Thesis contribution

1.2 Thesis contribution
• Assess the effectiveness of the existing model in the context of real-time semantic

segmentation under adverse weather (ACDC) dataset.

• Apply known knowledge distillation techniques to improve the performance of exist-
ing models on ACDC dataset.

• Explore the effect and feasibility of knowledge distillation technique with non-standard
losses (different from Cross-Entropy).

1.3 Thesis organization
Next chapters of the thesis are organized as follows:

• Chapter 2 cover deep learning background and SOTA architecture for semantic
segmentation, presents the datasets used to train, validate, and compare results.

• Chapter 3 explain methodologies and knowledge distillation frameworks used and
gives details about the experimental setting focusing on model adaptations and train-
ing procedures.

• Chapter 4 presents quantitative and qualitative results obtained in comparison with
baselines, reporting hyperparameters for each experiment.

• Chapter 5 summarizes the conclusions we can draw from the experiments and
finally gives an overview of possible improvements and future work.
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Chapter 2

Background and related works

2.1 AI, Machine learning and Deep learning
The first definition of AI comes from John McCarty (1956, Dartmouth Summer Research
Project on Artificial Intelligence) and states: "Artificial intelligence is the branch of
computer science characterized by the fact that algorithms developed are able to accom-
plish tasks that require human intelligence."

In 1959 Arthur Samuel coined another fundamental definition for the field of computer
science, stating: "Machine learning is a subfield of AI that comprehends algorithms
that can learn automatically to accomplish task, without the need for being explicitly
programmed for the task."

Deep learning is a subfield of machine learning that makes use of artificial neural net-
works to learn patterns behind more complex data.

Figure 2.1: AI, Machine Learning, Deep learning
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Background and related works

2.1.1 How machines learns
Machine can learn by updating a set of weights (tensors) using the information contained
in input data (and eventually their labels). In particular, the network (set of parame-
ters to learn) is updated by performing in sequence: the forward pass, the loss function
calculation, and the backpropagation.

Forward-pass indicate the calculation of mathematical operations, defined in a neural
network and its parameters, performed on the input to produce predictions.

The loss function is the measure, calculated from the result of forward pass, of how
much the algorithm’s predictions are distant from the desired output.

Backpropagation [34] is the algorithm that allows us to diminish parameters propor-
tionally to their contribution to the increase of the loss.

Figure 2.2: Parameter updates on loss landscape

In Figure 2.2 model with randomly initialized parameters performs a forward pass and
produces initial loss. At each step p are updated by a quantity proportional to learning
rate α and their contribution to the loss (gradient):

p(t+1) = p(t) − α∇L(p(t)) (2.1)

The model with the newly calculated parameters performs again a forward pass on data,
produces again loss and repeat the parameter update. This process is repeated an arbi-
trary number of times, called steps (6 in Figure 2.2).

16



2.1 – AI, Machine learning and Deep learning

2.1.2 Artificial neural networks
One of the most effective ways in which an algorithm can learn to perform tasks such as
classification is through the artificial neural network made by artificial neurons [26].

Figure 2.3: Artificial neuron (left, image credits: [38]). Artificial neural network (right,
image credits https://www.ibm.com/topics/neural-networks )

In figure 2.3 (right) we can see that a layer of a neural network consists of multiple
neurons and the network itself has several layers. Input data are feed-forwarded to the
first layer of neuron producing as output the first hidden layer features. Then outputs
of first layer are passed to second hidden layer, and so on and so forth until data reach
output layer that produces the scores for classification. A layer of a neural network can
therefore be expressed as:

y = f(Wx + b) (2.2)

Where x is the input of the layer, W is the matrix containing the weights of each neuron,
with each row representing the weights of the same neuron, b are the optional biases, y
are the features calculated by all the neurons in a layer and f is the activation function.

Activation functions

ReLU [28] is a simple activation function that serves to introduce non-linearity into the
network, enabling it to learn more complex patterns while being easy to compute. It is
expressed as y = max(0, x) and is applied element-wise to all values of the vector obtained
from Wx+b.

Softmax [2] is an activation function used to produce a vector of which elements sum
up to one and are greater than zero. This makes softmax useful for multiclass classifica-
tion, where we need to estimate the probability of each class. Softmax(z) is the vector
[ez1 , ez2 , ..., ezm ]/

qm
i=1 ezi . In this case, it is applied to the vector produced by Wx+b.

2.1.3 Convolutional Neural Network
After the success of MLP another type of model is proposed that takes advantage of
the prior knowledge we have about the type of information contained in images: the
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convolutional neural network (CNN, [19]).

Figure 2.4: 2-d convolution. From left to right we have input, filter, output.

In 2-d convolution shown in Figure 2.4 the convolutional filters are the weights of
the model. The same filter "slides" across the image row by row, moving by a number of
pixels equal to the stride S, and at the end of each row, it moves to the next one, skipping
S-1 rows. The output is given by the sum of all the products between the filter weights
and the value of the input in the corresponding position.

Figure 2.5: 3d-convolution with 3 filters. Image credits:
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-
introduction/

In the 3-d convolution shown in Figure 2.5 the dimension of the channel (depth) is
also taken into account, so the filter has size Cin × K × K. In CNNs usually 3-d convolu-
tion is applied using multiple filters, producing a feature map with a number of channels
Cout equal to number of filters used.

Pooling layer like the one shown in Figure 2.6 is another component that usually appears
in CNN and is used to reduce the resolution of the feature maps by a factor equal to the
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2.2 – Vision Transformers (ViT)

Figure 2.6: Example of max pooling 2-d with kernel of size 2x2 and stride 2.

stride. Usually, max-pooling is used over avg-pooling because it preserves better details
like angles and contours.

Batch normalization [18] and layer normalization [1] are also fundamental com-
ponents used in CNN. In larger model layer normalization is often preferred because it
allows the model to be trained with very small batch sizes, making it easier to fit on a
GPU. The output of normalization y applied to feature x is described as follows:

y = x − µ

σ
γ + β (2.3)

In batch normalization µ and σ are mean and standard deviation feature calculated along
batch dimension, height and width. Their shape is 1 × C × 1 × 1 parameters γ and β are
learnable and have the same shape.

In layer normalization, instead µ and σ are mean and standard deviation of features
calculated along channels, height, and width. Their shape is N × 1 × 1 × 1. The parame-
ters γ and β are instead learnable and have the shape 1 × C × H × W .

In CNNs also activation functions are applied after convolution operation.

In conclusion, CNNs applied to images allow the following:

• reduction in the number of parameters w.r.t. fully connected network (ANN)

• utilization of the translation equivariance property of convolution

• increase in the depth of the network and thus learning of hierarchical patterns

2.2 Vision Transformers (ViT)
Transformer architecture, introduced for the first time in natural language processing
[39], is then ported to computer vision [12] with great success, and now most of the SOTA
models for computer vision make use of it.
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Figure 2.7: Vision Transformer. Image credits: [12]

Positional embeddings (figure 2.7, left)

Vision transformer architecture, take as input the flattened patches of the image, this
means that we need to divide the image into patches of size P × P then feed each of the
N = HW/P 2 to the fully connected layer that extracts patch embeddings of size D. Before
feeding embeddings of patches to the image, a learnable class embedding is concatenated
to input, then the positional encodings (number of the patch from 0 to N, where 0 is
associated with the class token and other numbers are actual patches of the image) are
added to the embedding vector. Given a batch of images of size B × C × H × W the
output of positional encoding has shape B × (N + 1) × E where E is the embedding size
(or hidden dimension of the transformer). This process is applied only once to transform
the image in a form compatible with the transformer encoder.

Transformer encoder (figure 2.7, right)

In the right part of Figure 2.7 we can see the transformer encoder architecture that is
composed of components like MLP (composed of 2 layers with dropout and intermediate
activation function), layer normalizations (Norm) and skip connection as introduced in
[14]. But the novelty of this block is the usage of multi-head attention (figure 2.8) for image
processing. The whole process hence consist into passing the N+1 embeddings which are
expanded through the Linear layer from E to an higher dimensional representation, then
this higher dimensional representation is split into smaller ones that are the new Q’, K’,
V’ and each of those is passed to the respective Scaled-dot-product attention along all
spatial locations (i.e. different embeddings). So thanks to Q and K the model learns
how to build an "attention map" that tells the model where is important to pay attention
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2.3 – Semantic segmentation

Figure 2.8: Image credits: [39]

during forward pass, then pay attention to V, based on this map, extracting a condensed
version of input that retains important information for classification or other task.

2.3 Semantic segmentation
Semantic segmentation is a task that involves dividing an image into semantically
meaningful parts and classifying each part into one of the predefined categories (or classes).

In practice it is done by predicting pixel-wise the probability for each class to be the
actual class (i.e. object category) to which the pixel belongs. This is done by applying
softmax to the output scores of the model (logits).

Figure 2.9: Example of result of a semantic segmentation from ACDC dataset
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Semantic segmentation architectures

First architecture developed for semantic segmentation is UNet [33] in which an encoder
(backbone) shrinks the resolution while increasing the number of channels, then, in the de-
coder, the features are upsampled with transpose convolution, and, at each up-sampling,
the quality of the original feature map is restored due to concatenation with upsampled
features, followed by a convolution. In recent years, the DeepLab series of architec-
tures proposed by Google have achieved great success, evolving from DeepLabV1 [3] to
DeepLabV3+ [5]. Particularly important is DeepLabV2 [4] in which the last 2 down-
sampling stages of the backbone are converted into non-downsampling stages and ASPP
module, which is a multi-branch module that uses atrous convolution at different dilata-
tion rates to allow sampling from distant feature-map locations, is introduced and applied
to last feature map before classification head. In PSPNet [50] they make use of atrous
convolution in the last backbone layers, instead of downsampling, then they concatenate
to the features of the last layer the global context obtained thanks to the PSP module.
In 2019 HRNet is released, it consist of using a backbone that is capable of aggregating
features at different resolution by creating at each of 4 stages a new branch at lower (0.5×)
resolution while maintaining previous resolution path, on which are applied block simi-
lar to down-sampled path but with reduced channel, at each transition between a layer
and another, all feature maps at each resolution are properly interpolated and passed as
input to path of all resolution of next layer, finally all features obtained from last layer
are up-sampled to 1/4 of original image size and concatenated, then processed to output
final prediction. Since 2021 computer vision SOTA model’s trends shift from pure CNN
models to transformer models, one example is SegFormer [42] developed by NVIDIA: in
order to make dense predictions, this model’s backbone uses a patch size of 4 applying
between blocks a patch merging module that consist of a convolution (with 1 < stride
< kernel size). Each block hence extracts features at different resolution, then feature
maps are passed to decode head, in which first lower resolution feature maps are passed
through an MLP to create uniform sized embeddings, then upscaled to H/4 × W/4 res-
olution, concatenated and fused through convolution and passed for final convolution to
make predictions. Another important architecture is Mask2Former [8] that allowed us
to first train a network capable to perform instance, panoptic and semantic segmenta-
tion all with one architecture thanks to the integration of masked transformer decoder
to generate masks of pixels and their respective classification labels, instead of directly
generating segmentation maps. Another architecture introduced also for semantic seg-
mentation to improve representation of intermediate feature extracted by the backbone
is ViT-Adapter [7], we can see that its combination with Mask2Former achieves near-to
SOTA performances on Cityscapes.

Real-time semantic segmentation architectures

Beside the high impact of transformer architectures in computer vision, we notice that the
real-time best results are still obtained by CNN based architectures, while transformer
usually outperforms them when it comes to obtain higher mIoU or accuracy without
focusing on low latency, this is related to the attention operation that scales quadratically
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2.4 – Knowledge distillation

with image resolution. However, some transformer architectures like SegFormer-B0 can
achieve comparable results with CNN. Architectures developed for real-time semantic
segmentation can consist of a backbone that captures image features of different sizes
and a decoder that aggregates the features at different semantic levels (resolution) to
produce the logits in a way that takes into account all the different features produced by
the backbone at different semantic levels (hierarchically). This is the case, for example,
of SwiftNet [30] and SFNet [20]. Another popular family of architecture used in similar
scenario are multibranch networks: the first example of this kind of network was BiSeNet
[46] that achieved an interesting result in terms of latency while maintaining relatively high
mIoU with ResNet-18 as the backbone; another example of this structure is PIDNet [44]
which is the 2024 SOTA architecture for real-time semantic segmentation in Cityscapes
[11].

The first aggregation network architecture to obtain good results in this task was U-Net
[33], a segmentation architecture applied to medical images, that uses classical convolution
in the downsampling path and transposes convolution in the upsampling path passing
to the upsampling path also the feature maps at the same resolutions obtained in the
downsampling path.

In order to achieve good results in a real-time scenario like autonomous driving, the
idea of early downsamling feature map, reducing computational burden, was essential and,
along with other techniques such as dilated convolution, is the basis of ENet [31].

In 2018 BiSeNet [46] showed an increase of around 10.0 mIoU on the Cityscapes dataset
while maintaining similar latency of ENet. This was achieved by the removal of trans-
pose convolution and directly using a 8x bilinear interpolation upsampling instead of the
decoder.

2.4 Knowledge distillation
Teacher-student knowledge-distillation is a training setting in which a more accurate
model’s logits or feature maps are used as additional target that student have to mimic to
achieve a similar internal representation of the (more accurate) teacher. The framework
for knowledge distillation in supervised setting usually comprehends cross-entropy as ad-
ditional loss as shown in figure 2.10. In classification task has been widely proved that
this technique can improve student performance when compared with classical training
procedure that uses only cross-entropy as loss.

The main knowledge distillation techniques proposed for semantic segmentation are the
following:

• Logit distillation [16]: consists in matching the probability distribution of logits
of teacher and student network using as loss the Kullback-Leibler divergence.

• Feature distillation [49]: consists in matching the teacher and student internal
representation (i.e. intermediate feature maps) through a regression loss (L2, L1 or
Huber).
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Figure 2.10: First proposed knowledge distillation frameworks: logit distillation [16] (top),
feature distillation [32] (bottom)

• Attention-transfer distillation [48]: this method consist of distill spatial atten-
tion which is obtained by sum or max over all channels of a feature map regulating
the sharpness of attention through exponentiation to a hyperparameter. They also
propose to distill attention using gradient instead of feature maps.

• Self-similarity loss: firstly proposed in "Structured Knowledge Distillation for
Semantic Segmentation"[24], the self-similarity matrix of a feature map is a (H ×
W )× (H ×W ) containing all similarity scores of pairs of spatial location, where each
score in position ((h1, w1), (h2, w2)) is obtained as a dot product along the channel
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dimension of normalized features at spatial location (h1, w1) and (h2, w2). Originally,
the self-similarities between the feature maps of the student network were regressed
to the one produced by the teacher through the distance L2. Also, dissimilarity
maps between different samples in same batch can be computed in the same way: in
"Cross-Image Relational Knowledge Distillation for Semantic Segmentation"[45] for
example dissimilarity maps of teacher and student are regressed using a Kullback-
Leibler divergence with low temperature.

• Local similarity loss [43]: this method proposes to regress with loss of L2 the
consistence map of the teacher and student, where for each spatial location its con-
sistence map is the sum of the L2 distance of the 8-neighbor of the spatial locations
with the central spatial location.

• Intra-class similarity loss[40]: This kind of feature distillation, has its name
because it focuses on distilling intraclass differences between feature map points
in different spatial locations belonging to the same class, intraclass similarity is
measured using the cosine distance between the vector (composed of all channels) of
a spatial location with a prototype (average over H × W ) of all spatial locations of
the class.

• Channel-wise distillation[37]: with this method they exploit the fact that we
want to focus on distilling knowledge from channels that contain smaller objects,
and hence they compute kl-divergence with temperature over all spatial location for
each channel separately instead of computing kl-divergence over channel as in logit
knowledge distillation.

• Normalized-feature distillation: Recent work "Rethinking Knowledge Distilla-
tion with Raw Features for Semantic Segmentation" [23] points out that the loss of
L2 between the feature map is dominated by the difference in magnitude between
the features of the teacher and the student, but the difference in magnitude is not a
factor that significantly impacts the performances, so they propose to normalize the
feature in 3 possible ways: layer-wise (LAD), channel-wise (CAD) and spatial-wise
(PAD) obtaining interesting results with a simple method.

• Adversarial distillation: consist in using a discriminator network to distinguish
between student and teacher logits; this network is trained in adversarial settings.
In [24] or [40] we see some examples of this kind of loss, also called holistic loss.

Practical limitations of knowledge distillation and proposed solutions

In [27] and [9] they point out that knowledge distillation can lead to poor performances
when directly distilling a large model into a very small one, also in our case we noticed
that a too big performance gap between the normally trained teacher and the student net-
work correlates negatively with student improvements, particularly when applying logit
knowledge distillation.

Therefore, [27] proposes to mitigate this issue by distilling an intermediate network
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(teacher assistant) and then use the intermediate network to distill the final target, while
another study [9] suggests instead to stop training the teacher early to mitigate the ca-
pability gap between the student and the teacher. In other work like [41] to mitigate
the difference in the magnitude of features between teacher and student, teacher features
are whitened with layer normalization, then student features are regressed to whitened
features. In [21] instead they propose to automatically find the optimal temperature by
setting a higher temperature for the teacher, since its logits after training tend to have a
higher standard deviation. One other paper [6] points out that in case of overconfidence
in teacher prediction, it may be beneficial to use multiple projectors on the student side
to give the student more flexibility to mimic teacher logits/prediction, hence applying
also the projector to logits, not only to intermediate features, and also to use multiple
projector for feature distillation.

Loss used in experiments

Among the losses described in this chapter the losses used in experiments and hence
explained in methodology are:

1. logit distillation (kl-divergence)

2. feature distillation (with L2-loss)

3. channel-wise distillation (CWD)

4. normalized feature distillation (LAD)

2.5 Datasets

2.5.1 Cityscapes
Cityscapes [11] is one of the first dataset for autonomous driving, widely recognized as a
benchmark, containing road-scene images at resolution of 1024 × 2048px, taken: from the
driver’s point of view, in 50 different cities, during spring, summer, or fall, in normal mete-
orological conditions, in daylight condition. The images are extracted from selected frames
of videos. The dataset provides labels for semantic, instance, and panoptic segmentation.
The semantic segmentation labels consists of 19 distinct classes and a background class,
in figure 3.1 we can see pixel’s distribution among classes. The semantic segmentation
dataset is split as indicated in table 2.1

Train Val Test
2975 500 1500

Table 2.1: Dataset Split Distribution
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2.5.2 BDD100K
Berkeley Deep Dive 100K [47] is a dataset consisting of 100K video of 40s collected through
crowd-sourcing for a total of 1.2M images at resolution 720 × 1280px, of which the 10s
frame are annotated for object detection, lane detection and drivable area segmentation
for a total of 100K images annotated for those task. For semantic segmentation, instance
segmentation, and panoptic segmentation, only a subset of 10K images is selected by
random sampling from the 100K already selected for the previously mentioned tasks.
Also in this dataset semantic segmentation classes are the same 19 classes of Cityscapes
and a background class. The frames were taken in multiple cities, under diverse weather
and lightning conditions. This dataset is hence indicated to measure the effectiveness
of multitask algorithm and due to its variety is also useful to address the robustness to
adverse conditions even though ACDC or other on-purpose datasets better represents
adverse weather conditions. The semantic segmentation portion of dataset (BDD10K) is
split as indicated in table 2.2.

Train Val Test
7000 1000 2000

Table 2.2: Dataset Split Distribution

2.5.3 ACDC
Adverse Conditions Dataset with Correspondences [35] is a data set containing road scene
images at a resolution of 1080 × 1920px that respect the following criterion: taken from
the driver’s point of view, with the condition of fog, night, rain, snow or normal (ref split),
in urban, rural, or highways regions. The images are extracted from selected frames of
videos. The dataset provides labels for semantic, instance, and panoptic segmentation.
The semantic segmentation task involves the 19 classes of Cityscapes and a background
class. The background class is not considered during the calculation of the metrics. This
dataset, in addition to having the same classes as the popular Cityscapes benchmark [11],
is more suitable to assess domain generalization capabilities and robustness of autonomous
driving algorithms due to the variety of weather conditions that it covers. Some examples
of images are shown later in figure 2.11.

Condition Train
Fog 400
Night 400
Rain 400
Snow 400
Normal_w_label 800
Normal_no_label 800

Condition Val
Fog 100
Night 106
Rain 100
Snow 100
Normal_w_label 203
Normal_no_label 203

Condition Test
Fog_no_label 500
Night_no_label 500
Rain_no_label 500
Snow_no_label 500
Normal_no_label 2000

Table 2.3: ACDC dataset splits
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Figure 2.11: Examples of images from ACDC, taken in different conditions, we can see
that night images can be particularly challenging to classify and also some minority classes
can be difficult to distinguish.

28



2.5 – Datasets

Figure 2.12: Class distribution of pixel over Cityscapes (top), ACDC (center), BDD100K
(bottom). Divided into train split (left) and val split (right).
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Chapter 3

Methodology

Our objective is to compress a model obtaining similar performances while diminishing
latency and number of parameters, in order to deploy it on edge devices with limited
resources. Among methods to compress model we discarded pruning since the large net-
work we have has an increased number of layer that are the main factor that slow down
the model, moreover structured pruning methods, which could be the only method that
can improve latency, usually require different iterations of pruning and fine-tuning leading
to an important demand in terms of computational resources. Moreover, since pruning
can create a more irregular network, that is different from existing network, there is the
risk that the latency improvements measured are highly hardware dependent, and there
is also a lack of latency benchmark for the new network obtained. For this reason, we
decide to compress the model through knowledge distillation: as we said in Chapter 2
teacher-student knowledge distillation consists of using a well-trained teacher’s output (or
intermediate features) and regress student outputs (or intermediate features) to them.

3.1 Problem statement
Formally, in a context of supervised knowledge distillation, for a student model fs and
teacher model ft , using a Cross-Entropy loss we impose that given x, the input, ygt the
labels, with a teacher network we generate yt (the soft labels) as y = ft(x) and student
network generate y (prediction) as y = fs and we use as loss for student model:

L = (1 − λ)LCE(ys, ygt) + λLKD(ys, yt) (3.1)

In our version, we will use the border focal loss instead of LCE . And add other losses
that regress intermediate features of the student network (fs) to intermediate features of
the teacher network (ft), so the formulation is as follows:

L = (1 − λ)Lsem(ys, ygt) + λLKD(ys, yt) + αLfeatures(fs, ft) (3.2)
Where Lsem is the semantic segmentation loss.
To do that in the following sections we describe different losses between student and

teacher features or logits are described, motivating their usage, and explaining how they
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are applied. Later in this chapter, the main architectures involved in our experiments are
explained.

3.2 Losses
The main loss used along with SwiftNet architectures is Focal-Border loss expressed as:

Lborder(P, GT, α) = 1q
b,h,w αb,h,w

BØ
b=1

HØ
h=1

WØ
w=1

−αb,h,w

CØ
c=1

(1−Pb,h,w,c)γ log(Pb,h,w,c)I(c = GTb,h,w)

(3.3)
Where regional weight α is zero in correspondence of ignore region.

This loss allows the network to focus more on the border, implicitly giving more impor-
tance to smaller and more articulated classes that usually are more difficult to segment
precisely (usually have a low IoU). It is calculated using distances from the border as
coefficients.

For the focal-border loss distances and respective weights are obtained by preprocess-
ing labels as in [30] as follows: for each class obtain a mask of the pixel belonging to that
class, then apply Distance Transform algorithm that updates the L2 distance map of each
pixel of the class by convolving a 2 fixed filter in 2 convolutional pass. Once the distance
from the nearest border to the other class is obtained, based on distance, a weight is
assigned to each logit location and the contribution to the loss of the logit in the spatial
location is obtained by multiplying the loss of the location times the weight of the region
α.

Figure 3.1: Image(left), GT(center), Border distance weight(right)

Since we want to use knowledge distillation to help our model generalize better and
be more robust, one of the losses used in our experiment is the KL-divergence loss for
knowledge distillation [16], which, in the context of semantic segmentation, is expressed
as:
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Lkldiv = 1q
b,h,w Mb,h,w

BØ
b=1

HØ
h=1

WØ
w=1

Mb,h,w

CØ
c=1

P T
b,h,w,c log

A
P T

b,h,w,c

P S
b,h,w,c

B
T 2 (3.4)

Where P T are teacher prediction (output of softmax of the teacher) and P S are student
prediction (output of softmax of the student) obtained by T -scaled softmax. M is the
ignore region mask (0 in correspondence of pixel to ignore, 1 if pixel contains a valid
class).

This loss aims to preserve the distribution of class probabilities over pixels; in this sense,
it is adapted from the version used for classification where the distribution of all classes
(instead of just hard labels) can give more hints about how the teacher network makes
predictions and hence about its parameters. For example, differently from Cross-Entropy
loss we can regress logits such that they imitate better the real probability distribution
of an object; for example, using hard labels such pedestrian with Cross-Entropy prevents
the model to learn that there are similarities between pedestrians and riders, instead with
KL-Divergence we can learn that probability of rider is higher than car when we see a
person and this conveys to the model higher quality information about our classes and
their relationships.

Since we wanted to incorporate region importance that are not present in classical
KL-divergence, we experimented with KL-divergence border loss, which is an attempt to
incorporate the class-wise relationships that Hinton proposes as a target to guide student
without losing the capability to give implicit importance to minority classes, fundamental
for an imbalanced task like semantic segmentation. This is achieved by also giving im-
portance based on the context around each pixel, and hence keeping into account spatial
information that is also essential for semantic segmentation.

Lkldiv(P S , P T , α) = 1q
b,h,w αb,h,w

BØ
b=1

HØ
h=1

WØ
w=1

αb,h,w

CØ
c=1

P T
b,h,w,c log

A
P T

b,h,w,c

P S
b,h,w,c

B
T 2 (3.5)

Where P T are teacher prediction (output of softmax of the teacher) and P S are student
prediction (output of softmax of the student) obtained by temperature-scaled softmax.
Notice that regional weight α is zero in correspondence of ignore region.

Since KL-Divergence loss alone usually does not achieve particularly better results
when compared to loss that distills intermediate features, we use L2 loss to distill inter-
mediate features, it was first proposed in [32] and is still considered a valid way to perform
feature-based knowledge distillation, its expression is the following:

LL2−feat(F S , F T ) = 1
B · C · H · W

BØ
b=1

CØ
c=1

HØ
h=1

WØ
w=1

1
F S

b,c,h,w − F T
b,c,h,w

22
(3.6)

The objective of this loss, in the context of knowledge distillation, is to match the
internal representation of teacher and student by making the intermediate feature map
generated by the two networks as similar as possible. Usually, this method is used jointly
with logit distillation, but in some of our experiments, we will find counterproductive to
use KL-Divergence.
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Due to the fact that the issue of poor segmentation capability of small objects persists
when distilling with L2 loss, we employ CWD which, proposed in [37], consist in applying
softmax with temperature to feature-map as follows:

ϕ(Fc) = SpatialSoftmax(Fb,c, T ) =
exp

1
Fb,c,i

T

2
qW ·H

i=1 exp
1

Fb,c,i

T

2 , (3.7)

Then the loss is computed as:

LCW D(F T , F S) = T 2

B · C

BØ
b=1

CØ
c=1

W ·HØ
i=1

ϕ(F T
b,c,i) · log

A
ϕ(F T

b,c,i)
ϕ(F S

b,c,i)

B
(3.8)

This loss is expected to be particularly useful in small object segmentation since its
objective is to imitate activation distribution channel-wise, giving equal importance to
each channel, so channel that contains information about big object will have smooth
distribution and differences between teacher and student in those channels will affect less
the loss w.r.t. differences in channel which contains information about smaller object. In
case of a smaller object, the activation distribution in fact will be more sharp and smaller
changes will lead to an important difference in channel-wise distillation loss.

In [22] they show that distilling the feature by matching their magnitude is counter-
productive, so they propose to normalize the feature by channel (CAD) or by entire layer
(LAD). We believe in the hypothesis since already trained teacher model intermediate fea-
ture have larger variance than the student features, but their difference in variance does
not reflect in segmentation capability so it can be useful to distill a normalized version of
features. In our case LAD is applied to feature map and is expressed as follows:

LLAD(F T , F S) = 1
B

BØ
b=1

C·H·WØ
i=1

A
F S

b,i

∥F S
b ∥2

−
F T

b,i

∥F T
b ∥2

B
(3.9)

Here ∥Fb∥2 is the norm-2 of the flattened vector along C, H, W. We use LAD over other
methods proposed in [22] since from the paper it emerges that it usually tends to perform
better, particularly when there is a big performance gap between teacher and student
networks.

3.3 Architectures

3.3.1 SwiftNet-FPN
SwiftNet allow to substitute the backbone used without changing segmentation head, for
this reason we experimented with different backbones described in following subsections.
In SwiftNet the same backbone composed by residual block layers is applied to image at
different resolution, the intermediate feature maps produced are then downsampled (or
upsampled) to a fixed number of channels (2560 in figure), then aggregated feature maps
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(with fixed number of channels) that have lower resolutions are upsampled (UP block)
by a factor of 2 and added to higher resolution feature maps, then the sum are processed
through a 3 × 3 convolution.

Figure 3.2: Swiftnet FPN aggregator from [30]

3.3.2 SwiftNet backbones

ResNet

ResNet [14] allows to develop a deeper network with good performance thanks to the
introduction of residual connections. This design allows the network to "propagate"
easily the identical representation of a previous feature map. ResNet-18 is still a good
choice in some resource-constrained applications that require a low latency and small
model.

Figure 3.3: Residual connection from [14].
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MobileNet series

MobileNet [17] make use of depth-wise separable convolution, introduced in [10], to im-
prove the speed and size of the network. Using a depth-wise separable convolution layer
that consist of, instead of Cout convolutional filters of size Cin × K × K, applying first
Cin convolutional filters of size 1 × K × K followed by Cout convolutional filters of size
Cin × 1 × 1.

Figure 3.4: Normal 3d-convolution vs. depth-wise separable convolution.

MobileNetV2 [36] is built starting from MobileNetV1 introducing linear bottleneck
before ReLU activations and residual connections are applied between the output of bot-
tlenecks and goes under the name of inverted residuals. This change is introduced
under the hypothesis that the activation functions preserve better information if they op-
erate on features of lower-dimensional spaces.

Figure 3.5: MobileNet block first on the left, MobileNetV2 blocks on center and on the
right. Credits [36]
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MobileNetV3 and MobileNetV4 makes use of similar architectural design w.r.t. their
predecessor MobileNetV2 but their overall structure is designed using NAS (Neural Ar-
chitecture Search), hence are not designed manually.

ConvNeXt

ConvNeXt [25] is a CNN based architecture that in 2022 was still able to outperform
SOTA transformer architectures. In this family of models, depth-wise separable convolu-
tion, linear bottleneck, and inverted residuals are used. Like in transformer architectures,
ReLU is replaced with GELU [15] and batch normalization is replaced by layer normal-
ization, also, to be more similar to transformer architectures, the classical 3 × 3 kernel
is replaced by a 7 × 7 kernel and less normalization layers are used. ConvNext aims to
outperform transformer architectures that have a higher number of parameters and are
usually slower, so this architecture is not designed for real-time performance and even the
smallest ConvNeXt-pico cannot reach latency comparable to the small version of ResNet
or MobileNet (on RTX2080Ti).

3.4 Logit and pre-logit distillation
In this set of experiment, loss are applied either on logits (eventually, in case of kl-
divergence loss with softmax and temperature) or on pre-logits meaning that the losses
are applied before the convolution layer that adapts the number of output channels to
number of classes in order to make prediction. In particular, SwiftNet experiments focus
on logit and pre-logit ditillation using kl-divergence, or boundary-weighted kl-divergence
and/or L2-loss for pre-logit distillation. We also carried out an experiment with logit
knowledge distillation on PIDNet halving the contribution of Ohem loss on logit, adding
with weight 0.5 the kl-divergence loss with a temperature of 1.0, and confront the results
obtained with the baseline PIDNet training procedure. All parameters except loss weights
used to train PIDNet are the ones reported in [44].

3.5 Intermediate feature distillation
In corresponding experiment section baseline with Border-Focal loss is reported for a com-
parison. For SwiftNet with ResNet18 we report experiments using L2 loss loss applied
on all 6 feature maps (LAD and CWD are applied in the same way). All experiments
make use of. Border-Focal loss (indicated as border), more promising intermediate-feature
distillation techniques are also tested with kl-divergence loss (kl).

The framework in figure 3.6 represents the level at which feature are extracted both from
teacher and student to regress: student feature in input to L2_loss or KL_Div_loss are
the loss that allow the student to learn from teacher, teacher features in input to L2_loss
or KL_Div_loss, hence teacher does not learn from that. As we can see in figure 3.6,
student and teacher architectures are same, except for the backbone. In the same way,
input images are the same for both teacher and student as well as GT.
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Figure 3.6: Distillation framework (second set of experiments)
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Chapter 4

Experiments

4.1 Metrics
IoU and mIoU

The most common metric in multiclass semantic segmentation is mIoU, since it takes
into account class imbalance, it is easy to interpret and compute. It is the mean IoU score
across classes. Each class-IoU score calculated considering one class (c) at a time counting
pixels as follows:

• TP: the pixels where the predicted class and the correct class are equal to c.

• FP: the pixels where the predicted class is c, but the correct class is not c.

• FN: the pixels where the predicted class is not c, but the correct class is c.

IoUc = TPc

TPc + FPc + FNc
(4.1)

In reference to figure 4.1 IoU for class c is Area(A∩B)
Area(A∪B) where A (lightblue blob) is the mask

where predicted class is c and B (yellow blob) is the mask where correct class is c.

Figure 4.1: Visualization of IoU
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ECE

Particularly for autonomous driving and in general in the scenario in which a system can
make multiple decisions based on a prediction, it is important to also take into account
model confidence. For example if a model predicts a car in front of us but with low
probability (even if it is class with highest probability) it is possible to brake but maybe
if probability is relatively small we can wait next frame or use another prediction system
(maybe based on RADAR) to avoid a brake when actually there is nothing, avoiding
also discomfort for driver. From examples like this, we can say that having a model that
makes prediction that has a confidence that reflects its accuracy is a positive characteristic
in order to account on the model to take complex decisions. For this purpose, ECE is
introduced in [29]. It consists of:

• Divide probability range (0,1) into bins;

• Assign each prediction into a bin based on predicted probability of most probable
class (noted with P);

• For each bin compute overall accuracy of the predictions in the bin and mean P
(confidence) of predictions in the bin;

• ECE is then expressed as:

ECE =
MØ

m=1

|Bm|
n

|acc(Bm) − conf(Bm)| (4.2)

Where |Bm| is the number of predictions in bin m and n is the total number of pre-
dictions. In our case, we use 15 bins and compute ECE over batches of 16 then average
due to memory constraint reason.

AUPRC

AUPRC is an important metric to assess the ability of the model to detect OOD data,
particularly. When it comes to imbalanced class dataset or scenario where is important
to classify correctly rare classes (ex. pedestrian, rider) AUPRC is more suitable than
AUROC since it tends to penalize more the FN of rare classes. This metric is designed
for binary classification tasks but can be applied to multi-class tasks comparing each class
individually with the rest of the others.

For one class versus other is calculated as follows:

• Set different thresholds over the probability range (0,1);

• Calculate, for each threshold, Recall and Precision of the selected class as follows:

– Recall: TP/(TP+FN)
– Precision: TP/(TP+FP)
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• Sort tuples (Recall, Precision)t based on Recall;

• Calculate the area under curve created by the tuples (Recall, Precision)t to obtain
the AUPRC.

In our experiment, we will show the AUPRC by class obtained using 20 thresholds.

4.2 Experimental setup

Software configuration used for knowledge distillation experiments. Quantization is ap-

Package Version
einops 0.6.1
numpy 1.24.4
open-clip 2.28.0
opencv-python 4.8.0.74
pillow 10.2.0
psutil 5.9.5
pytorch-lightning 2.0.6
scipy 1.10.1
tensorboardX 2.6.2.2
timm 1.0.11
torch 2.0.0+cu117
torchmetrics 1.5.1
torchvision 0.15.1+cu117
tqdm 4.66.5

Table 4.1: Required package version

plied by training the network with AMP to deliver the final model that can achieve good
performance in FP16 precision, showing that this technique usually improves FPS by a
factor of approximately 2 on RTX2080Ti.

4.3 Baseline results

Both for the lower and upper bound models, FPS are measured on RTX2080Ti, with a
batch size of 1 at full ACDC resolution of 1080 × 1920px. Note that distilled network can
achieve more FPS on same hardware since distillation process uses images at 0.8 their
original resolution simply by downscaling and re-upscaling with bilinear interpolation.
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Lower bound mIoU (real-time, low memory usage)

The baseline for the low-latency small model comprehends that performed well, in terms
of mIoU, on the Cityscapes test split in a real-time scenario using the same hyperparam-
eters used on Cityscapes except for training crop that is 1080 × 1080 then resized to 0.8
its original size via interpolation for faster training; the results are reported in table 4.2.

Model ACDC val mIoU Params(M) FPS
full fog night rain snow

PIDNet-L 71.1 77.5 52.2 68.8 74.7 36.9 47
SN-FPN-MNv4 70.1 77.0 51.4 68.2 75.3 13.2 14
PIDNet-M 70.0 76.6 51.7 71.1 71.8 28.5 59
PIDNet-S 68.8 74.6 52.2 65.9 72.0 7.6 114
SN-FPN-RN18 67.7 74.8 50.1 65.2 68.2 16.7 33
SF-RN18 66.9 74.1 48.8 65.6 70.4 12.9 34
SF-lite-RN18 64.8 71.6 47.8 63.0 68.5 12.3 34
SegFormer-B0* 64.4 71.3 47.0 61.9 68.8 3.7 25*

Table 4.2: ACDC realtime model baseline. *Model trained in PaddlSeg, latency measured
in torch(timm) for fair comparison.

Upper bound mIoU (not real-time, high memory usage)

A baseline comprehending larger and slower network that perform well on ACDC is re-
ported in table 4.3, some of the models are taken from ACDC supervised semantic seg-
mentation public benchmark (test split) and 2024 update of ACDC paper [35], table
4.4, teacher model (SwiftNet-ConvNeXt-L) and HRNetV2-W48 latencies are measured
on RTX2080Ti, validation split metrics of HRNetV2-W48 are reported from thesis re-
lated to paper [13].

Model ACDC val mIoU Params(M) FPS
full fog night rain snow

SWiftNet-ConvNext-L 85.0 87.7 74.0 82.1 84.0 206 4.8
HRNetv2-W48* 73.5* 74.7* 65.3* 77.7* 76.3* 66 9.5

Table 4.3: Baseliness on ACDC val. *From [13]

4.4 Distillation results
All experiments on SwiftNet have the following hyperparameters configuration:
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Method ACDC test mIoU
ViT-Adapter 78.4
Mask2Former 77.3
HRNetv2-W48 75.0

Table 4.4: Baselines on ACDC test. From [35]

Parameter Value
Batch Size 8
Gradient Accumulation Steps 2
Max Epochs 250
Resize Augmentation (0.5, 2.0)
Crop Size (1080, 1080)
Crop Rescaling Factor 0.8
Normalization ACDC std and mean
Precision FP16
Optimizer Adam
Betas (Adam) (0.9, 0.99)
Learning Rate 4 × 10−4

Weight Decay 1 × 10−4

Scheduler Cosine Annealing
KL-div-temerature 1.0
KL-div-weight 0.5

Table 4.5: Training Configuration Parameters. KL-div loss in all set of experiment, if
present use a temperature of 1.0 balancing with main loss with equal contribution (both
0.5).

4.4.1 Logit and pre-logit distillation

First set of experiments consists of a series of short-run experiments in order to evalu-
ate the effectiveness of kl-border weighted kd, vanilla kl-based knowledge distillation and
kl-border combined with feature distillation of the penultimate layer. Since we want to
improve on a model that already implements an on-purpose loss for semantic segmen-
tation, the main loss is the focal border-weighted loss that showed best performance on
pyramidal SwiftNet [30].

Figure 4.2 shows slightly worse performances for classical knowledge distillation with
kl-divergence, and near to no improvement when using a regional weighted kl-divergence.
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Figure 4.2: Visualization of mIoU over 50 epochs. All the experiments use a SwiftNet-
FPN with ResNet18. Early stopping at epoch 50 is applied

Moreover, feature distillation when applied on the penultimate layer (before channel adap-
tation to the number of classes) also shows no improvement. Extending training to 250
epochs yielded worse results than classical training with only Focal-B loss also for all
experiments using border logit distillation. However, we can notice that with a larger
network such as MobileNetv4 as a backbone, this issue is mitigated, and logit knowledge
distillation improves performance as expected (see the next subsection).

Figure 4.3: Visualization of mIoU over 100 epochs. All the experiments use a PIDNet-S
as student. Early stopping at epoch 100 is applied
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4.4 – Distillation results

The experiments on PIDNet in figure 4.3 follow the same trend: logit Knowledge Dis-
tillation seems not to be particularly beneficial.

4.4.2 Intermediate feature distillation
In the second set of experiments, I used intermediate features that are closer to the
backbone feature maps to avoid conflict between the final loss and the distillation target
obtaining the result shown in table 4.6. For CWD loss, the temperature used is always 4
as in [37].

Backbone Loss ACDC val mIoU ECE
full fog night rain snow

MobileNetv4 border 69.9 77.3 52.0 74.1 67.1 0.076
MobileNetv4 L2+border 72.4 (+2.5) 76.4 55.0 76.4 70.6 0.071
MobileNetv4 CWD+kl+border 72.7 (+2.7) 77.6 55.9 76.6 69.7 0.068
MobileNetv4 L2+kl+border 73.1 (+3.2) 78.1 55.2 76.3 71.6 0.070
ResNet18 border 67.7 75.7 50.5 66.3 68.7 0.059
ResNet18 L2+kl+border 68.1 (+0.4) 74.6 52.0 65.6 70.4 0.059
ResNet18 LAD+border 68.8 (+1.1) 76.5 52.7 66.6 72.5 0.065
ResNet18 L2+border 69.1 (+1.4) 75.1 52.8 67.4 71.5 0.061
ResNet18 CWD+kl+border 70.4 (+2.7) 75.7 53.7 68.2 73.4 0.059
ResNet18 CWD+border 71.2 (+3.5) 75.7 54.6 69.8 74.6 0.063

Table 4.6: Result of various distillation techniques. The segmentor is SwiftNet with
indicated backbone, ECE is meassured on ACDC val.

As we can see from 4.6 even though best performing model (mIoU) not always make
use of kl-divergence as main loss we can notice that the use of this loss can bring benefit
especially in term of ECE, resulting in a more calibrated model.

Per-class IoU and AUPRC

We report IoU and AUPRC for each class for all models and distillation frameworks re-
ported in 4.6. In order to understand which classes are more difficult to segment, to make
considerations about difficulties related to size and rarities of the classes.

As a general trend, small and rare classes tend to score lower mIoU hence are difficult to
segment correctly. In MobileNetv4 distilling with L2 + kl loss tends to favor the recogni-
tion of large objects, meanwhile, CWD + kl due to its formulation helps the student to
learn to segment better smaller objects.

With ResNet backbone, we see that CWD contribution to extract important features
is still more appreciable for smaller classes: The rider class, for example, is highly affected
by this CWD loss as well as bycicle, motorcycle, and person.
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In the following tables, we report the per-class metrics of the experiments reported in
table 4.6, indicating by letter the method used in the experiments as follows:

A. MobileNetv4+Swiftnet-FPN, border loss

B. MobileNetv4+Swiftnet-FPN, L2+border loss

C. MobileNetv4+Swiftnet-FPN, CWD+kl+border loss

D. MobileNetv4+Swiftnet-FPN, L2+kl+border loss

E. ResNet18+SwiftNet-FPN, border loss

F. ResNet18+SwiftNet-FPN, L2+kl+border loss

G. ResNet18+SwiftNet-FPN, LAD+border loss

H. ResNet18+SwiftNet-FPN, L2+border loss

I. ResNet18+SwiftNet-FPN, CWD+kl+border loss

J. ResNet18+SwiftNet-FPN, CWD+border loss
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A 96.1 81.8 87.3 59.5 49.8 63.8 75.9 67.5 87.1 51.2 95.6 58.9 20.2 88.9 72.2 90.9 85.9 41.9 54.2 69.9
B 97.0 84.6 88.5 63.0 55.0 66.1 77.9 68.0 87.9 53.3 95.9 64.0 24.8 89.8 78.9 93.6 91.7 41.2 55.3 72.4
C 96.8 84.1 88.3 62.3 54.4 66.1 78.2 70.6 87.6 52.1 95.8 66.0 29.2 89.2 78.8 90.4 92.3 46.3 53.1 72.7
D 96.8 84.1 88.6 62.4 54.6 65.4 77.9 68.5 87.8 53.8 96.0 65.2 29.6 89.7 79.8 93.4 92.6 45.3 57.8 73.1
E 95.1 79.0 86.2 55.9 48.3 61.0 73.4 63.1 86.4 48.5 95.6 50.8 23.9 86.7 71.2 89.7 89.4 31.9 49.8 67.7
F 95.8 80.5 87.7 60.2 48.9 62.3 75.3 64.2 87.5 49.7 96.0 55.1 23.8 87.6 60.6 88.4 89.1 35.1 45.6 68.1
G 96.1 82.0 87.7 59.1 47.3 63.6 76.4 66.9 87.3 50.8 95.8 58.0 23.7 87.9 55.9 90.1 90.7 38.0 50.7 68.8
H 96.1 82.0 87.7 59.1 47.3 63.6 76.4 66.9 87.3 50.8 95.8 58.0 23.7 87.9 55.9 90.1 90.7 38.0 50.7 69.1
I 96.2 82.3 87.8 61.4 51.5 63.2 76.1 68.3 87.2 51.4 95.7 59.1 28.4 88.1 71.3 90.0 90.9 38.7 49.4 70.4
J 95.8 81.6 87.9 59.0 49.0 63.8 78.2 68.3 87.1 51.4 95.7 59.8 34.3 87.9 69.1 93.1 91.4 46.9 53.2 71.2

Table 4.7: IoU (%) of the method reported in list

Comparison of memory required and latency

As we can see from figure 4.4 and figure 4.5 the major improvements are in terms of mem-
ory usage when comparing algorithms with the same mIoU. In particular, MobileNetv4
with a relatively low number of parameters obtains comparable results with HRNet which
has six times more parameters. As a downside on the hardware we tested the algorithms
we notice that MobileNetv4, beside being designed for low latency, did not outperform
ResNet18, so ResNet18 as a backbone for SwiftNet is more suitable for real-time appli-
cation considering that we can achieve lower latency than the one reported maintaining
same IoU due to downscaling to 0.8 image resolution.
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A 98.6 91.8 95.5 72.1 62.1 83.3 89.8 82.9 95.2 63.6 98.4 75.2 27.2 96.3 85.4 97.2 92.8 54.3 68.9 80.6
B 99.1 93.9 95.9 74.0 67.6 85.1 92.7 83.6 95.6 65.8 98.6 80.7 32.5 96.9 89.2 97.8 96.0 50.1 68.2 82.3
C 99.1 93.6 96.1 73.2 67.1 85.7 92.5 85.2 95.6 64.3 98.5 82.4 36.4 96.8 90.4 96.7 96.9 60.6 63.9 82.9
D 99.1 93.9 96.3 73.3 66.5 84.5 92.0 84.3 95.9 66.4 98.7 82.3 45.4 96.9 89.3 98.2 97.3 56.0 72.4 83.6
E 98.7 91.8 96.5 71.6 65.9 81.1 88.9 79.4 96.6 63.0 99.0 68.2 33.9 96.5 86.2 98.0 96.4 42.6 64.4 79.9
F 98.9 92.3 96.6 74.8 63.6 82.2 90.4 82.6 96.2 64.2 99.0 72.8 30.2 96.5 77.6 97.3 96.9 48.3 60.3 80.0
G 98.8 92.5 96.0 72.6 59.7 83.1 90.8 83.8 95.8 64.1 98.9 75.0 26.2 96.6 71.7 98.0 96.5 51.0 62.5 79.7
H 98.8 92.3 96.1 73.2 63.1 82.8 90.3 82.6 96.0 63.7 98.9 74.0 24.8 96.7 82.1 97.7 96.5 51.7 63.0 80.2
I 99.0 93.2 96.5 75.4 65.9 83.0 92.0 84.2 96.0 64.9 98.8 77.2 39.4 96.9 83.9 97.9 96.9 55.2 65.9 82.2
J 98.7 92.2 96.4 72.0 63.2 83.2 91.9 84.6 95.9 66.3 98.8 78.4 46.1 96.9 82.0 98.3 96.8 62.2 69.6 82.8

Table 4.8: AUPRC (%) of the method reported in list
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Figure 4.4: Distillation improvements in term of mIoU are reported with an arrow.

Figure 4.5: Distillation improvements in term of mIoU are reported with an arrow. FPS
reported can be higher for distilled network since mIoU reported are obtained by a network
that operate at 0.8 the original resolution.
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4.4 – Distillation results

Qualitative results

In the images selected, distilled networks seem to improve particularly segmentation qual-
ity of classes like sidewalks, vegetation, and grass (as we can see from figures 4.6, 4.8 and
4.9), on the other hand when it comes to segment traffic objects like cars or in general
in more trafficked environments the distilled version of SwiftNet with ResNet18 seems to
present more flaws in segmentation maps, as we can see in figure 4.9. Also, from what we
can see in images reported, all networks easily segment also small objects like pole, traffic
light, and traffic sign.

Figure 4.6: Visualization of distillation improvements: gt(left), Swift-
Net+ResNet18(center), SwiftNet+ResNet18-distilled (right). From top to bottom
meteo conditions are: fog, rain, snow, night. In non-trafficked context.
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Figure 4.7: Visualization of distillation improvements: gt(left), Swift-
Net+ResNet18(center), SwiftNet+ResNet18-distilled (right). From top to bottom
meteo conditions are: fog, rain, snow, night. In trafficked context.

50



4.4 – Distillation results

Figure 4.8: Visualization of distillation improvements: gt(left), Swift-
Net+MobileNetV4(center), SwiftNet+MobileNetV4-distilled (right). From top to
bottom meteo conditions are: fog, rain, snow, night. In non-trafficked context.
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Figure 4.9: Visualization of distillation improvements: gt(left), Swift-
Net+MobileNetV4(center), SwiftNet+MobileNetV4-distilled (right). From top to
bottom meteo conditions are: fog, rain, snow, night. In trafficked context.
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Chapter 5

Conclusions

The applied knowledge distillation methods bring improvements to the baselines, partic-
ularly in terms of network size, by achieving results that are competitive with networks
that have six times the number of parameters of MobileNetv4+SwiftNet. From a latency
point of view, we obtained results similar to those obtained by baselines.

From experiments emerged that using different losses from Cross-Entropy suggest us that
in order to be beneficial with non-standard losses it is preferable to perform knowledge
distillation in intermediate layers, nearer to backbone, rather than final layers near to
logits. However, ECE suggests that logit distillation is beneficial in that sense.

Another important fact that can suggest which loss to use is the difficulty for the network
to segment small classes: CWD in those cases may be more beneficial than L2 loss in
fact, as we can see from per-class IoU in SwiftNet intermediate feature distillation exper-
iments, it increases more IoU and AUPRC of small classes leading to a far better mIoU
in unbalanced tasks or in networks that lack particularly the capability to segment small
objects.

5.1 Future works
While effectiveness of kd between similar architecture has been proven, future works can
focus on distilling ConvNeXt-L+SwiftNet into already good performing model such as
PIDNet series architectures, this can lead to improved performances both in term of mIoU
and latency, but will for sure require the design of a more complex adaptation module
to fuse multiple branches of PIDNet into one feature map per residual block, moreover,
due to the different information captured by different branches of PIDNet due to different
loss usage selecting kl-div hyperparameters can be challenging (or lead to poor results
a shown in our experiments), so intermediate feature distillation with adapter modules
seem a more viable solution.

Another way to improve performance without degrading speed or increasing memory
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occupation is to train the network on more datasets such as BDD100K and Citycapes, as
is done for teacher network. Moreover, thanks to the supervision of knowledge distillation,
we can train our model on unlabeled images, provided that we use kl-divergence as logit
target, following a semi-supervised training approach.
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