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Summary

The detection of anomalies in the image data is crucial for many real-time computer
vision applications, as it is directly related to triggering an alarm for security threats,
quality inspection and production on manufacturing lines. Our goal in this thesis is
to create a stable customizable model to predict anomalies such as scratches, scuffs,
corrosion, etc. We used a multi-model approach to have all advantages of different
approaches. Hence, we implemented base on EfficientAD[1] student-teacher type
method, where the student learns the distribution of normal images. When it
collapses, it is detected as an anomaly. So called changed instruction hypothesis
avoid the student from recasting heaps of pictures, diminished measurements and
expanded exactness. Furthermore, in another method called reconstruction-based
approach we leveraged autoencoder to learn out the distribution of the normal
image [1]. Autoencoder provides the anomaly detection that the reconstructed
images and highlight the area that does not conform to the normal pattern, so
as to achieve the abnormal localization of the parts. This could enable CNNs to
prioritize improving detail in a useful way, potentially boosting both the speed
and accuracy of candidates for future applications like anomaly detection for a
spectrum of scenarios. Overgeneralization is one of the must challenging problems
during dealing with anomaly detection in unsupervised strategies. So we tried
to add syntetic anomaly to our training and use two loss function in this order.
One is to maximize the distance between the normal sample and the nearest
abnormal sample (wider than abnormal samples) and second one minimize the
overlap between positive and negative space based on Collaborative Discrepancy
Optimization [2]. The method has been tested with the Real-IAD[3] dataset on
sub-dataset plastic-nut for incidents. This not only a good baselines for pattern
recognition but also a good threshold for defect detection in various industries and
can be navigate cross sectors on that basis to find region of anomalies and ensure
quality during manufacturing of such components by providing a significant data
input for that analysis. Our model achieved good performance of finding anomaly
region with AUPRO 95.48% and ability to classify abnormal images AUROC
97.07%.
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Chapter 1

Introduction

The manufacturing industry and quality control processes face a significant challenge
in detecting defect anomalies and distinguishing them from normal, high-quality
products. In many production environments, defects are rare and varied, making it
difficult to gather enough examples to train traditional supervised models effectively.
For example, in an automotive assembly line, most parts are produced correctly
while only a few might have imperfections due to minor misalignments or material
inconsistencies. This rarity creates an imbalance that forces the problem to be
addressed in a semi-supervised or unsupervised manner.

At the heart of this challenge lies the need to define what a normal image looks
like. By understanding the complete range of acceptable variations in defect-free
samples, models can later detect even subtle deviations that may indicate anomalies.
A simple analogy is learning to recognize a clear, unblemished apple versus one
with small spots or dents. Once a robust baseline of normality is established, the
detection system must be sensitive enough to flag anomalies without raising false
alarms. This balance is critical because an overly sensitive system might mark
harmless variations as defects while an insensitive one could miss genuine issues.

Traditionally, anomaly detection relied on statistical methods and rule-based
systems such as Principal Component Analysis, k-means clustering, or Gaussian
Mixture Models. These methods depended heavily on manually engineered features
and clear definitions provided by domain experts. For example, in a textile factory,
experts might manually specify that a certain weave pattern is normal while any
deviation from that pattern should be flagged. Although these methods can work
well for simpler problems, they often struggle with the complex and high-dimensional
data encountered in modern manufacturing.

In recent years, machine learning-based techniques have revolutionized anomaly
detection. Instead of relying on hand-crafted rules, these approaches learn directly
from data. Supervised methods like Support Vector Machines and Decision Trees
can classify defects when there is plenty of labeled data. However, in many industrial
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Introduction

applications, new or rare defects might not have been previously observed, which
limits the effectiveness of supervised learning.

Unsupervised methods such as Isolation Forests or Local Outlier Factor address
this by looking for unusual patterns without the need for labeled data. A practical
example is an automated inspection system that learns the usual texture and
color distribution of a metal surface and then highlights any spot that deviates
from this learned normality. Deep learning approaches including convolutional
neural networks and autoencoders further improve this process by automatically
extracting hierarchical features from raw images. Autoencoders, for example, are
trained to reconstruct normal images and when the reconstruction error is high it
indicates a potential defect. Techniques based on generative adversarial networks
have also been introduced, where synthetic images are generated to enhance the
understanding of normal patterns, making it easier to spot anomalies.

The integration of advanced backbones such as ResNet101 can further en-
hance feature extraction and representation learning in anomaly detection studies.
ResNet101 is known for its deep residual learning architecture that allows the net-
work to capture more complex features. Its ability to learn fine-grained details and
hierarchical representations makes it well-suited for identifying subtle variations in
defect patterns that might be overlooked by shallower networks. This enhancement
in feature representation can lead to improved classification accuracy and more
robust detection of anomalies in diverse manufacturing conditions.

The primary objective of this project is to improve both classification and
segmentation accuracy. Classification involves distinguishing between defective
and non-defective products while segmentation pinpoints the exact location of
anomalies within an image. Achieving both high classification accuracy and precise
segmentation is crucial in manufacturing where identifying and isolating defects at
an early stage can prevent costly production errors. Many traditional methods excel
at classification but fail to provide detailed insights into the location of defects. Our
approach seeks to bridge this gap by integrating advanced deep learning techniques
that allow for both precise identification and accurate defect localization.

In addition, knowledge distillation plays a critical role in achieving a lightweight
and fast network. Through knowledge distillation, a smaller network known as
the student network is trained to replicate the behavior of a larger, more complex
model known as the teacher network. This process transfers the knowledge learned
by the teacher to the student, resulting in a model that is both efficient and quick
in inference. Lighter networks are especially important in factory settings where
real-time predictions are crucial for maintaining production speed and preventing
delays in quality control processes.

Another key objective is to ensure the flexibility and adaptability of the model.
In real-world manufacturing environments, production conditions change over time,
new defect types emerge, and variations in materials and processes can affect the
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Introduction

appearance of products. A robust anomaly detection system must be capable of
adapting to these changes without requiring extensive retraining. Transfer learning
allows a model developed for one production line to be fine-tuned for another while
continual learning methods help the model adapt to new data over time. Domain
adaptation techniques further ensure that a model trained in one setting can be
deployed in another without significant loss of accuracy.

Practical constraints such as computational efficiency, inference speed, and ease
of integration with existing systems are also paramount. Advanced techniques like
model compression, knowledge distillation, and hardware acceleration using GPUs
or TPUs are applied to ensure that these complex models can run in real-time on
production lines. This is especially important in environments where decisions need
to be made within milliseconds to avoid halting the entire manufacturing process.

Hybrid approaches that combine traditional statistical methods with modern
machine learning techniques are increasingly popular. By integrating the inter-
pretability and simplicity of conventional methods with the adaptability and power
of deep learning, these hybrid systems offer a balanced solution. Ensemble methods
further enhance detection accuracy by aggregating the strengths of multiple models,
ensuring robust performance even in dynamic production environments.

In summary, AI-driven anomaly detection in manufacturing is about building a
strong, adaptable model of normality that can detect deviations with high accuracy,
efficiency, and resilience. By leveraging a combination of traditional and modern
techniques, these systems can effectively identify and isolate defects, ensuring high
quality and consistent production standards in real-world industrial applications.
This project aims to push the boundaries of existing anomaly detection frameworks
by enhancing classification accuracy, improving segmentation capabilities, and
ensuring that the model remains flexible and adaptable to the ever-changing
conditions of the manufacturing industry.

3



Chapter 2

Background

2.1 Machine learning and Deep learning

Machine learning (ML) is a subset of artificial intelligence (AI) that enables comput-
ers to learn from data and make decisions without being explicitly programmed. It
is widely used in applications such as image recognition, natural language process-
ing, fraud detection, and recommendation systems. ML models identify patterns
in data and make predictions or decisions based on those patterns.

The history of machine learning dates back to the mid-20th century, with
Alan Turing’s foundational work on machine intelligence. Turing proposed the
Turing Test to assess a machine’s ability to exhibit intelligent behavior. In 1959,
Arthur Samuel coined the term ’Machine Learning’ while developing self-learning
algorithms for playing checkers. The 1960s and 1970s saw the development of early
neural networks, particularly Frank Rosenblatt’s perceptron, which introduced the
concept of supervised learning.

By the 1980s, statistical learning theory led to the development of decision trees
and support vector machines, which provided structured approaches to pattern
recognition. The 1990s marked the rise of ensemble methods such as boosting and
bagging, which improved predictive model performance by combining multiple weak
learners. The introduction of kernel methods further expanded ML applications,
particularly in high-dimensional data analysis [4].

The early 2000s saw a major shift with big data and increased computational
power, leading to a resurgence of neural networks. Deep learning breakthroughs,
particularly Convolutional Neural Networks (CNNs) [5] for image recognition and
Recurrent Neural Networks (RNNs) for sequential data processing, enabled AI-
driven applications in multiple domains. More recently, transformers like BERT [6]
and GPT [7] have revolutionized natural language processing, enabling machines
to comprehend and generate human-like text. The advancement of ML continues,
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fueled by cloud computing, GPUs, TPUs, and other specialized hardware.
ML has given rise to specialized domains, including computer vision, which

allows machines to interpret visual data. CNNs have driven progress in self-driving
cars, medical imaging, and industrial automation. Another critical area is natural
language processing (NLP), which enables machines to comprehend, generate,
and interact using human language. Models like BERT and GPT have signifi-
cantly improved applications such as chatbots, sentiment analysis, and automated
translation.

Additionally, reinforcement learning (RL) has advanced decision-making tasks,
enabling agents to learn optimal strategies through rewards and penalties. RL
is widely used in game AI, robotics, and automated trading systems. Speech
processing, another ML subfield, has improved voice recognition, speech synthesis,
and virtual assistants like Siri and Alexa, enhancing AI-driven communication
systems.

Machine learning models improve over time by analyzing large datasets, making
them highly adaptable. Unlike traditional rule-based programming, where explicit
instructions dictate behavior, ML algorithms develop their own logic, ensuring
robustness in real-world applications. Supervised learning techniques such as
decision trees and support vector machines are applied in tasks like medical diagnosis,
while unsupervised learning methods like clustering aid in customer segmentation
and anomaly detection.

Big data and computational advancements have led to more complex ML
applications. The ability to process vast structured and unstructured datasets has
spurred innovations in healthcare, where ML is used for disease diagnosis, patient
risk assessment, and drug discovery. Robotics, autonomous systems, and real-time
decision-making applications further benefit from reinforcement learning, enhancing
adaptability and performance [4].

Deep learning, a subfield of ML, has revolutionized AI by employing multi-
layered neural networks to extract complex data patterns. CNNs have transformed
computer vision tasks such as image classification and object detection, while RNNs
and Long Short-Term Memory (LSTM) [8] networks have greatly improved speech
recognition and machine translation.

ML is now an essential part of AI-driven technologies, powering applications such
as speech recognition, autonomous vehicles, predictive analytics, and cybersecurity.
Fraud detection in banking, for example, relies on anomaly detection algorithms to
flag suspicious transactions. The field continues to evolve with new optimization
techniques, interdisciplinary research, and real-time decision-making applications,
making ML one of the most dynamic areas in computer science today.

One of the key driving factors in ML evolution is feature extraction. Early
methods relied on handcrafted features, such as edge detection for images and
frequency-based attributes for speech recognition. The advent of deep learning has
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enabled automatic feature extraction, reducing the need for manual engineering.
Techniques such as Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), and wavelet transforms were initially used to preserve essential
data structures while reducing dimensionality. However, their domain-specific
constraints often required human expertise.

With deep learning, feature extractors like CNNs and Autoencoders have trans-
formed data processing. CNNs learn hierarchical representations from raw pixel
data, eliminating the need for manually designed filters. Autoencoders aid in
anomaly detection and data compression by efficiently encoding high-dimensional
inputs. More recently, Vision Transformers (ViTs) and transformer-based NLP
models such as BERT have further enhanced feature extraction capabilities using
attention mechanisms.

These advancements have improved performance across biomedical imaging,
autonomous systems, and predictive analytics. The ability to extract robust features
with minimal human intervention has increased accuracy and broadened ML
applications. Future research is expected to refine feature extraction methodologies,
making AI systems even more powerful and adaptable.

Historically, ML development has been shaped by statistical learning, proba-
bilistic models, and neural network research. The integration of ML with cloud
computing and large-scale data frameworks has further enhanced its impact. Par-
allel computing and distributed processing have enabled complex model training,
making real-time ML applications more feasible. The proliferation of open-source
libraries, such as Scikit-Learn, TensorFlow, and PyTorch, has democratized ML
technology, accelerating innovation across multiple disciplines.

Today, ML drives advancements in fields as diverse as robotics, personalized
marketing, and cybersecurity. Its ability to uncover hidden data patterns has
made it indispensable in scientific research, financial forecasting, and industrial
automation. The increasing adoption of automated ML (AutoML) has simplified
model development, allowing non-experts to leverage powerful ML techniques
for their applications. As computing capabilities continue to grow, the future
of ML promises even more sophisticated applications, improved efficiency, and
broader societal impact. Ethical considerations and explainability research are
shaping responsible AI development to align with human values and regulatory
requirements.

2.2 Computer Vision
Computer vision is a field of artificial intelligence (AI) that enables machines
to interpret and process visual data from the world, much like humans do. It
involves developing algorithms and models that can analyze, understand, and
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extract meaningful information from images and videos. One of the example of
computer vision can be ability to classify the objects such as distinguish between
like the sample you can see in 2.1 cat and dog or with tree. Hence, The concept of
computer vision dates back to the 1960s when researchers first began exploring ways
for machines to interpret visual information. Early experiments involved simple
edge detection and pattern recognition techniques. Over the years, advancements
in computing power and mathematical models have driven the rapid evolution of
computer vision. Today, it has applications across numerous industries, including
healthcare, automotive, surveillance, agriculture, and entertainment.

Figure 2.1: Image Classification Samples.

The foundation of computer vision lies in image processing, pattern recognition,
and machine learning. Early computer vision systems relied on handcrafted features
and rule-based approaches to identify objects and detect patterns in images. In
the 1980s and 1990s, advancements in statistical modeling and feature extraction
techniques such as Scale-Invariant Feature Transform (SIFT) [9] and Histogram of
Oriented Gradients (HOG) [10] significantly improved object recognition. However,
with the advent of deep learning in the 2010s, modern computer vision systems have
achieved unprecedented accuracy and efficiency. Convolutional neural networks
(CNNs) have become the backbone of many computer vision tasks, allowing ma-
chines to automatically learn relevant features from large datasets without manual
intervention. This shift from handcrafted features to learned representations has
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enabled breakthroughs in tasks like facial recognition, medical image analysis, and
autonomous navigation.

One of the most common applications of computer vision is image classification,
where an algorithm assigns a label to an image based on its content. Object
detection extends this concept by not only recognizing objects within an image but
also localizing them with bounding boxes. Facial recognition, another widely used
application, identifies individuals based on facial features, with uses ranging from
security systems to smartphone authentication.

Beyond static images, computer vision is also used in video analysis. Action
recognition and event detection enable systems to identify human activities, monitor
surveillance footage, and analyze sports events in real time. Self-driving cars rely
heavily on computer vision to perceive their surroundings, detect obstacles, recognize
traffic signs, and make informed driving decisions. These autonomous systems
depend on advanced image processing techniques such as semantic segmentation
and sensor fusion, which combine data from cameras, LiDAR, and radar to create
a comprehensive understanding of the environment. Medical imaging is another
critical area where computer vision assists in diagnosing diseases through analysis of
X-rays, MRIs, and CT scans. Deep learning-based methods, such as convolutional
neural networks (CNNs) and vision transformers, have greatly improved accuracy
in detecting abnormalities, aiding radiologists in faster and more reliable diagnoses.
In particular, automated anomaly detection has led to early identification of
conditions such as tumors and cardiovascular diseases, significantly improving
patient outcomes, which also plays a fundamental role in enhancing the quality and
efficiency of computer vision systems. Techniques such as image denoising, contrast
enhancement, and edge detection help preprocess raw data to improve recognition
accuracy. Additionally, advanced backbones, such as ResNet[11], EfficientNet[12],
and Swin Transformer[13], provide powerful feature extraction capabilities, enabling
deep learning models to process high-resolution images efficiently.

In recent years, self-supervised learning and generative models have revolu-
tionized computer vision by reducing dependence on labeled data. Methods like
contrastive learning and Vision Transformers (ViTs) have improved generalization,
making models more robust and adaptable to real-world conditions. These ad-
vancements, along with continual improvements in hardware acceleration and edge
computing, are driving the next wave of innovation in industrial and consumer
applications of computer vision. Despite its advancements, computer vision faces
several challenges. Variability in lighting conditions, occlusions, and viewpoint
changes can affect model performance. The future of computer vision is promising,
with ongoing research exploring areas such as 3D vision, zero-shot learning, and
self-supervised learning. One particularly impactful area is anomaly detection,
where computer vision systems are being developed to identify rare and unusual
patterns in data that may indicate defects, fraud, or health concerns. Industrial
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applications of anomaly detection include quality control in manufacturing, where
computer vision systems analyze products on assembly lines to detect defects in
real time, reducing waste and ensuring high standards of production.

As hardware continues to improve and datasets grow, computer vision will play
an increasingly crucial role in shaping the next generation of intelligent systems and
automation. The continued development of AI-driven anomaly detection methods
will further enhance reliability in various industries, from financial fraud detection
to predictive maintenance in industrial equipment, ensuring more efficient and
proactive decision-making.

A significant milestone in the advancement of computer vision was the creation
of ImageNet [14], a large-scale visual database designed for use in image recognition
research. Introduced by Fei-Fei Li and her team in 2009, ImageNet provided
researchers with a massive, well-labeled dataset that fueled groundbreaking progress
in deep learning-based image classification. in 2.2 you can see some samples from
this dataset. The annual ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) became a benchmark for evaluating computer vision models, inspiring
the development of increasingly sophisticated neural networks.The breakthrough
moment came in 2012 when AlexNet [15], a deep convolutional neural network
(CNN), significantly outperformed traditional machine learning approaches in the
ImageNet competition. This achievement demonstrated the power of deep learning
and accelerated research in neural network architectures, leading to the creation
of models such as VGG, ResNet, and EfficientNet, which have since pushed the
boundaries of computer vision applications. The impact of ImageNet extends far
beyond academic research. By providing a standardized dataset and challenge,
ImageNet not only revolutionized image recognition but also laid the foundation for
modern AI-driven anomaly detection methods, enabling more robust and accurate
identification of irregular patterns across diverse industries. As computer vision
continues to evolve, the legacy of ImageNet remains a cornerstone in the pursuit of
intelligent, automated systems.
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Figure 2.2: ImageNet sub-dataset samples.
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2.3 Supervised Learning
Artificial Intelligence (AI) has transformed industries by enabling machines to
learn from data and make intelligent decisions. One of the most commonly used
techniques in AI is supervised learning, a type of machine learning where models
are trained on labeled datasets. This method allows systems to map inputs to
outputs with high accuracy, making it essential for applications such as image
recognition, natural language processing, fraud detection, and medical diagnosis.
Supervised learning is a machine learning paradigm that involves training a model
using labeled data. The input consists of features, also called independent variables,
while the output consists of labels, also known as dependent variables. The model
learns a function that maps inputs to outputs based on patterns in the training
data. This technique is widely used in classification and regression tasks, making it
one of the fundamental methodologies in AI development.

The workflow of supervised learning involves several steps. The first step is data
collection, where a dataset consisting of input-output pairs is gathered. Next, data
preprocessing is performed, which includes cleaning the data, handling missing
values, and normalizing features. Once the data is prepared, it is split into training
and testing subsets, often in an 80-20 ratio, to evaluate model performance. After
data splitting, an appropriate algorithm is chosen based on the nature of the problem.
The selected model is then trained using the training data to learn patterns and
relationships. The trained model is evaluated using performance metrics such as
accuracy, precision, recall, or root mean squared error. To enhance performance,
hyperparameter tuning is carried out to optimize model parameters. Once the
model achieves satisfactory accuracy, it is deployed for real-world applications.

Supervised learning can be categorized into two primary tasks: classification
and regression. In classification, the model predicts discrete labels or categories,
such as determining whether an email is spam or not. Examples of classification
algorithms include logistic regression, decision trees, random forests, support vector
machines, and neural networks. In regression, the model predicts continuous values,
such as estimating house prices based on features like square footage and location.
Common regression algorithms include linear regression, polynomial regression,
ridge regression, and neural networks.

Several supervised learning algorithms play a critical role in various applications.
Linear regression is a simple yet effective algorithm used for predicting numerical
values based on a linear relationship between input variables. Logistic regression
is employed for binary classification problems, predicting probabilities that map
inputs to discrete labels. Decision trees are versatile algorithms that split data into
branches based on feature values, making them useful for both classification and
regression tasks. Random forests enhance decision trees by combining multiple trees
to improve accuracy and reduce overfitting. Support vector machines classify data by
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finding an optimal hyperplane that separates different categories. Neural networks,
particularly deep learning models, can learn complex patterns and relationships in
data, making them powerful for tasks like image and speech recognition.

The success of supervised learning depends on the quality and quantity of labeled
data. A well-labeled dataset provides the model with clear examples to learn from,
leading to better generalization. However, obtaining high-quality labeled data can
be expensive and time-consuming. Furthermore, techniques like cross-validation
ensure that models are trained and tested effectively to avoid overfitting and
underfitting.

Despite its advantages, supervised learning has some limitations. It requires
large labeled datasets, which may not always be available or feasible to obtain.
Models trained on biased or imbalanced datasets may produce skewed results,
affecting their reliability in real-world applications. Moreover, supervised learning
models may struggle with generalizing to unseen data if they are overly complex or
trained on insufficiently diverse datasets. Overfitting, where a model learns noise
instead of actual patterns, is another challenge that needs to be addressed using
techniques like regularization and dropout.

Supervised learning is widely used in various real-world applications. In health-
care, it assists in diagnosing diseases by analyzing medical images and patient
records. In finance, it helps detect fraudulent transactions by identifying unusual
spending patterns. In e-commerce, recommendation systems use supervised learn-
ing to suggest products based on user preferences. Autonomous vehicles rely on
supervised learning for object detection and decision-making, ensuring safer navi-
gation. Natural language processing applications, such as sentiment analysis and
chatbot development, benefit from supervised learning models trained on text data.

Future trends in supervised learning focus on improving model efficiency and
reducing data dependency. Advances in semi-supervised learning aim to leverage
both labeled and unlabeled data to reduce the need for extensive manual labeling.
Transfer learning enables models to apply knowledge learned from one domain
to another, reducing training time and data requirements. Federated learning
enhances privacy by allowing models to be trained across decentralized devices
without sharing raw data. Additionally, explainability and interpretability of
supervised learning models are gaining importance to ensure ethical and transparent
AI decision-making.

Supervised learning remains a cornerstone of artificial intelligence and machine
learning. By leveraging labeled data, it enables models to achieve high accuracy in
various applications, from healthcare to finance and autonomous systems. While
challenges such as data dependency and overfitting persist, advancements in AI
continue to refine and expand the capabilities of supervised learning. As research
progresses, new methodologies will further enhance the efficiency, interpretability,
and ethical considerations of supervised learning models, shaping the future of
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AI-driven technologies.
we can consider that supervised learning is one of the most widely used ap-

proaches in computer vision for defect detection in industrial manufacturing, quality
control, and medical imaging. Unsupervised approaches enables models to learn
precise defect detection patterns and achieve high accuracy in automated inspec-
tions.
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2.4 Unsupervised learning
Unsupervised learning has emerged as a pivotal approach in computer vision,
particularly for defect detection in industrial settings, manufacturing, and quality
control. In contrast to supervised methods that require vast amounts of anno-
tated data, unsupervised techniques learn intrinsic representations directly from
unlabeled data. This approach exploits the inherent structure present in the data,
such as clusters, manifolds, or latent representations, without relying on explicit
input-output mappings. The central idea is to model the underlying probability
distribution p(x) of the data and to learn an approximation p̂(x). When a new
input x′ deviates significantly from p̂(x), it is flagged as an anomaly an especially
useful property in defect detection, where normal samples are abundant and defects
are both rare and diverse.

A fundamental goal in unsupervised learning is to approximate the true distri-
bution p(x) of data samples x. With a robust model for p̂(x), any input x′ residing
in a low-density region can be considered anomalous. This notion is critical for
applications in quality control where subtle deviations from normality may indicate
defects.

One widely adopted technique in this domain is the autoencoder [16]. An
autoencoder is composed of two main components: an encoder f : Rn → Rm that
compresses the input x into a latent representation z, and a decoder g : Rm → Rn

that reconstructs the original input from z. The training objective is to minimize
the reconstruction loss:

min
f,g

Ex∼p(x)
è
∥x− g(f(x))∥2

é
. (2.1)

When trained on defect-free images, the autoencoder learns to reconstruct these
images with low error. However, if a defective image is presented, the reconstruction
error become:

∥x′ − g(f(x′))∥

Despite the promising results, challenges remain. High false positive rates may
arise due to minor variations in texture, lighting, or manufacturing tolerances.
Moreover, deep unsupervised models often lack transparency, which can hinder
trust in safety-critical applications. The computational complexity required to
train models such as GANs and autoencoders necessitates access to large datasets
and significant computational resources. Additionally, the representativeness of
the training data is crucial; incomplete data can lead to poor generalization in
real-world scenarios. Hybrid approaches that combine unsupervised methods
with semi-supervised or human-in-the-loop techniques are emerging as promising
solutions to these challenges. Future research is also exploring transformer-based
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models and diffusion models to improve both the quality and interpretability of
unsupervised learning.

Consequently, the technical foundations of unsupervised learning ranging from
density estimation and latent space modeling to clustering and contrastive repre-
sentation learning provide a robust framework for defect detection in computer
vision. By focusing on the intrinsic structure of defect-free data, these methods offer
scalable and adaptable solutions for detecting anomalies in a variety of industrial
and medical applications.
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2.5 Metrics
2.5.1 Accuracy
Accuracy is one of the most commonly used evaluation metrics in computer vision
and machine learning models. It measures the proportion of correctly classified
instances in a dataset, including both true positives (TP) and true negatives (TN).
Mathematically, it is defined as:

Accuracy =
True Positives (TP) + True Negatives (TN)

True Positives (TP) + False Positives (FP) + True Negatives (TN) + False Negatives (FN)
(2.2)

In simple terms, accuracy represents the ratio of correctly predicted samples to
the total number of samples in the dataset. It provides an intuitive measure of model
performance and is widely adopted in applications such as image classification,
object recognition, and segmentation.

Despite its usefulness in balanced datasets, accuracy has significant limitations
when applied to real-world problems where class distributions are imbalanced or
when different types of classification errors have varying degrees of importance.
One major limitation arises in datasets with severe class imbalance. If one class is
significantly more frequent than another, accuracy can be misleading. For instance,
consider a binary classification problem where 95% of instances belong to Class
A and only 5% belong to Class B. A naive model that always predicts Class A
would achieve 95% accuracy while completely failing to identify Class B instances.
Even though the accuracy is high, the model lacks the ability to detect minority
class samples, which can be problematic in high-stakes applications such as medical
diagnosis, fraud detection, and industrial defect detection.

Accuracy is particularly ineffective in anomaly detection problems such as fraud
detection, cybersecurity threat identification, and network intrusion detection.
These tasks often involve datasets where anomalies are extremely rare compared
to normal instances. A fraud detection system, for example, might have only 0.5%
fraudulent transactions in a dataset. If a model simply classifies all transactions
as non-fraudulent, it would achieve 99.5% accuracy but fail to detect any actual
fraud cases. In such scenarios, accuracy does not provide meaningful insight into
model performance, and alternative metrics must be considered to evaluate how
well anomalies are detected.

Another domain where accuracy fails to provide a reliable evaluation metric is
medical imaging and disease detection. Consider an automated system designed to
detect cancer in mammograms. If cancer-positive cases account for only 1% of the
dataset, a model that classifies all cases as "healthy" would yield 99% accuracy while
completely failing to diagnose cancer-positive patients. In medical applications, the
cost of false negatives (misdiagnosing a diseased patient as healthy) is significantly
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higher than the cost of false positives (incorrectly diagnosing a healthy patient
as diseased). Since accuracy does not differentiate between these errors, it is an
inadequate measure of performance in such scenarios.

In industrial applications, particularly in automated quality control and defect
detection on manufacturing lines, accuracy can be highly misleading. Manufacturing
datasets are typically heavily imbalanced, as most products pass quality inspection,
and only a small fraction contain defects. Suppose a factory produces one million
units per day, with only 500 defective units. A model that predicts "no defect"
for every product would achieve 99.95% accuracy while failing to identify any
defective units. In this case, accuracy provides a false sense of security, as the
model does not serve its primary purpose of detecting faulty products. Failing to
catch defective units can result in significant financial losses, product recalls, and
even safety hazards. For industrial applications, recall is a far more critical metric,
as it ensures that the model captures defective units even at the cost of some false
positives, which can be manually verified through secondary inspections. In object
detection-based defect identification models, Intersection over Union (IoU) is often
a more meaningful measure of performance.

Although accuracy is a simple and widely used metric, it should not be the
sole evaluation criterion for model performance, particularly in applications where
class imbalances exist or where different types of misclassification errors have
drastically different consequences. Relying solely on accuracy can lead to misleading
conclusions about a model’s true effectiveness. In cases such as defect detection,
medical diagnosis, fraud detection, and autonomous systems, optimizing for recall
or F1 score is often more critical than maximizing accuracy alone. Therefore,
accuracy should always be analyzed in conjunction with other performance metrics
to ensure that machine learning models perform reliably in practical, real-world
applications.
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2.5.2 F-Score
The F1 score is a fundamental metric in machine learning and computer vision,
particularly useful for evaluating classification models in imbalanced datasets or
scenarios where false positives and false negatives carry different consequences.
Unlike accuracy, which may be misleading when class distributions are uneven,
the F1 score balances precision and recall, making it a more reliable performance
measure in such cases.

Mathematically, the F1 score is defined as the harmonic mean of Precision and
Recall:

F1 = 2× Precision× Recall
Precision + Recall (2.3)

where:

Precision = TP

TP + FP
, Recall = TP

TP + FN
(2.4)

Precision represents the proportion of correctly predicted positive instances
out of all predicted positives, while Recall quantifies the proportion of actual
positives that were correctly classified. The F1 score is particularly useful in defect
detection in manufacturing lines, where the occurrence of defects is rare compared
to non-defective products, leading to an inherently imbalanced dataset.

In automated manufacturing quality control, computer vision models are widely
employed to identify defective products. Since defective products constitute only a
small percentage of total production, relying solely on accuracy can be misleading.
A naive classifier that labels every product as non-defective may achieve an accuracy
of 99.9%, despite failing to detect any actual defects. The F1 score mitigates this
issue by considering both false positives (FP) and false negatives (FN), ensuring
that misclassified defects impact the evaluation proportionally.

False positives and false negatives in manufacturing defect detection systems
have distinct operational implications:

• False Positives (FP): Occur when a non-defective product is incorrectly clas-
sified as defective. This leads to unnecessary manual inspections, increased
rework, and production inefficiencies.

• False Negatives (FN): Occur when a defective product is mistakenly classified
as non-defective. This is far more critical, as defective units may pass through
quality control, resulting in customer complaints, recalls, financial losses, and
potential safety hazards.

Because false negatives typically pose greater risks than false positives, man-
ufacturing lines often prioritize recall (ensuring defective products are caught).
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However, focusing only on recall can lead to an excessive number of false positives,
unnecessarily rejecting good products, leading to increased inspection costs and
lower production efficiency. The F1 score helps balance these trade-offs, ensuring
that both precision and recall contribute equally to the model evaluation.

To optimize the F1 score in defect detection systems, manufacturers employ
several strategies. Threshold Tuning adjusting the classification threshold helps
balance precision and recall, ensuring that the model neither under-detects nor
over-detects defects. Furthermore, rather than a simple classification approach,
unsupervised and semi-supervised anomaly detection methods can improve the
ability to detect rare defect cases. In addition, by combining the F1 score with
other metrics such as the Matthews Correlation Coefficient (MCC) and Area Under
the Precision-Recall Curve (AUC-PR) provides a more holistic assessment of model
performance.

Although the accuracy appears extremely high, the low F1 score indicates that
the model struggles with precision—it detects most defective products (high recall)
but misclassifies a large number of good products as defective (low precision).
Increasing precision while maintaining recall would improve the F1 score, making
the system more reliable for defect detection.

Ultimately, the F1 score plays a critical role in manufacturing defect detection,
offering a robust evaluation metric that accounts for both false positives and false
negatives. Unlike accuracy, which can be misleading in class-imbalanced scenarios,
the F1 score provides a balanced assessment, ensuring that quality control processes
effectively identify defects while minimizing unnecessary rework and costs. By
leveraging techniques such as threshold tuning, anomaly detection, and multi-metric
analysis, manufacturers can optimize defect detection systems, leading to higher
product quality, reduced operational waste, and improved customer satisfaction.
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2.5.3 AUROC
The Receiver Operating Characteristic (ROC) curve and the Area Under the Curve
(AUC-ROC) metric are fundamental tools for evaluating machine learning models
used in defect detection for manufacturing lines. These metrics provide insight into
how well a model distinguishes between defective and non-defective items across
different classification thresholds. Unlike accuracy, which can be misleading in cases
of class imbalance, AUC-ROC offers a more threshold-independent assessment of
model performance.

The ROC curve is a graphical representation of a model’s behavior at varying
thresholds. It is plotted by evaluating the True Positive Rate (TPR) against the
False Positive Rate (FPR) at different threshold levels. The True Positive Rate
(TPR), also known as recall, measures the proportion of actual defective items
correctly identified:

TPR = TP

TP + FN
(2.5)

Similarly, the False Positive Rate (FPR) quantifies the proportion of non-
defective items that are mistakenly classified as defective:

FPR = FP

FP + TN
(2.6)

A highly effective model produces an ROC curve that bends sharply toward the
upper-left corner, where TPR is maximized while FPR remains minimal. The ideal
model would achieve a point at (0,1) on the ROC plot, meaning it correctly detects
all defective items without falsely classifying any non-defective ones. However,
real-world models rarely achieve perfect classification, making AUC-ROC a valuable
comparative metric.

The Area Under the ROC Curve (AUC-ROC) quantifies a model’s ability to rank
defective items higher than non-defective ones. Mathematically, AUC represents
the probability that a randomly selected defective item will be assigned a higher
defect score than a randomly chosen non-defective item. A perfect classifier has
AUC = 1.0, meaning it flawlessly distinguishes between the two classes, while an
AUC of 0.5 indicates performance equivalent to random guessing.

AUC-ROC is particularly important for defect detection in manufacturing, where
datasets are often highly imbalanced. Since defects typically constitute a small
fraction of total production, accuracy can be misleading. A model that simply
predicts "non-defective" for every item may achieve high accuracy but fail to detect
actual defects. AUC-ROC avoids this issue by evaluating ranking ability rather
than absolute classification performance, ensuring the model is assessed across
various operating conditions.
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In real-world defect detection, threshold selection plays a critical role, as manu-
facturers must decide between minimizing false positives (FPR) and false negatives
(FNR) and the implications of these errors vary significantly

Depending on business priorities, different thresholds along the ROC curve may
be optimal:

1. If false positives are costly but false negatives are acceptable, a higher threshold
should be used to minimize FPR, reducing unnecessary defect labeling.

2. If false negatives are critical, such as in aerospace or medical device manu-
facturing, a lower threshold is preferable to maximize recall (TPR), ensuring
defective items are not overlooked.

3. If both errors have similar costs, an intermediate threshold balancing precision
and recall may be optimal.

Figure 2.3 illustrates a typical AUC-ROC curve, where different points corre-
spond to different trade-offs in classification performance.

Figure 2.3: Example of an AUC-ROC curve illustrating model performance at varying
thresholds.

AUC-ROC is also a valuable tool for comparing multiple defect detection models.
With some examples we can see that why this metric is completely related and
necessary for industrial anomaly detection task, consider two models:

• Model A: AUC = 0.65 (Moderate classification performance)

• Model B: AUC = 0.93 (Superior classification performance)
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Since Model B achieves a significantly higher AUC, it will generally outperform
Model A at almost all threshold settings, making it the preferred choice for
deployment. Evaluating models based on AUC allows manufacturers to make data-
driven decisions, selecting the model that best aligns with business requirements
and quality control standards.

A real-world example further demonstrates the importance of AUC-ROC in
manufacturing. Consider an automated semiconductor fabrication plant, where
defective microchips constitute only 0.1% of total production. A defect classification
model achieves an accuracy of 99.8%, which appears excellent at first glance.
However, a deeper analysis using AUC-ROC reveals key issues:

• AUC = 0.62: The model struggles to differentiate defective chips from func-
tional ones.

• False Negative Rate (FNR) = 30%: Nearly one-third of actual defective chips
go undetected, leading to potential failures in downstream applications.

• False Positive Rate (FPR) = 5%: A significant number of good chips are
incorrectly flagged as defective, increasing inspection and rework costs.

This analysis highlights that while accuracy appears high, the model’s ranking
ability (AUC-ROC) reveals its limitations. An improved version of the model with
AUC = 0.91 demonstrates a much higher capacity to distinguish defects, reducing
false negatives to 3% while keeping false positives manageable at 2%. This directly
translates to better quality control, reduced waste, and cost efficiency.

Overall, AUC-ROC is a crucial evaluation metric in defect detection systems
deployed in manufacturing environments. It enables more reliable model assessment
in class-imbalanced settings, where traditional accuracy-based metrics fail. By
analyzing ROC curves and AUC scores, manufacturers can optimize their defect
detection to minimize false negatives while keeping false positives within acceptable
limits. This leads to higher product reliability, lower operational costs, and improved
customer satisfaction, ensuring that automated manufacturing lines operate with
maximum efficiency and precision.
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2.5.4 AU-PRO
The Area Under the Per-Region-Overlap Curve (AU-PRO) is a crucial evaluation
metric in anomaly segmentation, especially in applications where precise localization
of defects or anomalies is essential. Traditional evaluation metrics, such as accuracy,
precision, recall, and F1-score, primarily assess detection capability but fail to
account for the quality of segmentation. In contrast, AU-PRO is designed to
quantify how well a model delineates anomaly regions, making it a superior metric
for tasks requiring precise boundary segmentation.

The foundation of AU-PRO lies in the concept of Per-Region Overlap (PRO),
which assesses how well a predicted anomaly region aligns with the corresponding
ground-truth region. This is calculated using the Intersection over Union (IoU):

IoU = |P ∩G|
|P ∪G|

(2.7)

where P represents the predicted anomaly mask, and G represents the ground-
truth anomaly mask. Unlike traditional pixel-wise accuracy measures that may
disproportionately weigh large anomalies, AU-PRO ensures that both small and
large anomalies contribute proportionally to the overall score. This makes it robust
in scenarios where minor defects hold critical importance, such as in industrial
quality control and medical imaging.

AU-PRO evaluates segmentation performance across different confidence levels
rather than at a single decision threshold. Most anomaly segmentation models
generate continuous-valued anomaly scores, rather than binary classifications.
To create a fair evaluation, the predicted anomaly map is binarized at multiple
thresholds. For each threshold, the per-region overlap is computed, and the results
are aggregated to form the AU-PRO curve, where the x-axis represents the threshold
values, and the y-axis represents the average per-region overlap value.

The AU-PRO score is determined by integrating the area under this curve:

AU-PRO =
Ú tmax

tmin
PRO(t) dt (2.8)

A higher AU-PRO score indicates better segmentation accuracy and signifies that
the model can consistently delineate anomaly boundaries across varying confidence
levels. Unlike single-threshold metrics, AU-PRO is threshold-independent, making
it particularly useful for evaluating models without requiring arbitrary threshold
selection.

AU-PRO has significant implications in real-world applications that demand pre-
cise anomaly segmentation. In industrial defect detection, precise defect localization
is critical for automated manufacturing and quality control. Standard pixel-wise
evaluation methods often fail to detect tiny or irregularly shaped defects, leading to
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unreliable assessments. With this metric provides a rigorous evaluation by ensuring
that both major and minor defects are equally considered. In industries such
as semiconductor manufacturing, PCB inspection, and material surface analysis,
the ability to assess segmentation fidelity at the per-region level directly impacts
production quality and defect classification reliability.

In medical image analysis, where the accurate segmentation of tumors, lesions,
and other pathological structures is essential, AU-PRO ensures fine-grained local-
ization accuracy. Traditional classification metrics, such as precision-recall and
Dice coefficient, fail to capture how well an anomaly is segmented. This metric
provides pixel-level accuracy evaluation, which is crucial in applications such as
cancer detection, brain lesion segmentation, and ophthalmic disease diagnosis.
Since missegmentation can lead to misdiagnosis and improper treatment planning,
AU-PRO is particularly valuable in ensuring reliable and interpretable medical AI
systems.

Autonomous systems, such as self-driving cars and robotic inspection systems,
also benefit significantly from AU-PRO. These systems rely on accurate anomaly
segmentation for obstacle detection and safety-critical decision-making. If an
autonomous system fails to segment an object accurately, it may misinterpret
hazardous obstacles, road defects, or foreign objects, leading to potential accidents.
AU-PRO helps evaluate the segmentation quality of such models across different
confidence levels, ensuring that anomaly boundaries are well-defined, leading to
more reliable object detection and decision-making.

Another key area where AU-PRO plays an essential role is in multimodal anomaly
detection. In many advanced applications, systems analyze data from multiple
modalities, such as combining RGB images with infrared, depth maps, or 3D point
clouds. Evaluating the segmentation accuracy of such complex data representations
requires a metric that captures segmentation quality independently of modality-
specific noise and resolution differences. AU-PRO enables fair comparisons and
ensures that multimodal anomaly detection systems are evaluated holistically.

Despite its advantages, AU-PRO comes with computational challenges. Cal-
culating per-region overlaps across multiple thresholds increases computational
cost, especially for high-resolution images and large datasets. Additionally, the
accuracy of AU-PRO is highly dependent on the quality of the ground-truth masks.
If the annotation process introduces errors, such as inconsistent segmentation
boundaries or mislabeled anomaly regions, the AU-PRO score may not accurately
reflect model performance. Careful curation of ground-truth data is necessary to
ensure trustworthy evaluations.

AU-PRO stands out as a powerful and sophisticated metric for evaluating
anomaly segmentation models, particularly in applications that require high lo-
calization accuracy. By considering segmentation performance across multiple
thresholds, AU-PRO provides a more comprehensive and robust evaluation than
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traditional metrics. Its applicability in industrial inspection, medical imaging, au-
tonomous systems, and multimodal anomaly detection demonstrates its versatility.
While computationally intensive, its ability to assess fine-grained segmentation
fidelity makes it an indispensable tool for researchers and engineers developing
high-precision anomaly detection models.
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Related Work

Anomaly and defect detection in industrial manufacturing lines has witnessed
substantial progress over the past decade, evolving from early computer vision
techniques based on handcrafted features to contemporary deep learning frame-
works that can accurately pinpoint subtle defects in complex environments. This
evolution has been driven largely by the critical need for quality assurance and
operational efficiency in manufacturing, where the cost of undetected defects can
be extremely high. Early approaches in this field relied heavily on traditional
image processing methods, which, despite their computational efficiency, often fell
short when confronted with the variability and subtlety of defects in real world
settings. These classical techniques were primarily based on statistical modeling
and thresholding methods that attempted to capture the distribution of normal
features, yet they frequently struggled to generalize across different scenarios due
to variations in object alignment, lighting conditions, and environmental factors.

The advent of large scale, annotated datasets has played a pivotal role in
advancing the state-of-the-art. Notably, the introduction of the MVTec Anomaly
Detection (AD) dataset [17, 18] marked a significant milestone by providing a diverse
set of inspection scenarios in which training data consisted exclusively of defect
free images while the test sets included a variety of anomalies. This dataset, along
with its successors such as the Visual Anomaly (VisA) [19] and MVTec Logical
Constraints (LOCO) datasets [18], has spurred considerable research interest.
These datasets encompass both structural anomalies—such as scratches, stains, or
cracks—and logical anomalies where the spatial or contextual relationships between
objects are disrupted. The pixel level annotations provided by these datasets have
enabled researchers to benchmark both the detection and localization of anomalies
with unprecedented precision. Since, usage of industrial anomaly detection became
more and more, we needed more challenging datasets to evaluate the performance of
our algorithms. Hence, in 2024 Real-IAD [3] introduced a new version of challenging
dataset suitable to explore the performance of models in industrial environment.

26



Related Work

Industrial anomaly detection techniques overall divided into two main approaches,
supervised AD, unsupervised AD. Furthermore, you can find a good overview of
all state of the arts related to this computer vision task in 3.1.

In supervised AD we have different subset of challenge. Zero-Shot and Few-Shot
Anomaly Detection Recent works have focused on enabling anomaly detection with
minimal or no labeled data. Learning based approaches, such as the Unsupervised
Metaformer model for anomaly detection [20] and hierarchical transformation
discriminating generative models [21], aim to improve feature representations for
low-data regimes. Few-shot anomaly detection techniques using registration-based
methods [22] has pushed the limits of industrial anomaly detection. Additionally,
WinCLIP [23] introduced a zero-few-shot approach for anomaly classification and
segmentation, while hybrid prompt regularization techniques [24] further improved
segmentation performance without explicit training. Handling noisy data is critical
for robust anomaly detection. The TrustMAE framework [25] leverages memory-
augmented autoencoders to improve defect classification in the presence of noise.
Other approaches include Latent Outlier Exposure [26], which enhances detection
with contaminated datasets, and Deep One-Class Classification using Interpolated
Gaussian Descriptors. The SoftPatch method focuses on unsupervised anomaly
detection in noisy environments, while self-supervised refinement techniques [27]
aim to iteratively improve anomaly detection performance. With the growing
importance of 3D data, several studies have addressed anomaly detection in 3D
point clouds. Deep geometric descriptors have been applied to 3D anomaly detec-
tion [28], while asymmetric teacher-student networks [29] offer robust industrial
applications. Classical 3D feature based methods [30] highlight the effectiveness of
traditional geometric approaches. Hybrid fusion based multimodal methods [31]
have demonstrated improved detection capabilities. Additionally, networks like
EasyNet [32] and datasets such as Real3D-AD [33] contribute to benchmarking
and advancing 3D anomaly detection. Synthetic data augmentation plays a crucial
role in improving anomaly detection performance. GAN-based techniques, such
as defect image sample generation [34] and highfidelity defect synthesis [35], have
been employed for surface defect detection. Simulation-based few-shot learning
methods [36] and deep learning-driven synthetic data augmentation have further
enhanced defect segmentation and classification.

Moreover, research on continual adaptation [37] focuses on mitigating catas-
trophic forgetting while maintaining anomaly detection performance. Unified
models, such as the approach for multi-class anomaly detection and OmniAL [38],
a CNN framework for unsupervised anomaly localization, propose holistic solutions
for anomaly detection across multiple domains.

These advancements collectively contribute to improving anomaly detection
across various industrial and research applications, paving the way for more efficient,
scalable, and adaptive detection systems. In response to the challenges posed by
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Figure 3.1: Overall overview of industrial anomaly detection strategies till 2024.

Source: https://github.com/M-3LAB/awesome-industrial-anomaly-detection
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these datasets, deep learning techniques have become the preferred approach
for anomaly detection in manufacturing. One influential line of research has
focused on leveraging convolutional neural networks (CNNs) as feature extractors.
By mapping input images into high-dimensional feature spaces, these methods
facilitate the modeling of the distribution of normal features. Various techniques
have been employed to model these distributions, including the use of multivariate
Gaussian models, Gaussian Mixture Models, and normalizing flows [39, 40]. For
example, methods like PatchCore [41] have demonstrated that clustering features
and conducting k-nearest neighbor searches on a reduced set of representative
features can lead to significant improvements in both detection accuracy and
computational efficiency [41]. This approach capitalizes on the idea that anomalies
can be detected as deviations from the learned normal feature distribution, thereby
offering a statistically grounded framework for defect detection.

Another prominent avenue of research involves reconstruction based methods.
These approaches are predicated on the concept that a model trained exclusively
on normal data should be capable of accurately reconstructing normal images,
while it would struggle with anomalous inputs. Autoencoders and generative
adversarial networks (GANs) have been widely used for this purpose [42, 43].
The reconstruction error, which measures the difference between the input and
its reconstruction, is then interpreted as an indicator of anomaly. Although
this method is intuitively appealing and provides a direct visual interpretation
of anomalies, it is not without its drawbacks. A common issue is that models
sometimes generate blurry or imprecise reconstructions even for normal inputs,
which can lead to false positive detections. To mitigate such challenges, later
research has introduced additional constraints or memory modules to enforce
the reconstruction of only the most representative normal features. Techniques
such as AESSIM and MemAE have incorporated these ideas by either adding
auxiliary constraints or utilizing a memory bank of normal features to guide the
reconstruction process [44, 45]. Furthermore, some approaches have experimented
with generating synthetic anomalies during training to enhance the network’s ability
to distinguish between normal and abnormal patterns. This dual focus on both
accurate reconstruction and robust anomaly highlighting has become a defining
characteristic of modern reconstruction based methods.

A third significant research direction has been the application of knowledge
distillation techniques. In these methods, a large, pretrained “teacher” network
provides high quality feature representations that encapsulate the complexity of
normal images, while a smaller “student” network is trained to mimic these features.
The fundamental assumption is that the student network, having been exposed
only to normal data, will produce outputs that deviate from the teacher’s when
processing anomalous images. These discrepancies, which manifest as elevated
reconstruction or prediction errors, can be effectively used to score and localize
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anomalies [46]. Early implementations of this paradigm, such as those employed
in US and MRKD, utilized multi resolution feature representations and compared
outputs across different scales to detect even subtle defects [46, 47]. Subsequent
innovations have sought to address the challenge of overgeneralization where the
student network inadvertently learns to mimic the teacher even for anomalous
inputs by incorporating mechanisms such as feature pyramid matching and reverse
distillation [48, 49]. These enhancements have led to more pronounced discrepancies
between the normal and anomalous feature distributions, thereby improving both
the reliability and precision of anomaly localization.

More recently, there has been a trend towards integrating the strengths of
the aforementioned approaches into unified frameworks. Such hybrid methods
aim to model the normal data distribution more accurately while simultaneously
ensuring that the deviations caused by anomalies are captured effectively. By
optimizing both the normal and abnormal feature distributions collaboratively,
these approaches explicitly enlarge the margin between them, reducing prediction
uncertainty and enhancing localization performance [29]. Advances in network
architecture, including the adoption of residual connections and attention mecha-
nisms, have further bolstered the capacity of these systems to detect subtle defects
even in the presence of challenging imaging conditions. The recent exploration of
transformer based models in this context has also opened new avenues for capturing
long range dependencies and contextual cues, which are essential for accurately
identifying defects in complex industrial environments [50, 13].

In industrial applications, where the requirements for real time processing
and high accuracy are paramount, the continuous evolution of these methods
is essential. The integration of distribution based, reconstruction based, and
knowledge distillation–based techniques not only addresses the inherent challenges
posed by limited anomalous training data but also enhances the overall robustness of
the detection systems. Each approach offers unique advantages: distribution based
methods provide a strong statistical foundation, reconstruction based methods
offer intuitive visual cues through reconstruction errors, and knowledge distillation
approaches leverage the power of pretrained networks to implicitly capture the
nuances of normal feature distributions. Despite the progress, each method also
comes with its own set of challenges, such as high computational demands, risk
of overgeneralization, or the difficulty of balancing reconstruction fidelity with
anomaly sensitivity.

Collectively, the body of work in this field reflects a rich tapestry of ideas that
have progressively pushed the boundaries of what is achievable in automated defect
detection. As researchers continue to refine these techniques and develop more
sophisticated models, the integration of these various paradigms is expected to lead
to systems that are not only more accurate and robust but also more adaptable to the
dynamic and often unpredictable conditions of real world industrial environments.
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Related Work

The pursuit of improved methods for anomaly and defect detection remains a
vibrant and critical area of research, promising to deliver significant benefits in
terms of quality control and operational efficiency in manufacturing processes [46,
41, 49].
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Chapter 4

Methods

Obtaining labeled abnormal data is challenging or even infeasible. Industrial
environments often present complexities that make the prediction of abnormal
images extremely difficult, particularly when such images are rare or highly variable.
In addition, industrial images may exhibit significant noise and environmental
variability factors that can degrade the performance of conventional detection
methods. To overcome these obstacles, our model is designed to be both fast and
accurate, with the dual capability of classifying anomalous objects and segmenting
the regions where anomalies occur with unsupervised method which skip the need
of labeled data during training.

A key insight from our research is that the teacher-student architecture exhibits
a strong ability to distinguish between normal and anomalous images. In parallel,
autoencoder architectures have proven effective in localizing the regions of anomalies
by reconstructing images and highlighting discrepancies. Recognizing the individual
strengths of these architectures, our proposed method integrates a multi-modal
approach that combines the discriminative power of the teacher-student framework
with the localization capability of autoencoders. This integrated approach is
inspired by the EfficientAD method [1], which leverages both autoencoder and
student-teacher paradigms to enhance anomaly detection performance.

EfficientAD originally suggested the use of a loss function (denoted as LOOD)
to prevent overgeneralization in the model. However, when evaluated under the
constraint of a 30% false positive rate (FPR), this approach did not sufficiently
mitigate overgeneralization. Moreover, the reliance on an additional dataset beyond
our primary plastic-nut subdataset introduced further complications. In response to
these challenges, we modified the training architecture by using a novel loss function,
termed LCDO[2], and by generating synthetic anomalies to simulate realistic defect
scenarios. These synthetic anomalies, as illustrated in the accompanying figure,
enable the model to optimize its behavior in detecting anomalies while retaining
the autoencoder’s proficiency in localizing defect regions.
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Our final training pipeline is composed of three parallel components. The first
component employs the student-teacher framework using normal images to learn
robust representations of standard operating conditions. The second component
applies the same framework to synthetically generated abnormal images, thereby
enhancing the model’s sensitivity to potential defects. The third component
integrates the autoencoder with the teacher network to fine-tune the localization
of anomalous regions. Although EfficientAD originally recommended an additional
loss term to align the outputs of the autoencoder and the student network aimed
at reducing false alarms in noisy backgrounds we found that this was unnecessary
for our application. Our dataset(plastic-nut) from Real-IAD[3] is characterized
by clear backgrounds, and the primary challenge lies in the variability of lighting
conditions. We addressed these lighting challenges through a comprehensive data
augmentation strategy, which included techniques such as image enhancement and
adjustments to brightness and contrast.

In summary, our thesis presents a flexible and efficient method for industrial
anomaly detection that harnesses the complementary strengths of the teacher-
student and autoencoder architectures. By innovating on existing approaches
and introducing new loss functions and training strategies, we have developed a
model that is capable of both classifying anomalies and accurately segmenting
their regions. This work not only contributes to the advancement of unsupervised
anomaly detection in industrial settings but also provides a framework that can be
adapted to meet the evolving needs of quality control and defect management in
diverse manufacturing environments.
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4.1 Dataset
High-quality datasets are essential for advancing computer vision, particularly in
the realm of industrial anomaly detection. In such applications, the quality and
diversity of image data directly influence the development of robust algorithms that
can operate under the variable and often challenging conditions found in industrial
environments. Industrial images are subject to a range of complexities, includ-
ing variable lighting, reflections from metallic surfaces, occlusions by machinery,
and the inherent requirement for high-resolution capture to detect subtle defects.
Furthermore, the multi-view nature of production processes means that images
captured from a single angle may fail to reveal all the critical details of a defect,
thereby necessitating a dataset that not only encompasses a large volume of images
but also a diverse set of perspectives.

Historically, early anomaly detection research relied on datasets such as Kolek-
torSDD [51], which, while pioneering, contained only a single category and thus
imposed significant limitations on both the evaluation and further development of
algorithms. As research progressed, new datasets like MTD [52], MPDD [53], and
BTAD [54] were introduced. Despite these advances, the relatively small number
of categories and limited total image count in these datasets continued to restrict
comprehensive algorithm evaluation. The advent of the MVTec AD dataset [17],
which includes 15 industrial products divided into two types with a total of 5,354
images, marked a turning point. This dataset provided a more robust platform
for research on conventional sensory industrial anomaly detection (IAD) tasks and
spurred broader interest among researchers and practitioners alike. Building on
this momentum, the VisA dataset [19] expanded the scale further by covering 12
objects in three types with a total of 10,821 images, thereby elevating the IAD
dataset volume to the 10K image level and increasing the number of categories to
15.

Subsequent efforts have sought to address the limitations of these earlier datasets.
For instance, Zhou et al. [55] proposed a synthetic pose-agnostic anomaly detection
dataset intended to broaden the scope of research; however, the inherent differences
between synthetic data and real-world samples have led to inconsistencies in
evaluation metrics. Other datasets have attempted to incorporate three-dimensional
information such as MVTec 3D AD [18], Eyecandies [56], and Real3D [33] to improve
defect detection, yet these remain confined to relatively small scales and limited
industrial scenarios.

The standard task in industrial anomaly detection is to determine whether an
image of a target class contains an anomaly and, if so, to precisely localize the
anomalous region. This task is inherently challenging because anomalous data
is typically scarce, leading researchers to frame the problem as an unsupervised
learning challenge where only normal data is available during training. A variety of
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unsupervised approaches have emerged in recent years, including those based on data
augmentation, reconstruction, and embedding techniques. In particular, embedding-
based methods have evolved into several subcategories, including memory bank
approaches, normalizing flow techniques, knowledge distillation methods, and
classification-based frameworks, all of which have achieved commendable results
under controlled conditions.

To overcome the limitations of previous datasets and better capture the com-
plexity of industrial imaging, we used the RealIAD [3] dataset. Our experimental
evaluations conducted on Real-IAD have revealed that state-of-the-art unsuper-
vised anomaly detection algorithms which perform well on established datasets
such as MVTec AD and VisA encounter significant challenges when applied to
Real-IAD. This finding underscores the need for more robust algorithms capable
of handling the diverse and complex conditions present in real-world industrial
environments. The Real-IAD dataset, with its expansive scale, increased category
diversity, and multi-view imaging, is poised to serve as a comprehensive resource
that not only facilitates fair comparisons across different methods but also drives
the development of more effective and practical solutions in industrial anomaly
detection. We discussed about training pipeline in details and results of different
model and architectures in details in 5.2.

4.1.1 MVTec-AD
The MVTec AD [17] dataset represents one of the most comprehensive and challeng-
ing resources for evaluating unsupervised anomaly detection methods in industrial
settings. Comprising a total of 5,354 high-resolution images across 15 distinct
categories including both objects (e.g., bottle, cable, capsule, hazelnut, metal nut,
pill, screw, toothbrush, transistor, zipper) and textures (e.g., carpet, grid, leather,
tile, wood) the dataset is designed to closely emulate real-world inspection scenarios
encountered in manufacturing processes. The training set consists solely of defect-
free images that capture the ideal or “normal” appearance of each category, whereas
the test set is intentionally curated to include both pristine and anomalous samples.
In the anomalous samples, defects manifest in over 70 unique forms, such as minute
scratches, dents, contaminations, missing parts, and subtle structural deformations,
with each anomaly annotated at the pixel level to enable precise evaluation of
both global classification and localized segmentation performance. Images were
acquired using a high-resolution industrial RGB sensor combined with bilateral
telecentric lenses (with magnification factors of 1:1 and 1:5), ensuring uniform scale
and minimal perspective distortion across the dataset. The resulting images, which
typically range in resolution between 700×700 and 1024×1024 pixels, capture a
level of detail that is crucial for identifying even the most subtle defects. Controlled
illumination conditions during acquisition minimize extraneous variability, thereby
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ensuring that the detected anomalies are genuine reflections of physical defects
rather than artifacts of inconsistent lighting. In 4.1, sample images are presented
to illustrate these characteristics: one panel shows a defect-free image used for
training, while other panels exhibit various test images where anomalies such as
barely perceptible surface cracks and localized contaminations are evident. These
visual examples underscore the dataset’s capacity to challenge detection algorithms
at both the image and pixel levels.

Figure 4.1: Sample images from MVTecAD dataset used in anomaly detection papers.

The structured composition of the MVTec AD dataset allows for a multifaceted
evaluation of anomaly detection methods. At the image level, many algorithms
assign a single anomaly score per image, with performance commonly quantified
using metrics such as the Area Under the Receiver Operating Characteristic
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Curve (AUROC). This metric is particularly valuable in settings where a binary
decisionnnormal versus anomalous is required. However, the true strength of the
dataset lies in its support for pixel-level segmentation. Here, the pixel-precise
annotations enable researchers to generate detailed anomaly maps and compute
evaluation metrics that assess the spatial accuracy of the segmentation. Metrics
such as the per-pixel AUROC and the relative per-region overlap between predicted
anomaly regions and the ground truth provide deep insights into the effectiveness
of a given method in isolating and localizing defects.

The dataset’s relevance extends beyond mere benchmarking; it mirrors the real-
world challenges inherent in industrial inspection tasks. In practical applications,
defective samples are typically sparse due to stringent quality control protocols,
making it imperative for detection systems to learn the concept of “normality”
from abundant defect-free data and then generalize effectively to unseen, subtle
anomalies. This inherent imbalance between normal and anomalous instances
makes the MVTec AD dataset an ideal proxy for testing unsupervised anomaly
detection methods. Researchers have leveraged this dataset to develop and refine a
variety of approaches including convolutional autoencoders, generative adversarial
networks, and methods based on feature extraction from pre-trained convolutional
neural networks that are tailored to capture fine-grained deviations from normality.

Moreover, the pixel-level annotations provided in the dataset are critical for
advancing research in anomaly segmentation. These annotations allow for a granular
assessment of an algorithm’s ability to not only flag an image as anomalous but
also accurately delineate the exact regions where defects occur. For example, in
defect segmentation tasks, even minor discrepancies in reconstruction quality or
localization precision can be quantitatively assessed through overlap metrics and
per-pixel error rates. Such detailed evaluation is indispensable for applications
where precise defect localization directly informs subsequent corrective actions
or quality control decisions. The comprehensive nature of MVTec AD is further
enhanced by its rigorous acquisition and annotation protocol. Each image depicts
a unique physical sample, and the dataset deliberately avoids data augmentation
that would result in redundant views of the same object. Instead, every sample is
an independent observation, which ensures that the variability within the dataset
authentically reflects the diversity encountered in industrial production lines. This
characteristic, combined with the high-resolution nature of the images and the
controlled acquisition environment, renders the dataset particularly suited for
benchmarking state-of-the-art unsupervised anomaly detection and localization
methods.

Additionally, the MVTec AD dataset is distributed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA
4.0). This open-access licensing has facilitated its widespread adoption within the
research community, making it a de facto standard for comparative evaluations in
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the field of anomaly detection. The broad usage of the dataset in numerous studies
has also contributed to an evolving understanding of the challenges associated with
detecting subtle and complex anomalies in high-resolution images.

Overall, the MVTec AD dataset serves as a robust and challenging benchmark
for unsupervised anomaly detection. Its combination of high-quality images, diverse
defect types, and meticulously annotated ground truth provides an ideal platform
for evaluating both global anomaly classification and detailed defect segmentation.
The dataset not only mirrors the complexities of real-world industrial scenarios but
also pushes the boundaries of current methodologies, driving innovation toward
more sensitive, accurate, and reliable detection systems.

4.1.2 Real-IAD
The Real-IAD dataset has been meticulously developed to provide a more com-
prehensive benchmark for industrial anomaly detection. As explained in [3], the
dataset construction follows a systematic process involving material selection, imag-
ing system design, and data annotation. The dataset includes 30 distinct objects
composed of different materials, including metal, plastic, wood, ceramics, and com-
posite materials. To ensure diverse and representative anomaly detection scenarios,
various types of defects, such as missing parts, dirt, deformation, pits, cracks,
scratches, and structural damage, were manually introduced. These samples were
then processed and prepared for image collection using a well-structured imaging
system.

Figure 4.2: Distribution of data volume across different defect categories from Real-IAD
paper.

The imaging setup consists of a multi-view camera system, designed to capture
high-resolution images from multiple perspectives. The system employs five cameras:
one capturing a top-down perspective and four others positioned symmetrically at
approximately 45-degree angles. To enhance defect visibility, a ring light source was
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positioned above the object to improve image clarity and highlight minor anomalies.
In practical industrial applications, automated machinery is often used to flip parts
for thorough inspection. However, to maintain consistency in dataset abstraction,
the dataset standardizes the multi-view imaging to five fixed perspectives, ensuring
that the captured data remains representative while also being computationally
feasible. The imaging system utilizes a HIKROBOT MV-CE200-10GC camera
with a resolution of 3,648×5,472 pixels [3], which provides detailed images suitable
for fine-grained anomaly detection.

Following image collection, the data underwent a rigorous annotation and
cleaning process. Manual verification was performed to confirm the correctness of
both normal and anomalous images. The dataset was subsequently annotated at
the pixel level using LabelMe, providing highly detailed defect segmentation. To
ensure high annotation quality, the model’s predictions were cross-checked against
manual annotations. Any inconsistencies were iteratively reviewed and corrected
until the annotation accuracy stabilized, ensuring a clean and reliable dataset for
training and evaluation.

A comparison between Real-IAD and existing datasets, such as MVTec AD [17]
and VisA [19], reveals significant improvements in dataset scale, diversity, and
challenge complexity. The dataset contains a significantly higher number of object
categories and provides fine-grained segmentation labels along with multi-view
images. Statistical analysis, as demonstrated in 4.2, shows that Real-IAD is notably
larger than existing datasets, with an order-of-magnitude increase in both normal
and anomalous samples. The dataset also exhibits a higher proportion of defective
areas and a broader range of defect types, making it substantially more challenging
for anomaly detection algorithms. Furthermore, the dataset maintains a balanced
distribution of normal and anomalous samples across different categories, ensuring
that models trained on it generalize better to real-world applications.

The dataset offers several key advantages that distinguish it from existing
benchmarks. First, its diversity ensures broader coverage of object categories and
real-world scenarios, making it a valuable resource for developing robust anomaly
detection models. Second, its scale is unprecedented, with over 150,000 images,
significantly surpassing the size of previously available datasets. This increase in
dataset size allows for more comprehensive evaluations and enhances the statistical
significance of experimental results. Third, its complexity introduces a greater level
of difficulty, encouraging the development of more advanced and capable anomaly
detection algorithms. The inclusion of a wide range of defect types, combined with
multi-view imaging, ensures that the dataset reflects real-world challenges more
accurately.

Evaluation of the dataset follows two primary settings: Unsupervised Industrial
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Anomaly Detection1 and Fully Unsupervised Industrial Anomaly Detection. The
UIAD setup assumes that training data consists solely of normal samples, with
both normal and anomalous images included in the test set. This is a widely
used protocol in anomaly detection research and provides a standard baseline
for evaluation. The FUIAD setting, however, presents a more realistic scenario,
allowing for the inclusion of anomalous samples in the training set. This setting
is rarely explored in existing datasets due to the difficulty of obtaining sufficient
anomalous samples, but Real-IAD provides the necessary data diversity to support
such experiments.

The evaluation metrics employed for dataset benchmarking include the Area
Under the Receiver Operating Characteristic Curve (AUROC) and the Area Under
the Per-Region Overlap Curve (AU-PRO), following the methodologies described
in sections 2.5.4, 2.5.3.

Comparative benchmarking against existing datasets, such as MVTec AD and
VisA, further highlights the advantages of Real-IAD. Experimental results, as
summarized in [3], show a significant drop in model performance from MVTec
(97.9% AUROC) to Real-IAD (85% AUROC) on average, indicating that Real-
IAD presents a considerably greater challenge. This increased difficulty is due to
the dataset’s higher diversity, larger number of object categories, and multi-view
complexity. Furthermore, Real-IAD allows for a more meaningful comparison
of different anomaly detection methods, as existing datasets often exhibit near-
saturated performance (98-99% AUROC), making it difficult to distinguish between
algorithmic improvements.

Additionally, for our industrial project, we specifically utilized a sub-dataset
from Real-IAD known as Plastic-Nut, which was particularly relevant to our
application due to its alignment with common industrial defect patterns. This
sub-dataset contained various types of defects, including surface scratch, pit,
contamination and missing parts that frequently arise in the manufacturing of small
mechanical components. These defects can significantly impact product integrity
and operational efficiency, necessitating precise and reliable anomaly detection
methodologies. In Figure 4.3 you can see some sample of normal objects that used
only for training phase of the project.

To capture the full scope of defect variations, the dataset provides high-resolution
images from multiple perspectives, allowing for a more robust evaluation of defect
visibility under different lighting conditions and angles. Figure 4.4 illustrates
representative examples of Plastic-Nut samples used for evaluation, highlighting the
diverse nature of defects and the advantages of multi-view imaging in overcoming
occlusions and perspective limitations. The ability to analyze defects from different

1https://github.com/Sunny5250/Awesome-Multi-Setting-UIAD
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(a) (b)

(c) (d) (e)

Figure 4.3: Example of anomaly-free images from the dataset plastic-nut used for
training. Five different aspects of one object are provided.

viewpoints ensured that subtle defects, which might be invisible in single-view
inspection, could be accurately detected. Furthermore, the inclusion of Plastic-Nut
in our study enabled the development of a more adaptable and generalizable anomaly
detection framework, specifically tuned to the intricacies of real-world manufacturing
workflows. This sub-dataset’s integration into our research further underscores the
practical applicability of Real-IAD in industrial settings, where precise anomaly
detection is crucial for minimizing defects and improving operational efficiency. The
Plastic-Nut sub-dataset serves as a benchmark for evaluating model performance
in detecting intricate structural flaws, which are often overlooked in conventional
quality inspection systems. By leveraging multi-view high-resolution imaging
and pixel-level annotations, this dataset provides a comprehensive reference for
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training deep learning models capable of robust defect identification. Additionally,
its inclusion enhances predictive maintenance strategies by facilitating the early
detection of structural inconsistencies, thereby reducing downtime and increasing
production reliability in automated assembly lines. The systematic evaluation
using Plastic-Nut within the Real-IAD framework demonstrates its scalability
and effectiveness in diverse manufacturing scenarios, further validating its role in
advancing the field of industrial anomaly detection.

(a) (b)

(c) (d)

Figure 4.4: Example of abnormal images from the dataset plastic-nut used for training.
Missing parts (a), contamination (b), scratch (c), and pit (d) are illustrated.
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4.1.3 Data Augmentation
This section we provide an in-depth explanation of the data augmentation techniques
used in our anomaly detection system. The goal of these augmentations is to increase
the diversity of the training data, making the model more robust to variations in
real-world images. We explain each concept in detail below.

Default Transform

The first step in our pipeline is to standardize all images using a default transform.
This ensures that every image, regardless of its source, has the same size, structure,
and range of pixel values before any further processing is applied. three most
important step is implemented in this augmentation which we explain it below:

• Resizing: Every image is resized to a fixed resolution of 256 × 256 pixels.
This guarantees that all images have the same dimensions, which is crucial
because the neural network expects inputs of a consistent size. In some cases
of anomaly detection we would prefer to use image with size 512× 512. Hence,
in this case we shall change this size of augmentation depends on situation.

• Conversion to Tensor: After resizing, each image is converted from its
original format (usually a PIL image or a NumPy array) into a tensor. A
tensor is a multi-dimensional array that serves as the basic data structure
for computation in PyTorch. This step also scales the pixel values from the
typical range of 0 to 255 down to 0 to 1, which is more manageable for learning
algorithms.

• Normalization: Finally, the pixel values are normalized using the mean
and standard deviation values derived from the ImageNet dataset. This
normalization aligns the image statistics to those that the network is commonly
trained on, helping to stabilize and speed up the learning process.

This default transform is essential as it creates a consistent starting point for
every image before any further augmentations are applied.

Appearance Augmentation

Appearance augmentation introduces controlled variations in the image’s visual
characteristics. This technique is used to simulate different lighting conditions,
camera settings, or environmental factors. By doing so, the model learns to focus on
the important structural features rather than getting distracted by minor differences
in color or brightness.
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• ColorJitter: This operation randomly changes the brightness, contrast, and
saturation of the image. For example, an image might be made slightly brighter
or darker, or its colors might be intensified or muted. These small changes
help the model learn to ignore superficial color differences.

• AdjustSharpness: A custom transformation that adjusts the image sharpness.
Increasing sharpness can make the edges in the image more pronounced, which
may help in detecting fine details.

• AdjustGamma: This custom transform applies gamma correction. Gamma
correction is a non-linear operation used to encode and decode luminance
or tristimulus values, effectively changing the image’s overall brightness in a
non-linear way.

The transformations are wrapped within a RandomChoice operator. This means
that for each image, only one of the available appearance adjustments is applied.
This random selection helps maintain variability without over-complicating each
individual image.

By applying these random appearance modifications, the model becomes less
sensitive to differences in lighting, exposure, and color balance. This encourages the
learning of robust, high-level features that are invariant to these types of changes.
Furthermore, it is good to consider that the type of augmentation such as changing
brightness, sharpness and gamma is completely relative to type of object and it
environment that image is taken.

Synthetic Anomaly Injection

Synthetic anomaly injection is a specialized augmentation technique designed
specifically for anomaly detection tasks. In many practical scenarios, real anomalies
(defects or unusual patterns) are rare. To address this, we artificially inject anomalies
into normal images so that the model can learn what an anomaly looks like.

1. Decision to Inject: For each image, a random decision is made based on a
predefined probability (in our case, 40%). If the decision is affirmative, the
algorithm proceeds to inject anomalies.

2. Determining the Number of Patches: When an anomaly is to be added,
the system randomly selects between 1 and 4 patches to simulate defects.

3. Patch Generation and Placement:

• The algorithm randomly chooses the size of each patch, typically a small
fraction (between 1

40 and 1
10) of the image size.
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• It then selects a random location for each patch. If the option skip
background is enabled, the algorithm uses a simple background estimation
method (based on intensity thresholds and morphological operations) to
avoid placing patches over background regions.

4. Noise Injection: The chosen regions in the image are replaced with random
noise, simulating the presence of a defect.

Figure 4.5 shows a clear example. The upper portion of the figure depicts an
original image, while the lower portion shows the same image after synthetic noise
patches have been injected.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5: Example of Synthetic Anomaly Injection and Ground Truth. Top row:
Original images. Middle row: Images with synthetic noise patches added. Bottom
row: Corresponding ground truth images.
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For a complete and detailed explanation of how synthetic anomalies are in-
jected including pseudocode, parameter settings, and further examples please see
Section 4.6. This additional section covers every aspect of the algorithm in depth.

In summary, our data augmentation pipeline includes the following:

• Default Transform: Standardizes input images by resizing them, converting
to tensors, and normalizing the pixel values.

• Appearance Augmentation: Introduces variability by randomly adjusting
brightness, contrast, saturation, sharpness, and gamma.

• Synthetic Anomaly Injection: Creates artificial defects by inserting noise
patches into images, helping the model learn to detect anomalies.
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4.2 Patch Description Network
The concept of patch-based processing has become a fundamental approach in
modern computer vision, enabling more efficient and accurate image analysis. A
Patch Description Network (PDN) is a term that can be used to describe models that
focus on extracting meaningful representations from small image regions (patches).
These networks are crucial in tasks like image matching, feature extraction, and
object recognition. Various architectures leverage patch-based processing, and
several studies highlight its importance. One of the primary applications of patch-
based networks is patch matching, where small regions from different images are
compared to determine their similarity. Traditional methods like SIFT [9] and
ORB[57] have been widely used for this purpose, but deep learning-based approaches
have demonstrated superior performance. For example, Melekhov [58] introduced
a neural network-based descriptor designed specifically for patch matching. Their
approach maps raw image patches to a low-dimensional feature space, ensuring that
visually similar patches are closer in this learned space. This deep-learning-based
descriptor outperformed classical methods in keypoint matching and image retrieval
tasks [58].

Another notable contribution to patch-based processing is the Patch-Level Vision
Similarity Compare Network (PL-VSCN)[59] . This network tackles image matching
by breaking down the challenge of comparing whole images into a patch-by-patch
comparison. Instead of focusing on global image structures, the PL-VSCN ensures
that corresponding patches between two images are identified with high accuracy.
This method is particularly effective in scenarios where images may have significant
occlusions or background noise, as it reduces the influence of non-corresponding
regions [59]. With the rise of Transformer-based architectures in vision tasks, patch-
based representations have gained even more prominence. Vision Transformers
(ViTs), introduced by Dosovitskiy [60]. in 2020, process images by dividing them
into fixed-size patches, treating each patch as an individual token, similar to words
in NLP tasks. These patches are embedded and passed through a transformer
model, capturing long-range dependencies and providing a global understanding
of the image. This patch-based approach has proven to be a strong alternative to
traditional convolutional neural networks (CNNs), achieving state-of-the-art results
in classification and object detection [60].

Recent anomaly detection methods commonly use the features of a deep pre-
trained network, such as a WideResNet-101. However, we used a Patch Description
Network (PDN) with a drastically reduced depth as a feature extractor [1]. This
PDN consists of only four convolutional layers, where each output neuron has a
receptive field of 33×33 pixels, making each output feature vector correspond to a
specific patch. Due to this clear correspondence, the network is termed a patch
description network [1]. The PDN is fully convolutional and can process images of
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variable sizes in a single forward pass.
Unlike traditional deep networks, PDN introduced by EfficientAD reduces

computational overhead using strided average-pooling layers after the first and
second convolutional layers. This downsampling approach improves runtime and
memory efficiency compared to existing methods like Student–Teacher, which lack
such mechanisms [1].

To make the PDN generate expressive features, we used the idea introduced in
paper EfficientAD [1]. By distill a deep pretrained classification network into it.
Specifically, we use the same pretrained features as PatchCore from a WideResNet-
101 and train the PDN on ImageNet by minimizing the mean squared difference
between its output and the features extracted from the pretrained network. This
approach ensures that the PDN retains useful representational capabilities while
being computationally efficient. The PDN’s design also provides another advantage:
each feature vector depends only on its respective 33×33 patch, eliminating long-
range dependencies that are common in pretrained classifiers. Unlike PatchCore’s
feature extractors, which allow anomalies in one region of the image to influence
distant feature vectors, the PDN provides highly localized anomaly detection,
improving precision.

In addition to its efficiency, the PDN framework allows seamless integration into
various image analysis tasks, including object localization and segmentation. By
leveraging its well-defined receptive fields, it can be adapted for use in multi-scale
feature extraction, improving performance in applications requiring fine-grained
spatial details [1]. Furthermore, the PDN’s adaptability enables it to serve as a
general-purpose feature extractor, which can be fine-tuned for specialized domains
such as medical imaging and remote sensing. As deep learning continues to evolve,
PDN-like architectures hold significant potential for optimizing computational
efficiency while maintaining high feature expressiveness, providing a promising
direction for future research in computer vision.

Figure 4.6: Patch description network (PDN) architecture of EfficientAD-S [1]. Applying
it to an image in a fully convolutional manner yields all features in a single forward pass.

Expanding on its applications, the PDN can be used in real-time video processing,
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where efficiency and speed are critical. Its ability to generate compact yet descriptive
features makes it ideal for video anomaly detection, object tracking, and event
recognition. Additionally, PDN-based architectures can be integrated into robotics,
enabling autonomous navigation and scene understanding in environments with
limited computational resources. With increasing demands for lightweight, high-
performance deep learning models, the PDN presents an opportunity for more
scalable and deployable computer vision solutions across diverse fields, including
security surveillance, augmented reality, and industrial automation. Future research
will continue exploring ways to refine PDN architectures, optimizing them for even
greater efficiency while maintaining accuracy and robustness. Finally, you can find
the pipeline of this network in details and how it will be used in this thesis in order
to have patching in Section 5.
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4.3 Pretraining

In the following, we describe how to distill the WideResNet-101 [61] features used
by PatchCore [41] into the teacher network T . The distillation training algorithm
is presented in Algorithm 1. The process is analogous for other pretrained feature
extractors.

There are only a few requirements regarding the output shape of the feature
extractor. The feature extractors used by PatchCore output features of shape
384× 64× 64 for an input image size of 512× 512 pixels. Therefore, the teacher
and the autoencoder also output 384 channels we will discuss about it more in next
sections. If a pretrained feature extractor outputs a different number of channels,
this default of 384 output channels of the teacher and the autoencoder can be
adjusted flexibly. During distillation, we resize input images to 512× 512 for the
pretrained feature extractor and to 256× 256 for the teacher network that is being
trained. This results in an output shape of 384× 64× 64 for the teacher network
as well. If a feature extractor outputs feature maps of a size other than 64× 64,
we can adjust its input image size to achieve an output feature map size of 64× 64.
Alternatively, we can adjust the input image size of the teacher network because it
is fully convolutional and operates separately on patches of size 33× 33. A feature
map size of 53× 71, for example, can be achieved by applying the teacher network
to images of size 212× 284.

We use a batch size of 16 for the distillation training and use ImageNet [14]
as the pretraining dataset. We use the official implementation of PatchCore [41]
and its default values if not stated otherwise. We use the feature postprocessing of
PatchCore as well, which includes pooling features from two layers and projecting
each feature vector to a reduced dimensionality of 384 dimensions, as described in
[1]. The features used for our distillation training are the final features used by
PatchCore, i.e., those given to the coreset subsampling algorithm when training
PatchCore. We denote the WideResNet-101-based feature extractor, including the
feature postprocessing, as

Ψ : R3×512×512 → R384×64×64.

Distillation Training Algorithm

Algorithm 1 shows the overall procedure to distill the features of a pretrained back-
bone (WideResNet-101 in this case) into a new teacher network T . In practice, this
is implemented in PyTorch, but below we provide a more concise and professional
pseudo-code version. The main idea of this algorithm is based on [1] paper.
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Algorithm 1 Distillation Training for Teacher Network T

Require: Pretrained backbone Backbone (WideResNet-101), feature-extractor
module extractor that outputs 384× 64× 64 features, teacher network T with
384 output channels, dataset D (e.g., ImageNet), batch size B = 16, total steps
N = 60000, Adam optimizer with learning rate η = 10−4 and weight decay
1× 10−5.

1: Define transformations:
2: transformteacher(·): Resize images to 512× 512 and apply standard normal-

ization.
3: transformT (·): Resize images to 256× 256 and apply the same normalization.
4: Optionally, apply random grayscale augmentation to both.
5: Compute normalization statistics for teacher features:
6: (1) Initialize arrays for storing feature means and variances.
7: (2) For a subset of S images from D (e.g., S = 10000):
8: (a) Transform each image with transformteacher(·).
9: (b) Extract teacher features f ← extractor(image) ∈ R384×64×64.

10: (c) Accumulate mean µf and variance σ2
f across channels.

11: (3) Compute final µΦ and σΦ by averaging.
12: Prepare teacher network T for training:
13: Execute T.train() and move to GPU if available.
14: Initialize the Adam optimizer:
15: Set optimizer← Adam(T.parameters(), η, weight_decay = 1× 10−5).
16: Main training loop:
17: for i = 1 to N do
18: Load a batch of images (x1, x2, . . . , xB) from D.
19: Transform for teacher feature extraction: xteacher ← transformteacher(x).
20: Transform for teacher network training: xT ← transformT (x).
21: Compute target features: F target ← extractor(xteacher) ∈ R384×64×64.

22: Normalize: F target ← F target − µΦ

σΦ .
23: Forward pass teacher network: F T ← T (xT ), with F T ∈ R384×64×64.
24: Compute distillation loss: L ← MSE(F target, F T ).
25: Backpropagation and update:
26: optimizer.zero_grad()
27: L.backward()
28: optimizer.step()
29: Checkpoint (optional): Every k iterations, save the teacher network T .
30: end for
31: Save final teacher network weights. return Trained teacher network T .
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some comments on Algorithm 1:

• Infinite Dataloader: For practical purposes, the code may wrap a standard
DataLoader in an infinite loader that loops over the dataset indefinitely until
N training steps are reached.

• Feature Normalization: The feature_normalization function estimates
the mean and variance of the teacher features channel-wise, which are then
applied during training to match the distribution of the teacher.

• Patch-Based Network: The PatchMaker class and subsequent modules
(Preprocessing, Aggregator, etc.) are used to break the teacher’s interme-
diate features into patches and produce consistent dimensionalities, ensuring
the final output is 384× 64× 64.

• Saving Models: The code periodically saves both the full model (.pth file)
and the state dictionary (.pth file) for easier reloading. Based on which type
of PDN we use, the final teacher model will be medium sized teacher (medium
PDN) or small sized teacher (small PDN).
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4.4 Student-Teacher
The result of 5.2.2 will be our Teacher in the connection of student-teacher part
which some papers called it expert and apprentice. The student-teacher (S-T)
architecture is an advanced and highly efficient framework widely used in anomaly
detection, particularly in industrial and real-world applications where computational
efficiency is crucial. This method leverages the interaction between two neural
networks: the teacher network, which serves as a pre-trained reference model,
and the student network, which is trained to closely approximate the teacher’s
outputs on normal (non-anomalous) data. The fundamental idea is that since
the student is only exposed to normal data during training, it fails to generalize
properly when encountering anomalies. This discrepancy between the teacher’s
and student’s outputs during inference is utilized as an anomaly indicator. By
capturing deviations, this framework effectively detects various types of anomalies,
including structural inconsistencies and logical errors that may arise in different
application domains.

One of the most significant advantages of the student-teacher approach is
that it does not require labeled anomalous data, making it particularly useful
in scenarios where anomalies are rare or difficult to define. Unlike traditional
supervised learning methods that depend on pre-labeled datasets containing both
normal and anomalous instances, the student-teacher model is self-supervised and
learns only from normal data. This eliminates the challenge of obtaining diverse
anomalous samples for training. Furthermore, since inference involves only forward
passes through the student and teacher networks, the computational overhead is
significantly reduced compared to other anomaly detection approaches. Additionally,
this method exhibits strong generalization to diverse types of anomalies without
requiring explicit modeling of each anomalous scenario, as the deviation between
the teacher and student networks naturally captures deviations from expected
normal behavior.

The student-teacher model operates through a structured process involving
multiple steps. First, the teacher network, typically a pre-trained deep neural
network such as a convolutional neural network (CNN), extracts meaningful feature
representations from input data which we explained this phase in 5.2.2. The student
network is then trained to mimic these feature representations using normal data
exclusively. At inference time, anomalies are identified based on the deviation
between the student’s and teacher’s outputs, measured through predefined distance
metrics or loss functions. The greater the deviation, the more likely the input is
anomalous. This approach is particularly effective in domains such as industrial
inspection, medical diagnostics, and cybersecurity, where detecting subtle deviations
is critical.

Training the student-teacher model is performed using various loss functions
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that shape how the student network learns to replicate the teacher’s outputs. The
most commonly used loss function is the Mean Squared Error (MSE) loss, which
minimizes the difference between the feature representations of the teacher and
student. However, to enhance the model’s ability to detect anomalies, additional
loss mechanisms can be introduced. Hard feature loss focuses on challenging feature
components where the student struggles to match the teacher, forcing the student
to learn only the essential aspects of normal data while remaining sensitive to
anomalies. Furthermore, in [1] mentioned an out-of-distribution penalty loss is
sometimes employed to penalize the student for attempting to generalize beyond
its trained distribution, ensuring that it does not learn unintended patterns from
unseen data. but during training on plastic-nut dataset we found this loss function
unrelated.

Hard feature loss focuses on challenging feature components where the student
struggles to match the teacher, forcing the student to learn only the essential
aspects of normal data while remaining sensitive to anomalies.

The Mean Squared Error (MSE) loss is formulated as:

LMSE = 1
N

NØ
i=1
|T (xi)− S(xi)|2 (4.1)

where:
T (xi) represents the feature output of the teacher network for input xi.
S(xi) represents the corresponding feature output of the student network.
N is the number of training samples.
The Hard Feature Loss is designed to emphasize the most challenging feature

components where the student deviates significantly from the teacher. It is expressed
as:

Lhard = 1
|H|

Ø
(c,w,h)∈H

(T (x)c, w, h− S(x)c, w, h)2 (4.2)

where H is the set of feature dimensions with the highest reconstruction errors,
forcing the student to focus on difficult-to-replicate aspects of normal data.

Once trained, anomaly detection is performed through a systematic inference
process. Given an input image or data sample, both the teacher and student
networks process it, and the squared difference between their outputs is computed
to generate an anomaly map. The anomaly score is then derived from this map,
and a threshold is applied to determine whether an input is anomalous. In order
to choose the hardest ones we choose just 99% upper quantile of this distance of
student with teacher.

The student-teacher model has demonstrated remarkable success across a variety
of application domains. In industrial settings, it is used for quality control and
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defect detection in manufacturing processes, where even minor deviations from
normal production patterns can indicate defects. In medical imaging, the model
aids in detecting abnormalities in X-rays, MRIs, and other scans by highlighting
regions that deviate from expected normal anatomy. In cybersecurity, it is applied
to identify unusual network behavior, helping to detect potential cyber threats
and intrusions. The versatility and efficiency of this framework make it a powerful
tool in anomaly detection, particularly in environments where obtaining labeled
anomalous data is impractical or infeasible. In summary, the student-teacher
framework provides a robust, efficient, and generalizable approach to anomaly
detection. By leveraging a teacher network as a reference model and training a
student network to replicate its outputs on normal data, this method effectively
identifies anomalies based on deviations observed at test time.
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4.5 Autoencoder-Teacher

Logical anomalies in images can arise from various inconsistencies, including miss-
ing, misplaced, or surplus objects, as well as violations of geometrical constraints,
such as an incorrect screw length. To effectively model and detect such logical
inconsistencies, we utilize an autoencoder-based approach, inspired by the rec-
ommendations of the MVTec LOCO dataset [18]. The primary function of the
autoencoder is to learn and encode the logical constraints inherent in the train-
ing images, thereby allowing violations of these constraints to be detected when
presented with anomalous samples.

The core anomaly detection mechanism in EfficientAD [1] consists of a student-
teacher network along with an autoencoder. The autoencoder, denoted as A, is
trained to replicate the output of the teacher network. Mathematically, given
an input training image I, the autoencoder generates an output representation
A(I) ∈ RC×W ×H . The corresponding loss function, ensuring the proper training of
the autoencoder, is formulated as:

LAE = 1
CWH

Ø
c

∥T (I)c − A(I)c∥2
F , (4.3)

where T (I) represents the output of the teacher network, and the Frobenius
norm is used to measure the reconstruction error. This loss ensures that the
autoencoder learns to approximate the teacher’s outputs effectively.

The architecture of the autoencoder follows a standard convolutional design,
utilizing strided convolutions in the encoder phase and bilinear upsampling in the
decoder phase. Detailed layer hyperparameters are provided in 5.2. Unlike the
patch-based student model, which processes smaller local regions, the autoencoder
must encode and decode entire images through a bottleneck of 64 latent dimensions.
This constraint poses challenges, particularly when dealing with logical anomalies.
Since the autoencoder is optimized on normal images, its latent representation for
anomalous images typically diverges significantly from expected reconstructions.
Furthermore, autoencoders are known to struggle with reconstructing fine-grained
patterns, leading to systematic reconstruction artifacts even for normal images,
such as blurry textures in background grids [62].

To mitigate the risk of false-positive anomaly detections caused by systematic
reconstruction artifacts, EfficientAD introduces an additional component to its
loss function. Specifically, the student network is extended to predict both the
output of the teacher network and the output of the autoencoder. Denoting the
student’s additional output channels as S ′(I) ∈ RC×W ×H , we define an auxiliary
loss function as:
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LST AE = 1
CWH

Ø
c

∥A(I)c − S ′(I)c∥2
F (4.4)

By training the student network to capture the systematic reconstruction errors
of the autoencoder on normal images, it learns to disregard such artifacts while
preserving sensitivity to true anomalies. Importantly, the student network is not
exposed to anomalous examples during training, ensuring that it does not learn
their reconstruction characteristics. Consequently, the discrepancy between the
autoencoder’s output and the student’s output serves as a meaningful anomaly
map.

This discrepancy-based anomaly detection approach is structured in two forms: a
local anomaly map derived from the student-teacher network and a global anomaly
map obtained from the student-autoencoder interaction. The final combined
anomaly map is computed as their average, with the maximum anomaly score
across the image determining the final anomaly classification. By leveraging shared
hidden layers in the student network, this method achieves computational efficiency
while maintaining robust detection of both structural and logical anomalies, making
EfficientAD a powerful framework for unsupervised anomaly detection.
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4.6 Collaborative Discrepancy
Collaborative Discrepancy Optimization (CDO) is a novel framework introduced
on 2023 [2] designed to address a key limitation in conventional unsupervised image
anomaly localization methods, namely the overgeneralization problem. In tradi-
tional approaches based on knowledge distillation, an apprentice network is trained
to mimic the expert network by minimizing the discrepancies between correspond-
ing feature descriptors (FDs) extracted from anomaly-free images. Specifically,
for a pixel x in an input image, the expert network produces a feature fT (x) and
the apprentice network produces a feature fS(x); the discrepancy between these
features is measured by a function d(·, ·), typically defined as the pixel-wise mean
square error between the normalized features, i.e.,

d(fT (x), fS(x)) =
...f̂T (x)− f̂S(x)

...2

2
(4.5)

where f̂ denotes the normalized feature vector. The training process in conventional
methods is based on minimizing the average discrepancy for normal samples, thereby
assuming that the discrepancies for abnormal features would naturally remain large.
However, due to the high generalization capacity of the student network, even
abnormal inputs may yield features that are close to those of the teacher network,
resulting in small discrepancies and leading to high prediction uncertainty. This
phenomenon, referred to as the overgeneralization problem, causes the discrepancy
distributions of normal and abnormal features to exhibit a small margin and
significant overlap, both of which impair the reliability of anomaly localization.

Figure 4.7: CDO loss function to ovoid overgeneralization, introduced by Collaborative
Discrepancy Optimization for Reliable Image Anomaly Localization on 2023 [2]

To overcome this shortcoming, CDO introduces a collaborative optimization
strategy that leverages both normal data and synthetically generated abnormal
data. Synthetic anomalies are produced by applying random perturbations to
normal images. Concretely, several square regions within a normal image are
randomly selected and their pixel values are replaced by random values sampled
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from a Gaussian distribution, thus forming a set of synthetic abnormal pixels as
discussed in section 4.1.3. Denoting the set of normal pixels as N and that of
synthetic abnormal pixels as A, the corresponding discrepancy distributions (DDs)
can be expressed as {d(fT (x), fS(x))}x∈N and {d(fT (x), fS(x))}x∈A, respectively.

The essence of CDO lies in the simultaneous optimization of these two dis-
crepancy distributions. Unlike previous methods that solely focus on minimizing
the discrepancy for normal features, CDO enforces a dual objective: it minimizes
the discrepancies of normal FDs while maximizing those of synthetic abnormal
FDs. This collaborative optimization directly targets the margin between the two
distributions, which can be roughly defined as the absolute difference between
their average discrepancy values. Mathematically, the basic formulation of the loss
function is given by

L =
Ø
x∈N

d(fT (x), fS(x))−
Ø
x∈A

d(fT (x), fS(x)) (4.6)

This loss function is designed to enlarge the gap (margin) between the average
discrepancies of normal and abnormal features, thereby ensuring that the apprentice
network not only replicates the expert network’s behavior for normal inputs but
also produces clearly distinguishable outputs for abnormal inputs.

While optimizing the average discrepancy is beneficial, it does not fully address
the influence of tail samples those normal samples with unusually large discrepancies
and abnormal samples with unexpectedly small discrepancies that contribute to
the overlap between the two distributions. To further reduce this overlap, CDO
incorporates a dynamic weighting mechanism inspired by the principles of the Focal
Loss. In this scheme, the importance of each pixel is modulated based on the ratio
of its discrepancy to the average discrepancy of its corresponding set. Let d̄N and
d̄A denote the average discrepancies for the normal and abnormal distributions,
respectively. The weight for a normal pixel is then defined as

wN (x) =
A

d(fT (x), fS(x))
d̄N

Bγ

(4.7)

and the weight for an abnormal pixel is defined as

wA(x) =
A

d(fT (x), fS(x))
d̄A

B−γ

(4.8)

where γ ≥ 0 is a hyper-parameter that controls the degree of emphasis on these
tail samples. In effect, normal pixels that deviate more from the average (indicating
potential outliers even among normal samples) are assigned higher weights, and
similarly, abnormal pixels that appear too similar to normal samples (with lower
than expected discrepancies) are also given greater importance.
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Integrating this dynamic weighting into the loss function, the final CDO loss is
formulated as

LCDO =
q

x∈N wN (x) d(fT (x), fS(x))−qx∈A wA(x) d(fT (x), fS(x))q
x∈N wN (x) +q

x∈A wA(x) (4.9)

This expression ensures that the margin between the normal and abnormal
discrepancy distributions is maximized while the overlap is minimized, thereby
reducing prediction uncertainty and enhancing anomaly localization performance.

Once the training with CDO is complete, the anomaly score for each pixel is
computed by measuring the discrepancy between the normalized features extracted
by the expert and apprentice networks. That is, for any pixel x, the anomaly score
is given by

S(x) = d(fT (x), fS(x)) =
...f̂T (x)− f̂S(x)

...2

2
(4.10)

In practical applications, it has been demonstrated that integrating multi-
hierarchical representations i.e., combining discrepancy information from various
layers of a convolutional neural network can further improve anomaly localiza-
tion. If discrepancies computed from different hierarchical levels are denoted as
dh(fS(x), fT (x)) for h = 1, . . . , H, the final anomaly score may be expressed as

S(x) =
HØ

h=1
αh dh(fT (x), fS(x)) (4.11)

where αh are weighting coefficients that balance the contribution of each hierar-
chical level.

Overall, the proposed CDO [2] framework provides a comprehensive solution to
the inherent limitations of previous methods by directly addressing the overgener-
alization issue. Through the use of synthetic anomalies and a dual optimization
strategy that targets both the margin and the overlap of discrepancy distributions,
CDO ensures that the student network produces features that are both accurate
for normal inputs and highly sensitive to anomalies. This is achieved without the
need for explicitly available abnormal samples during training, as the synthetic
abnormalities serve to implicitly guide the network towards a more robust sepa-
ration between normal and abnormal feature spaces. The resulting improvement
in anomaly localization performance is particularly valuable in applications where
high reliability and precision are paramount.
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4.7 Anomaly Maps Normalization
In our anomaly detection framework, we combine two complementary sources
of information a local anomaly map generated by a student model and a global
anomaly map produced by an autoencoder to capture both fine-grained and broad
structural deviations in images. Since the outputs of these two models naturally
have different dynamic ranges and statistical properties, it is essential to bring
them to a common scale before fusion. To address this, we implement a robust
quantile-based linear normalization strategy suggested in [1], augmented with a
tunable hyperparameter α that adjusts the relative influence of the two maps on
the final anomaly heatmap which is essential for out project due to flexibiliy needed
in industrial environment.

The normalization process begins by analyzing a set of validation images that
are known to be defect-free. For each anomaly map, we collect all pixel-wise
anomaly scores from these images and compute two key quantiles, qa and qb,
corresponding to pre-determined probabilities a and b. These quantiles effectively
capture the typical distribution of scores in normal conditions and serve as reliable
anchors for normalization. A linear transformation is then defined to map qa to
a normalized score of 0 and qb to 0.1. The selection of 0 and 0.1 is not arbitrary;
these values ensure compatibility with standard zero-to-one color scales used for
visualization and are robust to variations in the underlying score distribution,
whether Gaussian, multimodal, or otherwise. Importantly, this mapping does not
impact performance metrics such as the area under the ROC curve (AU-ROC),
since these metrics depend solely on the ranking of anomaly scores rather than
their absolute magnitudes.

To further enhance the adaptability of our system, we introduce the hyperpa-
rameter α, which provides a mechanism to control the balance between the local
and global anomaly maps in the final fusion process. If we denote the normalized
student output as Mstudent and the normalized autoencoder output as Mautoencoder,
the final anomaly heatmap H is computed as:

H = α ·Mstudent + (1− α) ·Mautoencoder (4.12)
with α taking a value in the range [0, 1]. A value of α closer to 1 gives more weight

to the student model, emphasizing the detection of localized defects a scenario
often encountered in high-precision manufacturing where subtle, local irregularities
are critical. Conversely, setting α nearer to 0 prioritizes the global perspective
provided by the autoencoder, which can be more effective in contexts where broad,
structural inconsistencies indicate anomalies. This weighting mechanism allows
practitioners to tailor the detection system to the unique requirements of different
manufacturing lines or industries, ensuring that the strengths of both models are
optimally leveraged.
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The use of quantile-based normalization is particularly advantageous because it
mitigates the impact of outliers and noise inherent in real-world data. By anchoring
the normalization process to the behavior of anomaly scores in defect-free images,
the method adapts to varying distributions and preserves the meaningful differences
between defect-free and defective regions. Moreover, the fixed mapping targets of 0
and 0.1 not only facilitate a consistent visual interpretation but also ensure that the
dynamic ranges of both maps are comparable when they are fused. This uniform
scaling is crucial, as an unbalanced fusion could result in one map overshadowing
the other, potentially concealing significant defect signals.

Overall, our normalization approach is designed to be both robust and flexible.
It addresses the challenge of merging heterogeneous anomaly maps by standardizing
their scales through a data-driven, quantile-based linear transformation, and it
introduces a customizable hyperparameter α to fine-tune the contribution of each
map based on empirical performance and domain-specific considerations. The
detailed tuning process for α and further discussions on its impact are provided
in Section 5.2. This integrated method ensures that the final combined anomaly
heatmap is both accurate and adaptable, making it a key component of our defect
detection pipeline in diverse industrial settings.
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Experiments and Results

In this section we would like to discuss about how step by step we study the recent
papers related to anomaly detection. Moreover, we will discuss about how each
component can effect the results of our industrial thesis. Furthermore, we will
explain how we used the details explained in section 4 to achieve best results on
our main focused dataset called Plastic-nut from Real-IAD [3] with explaining
hardware and software required for implementation.

5.1 Hardware and Software
Our experimental framework is implemented in Python, a language chosen for its
versatility and the extensive ecosystem of libraries that support cutting-edge deep
learning research. In this section, we provide a comprehensive discussion of the
libraries utilized, detailing their roles and the rationale behind their selection.

At the core of our framework lies PyTorch, which serves as the primary deep
learning library. PyTorch offers dynamic computation graphs and an intuitive
API, enabling rapid prototyping and flexible experimentation. Its efficient han-
dling of tensor operations and automatic differentiation is crucial for training our
teacher-student network architecture as well as the associated autoencoder module.
Furthermore, PyTorch’s native support for CUDA-enabled GPUs allows us to
offload computationally intensive tasks such as forward and backward passes and
the computation of complex loss functions to high-performance hardware, thereby
substantially reducing training time. The modular design of PyTorch also facilitates
the seamless integration of custom components, such as our specialized CDO loss
function, which performs pixel-wise feature comparisons and adaptive weighting.

Complementing PyTorch is NumPy, a fundamental library for numerical com-
puting in Python. NumPy provides efficient n-dimensional array objects and a
comprehensive suite of mathematical functions that are indispensable for data
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manipulation and statistical analysis. In our pipeline, NumPy is extensively used
for tasks such as image normalization, quantile calculations, and general array
transformations, all of which are critical in preprocessing the high-dimensional data
and interfacing effectively with PyTorch tensors.

Image processing forms a critical component of our experimental setup, and
this is where PIL (Python Imaging Library) and tifffile come into play. PIL is
employed for a wide array of image manipulation tasks including loading, format
conversion, and the application of transformations such as color jitter, sharpness
enhancement, and gamma correction. These operations are essential for augmenting
the training dataset, thereby simulating diverse imaging conditions that improve
the generalizability of the model. On the other hand, tifffile is specifically used for
reading and writing TIFF images, ensuring that the high-resolution anomaly maps
generated during evaluation are stored with precision and integrity.

Torchvision further extends the functionalities of PyTorch by providing com-
monly used image transformations, pre-trained models, and dataset utilities. The
transform modules available in Torchvision enable us to perform standard pre-
processing tasks such as resizing and normalization, and they are seamlessly
integrated with our custom transformation pipeline. This pipeline includes both
standard augmentations and more advanced modifications (e.g., random application
of color jitter or geometric adjustments), which are critical for the robust training
of the student network under various perturbations.

The argparse library is used to manage configuration and hyperparameter
settings through command-line arguments. This design choice allows researchers to
adjust parameters such as dataset paths, model sizes, training iterations, and loss
coefficients without altering the source code. By facilitating easy customization,
argparse ensures reproducibility and systematic experimentation, which are central
to our research methodology.

Another key utility is provided by the itertools library, which is utilized for
generating infinite data iterators and managing complex iteration patterns over
training samples. This capability is particularly valuable in our context, as it
helps prevent interruptions in the training loop due to dataset size limitations and
supports the dynamic creation of synthetic anomalies via custom data augmentation
techniques.

Real-time progress tracking during training is achieved using the tqdm library.
Tqdm offers a visually intuitive progress bar that provides immediate feedback
on the training process, including iteration counts, loss values, and checkpointing
events. This feedback mechanism is indispensable during extended training sessions,
as it allows for real-time monitoring and prompt debugging if necessary In addition
to these core libraries, OpenCV (imported as cv2) is employed within our custom
dataset classes to perform advanced image processing tasks. OpenCV’s efficient
routines for background estimation and noise injection are used to simulate realistic
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synthetic anomaly patches. These patches are strategically inserted into the training
images to enrich the diversity of the dataset and to challenge the student network
with varied anomaly conditions, thus enhancing its robustness.

For evaluation purposes, we integrate metrics computation using Scikit-Learn.
Scikit-Learn provides reliable implementations for evaluation metrics such as the
ROC-AUC score, which quantifies the classification performance of the model.
Its modular design allows for seamless incorporation into our evaluation pipeline,
ensuring that the performance metrics are both accurate and reproducible.

On the hardware side, our system is engineered to dynamically detect and
utilize CUDA-enabled GPUs through PyTorch’s device query functions. When
a compatible GPU is available, acceleration is leveraged to significantly enhance
performance by parallelizing computations across thousands of cores, making both
training and inference substantially faster compared to CPU-only execution. In
this project, we employed an NVIDIA RTX 4000 Ada Generation GPU. These
specifications provide ample computational power for deep learning tasks, especially
when handling high-resolution image data and complex neural network architectures.

To further optimize performance, multi-threading is exploited via PyTorch’s
DataLoader configuration, which utilizes multiple worker processes and pinned
memory. This ensures efficient data transfer between the CPU and GPU, minimizing
bottlenecks caused by slow memory access. The system also benefits from mixed-
precision training with Tensor Cores, which enhances efficiency by reducing memory
usage while maintaining model accuracy. This hybrid approach leveraging both
the CPU for preprocessing and the GPU for heavy computations ensures that our
framework can effectively manage the high computational demands of deep learning
workflows, particularly in scenarios requiring real-time or near-real-time processing.
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5.2 Training and Results
In this section, we provide a comprehensive overview of our training procedure
for EfficientAD, originally designed for the MVtecAD dataset and subsequently
adapted to the more challenging Real-IAD dataset. Specifically, we focus on the
plastic-nut subset of Real-IAD, which presents diverse industrial anomalies and de-
mands a more robust detection approach than MVtecAD. Our experiments explore
different network architectures (small and medium PDNs), pretraining strategies,
loss functions, and augmentation techniques. We evaluate the interplay between
classification (normal vs. abnormal) and segmentation (precise localization of
anomalous regions), aiming for a method that excels in both accuracy and efficiency.

5.2.1 Adaptation from MVtecAD to Real-IAD
Originally, EfficientAD [1] was validated on the MVtecAD dataset [17], a widely
known benchmark for anomaly detection on industrial objects and textures. How-
ever, Real-IAD [3] features significantly larger and more varied data. To ensure com-
patibility with unsupervised anomaly detection, we restructured the MVtecAD-like
splits in Real-IAD to include only normal samples for training, leaving anomalous
samples exclusively for validation and testing. This allows the network to learn
the normal data distribution more effectively and detect any deviations during
inference. Notably, plastic-nut exhibits several unique manufacturing defects and
imaging inconsistencies, making it a representative subset of industrial challenges.
As a result of modifications in the data structure of Real-IAD to become similar to
MVTecAD (training, test and groundtruth which train contain only anomaly free
images). in table 5.1 we can see the number of images.

Abnormal Normal
Number of Images 1246 2511

Table 5.1: Number of image in plastic-nut dataset after structural modifications

5.2.2 Pretraining and Teacher Networks
Pretraining serves as a foundation for both the medium and small teacher networks,
distilled into corresponding student networks medium PDN and small PDN as
described in 4.2. The architectural details for these PDNs are listed in Table 5.3 and
5.2. Our approach follows the design principles in [1], which incorporate lightweight
yet powerful encoder-decoder structures conducive to real-world industrial settings.
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Layer Name Stride Kernel Size Number of Kernels Padding Activation
Conv-1 1× 1 4× 4 128 3 ReLU
AvgPool-1 2× 2 2× 2 128 1 -
Conv-2 1× 1 4× 4 256 3 ReLU
AvgPool-2 2× 2 2× 2 256 1 -
Conv-3 1× 1 3× 3 256 1 ReLU
Conv-4 1× 1 4× 4 384 0 -

Table 5.2: Patch description network architecture of the teacher network for EfficientAD-
S. The student network has the same architecture, but 768 kernels instead of 384 in the
Conv-4 layer. A padding value of 3 means that three rows, or columns respectively, of
zeros are appended at each border of an input feature map.[1]

Layer Name Stride Kernel Size Number of Kernels Padding Activation
Conv-1 1× 1 4× 4 256 3 ReLU
AvgPool-1 2× 2 2× 2 256 1 -
Conv-2 1× 1 4× 4 512 3 ReLU
AvgPool-2 2× 2 2× 2 512 1 -
Conv-3 1× 1 1× 1 512 0 ReLU
Conv-4 1× 1 3× 3 512 1 ReLU
Conv-5 1× 1 4× 4 384 0 ReLU
Conv-6 1× 1 1× 1 384 0 -

Table 5.3: Patch description network architecture of the teacher network for EfficientAD-
M. The student network has the same architecture, but 768 kernels instead of 384 in
the Conv-5 and Conv-6 layers. A padding value of 3 means that three rows, or columns
respectively, of zeros are appended at each border of an input feature map.[1]

Two pretrained teacher networks were used for pretraining. Medium teacher
provides higher capacity and more complex feature representations, leading to
enhanced detection and localization capabilities. Small teacher offers reduced
memory footprint and faster inference. While slightly less accurate than the
medium teacher, it remains well-suited for scenarios with stringent hardware
constraints. Based on PDN network we use the Algorithm 1 which explained earlier
we distill our teacher based on ImageNet and WideResNet-101 into medium or
small size of PDN. As a result, we achieve out teacher in order to use for training
and next phases of the project.

5.2.3 Autoencoder for Reconstruction-Based Detection
Additionally, we integrated an autoencoder with a dedicated decoder to capture
texture and structural deviations. By comparing reconstructed images with the
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originals, the autoencoder highlights abnormal regions that deviate from the learned
“normal” distribution. The architectures are enumerated in Table 5.4, ensuring
they remain computationally efficient while retaining reconstruction accuracy.

Layer Name Stride Kernel Size Number of Kernels Padding Activation
EncConv-1 2× 2 4× 4 32 1 ReLU
EncConv-2 2× 2 4× 4 32 1 ReLU
EncConv-3 2× 2 4× 4 64 1 ReLU
EncConv-4 2× 2 4× 4 64 1 ReLU
EncConv-5 2× 2 4× 4 64 1 ReLU
EncConv-6 1× 1 8× 8 64 0 -
Bilinear-1 - - - - Resizes the 1×1 input feature maps to 3×3
DecConv-1 1× 1 4× 4 64 2 ReLU
Dropout-1 - - - - Dropout rate = 0.2
Bilinear-2 - - - - Resizes the 4×4 input feature maps to 8×8
DecConv-2 1× 1 4× 4 64 2 ReLU
Dropout-2 - - - - Dropout rate = 0.2
Bilinear-3 - - - - Resizes the 9×9 input feature maps to 15×15
DecConv-3 1× 1 4× 4 64 2 ReLU
Dropout-3 - - - - Dropout rate = 0.2
Bilinear-4 - - - - Resizes the 16×16 input feature maps to 32×32
DecConv-4 1× 1 4× 4 64 2 ReLU
Dropout-4 - - - - Dropout rate = 0.2
Bilinear-5 - - - - Resizes the 33×33 input feature maps to 63×63
DecConv-5 1× 1 4× 4 64 2 ReLU
Dropout-5 - - - - Dropout rate = 0.2
Bilinear-6 - - - - Resizes the 64×64 input feature maps to 127×127
DecConv-6 1× 1 4× 4 64 2 ReLU
Dropout-6 - - - - Dropout rate = 0.2
Bilinear-7 - - - - Resizes the 128×128 input feature maps to 64×64
DecConv-7 1× 1 3× 3 64 1 ReLU
DecConv-8 1× 1 3× 3 384 1 -

Table 5.4: Network architecture of the autoencoder for EfficientAD-S and EfficientAD-M.
Layers named “EncConv” and “DecConv” are standard 2D convolutional layers. [1]

5.2.4 Balancing Loss Components in EfficientAD
A key goal of our study was to investigate the impact of multiple sub-losses within
the total loss function introduced by EfficientAD. To this end, we introduced four
coefficients to vary the relative importance of each loss component:

• coeff_Hard: Scales the hard-distillation loss between the teacher and stu-
dent networks, encouraging the student to mimic the teacher’s classification
boundaries.

• coeff_OOD: A term intended to enhance robustness to out-of-distribution
(OOD) samples, preventing overfitting to seen data distributions.

• coeff_AE: Governs the reconstruction-based loss from the autoencoder,
aligning the learned representations with the normal reconstruction targets.
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• coeff_STAE: Combines student-teacher distillation signals with autoen-
coder reconstruction, fostering a unified representation of classification and
segmentation.

We systematically varied these coefficients to observe their influence on classi-
fication and localization. Interestingly, we found that introducing LOOD reduced
detection performance by approximately n%, likely because it over-penalized differ-
ences from normal data, even when such differences corresponded to valid anomalies.
The must important achievement of this Experiment was to see the performance
changing behaviour of model with different influence of ImageNet penalty which
results are available in Figure 5.1 shows that we can change this loss function in
order to improve model performance.
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Figure 5.1: Percentage of loss of out of distribution on training.

5.2.5 Training with Limited Data
An industrial environment often restricts the availability of labeled data. To
evaluate performance in data-scarce scenarios, we trained our framework on only
500 normal images, while maintaining the full test set (see 5.5). Surprisingly, the
model maintained robust classification (normal vs. abnormal) and localization
capabilities, underscoring the method’s viability in production lines with limited
data collection resources.
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Train (only normal) Test AUROC (%) AU-PRO (%)

2259 1499 97.85 92.03
500 1499 96.07 95.48
100 1499 92.82 95.67

Table 5.5: Performance metrics with varying training sizes

with considering reduced performance of AU-PRO while having full dataset size
we can conclude that we faced with overgeneralization when training the models on
more number of data. As a result, still we needed to improve the model to be more
robust against overgeneralization which we will discuss about it in Section 5.2.8 in
deep.
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Figure 5.2: Total training loss over training steps for different dataset sizes

5.2.6 Distillation-Only vs. Autoencoder-Only Training
To highlight the complementarity of student-teacher distillation and autoencoder
reconstruction, we conducted a controlled experiment using either LHard (student-
teacher only) or LAE (autoencoder only). As reported in Table 5.6:

Distillation-Only (Student-Teacher) exhibits strong classification performance
high AUROC but struggles to precisely localize anomalies lower AU-PRO, losing
nearly 10% in segmentation capability.

Autoencoder-Only excels at generating meaningful heat maps for spatial anoma-
lies high AU-PRO, but its global classification ability is comparatively weaker.

This trade-off clearly indicates that distillation-based and reconstruction-based
approaches are synergistic. Each method alone addresses only part of the anomaly
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Table 5.6: Performance metrics for different methods with and without ImageNet
penalty

Method ImageNet Penalty AUROC (%) AU-PRO (%)

Autoencoder - 91.66 94.801
Student - 97.60 73.68
Student + Autoencoder - 97.85 92.03

Student + Autoencoder Yes 96.18 80.86
Student Yes 95.91 63.18

detection challenge. With combination of both of them we can achieve more
Reliable result.

Our main training pipeline till this step needs to combine both student-teacher
distillation and autoencoder reconstruction, normalizing and merging each network’s
anomaly maps to form a unified detector. Illustrative examples in Figure 5.3
reveal that certain samples are better captured by the student’s discriminative
features, while others benefit from the autoencoder’s reconstruction error. Merging
these complementary signals yields superior performance across both classification
(AUROC) and segmentation (AU-PRO).

Figure 5.3: Output of models seperately and normalized and combined map.
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As industrial point of view, we need more flexibiliy depends on situation which
we are interest in classification or segmentation we might need one of the models
have more influence on the output result. Furthermore, this output should be
flexible depends on environment and type of object. As a result, we add new
hyperparameter named α as discussed in Section 4.7 to change our preferences at
inference phase.

5.2.7 Performance vs. Model Complexity

We examined both medium PDN and small PDN variants. Although the small PDN
is more efficient and suitable for hardware-limited situations, we observed a slight
reduction in detection accuracy, particularly in segmentation metrics. Nonetheless,
the small PDN remains an attractive option for real-time inspection pipelines where
model size and inference speed are critical. In general, the medium PDN offers a
better trade-off between detection accuracy and real-time feasibility.

Network Architecture AU-PRO Complexity
SMALL PDN 84.79 1,096,320
MEDIUM PDN 92.03 11,615,488

Table 5.7: Performance and complexity of different PDN architectures.

5.2.8 Collaborative Discrepancies Integration

Moreover, we replaced the traditional LOOD with a novel LCDO [2], intended
to mitigate overgeneralization while preserving the model’s sensitivity to subtle
defects. As shown in Table 5.8, this substitution improved the final detection
metrics, particularly in challenging cases. As mentioned in Section 4.1.3 by adding
Syntetic anomalies and using Equation 4.9 we added new loss in to the total loss
of out training.

Ltotal = LHard + LCDO + LAE + LSTAE (5.1)

Combining perturbation with architecture of reconstruction based and embed-
ding based method make us able to use advantage of each of them. Although
implementation of combination was challenging as technical point of view, but we
maintain the complexities of the model suitable in compared to initial point and
we improved the model ability to localization.
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5.2.9 External Validation on Other Datasets
Finally, to ensure our modifications did not overfit to plastic-nut alone, we tested
the improved model on additional Real-IAD subsets. The results, summarized in
Table 5.8, corroborate that our architecture and training strategies generalize well
to other industrial defect types with minimal fine-tuning. Furthermore, Figure 5.4
contain some sample of our model on other subdatasets.

Dataset AUROC AU-PRO

Plastic_nut (Real-IAD) 97.07 95.48
Usb (Real-IAD) 97.16 94.11
Metal_nut (MVTec AD) 99.26 94.14
Cable (MVTec AD) 96.92 83.93
Hazelnut (MVTec AD) 96.82 81.80

Table 5.8: Comparison of AUROC and AU-PRO values for different datasets.

Overall, our experiments confirm that distillation and reconstruction are com-
plementary, enabling strong classification (via teacher-student) and precise segmen-
tation (via autoencoder). Smaller architectures maintain competitive performance
and are well-suited for hardware-constrained environments, although they may sac-
rifice some accuracy. Data scarcity is tolerable, as even 500 training images yielded
satisfactory detection results. Customized OOD losses and augmentation strategies
can significantly affect performance in subtle, real-world industrial scenarios and
localization. Thus, our modifiations on EfficientAD framework effectively scales
from standard anomaly detection benchmarks to demanding industrial applications,
balancing detection accuracy and computational efficiency.
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Figure 5.4: Sample output of model on other objects.
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Chapter 6

Conclusion and Future
works

The work presented in this thesis explored an integrated anomaly detection pipeline
designed specifically for complex industrial imaging environments. Our approach
combined a teacher-student framework with an autoencoder-based methodology to
not only detect but also precisely localize defects in high-resolution images. By
leveraging robust data augmentation strategies and sophisticated loss functions
such as Collaborative Discrepancy Optimization (CDO), our system demonstrated
impressive resilience against variations in lighting conditions, background clutter,
and the inherent diversity of defect types. Experimental results on the Plastic-Nut
subset of the Real-IAD dataset revealed that our hybrid pipeline substantially
reduces both false positives and false negatives when compared to more conventional
single-model approaches, confirming the value of integrating multiple detection
cues into one unified framework.

A pivotal aspect of our approach has been the incorporation of image tiling
techniques within the anomaly detection process. Industrial imaging tasks fre-
quently involve extremely high-resolution images, where anomalies such as minute
scratches, pits, or contaminations can be localized to only a few pixels. Processing
an entire high-resolution image at once often forces a reduction in image size, which
can lead to the loss of critical local details. To address this challenge, our pipeline
employs an image tiling strategy that divides each high-resolution image into a
series of smaller, manageable patches or tiles. This division allows the model to
maintain fine-grained resolution and concentrate on localized regions with greater
precision. Each tile is processed independently, ensuring that the local texture and
structural nuances are captured accurately by the model. Moreover, by analyzing
these smaller sections in detail, the system is better equipped to identify subtle
anomalies that might otherwise be overlooked if the image were downsampled or
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processed as a whole.
The image tiling technique also offers significant computational benefits. When

images are partitioned into tiles, the model can operate on smaller chunks of
data that require less memory, enabling the deployment of more complex deep
learning architectures even on hardware with limited computational resources.
This approach is particularly beneficial in industrial settings, where real-time or
near-real-time analysis is essential. The tiling process inherently allows for parallel
processing; multiple tiles can be analyzed simultaneously, which further enhances
the system’s throughput and reduces overall processing time. In addition, tiling
facilitates more effective use of spatial context, as overlapping tiles can be utilized to
ensure that features located near the edges of one tile are not lost or misinterpreted.
This overlapping mechanism helps in creating a seamless fusion of local predictions
into a coherent global anomaly map that preserves the spatial integrity of the
original image.

Despite its clear advantages, the image tiling technique also introduces several
challenges that open up interesting avenues for future research. One such challenge
is determining the optimal size and number of tiles for different types of industrial
images. The ideal tile size must strike a balance between maintaining sufficient
local detail and ensuring that the model retains enough contextual information
from the overall image. In scenarios where defects are exceedingly small, smaller
tiles may be necessary, but they risk losing the broader contextual cues that can
help in distinguishing true anomalies from benign variations. Conversely, larger
tiles might capture more context but at the expense of local resolution. Future
work could investigate adaptive tiling strategies, where the tile size is dynamically
determined based on the content of the image or guided by preliminary assessments
of the image’s complexity.

Another promising direction lies in refining the fusion strategies used to combine
the predictions from individual tiles into a final, coherent anomaly map. Presently,
our approach involves a relatively straightforward aggregation of tile-level out-
puts. However, more sophisticated fusion methods could account for the varying
confidence levels across tiles, incorporate edge-aware blending techniques, or even
leverage attention mechanisms to weigh the contributions of different regions more
effectively. Such enhancements could further reduce false positives at tile boundaries
and improve the overall robustness of the anomaly detection system.

Moreover, integrating the image tiling strategy with other components of our
pipeline, such as the autoencoder and the teacher-student framework, could unlock
additional performance improvements. For instance, the autoencoder’s ability
to reconstruct images can be optimized by focusing on individual tiles, thereby
enhancing its capacity to capture localized reconstruction errors that are indicative
of anomalies. Similarly, the teacher-student model can be modified to operate
on a tile-by-tile basis, where the discrepancies between the student and teacher
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outputs are computed for each tile independently. This approach would enable the
detection mechanism to be highly sensitive to small, localized defects while still
leveraging the global context provided by the complete image.

the model again during pretraining to enhance its performance. DINO, a self-
supervised learning approach based on Vision Transformers In future work, we
propose replacing ResNet101 with DINO [63] in our anomaly detection framework
and distilling (ViTs), has demonstrated superior feature extraction capabilities
without requiring labeled data, making it well-suited for unsupervised anomaly
detection. By leveraging DINO, we can improve the model’s ability to learn mean-
ingful representations that capture both local and global structures within images,
potentially leading to better anomaly detection performance. Additionally, after
pretraining the teacher network using DINO, we can further distill its knowledge
into a student network, similar to our existing approach but with a more powerful
and generalizable feature extractor. This modification may enhance the student
model’s capacity to detect subtle anomalies, improve generalization across different
datasets, and reduce dependence on large-scale labeled data. Future research should
focus on evaluating the effectiveness of DINO-based teacher-student distillation
in anomaly detection, assessing computational costs, and comparing performance
with traditional CNN-based architectures.

In summary, the integration of image tiling techniques into our anomaly detec-
tion pipeline has proven to be a powerful strategy for addressing the challenges
posed by high-resolution industrial imaging. By preserving local detail and enabling
efficient processing, tiling allows the model to detect even the smallest defects
with high precision while managing computational resources effectively. Future
work that builds on these insights—by refining tiling strategies, improving fusion
methodologies, and integrating multi-scale analysis—holds great promise for devel-
oping a truly universal anomaly detection framework at the same time by using
new backbone we can experience new result. Such a framework would be capable
of delivering robust, low-latency, and highly accurate performance across a broad
spectrum of industrial use cases, thereby contributing significantly to advancements
in quality control and automated inspection systems.
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