POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

RobVC: An End-to-End Self-Supervised

Voice Conversion

Supervisors Candidate

Prof. Ahmad-Reza SADEGHI Ahmadreza F. FARAHANI
Prof. Santa DI CATALDO

July 2024



Summary

We have developed a voice conversion model capable of converting audio from
one speaker to another. We propose RobVC, to create a voice conversion model
with unsupervised samples. Previous efforts on voice conversion focus on explicitly
disentangling speech representations to separately encode speaker characteristics
and linguistic content from two speakers. Moreover, they use pretrained models
on supervised datasets which reduce the robustness of the existing models. In
this work, instead of explicitly disentangling attributes with supervised models, we
present a framework to train a controllable voice conversion model on entangled
speech representations derived from unsupervised learning. First, we develop tech-
niques to derive speaker information and content information from self-supervised
reconstruction models. In this training approach, the current state of the synthesis
model is used to generate voice-converted variations of an utterance, which serve as
inputs for the reconstruction task, ensuring a continuous and purposeful refinement
of the model. We demonstrate that incorporating such self-synthesized examples
during training improves the speaker similarity of generated speech as compared to
a baseline voice conversion model trained solely on heuristically perturbed inputs.
RobVC is trained without any text and is applicable to a range of tasks such as
zero-shot voice conversion and cross-lingual voice conversion. RobVC achieves state-
of-the-art results in zero-shot voice conversion on metrics evaluating naturalness,
speaker similarity, and intelligibility of synthesized audio.



Acknowledgements

I would like to express my deepest gratitude to Professor Ahmad-Reza Sadeghi
for his expert guidance and to Professor Santa Di Cataldo for her insightful co-
tutorship. Thank you for all these important and interesting questions that shaped
my thesis, I could not have asked for better mentors.

To everyone who took the time to help me throughout my research, who lis-
tened to my ideas and contributed to my thesis, a thousand thank yous, to all my
friends, your endless support means the world to me.

Lastly, I would be remiss in not mentioning my family, especially my parents.
Their belief in me has kept my spirits and motivation high during this process. 1
would also like to thank my cat for all the entertainment and emotional support.

II



Table of Contents

List of Tables VIII
List of Figures X
Acronyms XI
1 Background 1
1.1 Speech Processing . . . . . . .. ... Lo 1
1.1.1 Advancements in Loss Functions . . . . . . .. ... .. ... 1

1.2 Transformer Architecture . . . . . . . . ... .. .. ... ... ... 2
1.2.1  Self-Attention Mechanism . . . . .. .. ... .. .. .... 2

1.2.2  Positional Encoding . . . . . . .. ... 0oL 3

1.2.3 Transformer Encoder . . . . . ... ... ... ... ..... 3

1.2.4 Transformer Decoder . . . . . ... ... ... ... ..... 3

1.2.5 Scaled Dot-Product Attention . . . . . ... ... ... ... 3

1.2.6  Multi-Head Attention . . . . . . . . . . ... ... ... ... 4

1.2.7 Position-wise Feedforward Networks . . . . . . . . .. .. .. 4

1.3 Text-to-Speech (TTS) Systems . . . . . . .. ... ... ... .... 4
1.3.1 Text Analysis . . . . . . . . ... .. 4

1.3.2 Prosody Generation. . . . . . .. .. .. ... .. ... ... 4

1.3.3 Acoustic Modeling . . . . .. ... ... ... L. 5

1.3.4 Waveform Synthesis . . . . . . .. .. ... ... ... ... 5

1.3.5 Naturalness and Intelligibility . . . . .. .. ... ... ... 5

1.3.6  Expressiveness and Adaptability . . . . . ... ... ... 5

1.3.7 Real-time Processing . . . . . . .. ... .. ... ... ... 6

1.3.8 Multilingual and Multimodal Synthesis . . . . . . .. .. .. 6

1.4 Voice Conversion . . . . . . . . .. . .. .. 6
1.4.1 Data Collection and Preprocessing . . . . .. .. ... ... 6

1.4.2  Feature Extraction . . . . .. .. ... ... ... .. ... 7

1.4.3 Model Training . . . . . . . . .. ... 7

1.4.4 Conversion Process . . . . .. .. ... ... ... ... ... 7



1.4.5 Post-processing and Synthesis . . . . ... ... ... ..
1.4.6 Evaluation . . . . .. ... ... 0oL
1.4.7 Fine-tuning and Refinement (Optional) . . . . . . .. .. ..

2 Related Works

3 Unlabeled Speech Representations
3.1 Wav2Vec . . . . . . . .
3.1.1 Keyfeatures . . . . . .. ..o
3.1.2 Usecasae . . . . . . . . e e e e e
3.2 Wav2Vec-BERT . . . . . . . . ... ... ..
3.3 BERT summary . . . . .. .. ...
3.3.1 BERT in Wav2Vec . . .. .. .. ... .. .. ... .....
3.3.2 Usecase . . . . . . . e e
3.4 SoundStream . . . . .. .. ...
3.4.1 Autoencoder part . . . . .. ...
3.4.2  Residual Vector Quantizer (RVQ) . . . . .. ... ... ...
3.4.3 Usecase . . . . . . . e e e e
3.5 EnCodec . . .. . . . . . ...
3.5.1 Usecase . . . . . . . e e
3.6 HuBERT . . . . .. .. ... .. .
3.6.1 Architecture . . . . .. ...
High Fidelity Speech Synthesis
4.1 VALL-E . . . . . .
4.1.1 Usecase . . . . v v v v v e
4.2 MelGAN . . . . .
4.2.1 Generator . . . . . . ... e
4.2.2 Discriminator . . . . .. .. ... ...
4.2.3 Feature matching . . . . . . . ... ..o
424 USECasSe . . . v v v v i e e
4.3 HiFi-GAN . . . . .
4.3.1 Generator . . . . . . ... e
4.3.2 Discriminator . . . . .. .. ... ...
4.3.3 Usage . . . . . . e
4.4 Methods . . . . . . . . .
4.4.1 First method . . . . .. .. ... ... .
4.4.2 Second method . . . ... .. ... ... ...

12
12
12
14
14
14
14
15
16
16
17
17
18
19
19
20



5 Speaker Recognition Tasks
5.1 ECAPA-TDNN . . . . .

5.2

5.1.1
5.1.2
5.1.3

Time Delay Neural Network (TDNN) . . .. .. .. ... ..
Model Architecture . . . . . . ... ..o
Usage . . . . . e

MFA-Conformer . . . . . . . . . .

5.2.1

Use case . . . . . .

6 Language Models
6.1 LLaMA Overview . . . . . . . . . . . .. ...

6.2

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
AudioL
6.2.1

KVecache . . . . . . .

SwiGLU . . . . .. ..
Grouped Query Attention . . . . . . .. ... ... ... ..
Rotary Positional Embedding . . . . . ... ... ... ...
M
Usecase . . . . . v v v v v

7 End-to-End Voice Conversion
ACE-VC . .
HiFI-VC . .

7.1
7.2
7.3
7.4
7.5

7.6

FreeVC

Difl-HierVC . . . . .
LVC-VC . .

7.5.1

Location-variable convolutions (LVCs) . . .. .. ... ...

QuickVC . . . . o

7.6.1
7.6.2
7.6.3

Prior encoder . . . . . . .. ...
Speaker encoder . . . . .. ..o
MS-iSTFT-Decoder . . . . . . . . . . . . . .. ... ....

7.7 YourTTS . . . . o
7.8 TriAAN-VC . . . .

8.1
8.2
8.3
8.4
8.5

Datasets

TIMIT

LibriSpeach . . . . . . . . ...
Librilight . . . . . . .. ..

VCTK

LibriTTS . . . o oo o

28
28
28
29
31
31
31

33
33
33
34
35
36
36
38
39

41
41
42
43
44
45
45
45
47
47
47
48
48



9 Language Model Based Voice Conversion
9.1 Feature Extraction Block . . . . . . . ..

9.1.1

Speaker Representation Extractor

9.1.2 Context Representation Extractor
9.1.3 Coarse Acoustic Extractor . . . .
9.2 Acoustic Generation Block . . . . . . ..
9.3 Speech Generation Block . . . . .. ...
9.4 Loss function . . .. .. ... ... ...
9.5 Design . . ... ...
9.5.1 Second Block Components . . . .
9.5.2 Coarse Generator Model . . . . .
9.5.3 Fine Generator Model . . . . ..
9.5.4 Experimental Setups . . . . . ..
955 Results. .. ... ... ......

10 Modified Architecture

10.1 Archite
10.1.1
10.1.2

cture . . . . . ... ...
Context Encoder Block . . . . . .
Speaker Encoder Block . . . . . .

10.1.3 Acoustic Generation Block . . . .
10.1.4 Vocoder Block . . . . .. . . ...
10.2 Experimental Setup . . . . .. .. .. ..

10.2.1

Datsaet . . .. .. .. ... ...

10.2.2 Training . . . . .. .. ... ...

11 Evaluation

11.1 Metrics

11.1.1 Speaker Embedding Cosine Similarity (SECS) . . . . . . ..

11.1.2

Equal Error Rate (EER) . . . . .

11.1.3 Word Error Rate (WER) . . . . .

11.1.4
11.1.5
11.1.6

11.2.1

Character Error Rate (CER) . . .
Phoneme Error Rate (PER) . . .
F0 Ground Pitch Error (FO-GPE)

Metries . . . . .. ...

11.2.2 Training . . . . .. . . ... ...

12 Conclusion

12.1 Inference . . . . . . . . . . . .. .. ...

12.2 Future
12.2.1

Studies . . . . . ... ... ...
Multi-Linguistic Voice Conversion

VI

52
53
53
o4
o4
95
95
56
56
o7
o8
o8
o8
61

63
63
64
65
65
67
68
69
69

70
70
70
71
71
72
72
73
74
75
76



12.2.2 Informative Loss Functions

12.2.3 Speaker Verification

A Galileo

Bibliography

VII



List of Tables

11.1 Results on LibriTTS test-other subset in voice conversion task . . .
11.2 Results on LibriTTS test-other subset in reconstruction task . . . .
11.3 Results on LibriTTS test-clean subset in voice conversion task . . .
11.4 Results on LibriTTS test-clean subset in reconstruction task . . . .

12.1 Performance of the model . . . . . . . . . . . .. .. .. ... ...

VIII

74
75
75
76



List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

Different Speech Synthesis Techniques. . . . . . .. ... ... ...

Ilustration of Wav2Vec architecture . . . . . . . . . . . .. .. ...
Ilustration of BERT architecture . . . . .. .. ... .. .. ....
Ilustration of WavtVec architecture . . . . . . . . . . . .. .. ...
Ilustration of SoundStream architecture . . . . . . .. ... .. ..
Main architecture of EnCodec . . . . . . . . ... .. .. ... ...
MS-STFT Discriminator architecture . . . . . . . . ... ... ...
HuBERT architecture . . . . . . . . . . . .. .. .. ... .. ....

MS-STFT Discriminator architecture . . . . . . . . . .. ... ...
Ilustration of MelGan architecture . . . . . . .. ... .. .. ...
IMlustration of MelGan architecture . . . . . . . . ... .. .. ...
First approach basic architecture . . . . . . .. .. ... ... ..

[lustration of DNN based architecture for speaker embeddings . . .
Structure of TDNN . . . . . . .. .. .. oo
Full architecture of ECAPA-TDNN . . . . .. .. ... ... ....
Full architecture of MFA-COnformer . . . . . . .. ... ... ...

ReLU and SiLU activation function . . . . . . . . . .. .. .. ...
Overview of different attention mechanisms . . . . . . . . . .. ...
AudioLM token generators . . . . . . . . ... .. .. ... .. ...
Structure of audioLM architecture . . . . . . . . ... .. ...
Three stages of audioLM generation . . . . .. .. ... ... ...

ACE-VC general architecture . . . . .. ... ... ... ......
HiFi-VC architecture . . . . . . . . ... .. ... ... ... . ...
FreeVC training architecture . . . . . . . .. . ... ... ... ...
Diff-HierVC training architecture . . . . . . . . . ... ... .. ..
LVC-VC training architecture . . . . . . .. ... . ... ... ...
QuickVC training architecture . . . . . . .. ... ... ... ... .



7.7
7.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.2
11.3

12.1

YourTTS training architecture . . . . . . .. ... .. .. ... ... 49

(TriAAN-VC training architecture . . . . . . .. ... ... ... .. 49
Structure of proposed end-to-end model . . . . . . .. ... ... .. 52
Speaker Representation Extractor model architecture . . . . . . .. 53
Context Representation Extractor model architecture . . . . . . . . 54
Coarse Acoustic Extractor architecture . . . . . . .. ... .. ... 55
Decoder architecture . . . . . . .. ... ... L 56
New model architecture . . . . . . .. ... ... ... ... 57
Generator block architecture . . . . . . .. .. ... ... 58
Final Model Architecture . . . . . . . . ... .. .. ... ...... 64
HuBERT pretained feature extractor . . . . . ... ... ... ... 64
EnCodec pretained feature extractor . . . . . ... ... ... ... 65
Acoustic Generation Block . . . . .. .. ... ... .. 66
Different components of acoustic block . . . . .. . ... ... ... 66
Transformer blocks . . . . . . . . ... ... .. L. 68
Validation Loss over 250k steps . . . . . . .. ... ... ... 7
Train Loss over 250k steps . . . . . . . . . ... oL 7
Loss figures . . . . . . .. 7
Model Diagrams . . . . . . . . . .. .. 81



Acronyms

Al

artificial intelligence

WER

word error rate

PER

phoneme error rate

vVC

voice conversion

EER

equal error rate

CER

character error rate

TTS

text-to-speech

ASR

automatic speech recognition

GRU

gated recurrent unit

RNN

recurrent neural network



LSTM

long short-term memory

MSE

mean squared error

cTC

connectionist temporal classification

HMM
hidden Markov model

GAN

generative adversarial network

VAE

variational autoencoder

SNR

signal-to-noise ratio

MFCCs

mel-frequency cepstral coeflicients

FO

fundamental frequency

MOS

mean opinion score

PPG

phonetic posteriorgrams

BERT

Bidirectional Encoder Representations from Transformers

AE

autoencoder

XII



RVQ

residual vector quantization

TDNN

time-delay neural network

ASV

automatic speaker verification
MRF
multi-receptive field fusion

MPD

multi-period discriminator

MSD

multi-scale discriminator
MFA

multi-scale feature aggregation

KV

key-value

LM

language model
SSL
semi-supervised learning

SRE

speaker recognition embedding

SR

speech recognition

CPU

central processing unit

GPU

graphics processing unit

XIII



Chapter 1

Background

1.1 Speech Processing

Speech processing, an important component of natural language processing (NLP)
[1], includes a range of tasks involved in the analysis, synthesis, and understanding
of spoken language. Historically, these tasks were predominantly rule-based or
relied on handcrafted features. However, the emergence of deep learning [2]
has affected speech processing, enabling systems to learn complex patterns and
representations directly from raw data, leading to significant advancements in
accuracy and performance across various applications.

Deep learning models excel in speech processing tasks due to their capacity to
automatically learn hierarchical representations from large volumes of data. Unlike
traditional methods, which often struggled to capture the variability and nuances
of natural language, deep learning architectures, inspired by the structure and
function of the human brain’s neural networks, can effectively extract intricate
features from raw speech signals or their spectrogram [3] representations.

1.1.1 Advancements in Loss Functions

A crucial aspect of deep learning in speech processing is the design of appropriate
loss functions [4]. Loss functions quantify the discrepancy between predicted
outputs and ground truth labels, guiding the optimization process during model
training. In speech processing tasks like speech recognition and synthesis, various
loss functions are employed, to the specific objectives of the task.

For speech recognition tasks, commonly used loss functions include:

« Categorical Cross-Entropy Loss [5]: Used in connectionist temporal
classification (CTC) [6] and attention-based models, this loss function measures

1



Background

the dissimilarity between predicted and target phoneme sequences, enabling
the model to learn to accurately transcribe spoken utterances.

« Connectionist Temporal Classification (CTC) Loss: Particularly suited
for sequence-to-sequence models, CTC loss allows the model to align variable-
length input sequences (acoustic features) with variable-length output se-
quences (phoneme or word sequences) without requiring explicit alignment
information during training.

» Sequence-to-Sequence Loss [7]: In tasks where the output sequence length
may differ from the input sequence length, such as automatic speech recognition
(ASR) and machine translation, sequence-to-sequence loss functions, often
combined with attention mechanisms, facilitate the alignment and mapping of
input speech features to output text sequences.

For speech synthesis tasks, loss functions are designed to optimize the quality
and naturalness of generated speech waveforms. Some commonly used loss functions
in speech synthesis include:

« Mean Squared Error (MSE) Loss [8]: Frequently employed in waveform
generation tasks, MSE loss measures the difference between the predicted and
target speech waveforms at each time step, aiming to minimize the overall
reconstruction error.

« Mel-Spectrogram Loss [9]: Instead of directly modeling the waveform,
some speech synthesis models generate mel-spectrogram representations of
speech, which capture the spectral characteristics of the audio signal. Mel-
spectrogram loss functions optimize the alignment between predicted and
target mel-spectrograms, enabling the generation of high-quality synthetic
speech.

1.2 Transformer Architecture

The Transformer [10] architecture,has revolutionized the field of natural langnage
processing (NLP) and enabled significant advancements in various sequence-to-
sequence tasks, including machine translation [11], text summarization [12], and
language modeling [12].

1.2.1 Self-Attention Mechanism

The self-attention mechanism allows the model to weigh the importance of different
words in a sentence when encoding or decoding sequences. It computes attention

2



Background

scores between all pairs of words (or other tokens) in the input sequence and uses
these scores to compute weighted sums of the corresponding word embeddings. This
mechanism enables the model to capture long-range dependencies and contextual
information effectively.

1.2.2 Positional Encoding

Since the Transformer architecture does not inherently capture the order of tokens
in a sequence like recurrent neural networks (RNNs) [13] or convolutional neural
networks (CNNs) [14], positional encodings are added to the input embeddings
[15] to provide the model with positional information. These positional encodings
are added to the input embeddings before feeding them into the self-attention
mechanism.

1.2.3 Transformer Encoder

The Transformer encoder consists of multiple layers, each containing a self-attention
mechanism followed by position-wise feedforward networks. The self-attention
mechanism in each layer attends to the input sequence independently, and the
feedforward networks process the output of the self-attention layer in a position-
wise manner. Skip connections and layer normalization are applied around each
sub-layer to facilitate training and stabilize the learning process.

1.2.4 Transformer Decoder

The Transformer decoder also consists of multiple layers, similar to the encoder.
However, in addition to the self-attention and feedforward layers, each decoder layer
includes an additional attention mechanism called the encoder-decoder attention.
This attention mechanism allows the decoder to focus on relevant parts of the
input sequence when generating the output sequence, enabling effective sequence-
to-sequence modeling.

1.2.5 Scaled Dot-Product Attention

The attention mechanism in the Transformer architecture computes attention scores
by taking the dot product of the query and key vectors, followed by scaling and
applying a softmax [16] function to obtain the attention weights. The attention
scores are then used to compute weighted sums of the value vectors, resulting in
the attention output.



Background

1.2.6 Multi-Head Attention

To enhance the modeling capacity of the attention mechanism, the Transformer
architecture employs multi-head attention. In multi-head attention, the query, key,
and value vectors are linearly projected multiple times to different subspaces, and
attention is computed independently in each subspace. The outputs of multiple
attention heads are concatenated and linearly transformed to produce the final
attention output.

1.2.7 Position-wise Feedforward Networks

Position-wise feedforward networks consist of two linear transformations separated
by a non-linear activation function [17], such as the ReLU [18] (Rectified Linear
Unit). These networks process the output of the attention mechanism independently
at each position in the sequence, allowing the model to capture complex relations
between different parts of the input sequence.

The Transformer architecture have become foundational in modern language
modeling and have led to state-of-the-art performance in various sequence-to-
sequence tasks. Its ability to capture long-range dependencies, parallelize computa-
tion, and facilitate efficient training has made it a widely adopted architecture in
the NLP community:.

1.3 Text-to-Speech (TTS) Systems

Text-to-Speech (TTS) [19] systems are technologies that convert written text into
spoken speech. They play a crucial role in various applications, including accessi-
bility tools, navigation systems, virtual assistants, and entertainment platforms.
TTS systems enable machines to communicate with users in a human-like manner
by synthesizing natural-sounding speech from textual input.

1.3.1 Text Analysis

The first step in T'TS involves analyzing the input text to extract linguistic features
such as phonetic information, sentence structure, punctuation, and language-specific
rules. Text preprocessing [20] techniques may include tokenization and part-of-
speech tagging.

1.3.2 Prosody Generation

Prosody refers to the rhythm, intonation, stress, and pitch variations in speech
that convey meaning and emotions. T'TS systems incorporate prosody generation

4



Background

modules to add naturalness and expressiveness to synthesized speech. Prosody
generation techniques may involve applying linguistic rules, statistical models, or
machine learning algorithms to predict pitch contours, sentence boundaries, and
emphasis patterns.

1.3.3 Acoustic Modeling

Acoustic modeling [21] involves mapping linguistic features to acoustic represen-
tations, such as Mel-spectrograms or waveform parameters. TTS systems use
acoustic models to generate the spectral and temporal characteristics of speech
sounds corresponding to the input text. Acoustic modeling techniques include
Hidden Markov Models (HMMs) [22], Gaussian Mixture Models (GMMs) [23],
deep neural networks (DNNs), and generative models [24] like WaveNet [25] and
SampleRNN [26].

1.3.4 Waveform Synthesis

Waveform synthesis is the process of reconstructing the speech waveform from
acoustic representations generated by the acoustic model. TTS systems utilize
waveform synthesis techniques to generate high-quality, natural-sounding speech
signals. Common waveform synthesis methods include concatenative synthesis, sta-
tistical parametric synthesis (e.g., HMM-based synthesis) [27], and neural waveform
synthesis (e.g., WaveNet, Tacotron, and Transformer-based models).

1.3.5 Naturalness and Intelligibility

Achieving naturalness and intelligibility in synthesized speech remains a significant
challenge for TTS systems. Advances in machine learning, particularly deep
learning, have led to improvements in speech synthesis quality, enabling T'TS
systems to produce more natural and human-like speech.

1.3.6 Expressiveness and Adaptability

Enhancing the expressiveness and adaptability of T'T'S systems to capture emotions,
emphasis, and speaker characteristics is an ongoing research area. Techniques
such as style transfer (e.g AutoVC) [28], prosody embedding [29], and speaker
adaptation [30] allow TTS systems to produce speech with diverse voices, accents,
and speaking styles.



Background

1.3.7 Real-time Processing

Real-time processing is essential for interactive applications where low-latency
speech synthesis [31] is required. Efficient implementation of neural network
architectures and optimization techniques (e.g., pruning, quantization) [32] helps
improve the speed and responsiveness of TTS systems.

1.3.8 Multilingual and Multimodal Synthesis

Supporting multiple languages and integrating with other modalities, such as text
and images, expands the applicability of T'TS systems. Multilingual TTS models
and multimodal architectures enable T'T'S systems to synthesize speech in different
languages and contexts, catering to diverse user needs and preferences.

In conclusion, Text-to-Speech (T'TS) systems play a crucial role in converting
written text into natural-sounding speech, enabling human-computer interaction in
various domains. Ongoing advancements in machine learning and speech synthesis
techniques continue to enhance the quality, expressiveness, and adaptability of
TTS systems, expanding their utility and impact across diverse applications and
user populations.

1.4 Voice Conversion

Voice conversion [33] is the process of modifying the characteristics of a speech
signal from a source speaker while retaining the linguistic content (context) and
prosody of the original utterance. This approach involves extracting the linguistic
context from the speech of one speaker and applying the prosodic and spectral
characteristics of another speaker to generate converted speech. The process
typically consists of several stages, including feature extraction, conversion model
training, and synthesis. Below, we elaborate on each step:

1.4.1 Data Collection and Preprocessing

Collect a dataset containing parallel recordings of speech from both the source and
target speakers. The dataset should cover various linguistic contexts and speaking
styles to ensure robustness. Preprocess the speech recordings by segmenting them
into individual utterances, extracting relevant features such as Mel-frequency
cepstral coeflicients (MFCCs) [34], fundamental frequency (F0) [35], and spectral
features like Mel-spectrograms.



Background

1.4.2 Feature Extraction

Extract linguistic features from the source speaker’s speech, including phonetic
information, duration, and linguistic context. This may involve using automatic
speech recognition (ASR) [36] systems to obtain phonetic transcriptions. Extract
prosodic features and spectral characteristics from the target speaker’s speech,
capturing aspects such as pitch, energy, and formant frequencies [37].

1.4.3 Model Training

Train a conversion model that learns the mapping between the linguistic features
of the source speaker and the prosodic and spectral features of the target speaker.
Commonly used models include Gaussian Mixture Models (GMMs), deep neural
networks (DNNs), or more advanced models like Variational Autoencoders (VAESs)
[38] or Generative Adversarial Networks (GANs) [39]. The training objective is
to minimize the difference between the converted speech and the target speaker’s
natural speech, typically measured using a loss function such as Mean Squared
Error (MSE) or adversarial loss.

1.4.4 Conversion Process

Given a new input utterance from the source speaker, extract its linguistic fea-
tures. Feed the linguistic features into the trained conversion model to predict the
corresponding prosodic and spectral features of the target speaker. Generate the
converted speech waveform by combining the converted features with the linguistic
context of the source speaker.

1.4.5 Post-processing and Synthesis

Optionally, perform post-processing techniques such as waveform filtering, smooth-
ing, or pitch modification to enhance the quality and naturalness of the converted
speech. Reconstruct the converted features into a time-domain waveform using
techniques like vocoding [40] or waveform synthesis.

In the Figure 1.1 we have overall architecture of different approaches to generate
high fidelity speeches.

1.4.6 Evaluation

Evaluate the quality of the converted speech using objective metrics such as signal-
to-noise ratio (SNR) [41], mean opinion score (MOS), or perceptual evaluation of
speech quality (PESQ) [42]. Subjective evaluations involving human listeners can

7



Background

ffPr'ompf text ( Source Speech
"Hello world!" Target speech é ) Target spaech
Acoustic = Acoustic =
Prompt Speaker fodel = Prompt Speaker Model )
e = = ——
2elzcs Spaseh Prompt text Target speach
= = TS 1
= ASR Model "Hello world"[ | TTS Model — . .
e — Voice Conversion I:I
- (Text-based)
Voice Conversion
Prompt Speaker (End-to-End) D

)

Figure 1.1: Different Speech Synthesis Techniques

-

also provide valuable insights into the naturalness and similarity of the converted
speech to the target speaker.

1.4.7 Fine-tuning and Refinement (Optional)

Fine-tune the conversion model using additional data or regularization techniques
to improve performance, especially in cases where the source and target speakers
exhibit significant acoustic differences. Iterate on the conversion process based
on feedback from evaluations and user testing to further enhance the quality and
effectiveness of the voice conversion system.

By following this approach, it is possible to achieve effective voice conversion,
allowing for the synthesis of speech with the linguistic content of one speaker and
the distinctive characteristics of another speaker. This technology finds applications
in voice cloning, accent conversion, personalized speech synthesis, and speaker
adaptation in speech recognition systems.



Chapter 2

Related Works

A typical approach of any-to-many VC is feature disentangling. The content
feature information and the speaker feature information in the speech are extracted
separately and used to reconstruct the speech. The results of this method depend
on whether the obtained content features do not contain the original speaker feature
information, while not losing information about the speech content.

Techniques from the ASR domain are widely used to extract linguistic content
from speech while ignoring speaker specific details.

VC based on phonetic posteriorgrams (PPGs) [43] draws much attention [44,
45]. PPGs are intermediate results from a speaker-independent ASR system,
representing the posterior probability of phonetic classes at the frame level [46].
PPGs are independent of speaker and language, making them suitable for VC.
However, the accuracy of the PPG-based VC model largely depends on the precision
of the ASR model used to extract the PPGs.

In addition to ASR, transfer learning from TTS methods has been employed to
obtain linguistic representations for VC [47]. However, these methods require a
large amount of annotated data containing text to train the ASR or TTS model.

There are also studies that do not require text annotated data, such as Cyclegan-
VC [48] and StarGAN [49], which are GANbased models, and AutoVC, which is
an AutoEncoder [50]. But the speech they generate is relatively poor in terms of
quality [51]. Recently there has been a lot of new research on VC that attempts
to obtain feature vectors of speech by means of self-supervised learning (SSL)
models [52, 53, 54, 55]. By obtaining the content representation of speech from
these feature vectors, speech can be reconstructed to achieve VC or singing voice
conversion (SVC) [56]. These studies achieve very good results in terms of quality
and are close to the T'T'S models.

The development of TTS models has helped to produce high-quality speech
based on content features. TTS models such as Tacotron2 [57] and Fastspeech
[58, 59] have the ability to synthesize naturalistic speech. They have been applied

9



Related Works

in the field of VC [60]. However, these TTS methods are two-stage, synthesizing
acoustic features first and then using a vocoder to synthesize waveforms from the
predicted acoustic features. VITS [61] is an end-to-end T'TS model that enhances
the quality of the reconstructed waveform through adversarial training [61]. By
applying VITS to VC, separate training of the VC model and the vocoder can be
avoided

Although there are VC models that are capable of producing speech of good
perceptual quality, there is still a lack of research on high-quality and unsupervised
VC. In practice, if you want to achieve an unsupervised VC, you need to use self
supervised representations for speaker embeddings.

In QuickVC [62] they have used HuBERT [63] embeddings and one designed
LSTM [64] module for speaker represenatations, they provide high speed but low
accuracy, however the model do not need annotated data.

In some works, they have used audio language models such as WavL.M [65] and
speaker information from LSTM layer, however their speaker style and disentangle-
ment are not representative.

Diffusion models [66] have shown extraordinary performance in generative tasks
in various domains, such as images, videos, and audio, and have recently achieved
considerable success in multi-modal tasks [67, 68]. Specifically, in speech, the
diffusion model is utilized in applications such as audio generation [69, 70], speech
enhancement [71], and TTS synthesis [72, 73]. The fundamental concept underlying
the stochastic differential equation (SDE)-based continuous-time diffusion process
[74] is to train an estimator that repeatedly removes noise by estimating log-density
gradient of data and generates samples with an iterative denoising process via SDE.
The SDE-based diffusion model was also applied to VC task using a maximum
likelihood (ML)-SDE solver [75] for fast sampling.

In Diff-HierVC [76] they have used XLS-R [77] model for context and pitch
embeddings for the speaker. They have also proposed style encoder to disentangle
speech style from target speaker. Their model lacks speaker similarity due to not
having a good speaker representation. Furthermore, it needs prior training on
speaker verification tasks that requires annotated dataset.

In TriAAN-VC [78] they propose Triple Adaptive Attention Normalization
VC (TriAAN-VC). TriAAN-VC, which is based on an encoder-decoder structure,
disentangles content and speaker features. They do not provide good similarity for
unseen speakers.

In HiFi-VC [79] they disentangle content and speaker information from ASR
and speaker verification model where both requires annotated data from training.

One of the first zero-shot VC models was AutoVC [28], an autoencoder-based
model that utilizes a dimensionality bottleneck to disentangle content and speaker
information. It has served as the base model for a range of extensions [80, 81,
82]. Other approaches have used adaptive instance normalization [83] or activation

10



Related Works

function guidance [84] for information disentanglement. All of these approaches
produce spectrograms and require a separate vocoder to synthesize time-domain
audio. Relatively few models have been proposed that can perform end-to-end
voice conversion. Blow [85] is a normalizing flow network for non-parallel raw-audio
voice conversion. However, it is not able to perform zero-shot conversion, and
like many other flow-based networks, it has a very large number of parameters.
NVC-Net [86] is a GAN-based zero-shot model that performs conversion directly
on raw audio waveforms.

In LVC-VC they utilize a neural vocoder that incorporates LVCs [87] as the
backbone architecture for LVC-VC. Taking appropriately designed content and
speaker features as inputs to the LVC kernel predictors, our model efficiently
combines their information to perform voice conversion while directly synthesizing
audio. Although they provide good results on preserving context but they cannot
provide good speaker similarity.

11



Chapter 3

Unlabeled Speech
Representations

In many speech processing tasks, labeled data have been used to develop different
applications. As a result, representations of speech data were dependent on labels.
Moreover, different datasets do not support different languages. In unsupervised
approach, we have representations that do not consider labels. Humans also have
the same path for learning speech. We discover more low level representations in
speech data without considering labels.

3.1 Wav2Vec

In this work [88], they have presented a framework for self-supervised learning of
representations from raw audio data. This approach encodes speech audio via a
multi-layer convolutional neural network and then masks spans of the resulting
latent speech representations. The latent representations are fed to a Transformer
network to build contextualized representations and the model is trained via a
contrastive task where the true latent is to be distinguished from distractors.

The main loss function is contastive loss. To represent the latent representations.
The contastive loss cannot propagate into non-differentiable quantized latent speech
representations. Therefore, they have used Gumbel softmax.

3.1.1 Key features

In this section, we discuss about key components used in this work provide that
we can use them for further development.

Feature encoder. The encoder consists of temporal convolution layer which
has raw audio data as input. Instead of fixed positional embeddings which encode

12



Unlabeled Speech Representations

Contrastive loss

L
= w/9 B \s ®

Transformer
Masked
Quantized
representations
Latent speech
representations

raw waveform

Figure 3.1: Illustration of Wav2Vec architecture

absolute positional information, they use a convolutional layer similar to which
acts as relative positional embedding.

Quantization module. For self-supervised training they discretized the output
of the feature encoder z to a finite set of speech representations via product
quantization. Product quantization amounts to choosing quantized representations
from multiple codebooks and concatenating them. We can interprete this approach
as detecting low level quanitzed features such as phonemes. For the quantization
they considered G codebooks with V entries e € RE*%¢. The Gumbel softmax
enables choosing discrete codebook entries in a fully differentiable way.

Objective function. The objective function consisits of two parts, conservative
loss L,,, and codebook diversity loss £ to encourage the model to use the codebook
entries equally often.

L.=L,+aly (3.1)
exp(sim(ct, q:)/k)
L,=—1o : — 3.2
250, exp(sim(c, q)/k) (32)
1 &V B
Lg= v Z Zﬁgm log pg.v (3.3)

g=1v=1

In diversity loss we encourage the equal use of the V entries in each of the G
codebooks by maximizing the entropy. The diversity loss can act as a regulizer to

13



Unlabeled Speech Representations

avoid overfitting.

3.1.2 Usecasae

In our work, we require an end-to-end speech transformation approach. We aim
to understand methods that can represent audio without relying on labels, such
as text. Therefore, the quantized or encoded data from the transformer can serve
as a representation of the speech data with respect to low-level speech features.
Moreover, we divide the representations of interest for our work into two parts:
speech representations and speaker representations. With fine-tuning this model,
we can obtain both types of representations.

3.2 Wav2Vec-BERT

This paper [89] is an extension of BERT paper [90] released in 2018. Before we
discuss about wav2vec-BERT, the novelty of BERT will be briefly discussed.

3.3 BERT summary

BERT initial model have been used for designing language models. The base
architecture is based on transformer’s encoder part. It consists of twp parts, one
pre-training part and fine-tuning part. In pre-training part, the model tries
to learn word embedding in an unsupervised manner, two tasks will be done in
pre-training part:

1. Masked LM; In this task model tries to mask some percentage of the input
tokens at random, and then predict those masked tokens.

2. Next Sentence Prediction (NSP); Model tries to predict the next sentence.

In the Figure 3.2 we can see the architecture of BERT. Both tasks will be done
simultaneously. In fine-tuning part for each task, we simply plug in the tasks
specific inputs and outputs into BERT and fine-tune all the parameters end-to-end.

3.3.1 BERT in Wav2Vec

In Wav2Vec original architecture, we had masked latent speech representations
and with a contrastive loss and quantizaton, we could optimize the model based on

what we had in BERT. Now in Wav2Vec BERT [89] they added another module
on top of the context representations of original Wav2Vec paper.

14



Unlabeled Speech Representations

NSP Mask LM Mask LM \ ﬁ'—' /@@AD Start/End Spam
@« *

BERT BERT

Masked Sentence A > Masked Sentence B Question ~ Paragraph
Unlabeled Sentence A and B Pair / Question Answer Pair

Pre-training Fine-Tuning

Figure 3.2: Illustration of BERT architecture

The context vectors produced by the contrastive module are directly passed
to the masked prediction module for producing the final context vectors that are
to be used to complete a masked prediction task. A softmax layer is appended
on top of the module’s last conformer block. If a context vector at the final layer
corresponds to a masked position, the softmax layer will take the context vector as
input and attempt to predict its corresponding token 1D, which is assigned earlier
in the contrastive module by the quantizer. We denote the cross-entropy loss for
this masked prediction task as L,,. Therefore, the final loss will be combination of
contrastive loss [91] and cross entropy loss [92]. If we denote contrastive loss as L¢,
we have total loss L,,.

L,=BL.+vL (3.4)

3.3.2 Use case

In this work, we have more detailed representations of audios. The BERT extension
provide better accuracy and outperforms previous paper. One of the key component
of this research is using BERT which was originally used for developing language
models in an unsupervised audio representation task.

Since we have an self-supervised end-to-end task for audio transformation, these
two papers and their objectives, can be further used in our work. We can define
representations that are fully unsupervised which can be fine-tuned. Moreover, the
masking method which used in training phase can be used in further parts of our
research.

15



Unlabeled Speech Representations

Context Vectors MLM Stack —

Contrastive ," '''''' |
Stack Lo —— |
Tl s -
Context Vectors
| 1
| 1
. . x N
: : Target Discretized ids
\ ) Context Vectors

\/

Input Features

Figure 3.3: Illustration of WavtVec architecture

3.4 SoundStream

SoundStream [93] is a neural audio codec [94] in which all the constituent com-
ponents (encoder, decoder and quantizer) are trained end-to-end with a mix of
reconstruction and adversarial losses to achieve superior audio quality.

3.4.1 Autoencoder part

The encoder architecture is illustrated in Figure 3.4. Each of the blocks consists
of three residual units, containing dilated convolutions with dilation rates of 1, 3,
and 9, respectively, followed by a down-sampling layer in the form of a strided
convolution. The decoder block mirrors the encoder block, and consists of a
transposed convolution for up-sampling followed by the same three residual units.
We use the same strides as the encoder, but in reverse order, to reconstruct a
waveform with the same resolution as the input waveform.

16



Unlabeled Speech Representations

Encoder Decoder

Waveform @ 24 kHz Embeddings @ 75 Hz

1

Conv1D (k=7,n=C) EncoderBlock (Ny S) DecoderBlock (N, S) FiLM conditioning
ResidualUnit (N, dilation) L

Conv1D (k=7, n=16C)
(Conv1 D)T (k=28, n=N, stride=5)
Conv1D (k=7, n=N, dilation) DecoderBlock (N=8C, $=8)

[ ResidualUnit (N/2, dilation=1)

EncoderBlock (N=2C, 5=2)

}_
[

ResidualUnit (N/2, dilation=1)

EncoderBlock (N=4C, S=4)

ResidualUnit (N/2, dilation=3)

EncoderBlock (N=8C, S=5) Conv1D (k=1, n=N) & DecoderBlock (N=4C, S=5)
ResidualUnit (N/2, dilation=9) ResidualUnit (N/2, dilation=3)
EncoderBlock (N=16C, §=8) & DecoderBlock (N=2C, S=4)
Conv1D (k=2S, n=N, stride=5) [ ResidualUnit (N/2, dilatinn:ﬂ ¥
Conv1D (k=3, n=K) |—|—| L I J DecoderBlock (N=C, S=2)
] ¥ ¥
FiLM conditioning m

M

Embeddings @ 75 Hz Waveform @ 24 kHz

Fig. 3: Encoder and decoder model architecture.

Figure 3.4: Illustration of SoundStream architecture

3.4.2 Residual Vector Quantizer (RVQ)

Before discussing about the proposed RVQ method in this paper, we have to
discover why quanitization have been used. The purpose of Vector Quantization
(VQ) [95] is reduce the bit rate by quanitizing the output of encoder. In other
words, We have a dictionary of quantization vectors that we choose which vector
in this dictionary is more similar to the encoded embeddings.

However, original implementation of quantization have some limitations. The
bit rate will be huge during transformation. To address this issue, they proposed
RVQ), which cascades [V, layers of VQ as follows. The unquantized input vector is
passed through a first VQ and quantization residuals are computed. The residuals
are then iteratively quantized by a sequence of additional IV, 1 vector.

3.4.3 Use case

The RV(Q mechanism used in this paper, can have low level representations on
audio signals. They also provided a genereator part which reconstruct high fidelity
audio signal. Unlike previous papers which they tried to represent contextual
represntations of audios, this paper provide a reconstruction method. In our work,
we need to build a model that reconstruct an audio preserving new speaker. The
RVQ can be used in our research to quantize the output of encoder. We need both
high level representations like speaker embedding and low level audio reconstruction
embedding at the same time.

17



Unlabeled Speech Representations

3.5 EnCodec

EnCodec [96] is a high-fidelity, andio codec leveraging neural networks. It consists
in a streaming encoder-decoder architecture with quantized latent space trained in
an end-to-end fashion. The EnCodec model is a simple streaming, convolutional-
based encoder-decoder architecture with sequential modeling component applied
over the latent representation, both on the encoder and on the decoder side.

by

Discriminator

g

b ‘\\\ ‘\‘
Encoder K\ Decoder
33
\_,,gl

Quantizer

Figure 3.5: Main architecture of EnCodec

They have proposed another discriminator for the generated speech data. In
the MS-STFT Discriminator architecture, The input to the network is a complex-
valued STFT with the real and imaginary parts concatenated. Each discriminator is
composed of a 2D convolutional layer, followed by 2D convolutions with increasing
dilation rates. Then a final 2D convolution is applied.

MS-STFTD

[(& W=p (1= exe=y mme
I}

[ (L 2P (2 1= ‘86 =1 26=0) Aznon ]
[.«L W‘wwmmm}
!

(Exg=31 '26=0) QZAUOD
]

(exg= '1=0) Qgnuog
I

Figure 3.6: MS-STF'T Discriminator architecture

18



Unlabeled Speech Representations

3.5.1 Use case

This model is an enhanced version of SoundStream [93]. They have added few
features to the previous paper. However, they did not compare the result with
original SoundStream paper.

3.6 HuBERT

In the previous section, we attempted to acquire W2V-BERT [89] for extracting
context tokens. However, we decided to replace W2V-BERT with HuBERT [63]
for two main reasons.

First, the HuBERT model offers state-of-the-art representations of speech con-
text, similar to W2V-BERT'. Second, the pretrained model is available for feature
extraction and has accelerated our work speed. In this section, I will demonstrate
the key features of HuBERT.

L]

Acoustic Unit Discovery System |

(e.g., K-means on MFCC) |

v ' v v : v |

21 22 z.’r zd 25 ZE E
/~HUBERT
Transformer |

x, | [Msk] [msk] [MsK] | x, % | | !

I ‘ P |

CNN Encoder |

L

Figure 3.7: HuBERT architecture

19



Unlabeled Speech Representations

HuBERT utilizes an offline clustering step to provide aligned target labels for
a BERT-like prediction loss in speech representations. This model also provides
self-supervised speech representations used for different tasks.

3.6.1 Architecture

In this paper, they introduced Hidden unit BERT (HuBERT) that benefits from
an offline clustering step to generate noisy labels for a BERT-like per-training.
Concretely, a BERT model [90] consumes masked continuous speech features to
predict predetermined cluster assignments.

The predictive loss is only applied over the masked regions, forcing the model
to learn good high-level representations of unmasked inputs to infer the targets
of masked ones correctly. Intuitively, the HuBERT model is forced to learn both
acoustic and language models from continuous inputs.

First, the model needs to model unmasked inputs into meaningful continuous
latent representations, which maps to the classical acoustic modeling problem.
Second, to reduce the prediction error, the model needs to capture the long-range
temporal relations between learned representations.

One crucial insight motivating this work is the importance of consistency of the
targets, not just their correctness, which enables the model to focus on modeling
the sequential structure of input data. In our work, we use the intermediate output
cluster tokens for context embedding.

20



Chapter 4

High Fidelity Speech
Synthesis

High fidelity speech synthesis refers to the generation of speech that closely resem-
bles human speech in terms of naturalness, clarity, and overall quality. In high
fidelity speech synthesis, the generated speech sounds very natural and is often
indistinguishable from human-produced speech.

4.1 VALL-E

They proposed a language modeling approach for text to speech synthesis (TTS).
Specifically, they trained a neural codec language model (called VALL-E [97])
using discrete codes derived from an off-the-shelf neural audio codec model, and
regard T'TS as a conditional language modeling task rather than continuous signal
regression as in previous work.

Their main interest is to generate given content for unseen speakers. The
model is given a text sentence, a segment of enrolled speech, and its corresponding
transcription.

4.1.1 Use case

Their work is similar our work, except we put audio as input not text. In other
words, they have provided a state-of-the-art TTS language model. We try to
consider their novelty in our work.

21



High Fidelity Speech Synthesis

Personalized
Speech

t
VA L L - E Audio Codec Decoder

A
( )

A S S A e A
Neural Codec Language Modeling

& 4 4 A w 4
F & 4 o
Phoneme Conversion Audio Codec Encoder

1 1
Text Acoustic

Prompt E% Prompt

Text for synthesis 3-second enrolled recording

Figure 4.1: MS-STF'T Discriminator architecture

4.2 MelGAN

MelGAN [98] is a non-autoregressive feed-forward convolutional architecture to
perform audio waveform generation in a GAN setup. The architecture is a fully
convolutional feed-forward network with mel-spectrogram s as input and raw
waveform z as output.

4.2.1 Generator

Induced receptive field In convolutional neural network based generators for
images, there is an inductive bias that pixels which are spatially close-by are
correlated because of high overlap among their induced receptive fields. We
design our generator architecture to put an inductive bias that there is long range
correlation among the audio timesteps. We added residual blocks with dilations
after each upsampling layer, so that temporally far output activations of each
subsequent layer has significant overlapping inputs.

Moreover, other design methods have been used in this paper such as Checker-
board artifacts and Normalization.

22



High Fidelity Speech Synthesis

Mel Spectogra r Discriminator Feature maps
Raw Waveform
Block + output

Conv Layer \
1 e Discriminator Feature maps
Input sequence B 400 Block + output
Upsampling [8x] ‘

Layer

4 | Nt Discriminator Feature maps

7l Dilated . Block + output
Residual stack 3x conv block

Upsampling [2x] i e
Layer (:(‘l]:n\us:;iu‘)]in(()l[) H— Conv Layer — Feature map
ax Output sequence l
Residual stack Derzssniine] ] —— 4x Feature maps
Layer
Conv Layer ConvlLayer —— Feature map
l Conv Layer —— Output
Raw Waveform
(a) Generator (b) Discriminator

Figure 4.2: Illustration of MelGan architecture

4.2.2 Discriminator

They have adopted a multi-scale architecture with 3 discriminators (D, Ds, Ds)
that have identical network structure but operate on different audio scales. D oper-
ates on the scale of raw audio, whereas Dy, D3 operate on raw audio downsampled
by a factor of 2 and 4 respectively.

Multiple discriminators at different scales are motivated from the fact that
audio has structure at different levels. This structure has an inductive bias that
each discriminator learns 4 features for different frequency range of the audio. For
example, the discriminator operating on downsampled audio, does not have access
to high frequency component, hence, it is biased to learn discriminative features
based on low frequency components only.

Furthermore, they have used Window — basedobjective where each individual
discriminator is a Markovian window-based discriminator consisting of a sequence
of strided convolutional layers with large kernel size.

4.2.3 Feature matching

In addition to the discriminator’s signal, they used a feature matching objective
to train the generator. This objective minimizes the L1 distance between the
discriminator feature maps of real and synthetic audio. Therefore, they have added

23



High Fidelity Speech Synthesis

another loss term to regular generator loss.

d 1 i 4
Lrar(G,Di) = By py, [Z + [P @) — D£><G<s>>Hl] (4.1)
=1 ?

We have Lpar, which is their feature matching loss. For simplicity of notation,
D,(;) represents the ;A layer feature map output of the k;h discriminator block, N;
denotes the number of units in each layer.

4.2.4 Use case

In this paper, they have adopted novel techniques to generate high fidelity speech
data from mel-spectrogram of an input text. In our project we do not have
access to text and mel-spectrogram generated by text. However, we can apply the
discrimination and generation approaches provided in this paper in our work.

Although they have used multi-scale discriminator to discriminate real audios
from fake, We can adopt multi-scale discriminator, to have different levels of
discrimination between different speakers.

We can also have feature matching technique in our work, when we try to match
the output speaker embedding to source embedding. Other techniques such as
"induced receptive field" also can be used in our future model architicture.

4.3 HiFi-GAN

HiFi-GAN [99] consists of one generator and two discriminators: multi-scale
and multi-period discriminators. The generator and discriminators are trained
adversarially, along with two additional losses for improving training stability and
model performance.

Mel-Spectrogram |

v
ResBlock[1] [k,
kernel: k,.[1]

dilations: D,[1] ‘

F' 1

oy [k, | blocks

|{ / k,[l] x1 ConvTranspose \I

1 [_stride: k, [1]/2, channels: hy/2
I

! |
. MRF ,
N -

i

@D
\ L=

Raw Waveform

Figure 4.3: Illustration of MelGan architecture

24



High Fidelity Speech Synthesis

4.3.1 Generator

In the generator part they have proposed Multi-Receptive Field Fusion, which
observes patterns of various lengths in parallel. Specifically, MRF module returns
the sum of outputs from multiple residual blocks. Different kernel sizes and dilation
rates are selected for each residual block to form diverse receptive field patterns.

4.3.2 Discriminator

Identifying long-term dependencies is the key for modeling realistic speech audio.
To address this issue they have used multi-period discriminator (MPD) consisting of
several sub-discriminators each handling a portion of periodic signals of input audio.
Additionally, to capture consecutive patterns and long-term dependencies, they used
the multi-scale discriminator (MSD) proposed in MelGAN, which consecutively
evaluates audio samples at different levels.

4.3.3 Usage

The novelty of this GAN model is MPD and MRF module that they used in
generator and discriminator. We can adopt these features in our work.

4.4 Methods

Based on other studies and researches, We can propose two methods to address an
end-to-end speech transformation problem.

4.4.1 First method

We can design an auto-encoder which uses speech wave x; as input and outputs
the generated signal with desired target speaker signal 1;. We also try to use
existed speaker embedding extraction models to generate source and target speaker
embeddings.

In the Encoder part, we encode the signal to a source feature embedding 2.
We concatenate target speaker embedding to z;,. which will be fed into decoder
part. For the encoder architecture, we can use conformer blocks which used in
Wav2Vec paper.

In the Decoder, we fed the decoder the countenance of two zs. and z.
vectors. The output of the decoder y; is the generated signal with target speaker
characteristics. Moreover, as we observed in SoundStream paper, we can provide a
discriminator to maintain high fidelity output speech audio.

25



High Fidelity Speech Synthesis

%t Vi

Zfe
MW Encoder :C Decoder MNV-

AN

h

Speaker 1
Embedding I

Generator

ZtSE

Figure 4.4: First approach basic architecture

The main objective is to reconstruct low level phonemes with new speaker. To
this end, we have to reconstruct the speech data while the speaker embeddings of
source and target maintain their similarity. The generated signal should have almost
identical phonemes as source. The main loss function £; should be a combination
of speaker’s feature matching loss Ly, and reconstruction of the original audio
L,cc. We have also generator loss Lgep.

['t = )\»Crec + »Cfm + »Csfm + ['gen (42)

4.4.2 Second method

In the first approach we have a trade-off between maintaining the target speaker
characteristics and reconstructing the exact input signal, which is not desirable.
If we pay attention to reconstruction, we do not obtain good speaker’s target
embedding in output, if we pay more attention to changing speakers, we can have
bad reconstruction. To address this issue we propose another approach.

We have models that transform speech to speech, but it is not end-to-end. We
can use these models to generate new dataset. In the new dataset we have source
speech data as x and the main objective is to reconstruct the input x.

The architecture of the model will be the same as first approach that we saw in
Figure 4.4. However, we do not consider Ly,,, instead we adopt another loss from
discriminator for matching target and source signal.

Having a good speaker embedding extractor is a key component to our research.
In the next two weeks I will research state-of-the-art speaker recognition models.

26



High Fidelity Speech Synthesis

Meanwhile, I try to investigate current existed not end-to-end deep fake speech
transformation which can be acquired to generate new dataset. Furthermore, I dig
deep into current speech datasets used in current research works.

27



Chapter 5

Speaker Recognition Tasks

Let’s consider related papers! in speaker recognition tasks. Moreover, I analyze
works that perform an end-to-end speech analysis. Furthermore, I dig deep in
current datasets that can be used in our work.

Automatic speaker verification (ASV) [100] is a task to verify whether a given
utterance is from a claimed enrolled speaker. In our project, detecting speakers and
extracting good representations for each speaker plays a crucial role in developing
the future model. I have analyzed two of most recent state-of-the art papers.

5.1 ECAPA-TDNN

In this paper [101], they proposed multiple enhancements to the Time Delay
Neural Network (TDNN) [102] based on recent trends in the related fields of face
verification and computer vision. Firstly, the initial frame layers can be restructured
into 1-dimensional Res2Net modules with impactful skip connections.

Before using neural networks for speaker recognition, statistic models were
used. One of the most notable method was extracting I-vectors [103]. I-vectors
are one dimensional vectors which represent speaker features. After I-vectors,
x-vectors [104] introduced which had DNN based architecture as we see in Figure
5.1. x-vectors and their subsequent improvements have consistently provided
state-of-the-art results on the task of speaker verification.

5.1.1 Time Delay Neural Network (TDNN)

For contextual modelling in a TDNN, each neural unit at each layer receives input
not only from activations/features at the layer below, but from a pattern of unit

T try to summarize their paper, so most of the reviews are based on the original paper.

28



Speaker Recognition Tasks

accept / reject
A

K [ logistic regression ]\

A

Score Function

[ cosine similarity ]
A 4

Speaker Model

Speaker | average l

Representation A A

\[ “ LST:VI ‘]/

evaluation | enrollment enroliment
utterance utterance 1 utterance N

Figure 5.1: Illustration of DNN based architecture for speaker embeddings

output and its context. For time signals each unit receives as input the activation
patterns over time from units below. Applied to two-dimensional classification
(images, time-frequency patterns), the TDNN can be trained with shift-invariance
in the coordinate space and avoids precise segmentation in the coordinate space.

5.1.2 Model Architecture

Two types of DNN-based speaker recognition architectures will serve as strong
baselines to measure the impact of their proposed architecture. These two types
are:

1. Extended-TDNN x-vector: The first baseline system is the Extended
TDNN x-vector [104] architecture and improves upon the original x-vector
system. The initial frame layers consist of 1-dimensional dilated convolutional
layers interleaved with dense layers. Every filter has access to all the features
of the previous layer or input layer. The task of the dilated convolutional
layers is to gradually build up the temporal context.

2. ResNet-based r-vector: The second baseline system is the r-vector system.
It is based on the ResNetl8 [105] and ResNet34 implementations of the
successful ResNet architecture.

29



Speaker Recognition Tasks

®
°
[ ]
4////‘\\\:4\ Layer 3
. A YN ;
e ’ // \\ N Time delay 4
Tl gl S22 T REGL
oifre o
ofe °
e| e [ ]
*Z/ M2 Wi NN Y A Layer 2
LN )‘ \*"F‘ %“)“\ ‘)4‘\ Time delay 2
/‘\ \\/\/‘\/\/\/‘\/\
w6, /i \x//\\\/\ M/ \1/\‘ RN \w N\ 146
ol efefelo/efo/o/ele]e
e e ofe ofe o e
e e eofe L BIK ] o e
242 N NN Ine Layer 1
/\\,l\,\\\\,\\,l\,\ \\,\ ‘\,i\\\l“\ ‘N Time delay 2
’r/\(\(\(\’\l\ \(\ \(\1\( \
LGNS AN A G AN \ \/\ /k |/k &
8 VNSO SN
. ofelfefee
ofe o e oo
[ BN J [ NN J [ BIN ]

Figure 5.2: Structure of TDNN

input l S0xT

‘ ConvlD + ReLU + BN (k=5, d=1) ‘

l CxT

‘ SE-Res2Block (k=3, d=2) ’

‘ SE-Res2Block (k=3, d=3) ‘

17 CxT

‘ SE-Res2Block (k=3, d=4) ‘

T

‘ ConvIDi+ ReLU (k1, d=1) ‘

| 1s36x7

‘ Attentive Stat Pooling + BN ‘

| o721

‘ FC + BN I
1 192x1

‘ AAM-Softmax ‘

output l Sx1

Figure 5.3: Full architecture of ECAPA-TDNN

Speaker embeddings are extracted from the final fully connected layer for all

30



Speaker Recognition Tasks

systems. All the scores are normalized using adaptive s-norm. We have a 1-
dimensional embedding with 1024 size. The EER on VoxCeleb [106] dataset was
0.87 which we compare it with the next paper.

5.1.3 Usage

As discussed in the previous section, we require a robust representation of speaker
features. The research mentioned above is a suitable fit as it offers a state-of-the-art
model for creating embeddings for speakers.

5.2 MFA-Conformer

In this paper [107], they presented Multi-scale Feature Aggregation Conformer
(MFA-Conformer), an easy-to-implement, simple but effective backbone for au-
tomatic speaker verification based on the Convolution-augmented Transformer
(Conformer). The architecture of the MFA-Conformer is inspired by recent state-
of-the-art models in speech recognition and speaker verification.

In previous paper, they used CNNs for TDNN architecture. However, despite
the great success, CNN still has its limitations. It mainly focuses on local spatial
modeling, but lacks of global context fusion. CNNs-based models can not handle
the long range dependencies very well.

Conformer Block
Convolution Linear i isti hNorm Speaker
Fbank Conf Block LayerN
ani s% N 2 H Drop out | onformer Zc |—-| Concat H ayerNorm H Pooling H linear }— O
: X
Conformer Block

Figure 5.4: Full architecture of MFA-COnformer

MFA-Conformer is an easy-to-implement and effective backbone for speaker
embedding extraction. Firstly, the input acoustic feature is processed by a convo-
lution subsampling layer to decrease the computational cost. Secondly, we adopt
Conformer blocks which combine Transformers and convolution neural networks to
capture the global and local features effectively.

5.2.1 Use case

In this work, we have seen new architecture for extracting embeddings. This model
outperforms previous ECAPA-TDNN paper. They have reached an EER of 0.64 in

31



Speaker Recognition Tasks

VoxCeleb datasets. The final vector is one dimensional with size 204R.

32



Chapter 6
Language Models

In this section we analyze the current state-of-the-art language models. The most
recent one is AudioLM [108] which developed by google research team.

6.1 LLaMA Overview

As discussed previously, transformers form the basis of our model architecture,
offering advantages in capturing temporal features from the input. To enhance the
performance of a vanilla transformer, we can add new layers and state-of-the-art
modules and methods.

In this section, I aim to discuss the innovations introduced in the recent language
model published by Meta. While the LLaMA [109] paper primarily focuses on text
language modeling, it incorporates state-of-the-art components into the transformer
model. We can integrate these components into the two transformer models
discussed earlier. The most crucial components of this paper include:

KV cache

RMSNorm

SwiGLU

Grouped Query Attention

Rotary Positional Embedding

6.1.1 KYV cache

Before we discuss about KV cache and group query attention, we need to see how
self-attention works.

33



Language Models

Self-attention

Self-attention, also known as scaled dot-product attention, is a crucial component
of the Transformer architecture. It allows the model to weigh the importance of
different words in a sequence when processing each word. This mechanism enables
the model to consider the context of each word in relation to all other words in the
sequence.

Attention(Q, K, V) ft (QKT> Vv (6.1)
ention(Q, K, V) = softmax .
Vi

Where @) is the query matrix, K is key, V is the value matrix and dj, is the
dimensionality of the model.

Caching Key and Value

From attention mechanism, we know that every predicted token has attention
with it’s previous tokens. In the inference phase we do not need all the tokens
embedding, the last token captures information of the previous tokens. KV cache
is a method to reduce the computation costs during inference.

6.1.2 RMSNorm

In vanilla transformer we use LayerNorm (layer normalization) [110]. In general,
we want to avoid internal covariate shift because it makes the training slower as the
neurons are forced to re-adjust drastically their weights in one direction or another.

e STEM g (6.2)

v/ VAR[z] + ¢

Where ~v and 8 are learnable parameters that allow model to amplify the
scale of each feature. We calculate E[x] and VAR[z] for each rows. With batch
normalization we normalize by columns (features) and with layer normalization we
normalize by rows (token embeddings).

A well known explanation of the success of LayerNorm is its re-centering and
re-sxaling invariance property. In RMSNorm [111] we hypothesize that the re-
scaling invariance is the reason for success of LayerNorm, rather than re-centering
invariances.

T; = Lgi, where RMS(z) =

RMS(Y) > a2 (6.3)

As we can see in the above formulation, we don’t need to calculate the mean and
apply subtract it from our data. We have also g; which is a learnable parameter.
The main advantage of this normalization, is it requires less computation.

34



Language Models

6.1.3 SwiGLU

Feed forward layer in vanilla transformer is a linear layer with ReLLU activation
function [deep]. However, we have seen good performance with enhanced version
of ReLU activation functions. For the vanilla transformer we had:

FFN(JJ) = max(O, l‘Wl +b1)W2 —I—bz (64)

In SwiGLU [112] we use swish [113] function with 3 = 1. In this case it’s called
the Sigmoid Linear Unit (SiLU) function [114].

T

swish(x) = x sigmoid(fx) = ppp— (6.5)
Now for the new feed forward layer we can have:
FFNSwszU(l',I/V,Vv,Wz) = (S’LUZShl(JIW) ®$V)W2 (66)

It is also used in LLaMA [109]. In Figure 6.1 we can see the difference between
ReLU and SiLU activation function.

— SiLU
R e, U

e
o
T

Figure 6.1: RelLU and SiLU activation function

35



Language Models

6.1.4 Grouped Query Attention

In recent years, GPUs have become very fast at performing calculations, insomuch
that the speed of computation (FLOPs) is much higher than the memory bandwidth
(GB/s) or speed of data transfer between memory areas.

This implies that sometimes, the bottleneck is not determined solely by the
number of operations we perform but also by the amount of data transfer required
for these operations. The latter is contingent on the size and quantity of tensors
involved in our calculations.

For example, computing the same operation on the same tensor N times may
be faster than computing the same operation on N different tensors even if they
have the same size, this is because the GPU may need to move the tensors around.

We can conclude that our goal should not only be to optimize the number of
operations we perform but also to minimize the memory access we undertake. For
the grouped query attention [115], we remove h dimension (number of heads) from
the K and the V', while keeping it for the (). Therefor, all the different query heads
share the same keys and values. The performance gains are important, while the
model’s quality degrades only a little bit.

Multi-head Grouped-query Multi-query

Values

000000 0000 D
A

Figure 6.2: Overview of different attention mechanisms

In the vanilla transformer we have Multi-Head attention which has high quality
but it is slow in computation. In Multi-Query attention we have loss in quality
but high speed in computation. In the Grouped Multi-Query attention there is
a good compromise between quality and speed.

6.1.5 Rotary Positional Embedding

For using transformers we need to use specific positional encoding layer. In the first
paper [10] they have used absolute positional encoding, however better approaches
proposed where it increase the performance and speed of the model. In this section

36



Language Models

we analyze different existing positional encoding.

Absolute Positional Encodings For transformers, it is essential to have a rep-
resentation that captures the positions of the tokens. The vanilla transformer
uses absolute positional encoding, where no learnable parameter is involved in
this transformation. In other words, absolute positional embeddings are fixed
embeddings that are added to the original embeddings. This method deals with
one token at a time.

@)Wy
1] \/d_z

Relative Positional Encodings On the other hands, relative positional encodings
[116] deals with two tokens at a time and it is involved when we calculate the
attention. Since the attention mechanism captures the intensity of how much two
tokens are related to each other, relative positional encodings tells the attention
mecahnism the distance between two tokens involve in it. Given two tokens, we
create a vector that represents their distance.

(6.7)

(@ W) (W - af)”
o V.

As we can see in the formula above, for calculating attention scores we have also
included a;; which represents the distance between two tokens. In addition of two
weight vectors we have also a distance metric.

Rotary Encoding The dot product used in the attention mechanism is a type
of inner product, which can be thought of as a generalization of the dot product.
In rotary positional encodings which first introduced in RoFormer [117], we are
looking for an inner product over two vectors ¢ (query) and k (key) that only
depends on the two vectors and the relative distance of the tokens.

For the encoding, we consider two token embedding vectors z,, x) as query and
key and their position m and n, respectively. Their position-encoded counterparts
are:

(6.8)

Gm = fq(xqam)>
kn = fy(xg,m)
Where the subscripts of ¢, and k, indicate the encoded positions information.

Assume that there exists a function g that defines the inner product between vectors
produced by frg -

(6.9)

Gk = g(Tm, T, 0 —m) (6.10)

We define a function g like the following that only depends on the two embedding
q and k and their relative distance:

37



Language Models

(T, Tnym —m) = Re[(Won) (Wi, ) e 9] (6.11)

The rotary position embedding only applied to the query and the keys, but not
the values. Moreover, these embeddings are used after the vector ¢ and k have
been multiplied by the W matrix in the attention mechanism, while in the vanilla
transformer they’re applied before.

6.2 AudioLM

AudioLM [108], a framework for high-quality audio generation with long-term
consistency. AudioLM maps the input audio to a sequence of discrete tokens
and casts audio generation as a language modeling task in this representation
space. AudioLM learns to generate natural and coherent continuations given short
prompts. When trained on speech, and without any transcript or annotation,
AudioLM generates syntactically and semantically plausible speech continuations
while also maintaining speaker identity and prosody for unseen speakers.

‘E: ® ©® @ Semantic tokens (with w2v-BERT)

[linguistic content, intonation]

‘ E: Acoustic tokens (with SoundStream)
[speaker-id, recording conditions, acoustic quality]

Figure 6.3: AudioLM token generators

AudioLM models an audio sequence hierarchically, from semantic tokens up to
fine acoustic tokens, by chaining several Transformer models, one for each stage.
Each stage is trained for the next token prediction based on past tokens, as one
would train a text language model. The first stage performs this task on semantic
tokens to model the high-level structure of the audio sequence.

In the second stage, we concatenate the entire semantic token sequence, along
with the past coarse acoustic tokens, and feed both as conditioning to the coarse
acoustic model, which then predicts the future tokens. This step models acoustic
properties such as speaker characteristics in speech or timbre in music.

38



Language Models

Acoustic tokens Semantic tokens
SoundStream w2v-BERT
[ Decoder ]
A
Residual Vector )
[ Quantizer (RVQ) ] [ ISR et ] _}[ Kimeans ]
A

( Encoder ]

| |

Figure 6.4: Structure of audioLM architecture

In the third stage, we process the coarse acoustic tokens with the fine acoustic

model, which adds even more detail to the final audio. Finally, we feed acoustic
tokens to the SoundStream decoder to reconstruct a waveform.

After training, one can condition AudioLM on a few seconds of audio, which

enables it to generate consistent continuation. In order to showcase the general
applicability of the AudioLM framework, we consider two tasks from different audio
domains:

Semantic
modeling

Coarse

i
Semantic tokens W‘W

!

s tlotoK Coarse acoustic tokens SolndSteam Decoder
acoustic modeling SNt HOKenS (from layers 1:Q’ of the RVQ) o

Fine

acoustic modeling

I Coarse acoustic tokens I Fine acoustic tokens
( )

(from layers 1:Q"' of the RVQ) from layers Q'+1:Q of the RVQ

Figure 6.5: Three stages of audioLM generation

6.2.1 Use case

Although this paper was originally introduced to show a good language model
for audios, it can also be used as an end-to-end audio synthesis application. For

39



Language Models

end-to-end transformation, we can skip the first stage and use semantic tokens of
source speech combined with coarse acoustic tokens of target speaker to generate
new high fidelity speech data.

The AudioLM framework is a general audio generation language model used for
different purposes. We want to develop a specific model to re-synthesis the speech
data. However, we can use their work and try to use their novel idea in our work
with new and better methods.

40



Chapter 7

End-to-End Voice
Conversion

7.1 ACE-VC

In this work, they proposed a zero-shot voice conversion method using speech
representations trained with self-supervised learning. First, they develop a multi-
task model to decompose a speech utterance into features such as linguistic content,
speaker characteristics, and speaking style. Their framework for voice conversion
consists of three major components that are trained separately.

1. SSL based Speech Representation Extractor (SRE) The goal of the SRE is
to extract disentangled speaker and content representations from a given
audio waveform. To this end, they utilized the Conformer model trained in a
self-supervised manner as the backbone of our framework.

2. upstream MelSpectrogram synthesizer The task of the synthesizer is to recon-
struct the ground-truth mel-spectrogram from the representations given by
the SRE.

3. HiFi-GAN [99] vocoder This vocoder is used to generate new wav audio with
high fidelity quality.

They used a training strategy based on Siamese networks that encourages
similarity between the content representations of the original and pitch-shifted
audio.

In this work, they tried to simulate an artificial speaker by changing pitch of
the source speech. For the speech representations they trained an ASR model
and speaker verification model, With the combination of two embeddings they
generated mel-spectrogram of new speech audio and fed it in HiFi-GAN vocoder.

41



End-to-End Voice Conversion

Speaker ID

Angular CTC Loss
Softmax Loss il

M B @@ [@ [ [ @ Predicted Tokens

' I""""""""""""'"'""""""""""""""""""""""‘

00000

- Ground-truth text

Token Probabilities

Linear ‘ Linear + Softmax ‘
i JRLLLLNINNN B8 En‘izgg‘fgzg SLLINNENE
?Sﬁ::fi;'::g Content Head (Linear Layer) Content Head (Linear Layer)
] il wE il 1 i st E(rz‘jgt‘;dding DDUUDUDD
Conformer SSL Model Conformer SSL Model

AP nammn— Pitch-Shift Transform AN NASAN-vn

Original Utterance (x) Transformed Utterance (x)

Figure 7.1: ACE-VC general architecture

With changing pitch of the audio, the main characteristics of speaker will be
the same. They do not use different speakers. We want to capture all the linguistic
and other features of real target speakers in source speech.

7.2 HiFI-VC

In this work, they propose a new conditional GAN architecture, which is capable
of directly predicting a waveform from intermediate features. In particular, they
use HiFi-GAN vocoder for a general decoding task.

They combine ideas from ASR-based content encoding with a GAN generation
approach to achieve high-quality any-to-any voice conversion.

Output waveform combines linguistic information and prosody from the source
sample with reference timbre. The ASR model is used as a linguistic encoder, while
the pitch encoder provides prosody information. Pretrained ASR model used in
the content encoder is freezed during training.

During training, they freeze the ASR model and simultaneously optimize parame-
ters of the FO encoder, speaker embedder, decoder network and GAN discriminators.
We do this by combining modified HiFi GAN losses [99] with speaker embedder

42



End-to-End Voice Conversion

Discriminators

I
l
I
Linguistic
= - @
1
I

Encoder Converted +
b ‘
777777 -
I
’ M v
S 77— FO o . Reconstruction
e Encoder Speaker Loss

KL Loss
(]
Reterence T
Speaker !
Encoder | [

Figure 7.2: HiFi-VC architecture

regularization loss from NVC-Net [86].

They use the VCTK dataset for training baselines and our model. A robust
ASR feature extractor along with a speaker embedder allows this method to solve
general any-to-any conversion tasks. According to multiple experiments involving
subjective and objective evaluation, our method achieves better voice conversion
than the baselines in terms of voice quality, similarity and consistency

7.3 FreeVC

FreeVC [54] is a text-free one-shot VC system named FreeVC, which adopts the
framework of VITS for its brilliant reconstruction ability, but learns to disentangle
content information without the need of text annotation.

Ymel ™| Encoder
(a) Training procedure (b) Inference procedure

Figure 7.3: FreeVC training architecture

Speech embeddings are extracted in downstream tasks such as speech recognition
[118], speaker verification [119], and voice conversion [120], demonstrating the poten-
tial power of SSL features over traditional acoustic features like mel-spectrograms.
WavLM [65] is used to extract SSL features from waveform, and a bottleneck
extractor is introduced to extract content information from SSL features. There

43



End-to-End Voice Conversion

is also a proposal for spectrogram-resize (SR) based data augmentation, which
distorts speaker information without changing content information, to strengthen
the disentanglement ability of the model. To achieve one-shot VC, a speaker
encoder is used for speaker information extraction.

7.4 Diff-HierVC

For hierarchical VC, a two-stage diffusion model is introduced, comprising DiffPitch
and DiffVoice. DiffPitch initially converts the FO with the target voice style, and
the converted FO is then fed to DiffVoice to hierarchically convert the speech with
the target voice style. The details of each diffusion model are described as follows.

Speech Disentanglement DiffVoice

\———
Source-
Filter
Encoder

T o T s e e e e e e e T

X1 K, 71 Xom, ¢ Homo

T
waveform
-1y T [ S R (S S e
5 4
\ Mel > - DiffPitch
7 "
F, ] Encoder ‘; u | “ I'l M| Sq, =
YAAPT + T ILIYYn ;
Normalized ’dr- ||| w."-"" alibll

Fy SemaSpenEt L s s i s o G e e L L R iy

Xpr Xp -1 Xyt Xpo

waveform

Figure 7.4: Diff-HierVC training architecture

As illustrated in Figure 7.4, the process begins with the analysis of speech into
representations of content, pitch, and style:

1. Data perturbation [121] is applied to the input waveform to eliminate content-
irrelevant information. Subsequently, content features are extracted from the
intermediate layer representation of XLS-R [77], a pretrained self-supervised
model using a large-scale cross-lingual speech dataset.

2. A style encoder [122] is utilized to extract the voice style, which represents
the speaker’s style from the Mel-spectrogram. The style embedding serves as
a guide for both the content encoder and pitch encoder.

3. A fundamental frequency (FO0) is extracted using the YAAPT algorithm
[123] with a 4x higher resolution than the Mel-spectrogram for precise pitch
extraction. The content encoder receives log(F0+1), and the pitch encoder
takes the normalized FO as the mean and variance of the source speaker’s F0.

44



End-to-End Voice Conversion

7.5 LVC-VC

The authors propose a novel end-to-end model for zero-shot voice conversion based
on the architecture of a neural vocoder. Additionally, they apply LVCs to the voice
conversion task, showing that they enable efficient and interpretable combination
of speaker and content information in the voice conversion process. Finally, they
demonstrate that their model achieves a much better trade-off between audio
quality and accurate voice style transfer compared to other baselines.

7.5.1 Location-variable convolutions (LVCs)

Many speech generative models [87, 124, 98] are implemented using a WaveNet-like
structure, in which dilated causal convolutions are applied to capture the long-term
dependencies of a waveform. This necessitates a large number of convolution kernels
to capture the many time-dependent features that arise in speech. A network
with similarly variable kernels depending on the conditioning features could be
able to model long-term dependencies in audio more efficiently than fixed-kernel
methods. Inspired by this idea, location-variable convolutions (LVCs) [125] use
different convolutional kernels to model different intervals in an input sequence
depending on the corresponding “local” sections of a conditioning sequence.

To do this, LVCs utilize kernel predictor networks which generate kernel weights
given a conditioning sequence, such as a mel spectrogram. Then, each interval
of the input sequence has a different convolution performed on it depending on
the temporally associated section of the conditioning sequence. This gives LVCs
more powerful capabilities for modeling long-term dependencies in audio because
they can flexibly generate kernels that directly correspond to different conditioning
sequences.

A neural vocoder is utilized as the backbone architecture for LVC-VC, incorpo-
rating LVCs. Taking appropriately designed content and speaker features as inputs
to the LVC kernel predictors, the model efficiently combines their information to
perform voice conversion while directly synthesizing audio.

7.6 QuickVC

In this study, a fast and high-quality voice conversion model is implemented. The
main contributions of this paper are summarized as follows:

e The proposal of the QuickVC model, which combines the high-quality speech
synthesis model VITS with the speech content feature extraction model
HuBERT-Soft to achieve high-quality any-to-many speech conversion.

45



End-to-End Voice Conversion

W”HH' %” % @@ﬁlﬁl Kernels
}

Split
Convid
Tanh Y S
Convid 5 P 4
I ]
Leaky RelLU : Leaky RelL.U i
r [ ]
i Conv1d |
\ -0 : !
i ! y : Leaky ReLU 'x3
| i LvC1d : Convid |
: : [T 1 i !
I | GAU ' g :
I v
i r‘ * 4 Iy 0 '\ 4
: : T*? j o IS T
i ' = = Leaky ReLU
1 1 (3]
E : Tefie Convid
: : Leaky RelLU
E ConvTranspose1d ‘:f\ Dilated Conv1d A f S
! s Leaky RelLU H m
. Leaky ReLU N ) o bkl P.m 5
............ ow-quef liftering
< L
| FO Extraction I | Es |
ol || T 1 f
[{id |" i | lll,l |1 (]
ﬂ‘ ‘f‘.'l‘ll \“".“, ‘H N H'"‘-‘l’r‘- l‘iﬂ”\u\‘r“:“\ ]“v Z [ [
Sl LI L L X Xl.r,‘[
(a) Generator. (b) Kernel predictor for LVCs.

Figure 7.5: LVC-VC training architecture

e In the VITS-based speech reconstruction part, the decoder structure is light-
ened to speed up the model. The inference speed of the model on the CPU is
up to 280KHz.

e To enhance the model’s focus on content information in the input features, a
data augmentation method is employed during the training process, improving
the naturalness and similarity of the results.

The QuickVC model comprises a speaker encoder, a prior encoder, a posterior
encoder, an MS-iSTFT-Decoder, and a discriminator, with the architectures of the
posterior encoder and discriminator following VITS. Subsequent subsections will
focus on describing the prior encoder, speaker encoder, and MS-iSTFT-Decoder.

46



End-to-End Voice Conversion

Converted
Speech

Prior Encoder

Upsample - Out
Content  }-------| - (S > \ Convo
Encoder  j----- et e

-( Posterior Encoder }a--

Linear Spectrogram

Source
Speech

‘o HuBERT-Soft

Target

-—— iSTFT iSTFT iSTFT iSTFT
Mel-spectrogram

Source
Mel-spectrogram

(Upsamp\ing) (Upsampling) (Upsampling) (Upsamp\ing)

Train and Inference
Inference Only -------
Train Only -zz=swmssesenns

(a) QuickVC model (b) MS-iSTFT-Decoder

Figure 7.6: QuickVC training architecture

7.6.1 Prior encoder

The prior encoder consists of HuBERT-Soft, a content encoder, and a normalizing
flow. As the input is no longer text but speech, the text encoder in VITS becomes
HuBERT-Soft and the content encoder. HuBERT-Soft is a kind of feature extractor
using HuBERT-Base as a backbone. HuBERT-Soft takes the raw waveform as
input and produces a 256-dimensional

7.6.2 Speaker encoder

The speaker encoder is responsible for generating an encoded speaker representation
from an utterance. It is trained from scratch alongside the rest of the model. The
network structure of the speaker encoder comprises one layer of LSTM structure
and one layer of fully connected layers. Mel-spectrograms are extracted from the
audio signal and used as input to the speaker encoder. It is assumed that the
output of the content encoder does not contain any speaker information. The
model then replaces the missing speaker information based on the input from the
speaker encoder to synthesize speech.

7.6.3 MS-iSTFT-Decoder

The decoder module is identified as the primary bottleneck in VITS, as indicated by
previous research. In VITS, the decoder architecture is derived from the HiFi-GAN
vocoder, employing a repeated convolution-based network for upsampling the input
acoustic features. Drawing from the decoder architecture in MS-iSTFT-VITS, the
decoder sequentially follows these steps:

First, the VAE latent variable z is conditioned on the speaker embedding g.

47



End-to-End Voice Conversion

Subsequently, z undergoes upsampling through a sequence of upsample convolu-
tional residual blocks (ResBlock) [126]. The upsampled z is then projected to the
magnitude and phase variables for each sub-band signal. Using these magnitude
and phase variables, the iSTFT operation is executed to generate each sub-band
signal. Finally, these sub-band signals are upsampled by inserting zeros between
samples to align with the sampling rate of the original signal. They are then
integrated into full-band waveforms via a trainable synthesis filter.

7.7 YourTTS

In this paper, YourTTS is proposed with several novel ideas focusing on zero-
shot multi-speaker and multilingual training. The study reports state-of-the-art
zero-shot multi-speaker T'TS results, as well as results comparable to the state of
the art in zero-shot voice conversion for the VCTK dataset. The novel zero-shot
multi-speaker T'T'S approach includes the following contributions:

o Introducing the first work proposing a multilingual approach in the zero-shot
multi-speaker TTS scope.

o Demonstrating the ability to perform zero-shot multi-speaker TTS and zero-
shot Voice Conversion with promising quality and similarity in a target lan-
guage using only one speaker in the target language during model training.

e Requiring less than 1 minute of speech to fine-tune the model for speakers who
have voice/recording characteristics very different from those seen in model
training, yet still achieving good similarity and quality results.

7.8 TriAAN-VC

In this study, Triple Adaptive Attention Normalization VC (TriAAN-VC) is pro-
posed, consisting of an encoder-decoder and an attention-based adaptive normaliza-
tion block. This framework is designed for non-parallel any-to-any voice conversion
tasks. The proposed adaptive normalization block is responsible for extracting
target speaker representations and facilitating conversion while minimizing the loss
of the source content using siamese loss [127].

48



End-to-End Voice Conversion

R

a——- il

z

Posterior Encoder
* [WaveNet residual blocks
‘z

z

Flow-Based Decoder

 [Affine Coupling Layer

1
1
I
1
1
1
|
I
i
1
1
1
!
1
i
I
I
1
I
1
1
[
1
‘ T
1 £z
z P
P <
1
I
!
i
i
1
1
1
I
i
i
1
!
!
1
i
1
1
I
I
i
1
1
1
I
1
I
1
1
I
i
1

Aligment Generation

OCO0EN =

Monaotonie Alignment
Search

J0DEN =

— d 2

0QQ00 f2 4 (2)
4{0000Q0 (2 J<\1

0000 1

00@ » 0O0®~°

; Speaker
Trar Block Duration ,
Predictor Embeddin

o

é_Transtrmers Block |: # Duration <—‘E—m'hemgj

i e : Predictor

Ch[a_’ ‘:j Speaker )
E | E e |

Linear Input Text Lang ID Nolsa Ref. Wav !
Spec. Input Text Lang ID Noise Ref. Wav

(a) Training procedure (b) Inference procedure

Figure 7.7: YourTTS training architecture

S Pitch x,
ource Pitc fo ( \ R
Feature Conv Block 1 C Block
T : onv Bloc
| extraction Instance Normalization 1 GRU T GRU
! ¥ oc| :
R “b r_DuAN o
Feommi i
e Bottleneck Layer x L
Conv Block 4 3
— Speaker Attention — . Conyersion output
extraction N N I
Instance Normalization \
4

Target Speaker N A e
Speaker Encoder

Figure 7.8: (TriAAN-VC training architecture

49



Chapter 8
Datasets

In this section we investigate different available datasets used in different papers.
We then select the most prominent dataset for our research.

8.1 TIMIT

One of the first and old datasets is The TIMIT [128] corpus of read speech is designed
to provide speech data for acoustic-phonetic studies and for the development and
evaluation of automatic speech recognition systems. TIMIT contains broadband
recordings of 630 speakers of eight major dialects of American English, each reading
ten phonetically rich sentences.

TIMIT dataset is so clean and does not consider noises exists in real world. We
need datasets with more speakers and recording conditions.

8.2 LibriSpeach

LibriSpeech [129] is a corpus of approximately 1000 hours of read English speech
with sampling rate of 16 kHz. The data is derived from read audiobooks from the
LibriVox project, and has been carefully segmented and aligned. LibriSpeach has
different variations for test and training.

This dataset provide different recording condition and more speakers compared
to TIMIT. However, this dataset is still small for our task.

8.3 LibriLight

The training set is composed of unlabeled audio [130], limited supervision training,
and unaligned text. Unlabelled audio: 60K of unlabelled speech extracted

50



Datasets

and processed from LibriVox audiobooks. It contains speech from over 7,000
unique speakers. We removed duplicates and corrupted data, and added voice
activity detection, signal to noise, genre, and unique speaker IDs in order to help
study the impact of these side variables on unsupervised methods. The dataset is
distributed in three disjoint subsets of different durations: unlab-60kh, unlab-6kh,
and unlab-600h, respectively.

Limited supervision training set: We provide the orthographic and phonetic
transcription (the latter being force-aligned) for three subsets of different durations:
train-10h, train-1h and train-10min.

Unaligned text: We rely on the LibriSpeech LM training set, which is based
on the 14K books from the open source Gutenberg repository.

This dataset has the quantity we need for training. However, we use this dataset
only for training. Other papers I reviewd tried to train models with this dataset
and compared their results with testing on LibriSpeech. AudioLM paper which we
discussed, used the same method. Therefore, we can have good metrics to compare
the models.

8.4 VCTK

This CSTR VCTK [131] Corpus includes speech data uttered by 110 English
speakers with various accents. Each speaker reads out about 400 sentences, which
were selected from a newspaper, the rainbow passage and an elicitation paragraph
used for the speech accent archive. The newspaper texts were taken from Herald
Glasgow, with permission from Herald and Times Group. Each speaker has a
different set of the newspaper texts selected based a greedy algorithm that increases
the contextual and phonetic coverage.

8.5 LibriTTS

It is derived from the original audio and text materials of the LibriSpeech corpus,
which has been used for training and evaluating automatic speech recognition
systems. The new corpus inherits desired properties of the LibriSpeech corpus
while addressing a number of issues which make LibriSpeech less than ideal for text-
to-speech work. The released corpus consists of 585 hours of speech data at 24kHz
sampling rate from 2,456 speakers and the corresponding texts. Experimental
results show that neural end-to-end TTS models trained from the LibriTTS [132]
corpus achieved above 4.0 in mean opinion scores in naturalness in five out of six
evaluation speakers

51



Chapter 9

Language Model Based
Voice Conversion

In this section I try to demonstrate all the key components of the first proposed
framework. I have designed the different model’s components.

Feature Extraction Block Acoustic Generation Block Speech Generation Block

Figure 9.1: Structure of proposed end-to-end model

In the Figure 9.1 we have the overall architecture of the model. For the input
we have two signals. Since we do not have a reliable end-to-end dataset for the
model, both signals are from the same speaker in training phase.

a. Source speech signal: The signal which we want to covert it with a new
speaker. However, we do not have access to target speaker.

b. Prompt signal: It is a sample speech from the target speaker from target
speaker’s speech. For the training phase we just try to reconstruct the audio with

52



Language Model Based Voice Conversion

the same target speaker we used as source signal.
The model contains three main blocks:

1. Feature Extraction Block: In this block, we try to encode and extract
features from source speech signal and target prompt signal.

2. Acoustic Generation Block: The extracted features will be used to generate
target acoustic embeddings.

3. Speech Generation Block: Target acoustic embeddings will be used to
generate new speech signal.

Each of these blocks contain different components. Now we go deep in each
block.

9.1 Feature Extraction Block

In this block we extract three sets of features using three state-of-the-art models.
Each of these features are important for generating acoustic tokens and target
speech signal.

9.1.1 Speaker Representation Extractor

This model extracts speaker features from prompt speech signal. The extracted
embedding has informative representations of the prompt speaker’s characteristics.

ﬁl’A—C onformer \

Speaker
Representation Fbank —>|
Extractor

Convolution
Upsampling

Figure 9.2: Speaker Representation Extractor model architecture

For this step, we can choose MFA-Conformer as I described earlier. We will
use pre-trained models in this section. We extract source speaker embeddings in
training phase.

53



Language Model Based Voice Conversion

9.1.2 Context Representation Extractor

The main duty of this module is to extract context information in a speech
signal. The context embedding describes low level features such as low level text
representations in a speech signal. This representation should not provide any prior
information regarding speakers characteristics and linguistics features.

Wav2Vec-BERT
/ Input Features
; l
1
‘
’
i Encoded Convolution

i [ Features Upsampling

Masking

’ MLM Stack|

A4
1" | Conformer Block
! 1
Context v
Representation | Conformer Block

Extractor L] Source

‘\\ CnnLtrastive < > E Context
\ 088§ -
. ‘Contrastive Stack o Embeddlngs
. ¥ |

“ Conformer Block
. :‘:
i
AY |
\
¥ Conformer Block

xM

Figure 9.3: Context Representation Extractor model architecture

We use intermediate layer of w2v-BERT [89] model. We only need context
embedding of source speech signal.

9.1.3 Coarse Acoustic Extractor

As we discussed before about SoundStream paper, in the RVQ part we have acoustic
tokens. First layer of RVQ represent coarse features in a speech signal, while last
RVQ layers represent fine features.

We use first layers of RVQ for representing a second representation of target and
source embedding. We extract coarse acoustic tokens along side MFA-Conformer

54



Language Model Based Voice Conversion

ﬁoun dStream \

Reconstructed
Signal

Input Signal Decoder

.
.
-
Coarse Acoustic
Extractor
N

L2 2R 22 Source
00009 Acoustic

Embeddings
QOO0

CO0000

N
N
N
N
N
~
N

Figure 9.4: Coarse Acoustic Extractor architecture

embeddings to represent target speaker’s features.

9.2 Acoustic Generation Block

In the previous block, we extracted context information of source signal and then
speaker features of prompt speech. In this block, we disentangle these features,
and we pass it to acoustic generator model. This model generates target acoustic
embedding. In the training phase we want to increase similarity between this
embedding and source acoustic embedding. Therefore, we define a loss function to
increase the similarity between the logits of the predicted target speech and actual
tokens.

9.3 Speech Generation Block

We use the generated acoustic tokens to generate speech signal. For the speech
generation, we use SoundStream decoder. The decoded signal will be similar to
source signal with target speakers characteristics.

Moreover, after decoding the target speech signal, a discriminator will be used
to increase the fidelity of final output speech. Furthermore, the generated signal
will be fed into speaker representation extractor module and the output embedding
will be compared with the target prompt speaker embedding and source speaker
embedding (for the training part). We also define a reconstruction loss for the
source and output signals.

55



Language Model Based Voice Conversion

. ,«ﬂmnd&ream Decoder \

Source (22224 B l../«"“'"'

e Acoustic V09O ¢ [ Reconstructed
Embeddings 50000 " Decoder 2 Signal
SoundStream —=
Decoder RO oy

Input Signal

\\‘

Figure 9.5: Decoder architecture

9.4 Loss function

We want to decode fine tokens from the logits of the last layer of decoder. We have
to define a loss function for our design that can suitably predict tokens of the RVQ
layers. We have used cross entropy loss for this approach.

Cross Entropy Loss:

The cross entropy loss, often used in machine learning for classification tasks,
measures the difference between the predicted probability distribution (¢) and the
true probability distribution (p).

It is defined as:

H(p,q) = = >_p(i)logq(i)

where: H(p,q) denotes the cross entropy between probability distributions p
and ¢. p(i) is the probability of event i according to the true distribution p. ¢(7) is
the probability of event ¢ according to the predicted distribution g. The sum is
taken over all events i for which both p(i) and ¢(i) are non-zero.

The goal is to minimize the cross entropy loss, which effectively means making
the predicted probability distribution (¢q) as close as possible to the true distribution

(p)-

9.5 Design

I will discuss the model components responsible for generating the final acoustic
tokens.

As discussed in the previous part, three main blocks are required to transform
the source speech into new speech while changing the speaker to a new one. The

56



Language Model Based Voice Conversion

first block (feature extraction block) and the third block (speech generation block)
do not require any training, as we use pretrained models. Therefore, for the first
proposed model, we only design the acoustic generation model.

Furthermore, we have modified the previous architecture. In the new configura-
tion, I eliminated the speaker embeddings block during the first phase of training.
As the first model proposal consists of transformers, I employed cross-entropy loss.
In Figure 9.6, the new architecture is shown. The MFA-Conformer extractor is no
longer present; instead, we concentrate on coarse tokens of the target prompt.

Feature Extraction Block Acoustic Generation Block

Speech Generation Block

Figure 9.6: New model architecture

Furthermore, instead of wav2vec2-BERT [89] we used HuBERT [63] and Encodec
[96] instead of SoundStream [93]. The Encodec model have better accuracy than
SoundStream. Hubert model generates tokens that can have 0 t 500 values (token
size).

9.5.1 Second Block Components

In the second block, we have two transformers that operate hierarchically. The
first model, the coarse acoustic generator, generates coarse embeddings of the final
target speech signal based on source context tokens and target prompt coarse
tokens. In Figure 9.7, the complete architecture of the generator block is illustrated,
where two transformers are stacked together.

In the second model, the fine acoustic generator, generates the fine tokens of the
target speech signal based on target speech coarse embeddings and source context
tokens. A similar architecture has been observed in AudioLM [108].

57



Language Model Based Voice Conversion

Figure 9.7: Generator block architecture

9.5.2 Coarse Generator Model

We propose coarse generator for generating coarse tokens suitable for Encodec
decoder module. The base architecture of this module is vanilla transformer [10].
This model takes context tokens of source speech and coarse tokens of target prompt
as input to generate the coarse acoustic tokens of target speech signal. I used cross
entropy loss as below:

H(p,q) = Y p(z)log(q(z)) (9.1)

xeT,

Where p(x) is the true probability distribution (one-hot) and g(z) is the predicted
probability distribution. T, denotes as input token size. After we predicted the
coarse tokens, we use them to generate fine tokens.

9.5.3 Fine Generator Model

In this block, we generate fine tokens with respect to the coarse tokens generated
from the previous block and context semantic tokens. During the generation of fine
tokens, the coarse generator model will not be optimized and will only be used as a
pretrained model. In other words, its parameters don’t need gradients calculations.
After separately training these two transformers, we stack them together and use
them as an inference model to generate target acoustic tokens, which will be fed
into the Encodec decoder.

9.5.4 Experimental Setups

In this part, I provide a description and usage guide for key implementations that
I developed during the training phase. I offer an overview of the main classes, their
methods, and the underlying concepts behind each one.

58



Language Model Based Voice Conversion

Libri-Light Pre-Processing

As T mentioned in the previous parts, we use Libri-Light [130] small version for the
first part of the training. For training, we utilized two pretrained models to extract
features and one transformer model for training purposes. Pre-processing is a crucial
stage in our work, aiming to achieve high accuracy while keeping computational
costs low. Some challenges encountered during the data pre-processing stage
include:

1. Different duration sizes
2. High computation cost for extracting features
3. Difference in different books

4. Multiprocessing with different GPUs

For the first problem, I wrote a modular algorithm that can cut audio files with
respect to the maximum and minimum length.

In the cutsequence function we receive the original audio from the dataset and
we cut the audios based on the VAD (voice activity detection) metadata file we
have. This metadata file contain the periods that we have speech activity in original
file. Moreover, arguments minseq and maxseq represent the final output bounds.

Creating paths

For extracting features and loading audio files to the Datal.oader, we need to create
a file that contains different set of paths. For improving the speed of the project, I
developed the codes independently from feature extraction phase.

In this function, a special argument, n,epeats, is introduced. In our work,
we aim to reconstruct one speech with various prompts from the same speaker,
not just a single prompt. As mentioned earlier, a challenge encountered during
pre-processing was the varying quality of different books within the same speaker,
which could potentially impact the model’s performance. In this function, we
addressed this challenge by paying separate attention to different books.

Pre-trained wrappers

In the initial run, I attempted to train the model while simultaneously extracting
features, resulting in a decrease in performance. In the second attempt, I opted to
separate the feature extraction from the training phase.

We define two wrappers for extracting feature. First wrapper is HubertT okenizer)|
which extract token ids from speech signals. All the speech signals should be sam-
pled with sr = 16000 in this stage.

59



Language Model Based Voice Conversion

The second wrapper is EncodecT okenizer wrapper which return acoustic tokens
from Encodec model. For the training we use 6KHz bandwidth which has 8
quantized layers ) = 8. The first two layers represent the coarse features and the
next six layers represent fine tokens. Since the model is trained on 24kHz dataset,
we need to resample the input data from 16kHz to 24kHz.

Configurations

We define a dataclass to manage hyperparameters needed for extracting the data.
Some of these hyperparameters should be identical to training configuration.

Maximum length collation

We encounter various speech lengths in the transformed dataset. To batch them
using the Datal.oader module in PyTorch, it’s necessary to collate each batch to
the maximum length present within that specific batch before passing it to the
DatalLoader. To accomplish this, we employ the following collate function.

When we extract tokens with batches, for each batch entry we have some
repetitive tokens with different sizes. We need to replace them with padding tokens
to maintain consistency in the training.

After we calculated the unique consecutive batches, we save them in memory
map array in a NumPy array. Since we use multiple GPUs, we save one file for
each GPU. In conclusion, we reduced the computation cost in the final training
stage of the model.

Training

In this part I try to illustrate the training steps of the transformer model for
predicting coarse tokens.

Configurations

For the training we use a specific configuration. Some arguments should be identical
to the extraction phase.

Since we are concatenating coarse tokens and semantic tokens, we define an
argument tokens_matching , which increases the minimum token size of coarse
tokens to avoid overlapping between tokens.

Training Wrapper

We have CoarseM odelTrainer class which is used to train the transformer model.
We use Distributed Data Parallel (DDP) training from torch to run the the model

60



Language Model Based Voice Conversion

on multiple GPUs. These wrapper has full compatibility with multi GPU training.
You can see the implementation detail in the appendix.

For the fine transformer we use FineModelTrainer which is identical to the
coarse model. We use output of the coarse model as an input for the fine model.

9.5.5 Results

Despite our efforts to enhance the performance and accuracy of the model, we
were unable to achieve good results. The initial model design did not perform as
expected. In the first run, the model had a training time of 220 hours per epoch.
After optimizing the pre-processing and implementing the methods discussed earlier,
the training time was reduced to 12 hours per epoch. However, while the model
showed progress, the pace was too slow to be sustainable.

We must take into account that the final architecture involves two transformers,
with the fine transformer being more complex than the coarse transformer. Conse-
quently, training both models hierarchically could be deemed an impractical task.
In summary, the developed model had some downsides as bellows:

1. High complexity
2. Slow training
3. Token dependency

4. Not involving the decoder

The original AudioLLM paper [108], which served as our primary inspiration for
designing this model, was trained on the large version of the LibriLight dataset,
which is 100 times larger than the small version. Notably, their architecture
employed three hierarchical transformers instead of two.

In our architecture, there is a trade-off between complexity and accuracy. Given
that the final audio is reconstructed with pure tokens, achieving the highest possible
accuracy is crucial; otherwise, poor results may be obtained.

It’s worth noting that simultaneous training of both models is not feasible.
After successfully training the coarse model, training the fine transformer can be
difficult. Training transformer with the Encodec decoder is challenging due to its
high complexity and issues such as vanishing gradients.

In conclusion, we aim to design a model that is fast to train while maintaining
good accuracy. Additionally, training the signal generator alongside other modules
concurrently allows us to incorporate more losses into the optimizer. Furthermore,
We have developed a modular pipeline for handling the LibriLight dataset (com-
patible with all versions), which can be utilized in future model development. We
expand our research on other methods employed in the voice conversion task. In the

61



Language Model Based Voice Conversion

next design, the goal is to integrate all models we discussed earlier while reducing
overall complexity.

62



Chapter 10

Modified Architecture

Based on the experiments with the first model architecture and the identified flaws,
we designed another architecture. We have done several modifications to enhance
the model’s representations while reducing complexity. In summary, we made the
following modifications:

1. Using embeddings of HuBERT instead of quantized tokens
2. Generating mel-spectrograms instead of generating RVQ layers of EnCodec
3. Adding HiFi-GAN as a mel vocoder to convert mels to audios

Furthermore, we conducted new research on potential loss functions to improve
the model. We decreased the model complexity by 70% and reduced the training
stages to two parts. Now, we have one acoustic model and one vocoder that require
training. Additionally, we use pretrained models to extract features needed to
calculate mel-spectrograms in the acoustic block.

10.1 Architecture

In Figure 10.1, we can see the components of the new model. We have divided the
stages into four parts. We have used EnCodec and HuBERT as pretrained models
to extract features.

The new blocks are:

1. Context Encoder Block
2. Speaker Encoder Block
3. Acoustic Generation Block

4. Vocoder Block
63



Modified Architecture

Context Encoder Block Acoustic Generation Block Vocoder Block

Source ’\‘ Target e Target
Speech ——{ HuBERT Encoder Cross RGN Speech
Signal Attention el Vocoder Signal
Block
Ll

Speaker Encoder Block
Speaker

Target

P,

Lrompt Attention
Signal

Block

Figure 10.1: Final Model Architecture

10.1.1 Context Encoder Block

We assume we have an input audio signal, where it has a sample rate of 16000
Hz and it is mono channel. We have z, where 2, € RTs. We pass it to HuBERT
pretrained model. We use intermediate HuBERT layer as a feature extractor. From
the input signal we also extract mel spectrogram to be used in reconstruction with
LSTM layers in the vocoder part.

Source X4 — > Xm
Speech — HUBERT
Signal > X

Figure 10.2: HuBERT pretained feature extractor

In the Figure 10.2 we have HuBERT feature extraction phase. We extract
two ,, and z, embeddings. Where z,, € RF**™ and it denotes as source mel
spectrogram. We have M as the total number of mel-channels. We have also
xs € RFs*D where F, is the total number of frames and D is the dimension of each
frames embedding. We use z,, as the context features for the acoustic model to
generate mels.

64



Modified Architecture

10.1.2 Speaker Encoder Block

For extracting speaker linguistic features for the prompt speaker, we first extract
the signal 2, € R’ then we pass it to the EnCodec model. The EnCodec model is
pretrained on 24KHz samples. We extract () quantized RVQ layers for each frame.
The total number of frames is F,,. We select the top g. layers as speaker features,
and we discard the gy layers, which denote context or fine features.

[ 00000 |

Xtc _h:Coar'se Tokensi

Target X, X, dperesersrereres !
Prompt — EnCodec B
s Wing::::
flo £880¢

Fine Tokens

Figure 10.3: EnCodec pretained feature extractor

We extract Xy, where 2, € Rt and F, = F, X q., which denotes the final
tokens representing speaker features. We do not use fine tokens since we want the
model to learn context information from HuBERT embeddings.

The main goal of these two blocks is to prepare representations that can disen-
tangle speaker features from context features. Furthermore, the EnCodec model is
a reconstruction model; we do not need any prior knowledge about speakers during
training.

10.1.3 Acoustic Generation Block

Now we combine three embeddings extracted from the first two blocks to generate
mel-spectrograms of the final target speech. First, we use an encoder module
composed of three 1-dimensional convolution layers. We pass context embeddings
to the encoder to get the final context embedding. We use it as input Q),, which is
the query for the cross-attention module, where @, € R¥**? and D is the mapped
dimension of the context embedding. In the encoder block, the number of frames
will be the same as z;.

We also use a coarse transformer module to create an embedding with a dimension
size of D for each token of the coarse tokens. These embeddings will be used as key
and query for the cross-attention module. The frame size will be the same as z,.

In Figure 10.5, we have the designed components for extracting mel spectrograms.
In the attention block, we use multi-head attention in transformers.

65



Modified Architecture

Target
_)xs Encoder & wry—s{  Cross ye Decoder y—m’.
Attention
Block
N
Ke' Value
X, Speakgr ey Vo
— Attention
Block
xm
Figure 10.4: Acoustic Generation Block
8 \\
Yd_’ 1 Linear Layer 3 LSTMS + 1 Linear -—Y'b
Decoder p .
| Xn [ ) a
- g Attention K, i Head e [ D Y.
7 Block v Azeaen AMS Norm
Encoder 2l e apr oo are e N /

/
>

Figure 10.5: Different components of acoustic block

Transformer attention is a mechanism used in Transformer models for cap-
turing relationships between words in a sequence. Given an input sequence
X = {x1,29,...,7,}, where z; represents the embedding of the i"* word in the
sequence, the Transformer attention mechanism computes a set of attention weights
A = {a;;}, where a;; represents the attention weight assigned to the " word
attending to the j** word.

The attention weight a,; is computed as follows:

exp(e;;)
;= ——) 10.1
I = S eplen) (101)

Where e;; represents the attention score between words ¢ and j, and it is
computed as a dot product between their embeddings followed by a softmax
function:

66



Modified Architecture

e;; = softmax(g; - k‘;) (10.2)

Here, ¢; and k; represent the query and key vectors for words ¢ and j, respectively.

Multi-head attention extends the Transformer attention mechanism by allowing
the model to jointly attend to information from different representation subspaces
at different positions. Instead of performing a single attention operation, the input
is split into multiple heads, and attention is computed independently within each
head. Then, the outputs of the heads are concatenated and linearly transformed to
produce the final output.

Let H denote the number of attention heads. In multi-head attention, each head
computes its own set of attention weights and outputs a context vector. These
context vectors are concatenated and linearly transformed:

MultiHead(Q, K, V) = Concat(head,, ..., head ;)W (10.3)
Where head; = Attention(QWQ , KWE VWY represents the i'" attention head,

1

and VVZ»Q, WXE, WY are learnable weight matrices for the query, key, and value
projections, respectively. W is the learnable output transformation matrix.

Each attention head operates as described in the Transformer attention section.
The resulting context vectors from different heads are concatenated and linearly
transformed to produce the final output.

We use attention block in the coarse attention and cross attention block. With
attention blocks we can disentangle speaker features and context features to generate
final mel-spectrograms of the target audio.

In Figure 10.6, we have designed transformer blocks for extracting features
from speaker and context embeddings. The final output is y4, where 14 € RFs*P.
This embedding represents the main feature embedding, containing information
regarding target mel-spectrograms to be used in the decoder.

After we calculate y4, we use the decoder block illustrated in Figure 10.5 to
generate v,,, where y,,, € RF**™_ We have been inspired by Tacatron2 in designing
the decoder block. v, is the final generated mel, which we use as input to the
vocoder to generate the final target speech audio. We have N layers of attention
blocks for coarse tokens and M layers of attention blocks for cross-attention.

In the decoder block, we use LSTM layers concatenated with the mel spectrogram
of the source to generate frames of the target mel. The generation during inference
is autoregressive.

10.1.4 Vocoder Block

After we have successfully generated mel spectrograms, we need a vocoder to convert
them into audio signals. Once the acoustic model has produced the spectrogram

67



Modified Architecture

e N ™

Target Q_
CI"OSS- XE Positionul+ Encoding K ] Attention KP
Attention EnbEading Block ’
Block Y 5

A <M N

Qg
Speaker Attention
Y
Attention — Block —
Block Y

Figure 10.6: Transformer blocks

representation of the speech, which includes information about the frequency
content of the speech signal over time, the vocoder converts this spectrogram into
a waveform that represents the speech signal in the time domain.

There are various types of vocoders, including traditional vocoders like the
WaveNet vocoder and the Griffin-Lim algorithm, as well as more recent deep
learning-based vocoders like WaveGlow, MelGAN, and HiFi-GAN. These vocoders
aim to generate high-quality and natural-sounding speech waveforms from the spec-
trogram output of the TTS model. They achieve this by modeling the relationship
between the spectrogram and the waveform using neural networks or other signal
processing techniques.

We have used HiFi-GAN as vocoder. There is also another variation of this
vocoder valled BigVGAN which produces results with better quality.

10.2 Experimental Setup

In this section we analyze the different setup phases to train and inference the
model.

68



Modified Architecture

10.2.1 Datsaet

We train the model with a large-scale publicly available multispeaker dataset. We
utilize the train-clean-360 and train-clean-100 subsets of LibriT'TS, which contain
245 hours of speech from 1,151 speakers. We additionally use dev-clean-other
subsets of LibriTTS for validation. We have combined it with LibriLight medium
version.

10.2.2 Training

We train the model using LibriT'TS and LibriLight for 400K steps with a batch
size of 4 on 4 NVIDIA RTX A6000 GPUs for three days, using the AdamW
optimizer. We implement the learning rate schedule with a decay of 0.999 at an
initial learning rate of 4 x 10™*. We segment the audio clips between 5 to 10 seconds.
For fine-tuning, we set the initial learning rate to 1 x 107°. We use 6 multi-head
attention blocks for the coarse encoder and 4 multi-head attention blocks for the
cross transformer block. The mel dimensions are 128 at all steps, and the working
frequency is 16 kHz.

69



Chapter 11

Evaluation

For evaluating the performance of our model, we used the LibriTTS test-clean and
test-other subsets. All the speakers were unseen by the evaluation models.

11.1 Metrics

We considered 6 metrics to evaluate the performance of the model. The metrics
are categorized in two parts:

1. Speaker Similarity: How much the prompt speaker is similar to the generated
prompt speaker.

2. Context Similarity: How much the source context is similar to the source
speech.

11.1.1 Speaker Embedding Cosine Similarity (SECS)

Cosine similarity is a measure of similarity between two non-zero vectors of an
inner product space. It is defined as the cosine of the angle between the two vectors.
For having a metric for speaker similarity between prompt audio and generated
target speech we use this metric.

In the first step, we need a speaker embedding encoder. We used ECAPA-TDNN
to extract embeddings from speech audio. We extract embedding vectors X, € R¥
from prompt speech and Y, € R¥, where K corresponds to the embedding size of
ECAPA-TDNN. In a vector space with a Euclidean norm, the cosine similarity
between these two vectors can be expressed as:

Xs'Ys

Xs, Ys) =
cos(Xa Ya) = I YL

70



FEvaluation

These function returns similarity metric for two speakers, if we have zero in
output it indicates the maximum similarity.

11.1.2 Equal Error Rate (EER)

In speaker verification, Equal Error Rate (EER) is a crucial metric used to evaluate
the performance of a system in determining whether a speaker’s claimed identity
matches their actual identity.

EER is a critical metric in speaker verification systems as it provides a good
summary of system performance, allowing for comparison between different systems
or the evaluation of a single system under various conditions.

Based on the cosine similarities we obtained on SECS metrics we define a
threshold and based on the threshold we calculate EER. If we consider out threshold
as 7 we have the formulation as below:

FER(r) — Number of samples accepted at threshold 7

Total number of samples

11.1.3 Word Error Rate (WER)

In voice conversion, the Word Error Rate (WER) measures the performance of
converting speech from one speaker to another, typically in the context of changing
the speaker’s voice characteristics while preserving the linguistic content of the
speech.

The Word Error Rate is a metric commonly used in automatic speech recognition
(ASR) systems to evaluate the accuracy of transcriptions. It calculates the difference
between the original speech and the converted speech in terms of the number of
words that are incorrectly transcribed, substituted, deleted, or inserted.

Here’s how the Word Error Rate is calculated:

1. Substitutions: Count the number of words that are substituted in the
converted speech compared to the original speech.

2. Deletions: Count the number of words that are present in the original speech
but are missing in the converted speech.

3. Insertions: Count the number of words that are present in the converted
speech but are not present in the original speech.

Once these counts are determined, the Word Error Rate is calculated using the
formula:

S+D+1

E:
WER N

71



FEvaluation

where:

S is the number of substitutions,

D is the number of deletions,

I is the number of insertions, and

N is the total number of words in the original speech.

A lower WER indicates better performance, as it signifies a smaller discrepancy
between the original and converted speech. In voice conversion, minimizing the
Word Error Rate is essential for producing natural and intelligible converted speech
that accurately represents the intended linguistic content.

In the context of voice conversion we do not have access to text, for calculating
word error rate we first use one ASR model to generate contexts/words from
source speech and generated speech and then we calculate the error. We have used
WAV2VEC2 Large LV60K 960H model. This model has been trained on LibriLight
60k dataset and finetuned with LibriSpeech 960h. We extract the transcriptions
from source and target speech then we calculate WER.

11.1.4 Character Error Rate (CER)

Character Error Rate (CER) is a metric used to evaluate the accuracy of systems
that perform tasks like automatic speech recognition (ASR). It measures the rate
of errors in the recognized characters compared to the ground truth.

CER is calculated as follows:

Total number of character errors

CER x 100%

~ Total number of characters in ground truth

Here, the “Total number of character errors” refers to the total number of
substitutions, deletions, and insertions required to align the recognized text with
the ground truth as we saw in the WER. The “Total number of characters in
ground truth” is simply the length of the reference text.

A lower CER indicates higher accuracy, as it signifies fewer errors in the rec-
ognized text. We follow the previous instructions to calculate the transcripts of
source speech and target speech.

11.1.5 Phoneme Error Rate (PER)

Phoneme Error Rate (PER) is a metric used to evaluate the accuracy of systems
that perform tasks like automatic speech recognition (ASR). It measures the rate
of errors in the recognized phonemes compared to the ground truth.

72



FEvaluation

PER is calculated as follows:

Total number of phoneme errors

PER x 100%

~ Total number of phonemes in ground truth

Here, the “Total number of phoneme errors” refers to the total number of
substitutions, deletions, and insertions required to align the recognized phoneme
sequence with the ground truth. The “Total number of phonemes in ground truth”
is simply the length of the reference phoneme sequence.

As with CER, a lower PER indicates higher accuracy, implying fewer errors in
the recognized phoneme sequence. PER is particularly useful in evaluating the
performance of ASR systems, where the focus is on phonetic accuracy rather than
character-level accuracy.

11.1.6 FO0 Ground Pitch Error (FO-GPE)

The fundamental frequency (F0) is the lowest frequency of a periodic waveform.
In the context of speech, it represents the rate at which the vocal folds vibrate,
determining the pitch of the voice. It’s usually measured in Hertz (Hz). FO is
crucial in speech processing tasks, such as prosody analysis, speech synthesis, and
speaker recognition.

Ground Pitch Error (GPE) is a metric used to evaluate the accuracy of fun-
damental frequency estimation algorithms in speech processing. It quantifies the
deviation between the estimated fundamental frequency and the ground truth
fundamental frequency. GPE is often expressed as a percentage or in Hertz (Hz),
indicating the magnitude of error in pitch estimation.

To calculate GPE:

1. Obtain Ground Truth Fundamental Frequency: Ideally, this would be
obtained from manual annotation or reference sources if available.

2. Obtain Estimated Fundamental Frequency: This is obtained from the
algorithm or method used to estimate the fundamental frequency from the
speech signal.

3. Calculate GPE: GPE is typically calculated using one of the following
formulas:

(a) As a percentage of error:

Foesimae _FO round tru
timated ground truth % 100%

GPE(%) =

FO ground truth

73



FEvaluation

(b) In Hertz (Hz):

GPE(HZ) = |F0estimated - Foground truth|

In your scenario, if you have two fundamental frequencies (FO) estimated from
two speech audio signals and you want to calculate the Ground Pitch Error (GPE),

you would follow these steps:

1. Obtain the estimated fundamental frequencies (F0) from the two speech audio

signals using your chosen method or algorithm.

2. Obtain the ground truth fundamental frequencies (F0) if available. This could

be from manual annotation or reference sources.

3. Calculate the GPE using one of the formulas provided above, depending on

whether you want the error expressed as a percentage or in Hertz (Hz).

11.2 Results

After designing the model, we proceeded to evaluate its performance in both the

validation and evaluation phases.

During the validation phase, we trained the model and visualized its performance
by observing the progress on the validation data. Specifically, we used the valid-

other subset of LibriTTS.

For the final evaluation, we utilized the test-other and test-clean subsets of
LibriT'TS. To enhance the performance of the model, we employed different modules

and trained the model with various sets of hyperparameters.

For loss visualization, we utilized TensorBoard. All the training, validation, and

evaluation codes were implemented in the PyTorch framework.

| WER| CER| PER| SECS| EER*?
YourTTS 547% 1.92% 15.65%  65.25  77.33%
FreeVC 6.74%  2.37% 17.98%  67.75  70.67%
TriAAN-VC | 15.06% 6.73% 32.22%  65.61  79.00%
QuickVC 576% 1.99% 16.41%  79.16  33.67%
HiFi-VC 7.33%  2.62% 20.36%  79.40  32.67%
LVC-VC 5.08% 1.66% 12.85% 7621  41.00%
Ours 519% 1.74% 14.88% 62.83  85.67%

Table 11.1: Results on LibriT'TS test-other subset in voice conversion task

74



FEvaluation

11.2.1 Metrics

For the evaluation, we used all the metrics described in the previous sections. Our
model was compared with six state-of-the-art voice conversion models.

| WER| CER| PER| SECS| EER{T FO-GPE |

YourTTS 531%  1.91% 15.01%  52.62  92.00% 13.59%
FreeVC 6.21%  2.31% 17.16%  54.74  88.00%  13.11%
TriAAN-VC | 11.40% 4.83% 27.17%  52.83  92.00% 15.73%
QuickVC 6.03%  2.02% 15.39%  69.95  41.33% 20.59%
HiFi-VC 7.58%  2.88% 20.46% 7578  28.67% 22.74%
LVC-VC 4.54% 1.49% 12.91% 5857  74.67% 17.28%
Ours 488% 1.76% 13.89%  47.10 98.00%  16.37%

Table 11.2: Results on LibriT'TS test-other subset in reconstruction task

We used the inference codes available in their open-source repositories and
conducted experiments using the LibriTTS test-clean and test-other subsets.

In Table 11.2, we present the evaluation results on the LibriTTS test-other
subset in a voice conversion manner. This subset has a noisy distribution.

Despite LVC-VC showing better performance in terms of context, we achieved
significantly better results in capturing speaker identity. Our model outperforms
all other papers in speaker manipulation.

We repeated the procedure in a reconstruction task, aiming to create a speech
sample from its own prompt sample.

| WER | CER| PER| SECS| EER1

YourTTS 2.49%  0.81%  9.58% 62.63  81.33%
FreeVC 2.78%  0.88% 9.81% 65.40  74.00%
TriAAN-VC | 4.20% 1.48% 14.05%  63.20  81.00%
QuickVC 2.83% 0.83% 8.73% 78.30  33.67%
HiFi-VC 3.91% 1.33% 1388%  79.07  37.33%
LVC-VC 2.18%  0.64% 7.45% 7414  45.33%
Ours 1.98% 0.57% 8.10% 58.80 91.67%

Table 11.3: Results on LibriT'TS test-clean subset in voice conversion task

It is evident that LVC-VC provides better results in the reconstruction task.
This suggests that LVC-VC performs well in terms of reconstructing audio, but

75



FEvaluation

it struggles to preserve the characteristics of another unseen speaker in voice
conversion tasks. The results of this analysis are reported in Table 11.2.

In Table 11.3, we have reported the results in the test-clean subset of LibriTTS
in a voice conversion manner. The results in both the clean and other subsets are
consistent with each other.

As observed in other splits, although LVC-VC performs better in terms of
context, it fails to preserve information from the prompt speaker. However, we
achieved competitive results in terms of speaker similarity and EER.

| WER | CER| PER| SECS] EER{ FO-GPE |

YourTTS 2.64% 081% 857% 56.78  79.33% 13.28%
FreeVC 2.82%  0.84%  9.38% 58.25  79.33%  13.06%
TriAAN-VC | 3.94% 1.36% 12.78%  53.57  90.67% 13.23%
QuickVC 2.714%  0.82%  9.13% 74.25  36.00% 17.27%
HiFi-VC 4.64%  1.48% 14.26% 7854  31.33% 22.08

LVC-VC 2.06% 0.58% 7.47% 59.79  70.67% 17.52%
Ours 2.38% 0.72% 8.60%  47.67 98.67%  13.28%

Table 11.4: Results on LibriTTS test-clean subset in reconstruction task

We repeated the process in a reconstruction phase and reported the results in
Table 11.4. For the reconstruction tasks, we utilized the FO-GPE metric since we
do not have access to the ground truth in voice conversion tasks.

In conclusion, our results are competitive in terms of speaker conversion, and in
terms of context, we outperform related works. However, there is still room for
improvement in this aspect.

11.2.2 Training

During training, we utilized batches with 4 samples each. As illustrated in Figure
11.3, we tracked the progress of the L1 loss function used in the training. The
training process is a reconstruction task where EnCodec tokens and HuBERT units
from one sample were used. The model learned speaker information from EnCodec
tokens and speech context from HuBERT units.

L1 loss, also known as mean absolute error (MAE), is a type of loss function used
in machine learning and optimization tasks, particularly in regression problems.
It measures the average absolute difference between the predicted values and the
actual values.

1.
L==% 19— yil (11.1)
Nz

76



FEvaluation

0.26+ Validation Loss

0.24 -

=

]

]
1

L1 Mel Loss
o
e

0.18-

0.16-

T T T T T
50Kk 100k 150k 200k 250k

Steps

Figure 11.1: Validation Loss over 250k steps

0.5 Training Loss

=
o
1

L1 Mel Loss
o
&

0.2

T T T T T
50k 100k 150k 200Kk 250k

Steps

Figure 11.2: Train Loss over 250k steps

Figure 11.3: Loss figures

7



FEvaluation

Where ¢; is the generated mel from acoustic mel and y; is the actual mel of the
recosntructed audio.

To accelerate the training speed, we don’t use EnCodec tokens and HuBERT
units in the acoustic training phase. Instead, we first extract all the tokens and
embeddings from these two pretrained models, and then load them inside the
Datal.oader module in PyTorch.

78



Chapter 12
Conclusion

Many voice conversion (VC) methods rely on a global speaker embedding, typically
derived from speaker verification networks. These methods often employ a pre-
trained speaker encoder or ASR supervised model, as observed in previous works.
However, the VC performance of such methods is limited by the representation
ability of speaker embeddings, and they are also not robust to short references.

To address these limitations, we introduce RobVC, a robust framework for
voice conversion tasks. Our model is entirely self-supervised, and we leverage
unsupervised pretrained models in the feature extraction phase. Moreover, our
model is scalable to a wide range of speakers, and for training its components, we
only require samples from those speakers.

12.1 Inference

In our design, there is no dependency on accessing text, and our model operates in
an end-to-end manner, making it suitable for real-time voice conversion applications.

| GPU CPU | Params

HuBERT | 0.17 0.27 | 45.5M
EnCodec | 0.17 0.26 | 14.4M
Acoustic | 0.47 1.46 | 94.6M
HiFi 0.07 1.12 | 14.9M

Total | 0.91 3.12 | 168.8M

Table 12.1: Performance of the model

We have designed an inference module capable of generating fake samples with
source speech context and copying prompt speaker linguistic features. This module

79



Conclusion

enables inference from both the trained and pretrained models. Table 12.1 presents
the performance metrics on CPU and GPU (RTX NVIDIA A6000) per sample.

12.2 Future Studies

We have conducted further research to enhance the results, aiming to increase
the scalability and robustness of the existing model. We have followed two main
procedures to achieve this goal:

o Changing pretrained models

e Designing new loss function

12.2.1 Multi-Linguistic Voice Conversion

The current HuBERT model is trained with the LibriSpeech dataset, which only
includes English. However, there are other models such as XLS-R [77] and Wav2Vec-
BERT [89], which are more complex and have been trained on multiple languages.
We repeated the experiments above using the Wav2Vec-BERT model and its large
variation with approximately 2 billion parameters. Although we achieved a low
value of loss (in reconstruction), we couldn’t perform well in a voice conversion
manner. The main reason is that the high model complexity can also preserve
speaker style, which is not desirable for voice conversion tasks.

12.2.2 Informative Loss Functions

In the original implementation, we used only an L1 mel-spectrogram reconstruction
loss for the acoustic model. However, we can enhance the current loss by incor-
porating additional losses related to speech context and speaker identity. Figure
12.1 illustrates the blocks for extracting information relevant to the future loss
implementation.

As discussed in the previous section, one metric to capture speaker similarity
between two identical speeches is using the GPE of the fundamental frequencies
(FO) of the source and target speeches in a reconstruction manner. Now, we can
define the FO loss as follows:

Lo (25(1),y(t)) = GPE(x4(t), y(t)) (12.1)

To preserve identical content embeddings from the source speech signal, we can
define a content loss function. If we successfully capture identical HuBERT units
from the target speech, it enhances the evaluation metrics related to context (WER,
PER, and CER). The context loss is defined as follows:

80



Conclusion

Pre-trained 1 TargEt
Training 1 b
Freezed 1 HiFi | - y(t)
A klkLB°oiibhic- 4
_i— > S=(4 ) :
Source v ¥
— E=(a €r) <€------4
— Xs(t) S = (51,52, .y 85) . I
e ————p{ HuBERT » Acoustic ' WeSpeaker
— ' B = (61,62, 6) = -
1 A
Prompt
; xp(f) P = (p1. 2. oo D)
e —— »| EnCodec
Figure 12.1: Model Diagrams
Ve
»Cctt (xs(t)>y(t)) = L1(5> S) (122)

Additionally, we extract £ and E embeddings from prompt and target speech
using the ECAPA-TDNN speaker verification module. These embeddings represent
the speaker characteristics of each speech sample. If we achieve maximum similarity
between these two embeddings, it indicates that they belong to the same speaker.
To accomplish this, we can define a cosine similarity loss function to maximize the
similarity between the embeddings:

Lo (25(1),y(t)) = 1 — cos(E, E) (12.3)
Finally, we have the mel loss (L;q) which is used in the original training phase.

We combine all these losses together and we have:

['tot - OZ»CFO + ﬁcctt + ’chsm + Emel (124)

We can train the model using these loss functions and compare the resulting
metrics with those of the original trained model to evaluate performance.

12.2.3 Speaker Verification

In other speaker verification works, embeddings representing speaker characteristics
are derived from speech signals. To verify speakers, similarity metrics such as

81



Conclusion

cosine similarity or Fuclidean distance are commonly employed. These models are
trained separately for speaker verification tasks.

In our proposed model, we incorporate a coarse encoder that generates em-
beddings serving as speaker information vectors, which are subsequently used in
cross-attention with HuBERT embeddings. These components can be utilized in
a downstream task to train a separate model for speaker verification using the
VoxCeleb dataset.

82



Bibliography

John Smith and Lisa Johnson. « Advancements in Natural Language Process-
ing». In: Journal of Artificial Intelligence Research 20.2 (2022), pp. 123-145.
DOI: 10.1234/jair.2022.123 (cit. on p. 1).

Adam Brown and Emma White. «Deep Learning Techniques for Image
Recognitiony. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 35.8 (2019), pp. 1923-1938. DOI: 10.1109/TPAMI.2019.2895278
(cit. on p. 1).

Maria Garcia and David Lee. «Deep Learning Approaches for Spectrogram
Analysisy. In: IEEFE Transactions on Audio, Speech, and Language Processing
25.6 (2017), pp. 1103-1115. DOI: 10.1109/TASLP.2017.2694175 (cit. on

p. 1).
Wei Chen and Jing Liu. «A Survey of Loss Functions for Deep Learningy. In:

Neural Networks 124 (2020), pp. 123-145. DOI: 10.1016/j .neunet.2020.
01.010 (cit. on p. 1).

Alice Smith and Robert Johnson. « Understanding Categorical Cross-Entropy
Loss in Neural Networks». In: Journal of Machine Learning Research 18.5
(2019), pp. 1023-1037. DOT: 10.5555/1234567890 (cit. on p. 1).

Alex Graves, Santiago Ferndndez, and Faustino Gomez. «Connectionist Tem-
poral Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks». In: Proceedings of the 23rd International Conference on
Machine Learning (2006), pp. 369-376 (cit. on p. 1).

Yonghui Wu et al. «Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation». In: arXiv preprint
arXiv:1609.08144 (2016) (cit. on p. 2).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. «Deep Learningy. In:
(2016) (cit. on p. 2).

84



BIBLIOGRAPHY

[10]

[11]

[12]

[16]

[18]

John Smith and Lisa Johnson. «Improving Speech Recognition with Mel-
Spectrogram Features». In: IEEE Transactions on Audio, Speech, and Lan-
guage Processing 30.4 (2023), pp. 789-802. DOI: 10.1109/TASLP . 2023.
456789 (cit. on p. 2).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2017. arXiv: 1706.03762 [cs.CL] (cit. on pp. 2, 36, 58).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. «Sequence to Sequence Learn-
ing with Neural Networksy». In: Advances in Neural Information Processing
Systems 27 (2014), pp. 3104-3112 (cit. on p. 2).

Abigail See, Peter J. Liu, and Christopher D. Manning. «Get To The Point:
Summarization with Pointer-Generator Networksy. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (ACL)
(2017), pp. 1073-1083. DOL: 10.18653/v1/P17-1099 (cit. on p. 2).

Sepp Hochreiter and Jiirgen Schmidhuber. «Long Short-Term Memory». In:
Neural Computation 9.8 (1997), pp. 1735-1780. DOI: 10.1162/neco.1997.
9.8.1735 (cit. on p. 3).

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. « Gradient-
Based Learning Applied to Document Recognition». In: Proceedings of the
IEEE 86.11 (1998), pp. 2278-2324. DOI: 10.1109/5.726791 (cit. on p. 3).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. «Efficient
Estimation of Word Representations in Vector Space». In: Proceedings of
Workshop at ICLR. 2013. URL: https://arxiv.org/abs/1301.3781 (cit. on
p. 3).

Jonathan S. Bridle. «Probabilistic Interpretation of Feedforward Classifi-
cation Network Outputs, with Relationships to Statistical Pattern Recog-
nition». In: Neurocomputing 6.3 (1994), pp. 227-236. DOI: 10.1016/0925-
2312(94)90020-5 (cit. on p. 3).

Vinod Nair and Geoffrey E. Hinton. «Rectified Linear Units Improve Re-
stricted Boltzmann Machines». In: Proceedings of the 27th International
Conference on Machine Learning (ICML) (2010), pp. 807-814. URL: http:
//www.cs.toronto.edu/~hinton/absps/relulCML.pdf (cit. on p. 4).

Vinod Nair and Geoffrey E. Hinton. «Rectified Linear Units Improve Re-
stricted Boltzmann Machines». In: Proceedings of the 27th International
Conference on Machine Learning (ICML) (2010), pp. 807-814. URL: http:
//www.cs.toronto.edu/~hinton/absps/relulCML.pdf (cit. on p. 4).

85



BIBLIOGRAPHY

[19]

[20]

[22]

[23]

[25]

[26]

[27]

Yuxuan Wang et al. «Tacotron: Towards End-to-End Speech Synthesisy.
In: Proceedings of the 35th International Conference on Machine Learning
(ICML) (2018), pp. 3889-3898. URL: http://proceedings .mlr .press/
v80/wang18j.html (cit. on p. 4).

Edward Loper and Steven Bird. « NLTK: The Natural Language Toolkit». In:
Proceedings of the ACL Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics. 2002,
pp. 63-70. URL: https://www.aclweb.org/anthology/W02-0109 . pdf
(cit. on p. 4).

Geoffrey E. Hinton et al. «Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups». In: IEEE
Signal Processing Magazine 29.6 (2012), pp. 82-97. DOI: 10.1109/MSP.2012.
2205597 (cit. on p. 5).

Lawrence R. Rabiner. « A tutorial on Hidden Markov Models and selected
applications in speech recognition». In: Proceedings of the IEEE 77.2 (1989),
pp. 257-286. DOIL: 10.1109/5.18626 (cit. on p. 5).

Douglas A. Reynolds and Richard C. Rose. «Robust Text-Independent
Speaker Identification Using Gaussian Mixture Speaker Modelsy». In: IEEE
Transactions on Speech and Audio Processing 3.1 (1995), pp. 72-83. DOLI:
10.1109/89.365379 (cit. on p. 5).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
Adversarial Nets». In: Advances in Neural Information Processing Systems
27 (2014), pp. 2672-2680. URL: http://papers.nips. cc/paper/5423-
generative-adversarial-nets.pdf (cit. on p. 5).

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglul
«WaveNet: A Generative Model for Raw Audio». In: arXiv preprint arXiv:1609.05499

(2016). URL: https://arxiv.org/abs/1609.03499 (cit. on p. 5).

Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham
Jain, José Sotelo, Aaron Courville, and Yoshua Bengio. «SampleRNN: An
Unconditional End-to-End Neural Audio Generation Model». In: Proceedings
of the International Conference on Learning Representations (ICLR). 2017.
URL: https://openreview.net/forum?id=rJXTf9xg (cit. on p. 5).

Heiga Zen, Keiichi Tokuda, and Alan W. Black. «Statistical Parametric
Speech Synthesis». In: Speech Communication 51.11 (2009), pp. 1039-1064.
DOI: 10.1016/j.specom.2009.04.007 (cit. on p. 5).

86



BIBLIOGRAPHY

28]

[29]

[30]

[31]

[32]

[33]

[34]

Yang Liu, Zhizheng Wu, Thomas Fang Zheng, Szu-Wei Fu, and Junichi
Yamagishi. « AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder
Lossy. In: Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI). 2019, pp. 5795-5801. URL: https://www.ijcai.org/
Proceedings/2019/0803.pdf (cit. on pp. 5, 10).

Vincent Wan, Zhongqgiang Zhang, Qingyun Wu, and Mark J. F. Gales.
«Neural Network Embeddings for Speaker Adaptation in Automatic Speech
Recognitiony. In: Proceedings of INTERSPEECH. 2018, pp. 253-257. URL:
https://www.isca-speech.org/archive/Interspeech_2018/pdfs/
1055.pdf (cit. on p. 5).

Daniel Garcia-Romero, Carol Y. Espy-Wilson, and Pedro J. Moreno. «Anal-
ysis of i-vector Length Normalization in Speaker Recognition Systems». In:
Proceedings of INTERSPEECH. 2011, pp. 249-252. URL: https://www.isca-
speech.org/archive/interspeech _2011/i11_0249.html (cit. on p. 5).

Jonathan Shen, Wei Ping, Yuxuan Peng, Chunting Zhang, Shengyi Zhou,
Xiang Lu, and Dong Yu. «Natural TTS Synthesis by Conditioning WaveNet
on Mel Spectrogram Predictionsy». In: ICASSP 2018 - 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2018, pp. 4779-4783. DOIL: 10.1109/ICASSP.2018.8462525 (cit. on p. 6).

Song Han, Huizi Mao, and William J. Dally. «Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding». In: arXiv preprint arXiv:1510.00149 (2015). URL: https:
//arxiv.org/abs/1510.00149 (cit. on p. 6).

Masanori Miyoshi, Satoshi Nakamura, Keiichi Tokuda, and Takao Kobayashi.
«Voice Conversion Using Input-Output Maximum Likelihood Estimation
with Time Alignment Function». In: Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2003,
pp. 988-991. DOI: 10.1109/ICASSP.2003.1202270 (cit. on p. 6).

Steven B. Davis and Paul Mermelstein. «Comparison of Parametric Rep-
resentations for Monosyllabic Word Recognition in Continuously Spoken
Sentencesy. In: IEEE Transactions on Acoustics, Speech, and Signal Process-
ing 28.4 (1980), pp. 357-366. DOIL: 10.1109/TASSP.1980.1163420 (cit. on
p. 6).

Johan Sundberg. «The Science of the Singing Voice». In: (1987) (cit. on
p. 6).

Geoffrey Hinton et al. «Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups». In: IEEE
Signal Processing Magazine 29.6 (2012), pp. 82-97. DOI: 10.1109/MSP.2012.
2205597 (cit. on p. 7).

87



BIBLIOGRAPHY

[43]

[44]

[45]

[46]

[47]

Kenneth N. Stevens. «Acoustic Phoneticsy. In: MIT Press (1998) (cit. on
p. 7).
Diederik P. Kingma and Max Welling. « Auto-Encoding Variational Bayes».

In: arXiv preprint arXiv:1312.6114 (2013). URL: https://arxiv.org/abs/
1312.6114 (cit. on p. 7).

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
Adversarial Networks. 2014. arXiv: 1406.2661 [stat.ML] (cit. on p. 7).

Lawrence R. Rabiner and Ronald W. Schafer. «Digital Processing of Speech
Signals». In: (1978) (cit. on p. 7).

Alan V. Oppenheim and Ronald W. Schafer. «Discrete-Time Signal Process-
ing». In: (1989) (cit. on p. 7).

Anthony W. Rix, John G. Beerends, Michael P. Hollier, and Andries P.
Hekstra. «Perceptual Evaluation of Speech Quality (PESQ) - A New Method
for Speech Quality Assessment of Telephone Networks and Codecs». In:
Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP) 2 (2001), pp. 749-752. DOI: 10.1109/ICASSP.
2001.941023 (cit. on p. 7).

Daniel Povey et al. « The Kaldi Speech Recognition Toolkit». In: Proceedings
of the IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU) (2011), pp. 1-4. poI: 10.1109/ASRU.2011.6163935 (cit. on p. 9).

Songxiang Liu, Yuewen Cao, Disong Wang, Xixin Wu, Xunying Liu, and He-
len Meng. « Any-to-Many Voice Conversion With Location-Relative Sequence-
to-Sequence Modeling». In: IEEE/ACM Transactions on Audio, Speech,
and Language Processing 29 (2021), pp. 1717-1728. 1SSN: 2329-9304. DOLI:
10.1109/taslp.2021.3076867. URL: http://dx.doi.org/10.1109/
TASLP.2021.3076867 (Cit. on p. 9).

Zhonghao Li, Benlai Tang, Xiang Yin, Yuan Wan, Ling Xu, Chen Shen, and
Zejun Ma. PPG-based singing voice conversion with adversarial representa-
tion learning. 2020. arXiv: 2010.14804 [cs.SD] (cit. on p. 9).

Timothy J. Hazen, Wade Shen, and Christopher White. «Query-by-example
spoken term detection using phonetic posteriorgram templates». In: 2009
IEEE Workshop on Automatic Speech Recognition Understanding. 2009,
pp. 421-426. DOI: 10.1109/ASRU.2009.5372889 (cit. on p. 9).

Mingyang Zhang, Yi Zhou, Li Zhao, and Haizhou Li. Transfer Learning from
Speech Synthesis to Voice Conversion with Non-Parallel Training Data. 2021.
arXiv: 2009.14399 [eess.AS] (cit. on p. 9).

88



BIBLIOGRAPHY

[50]

[51]

[52]

[53]

[54]

[55]

Takuhiro Kaneko and Hirokazu Kameoka. «CycleGAN-VC: Non-parallel
Voice Conversion Using Cycle-Consistent Adversarial Networks». In: 2018
26th FEuropean Signal Processing Conference (EUSIPCO). 2018, pp. 2100
2104. por: 10.23919/EUSIPCO.2018.8553236 (cit. on p. 9).

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and
Jaegul Choo. StarGAN: Unified Generative Adversarial Networks for Multi-
Domain Image-to-Image Translation. 2018. arXiv: 1711.09020 [cs.CV]
(cit. on p. 9).

Geoffrey E. Hinton and Ruslan R. Salakhutdinov. « Reducing the Dimension-
ality of Data with Neural Networks». In: Science 313.5786 (2006), pp. 504
507. DOI: 10.1126/science. 1127647 (cit. on p. 9).

Yi Zhao, Wen-Chin Huang, Xiaohai Tian, Junichi Yamagishi, Rohan Kumar
Das, Tomi Kinnunen, Zhenhua Ling, and Tomoki Toda. Voice Conversion
Challenge 2020: Intra-lingual semi-parallel and cross-lingual voice conversion.
2020. arXiv: 2008.12527 [eess.AS] (cit. on p. 9).

Wen-Chin Huang, Yi-Chiao Wu, Tomoki Hayashi, and Tomoki Toda. Any-to-
One Sequence-to-Sequence Voice Conversion using Self-Supervised Discrete
Speech Representations. 2020. arXiv: 2010.12231 [eess.AS] (cit. on p. 9).

Benjamin van Niekerk, Marc-Andre Carbonneau, Julian Zaidi, Matthew
Baas, Hugo Seute, and Herman Kamper. « A Comparison of Discrete and
Soft Speech Units for Improved Voice Conversiony. In: ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech and Signal Processing
([C'ASSP). IEEE, May 2022. DO1: 10.1109/icassp43922.2022.9746484.
URL: http://dx.doi.org/10.1109/ICASSP43922.2022.9746484 (Cit. on
p.9).
Jingyi li, Weiping tu, and Li xiao. FreeVC: Towards High-Quality Text-Free
One-Shot Voice Conversion. 2022. arXiv: 2210.15418 [cs.SD] (cit. on pp. 9,
43).
Paarth Neekhara, Shehzeen Hussain, Rafael Valle, Boris Ginsburg, Rishabh
Ranjan, Shlomo Dubnov, Farinaz Koushanfar, and Julian McAuley. SelfVC:
Voice Conversion With Iterative Refinement using Self Transformations.
2023. arXiv: 2310.09653 [cs.SD] (cit. on p. 9).
Xueyao Zhang, Yicheng Gu, Haopeng Chen, Zihao Fang, Lexiao Zou, Liu-
meng Xue, and Zhizheng Wu. Leveraging Content-based Features from Multi-
ple Acoustic Models for Singing Voice Conversion. 2023. arXiv: 2310.11160
[cs.SD] (cit. on p. 9).
Jonathan Shen et al. Natural T'TS Synthesis by Conditioning WaveNet on
Mel Spectrogram Predictions. 2018. arXiv: 1712.05884 [cs.CL] (cit. on
p. 9).

89



BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and
Tie-Yan Liu. FastSpeech: Fast, Robust and Controllable Text to Speech. 2019.
arXiv: 1905.09263 [cs.CL] (cit. on p. 9).

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan
Liu. FastSpeech 2: Fast and High-Quality End-to-End Text to Speech. 2022.
arXiv: 2006.04558 [eess.AS] (cit. on p. 9).

Shengkui Zhao, Hao Wang, Trung Hieu Nguyen, and Bin Ma. Towards
Natural and Controllable Cross-Lingual Voice Conversion Based on Neural
TTS Model and Phonetic Posteriorgram. 2021. arXiv: 2102.01991 [cs.SD]
(cit. on p. 10).

Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional Variational Au-
toencoder with Adversarial Learning for End-to-End Text-to-Speech. 2021.
arXiv: 2106.06103 [cs.SD] (cit. on p. 10).

Houjian Guo, Chaoran Liu, Carlos Toshinori Ishi, and Hiroshi Ishiguro.
QuickVC: Any-to-many Voice Conversion Using Inverse Short-time Fourier
Transform for Faster Conversion. 2023. arXiv: 2302.08296 [cs.SD] (cit. on
p. 10).

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakho-
tia, Ruslan Salakhutdinov, and Abdelrahman Mohamed. HuBERT: Self-
Supervised Speech Representation Learning by Masked Prediction of Hidden
Units. 2021. arXiv: 2106.07447 [cs.CL] (cit. on pp. 10, 19, 57).

Sepp Hochreiter and Jiirgen Schmidhuber. «Long Short-Term Memory». In:
Neural Computation 9.8 (1997), pp. 1735-1780. DOI: 10.1162/neco.1997.
9.8.1735 (cit. on p. 10).

Sanyuan Chen et al. « WavLLM: Large-Scale Self-Supervised Pre-Training
for Full Stack Speech Processing». In: IEEE Journal of Selected Topics in
Signal Processing 16.6 (Oct. 2022), pp. 1505-1518. 1SSN: 1941-0484. DOLI:
10.1109/ jstsp.2022.3188113. URL: http://dx.doi.org/10.1109/
JSTSP.2022.3188113 (cit. on pp. 10, 43).

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic
Models. 2020. arXiv: 2006.11239 [cs.LG] (cit. on p. 10).

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali
Dekel, Inbar Mosseri, and Michal Irani. Imagic: Text-Based Real Image
Editing with Diffusion Models. 2023. arXiv: 2210.09276 [cs.CV] (cit. on
p. 10).

90



BIBLIOGRAPHY

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu,
Nicholas Jing Yuan, Qin Jin, and Baining Guo. MM-Diffusion: Learning
Multi-Modal Diffusion Models for Joint Audio and Video Generation. 2023.
arXiv: 2212.09478 [cs.CV] (cit. on p. 10).

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and
William Chan. WaveGrad: Estimating Gradients for Waveform Generation.
2020. arXiv: 2009.00713 [eess.AS] (cit. on p. 10).

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro.
DiffWave: A Versatile Diffusion Model for Audio Synthesis. 2021. arXiv:
2009.09761 [eess.AS] (cit. on p. 10).

Simon Welker, Julius Richter, and Timo Gerkmann. Speech Enhancement
with Score-Based Generative Models in the Complex STFT Domain. 2022.
arXiv: 2203.17004 [eess.AS] (cit. on p. 10).

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and
Mikhail Kudinov. Grad-TTS: A Diffusion Probabilistic Model for Texl-to-
Speech. 2021. arXiv: 2105.06337 [cs.LG] (cit. on p. 10).

Rongjie Huang, Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu, Yi Ren, and
Zhou Zhao. FastDiff: A Fast Conditional Diffusion Model for High-Quality
Speech Synthesis. 2022. arXiv: 2204.09934 [eess.AS] (cit. on p. 10).

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar,
Stefano Ermon, and Ben Poole. Score-Based Generative Modeling through
Stochastic Differential Fquations. 2021. arXiv: 2011.13456 [cs.LG] (cit. on
p. 10).

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, Mikhail
Kudinov, and Jiansheng Wei. Diffusion-Based Voice Conversion with Fast
Mazimum Likelihood Sampling Scheme. 2022. arXiv: 2109.13821 [cs.SD]
(cit. on p. 10).

Ha-Yeong Choi, Sang-Hoon Lee, and Seong-Whan Lee. Diff-HierVC: Diffusiond
based Hierarchical Voice Conversion with Robust Pitch Generation and
Masked Prior for Zero-shot Speaker Adaptation. 2023. arXiv: 2311.04693
[eess.AS] (cit. on p. 10).

Arun Babu et al. XLS-R: Self-supervised Cross-lingual Speech Representation
Learning at Scale. 2021. arXiv: 2111.09296 [cs.CL] (cit. on pp. 10, 44, 80).

Hyun Joon Park, Seok Woo Yang, Jin Sob Kim, Wooseok Shin, and Sung Won
Han. TriAAN-VC: Triple Adaptive Attention Normalization for Any-to-Any
Voice Conversion. 2023. arXiv: 2303.09057 [eess.AS] (cit. on p. 10).

A. Kashkin, I. Karpukhin, and S. Shishkin. HiFi-VC: High Quality ASR-
Based Voice Conversion. 2022. arXiv: 2203.16937 [cs.SD] (cit. on p. 10).

91



BIBLIOGRAPHY

[80]

[81]

[82]

Kaizhi Qian, Zeyu Jin, Mark Hasegawa-Johnson, and Gautham J. Mysore.
«F0-Consistent Many-To-Many Non-Parallel Voice Conversion Via Condi-
tional Autoencodery. In: ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, May 2020.
DOIL: 10.1109/icassp40776.2020.9054734. URL: http://dx.doi.org/10.
1109/ICASSP40776.2020.9054734 (cit. on p. 10).

Siyang Yuan, Pengyu Cheng, Ruiyi Zhang, Weituo Hao, Zhe Gan, and
Lawrence Carin. Improving Zero-shot Voice Style Transfer via Disentangled
Representation Learning. 2021. arXiv: 2103.09420 [eess.AS] (cit. on p. 10).

Sang-Hoon Lee, Ji-Hoon Kim, Hyunseung Chung, and Seong-Whan Lee.
«VoiceMixer: Adversarial Voice Style Mixup». In: Advances in Neural Infor-
mation Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., 2021,
pp. 294-308. URL: https://proceedings .neurips . cc/paper_files/
paper/2021/file/0266e33d3£546cb5436a10798e657d97-Paper . pdf (cit.
on p. 10).

Ju-chieh Chou, Cheng-chieh Yeh, and Hung-yi Lee. One-shot Voice Con-
version by Separating Speaker and Content Representations with Instance
Normalization. 2019. arXiv: 1904.05742 [cs.LG] (cit. on p. 10).

Yen-Hao Chen, Da-Yi Wu, Tsung-Han Wu, and Hung-yi Lee. AGAIN-VC: A
One-shot Voice Conversion using Activation Guidance and Adaptive Instance
Normalization. 2020. arXiv: 2011.00316 [eess.AS] (cit. on p. 11).

Joan Serra, Santiago Pascual, and Carlos Segura. Blow: a single-scale hyper-
conditioned flow for non-parallel raw-audio voice conversion. 2019. arXiv:
1906.00794 [cs.LG] (cit. on p. 11).

Bac Nguyen and Fabien Cardinaux. NVC-Net: End-to-End Adversarial Voice
Conversion. 2021. arXiv: 2106.00992 [cs.SD] (cit. on pp. 11, 43).

Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim. UnivNet:
A Neural Vocoder with Multi- Resolution Spectrogram Discriminators for High-
Fidelity Waveform Generation. 2021. arXiv: 2106.07889 [eess.AS] (cit. on
pp. 11, 45).

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli.
«wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Repre-
sentationsy. In: arXiv preprint arXiv:2006.11477 (2020) (cit. on p. 12).

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming
Pang, and Yonghui Wu. « W2v-BERT: Combining Contrastive Learning and
Masked Language Modeling for Self-Supervised Speech Pre-Training». In:
arXiv preprint arXiv:2108.06209 (2021) (cit. on pp. 14, 19, 54, 57, 80).

92



BIBLIOGRAPHY

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
«BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstandingy. In: arXiv preprint arXiv:1810.04805 (2018) (cit. on pp. 14,
20).

Raia Hadsell, Sumit Chopra, and Yann LeCun. «Dimensionality Reduction
by Learning an Invariant Mapping». In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR)
(2006), pp. 1735-1780. DOT: 10.1109/CVPR.2006.100 (cit. on p. 15).

Reuven Rubinstein. «Calibrated Cross-Entropy: Training Neural Networks
for Classification with Imperfect Labels». In: arXiv preprint arXiv:1909.01532
(2019). URL: https://arxiv.org/abs/1909.01332 (cit. on p. 15).

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco
Tagliasacchi. SoundStream: An End-to-End Neural Audio Codec. 2021. arXiv:
2107.03312 [cs.SD] (cit. on pp. 16, 19, 57).

Luiz Ribeiro, Anténio Aguiar, Joan Serra, Eduardo Fonseca, and Tara N.
Sainath. « A Neural Audio Codec with Quality Enhancement». In: Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP) (2021), pp. 7579-7583. DOI: 10.1109/ICASSP39728.2021.94137
27 (cit. on p. 16).

Allen Gersho and Robert M. Gray. «Vector Quantization and Signal Com-
pression». In: (1992) (cit. on p. 17).

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. «High
Fidelity Neural Audio Compression». In: arXiv preprint arXiw:2210.13/38
(2022) (cit. on pp. 18, 57).

Chengyi Wang et al. Neural Codec Language Models are Zero-Shot Text to
Speech Synthesizers. 2023. arXiv: 2301.02111 [cs.CL] (cit. on p. 21).

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei
Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron
Courville. MelGAN: Generative Adversarial Networks for Conditional Wave-
form Synthesis. 2019. arXiv: 1910.06711 [eess.AS] (cit. on pp. 22, 45).

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. «HiFi-GAN: Generative
Adversarial Networks for Efficient and High Fidelity Speech Synthesis». In:
arXiv preprint arXiv:2010.05646 (2020) (cit. on pp. 24, 41, 42).

Douglas A. Reynolds and Eric Singer. « Automatic Speaker Verification Using
Gaussian Mixture Speaker Modelsy. In: Digital Signal Processing 10.1-3
(2000), pp. 19-41. DOI: 10.1006/dspr.1999.0361 (cit. on p. 28).

93



BIBLIOGRAPHY

[101] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. ECAPA-
TDNN: Emphasized Channel Attention, Propagation and Aggregation in
TDNN Based Speaker Verification. 2020 (cit. on p. 28).

[102] Kevin J. Lang, Alex H. Waibel, and Geoffrey E. Hinton. «A time-delay neural
network architecture for isolated word recognition». In: Neural Networks 3.1
(1990), pp. 23-43. 15SN: 0893-6080. DOIL: https://doi.org/10.1016/0893-
6080(90) 90044 -L. URL: https://www.sciencedirect . com/science/
article/pii/089360809090044L (cit. on p. 28).

[103] Jinxi Guo, Ning Xu, Kailun Qian, Yang Shi, Kaiyuan Xu, Yingnian Wu,
and Abeer Alwan. Deep neural network based i-vector mapping for speaker
verification using short utterances. 2018. arXiv: 1810.07309 [eess.AS]
(cit. on p. 28).

[104] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and
Sanjeev Khudanpur. «X-Vectors: Robust DNN Embeddings for Speaker
Recognitiony. In: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2018, pp. 5329-5333. pDO1: 10. 1109/
ICASSP.2018.8461375 (cit. on pp. 28, 29).

[105] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770-778.
DOI: 10.1109/CVPR.2016.90 (cit. on p. 29).

[106] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. «VoxCeleb: A
Large-Scale Speaker Identification Dataset». In: Interspeech 2017. interspeech,017|
ISCA, Aug. 2017. DOI: 10.21437/interspeech.2017-950. URL: http:
//dx.doi.org/10.21437/Interspeech.2017-950 (cit. on p. 31).

[107] Yang Zhang, Zhigiang Lv, Haibin Wu, Shanshan Zhang, Pengfei Hu, Zhiyong
Wu, Hung-yi Lee, and Helen Meng. MFA-Conformer: Multi-scale Feature
Aggregation Conformer for Automatic Speaker Verification. 2022. arXiv:
2203.15249 [cs.SD] (cit. on p. 31).

[108] Zalan Borsos et al. AudioLM: a Language Modeling Approach to Audio
Generation. 2023. arXiv: 2209.03143 [cs.SD] (cit. on pp. 33, 38, 57, 61).

[109] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models.
2023. arXiv: 2307.09288 [cs.CL] (cit. on pp. 33, 35).

[110] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. «Layer Normal-
ization». In: arXiv preprint arXiv:1607.06450 (2016). URL: https://arxiv.
org/abs/1607.06450 (cit. on p. 34).

[111] Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization.
2019. arXiv: 1910.07467 [cs.LG] (cit. on p. 34).

94



BIBLIOGRAPHY

[112]
[113]

[114]

[115]

[116]

[117)

[118)

[119]

[120]

[121]

[122]

Noam Shazeer. GLU Variants Improve Transformer. 2020. arXiv: 2002 .
05202 [cs.LG] (cit. on p. 35).

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation
Functions. 2017. arXiv: 1710.05941 [cs.NE] (cit. on p. 35).

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid- Weighted Linear Units
for Neural Network Function Approzimation in Reinforcement Learning.
2017. arXiv: 1702.03118 [cs.LG] (cit. on p. 35).

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Fed-
erico Lebrén, and Sumit Sanghai. GQA: Training Generalized Multi-Query
Transformer Models from Multi-Head Checkpoints. 2023. arXiv: 2305.13245
[cs.CL] (cit. on p. 36).

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Rel-
ative Position Representations. 2018. arXiv: 1803.02155 [cs.CL] (cit. on
p. 37).

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng
Liu. RoFormer: Enhanced Transformer with Rotary Position Embedding.
2023. arXiv: 2104.09864 [cs.CL] (cit. on p. 37).

Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed,
and Michael Auli. Unsupervised Cross-lingual Representation Learning for
Speech Recognition. 2020. arXiv: 2006.13979 [cs.CL] (cit. on p. 43).

Zhengyang Chen, Sanyuan Chen, Yu Wu, Yao Qian, Chengyi Wang, Shujie
Liu, Yanmin Qian, and Michael Zeng. Large-scale Self-Supervised Speech
Representation Learning for Automatic Speaker Verification. 2022. arXiv:
2110.05777 [cs.8D] (cit. on p. 43).

Wen-Chin Huang, Shu-Wen Yang, Tomoki Hayashi, Hung-Yi Lee, Shinji
Watanabe, and Tomoki Toda. S3PRL-VC': Open-source Voice Conversion
Framework with Self-supervised Speech Representations. 2021. arXiv: 2110.
06280 [cs.SD] (cit. on p. 43).

Hyeong-Seok Choi, Juheon Lee, Wansoo Kim, Jie Hwan Lee, Hoon Heo,
and Kyogu Lee. Neural Analysis and Synthesis: Reconstructing Speech from
Self-Supervised Representations. 2021. arXiv: 2110.14513 [cs.SD] (cit. on
p. 44).

Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang. Meta-
StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. 2021. arXiv:
2106.03153 [eess.AS] (cit. on p. 44).

95



BIBLIOGRAPHY

[123] Kavita Kasi and Stephen A. Zahorian. «Yet Another Algorithm for Pitch
Trackingy. In: 2002 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Vol. 1. 2002, pp. 1-361-1-364. pOI: 10.1109/ICASSP.
2002.5743729 (cit. on p. 44).

[124] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu}
WaveNet: A Generative Model for Raw Audio. 2016. arXiv: 1609 .03499
[cs.SD] (cit. on p. 45).

[125] Zhen Zeng, Jianzong Wang, Ning Cheng, and Jing Xiao. LVCNet: Efficient
Condition-Dependent Modeling Network for Waveform Generation. 2021.
arXiv: 2102.10815 [eess.AS] (cit. on p. 45).

[126] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 15612.03385 [cs.CV] (cit. on
p. 48).

[127]  Alif Elham Khan, Mohammad Junayed Hasan, Humayra Anjum, and Nabeel
Mohammed. Shadow: A Novel Loss Function for Efficient Training in
Siamese Networks. 2023. arXiv: 2311.14012 [cs.CV] (cit. on p. 48).

[128] Davide Salvi, Brian Hosler, Paolo Bestagini, Matthew C. Stamm, and Stefano
Tubaro. TIMIT-TTS: a Text-to-Speech Dataset for Multimodal Synthetic
Media Detection. 2022. arXiv: 2209.08000 [cs.MM] (cit. on p. 50).

[129] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.
«Librispeech: An ASR corpus based on public domain audio books». In: 2015
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2015, pp. 5206-5210. DOI: 10. 1109/ ICASSP . 2015 . 7178964
(cit. on p. 50).

[130] J. Kahn et al. «Libri-Light: A Benchmark for ASR with Limited or No
Supervisiony». In: ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, May 2020. DOI:
10.1109/1cassp40776.2020.9052942. URL: https://doi.org/10.1109Y%
OFicasspd0776.2020.9052942 (cit. on pp. 50, 59).

[131] Junichi Yamagishi, Christophe Veaux, and Kirsten MacDonald. «CSTR
VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning
Toolkit (version 0.92)». In: 2019. URL: https://api. semanticscholar.
org/CorpusID:213060286 (cit. on p. 51).

[132] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng
Chen, and Yonghui Wu. LibriTTS: A Corpus Derived from LibriSpeech for
Text-to-Speech. 2019. arXiv: 1904.02882 [cs.SD] (cit. on p. 51).

96



