
POLITECNICO DI TORINO

Master Degree course in Communications and Computer Networks Engineering

Master Degree Thesis

AI-Driven Unit Test Generation

Supervisors

Prof. Riccardo Coppola

Massimo Pacileo

Candidate

Francesco Pio Cellamare

Academic Year 2023-2024

Abstract

In the context of cloud-based software development on Amazon Web Services (AWS),
adopting DevOps practices through services like AWS CodePipeline is essential for en-
suring Continuous Integration (CI) and Continuous Delivery (CD) while maintaining
high software quality standards. However, integrating automated testing within these
pipelines can be complex, particularly when aiming to generate comprehensive, high-
quality tests with good overall coverage.

To address this challenge, this study proposes leveraging AI-driven test generation
techniques within DevOps pipelines on AWS CodePipeline, followed by a manual ap-
proval phase for the generated tests.

The primary objective of this research is to explore the use of artificial intelligence
(AI) for automated test generation to optimize DevOps practices, enhance software qual-
ity, and accelerate release cycles. The study focuses on designing a pipeline within AWS
CodePipeline, incorporating all key Software Development Life Cycle (SDLC) stages
(source, build, test, and deploy), while identifying automated test generation as a cru-
cial area for AI integration. The required infrastructure will be provisioned using AWS
CloudFormation, an Infrastructure as Code (IaC) service.

The experimentation will primarily target microservices architectures (Java, Spring
Boot), which will serve as the foundational source for this thesis. The proposed ap-
proach involves integrating AI-powered tools such as OpenAI or custom solutions into
the pipeline architecture to generate automated tests. These generated tests will then
undergo an approval phase to assess their quality, relevance, and adequacy, ensuring a
qualitative control over the generated test suites.

The results of this research aim to demonstrate the potential of AI-driven test genera-
tion techniques in improving software quality, development productivity, and the release
process of new components, while fully embracing DevOps best practices.

Contents

1 Introduction 5

2 Background 9

2.1 Software Testing and Software Testing Pipelines 9

2.1.1 Test Design and Classification . 10

2.1.2 Coverage Metrics and Mutation Analysis 11

2.1.3 Cost of Testing . 12

2.1.4 DevOps Practices . 14

2.1.5 Spring Boot Framework . 16

2.2 Service Architectures . 17

2.2.1 AWS Cloud Computing . 18

2.3 Test Generation and GenAI . 20

2.3.1 Static Analysis . 20

2.3.2 Static Test Generation and Dynamic Test Generation 21

2.3.3 Model-Base Test Generation . 23

2.3.4 Deep Learning and GenAI . 25

2.3.5 Tokenization and Context Window 25

2

2.3.6 Fine-Tuning and Prompt Engineering 26

2.3.7 Models Pricing . 27

3 Methodology 29

3.1 Selected Technologies . 29

3.2 Architecture and Design of the Solution 31

3.2.1 State Machine . 32

3.2.2 Implementation Logic . 38

3.2.3 Deploy . 52

4 Validation 57

4.1 Evaluation Metrics . 57

4.2 Grafana . 58

4.2.1 Testing Methodology . 61

4.2.2 Evaluated Scenario: Comparing GPT Models
on an Untested Project . 62

4.2.3 Evaluated Scenario: Comparing GPT Models
on an Tested Project . 63

5 Conclusion 67

Bibliography 71

3

4

Chapter 1

Introduction

Software testing is fundamental to ensure high-quality product to the end user. Through
testing, developers strive to achieve a certain level of ’correctness’ in the system under
development to achieve a higher satisfaction with the end users. To ensure complete
correctness, it is essential to test and verify all possible inputs and outputs for our
application. However, achieving complete correctness in a real-world software application
is not feasible. Even moderately complex software introduces challenges that are difficult
to manage, making it impossible to account for every potential error or system failure.

Moreover, studies show that this phase of the Software Development Lifecycle is
expensive in terms of costs due to the fact that developers must plan an effective test
suite not focusing on developing the main business logic. The cost is primarily due
to the time-intensive nature of the testing phase, which must continue throughout the
development process. Detecting a defect in the early phases of development helps reduce
costs by reducing the effort and time required to resolve it later when the product is
launched. In order to improve testing efficiency, reduce the time needed to identify
bugs, and enhance team collaboration, DevOps practices are increasingly adopted to
streamline the process.

In modern cloud-based software development on Amazon Web Services (AWS), adopt-
ing DevOps practices through services like AWS CodePipeline is crucial to enable Con-
tinuous Integration (CI) and Continuous Delivery (CD) while maintaining high soft-
ware quality. However, integrating automated testing within these pipelines presents
challenges, particularly in generating comprehensive, high-quality tests with sufficient
coverage.

This study explores the integration of AI-driven test generation techniques within
AWS CodePipeline, followed by a manual approval phase to validate the generated

5

Introduction

tests. The primary objective is to leverage Artificial Intelligence (AI) to optimize De-
vOps workflows, improve software quality, and accelerate release cycles. The research
focuses on designing a fully automated pipeline within AWS CodePipeline, encompass-
ing all key stages of Software Development Life Cycle (SDLC) including source, build,
test, and deploy, while emphasizing AI-driven test generation as a critical enhancement.
Infrastructure provisioning will be managed using AWS CloudFormation, adhering to
Infrastructure as Code (IaC) principles.

We will incorporate Generative AI (GenAI) into the process, ensuring strict inter-
action with developers. This approach is not only about automating test generation,
but also about providing developers with the ability to review and decide whether the
generated test suites are comprehensive, effective, and aligned with the software require-
ments. By maintaining this balance between automation and manual oversight, the goal
is to ensure that the tests are relevant and high-quality, while still benefiting from the
efficiency that AI can offer.

The experimentation will primarily target microservices architectures based on Java
and Spring Boot, serving as the core application environment for this study. The pro-
posed approach involves integrating AI-powered tools, such as OpenAI models or custom
solutions, to automatically generate tests within the pipeline. These generated tests will
then undergo a manual approval phase to evaluate their quality, relevance and effective-
ness, ensuring robust validation before deployment.

For this study, we focus on unit testing as it provides a fundamental layer of testing
that is essential for verifying the functionality of individual components in the system.
Unit tests are typically fast to execute, easy to automate and help detect issues early in
the development process, making them ideal for integration into an automated pipeline.
Using unit testing, we ensure that each microservice component functions correctly in
isolation, which is critical to maintaining high software quality within microservices
architectures.

The results of this research aim to demonstrate the impact of AI-driven test genera-
tion on improving software quality, enhancing development efficiency, and streamlining
the release process while adhering to DevOps best practices.

This work was conducted with Blue Reply to evaluate the effectiveness of this tool
in supporting developers writing unit tests.

This thesis is structured into four chapters, aiming to provide the reader with a clear
understanding of the solution’s design and implementation, while also explaining the
reasoning behind each technological choice.

In Chapter 2, we provide the reader with an overview of software testing, including
how it is performed and the metrics used to evaluate the efficiency of a test suite.

6

Introduction

We will also discuss the technologies chosen to implement this system, explaining the
rationale behind our selections. Furthermore, we will explore the role of the DevOps
methodology in facilitating a structured approach to test generation, along with widely
adopted practices such as CI/CD pipelines. Lastly, we will review existing research on
current approaches, covering solutions for unit test generation and common practices for
enhancing the testing phase.

In Chapter 3, we will discuss the actual implementation of the system. Given the
complex flow of the implemented system, we have chosen to first provide an abstract
description of its behavior to help the reader understand its functionality. Following
that, we will dive deeper into the detailed explanation of its implementation. However,
the code is not included in the thesis, as we believe that incorporating it could lead to
confusion. The complete code is available on the following GitHub repository: https:

//github.com/francescocellamare/AI-driven-unit-test-generation.

In Chapter 4, we will outline the results collection process by comparing the system’s
performance on the two most commonly used OpenAI models. Additionally, we will
compare the artifacts generated by these models with a test suite manually written by
a developer.

In Chapter 5, we reflect on the results obtained, examining whether the tool can
effectively serve as a support for unit testing. We also discuss its limitations and suggest
potential future improvements to improve its efficiency.

7

https://github.com/francescocellamare/AI-driven-unit-test-generation
https://github.com/francescocellamare/AI-driven-unit-test-generation

8

Chapter 2

Background

This chapter will explore Software Testing, emphasizing the importance of maintaining
a robust test suite within a software project and how to evaluate its effectiveness in
ensuring project quality. After providing a brief overview of software testing and its
various categories, we will delve into the motivation behind this thesis and examine
why testing is often a budget-intensive activity in software development. Next, we will
discuss the DevOps methodology, highlighting its role in enhancing software quality
by identifying bugs early, accelerating development processes, and fostering effective
communication among developers. Following that, we will cover Cloud Computing,
focusing on the AWS platform and its widespread use in creating pipelines and managing
required hardware for deployment. Finally, we will review current techniques for test
generation and explore how Generative AI emerged as a potential solution.

2.1 Software Testing and Software Testing Pipelines

Software testing is the process of performing an analysis in our code with the goal of
identifying errors to ensure correctness. However, achieving correctness in a real-world
application is not feasible. This is because even moderately sized software introduces
complexities that are difficult to manage, making it impossible to account for every po-
tential cause of errors or system failures. As the software grows in size, the number
of possible test cases increases exponentially and so do the possible scenarios. It is es-
sential to test and verify all potential inputs and outputs, as testing only boundaries is
insufficient to guarantee correctness. Quality Assurance (QA) teams typically determine
which functionalities require a certain level of correctness based on factors such as criti-
cality of the feature, business priority or risk assessment. This approach helps establish
minimum testing standards for critical areas, allowing testers to focus on more precise

9

Background

and targeted tests.

Software is tested using automated software testing, which is the common approach
used by testers to perform repetitive tasks that would be time-consuming if done man-
ually and is fundamental to Continuous Delivery (CD) and Continuous Testing (CT).
These techniques provide advantages such as scalability, consistency, and increased effi-
ciency during the testing phase of the Software Development Life Cycle (SDLC), while
also being cost-effective by minimizing the reliance on manual testing. In fact, relying
on manual testing becomes unsustainable as the software project scales because it is not
easily repeatable and is prone to human error.

2.1.1 Test Design and Classification

Software testing can be classified into five basic categories: unit testing, integration test-
ing, system testing, regression testing and end-to-end testing. Each of these categories
evaluates the software by focusing on different aspects and abstractions of the system.
Below is an overview of each testing type.

• Unit Testing: ensures that each software unit, defined as the smallest isolated
testable component of an application, functions correctly.

• Integration Testing: examines whether different software units operate together
as intended to detect faults at the interfaces between components.

• System Testing: involves testing the entire software system as a whole.

• Regression Testing: concerns the re-execution of the whole test suite after
changes are made, in this way we can check if those changes modified the sys-
tem’s behavior and resistance to potential crashes.

• End-to-end Testing: involves testing the entire software system and all its exter-
nal dependencies in a simulated production environment. It is generally performed
manually.

Further classification can be defined based on the used approach as follows:

• Black-Box Tests: software under testing is treated as a black box, internal imple-
mentation is not considered so results are derived only from the provided inputs.

• White-Box Tests: the opposite scenario, it involves full knowledge of the internal
structure and logic of the code in order to explore all the possible branches. This
approach may require the use of mocking. This technique allows testers to define

10

2.1 – Software Testing and Software Testing Pipelines

the behavior of a function inside a dependencies module which is assumed to be
’correct’. In this way, we can isolate different components.

This thesis focuses on unit testing performed using the white-box approach after each
unit is considered complete by the developer, in order to verify whether it works as
expected.

Let us now introduce the Software Testing Life Cycle (STLC), a structured process
designed to ensure quality by planning a set of test cases (also known as test suite). The
objective is to demonstrate that the software behaves as expected and appropriately
handles intentional exceptions. STLC consists of the following phases:

• Requirement Analysis: QA team is responsible for analyzing the requirements
document to identify the core functionalities on which the testing process will
focus.

• Test Planning: activity to designate the testing goal, scope and overall strategy
for the process. During this phase, the type of test to be developed is determined.

• Test Case Development: based on the deliverables of the planning phase, the
QA team develops the test suite.

• Test Case Execution: test suite is executed having each test categorized as
passed (if the outcome matches expectations from the planning phase) or failed
(indicate that an error has been found).

• Test Result Reporting: QA team analyzes and discusses the bugs report de-
liverable to identify which scenarios caused unintentional behaviors and how to
address those issues.

2.1.2 Coverage Metrics and Mutation Analysis

When discussing the effectiveness of automated tests, it is essential to evaluate their
quality using specific metrics. Among the most commonly used, there are code coverage
metrics, which measure the extent to which the code under test is exercised by the current
test suite. Various code coverage metrics focus on different aspects of the code. The most
prevalent in practical environments are Branch Coverage, Method Coverage, and Line
Coverage, which respectively measure the ration of control-flow paths, methods, and
lines of code that have been tested over the total possible ones. However, code coverage
metrics have their limitations and can sometimes overestimate the quality of the code.
For example, a test might be executed and adjusted to match incorrect expected outputs,
merely to prevent it from failing.

11

Background

Another approach to evaluating the quality of automated tests is called Mutation
Analysis. This kind of analysis tries to overcome the limitations of the coverage metrics
to obtain an esteem of the quality of the tests. The core idea involves modifying the
source code to introduce deliberate bugs, referred to as "mutants". For example, a
mutation can look like the expression x < y changed with x <= y, in this case a test to
check boundaries should exist. The test suite is expected to detect these bugs by causing
previously passing tests to fail after a new execution. Mutants are generated based on
equivalence rules of the mutation analysis tools, which substitutes a new snippet of code
inside the codebase and the whole test suite is executed again. If a test detects a bug,
the mutant is considered ’killed’. Test suites that identify a higher number of faulty
versions are deemed to be more effective than those that detect fewer. To quantify the
quality of the test suite, a mutation score is calculated as the ratio of mutants killed to
the total number of mutants introduced.

2.1.3 Cost of Testing

According to a report by Lionel Sujay Vailshery (2024), as of 2019, an average of 23
percent of organizations’ annual IT budgets were allocated to quality assurance and
testing. This represents a decline from the peak of 35 percent recorded in 2015, as
shown in Figure 2.1. Quality assurance and testing aim to deliver IT products securely
and without defects, a need that has grown alongside increasing digitalization. The
rising reliance on cloud-based test environments, used by over half of companies by
2017, reflects the industry’s focus on IT security testing. However, the cost of these
functions remains a significant challenge, motivating organizations to look for ways to
reduce their QA and testing expenses. [2]

Software testing is fundamental to ensure a high quality product to the end user.
To reduce these costs, it is crucial to adopt effective techniques. One such approach is
implementing Continuous Integration and Continuous Deployment (CI/CD) which en-
hances software quality while reducing costs and effort in testing through Continuous
Testing (CT) approach. Adopting CI/CD with an Agile methodology, developers fre-
quently commit code to a central repository after testing in the local environment. This
practice helps reduce software delivery time and facilitates early bug detection.

Detecting a defect in the early phases of development helps reduce costs by reducing
the effort and time needed to resolve it later when launching the product, particu-
larly considering the interconnections between software modules and user dissatisfaction
when encountering these issues. Other units may depend on the faulty component, so
addressing the scenario which leads to the error can lead to other errors when performing
a regression testing. This is why such a technique must be adopted by developers and
it forms the core principle that drives this thesis. A qualitative description of the corre-
lation between hidden bugs and relative costs to fix those during the software lifecycle

12

2.1 – Software Testing and Software Testing Pipelines

Figure 2.1. Proportion of budget allocated to quality assurance and
testing from 2012 to 2019 [2].

is shown in Figure 2.2.

Figure 2.2. Cost of fixing at different stages of development

13

Background

2.1.4 DevOps Practices

DevOps is the combination of practices, tools and approaches to development which
had its origin in the Agile practices. It emerged to address the need for stronger syn-
ergy between the development and operations teams. The Agile Manifesto emphasizes
key principles of Agile development such as customer satisfaction, rapid adaptation to
changes and continuous delivery through iterative process. However, it does not ex-
plicitly include engineering practices for automating operations and infrastructure. To
reduce this gap, DevOps was introduced. DevOps fosters collaboration by breaking
down silos between development and operations, streamlining processes, and enhanc-
ing automation. Today, Agile and DevOps are recognized as complementary practices
that work together to improve software development, deployment, and operations. For
the purpose of this thesis, we will focus on DevOps practices rather than providing an
in-depth explanation of Agile methodology.

DevOps is guided by five core principles, represented by the acronym CALMS. In
developing our solution, we closely followed each of these principles [1], which include:

• Collaboration and shared responsibility between the development and operations
teams

• Automation tools to reduce errors, increase efficiency and automate repetitive tasks

• Lean strategy to eliminate time-consuming process which would increase time to
delivery

• Measurement of performance by collecting and analyzing data

• Sharing information and learning across teams

We introduce here the practices Continuous Integration and Continuous Deploy-
ment (CI/CD) and Continuous Testing (CT). Using the CI/CD pipeline, SDLC has
been streamlined by automating the build, testing, and deployment processes. The con-
cept behind CI is to shift away from the traditional approach, where developers work
independently for extended periods before merging their changes. In contrast, CI en-
courages frequent integration of code, which helps prevent the accumulation of bugs and
the slow delivery of features that can result from the challenges of merging developers’
work. With CI, a Versioning Control system manages developers’ code, merging changes
each time a new feature is tested so that the pipeline is triggered for each modification.
By triggering a build phase and a testing phase each time a new feature is considered
completed, any potential bugs are detected at an early stage. Addressing issues as soon
as they are introduced in the codebase, which is the definition of CT, prevents building
additional code on these faulty components. If no issues arise, the deployment phase is
started.

14

2.1 – Software Testing and Software Testing Pipelines

Figure 2.3. CI/CD pipeline

CI/CD paradigm is a crucial aspect of a modern DevOps ecosystem. In addition
to improving software reliability, it also fosters better collaboration and communication
within the team, enabling faster time-to-market for products. Under a DevOps model,
developers and operations teams collaborate closely so that a single merged team works
across the whole SDLC of the application, resulting advantages like writing code that
takes into account the environment in which it is run or reducing the needed time period
between developing and deploying. In a DevOps’s approach, it is common to design
a software application based on the microservices architecture. A microservice can be
defined as a self-contained unit that exposes a set of operations over its own data. This
architectural pattern organizes a software application into a collection of loosely coupled,
self-deployable services that interact through inter-service APIs interfaces. However, it
introduces further complexity in the design phase compared to a monolithic approach
which involves a unified unit but it brings several benefits such as:

• Modularity: the application is easier to understand, develop, test and maintain
while also enabling a distributed development by allowing separated autonomous
teams to independently develop each service. This shortens development cycle
times.

• Flexible Scaling: services’ infrastructure may be resized according to the needs if
there is a spike in demand. This approach reduces costs compared to a monolithic
application, which would require provisioning a larger quantity of resources to
ensure fault tolerance during periods of increased demand since it is treated as a
whole rather than at the granularity of microservices.

• Resilience: service independence increases application’s fault tolerance. In a
monolithic approach, if a single component fails, it will cause the whole application
to fail. On the other hand, if a single microservice fails, the application can still
operate, though the failed service may become unavailable.

15

Background

• Technology Flexibility: each autonomous team can select the most suitable
technology to develop their service, without impacting the other teams.

Adopting a microservices architecture can accelerate our application’s time to mar-
ket. By allowing teams to work in parallel on independent microservices while simply
defining API interfaces for system interactions, the development process becomes signif-
icantly faster. This aligns with the DevOps’s principles.

2.1.5 Spring Boot Framework

In the field of software development, a framework is a well-structured set of libraries that
provides a flexible range of software components that help developers accelerate software
development to production deployment. More specifically, for our case we adopted the
Spring Boot framework.

Based on the Spring framework, Spring Boot adds functionalities that allow users to
create stand-alone application based on the Spring environment and the Java platform.
We chose Spring Boot because it is widely adopted in real-world applications and of-
fers several benefits to developers to streamline the development of microservices-based
applications. [12]

The fundamental goals of Spring Boot are [7]:

• Rapid Development: Spring Boot provides defaults and auto-configuration for
various components most used for projects. This reduces the boilerplate code,
allowing developers to get started quickly and focus more on implementing business
logic.

• Microservices Architecture: as we said, Spring Boot is well suited for microservices-
based applications, providing an easy way to configure and let those communicate.

• Auto Configuration: Spring Boot automatically configures various components
based on dependencies and annotations while also providing a wide set of starter
dependencies for software projects within the Spring ecosystem. Additionally, it
extensively leverages the Inversion of Control (IoC) design principle, which reduces
class coupling within the project, enhancing modularity and code testability.

• Testing Support: Spring Boot provides excellent support for writing tests, mak-
ing it easier to perform unit tests, integration tests, and end-to-end tests.

All these aspects are essential for developing a microservice application without wor-
rying about common default practices such as the login phase, logging, and security

16

2.2 – Service Architectures

role assignments. Additionally, they contribute to building a well-tested and easily
maintainable application. Spring Boot provides essential components for both unit and
integration testing. Among these, we used JUnit 5 and Mockito, which are the de facto
standards for writing automated unit tests and mocking components without relying on
real dependencies, respectively.

The adoption of DevOps practices yields significant benefits for software teams. How-
ever, CI/CD pipeline must rely on an infrastructure that is properly configured and
adapted to the evolving needs of the development process.

2.2 Service Architectures

Cloud computing is a paradigm for enabling network access to a scalable to resources
by dynamically provisioning, configuring and de-provisioning servers as needed. These
resources can be physical machines or virtual machines as well as advanced cloud also
includes other kind of computing resources such as network and security equipment [6].
Cloud computing enables customers to access resources by outsourcing them through a
provider, eliminating the need to purchase and maintain their own hardware infrastruc-
ture.

Infrastructure as Code (IaC) refers to the practice to provision, support and update a
computing infrastructure through code rather than manual configuration. Setting up an
infrastructure can be a time-consuming activity, as system administrators need to care-
fully manage servers, networks and other components required to run the system while
also adapting to any necessary configuration changes. IaC is used to automate infras-
tructure creation, streamlining the process of setting up environments and minimizing
the manual configuration and the potential errors associated with it.

Additionally, among the benefits, the same environment can be easily deployed on
a different system at another location using the same IaC definition. For example,
you could use the same configuration template to define and then deploy the exact same
infrastructure in multiple regions, ensuring consistency across environments. Declarative
IaC allows us to describe the needed resources and settings as well as define how these
components are going to interact in a configuration template. The IaC tool then analyzes
it and creates the required infrastructure to instantiate each service on the chosen cloud
computing platform.

17

Background

2.2.1 AWS Cloud Computing

This thesis focuses on using Amazon Web Services (AWS). AWS is a comprehensive cloud
computing platform provided by Amazon, offering a wide range of cloud-based services
such as computing power, storage, networking and databases that allows companies to
deploy, manage and scale their application using a pay-as-you-go pricing model so that
instead of buying, owning and maintaining a physical infrastructure, such services can
be purchased and used as needed. This is the main idea of cloud computing, offering
also the following benefits:

• Elasticity: the ability to scale computing power up or down based on demand.

• Cost Savings: fixed costs for maintaining physical infrastructure are replaced
with variable costs based on actual usage.

• Agility: the flexibility to quickly adopt and utilize different technologies from
the available set of services making the cost and time to experiment and develop
significantly lower.

• Fast Global Deployment: the application can be deployed in multiple regions
around the world, improving performances and reducing latency due to geograph-
ical redundancy.

Cloud computing is generally categorized into three service models:

• Infrastructure as a Service (IaaS): allows developers to specify their infras-
tructure requirements by defining the desired architecture. The IaaS cloud provider
will instantiate each required resource and configure it properly according to the
developer’s needs. With IaaS, the responsibility to obtain, install, configure and
maintain the architecture’s hardware is moved from developers to the provider
with many benefits such as fast deployment, no need for fixed costs to maintain
the hardware and hardware’s faults are handled by the provider.

• Platform as a Service (PaaS): consumer does not manage the underlying in-
frastructure such as virtual servers, operative systems and networks. Instead,
he requests a development environment from the PaaS cloud provider. The con-
sumer’s primary responsibility is to configure and utilize the provided development
environment effectively. This is the basis of serverless applications which do not
require a proper handling of the used resources but they adapt according to the
demand. AWS Lambda is an AWS service based on the serverless approach.

• Software as a Service (SaaS): the end user interacts directly with the software
without managing the underlying infrastructure, development or maintenance.

18

2.2 – Service Architectures

They simply use the software through a web interface without having to worry
about updates, patches or ongoing maintenance.

AWS is designed to be used with IaC so complex cloud architecture can be managed
safely by defining them in code. AWS CloudFormation is an IaC tool that helps with the
creation, deletion and updating of AWS resources. Resources are declared in a structured
template file in either yaml or json, or through the CloudFormation UI. The next step
involves organizing these resources into a logical group called stack so that a stack is
created for each CloudFormation template. This tool enables developers to manage
the infrastructure required to implement DevOps practices, such as defining a CI/CD
pipeline declaring each step of the pipeline inside the template without the need to
declare how the resources depend on each other. The most commonly used AWS services
to create a pipeline include AWS CodePipeline, AWS CodeCommit, AWS CodeBuild and
AWS CodeDeploy. Let’s briefly review these services, with a more detailed discussion
provided in the chapter 3.

Figure 2.4. CI/CD pipeline on AWS

A typical CI/CD pipeline workflow is made up of four stages as illustrated in 2.4.
Each stage contains specific actions performed on the application artifacts, such as the
source code or a compiled Java project. CodePipeline is a service designed to model and
automate the steps necessary to release software. Each pipeline stage can be a different
AWS service, allowing developers to build the operation chain according to their needs.
In the example, the first stage called Source uses AWS CodeCommit. CodeCommit is a
version control service for storing assets like source code, so that whenever changes are
committed to the remote repository, the pipeline is automatically triggered to initiate
execution. The second and third stage, respectively Build and Test, can be performed

19

Background

using AWS CodeBuild. CodeBuild is a service to compile source code, execute unit tests
and produce deployment-ready artifact. Using this service, an organization can avoid
the need for a private build service and instead pay only the required time to perform
the action. It also offers a pre-configured build environment and most common build
tools such as Apache Maven or Gradle. The final stage is the Deploy, here the build
artifacts are deployed to a remote running server. AWS CodeDeploy is a deployment
service that integrates with various compute platforms such as AWS EC2, AWS Lambda
or AWS ECS.

Although the cost to prepare and maintain the infrastructure is reduced using the
AWS’s pay-as-you-go model, we have seen that CT practice is essential for identifying
errors as early as they are introduced in the codebase in order to reduce bug fixing
costs. However, this approach requires significant computational power to constantly
execute regression tests using the test suite. AWS services address this need by providing
build servers without requiring the ownership of dedicated hardware. Nevertheless, the
primary challenge remains the time required to create a test suite that ensures the
correctness of key application functionalities while maintaining overall quality. The
literature explores various tools and techniques to assist testers in creating tests and
preventing errors early in the development phase.

2.3 Test Generation and GenAI

2.3.1 Static Analysis

Code inspection is the process of performing an analysis of the code without the execution
of any automated test. This is also called static analysis and, even though it can be
helpful for developers because it does not require code execution and allows a basic
early bug detection, runtime errors cannot be detected as well as it does not provide
a valuable measure for the code correctness. Static analysis can be considered as a
precursor to other testing methods and should be used as a basic tool for developing. In
fact, static analysis is concerned in analyzing the structure of the code and it is useful to
detect possible logical mistakes or questionable coding practices. When performed prior
to dynamic test it can be really useful to reduce the number of test cases with benefits
on test planning. [3]

A tool available on the market is SonarQube. Sonar’s Clean as You Code approach
is a software development practice based on the principle that new code (code that you
added or modified recently) needs to comply with quality standards. The Sonar solution
implements Clean as You Code by warning you whenever issues are detected in your new
code. [11] Even though it accounts benefits to developers by ensuring that new added
code is always ’clean’, this approach is still not enough.

20

2.3 – Test Generation and GenAI

2.3.2 Static Test Generation and Dynamic Test Generation

Code inspection can be considered as a valid complementary technique; in particular, we
want to automate the generation of tests. In the literature, two main approaches have
been explored: static test generation and dynamic test generation. Static test generation
consists of analyzing a program statically reading the program code and simulated its
execution using symbolic expression. The goal is to define every possible execution path
and explore the entire tree of computations that the program can produce by considering
all potential values of the input parameters. All possible paths are enumerated by
considering each branch in conditional statements. However, this approach is not always
feasible. Consider the following code snippet 2.3.2:

1 int isHashOf (int x, int y) {

2 if(x == hash(y)) return 1;

3 else

4 return 0;

5 }

This function is designed to return a true result if the first parameter is the hash
of the second. It relies on a mathematical hashing function, which is known to be
mathematically non-invertible. This is where the limitation of this approach becomes
apparent. Static test generation cannot produce two input values, x and y, which are
guaranteed to satisfy or violate the condition x == hash(y), because the hash function
is specifically designed to prevent such reasoning. Unfortunately, the same issue arises
with other complex program statements, such as pointer manipulations or system calls,
which are quite common. Moreover, symbolic execution does not scale, and the number
of feasible paths can become potentially infinite in the case of unbounded loops, leading
to path explosion. Using this approach, we can actually generate a test suite but there
is still static analysis limitation to detect runtime issues because it does not require code
execution. Dynamic test generation complements static generation.

Dynamic test generation consists of executing the program with some random inputs
while collecting symbolic constraints at each conditional statement along the execution.
The program is then re-executed and variants of the previous inputs are determined
based on system’s response to explore alternate control-flow paths. This process is
repeated until a specific program statement is reached. Dynamic test generation seems
to resolve the previously shown problems because it actually creates a test suite with high
branch coverage based on failed execution but, on the other hand, it is computationally
expensive. [5]

Directed Automated Random Testing (DART) is a tool for automatically testing
software that implements dynamic test generation. Let us delve into the mechanics of

21

Background

dynamic test generation using DART with the following code example 2.3.2 from the
article [4]:

1 int f(int x) { return 2 * x; }

2 int h(int x, int y) {

3 if (x != y)

4 if (f(x) == x + 10)

5 abort (); /* error */

6 return 0;

7 }

The function h() may lead to an abort statement for some value of x and y. The
probability of detecting an error state through random input generation is very low. In
contrast, DART is able to dynamically gather knowledge about the execution in what
it is called a directed search. Starting with random input, DART calculates an input
vector for the next execution. This vector contains values that represent the solutions to
symbolic constraints collected from predicates in branch statements during the previous
execution so that, the new input vector attempts to force the execution through a new
path. The execution of DART proceeds as follows:

1. Initial Inputs: We start with the inputs x = 123 and y = 456.

2. First Execution: During the first execution, the program evaluates the first
if statement. The execution path does not enter the then block of the second
if statement. Based on the conditions encountered, the sequence of symbolic
constraints is:

⟨x0 /= y0, 2 · x0 /= x0 + 10⟩

3. Second Execution: For the second execution, the last constraint is negated:

⟨x0 /= y0, 2 · x0 = x0 + 10⟩

The system then solves for this new scenario, resulting in input values x0 = 10 and
y0 = 456. In this execution, the abort() function is thrown leading to the error.

Another tool that uses dynamic test generation is called Pex. Developed by Mi-
crosoft, Pex is a tool that helps developer in writing Parametrized Unit Test (PUT)
for .NET language. PUT is a different methodology to write tests. It is essentially a
method with parameters in which developers model at a higher level of abstraction what
the tested unit behavior is. Then Pex is going to translate it in test cases to cover all
the reachable branches. Here is an example of PUT:

22

2.3 – Test Generation and GenAI

1 void AppendToListTest (ArrayList list , Object element) {

2 Assume . IsNotNull (list);

3 list.Add(element);

4 Assert . IsTrue (list. Contains (element));

5 }

For this snippet, Pex generates two test cases that cover all the reachable branches based
on the branch on line 2.

1 void AppendToListTest_g1 (ArrayList list , Object element) {

2 AppendToListTest (new ArrayList (0) , new Object ());

3 }

4 void AppendToListTest_g2 (ArrayList list , Object element) {

5 AppendToListTest (new ArrayList (1) , new Object ());

6 }

The key difference between Pex and DART lies in the required input: Pex needs
PUT as input from the developer, which involves more effort upfront but allows for the
explicit definition of the unit’s behavior. In contrast, DART relies on random testing
and feedback from program execution failures to generate test cases. [5].

2.3.3 Model-Base Test Generation

A third approach discussed in the literature is Model-Based Testing (MBT). MBT is
an automated test generation technique that relies on models of the System Under
Test (SUT) to create tests. During the early stages of software development, system
specifications are often represented using models such as UML. These models can then
be used to generate a corresponding test suite. Since test suites are derived from models
rather than source code, MBT is typically considered a black-box testing approach, as
the testing tool does not have access to or knowledge of the underlying code.

Model-based Integration and System Test Automation (MISTA) is a tool that ap-
plies the MBT approach. It utilizes Predicted-Transition (PrT) nets as an expressive
formalism for building functional models of our SUT. The context diagram of MISTA,
illustrated in 2.5, provides an overview of its operation. The tool receives as input
the Model-Implementation Description (MID) that consists of abstract models of our
system, also known as test models, which describes SUT’s behavior and by a Model-
Implementation Mapping (MIM). The MIM specification maps the element of the test
model to their target implemented constructs. In addition, users must define the desired
coverage criterion and specify the target programming language. [13]

23

Background

Figure 2.5. Context diagram of MISTA

So far, we have examined various techniques described in the software testing liter-
ature, each of those offering advantages and disadvantages. Code inspection with static
analysis is useful in bug detection in early stages of development but not enough to
provide a qualitative description of our system and its correctness. It is often used as a
complementary tool alongside other techniques to generate test suites. One such tech-
nique is static test generation, which is capable of creating a test suite by just analyzing
the code and going through all reachable control-flow path without its execution. How-
ever, this is also its limitation. It is not capable of adapting to runtime errors as well
as it cannot analyze code whenever a more complex statement is used such as system
calls to the operative system or pointers manipulation. Both static analysis and static
test generation require minimal input from developers and do not demand significant
computational power, though only static test generation produces concrete testing arti-
facts. Dynamic test generation tries to overcome the problem of static test generation
and it actually does but it is computationally expensive to produce a test suite. For
example, tools like DART generate test cases by leveraging runtime feedback or need

24

2.3 – Test Generation and GenAI

a way to define general behavior of the under testing unit as developer input and then
produce the test suite (Pex). The primary drawback of dynamic test generation lies in its
high computational requirements. Finally, we considered Model-Based Testing (MBT),
which generates tests from abstract models representing the System Under Test (SUT).
These models must accurately capture the system’s behavior, requiring developers to
invest effort early in the development process to create and maintain them so it shifts
the workload toward upfront modeling, which can be challenging and time-consuming.

2.3.4 Deep Learning and GenAI

In the years since its wide deployment, Artificial Intelligence has significantly influ-
enced various aspects of human life and has numerous applications across a variety of
industries. AI refers to the ability of machines to perform tasks that would normally
require human intelligence such as speech recognition, decision-making, accurate med-
ical imaging analysis, weather forecasting and so on. One of its primary advantages
lies in automating repetitive and time-consuming tasks, freeing up humans to focus on
more complex work. Generative AI (GenAI) is a form of artificial intelligence capable
of producing new content or artifacts, including images and videos. It is designed to
understand and generate both natural languages and formal languages, such as math-
ematical expressions or programming languages so that applications include also code
generation. The central focus of this thesis is to evaluate whether GenAI models can
effectively generate test suites and assess their potential usefulness to developers in the
software development process.

These models, known as Large Language Models (LLMs), are designed to process
natural language inputs and generate text based on the knowledge on which they have
been trained. LLMs are trained using a self-supervised technique that does not rely on
labeled data. Instead, the model generates its own labels, enabling it to learn patterns
related to syntax, semantics, and predictive capabilities. However, this approach can also
introduce biases and inaccuracies resulting from incorrect data or training. Our focus
is not to explain how these model works but to highlight that these are not immune to
errors.

2.3.5 Tokenization and Context Window

OpenAI is a company focused on AI research and development. It offers a diverse set
of Generative Pre-trained Transformers (GPTs) with different capabilities and prices by
providing a web interface or exposing structured APIs to interact with their models.
The two models used for the purpose of this thesis are GPT-4o-mini and GPT-4o.
However, OpenAI imposes limitations on its models, such as reasoning capacities and
generation sizes. These constraints are closely tied to the tokenization process, which

25

Background

involves breaking down input text into smaller units (tokens) that the model can process
efficiently. Each token is assigned a unique integer that is used as a key inside a lookup
table. The row indexed by the token’s unique integer is its vector representation which
the model uses to compute responses by predicting the next token. Machine learning
models process numbers instead of text, so tokenization mapping is essential; without
it, these models would not be able to know on raw textual input.

Let us describe these according to the provided OpenAI documentation:

Model Context Window Max Output Tokens

gpt-4o-mini 128,000 tokens 16,384 tokens

gpt-4o 128,000 tokens 16,384 tokens

Table 2.1. Specification on token usage

Table 2.1 outlines the token limitations for both the produced output and the context
window. The context window refers to the maximum number of tokens that can be used
in a single request for both input, output and reasoning tokens. Figure 2.6 shows how the
context window is applied to the request and its potential impact on the response. When
the reasoning process becomes computationally intensive, the response output may be
truncated as a result. Both models share the same values for these properties; however, a
key distinction lies in the number of tokens required for reasoning and planning responses.
According to OpenAI, GPT-4o-mini has reduced versatility and reasoning capabilities
compared to GPT-4o. This limitation will be further analyzed in the chapter 4.

2.3.6 Fine-Tuning and Prompt Engineering

Moreover, OpenAI gives the possibility to perform fine-tuning on its model. It is sug-
gested to apply fine-tuning to a smaller model in order to improve its performances on
a specific task to make those comparable to a bigger and more expensive model. Fine-
tuning is a method that allows us to train our custom version of a GPT model through
an additional learning process. By preparing tailored training data and fine-tuning the
model, it is possible to reduce costs and improve request latency. However, we chose not
to implement fine-tuning in our solution. Instead, most common practices in prompt
engineering such as few-shot learning, which involves including examples directly in the
prompt to help the model better understand its task.

Additionally, other prompt engineering strategies were utilized, such as using delim-
iters to distinguish different parts of the input, structuring properly the prompt and
specifying the steps required to complete the task. Together, these approaches elimi-
nated the need for fine-tuning and its potential application will be explored in chapter

26

2.3 – Test Generation and GenAI

Figure 2.6. Token distribution for the context window [9].

5.

To further optimize response size, allowing for larger output within the context win-
dow, and reduce system costs, prompt caching was also considered. Prompt caching
allows us to reduce latency and costs by optimizing the structure of the prompt without
the need to change model configuration. It is based on the idea of caching repetitive
sections of our prompt so that, if a cache hit occurs, the benefits of caching are fully
realized. To effectively use prompt caching, the prompt must be structured with all the
static content placed at the beginning of the request.

2.3.7 Models Pricing

OpenAI also provides usage costs for its models, as summarized in Table 2.2. As antic-
ipated, GPT-4o is the most expensive model due to its advanced intelligence and but

27

Background

with high latency. However, OpenAI suggests that through fine-tuning and model dis-
tillation, GPT-4o-mini can achieve comparable results at a lower cost. The main focus
of this thesis was not on performance, so these techniques were not applied.

Model Input Price Cached Input Price Output Price

gpt-4o $2.50 $1.25 $10.00

gpt-4o-mini $0.15 $0.075 $0.60

Table 2.2. Pricing Details of Models (for 1M tokens)

28

Chapter 3

Methodology

This chapter will delve into the practical implementation of our solution. We will begin
by introducing each AWS service, explaining their roles and how they interact within
our architecture. Next, we will break down the actions performed at each pipeline stage,
with a particular focus on the State Machine. We will first provide a high-level overview
of the process using a flowchart representation, illustrating the overall workflow. Then,
we will analyze each state of the machine, detailing the logic behind its implementation.
Finally, we will explore the two deployment options provided by AWS and explain our
decision to use Fargate over EC2 as ECS capacity layer for our application.

3.1 Selected Technologies

As discussed in Chapter 2, this section will provide a detailed description of the AWS
services used, their interactions within the overall architecture, and their specific roles.
To give the reader a clearer understanding of the design and implementation, an overview
of each service is presented in Table 3.1.

Table 3.1: Overview of AWS Services Used in the Project

Service Category Purpose Used For

CloudFormation IaaS Automates the setup,
deployment, and
management of AWS
resources

Defines all AWS
resources in the main
template

29

Methodology

Service Category Purpose Used For

CodeCommit Developer
Tools

Source control
repository for storing
code in Git

Serves as the source
repository for
triggering the CI/CD
pipeline

CodeBuild Developer
Tools

Build service for
compiling and testing
code

Compiles and tests
the source code
initially, after each
test generation, and
builds the Docker
image

CodePipeline Developer
Tools

Automates CI/CD
workflows

Defines and manages
the CI/CD pipeline,
integrating and
handling artifacts
between services

IAM Security Manages user access
and permissions for
AWS resources

Configures
permissions and
access control for
each AWS resource

SNS Messaging Simple Notification
Service for sending
messages and alerts

Sends email
notifications for
reports and alerts

StepFunctions Compute Coordinates multiple
AWS services

Defines the main
workflow logic using
a state machine

Lambda Compute Serverless compute
service that runs code
in response to events

Executes Python
scripts in response to
events, used within
Step Functions to
implement business
logic

S3 Storage Scalable object
storage for storing
data and backups

Stores pipeline
artifacts, reports, and
statistics generated
during the process

ECS Compute Scalable container
management service
for running Docker
containers

Deploys the finalized
Dockerized
application using
AWS Fargate

ECR Storage Elastic Container
Registry for storing
Docker images

Stores the finalized
Docker images for
deployment

30

3.2 – Architecture and Design of the Solution

Service Category Purpose Used For

EC2 Compute Virtual servers for
running applications
on AWS
infrastructure

Hosts the actual
server that runs the
application logic

CloudWatch Monitoring Monitors and logs
AWS services and
resources

Serves as the
centralized logging
system for all events
and metrics

API Gateway Networking Manages APIs for
creating, deploying,
and securing
RESTful APIs

Manages API
requests for email
redirection and
routing

VPC Networking Virtual network in
the cloud for securely
connecting AWS
resources

Provides the
underlying network
infrastructure for
securely connecting
and exposing the
application

EventBridge Messaging Event bus for
building event-driven
applications by
routing events

Acts as an event bus
to trigger the pipeline
based on incoming
events

These are the selected services used in our design, with each one chosen based on its
cost-effectiveness, ensuring the most convenient pricing option. In the next section we
will talk about how the whole pipeline has been designed and how these services interact
with each others.

3.2 Architecture and Design of the Solution

Our solution required the implementation of a four-stage pipeline. Using CodePipeline,
we designed each step of our software release process to include the most common phases
of a typical CI/CD pipeline. Each phase, referred to as a stage in CodePipeline termi-
nology, represents a logical unit that executes a set of operations called actions within an
isolated execution environment. Actions can perform various tasks, consuming artifacts
or generating new ones to be used in subsequent stages. An artifact, in this context,
refers to any data or file transferred between stages. Actions pass their output to subse-
quent actions for further processing through the pipeline’s artifact bucket. CodePipeline
manages these artifacts by copying them to the artifact store using AWS Simple Storage

31

Methodology

Service (AWS S3), where they are accessed by the respective actions.

Figure 3.1. Implemented CI/CD pipeline

Figure 3.1 shows an overview of the designed pipeline. As a typical CI/CD pipeline
there is the first Source stage based a remote CodeCommit repository. In this stage,
the source code is retrieved and passed to the next stage as an output artifact. In
the Build stage, project is compiled and current test suite is executed, we will see that
compilation errors would lead the pipeline to failure whereas failing tests do not. The
third stage, called State Machine, contains the core logic for test generation. This stage
is implemented using AWS StepFunctions, a service designed to orchestrate complex
execution flows by coordinating multiple AWS services according to the defined state
machine. Upon a successful completion of the State Machine stage, the code is expected
to have a new or updated test suite with no failing tests, making it ready for deployment.
This finalized version of the application is referred to as the final revision.

The following sections detail the design and functionality of the state machine, high-
lighting its role in managing the complexities of the process and ensuring seamless inte-
gration with other components of the architecture.

3.2.1 State Machine

Third stage of the pipeline is where the code logic is implemented. StepFunction is based
on state machines, which are also called workflow. Workflows are composed by a series of
event-driven steps called states. Using Amazon States Language (ASL), a JSON based
language to declare each state inside the state machine, is possible to model complex

32

3.2 – Architecture and Design of the Solution

flow easily. The following is an example of state definition:

{

"HelloWorld": {

"Type": "Task",

"Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",

"Next": "AfterHelloWorldState",

"Comment": "Run the HelloWorld Lambda function"

},

"AfterHelloWorldState": {

"Type": "Pass",

"End": "True"

}

}

each state is identified by a unique name within the scope of the StepFunction and
described by a set of properties. States can perform whatever possible operation using
AWS services, those are categorized into two categories:

• Flow states: controls the execution flow of the state machine. Operations includes
mapping data, choice selection based on variables and busy waiting.

• Task states: represents a unit of work that another AWS service performs; for
example, a task state can initiate a project build using CodeBuild or execute a
serverless function with AWS Lambda

To ensure a clear and smooth explanation, we will begin by introducing the state
machine with a flowchart that illustrates its execution flow at a higher level of abstrac-
tion. Afterward, we will delve into the details. Figure 3.3 provides an overview of the
entire state machine implemented using StepFunction.

Our CI/CD pipeline is triggered each time a developer commits its work on Code-
Commit, more precisely a good programming practice would require to use a parallel
development branch called testing in our case. Let’s assume that the codebase of the
project is without any previously compilation errors and the current test suite is correct
or totally missing. The initial step is to verify this assumption by performing a full com-
pilation of the project and running the existing test suite. If a compilation error occurs,
the pipeline will fail entirely. This aspect is not depicted in the flowchart because, as
mentioned at the start of this chapter, the focus is on testing and ensuring its correctness
rather than on compilation errors. However, if any test fails, the pipeline is not going to
fail its execution.

At this point, two possible outcomes can occur:

33

Methodology

1. A compilation error occurred so our assumptions are wrong and the pipeline fails

2. One or more tests failed, workflow goes on

3. No tests failed, workflow goes on

Based on the latest test suite results and commit metadata, a structured report will
be produced and analyzed in order to handle each possible case. If case 2 occurs, the
system will handle the failing tests, and this scenario will be explored in more detail
later. Otherwise, the execution can continue.

If no tests failed, the corresponding section of the report will present this information.
Then, the system will start to properly handle each committed file by analyzing each
file’s metadata and operating according the logic illustrated in Figure 3.2.

Analyze a report

ADDED

MODIFIED

FAILINGCaseGenerate from
scratch

Source code

Add missing tests
Source code
and test file

Fix the failing test Source code, test file
and error

End

Generate againAppend

Figure 3.2. Analyze flow chart

A commit to a remote repository can involve adding, updating, or removing files.
A file is categorized as "added" when it is pushed to the repository for the first time,

34

3.2 – Architecture and Design of the Solution

"updated" if any modifications are made to it (such as additions or deletions within the
file), or "deleted" when it is removed from the repository. These information are taken
from the commit related metadata and included inside the previously created report.

Following this, the test generation phase begins. The process adapts dynamically,
creating prompts tailored to the specific files committed, as categorized earlier. For a
newly added file, the system generates tests from scratch based on the fetched source
code. As well, an updated would cause the already existing test suite to be adapted with
the new code. For instance, an update can be a newly added method inside a class. In
this case, this method is not going to have a related set of tests yet so the system will
generate only the missing tests within the corresponding test class. An update can also
be a removal of an already tested method. However, this scenario cannot be considered
because the first build would make the whole pipeline fail because a compilation error
occurs so that, the user is responsible to remove the related tests when a method is
deleted. The third and most general case of an update involves any modification within
a method. Detecting this situation without storing history of each file is challenging.
However, it can be reasonably assumed that updates to a method’s logic may cause some
tests to fail since unit testing closely aligns with the statement-level details of a method.
In this situation, the subsequent build and test execution phase will likely identify these
failures, initiating a feedback loop for addressing and fixing the failing tests.

The purpose of our solution was not to automate queries to a GPT model as a means
of speeding up the testing phase. Our goal was not to shift the tester’s responsibilities
onto a generative AI model but rather to provide a tool that assists testers in this time-
intensive task. This is the reason why system will always asks user’s approval at least
one time. We designed two possible cases where this may happen. A first optional
user approval is required whenever at least one test fails, initiating the feedback loop
and prompting the user for guidance on how to proceed. This initial check ensures
the quality of the generated tests. The second user approval occurs at the end of the
entire test generation phase. The system requests the user to verify the coherence of
the generated test suite, providing testers with a clear understanding of what has been
generated by approving the pull request merge.

To further clarify the process, we will now delve into the first user approval step in
more detail, focusing on the specific branch of the flowchart dedicated to this check.
This branch handles the scenario in which at least one test fails, triggering the feedback
loop. A new report containing information about test suites execution is going to be
created and it will pair failing test method and the error that caused its failing. This
test failing report will be sent to the user using its registered email in order to let him
analyze which test has failed and the reason behind this failing. Inside the email, the
user can choose how to proceed. Three cases have been designed as shown in Figure 3.3:

1. Generate: the system attempts to resolve the reported error by re-querying the

35

Methodology

GPT model, providing it with the necessary information to correct the issue. This
process is repeated for each raised error.

2. Fail: tester makes the whole system fail, the pipeline will end here its execution
and the current revision is not going to be deployed later.

3. Manual: tester notifies the system he provided to fix the reported issue. In this
way, the next phase is not going to be a new test generation but the system will
try to compile and execute tests again in order to check tester’s work.

Manual execution was designed because, as we said in the previous chapter, GenAI
models are not deterministic. As we shall see later, this issue can arise in situations
where the GPT model generates code with incorrect syntax. To prevent the pipeline
from failing every time this happens and to maintain the tool’s usability, we allow testers
the option to manually adjust the generated tests before merging them.

All these three cases will always lead the system to a new compile and test execution
phase, this is required to guarantee a stable and tested version to be deployed. If no
errors occur at test generation or the developer’s commit did not require to add or update
tests at all, the system will proceed with the final user’s approval. A pull request of the
current version is created to the main branch and another communication is sent to the
user asking to check and manually merge the created request. In this way, the user is
aware of what has been generated and can choose to approve the merge or reject it. The
latter will lead the pipeline to fail its execution. Otherwise, the pull request is merged
and the deploy can start. Here we proceed from the StateMachine stage of the pipeline
to the final Deploy stage.

This was a high-level overview of the system’s behavior, its interaction with the user,
and the conceptualization of the feedback loop. In the next section, we will dive into
the details of the actual implementation.

36

3.2 – Architecture and Design of the Solution

Figure 3.3. Pipeline flow chart

Commit changes to
the testing branch

Project is compiled
and the test suite is

executed

The PR is created

User checks the
PR

YES

NOMerge?

PR is merged

Application is
deployed

Pipeline succeed

Pipeline fails

Create the commit
and testing execution

report

YES

NONo failing tests

Analyze the report

Approval from
the user

GENERATE FAIL

MANUAL

Choice Pipeline fails

Tests generation

Project is compiled
and the test suite is

executed

NO No failing tests

YES

37

Methodology

3.2.2 Implementation Logic

The entire implementation relies on CloudFormation to manage the infrastructure. A
CloudFormation template describes all the required resources including their properties
and configuration. Using a CloudFormation template significantly simplifies infrastruc-
ture management compared to manually provisioning each service via the AWS Man-
agement Console or AWS CLI. CloudFormation instanciates each template definition
into a logical group called stack allowing operations like stack update or deletion with
a single instruction. This simplifies infrastructure management, offering a quick and
secure way to delete an entire stack and automatically cleaning up all its dependencies.
It also enables seamless stack updates, providing an efficient way to add resources to
the infrastructure and configure those for communication. Without this automation, the
developer would be required to instantiate each of those conscious of constraints such as
the correct instantiation order, which can be complex and error-prone.

CloudFormation allows us to create a set of resources using a visual interface, also
known as AWS Infrastructure Compose, to select, configure and link services. However,
we opted to define our architecture using a written template in YAML syntax for flexibil-
ity and control. Due to the template’s length, we will not present it in its entirety here.
Below is a snippet that illustrates the structure and format of a typical CloudFormation
YAML template:

AWSTemplateFormatVersion: '2010-09-09'

Description: Template to define a CodePipeline pipeline and related resources.

Resources:

CodePipeline resource

PipelineInstance:

Type: AWS::CodePipeline::Pipeline

Properties:

Name: !Ref PipelineName

RoleArn: !GetAtt CodePipelineServiceRole.Arn

ArtifactStore:

Type: S3

Location: !Ref ArtifactStoreBucket

Stages:

- Name: Source

Actions:

- Name: SourceAction

ActionTypeId:

Category: Source

Owner: AWS

Provider: CodeCommit

Version: '1'

OutputArtifacts:

38

3.2 – Architecture and Design of the Solution

- Name: SourceOutput

Configuration:

...

PollForSourceChanges: false

RunOrder: 1

- Name: PreBuild

Actions:

- Name: PreBuildAction

ActionTypeId:

Category: Build

Owner: AWS

Provider: CodeBuild

Version: '1'

InputArtifacts:

- Name: SourceOutput

OutputArtifacts:

- Name: DeployOutput

Configuration:

...

RunOrder: 2

Namespace: BuildVariables

- Name: StateMachine

Actions:

- Name: FeedbackStateMachine

ActionTypeId:

Category: Invoke

Owner: AWS

Provider: StepFunctions

Version: '1'

Configuration:

...

InputArtifacts:

- Name: DeployOutput

OutputArtifacts:

- Name: MergedDeployOutput

RunOrder: 3

- Name: Deploy

Actions:

- Name: ECSDeployAction

ActionTypeId:

Category: Deploy

Owner: AWS

Provider: ECS

Version: '1'

InputArtifacts:

- Name: MergedDeployOutput

Configuration:

...

RunOrder: 4

39

Methodology

AWS S3 bucket for artifacts

ArtifactStoreBucket:

Type: AWS::S3::Bucket

Properties:

BucketName: !Ref BucketName

IAM role for CodePipeline

CodePipelineServiceRole:

Type: "AWS::IAM::Role"

Properties:

AssumeRolePolicyDocument:

Version: "2012-10-17"

Statement:

- Effect: "Allow"

Principal:

Service: "codepipeline.amazonaws.com"

Action: "sts:AssumeRole"

Policies:

- PolicyName: "CodePipelinePolicy"

PolicyDocument:

Version: "2012-10-17"

Statement:

- Effect: "Allow"

Action:

- "s3:*"

- "codecommit:*"

- "codebuild:*"

Resource: "*"

- ...

The template snippet shows the declaration of a CodePipeline instance with its
related bucket for storing artifacts and role. This is the actual pipeline declaration of our
solution. The first stage includes a CodeCommit action, which retrieves source code from
a remote repository. Instead of relying on continuous polling, an event-driven approach
is used to trigger the pipeline. Polling has been disabled in the stage configuration and
replaced with an event bus created using AWS EventBridge. This event bus acts as a
connector between the CodeCommit event source and the pipeline, filtering incoming
events based on predefined criteria. In our setup, the bus is configured to forward all
commit events to the pipeline.

For each event received, the pipeline is triggered and can proceed with the second
stage. A CodeBuild project is configured to perform this first build phase. Figure 3.4
shows what happens when a build is run with CodeBuild:

40

3.2 – Architecture and Design of the Solution

Figure 3.4. CodeBuild workflow [10].

A configured CodePipeline triggers the CodeBuild to start the build process (tran-
sition 1). A build project includes information about how to run a build, including
where to get the source code, which build environment to use, which build commands
to run, and where to store the build output. Based on these configurations, the build
environment is created (transition 2). The source code is then retrieved and incorpo-
rated into the project definition (transition 3), and the build process begins, guided by
the build specification (buildspec). The buildspec file is a collection of build commands
and related settings in YAML format. Within it, we can define output artifacts, which
are transferred to the associated project bucket (transition 4), while the build logs are
streamed to AWS CloudWatch (transition 5). CodeBuild pricing is based on the pay-
as-you-go model, build calculation is calculated in minutes from the time of submission
until the build is terminated. Moreover, AWS offers us a wide range of compute EC2
instances having different computational power as well as pricing per minute.

The following snippet illustrates how the build has been designed, with some unnec-
essary code omitted for clarity:

version: 0.2

env:

shell: /bin/bash

exported-variables:

- BUILD_STATUS

phases:

install:

41

Methodology

on-failure: ABORT

commands:

Maven and Java configurations

pre_build:

on-failure: ABORT

commands:

The S3 Bucket is cleaned

build:

compilation errors lead to failure

on-failure: ABORT

commands:

- echo "Compiling the Spring Boot project"

- mvn clean compile -q

post_build:

test errors let the pipeline continue

on-failure: CONTINUE

commands:

- echo "Running the test suite"

- mvn test -q && export BUILD_STATUS="SUCCEEDED"

|| export BUILD_STATUS="FAILED"

- echo "Tests completed"

- echo "Uploading Surefire reports to S3"

...

- echo "Uploaded Surefire reports"

- git show --name-status HEAD > report.txt

- echo "Generated report"

- echo "Building the Spring Boot project"

- mvn clean package -q -DskipTests

- echo "Creating dependency graph with jdeps"

...

- echo "Ending"

artifacts:

files:

- '**/*'

name: DeployOutput

secondary-artifacts:

ReportOutput:

files:

- report.txt

name: ReportOutput

discard-paths: yes

DeployOutput:

files:

- target/*.jar

name: DeployOutput

42

3.2 – Architecture and Design of the Solution

discard-paths: no

Based on Maven, we configured the environment to build Spring Boot projects based
on Java 17. The project first verifies the environment, followed by a cleanup phase before
it starts compiling the project and running the existing test suite, causing the pipeline to
fail only for compilation errors. Additionally, several artifacts are generated and stored
in the associated bucket, such as Surefire reports for failed tests, details about committed
files using the git command, and information about the internal project’s dependencies
with JDeps, a Java tool that fetches dependencies for each defined Java class. After the
build, the state machine is started.

We decided not to present the full ASL definition of the state machine, as it would be
too lengthy. Instead, Figure 3.5 illustrates its actual implementation using AWS services
filtering out flow states to map data between transactions. Moreover, task states and
its related service have been highlighted. Each used task state can be either a AWS
CodeBuild service or a AWS Lambda service. AWS Lambda is an ideal compute service
based on serverless approach, we do not need to manage physical servers. Instead, just
choosing an environment and configuring it, we can run our code according to the PaaS
computing model. All the Lambda functions are written using Python language based
on a python3.10 runtime, we will highlight the most important ones.

43

Methodology

Start

CreateReport

BuildResultChoice

HandleReport

ERROR StartBuild

NotifyPullRequest

SendReport

CreatePullRequest

WaitForMerge

StartFinalBuild

End

GENERATE

MANUAL

FAIL

UserApproval

Fail

AWS Step Functions workflow

Figure 3.5. State machine workflow

44

3.2 – Architecture and Design of the Solution

CreateReport

First state is CreateReport, it is a Lambda function used to create reports needed in
the pipeline execution. Based on the results of the previously build phase, this function
elaborates the produced artifacts and prepares a structured report as the following:

{

"testReport": [

{

"TestSet": "com.example.demo.testsuite",

"TestsRun": 5,

"Failures": 1,

"Errors": 0,

"Skipped": 0,

"TimeElapsed": 10.32,

"TestFailures": [

{

"test": "com.example.demo.testsuite.test_n1",

"error": "assertion failed"

}

]

},

// ...

],

"commitReport": [

{

"path": "src/main/java/com/example/demo/GenericClass.java",

"action": "A"

}

]

}

The testReport object provides details about the most recent test execution, as gen-
erated by Surefire, a Maven plugin commonly used during the testing phase to run an
application’s unit tests. This plugin produces reports summarizing the test results, in-
cluding the number of tests that passed, were skipped, or failed. In cases in which tests
fail, the report includes an array having the failed test IDs along with their correspond-
ing error messages. The commitReport object contains details about the commit that
initiated the pipeline by parsing the result of the git show command. It lists the files af-
fected by the commit and specifies the operations performed on them, such as additions,
updates, or deletions.

45

Methodology

HandleReport

The main logic of test generation is implemented inside this task. Here we handle what
has been received by the CreateReport task so that, test generation from scratch, test
appending and test fixing is addressed according to it. We can classify each of them
based on the action field of each object inside commitReport. Action’s allowed values
are:

• A: The file has been added.

• D: The file has been deleted.

• M: The file has been modified or updated.

• Test identifier and relative error: Specifies tests that failed and need fixing,
including the identifier of the test and the associated error details.

Each of those will lead the system to construct an appropriate prompt for invoking
OpenAI APIs. In order to do so, managing the runtime was necessary as the Ope-
nAI client is not present inside default dependencies provided by AWS. However, AWS
Lambda allows the creation of layers. Those usually contain library dependencies, cus-
tom runtime or configuration files. We created a custom layer based on python3.10
runtime and adding the necessary dependencies to instantiate the OpenAI client. Addi-
tionally, we incorporated another AWS-provided layer to securely store secrets. This was
needed because OpenAI API requests require a generated API key for authentication.
Storing it in clear inside the script is not a viable solution, so we used the AWS Secret
Manager to securely manage and access the API key.

Define a function to handle the report event.

Extract repository and branch details from the stack parameters

Filter the list of files in the commit report based on the following :

- The file matches the regular expression for Java files.

- The file path is approved (using the tested paths JSON file).

If there are filtered files:

- Determine the branch name for testing :

- If on the master _testing_ , create a new branch with a

timestamp .

- Otherwise , use the existing branch name.

Create a dependency tree to track file dependencies .

For each file in the filtered list:

If a new testing branch is needed :

46

3.2 – Architecture and Design of the Solution

- Create the branch using the repository name , original

branch , and new branch name.

- Set the flag indicating the testing branch has been

created .

Handle different types of file actions :

For added files:

- Skip files that are test files.

- Fetch the source code for the file being added.

- Fetch dependencies for the file from the dependency

tree.

- Generate a test suite for the file using the source

code and dependencies .

- Commit the generated test suite to the new branch .

For modified files:

- Fetch the source code for the modified file.

- Fetch dependencies for the file from the dependency

tree.

- Fetch the existing test suite for the modified file

.

- Update the test suite using the source code , test

suite , and dependencies .

- Commit the updated test suite to the new branch .

For fixing tests:

- Identify the source code file corresponding to the

test file.

- Fetch the source code and dependencies for the file

.

- Fetch the test suite for the file.

- Update the test suite based on the changes and

dependencies .

- Commit the fixed test suite to the new branch .

Otherwise , if no relevant files are found:

- Use the original branch name.

Prepare the next event and return .

Listing 3.1. Pseudocode for the HandleReport Lambda Function

The pseudocode for the HandleReport Lambda function is provided in Listing 3.1.
The files received in the commitReport are filtered to exclude non-Java code files and
those outside the defined testing boundaries. Specifically, the tool can be configured to
test only specific directories within the project, as not all parts of the project are suitable
for testing. This filtering is carried out here and is configured using a JSON file located
in the project’s root directory, where the directories to be tested are listed. Moreover,
before starting with test generation, a dependencies tree is created by analyzing the
previously produced JDeps artifacts.

47

Methodology

Next, for each item in the list of testable and allowed files, we proceed with test
generation. The abstract flow of this process is illustrated in Figure 3.2. Additionally,
to overcome certain limitations in GPT generation, we implemented logic to construct a
prompt that includes the code for the project’s internal dependencies. This was necessary
to provide the generation model with the context of what is being tested. However, this
approach also introduces a limitation in the solution. We will discuss this in Chapter 5.

The prompt is generated using the fetched source code. By applying best practices in
prompt engineering, the prompts are structured to minimize costs and latency, produce
a well-organized output, and allow the user to interact with the test generation process.
Here is the template prompt 3.2 for creating a test suite from scratch:

Provide a complete test suite for the given Java code using the Spring

framework with maximum code coverage . Use JUnit5 and Mockito for

creating the pure unit tests , focusing on Mockito mocks and skipping

Spring context loading . Focus on covering all possible branches and

edge cases. Try to understand the code first and never assume the

method behavior according to the function name.

In some cases , there could be comments to document the method to test ,

such as the following example :

/*

Function to test the absolute value of the sum of the parameters

*/

public int AbsOfSum2Int (int a, int b) {

return Math.abs(a + b);

}

Try to understand the code first and never assume the method behavior

according to the function name.

You will receive the source code in the following format :

// source code section

public class Controller { code ... }

###

// dependencies section (it can be empty)

public class ControllerDependency { code ... }

Moreover , the path of the file is {path}, which allows you to determine

the package and import the entire project generically . For example ,

you can import all classes in the project using import com. example .

demo .*;. When adding imports , ensure they are as generic as possible

to cover all required classes .

What you are testing

48

3.2 – Architecture and Design of the Solution

It is a Spring Boot project made in the java language which is able to

interface with other external resources i.e. databases , so do not test

edge cases like setter for the Ids of the entities / models inside the

tables .

Output Requirements

- Output only the Java code , do not write the ```java and ``` quotes

- Exclude any comments or explanations if not already written

- Ensure all dependencies needed for the test are appropriately managed

and configured .

- Print the related package as first line according to the received {path

}

Listing 3.2. Prompt template for generating from scratch

The prompt includes predefined static code at the beginning, which helps with
caching hits. Additionally, it clearly instructs the GPT model on how to approach
the task, specifying what it will receive and what it is expected to produce. The dy-
namic part of the prompt is driven by the user’s request and contains the source code to
be tested, along with any relevant dependencies’ code that will be appended. Now we
can call the OpenAI client interface:

1 response = client .chat. completions . create (

2 model=Model.GPT4o.value ,

3 messages =[

4 {

5 "role": " system ",

6 " content ": prompt

7 },

8 {

9 "role": "user",

10 " content ": input_content

11 }

12],

13 temperature = TEMPERATURE ,

14 top_p= TOP_1

15)

Listing 3.3. Create request OpenAI APIs example

The input_content contains the formatted request to the GPT model. Moreover, we
can manually adjusts relevant parameters like the chosen model, the temperature and
the top_p parameters that, respectively, the degree of randomness in the output, and
the scope of the candidate words considered during the text generation process. The
temperature controls the variability of the generated text, where a lower temperature
ensures more deterministic and focused output and a higher temperature promotes cre-
ativity and randomness in the generated responses. Meanwhile, the top_p parameter

49

Methodology

fine-tunes the selection of the next word, limiting it to a subset of words that together
represent the most probable candidates. We put as values, respectively, 0.5 and 1 so
that it is possible to strike a balance between creativity and coherence in the generated
output. A temperature of 0.5 provides a moderate level of randomness. Setting top_p
to 1 means that the model considers the full range of possible candidates for the next
word, without restricting it to a smaller subset.

StartBuild

After the test generation phase, a post-generation build process is initiated. This step is
crucial for verifying the GPT-generated test suite by compiling and executing it against
the updated version of the project. By doing so, we can ensure that the generated
tests are syntactically correct and functionally valid. There is nothing to highlight in
this build phase, the project is just compiled and test suite is executed so the relative
buildspec is omitted.

SendReport and UserApproval

Using AWS SNS, a human-readable report is sent to the developer to provide details
about issues found during the last build. This task is triggered whenever a build fails.
The email contains key information about the execution, including a unique identifier
for the pipeline execution, a link to review the code at the commit state, and three API
calls to the AWS API Gateway for further investigation. This ensures that developers
have the necessary details to quickly identify and address build failures.

The three exposed endpoints allow the user to decide how the system should handle
the situation. The Generate endpoint triggers test generation again, enabling the model
to adapt the failing tests to address the identified issues. The Manual endpoint notifies
the system to proceed directly with the build phase, indicating that the developer has
resolved the reported problems. The Fail endpoint stops the current execution of the
pipeline.

The UserApproval can be a long running task potentially, the user have to check the
generated test or eventually fix them using the manual approach. This functionality is
implemented using an asynchronous job within the state machine. A Lambda function
pauses execution while waiting for the user’s response via a task token, which resumes
the state machine’s workflow. The process is triggered when the user clicks on the links
provided in the report, sending a request to the API Gateway that activates the Lambda
function and continues execution.

50

3.2 – Architecture and Design of the Solution

NotifyPullRequest and CreatePullRequest

Using AWS SNS, notifies the developer of the successful end of test generation phase.
Two endpoints are exposed this time, respectively, to approve the pull request creation
or to reject it. Here the second checks should happen. The developer should check the
current state of the branch and eventually approve the pull request merge. The state
machine stops its execution as the restart is triggered in the same way as explained for
UserApproval.

StartFinalBuild

This is the final build phase before deployment. During this phase, test-related statistics
are exported to an S3 bucket, and the software project is packaged as a Docker image.
The Docker image is created based on the Dockerfile located in the root directory which
basically sets up the Java 17 runtime environment to execute the Spring Boot project
and exposes the 8080 port to allow communication with the container. Once the image
is built, it is pushed to the ECR storage where it will be retrieved during the next deploy
phase by AWS ECS. The following is the buildspec for this process:

version: 0.2

phases:

pre_build:

commands:

- echo Logging in to Amazon ECR...

...

build:

commands:

- echo "Creating Jacoco report"

...

- echo "Creating PIT testing report"

...

- echo Building the Docker image...

- docker build -t $REPOSITORY_URI:latest .

- docker tag $REPOSITORY_URI:latest $REPOSITORY_URI:latest

post_build:

commands:

- echo Pushing the Docker images...

- docker push $REPOSITORY_URI:latest

- echo Writing image definitions file...

- echo "Creating artifact for the next phase"

...

- echo "imagedefinitions.json file created."

artifacts:

files:

51

Methodology

- imagedefinitions.json

3.2.3 Deploy

Final stage of our pipeline is Deploy stage. At this point, we should have a tested
project, build and packaged in a Docker image stored in ECR. Two possible solution
are used to deploy our application in AWS platform. First requires the usage of Elastic
Computer Cloud (EC2). EC2 provides on-demand, scaling computing capacity to host
our applications. Using EC2, we can launch as many virtual server instance as we
want. Each EC2 instance is fully configurable by the customer, allowing him to set
various configuration of CPU, memory, storage and also design the whole inner network
infrastructure. The latter can be achieved using Virtual Private Cloud (VPC), another
AWS service that allows to create logically isolated virtual network using the AWS
environment. Each defined network must be placed inside a region chosen in the list
of AWS provided regions. We can declare whatever instance we need inside the VPC
as well as expose something to be reached. Figure 3.6 shows a context diagram of a
VPC implementation where a subnet has been defined and EC2 instances are exposed
to the internet through an internet gateway. Several networking components can be
instantiated inside a VPC network but it is developer responsibility to configure those
properly.

Figure 3.6. Virtual network example

There’s no additional charge for using a VPC, only components usage is paid and
each EC2 instance uptime according to the instance configuration. However, we opted

52

3.2 – Architecture and Design of the Solution

to use another AWS service in the final implementation of this thesis. As we said, we
relied on AWS ECS as deployment service.

AWS ECS is a service for containers orchestration that helps in deploy, manage and
scale containerized applications. It is well integrated with AWS ECR as public repository
for storing images and Docker. The main advantage of using ECS is its simplified way
of deploying software using containers instead of configuring a proper environment in a
EC2 instance. ECS is based on 3 layers as shown in Figure 3.7.

Amazon ECS

Amazon ECR

Task
Definition

Deploy Task

Amazon EC2

AWS Fargate

Capacity

Monitor Application

Controller

Amazon
CloudWatch

Figure 3.7. ECS context diagram

The controller is the software responsible for managing applications, which in our case
is Amazon ECS. Capacity refers to the underlying infrastructure where containers run,
with options including EC2 instances or AWS Fargate. Monitoring is handled through
services like AWS CloudWatch or by observing the runtime execution. After creating
and storing the image in ECR, a task definition must be declared. A task definition
is a blueprint for our application and tells ECS what to instantiate and configure. For
example, the following snippet of yaml is the task definition of a simple Spring Boot
backend using Postgres as database service. Two containers are going to be run and one
of those is going to be the resulting image generated inside the state machine while the
Postgres image is pulled from Docker Hub. We can also define the execution environment
to configure the used images.

Task:

Type: AWS::ECS::TaskDefinition

Properties:

Family: spring-boot-app

53

Methodology

Cpu: 256

Memory: 512

NetworkMode: awsvpc

RequiresCompatibilities:

- FARGATE

ExecutionRoleArn: !GetAtt ECSTaskExecutionRole.Arn

ContainerDefinitions:

- Name: backend-service

Image: "ECR-URI"

PortMappings:

- ContainerPort: 8080

Environment:

- Name: DB_HOST

Value: "postgres-db"

- Name: DB_PORT

Value: "5432"

- Name: DB_USER

Value: "myuser"

- Name: DB_PASSWORD

Value: "mypassword"

- Name: DB_NAME

Value: "demo_db"

- Name: postgres-db

Image: "postgres:latest"

PortMappings:

- ContainerPort: 5432

Environment:

- Name: POSTGRES_PASSWORD

Value: "mypassword"

- Name: POSTGRES_USER

Value: "myuser"

- Name: POSTGRES_DB

Value: "demo_db"

Moreover, in our task definition, we selected Fargate as the capacity option. Fargate
is a technology that serves as the infrastructure layer for ECS, implementing a PaaS
model. Developers only need to specify the required resources, and Fargate automatically
manages their allocation, scaling efficiently to handle high-demand peaks. This approach
simplifies the deployment process, allowing developers to focus on application logic rather
than spending time on manual resource configuration, which is automatically handled
by AWS.

On the other hand, Fargate does not allow for deep system customization, but this
is outside the scope of this thesis. However, the trade-off between flexibility and ease of
use makes Fargate an ideal choice for deploying containerized applications quickly and

54

3.2 – Architecture and Design of the Solution

efficiently.

This marks the final stage of our deployment pipeline. Once this step is completed,
our tested application will be fully operational, and the latest code changes will be
merged into the testing branch.

55

56

Chapter 4

Validation

This chapter presents the results of this thesis project, focusing on the analysis of the
AI-driven test generation solution and its application in a real-world scenario. We will
evaluate the effectiveness of the developed approach and compare the performance of
OpenAI’s two most widely used GPT models, 4o and 4o-mini, based on the selected
metrics. The evaluation will be conducted on two case studies: a medium-sized Spring
Boot microservice without an existing test suite and a project that includes test suites
manually developed by human developers.

4.1 Evaluation Metrics

In order to demonstrate the potential of AI-driven test generation techniques in improv-
ing software quality and development productivity, we conducted a series of tests and
extracted results based on the most important quality testing metrics. We used common
coverage metrics, specifically line, branch, method, instruction, and complexity cover-
age. Additionally, to assess the quality of the generated tests, we performed mutation
analysis by injecting bugs into the codebase and testing the project’s test suite. This
approach ensures that the tool not only generates tests that achieve high coverage but
also effectively validates their fault-detection capability.

As discussed in Chapter 2, mutation testing ensures that the test suite effectively
catches faults in the code by comparing test suite results against the original and mutated
code versions. Mutation testing provides an objective measure of test suite quality.

The two key mutation analysis metrics used to validate the results are:

57

Validation

• Mutation Coverage: This metric represents the ratio of mutants killed by the
test suite to the total number of mutants injected into the codebase, including
those not covered by any test cases. High mutation coverage indicates that the
test suite is effective in identifying potential bugs.

• Test Strength: This metric measures the effectiveness of the test suite by calcu-
lating the ratio of mutants killed to the number of mutants actually covered by the
tests. It evaluates how well individual test cases detect various types of mutations,
such as those targeting different input space partitions.

Mutation analysis was conducted using a Maven plugin called PIT. By adding this
plugin to the ‘pom.xml‘ file, we can inject bugs, run tests, and generate statistical data
for the analysis.

4.2 Grafana

To visualize and track this data more intuitively, we used Grafana. Grafana is an open-
source analytics and interactive visualization web application that enables real-time
monitoring and interaction with data through customizable dashboards. It allows for
data exploration from multiple sources, performing complex queries and transformations.
Moreover, Grafana allows an easy way to share dashboards within the team to foster
collaboration and transparency. For our needs, we used this tool to display data locally,
but it can also be deployed on AWS as a Docker container. We chose Grafana for our
solution to effectively implement the CALMS principles of Measurement and Sharing of
information. Its ability to provide real-time insights and a facilitate collaboration, made
it the ideal choice for our monitoring needs.

A dedicated dashboard was created for the test generation process, providing insights
at different levels of granularity, including the entire project and individual packages.

Figure 4.1 and Figure 4.2 provide an overview of the feedback loop, illustrating
how test failures evolve across different iterations, with the x-axis representing the n-th
iteration. The first chart displays the number of failing tests in green and compilation
errors in yellow, while the second chart represents the trend of the error rate over multiple
iterations.

58

4.2 – Grafana

Figure 4.1. Failing tests and compilation errors.

Figure 4.2. Error rate trend.

The second section of the dashboard is presented in Figure 4.3. This section features
multiple gauge charts, each representing a different coverage metric, along with a pie
chart displaying the percentage of mutation coverage. It can be configured to show data
for specific packages within the project and helps in identifying weaker areas in the test
suite at the package level. Similarly, Figure 4.4 presents the same type of data but at
the project level, offering a comprehensive view of test coverage and mutation analysis
throughout the codebase.

59

Validation

Figure 4.3. Package-Level Coverage and Mutation Analysis

Figure 4.4. Project-Level Coverage and Mutation Analysis

The final section, shown in Figure 4.5, provides a more detailed analysis of coverage
and mutation testing across different granularity levels. The upper chart visualizes cov-
erage metrics at the class level using a bar chart, with the coverage percentage displayed
on the y-axis, while the lower chart illustrates mutation coverage and test strength for
each package within the main project. This breakdown helps in identifying areas with
lower test effectiveness and provides insights into the distribution of code quality across
different parts of the project.

60

4.2 – Grafana

Figure 4.5. Class and Package-Level Coverage and Mutation Analysis

4.2.1 Testing Methodology

The process for obtaining the results follows a set of rules to ensure it is consistent,
well-structured and repetitive in order to facilitate the comparison. These are:

1. The entire project is loaded into a clean repository with a single initial commit,
without any existing tests.

2. Compilation errors are addressed manually by the developer.

3. Errors in test generation are first analyzed to determine if they result from the test
setup (as the model provides comments when developer intervention is required;
in such cases, tests are fixed manually). If the issue persists, a single attempt to
fix the test using the model is made. If the test still fails, the test is removed.

We will assess the results from three key perspectives: Feedback Loop, Mutation
Analysis, and Project Summary. The first perspective helps determine whether the
tools are a viable option for an AI-driven testing approach by examining their usage,
common errors, and the level of developer intervention required. The second perspective
evaluates the quality of the generated test suite using mutation testing metrics. Finally,
the third perspective provides an overview of coverage across the project.

61

Validation

4.2.2 Evaluated Scenario: Comparing GPT Models

on an Untested Project

First case study focused on applying test generation on a project lacking of test suites in
order to compare performances of the two currently most used GPT models on writing
unit tests. As mentioned earlier in Chapter 2, Section 2.3.4, we identified certain lim-
itations in using GPT-4o-mini due to its reduced versatility and reasoning capabilities
compared to GPT-4o. This outcome was expected based on OpenAI’s documentation,
but it could have been mitigated through fine-tuning. However, we did not apply this
technique in this scenario and instead used the base model.

Let us provide a brief overview of the project. It is a backend application designed to
manage product orders placed by users. Built with Spring Boot and Java 17, the project
follows the Controller-Service-Repository pattern to maintain clean code, simplify test-
ing, and ensure a clear separation of concerns. The data access layer is implemented
using Spring Data JPA. Four key entities have been defined: User, Order, Product, and
OrderItem. Additionally, a bug was intentionally introduced into a utility class method
to test the ability of the test generation to detect it. Specifically, the bug would araise
when performing a GCD operation on two zero values (GCD(0, 0)), which is typically
defined as 0 but it is not handled by the code.

Feedback Loop

GPT-4o

1. First iteration discovered the bug by providing a test for that particular case which
failed, manual fix inside the code to handle the scenario.

2. The loop concluded, with no further test failures.

GPT-4o-mini

1. The first iteration failed due to compilation errors caused by missing imports,
which were manually added.

2. Second iteration discovered the bug by providing a test for that particular case
which failed, manual fix inside the code to handle the scenario.

3. A test case invoked an undeclared method within a custom class of the project,
removed manually.

4. The loop concluded, with no further test failures.

62

4.2 – Grafana

Mutation Analysis

Metric GPT-4o GPT-4o-mini

Mutation Coverage 100% 100%
Test Strength 100% 98%
Line Coverage 97% 97%

Table 4.1. Mutation Analysis Comparison

Project Summary

Metric GPT-4o GPT-4o-mini

Generated Tests 68 70
Time for Generation 4m 20s 3m 6s
Method Coverage 70% 70%
Line Coverage 73% 74%
Branch Coverage 94% 94%

Table 4.2. Comparison of Project Summary Metrics

Both models successfully identified the injected bug, demonstrating a high level of do-
main exploration in their input. Moreover, GPT-4o-mini appears to generate tests faster
but requires more developer intervention to adapt test cases through multiple feedback
loops. In fact, the testing phase often fails due to missing or incorrect imports, despite
having provided the models with all the necessary code dependencies inside our project.
While mutation analysis and primary code coverage metrics for the whole project indi-
cate similar performance, with strong method, line, and branch coverage. The perfect
mutation coverage confirms the validity of the generated tests.

4.2.3 Evaluated Scenario: Comparing GPT Models

on an Tested Project

The second case study focused on applying test generation to a project with an existing
test suite, aiming to compare the performance of the two most widely used GPT models
for writing unit tests and evaluate those against tests manually written by humans.

Let us provide a brief overview of the project. It is a REST endpoints backend
application without UI designed to manage articles and authors. Built with Spring
Boot and Java 21, this project also follows the Controller-Service-Repository pattern

63

Validation

as well as the data access layer is implemented using Spring Data JPA. Three key
entities have been defined: Article, Author and LoggedRecord. The project already has
a comprehensive test suite covering many classes, though not all tests are unit tests since
many are integration tests. To facilitate comparison, we focused test generation solely
on the service layer, which is the only part with unit tests, and excluded the existing
tests that were not relevant to our analysis.

Feedback Loop

GPT-4o

1. The first iteration failed due to compilation errors caused by ambiguity in a method
call. The model incorrectly mocked a result using the Object() class instead of
the project’s custom entity, leading to confusion about which method was being
referenced.

2. The loop concluded, with no further test failures.

GPT-4o-mini

1. The first iteration failed due to compilation errors caused by the missing of all im-
ports of java.lang package and invoked an unimplemented method inside a project’s
custom class

2. Three tests failed, and the system was tasked with fixing these issues.

3. One test was fixed by the model, while another was corrected by the developer
following the model’s request due to an incorrect setup in the generated method.
One test remained failed and was subsequently removed.

4. The loop concluded, with no further test failures.

Mutation Analysis

Metric GPT-4o GPT-4o-mini Human-coded

Mutation Coverage 89% 58% 74%
Test Strength 89% 76% 100%
Line Coverage 100% 79% 71%

Table 4.3. Mutation Analysis Comparison

64

4.2 – Grafana

Project Summary

Metric GPT-4o GPT-4o-mini Human-coded

Generated Tests 17 16 15
Time for Generation 1m 15s 57s -
Method Coverage 100% 95% 90%
Line Coverage 100% 77% 70%
Branch Coverage 88% 50% 38%

Table 4.4. Comparison of Project Summary Metrics (Service Layer)

The same discussion can be applied to the features of GPT-4o and GPT-4o-mini, such
as latency, the extent of developer involvement in feedback loops, and the most frequent
compilation errors. Our focus will be on comparing the results between the generated
tests and those created by developers.

Let us start with mutation analysis comparison. The model GPT-4o achieves the
highest mutation coverage indicating that it catches more faulty code mutations com-
pared to both the human-coded tests and the GPT-4o-mini model. However, this does
not ensure that the tests are effectively identifying all potential faults, particularly in
more critical or subtle areas. On the other hand, test strength is higher for the human-
coded tests comparing to the others. It means that these tests are more effective at
killing mutants even though its overall mutation coverage is lower.

Regarding the coverages for the service layer, which is the only part covered by the
unit testing, the metrics are more effective for those generated by the GPT-4o model. In
fact, line coverage is perfect for the GPT-4o model while GPT-4o-mini and human-coded
tests are not as good. This suggests that GPT-4o runs through more of the code but
does not necessarily test it better since test strength is higher in human-coded tests. As
well as for line coverage, also method coverage has higher metrics in GPT-4o for method
coverage while the other two are slightly behind. Lastly, branch coverage highlights that
tests generated by OpenAI’s most advanced model cover more decision-making logic.

65

66

Chapter 5

Conclusion

This thesis has explored a possible solution to support developers in writing unit tests.
We started explaining why testing is an expensive and time-consuming phase of the
SDLC and presenting techniques such as static analysis and dynamic test generation
to speed up the process. Then, we described the designed system based on a LLM for
handling test generation, in our case we opted for OpenAI most used models. Finally,
in Chapter 4 we presented the collected results. In this Chapter we will analyze those.

Performances

Our goal was to create a tool to be used alongside the testing phase by developers without
implementing an automated way to query a LLM for generating test. Our focus was on
the interaction with the developers who is conscious of what is generated each time and
who should approve or reject. We will first analyze the quality of the generated tests.
Looking at the results we can see that both GPT-4o and GPT-4o-mini models produced
a test suite with effective test cases. We obtained high coverages metrics from models for
both the case studies highlighting a higher values for the generated test suites compared
with the human-coded test suite. However, we found that the covereges metrics are not
enough to determine the quality of a test suite. Mutation analysis results shows that
mutation coverage is higher for the GPT-4o model meaning that it tests are capable of
identifying more mutants than the human-coded test suite but test strength is better for
the human-coded resulting in a test suite more focused on testing particular test cases
than the generated one. We can see that quality of the models’ work is comparable with
the quality of a human’s product.

67

Conclusion

Ease of Use

Let us now briefly analyze the ease of use of the tool. We cannot define a precise
duration for the whole generation process due to the fact that there are interactions
with the developers which may lead to delays. We highlighted the time required for
generating from scratch a test suite with a full load of the project. These times are
comparable between the two models. However, most of the time spent by developers is
used in the feedback loop whenever there are faulty tests to be fixed. Here, the GPT-4o
models has better performance compared to the other model because it produces less
error-prone test suite requiring less interactions with the developers resulting in less time
spent for fixing those.

Pricing

Now, we turn our attention to the cost analysis of the process. The effective costs
depends on the usage so we will propose an esteem based on the costs of the deployment
and testing of the system. The pay-as-you-go model offered by AWS helps in our goal
to reduce costs for the infrastructure also due to the fact that the AWS Free Tier offers
monthly a set of resource to be consumed before starting to pay leading this expenses to
be negligible. The majority of the costs are attributed to the use of the models. GPT-
4o model is way more expensive than the GPT-4o-mini based on token usage with the
pricing per 1M token shown in Chapter 2. For our esteem, we performed calculations
on the first case study. It is a basic analysis using a single full load of the project
to generate the test suites and without considering possible faulty test generated that
would lead to a fixing phase. In addition to the source code of the class, we have to
consider also its dependencies and the static part to instruct the model in the total
amount of tokens used for the input resulting in a total of 16136 tokens. Instead, to
determine the number of output tokens, we analyzed the generated test suites, resulting
in a total of 7840 tokens. Based on the prices shown in Table 2.2, the total cost amounts
to $0.12 for GPT-4o and $0.007 for GPT-4o-mini. We acknowledge that this is a very
limited estimate of our system’s usage as it considers only a simple scenario. However,
it highlights that the GPT-4o model is 1567% more expensive than the GPT-4o-mini
which, in more realistic scenarios having a whole team sharing a single pipeline leading to
an high demand, would lead to significant costs. In order to saves those costs and obtain
the same performances of the most expensive of the OpenAI models using GPT-4o-mini
we can perform fine-tuning.

68

Conclusion

Future Works

Until now, we have analyzed the system focusing on the three main aspect of perfor-
mances, ease of use and pricing. We have seen that both OpenAI models generate test
suites with comparable metrics to evaluate the effectiveness. However, GPT-4o gener-
ates test suites without an high need of human interaction leading to a better ease of
use. We prioritized the system’s usability over pricing, as intense usage was not required.
Now we will analyze possible solution to solve these problems.

According to the OpenAI documentation, fine-tuning technique let us obtain higher
quality in results than using simple few-shots learning by training the model with more
examples that would not fit inside a prompt and leading to lower latency in requests and
token savings due to shorter prompts. [8] Performing fine-tuning on the GPT-4o-mini
model would help us in creating a new custom model that is more capable of generating
test suites. Another cost-saving solution would be to implement a custom Java parser
to analyze the code before generating the request prompt. This parser would examine
the source code of the committed file and break it down into Java language objects.
By doing so, we could avoid constructing a prompt containing all the classes of source
code and dependencies when only a small portion is needed by the model. Implementing
a parser would shift the system’s granularity from the class level to the method level,
reducing the number of tokens used and, consequently, lowering costs.

Moreover, the application currently lacks integration testing generation. As we dis-
cussed earlier, having a strong test suite with unit and integration tests to cover possible
faults in our application is crucial in order to perform regression testing whenever a new
feature is added to the codebase or some already existing one is updated. However, we
did not take this idea into account for the current system that focuses exclusively on gen-
erating unit tests. This can be considered as an additional feature for future versions of
the system due to easily configurable environments for integration testing offered by the
Spring Boot framework. It provides a simple way to perform requests to exposed end-
points while also interacting with a lower data layer, such as an H2 in-memory database,
helping to prevent tests from polluting the actual database.

69

70

Bibliography

[1] Amazon Web Services. The difference between agile and devops, n.d. Accessed: 10
February 2025.

[2] Website (techbeacon.com) HPE Micro Focus Capgemini, Sogeti. Proportion of
budget allocated to quality assurance and testing as a percentage of it spend from
2012 to 2019. Statista, 2019. Accessed: January 13, 2025.

[3] R.E. Fairley. Tutorial: Static analysis and dynamic testing of computer software.
Computer, 11(4):14–23, 1978.

[4] Klarlund N. Godefroid, P. and K. Sen. Dart: Directed automated random testing.
In Proceedings of the Conference on Programming Language Design and Implemen-
tation (PLDI 05), pages 213–223, 2005.

[5] P. Godefroid. Automating software testing using program analysis. IEEE Software,
Sept.-Oct. 2008.

[6] Won Kim. Cloud computing: Today and tomorrow. J. Object Technol., 8(1):65–72,
2009.

[7] M. Mythily. An extensive review of spring boot testing based on business require-
ments of the software. In Proceedings of the 2023 4th International Conference on
Smart Electronics and Communication (ICOSEC). IEEE, September 2023.

[8] OpenAI. Fine-tuning guide, 2024. Accessed: March 3, 2025.
[9] OpenAI. Gpt models documentation, 2025.

[10] Amazon Web Services. Aws codebuild user guide: Concepts, 2025. Accessed: 23
January 2025.

[11] SonarSource. Sonarqube server documentation, 2025. Accessed: 16 January 2025.
[12] Spring Boot. Spring Boot - Spring Framework, 2025. Accessed: 2025-03-12.
[13] Xu W. Kent M. Thomas L. Xu, D. and L. Wang. An automated test genera-

tion technique for software quality assurance. IEEE Transactions on Reliability,
64(1):247–268, 2015.

71

	Introduction
	Background
	Software Testing and Software Testing Pipelines
	Test Design and Classification
	Coverage Metrics and Mutation Analysis
	Cost of Testing
	DevOps Practices
	Spring Boot Framework

	Service Architectures
	AWS Cloud Computing

	Test Generation and GenAI
	Static Analysis
	Static Test Generation and Dynamic Test Generation
	Model-Base Test Generation
	Deep Learning and GenAI
	Tokenization and Context Window
	Fine-Tuning and Prompt Engineering
	Models Pricing

	Methodology
	Selected Technologies
	Architecture and Design of the Solution
	State Machine
	Implementation Logic
	Deploy

	Validation
	Evaluation Metrics
	Grafana
	Testing Methodology
	Evaluated Scenario: Comparing GPT Models on an Untested Project
	Evaluated Scenario: Comparing GPT Models on an Tested Project

	Conclusion
	Bibliography

