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Abstract

Recent geopolitical events in Europe have increased the need to focus on securing
critical infrastructure, such as energy, communications, and transportation networks.
A significant portion of this critical infrastructure is situated in marine environments,
such as ports that facilitate goods transport, offshore energy installations, and un-
derwater cabling.

Autonomous Underwater Vehicles (AUVs) present a threat to maritime critical in-
frastructure, since they can approach these resources undetected, potentially caus-
ing significant damage. Motivated by this, there is a growing interest in developing
Autonomous Underwater Interception Drones (AUID), capable of intercepting and
tracking an intruding AUV in complex marine environments.

This thesis explores the fundamental steps for the design and development of the
motion control system for an AUID, addressing both motion planning and control.
The operational environment is defined as an underwater windfarm, where obstacles
are static and predetermined. Therefore, during motion planning, an obstacle avoid-
ance algorithm is employed to navigate the known obstacles. For the motion control
phase, a control technique based on Control Barrier Functions (CBFs) is integrated
with a nominal controller to mitigate the effects of potential disturbances, such as
e.g. ocean currents, ensuring precise trajectory tracking in uncertain scenarios.

Numerical results providing an appraisal of the overall controller performance and
behaviour are presented using a benchmark system, showing significant promise for
a subsequent experimental phase. The proposal within this project can be used as a
fundamental stepping stone towards an effective intruder detection and interception,
providing the basis for planning and robust tracking in this family of devices.

Keywords: Autonomous Underwater Interception Drone (AUID), Control Barrier
Functions (CBF), RRT*, LOS Guidance.
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Chapter 1

Introduction

This chapter introduces the M.Sc. thesis project entitled Motion Control for an Au-
tonomous Underwater Vehicle for Maritime Surveillance. In particular, Section 1.1
presents the background and motivation which gives rationale to this thesis. Sec-
tion 1.2 presents the problem statement and overall project objectives, followed by
an overview of the methods and tools employed in Section 1.3. Finally, Sections 1.4
and 1.5 summarize the main contributions and outline the remaining chapters.

1.1 Background and Motivation

Recent geopolitical events in Europe have highlighted the need to improve the secu-
rity of critical infrastructure. Several nations are focusing on protecting key infras-
tructure like energy networks, communication systems, and transport hubs. Many
of these essential infrastructures are underwater, including ports, which play a cru-
cial role in global trade, offshore energy platforms, and the vast network of undersea
cables and pipelines.

Meanwhile, the use of Autonomous Underwater Vehicles (AUVs) has grown signifi-
cantly. This is a key resource for environmental monitoring, underwater exploration,
and infrastructure inspection. Their ability to work independently in complex ma-
rine environments makes them ideal for tasks that can be risky for manned missions.
However, this also poses a significant threat, as AUVs can enter protected zones un-
noticed, potentially causing serious damage. Addressing such intrusions is extremely
challenging, especially since operations must also ensure that assets remain secure.

Recent events like the sabotage of the Nord Stream pipelines in 2022 have high-
lighted how vulnerable underwater facilities can be. This has led governments to
increase security efforts. According to [2], protecting critical maritime infrastruc-
ture is especially challenging due to the vastness of oceans, the complex underwater
environment and the presence of different industries including transport, energy,
communications, fishing, and biodiversity. The same research also emphasizes that
the definition of “critical infrastructure” is more of a political manner, requiring

1



Introduction

Figure 1.1: An Autonomous Underwater Vehicle being deployed [1].

coordination between multiple areas, such as defense, maritime safety, and cyber se-
curity, to build resilience. In this context, the Nord Stream attack was described as
a “wake-up call” [3], exposing weaknesses in current defenses. As a result a stronger
awareness for the need of better security in maritime systems is rapidly growing.

To address this growing challenge, it is becoming increasingly important to develop
countermeasures that can effectively deal with unauthorized underwater activities.
One promising solution is the design and deployment of Autonomous Underwater In-
terception Drones (AUIDs). These drones should be specifically studied to track and
intercept intruding AUVs in potentially complex marine environments. Among the
main objectives these devices shall perform are real-time surveillance, the protection
of essential underwater infrastructure, and rapid adaptation to new threats.

1.2 Problem Statement and Project Objectives

Motivated by the underlying importance of AUIDs, this project aims to design and
develop a motion control system, which addresses both the planning and the motion
control of the vehicle itself, including collision avoidance. The study begins by devel-
oping a trajectory planning algorithm that, by using the available information within
the operation environment, such as offshore platforms, allows the AUID to quickly
intercept an intruding moving AUV, once detected by an active acoustic system.
To handle disturbances such as sudden currents, a nominal control system is imple-
mented with an additional safety layer using Control Barrier Functions (CBFs). This
combined approach ensures that the AUID accurately follows its desired trajectory
despite the influence of such disturbances.

Note: The terms Unmanned Underwater Vehicle (UUV), Autonomous Underwater
Vehicle (AUV), and Remotely Operated Underwater Vehicle (ROV) are interchange-
ably used in this project.
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1.3 Methods and Tools

The implementation has been conducted primarily on a 64-bit Ubuntu 20.04.6 LTS
operating system, using the Robot Operating System (ROS) and Gazebo 11 for sim-
ulation.

To model and control the AUV, the open source simulation framework uuv_simulator
was employed. This simulator extends ROS and Gazebo with plugins and models
specifically useful for unmanned underwater vehicles. These include modules that
replicate underwater physics, such as buoyancy, drag, and currents. The frame-
work is actively maintained on GitHub (see [4] for more details). The system used
throughout the project is the BlueROV2, developed by BlueRobotics.

Subsequently, the second phase of the study, focusing on CFBs, is carried out using
MATLAB R2023b to ensure a more detailed analysis of their behavior within the overall
control framework.

1.4 Contributions

The main contributions of this thesis can be summarized as follows:

• Providing a short overview of the Motion Planning and Motion Control phases
for Autonomous Underwater Vehicles. An implementation in simulation of
each phase of the motion control system for an autonomous vehicle has been
developed, including path planning, a guidance system, and a control system,
aiming to evaluate how these modules interact and fulfil their functions. It
is important to note that the navigation module has been excluded from this
phase of the study, since the focus is primarily on the control and guidance
aspects necessary for autonomous motion execution.

• Implementation of a 2D Autopilot on a BlueROV2 underwater vehicle, using
the ROS/Gazebo simulation environment. This implementation allows analyz-
ing the outcome of the simulation in a realistic scenario.

• Study and implementation of a control strategy based on Control Barrier Func-
tions, applied in terms of a Lane-Keeping problem to ensure path following
within predefined boundaries.

3
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1.5 Thesis Outline

The content of the project is organized into 8 Chapters and structured as follows:

• Chapter 2: A brief analysis of the state-of-the-art in Guidance, Navigation,
and Control (GNC) in a marine environment is given, followed by a review
of both path planning and guidance strategies in the marine field. Finally, a
review of the implementation of CBFs in autonomous systems is discussed.

• Chapter 3: The mathematical modelling for the AUV under study is pre-
sented, outlining the formulation of the dynamic model and the derivation of
the control model necessary for the autopilot.

• Chapter 4: The algorithm used to generate the desired path for the AUV
is detailed, providing a comprehensive description of the implementation of a
Rapidly Exploring Random Tree Star (RRT*) algorithm, including a discussion
on the chosen parameters.

• Chapter 5: The guidance strategy used to direct the AUV along the planned
path is presented, providing a comprehensive description of the implemented
Line-of-Sight (LOS) guidance method, including a discussion on the chosen
parameters.

• Chapter 6: The design and implementation of the autopilot system are ex-
plained, covering both the speed and steering control mechanisms. A CFB-
based approach to maintain a correct path following, even with the presence
of disturbances, is given.

• Chapter 7: The simulation setup used to test the proposed system is de-
scribed. The simulation environment and analysis of the results are discussed.

• Chapter 8: A conclusion summary of the study and potential future direc-
tions are discussed.

4



Chapter 2

Literature Review

This chapter presents an analysis of the state-of-the-art in GNC systems applied to
AUVs. In the first part (Section 2.1), an overview of path planning and guidance
in the marine field is presented. The second part of this chapter, described within
Section 2.4, discusses the main elements comprising the state-of-the-art regarding
CBF applied in autonomous systems.

2.1 Guidance, Navigation and Control

According to [5], a motion control system for AUVs is generally structured into three
blocks: Guidance, Navigation, and Control. The three modules interact with each
other, as shown in Figure 2.1.

Figure 2.1: GNC module interaction([5], p. 233)

In particular, each module operates as follows:

Guidance: This system has the objective of computing the desired reference posi-
tion, velocity, and acceleration of the vehicle.

Navigation: This task involves determining the vehicle’s position, orientation,
course, and distance travelled. It can also involve the calculation of velocity and

5
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acceleration. This is achieved using systems like GNSS (Global Navigation Satellite
System) in combination with motion sensors such as accelerometers and gyroscopes.

Control: This block involves the calculation of the forces and moments required
to achieve specific control tasks, such as setpoint regulation, trajectory tracking, or
path-following.

2.1.1 Path Planning and Guidance

As discussed in [6], path planning and guidance are two interconnected components
of a motion control system. While path planning is responsible for generating a
safe and feasible path for the vehicle to follow, the guidance computes the reference
trajectories required to guide the vehicle along the planned path. In other words,
path planning determines what the vehicle should achieve, meaning a particular
position, while guidance determines how the vehicle should move to reach the point,
by generating appropriate reference trajectories. Figure 2.2 illustrates the interaction
among all the complete modules.

Figure 2.2: Interaction between GNC and Path Planning ([6], p. 5)

2.2 Path Planning

Path planning is the process of determining a safe route from a starting point to
a goal while avoiding collisions. For AUVs, this is often difficult due to complex
underwater environments, with moving obstacles and movement limitations. Path
planning methods are generally divided into two types [7]: global path planning and
local path planning. The first one uses prior knowledge of fixed obstacles to create
a feasible path, while the second one adjusts the path in real-time, based on sensor
data, while avoiding unexpected obstacles.

Path planning techniques, specifically, are divided based on their approach to finding
the path, being grouped into deterministic and probabilistic algorithms. Determin-
istic methods always produce the same path under the same conditions. They either
find a solution, if one exists, or they ensure that no solution is available. Common
deterministic techniques are Artificial Potential Fields (APF), Cell Decomposition
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[8], Voronoi diagrams [9] and the so-called A* Algorithm [10].

Probabilistic methods find a solution, if one exists, but can produce different paths
each time, even under similar conditions. These methods can be divided also into
two categories: sampling techniques and diffusion techniques. Sampling techniques
work by examining the environment to create a map that can be used again, this
is called a roadmap. A common technique is the Probabilistic Roadmap (PRM)
[11]. Diffusion techniques, on the other hand, explore the space randomly until
they find, if exists, the solution. One of the most popular algorithms of this type
is the Rapidly-exploring Random Trees (RRT) algorithm. It works by randomly
sampling the space and constructing a tree of feasible paths. This algorithm works
well even in complex environments and without performing any preprocess of the
environment, which makes it good for real-time applications. However, since RRT
produces non-optimal solutions, [12] proposed a modification of RRT called RRT*.
This new algorithm can find optimal paths, a feature which was not guaranteed in
standard RRT.

When dealing with dynamic targets, RRT* presents, in general, good behaviour.
For instance, in [13], an RRT* based approach is proposed in an AUV that needs to
compute a rendezvous with a moving surface target. The AUV dynamically updates
the trajectory when pursuing the moving recovery vessel. This approach recalculates
the planned trajectory in real-time, based on the information on the AUV’s current
position. Similarly, [14] introduced an RRT* based approach in an AUV to track
and reach a dynamic target using only angle-based measurements. Their results
showed that RRT* can achieve good performance in target tracking, with moderate
computational complexity.

2.3 Guidance

Guidance, as defined by [15], is ”the process of steering an object along a path toward
a target point, which may be moving”. In control theory, motion control scenarios are
generally categorized into setpoint regulation, trajectory tracking, and path following.
The first one consists in stabilizing a system at a constant position and orientation,
the second one guarantees the system to follow a reference trajectory in a given
time, while the third one, path following, focuses on guiding the system along a
path without time constraints, which allow the vehicle to move with different speed
while avoiding obstacles. To do so, several guidance laws have been adopted from the
missile community, which is one of the most active in the field of guidance research.
The main guidance laws that have been adopted in the marine field are: Line-of-Sight
(LOS), Pure Pursuit (PP), and Constant Bearing (CB) guidance. These laws have
the goal of directing a vehicle’s motion toward a target. The differences between
them are analyzed in detail in [16], Chapter 10.

One of the most adopted methods for path following in underwater vehicles is the
LOS guidance [17] [18]. A critical parameter in LOS is the lookahead distance, which

7



Literature Review

is the distance ahead of the vehicle along the desired path at which a target point
is selected. These values can deeply change the motion of the vehicle since smaller
values can cause aggressive steering yet cause oscillations, while larger values allow a
smoother motion but with a slower convergence. Different studies on the lookahead
distance values have been done, such as time-varying lookahead distances to balance
these trade-offs, as shown in [19]. A drawback of this guidance is its difficulty in
handling disturbances, such as the current. To address this issue, some studies have
been conducted, as reported in [16], where an integral action is introduced into the
guidance law to mitigate the steady-state error caused by such forces.

2.4 Control Barrier Function

The application of safety-critical control is becoming increasingly important in au-
tonomous systems. In such systems, it is not enough to simply ensure a stability
condition, which means, to reach a desired state for the system, but a safety con-
dition must also be guaranteed. In other words, while stability implies that the
system reaches a desired condition over time, safety ensures that it avoids dangerous
situations. These concepts of stability and safety are formally represented by CLF
and Control Barrier Function CBF, as illustrated by [20].

As discussed in [20], the term ”barrier” comes from the optimization field, where
barrier functions are added to cost functions to steer the solution away from undesir-
able areas. When a system has a control input, this concept is extended to create a
”Control Barrier Function”. A CBF is designed to be positive inside the safe region,
zero on the boundary, and negative outside. Also, for every state within the safe
region, there is always a control input that will keep the system safe in that region.

One way to ensure safety is the so-called “Lyapunov-like” approach. In simple
terms, these functions create invariant level sets, and if these sets remain inside a
designated safe region, safety is ensured. One particular technique called CBF-QP,
uses quadratic programming to make the smallest possible change to a (nominal)
feedback controller in order to maintain and guarantee safety [21].

CBFs are widely used for obstacle avoidance in dynamic environments, in particular
during trajectory tracking. Some works are presented in [22], [23] and [24]. Another
application is the ACC, where they are used to ensure safety while keeping the
vehicle maintaining a fixed cruising speed. Whenever a moving vehicle is detected,
the controller reduces the speed of the vehicle to keep a predefined distance of safety.
This problem was presented in [25] and experimental tests were conducted in [26],
where this approach successfully handled safety, speed regulation and comfort.

Similarly, LK systems use CBF to ensure the vehicle stays ”centered” within its
lane even when incurring in a possible curved lane [27], [28]. In the context of
autonomous underwater vehicles, this application is critical because sudden currents
or disturbances can force the vehicle to deviate from its defined trajectory, exceeding
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some predefined bounds of safety.

Recent studies have explored the use of barrier functions not only in the path-
following phase but also in the motion-planning stage. The first CBF-based sampling
algorithm [29] eliminated explicit collision checking by using CBFs’ forward invari-
ance. Later works, such as Adaptive CBF-RRT* [30], introduced a rewiring step to
optimize trajectories but a drawback of this approach was the computational costs
that were too high due to iterative QP solving. Other studies have been conducted
incorporating an LQR control. In fact, the LQR-CBF-RRT* [31] framework inte-
grates CBFs in the steering phase of RRT* and an LQR controller generates an
optimal control sequence to steer the trajectory while ensuring, at each step, that
CBF constraints enforce safe motion. This guarantees not only efficient trajectory
generation but also real-time safety preservation during the path execution. Lastly,
other studies have integrated RRT* with a control phase based on CBF and CLF
during the expansion of new nodes by introducing a function, the compatibility func-
tion [30]. This function checks whether a CLF-CBF-based controller can successfully
steer the system from one waypoint to another, guaranteeing a feasible and optimal
trajectory.

The growing use of CBFs in both motion planning and path following highlights
their crucial role in guaranteeing the safety of autonomous systems while ensuring
stability conditions, a condition of great importance in these kinds of systems.
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Chapter 3

Mathematical modelling

This section introduces the specific ROV considered within this project and the
fundamentals for its mathematical modelling. In particular, following the notation
introduced in Section 3.1, the overall dynamical modelling procedure is discussed
within Sections 3.2, 3.3 and 3.4, while the specific parameters used for the ROV
considered in this thesis are listed in Section 3.5.

The platform used in this project is the BlueROV2, developed by Blue Robotics Inc.
The BlueROV2 is an open-source underwater vehicle. The ROV can be seen below
in Figure 3.1.

Figure 3.1: BlueROV2 by Blue Robotics Inc - Figure adapted from [32].

The mathematical notations and equations of motion used in this thesis are based
on the modelling framework described by Fossen in [5]. Fossen’s methodology for
describing the dynamics of underwater vehicles provides a relatively straightforward
way to represent all six degrees-of-freedom (DOFs).

Within this chapter, the simulation (referred to as the ”high-fidelity”) mathematical
model of the BlueROV2 is derived, representing the most accurate approximation of
the real system considered in this thesis. This model is used in the simulation phase
to replicate the behavior of the real system to be controlled. Due to the complexity
of the full (simulation) model, approximations are made to design a simplified model-
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based control system.

3.1 Notation

An AUV operates with six DOFs, which can be described using a vectorial represen-
tation. This follows the SNAME (Society of Naval Architects and Marine Engineers
- 1950) notation, as detailed in Table 3.1, where six generalized coordinates are used
to define the position and orientation of the vehicle.

DOF Description
Forces

and
moments

Linear and angular
velocities

Positions
and Euler

angles

1 Surge:motion in the x direction X u x

2 Sway:motion in the y direction Y v y

3 Heave:motion in the z direction Z w z

4 Roll:rotation about the x axis K p ϕ

5 Pitch:rotation about the y axis M q θ

6 Yaw:rotation about the z axis N r ψ

Table 3.1: 6-DOFs states defined according to SNAME 1950 [33].

Considering the BlueROV2, the vehicle is equipped with six thrusters: four of them
enable movements in surge, sway, and yaw directions, while the other two are used
for heave and pitch. Due to the specific arrangement of the thrusters, as illustrated
in Figure 3.2, roll motion cannot be performed with this configuration.

3.1.1 Coordinates

According to the SNAME notation (Table 3.1), the generalised pose, velocity and
forces and moments coordinates can be written, in compact form, as

η =
[
x y z ϕ θ ψ

]T
, (3.1)

ν =
[
u v w p q r

]T
, (3.2)

τ =
[
X Y Z K M N

]T
. (3.3)

The following sub-vectors are also given for convenience of notation:

• Position:
p =

[
x y z

]T
∈ R3,

• Euler angles:
Θ =

[
ϕ θ ψ

]T
∈ SO(3),

• Linear velocity:
v =

[
u v w

]T
∈ R3,
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• Angular velocity:
ω =

[
p q r

]T
∈ R3,

• Force:
f =

[
X Y Z

]T
∈ R3,

• Moment:
m =

[
K M N

]T
∈ R3,

where R3 denotes the three dimensional Euclidean space and SO(3) indicates the
three dimensional sphere in which three angles are defined on the interval of [−π, π]
for ϕ and ψ, and the interval of [−π/2, π/2] for θ.

Therefore, the general motion of an AUV in 6 DOFs can be described by the following
vectors:

η =
[

p

Θ

]
∈ R3 × SO(3), (3.4)

ν =
[

v

ω

]
∈ R6, (3.5)

τ =
[

f

m

]
∈ R6, (3.6)

where η is the position and orientation (alse called pose) vector, ν is the linear and
angular velocity vector and τ is the force and moment vector.

3.2 BlueROV2 Dynamics

The dynamics of an underwater vehicle can be divided into two main components:
kinematics, which deals with the geometry of motion, and kinetics, which explains
how forces and moments affect the motion. Regarding the former, the general 6
DOF equation is developed while, for the latter, a 6 DOF model is implemented
in Gazebo (see Section 7.1.1 for further details) but for control purposes a 3 DOF
linearized model is derived.

3.2.1 Kinematics

When analyzing the motion of marine craft in 6 DOFs, it is convenient to define two
important reference frames, as can be seen in Figure 3.2. These are defined explicitly
in the following paragraphs.

NED Frame: The North-East-Down (NED) coordinate system {n} = (xn, yn, zn),
is based on the Earth’s reference ellipsoid (World Geodetic System, 1984) and has
its origin at the craft’s location. The NED frame is tangent to the Earth’s surface
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Figure 3.2: The BlueROV2 coordinates [34].

and moves with the craft. The x-axis points towards true North, the y-axis points
East, and the z-axis points downward, normal to the Earth’s surface.

BODY Frame: The body-fixed coordinate system, denoted as {b} = (xb, yb, zb), is
fixed to the craft and moves with it. The origin, ob, is located at the craft’s center.
The body frame defines the position and orientation of the AUV relative to the
inertial NED frame. Linear and angular velocities are expressed in the body-fixed
frame.

The rotation matrix from frame {b} to frame {n} can be described by a sequence of
three principal rotations about the z, y, and x axes, also known as zyx-convention.
In particular, the rotation matrix is defined as

Rn
b (Θnb) := Rz,ψ Ry,θ Rx,ϕ =


cψcθ −sψcϕ + cψsθsϕ sψsϕ + cψcϕsθ

sψcθ cψcϕ + sψsθsϕ −cψsϕ + sψcϕsθ

−sθ cθsϕ cθcϕ

 , (3.7)

where s· := sin(·) and c· := cos(·). Here, the vector of Euler angles is Θnb =
[ϕ, θ, ψ]⊤, with ϕ representing roll, θ pitch, and ψ yaw.

The body-fixed velocity vector vbb/n := [ u, v, w ]⊤ is related to the earth-fixed
velocity vector ṗnb/n := [ẋ, ẏ, ż]⊤ through the rotation matrix in Equation (3.7) as
follows:

ṗnb/n = Rn
b (Θnb) vbb/n.

While, the body-fixed angular velocity vector ωb
b/n := [ p, q, r ]⊤ is connected to the

Euler angle rate vector Θ̇nb := [ ϕ̇, θ̇, ψ̇ ]⊤ via the transformation matrix TΘ(Θnb)

TΘ(Θnb) = 1
cθ


cθ sϕsθ cϕsθ

0 cϕcθ −sϕcθ
0 sϕ cϕ

 (3.8)

13



Mathematical modelling

as follows:
Θ̇nb = TΘ(Θnb) ωb

b/n.

Notice that the transformation matrix TΘ in (3.8) becomes singular as θ approaches
±π/2. However, in normal operations, the pitch angle θ is assumed to be small, so
this singularity is not problematic.

By combining the transformations for linear and angular velocities, the general 6
DOF kinematic equations can be expressed in vector form as

η̇ = JΘ(η) ν ⇐⇒

ṗnb/n
Θ̇nb

 =

Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

 vbb/n
ωb
b/n

 . (3.9)

When the roll ϕ and pitch θ angles are small, it is possible to approximate the
rotation and transformation matrices as

Rn
b (Θnb) ≈ Rn

b (ψ) = Rz,ψ =


cψ −sψ 0
sψ cψ 0
0 0 1

 , (3.10)

TΘ(Θnb) ≈ I3×3, (3.11)

where Rz,ψ is the rotation matrix corresponding to a rotation about the z-axis, and
I3×3 is the identity matrix in C3×3.

3.2.2 Kinetics

Based on Newton’s second law, the Newton-Euler formulation explains how forces
and moments induce motion. As demonstrated in [5], the equations of motion of an
underwater vehicle can be written in the following form:

MRB ν̇ + CRB(ν) ν + g(η)︸ ︷︷ ︸
rigid-body + hydrostatics

+ MA ν̇ + CA(νr) νr + D(νr) νr︸ ︷︷ ︸
hydrodynamics

= τ . (3.12)

where the system matrices and vectors are:

• MRB, MA: System inertia matrices (rigid-body and added mass)

• CRB(ν), CA(νr): Coriolis and centripetal matrices (rigid-body and added
mass Coriolis).

• D(νr) = DL + DQ(νr): Hydrodynamic damping matrix (linear and quadratic
drag).

• g(η): Vector of gravitational and buoyancy forces and moments.

• νr: Velocity vector relative to the ocean current.
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The equations of motion are divided into two parts. The first part contains the
forces related to the rigid-body and hydrostatics, which are associated with ν and
η, while the second one is populated by forces related to the hydrodynamics, which
are associated with the relative velocity vector νr = ν−νc , with νc the generalized
ocean current velocity of an irrotational fluid, defined as

νc = (νbc , 0, 0, 0) where νbc = (uc, vc, wc).

This model, considered as simulation (high-fidelity) model, represents a general for-
mulation, effectively containing couplings between different degrees of freedom. In
particular, the interactions between longitudinal and lateral motions introduce non-
linearities. Therefore, some standing assumptions have been adopted to simplify the
model used for control design and synthesis purposes.

Control Model Assumptions.

Since the BlueROV2 has four thrusters for horizontal movement and two for vertical
movement, the two directions can be treated separately for control purposes. Also,
it is more practical to focus only on the horizontal dynamics for path-following
purposes, since the movement mainly happens in that direction. Therefore, the
analysis focuses on the three degrees of freedom that govern horizontal motion: surge,
sway, and yaw.

Below, as adopted in [35], the assumptions made on the model are formalized.

Assumption 1: Stabilized Heave, Roll and Pitch ⇒ θ, ϕ ≈ 0 and w = 0.

Due to the design of the AUV, roll and pitch can be neglected since its de-
sign naturally keeps these DOF stable. Additionally, because the vertical and
horizontal motions are independent, heave control can also be neglected. This
simplifies the system to be control to three degrees of freedom, resulting in:

η :=
[
x y ψ

]
, ν :=

[
u v r

]
, τ :=

[
X Y N

]
.

Assumption 2: Decoupled motion.

The AUV operates at a constant or slowly varying forward velocity, so the
total speed can be approximated by the surge velocity:

U ≈
√
u2 + v2 ≈ u.

This allows the model to be separated in a in a forward speed (surge) model
and a sway–yaw subsystem for maneuvering (see Section 7.1.4 [5]).

Assumption 3: Zero Current Velocity, i.e., vc = 0.
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The equation of motion (3.12) can be formulated as follows:

M ν̇ + C(ν) ν + D(ν) ν = τ ,

where the matrices are defined as:

M = MRB + MA,

C(ν) = CRB(ν) + CA(ν),

D(ν) = D + Dn(ν).

Assumption 4: Symmetry in the xz-plane.

The AUV is assumed to be symmetric about the xz-plane (i.e., port-starboard
symmetric), which means Ixy = Iyz = 0. This symmetry, along with aligning
the body-fixed frame with the center of gravity, which means rg = [0, 0, 0]T ),
reduces the rigid-body mass matrix to

MRB = diag(m, m, Iz),

where m is the mass and Iz is the moment of inertia about the z-axis.

Also, recalling the rigid-body motion equation:

MRB ν̇ + CRB(ν) ν = τRB,

and, by considering a linear approximation around u = U (constant), v = 0,
and r = 0 (see Section 6.1 [5]), the equation simplifies to MRB ν̇ + C∗

RB ν =
τRB, with the rigid-body Coriolis matrix simplified as

C∗
RB =


0 0 0
0 0 mU

0 0 mxgU

 .

Assumption 5: Off-diagonal elements of the added mass matrix small compared to
the diagonal.

The off-diagonal elements in the added mass matrix are considered much
smaller than the diagonal elements and can be neglected. Consequently, the
added mass matrix simplifies to

MA = −diag(Xu̇, Yv̇, Nṙ),

where the coefficients represent the added mass and inertia in surge, sway and
yaw, respectively.

Assumption 6: Coriolis modeled assuming u ≫ 0 and 2nd order terms in v, w, r
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considered small.

The added Coriolis-centrifugal matrix can be written as:

CA(ν) =


0 0 Yv̇v + Yṙr

0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 ≈


0 0 0
0 0 −Xu̇u

0 Xu̇u 0

 ,
where only terms in the cruise speed remain, the term −Yṙr is neglected due
to Assumption 5, and the term −Yṙv is neglected due to Assumption 2.

Assumption 7: Noncoupled motion.

Since the motion is non-coupled, it is assumed that the damping matrix D(ν)
has a diagonal structure (see Section 7.5.5 [5]). This matrix can be seen as
composed of a linear and a non-linear (quadratic) part, where the nonlinear
drag coefficients dominate at higher speeds. Thus, D(ν) simplified as:

D(ν) = −diag
(
Xu, Yv, Nr

)
+

− diag
(
X|u|u |u|, Y|v|v |v|, N|r|r |r|

)
.

3.3 3D Maneuvering Model

Based on the previus assumptions, the nonlinear equation describing the motions of
surge, sway and yaw of the AUV can be summarized as:

η̇ = JΘ(η) ν

ν̇ = 1
M

[
−N(νr) + τ (t)

] (3.13)

where:

JΘ(ψ) =


cψ −sψ 0

sψ cψ 0

0 0 1

 ,

M = MRB + MA =


m−Xu̇ 0 0

0 m− Yv̇ 0

0 0 Iz −Nṙ

 ,
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N(νr) := CRB(νr) + CA(νr) + DL + DQ(νr) =

=


−Xu −X|u|u|ur| −mr 0

mr −Yv −Xu̇ur − Yr
−Yv̇vr Xu̇ur −Nv −Nr −N|r|r|r|

 .

3.3.1 Linearization of Maneuvering Model

A common approach for controller design is to linearize the nonlinear model around
an operating point, thereby approximating the dynamics locally. The nonlinear
kinetic model in Equation (6.8) can be written in terms of the vector function:

f(νr, τ ) = ν̇r = −M−1
[
N(νr) νr

]
+ M−1 τ , det(M) ̸= 0 (3.14)

A linear approximation to the nonlinear system in Equation (3.14) can be obtained
by choosing an operating point (νr0, τ0) and then computing the linearization around
that operating point.This means that the state variables, inputs and outputs becomes
incremental and express the deviation around the the chosen operating point. By
choosing a desired stationary state in terms of a cruise speed ur0:

νr0 =
[
ur0, 0, 0

]⊤
, (3.15)

the corresponding stationary input τ0 can be computed as:

τ0 = C
(
νr0

)
νr0 + D

(
νr0

)
νr0 = −


Xu +X|u|u

(
ur0

)
ur0

0

0

 . (3.16)

The linear deviation variables can now be defined as:

∆νr := νr − νr0 =
[
∆ur, vr, rr

]⊤
, (3.17)

∆τ := τ − τ0 =
[
∆τ1, τ2, τ6

]⊤
, (3.18)

and a linear model in the state-space form can be written as:

∆νr = Aν
(
ur0

)
∆νr + Bν ∆τ , (3.19)

where Aν and Bν are obtained by computing the Jacobian matrices evaluating those
at the operating point as follows:

Aν(ur0) = ∂ν̇r
∂νr

∣∣∣∣
νr0, τ0

= −M−1
∂

(
N(νr) νr

)
∂νr

∣∣∣∣∣∣∣
νr0, τ0

, (3.20)
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Bν = ∂ν̇r
∂τ

∣∣∣∣
νr0, τ0

= M−1. (3.21)

Therefore, the forward speed and maneuvering linearized model are presented below.

3.3.2 Surge Dynamics

Under Assumption 2 and Assumption 4, the surge dynamics can be expressed as
follows:

(m−Xu̇)u̇−Xuur −X|u|u|ur|ur = τ1, (3.22)

where τ1 represents the sum of control inputs and external forces acting in the surge
direction.

3.3.3 Sway-Yaw Dynamics

The linearized maneuvering model can be formulated, following [5], as follows:

M ν̇ + N(uo) ν = τ , (3.23)

where ν = [v, r]⊤ represents the sway and yaw velocities, τ represents the force and
moment applied by the thrusters and, for simplicity of notation,

N(ν) = C(ν) + D(ν).

Based on Assumption 2, Assumption 3, and the assumption that the cruise speed is
constant, i.e., u = uo ≈ constant, the Coriolis and centripetal matrices for the sway
and yaw model lead to:

C(ν) ν =
[

0 (m−Xu̇)uo
(Xu̇ − Yv̇)uo mxguo

] [
v

r

]
.

The linear damping matrix in the sway-yaw plane is given by:

D(ν) =
[
−Yv −Yr
−Nv −Nr

]
, (3.24)

while the system mass matrix can be written as

M =
[
m− Yv̇ mxg − Yṙ
mxg − Yṙ Iz −Nṙ

]
. (3.25)

Rearranging the sway-yaw model for maneuvering recalling equation (3.26), the final
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expression remains as follows:[
m− Yv̇ mxg − Yṙ
mxg − Yṙ Iz −Nṙ

] [
v̇

ṙ

]
+

[
−Yv −Yr
−Nv −Nr

] [
v

r

]
+

+
[

0 (m−Xu̇)u0

(Xu̇ − Yv̇)u0 mxgu0

] [
v

r

]
=

[
τ2

τ6

]
.

(3.26)

In particular, assuming a constant cruise speed U , Equation (3.26) and Equation
(3.22) can be combined as:

m−Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg −Nv̇ Iz −Nṙ



u̇

v̇

ṙ

 +

+


−Xu 0 0

0 −Yv (m− Yv̇)U − Yr
0 −Nv (mxg − Yṙ)U −Nr



u

v

r

 =


τ1

τ2

τ6

 ,
where surge is decoupled from the sway–yaw subsystem.

3.4 Thrust Configuration

The control force due to a thruster can be represented, assuming linearity, as:

F = Ku, (3.27)

where u is the control input and K is the thrust coefficient, which is used as a
scaling factor mapping the control input to the thrust force. Since BlueROV2
has 6 thrusters, as shown in Figure 3.3, where the blue propellers rotate clock-
wise, the green propellers rotate counterclockwise and the red arrow indicates the
positive surge direction, the thruster forces can be represented using the vector
F =

[
F1 F2 F3 F4 F5 F6

]T
, and the control inputs can be represented using

the vector u =
[
u1 u2 u3 u4 u5 u6

]T
.

Figure 3.3: Layout of the thruster in BlueROV2. [36]

The forces and moments in 6 DOF, equal to the force vector f = [Fx, Fy, Fz]⊤, can
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be expressed as:

τ =
[

f
r× f

]
=



Fx

Fy

Fz

Fzly − Fylz
Fxlz − Fzlx
Fylx − Fxly


=



τ1

τ2

τ3

τ4

τ5

τ6


, (3.28)

where r =
[
lx ly lz

]
denote the moment arms.

The propulsion matrix K, here denoted as TAM, is used to distribute the force
and moments in the desired degrees of freedom among the corresponding thrusters.
Hence, considering the BlueROV2 with six thrusters, the generalized forces and
moments τ ∈ R6, generated by the six thrusters in terms of the control inputs
u ∈ R6, can be modeled as:

τ = TAM(α)u (3.29)

where TAM ∈ R6×6 and α denotes the angle at which each thruster is positioned
relative to the AUV’s forward direction [37].

3.5 BlueROV2 Parameters

The parameters used in this project are based on [38] and are summarized in Ta-
ble 3.2. Furthermore, the TAM used in this project, as per equation 3.29, is given
by:

TAM =



0.707 0.707 −0.707 −0.707 0 0
−0.707 0.707 −0.707 0.707 0 0

0 0 0 0 1 1
0.051 −0.051 0.051 −0.051 0.111 −0.111
0.051 0.051 −0.051 −0.051 0.002 −0.002
−0.167 0.167 0.175 −0.175 0 0


. (3.30)
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Parameters Symbol Value Unit
Mass m 11.5 kg
Center of gravity rG = (xg, yg, zg) (0, 0, 0) m
Center of buoyancy rB = (xb, yb, zb) (0, 0, 0.02) m
Inertia moment I = diag(Ix, Iy, Iz) diag(0.16, 0.16, 0.16) kgm2

Xu̇ -5.5 kg
Yv̇ -12.7 kg

Added Mass Zẇ -14.57 kg
Parameters Kṗ -0.12 kgm2/rad

Mq̇ -0.12 kgm2/rad
Nṙ -0.12 kgm2/rad

Xu -4.03 N s/m
Yv -6.22 N s/m

Linear Damping Zw -5.18 N s/m
Parameters Kp -0.07 N s/rad

Mq -0.07 N s/rad
Nr -0.07 N s/rad

Xu|u| -18.18 N s2/m2

Yv|v| -21.66 N s2/m2

Quadratic Damping Zw|w| -36.99 N s2/m2

Parameters Kp|p| -1.55 N s2/rad2

Mq|q| -1.55 N s2/rad2

Nr|r| -1.55 N s2/rad2

Table 3.2: BlueROV2 parameters.
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Chapter 4

Path Planning

This following chapter outlines the first stage of the control architecture: path plan-
ning. To achieve this objective, an RRT* algorithm is implemented for this part.
Section 4.1 discusses the logic and main principles of the RRT algorithm, while
Section 4.2 shows the principles of RRT* and parameters selection.

Figure 4.1 illustrates the general workflow for motion control. Initially, the path
is generated by using the target position identified by the active sonar. The RRT*
algorithm takes this information as input and calculates a sequence of way-points.
Here, the resulting sequence of way-points is transmitted to the Line-of-Sight (LOS)
guidance module, which calculates the desired heading angle required for the AUV
to follow the planned trajectory (see Chapter 5). This heading reference is then
passed to a PID-based control system, where safety-critical constraints are applied
through the use of Control Barrier Functions (CBFs - see Chapter 6). Finally, the
optimized control inputs are managed by a control allocation system, i.e. the TAM
in (3.30), which generates the thruster commands to the AUV.

RRT* LOS Guidance Autopilot Control Allocation AUID

Active Sonar
Safety-Critical
Constraint

(xdes, ydes) ψref (τ1, τ2, τ6) (T1, T2, T3, T4)

(xcurrent, ycurrent, ψcurrent)

Figure 4.1: Schematic diagram for the closed-loop motion control of an AUV.

It is important to note that the active sonar shown in Figure 4.1 is used by the
RRT* algorithm to determine the target’s position for the trajectory planning. The
choice of using an active sonar is motivated by the fact that other sensors, such
as image-based sonars, are less suitable in this context, especially since the target
might not be visible through simple cameras. By choosing an active (or similarly
passive) sonar, the system ensures the capability of target detection without using
any cameras or additional lighting, often used in underwater environment because
of the absence of light. It is also worth mentioning that the specifications on how
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the sonar detects the target are beyond the scope of this thesis and, therefore, for
this project, it is assumed that the target’s position is provided by the sonar sensor.
More detail on how the target’s position is represented and identified is provided in
Chapter 7 .

4.1 Dynamic Global Path Planning

The path planning problem consists on determining a path from a start point to
a target goal while satisfying pre-specified constraints, such as by minimizing the
length of the path while ensuring the collision avoidance. Here the environment,
a wind farm, is known a priori, and it is considered static. Therefore, a global
path planning algorithm can generate an optimal path. However, since the target
is in motion, the generation of the path has to be dynamic. This leads to the
implementation of a global dynamic path planning algorithm that can regenerate the
path towards the moving target within the corresponding loop.

One common method adopted to achieve this objective is the Rapidly Exploring Ran-
dom Tree (RRT) algorithm. This tehcnique works with a sampling-based approach,
with a checking procedure on the collision that ensures the feasibility of the path.
RRT constructs a tree by uniformly sampling the obstacle-free space and connecting
these nodes until it reaches the target. A drawback of the RRT is the fact that often
generates a suboptimal path and, for this reason, an improvement of this algorithm
has been introduced in [12], i.e. the so-called RRT*. This algorithm improves upon
RRT by incorporating a rewiring step. This step iteratively checks if a new sample
node can lower the cost of an existing path. As more samples are added, it eventually
converges to an optimal solution. To make sure that the moving target is reachable,
some studies have been conducted, where the use of a RRT* algorithm has been
adopted, such as [13]. This study shows that RRT* is able to manage large-scale
optimization by exploring the full maneuvering space, and its solution improves as
more samples are added, while keeping a reasonable computational effort. Therefore,
the RRT* algorithm has been chosen to address the dynamic path planning task. It
is important to remark that the project is developed in 2D, although studies on the
performance of the same algorithm in a 3D and more complex environment can also
be found, see e.g. [39].

4.1.1 Rapidly Exploring Random Tree (RRT)

Let X ⊂ Rd be the configuration space, Xobs ⊂ X the obstacle region, Xfree =
X \ Xobs the obstacle-free region, xstart ∈ Xfree the start state and Xgoal ⊂ Xfree

the goal region. The path planning problem consists of finding a sequence of way-
points {x1, x2, . . . , xn}⊂Xfree such that, when connected, these form a continuous
path from xstart to some xgoal ∈ Xgoal. RRT takes as input (Xfree, xstart, Xgoal), while
the output that is produces is a graph G = (V,E), where V ⊂ Xfree denotes the
set of vertices, with cardinality |V | ≤ n + 1, and E ⊆ V × V is the set of edges
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characterising G.

An algorithm, as cited by [12], is asymptotically optimal if, for a path planning
problem whose best cost is c∗, the probability that the solution of the algorithm
reaches c∗ goes to 1 as the number of samples or iterations grows. That means,
if the algorithm could run for a sufficiently long time, it will almost surely find a
path with cost c∗. The standard RRT algorithm, as described in pseudocode within
Algorithm 1, has been proved not to be asymptotically optimal [12]. In particular,
it has been demonstrated that the best solution found by RRT never reaches the
optimal value, but remains suboptimal with probability 1. Nonetheless, it has been
shown to be probabilistic complete [40], which means that the probability of returning
a failure solution tends to zero as the number of samples goes to infinity. Therefore,
RRT is referred to as a suboptimal algorithm.

Algorithm 1 RRT
1: V ← {xinit}; E ← ∅
2: for i = 1, . . . , n do
3: xrand ← SampleFreei
4: xnearest ← Nearest(G = (V,E), xrand)
5: xnew ← Steer(xnearest, xrand)
6: if ObstacleFree(xnearest, xnew) then
7: V ← V ∪ {xnew}
8: E ← E ∪ {(xnearest, xnew)}
9: end if

10: end for
11: return G = (V,E)

The RRT algorihtm is built as an iterative procedure that incrementally builds a tree
starting from an initial state and extends it randomly in the configuration space. At
each iteration, a random node xrand ∈ Xfree is sampled and the closest node xnearest is
identified (using an Eucliden norm in a 2D space, in this case). A steering function
then generates a new node xnew that is present along the segment between xrand

and xnearest. If the edge between xnearest and xnew is completely outside Xobs, both
xnew and the edge are added to the tree, otherwise the algorithm continues with the
following iteration. The process terminates either when the number of iterations
has reached the limit or when a path is effectively found. The pseudocode of this
process is shown in Algorithm 1, based on [12].

4.2 RRT Star (RRT*)

To overcome the problem of asymptotic optimality described within this section,
RRT* has been introduced in [12], and proven to be asymptotically optimal. This
has been performed by associating a cost with each path and by adding a rewiring
step to recalculate the optimal solution tree. With these modifications, RRT* results
in an asymptotically optimal algorithm, in the sense of [12].

25



Path Planning

Algorithm 2 RRT*
1: V ← {xinit}; E ← ∅
2: for i = 1, . . . , n do
3: xrand ← SampleFreei
4: xnearest ← Nearest(G = (V,E), xrand)
5: xnew ← Steer(xnearest, xrand)
6: if ObstacleFree(xnearest, xnew) then
7: Xnear ← Near(G = (V,E), xnew, r(card(V )))
8: V ← V ∪ {xnew}
9: xmin ← xnearest; cmin ← Cost(xnearest) + c(Line(xnearest, xnew))

10: for xnear ∈ Xnear do ▷ Connect along a minimum-cost path
11: if CollisionFree(xnear, xnew) ∧ Cost(xnear) + c(Line(xnear, xnew)) <

cmin then
12: xmin ← xnear; cmin ← Cost(xnear) + c(Line(xnear, xnew))
13: end if
14: end for
15: E ← E ∪ {(xmin, xnew)}
16: for xnear ∈ Xnear do ▷ Rewire the tree
17: if CollisionFree(xnew, xnear) ∧ Cost(xnew) + c(Line(xnew, xnear)) <

Cost(xnear) then
18: xparent ← Parent(xnear)
19: E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)}
20: end if
21: end for
22: end if
23: end for
24: return G = (V,E)

RRT* follows the same structure as RRT up until the steering function produces a
new node xnew. At that point, the subset Xnear is introduced in RRT*, where Xnear

is the set of nodes in V ⊂ Xfree that are inside a specified radius rn of xnew. Which
means, Xnear = {x ∈ V : d(x, xnew) ≤ rn}, where d(·, ·) is the Euclidean norm.
Therefore, once xnew is sampled, all nodes in Xnear are grouped for a potential
rewiring and cost updates.

xnew is then connected to an xnear ∈ Xnear which minimizes the cost of the path.
After this connection, all other node in Xnear is checked to see if changing their
parent to xnew would reduce their cost. If the new cost is lower than the current
one, the rewiring loop updates the parent node from xparent to xnew and modify the
edge (xparent, xnear) with (xnew, xnear). The pseudocode is presented in Algorithm 2.

To form the set Xnear, the algorithm uses a function, Near, which returns all nodes
within a certain radius of xnew. This radius is defined as the minimum between a
variable radius r(card(V )) and a fixed constant ε. The variable radius is given by

r(card(V )) = min

γRRT∗

( log(card(V ))
card(V )

) 1
d

, ε

 , (4.1)
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where γRRT∗ is a positive constant that depends onXfree and the overall configuration
space Q, d is the dimension of X, card(V ) is the number of the total vertices of the
optimal path and ε is a positive constants.

4.3 Path Generation based on Way-Points

After the generation of the sequence of way-points, the path is created by using
straight lines and circle arcs to connect the way-points, as shown in Figure 4.2. This
result is originally due to Dubins [41] and formulated by [5] as:

The shortest path (minimum time) between two configurations (x, y, ψ)
of a craft moving at constant speed U is a path formed by straight lines
and circular arc segments.

Figure 4.2: Path based on straight-lines and circular arcs [5].

This strategy is chosen because of its simplicity, while still keeping a good efficiency
compared to e.g. a cubic interpolation. With this strategy, around each way-point a
circle with radius R̄i is defined, as shown in Figure 4.2. The point where this circle
intersects the line is the turning point of the AUV. Therefore, the radius of the circle
that is inside three following way-point can be computed from Ri as

R̄i = Ri tan(αi), i = 1, . . . , n, (4.2)

where αi is defined in Figure 4.3 as α1 and Ri is the radius of acceptance to guarantee
a smooth transition between two segments of the path. Therefore, to ensure a feasible
transition, three consecutive way-points must be selected such that:

R̄i ≥ Rmin, (4.3)

where Rmin is the minimum turning radius, such that three consecutive way-points
can not form an angle too tight that would create problems to the autopilot subsys-
tem.
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To sum up, in order to guarantee a smooth path following process, the parameters
to take into account are:

• Acceptance radius Ri: The area where the AUV detects a way-point and
starts to turn.

• Turning radius R̄i: The minimum curvature radius between two segments of
the path.

• Turn angle αi: The angle between two segments of the path.

Figure 4.3: Circle inscribed between three consecutive way-points.

Therefore, the AUV operates in a safe zone if there is a check on the turning radius
R̄i (which means on the αi), that has to be always greater than the minimum
turning radius Rmin. A similar approach has been examined in [42], where an angle
factor constraint is incorporated into the Smooth-RRT algorithm to constraint the
exploration process and optimize the planned path.

4.3.1 Parameters in RRT*

The performance of the RRT* algorithm depends on the choice of the following
parameters, whose values depend on the specific problem and on the environment
effectively being considered. The main parameters are:

• Length Step (step_len): Length of the step used for the expansion of the
tree.

• Goal Sample Rate (goal_sample_rate): Probability of sampling a new
node near the goal.

• Search Radius (search_radius): Search radius used for the rewiring (opti-
mization) of the tree.

• Maximum Iteration (iter_max): Maximum number of iterations.

• Alpha (alpha_1): Minimum turning angle between two segments.
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In particular:

• step_len: This parameter plays a crucial role in the tree expansion process
of Algorithm 2. Specifically, it is applied in Steer (line 5), where a new
node is generated by moving from the nearest node (xnearest) to the random
sampled one (xrand). The distance covered in this step is limited by step_len,
ensuring that the tree grows incrementally and to avoid connections that are
too far, avoiding encountering obstacles during the path. For the specific
simulation, a wind farm of 20× 20 meters has been defined. In order to have
a good exploration and efficiency, the step_len parameter has been tuned to
0.8 meter.

• goal_sample_rate: During the sampling phase of a new node (line 3 of
Algorithm 2), the algorithm chooses it by randomly picking in a uniform dis-
tribution between 0 and 1. If this value is greater than goal_sample_rate, the
new node is generated randomly along the distance of step_len from the pre-
vious node. Otherwise, the goal node is chosen. Therefore, goal_sample_rate
represents the probability of directly sampling the goal instead of a random
node. This value is chosen to be 0.8, and has been selected by taking into ac-
count the specific environment (more detail on the environment in Chapter 7),
which is not completely covered of obstacles. Indeed, in a windfarm, it can
be say that the AUV should not expect to encounter many obstacles given
the relatively large dimensions of the wind turbine compared to the vehicle.
Therefore, using a high goal_sample_rate value, the search is more directed
towards the goal, avoiding the exploration of unnecessary areas.

Figure 4.4: (a) ChooseParent phase(RRT*), (b) Rewire phase (RRT*). [43] Line
18-19 of Algorithm 2.

• search_radius: In practice, when a new node xnew is created, the function
Near (line 7) selects all existing nodes within the radius defined by this param-
eter. This value is expressed as r in the pseudo code, which is nothing but the
static value ε of Equation 4.1. It is important to note that a fixed value has
been chosen for this parameter rather than the dynamic approach described.
These nodes are then evaluated to determine if connecting them to xnew could
lead to a lower cost of the path. A high search_radius value increases the
chance of finding better paths but slows down the algorithm because more
nodes must be checked, on the contrary, a smaller value speeds up the process
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but may find a suboptimal path. Setting it to 4.0 is an effective compromise
between exploration and computational performance.

• iter_max: This value is the maximum number of iterations that the algorithm
computes in order to deliver the optimized path. This value is expressed in
the for loop of the Algorithm 2 in line 2. After a tuning phase, a value of 4000
iterations has been set.

• alpha_1: The constraint on the minimum turning angle is added in the follow-
ing main functions of the Algorithm 2: Steer (line 5) and during the Rewire
the tree phase in line 16. In particular, in the Steer function, a new node
is not considered if the angle formed by the segment from its parent’s parent
to its parent and the segment from its parent to the new node is greater than
or equal to 2αi. Similarly, this check has been added in line 17 as an addition
check after the CollisionFree and Cost functions. A value of 90 deg is set to
this parameter. The phases of rewiring and choosing a new parent are shown
in Figure 4.4.

Finally, Table 4.1 gives an overview of the values of the algorithm’s parameters. Note
that α1 is express in rad in the Table. The results of the choice of these parameters
are presented in Chapter 7.

Parameter Value
step_len 0.8
goal_sample_rate 0.8
search_radius 4.0
iter_max 4000
alpha1 0.78

Table 4.1: Summary of the RRT* parameters.
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Guidance

The guidance module represents the second component of the control architecture
shown in Figure 4.1. The way-points generated by the path planning module, which
define the desired trajectory, are directly used as in ”input” to the content presented
within this subsection. The objective herein is to compute a reference yaw angle
that enables the AUV to follow the calculated path. In the following section, this
problem is addressed using a LOS (Line-of-Sight) guidance algorithm.

5.1 Line-Of-Sight Guidance

In marine guidance, the LOS is the line that connects the vessel to a target point.
The target point, P (xLOS, yLOS), is the point tangent to the path at a fixed lookahead
distance ∆h > 0 ahead of the AUV’s current position P (x, y) projected on the path,
as shown in Figure 5.2.

As studied in [44], the 3D path following problem can be addressed by decoupling
the problem in horizontal and vertical components. The horizontal guidance has the
objective of generating heading reference trajectories to make sure that the vehicle
converges to a straight line on the xy-plane. As already mentioned, this project
focuses only on the horizontal plane. In particular, as illustrated in Figure 5.1, in
the previous phase, the RRT* block generates the waypoints (xk, yk), which are
processed to compute the desired heading angle, ψd, to be then provided to the
autopilot. This phase also involves the knowledge of the current state x and y of the
AUV.

5.1.1 Horizontal LOS Guidance Law

The kinematic equation of the AUV can be expressed as:

ẋ = u cos(ψ)− v sin(ψ) ≈ U cos(ψ),

ẏ = u sin(ψ) + v cos(ψ) ≈ U sin(ψ),

ψ̇ = r,
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Figure 5.1: Decoupled LOS guidance for the horizontal and vertical planes ([44],
p 10).

where the following approximation

U =
√
u2 + v2 ≈ u

is adopted based on Assumption 2 (see Section 3.3). An additional assumption is
adopted with respect to the velocity, i.e.

0 <Umin ≤ U ≤ Umax,

required to guarantee stability of the LOS guidance (see [44]).

The objective of the path following in the horizontal plane consists in following the
line connecting the waypoints (xk, yk) and (xk+1, yk+1). The along-track distance
and the cross-track error of a vehicle in position (x, y) are given by:[

xe

ye

]
= R⊤(γp)

[
x− xk
y − yk

]
,

where (xk, yk) is the position of the k-th waypoint expressed in the NED frame, and
the rotation matrix from the inertial to the path reference frame is given by:

R(γp) =
[
cos(γp) − sin(γp)
sin(γp) cos(γp)

]
∈ SO(2),

with γp the horizontal path-tangential angle:

γp = atan2(yk+1 − yk, xk+1 − xk).

In particular,
xe = (x− xk) cos(γp) + (y − yk) sin(γp),

ye = −(x− xk) sin(γp) + (y − yk) cos(γp).

In order to solve a path-following problem, only the cross-track error is relevant
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since y(t) = 0 means that the vehicle has converged to the straight line. Therefore,
it is sufficient to guarantee that:

lim
t→∞

ye(t) = 0.

Two different guidance strategies can be used in order to have y(t) = 0: Enclosure-
based steering and Lookahead-based steering. The second one has been selected as it
is more suitable for marine applications (see the arguments in [5]).

Figure 5.2: LOS guidance for the horizontal plane [5].

The lookahead-based guidance law, as illustrated in Figure 5.2, is given by (see [16]):

ψd = γp + arctan
(−ye

∆h

)
,

where γp is as (5.1.1), ye is the cross-track error and ∆h is the lookahead distance.
Note that the waypoints defined as (xk, yk) and (xk+1, yk+1), in the Figure 5.2 are
denoted as pk and pk+1, however they correspond to the same points.

Note that in the presence of disturbances or during turns, the heading angle ψd and
the course angle χd are not aligned anymore and are insted related in the following
way:

χd = ψd + β,

and therefore the desired heading angle is:

ψd = γp + arctan
(−ye

∆h

)
− β,

where
β = atan2(v, u).

However, based on Assumption 2 (see Section 3.3), this term can be neglected.
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5.2 Parameters in LOS Guidance

As explained in Section 4.3, if the path is composed by n line segments connected
by n+ 1 waypoints, a switching law is needed in order to know when the following
point needs to be considered.

The mechanism of the circle of acceptance is employed. In this way, the next
waypoint, (xk+1, yk+1), can be selected if the AUV is inside the region of the circle
defined by the radius R centered at the waypoint. The formulation can be expressed
as:

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ R2.

If this relation is respected, the AUV can switch to take into account the next
waypoint (xk+1, yk+1).

Therefore, the main parameters of the LOS guidance are:

• Radius of Acceptance (radius_of_acceptance): Area around a waypoint
where there is the transition to the next waypoint.

• Lookahead Distance (lookahead_distance): How far ahead the LOS way-
point is chosen to be considered for planning the path.

In particular:

• radius_of_acceptance: A fixed value of 0.4 has been chosen for this pa-
rameter. This value is selected since the step size of the RRT* has been set
to 1, and considering the length of the AUV, which is 0.5 m, this choice is
considered reasonable.

• lookahead_distance: A value of 0.8 is chosen for this parameter, based on
[5], which states that this parameter (specified in meters) usually takes values
between 1.5 and 2.5 of the vehicle length. This choice is considered reasonable
since a smaller value would make navigation more irregular, while a larger
value would guarantee that the AUV reaches each waypoint.

The parameters for the LOS are summarised in Table 5.1.The results of the choice
of these parameters are presented in detail within Chapter 7.

Parameter Value
radius_of_acceptance 0.4
lookahead_distance 0.8

Table 5.1: Summary of LOS parameters.
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Control System

After generating the path as a sequence of waypoints from the RRT* module and
implementing a LOS guidance system, which provides the references to follow the
trajectory, the module in charge of tracking these references is the Control System,
as shown in Figure 4.1.

In the following sections, first, a model-based autopilot design is introduced in Sec-
tion 6.1, in particular, the control on the speed, detailed in Subsection 6.1.3, and
the control on the steering, in Subsection 6.1.2, are shown. Afterwards, to ensure
robust lane-keeping performance, even in the presence of sudden disturbances like
currents, an approach based on CBFs is introduced in Section 6.2.

6.1 Autopilot

An autopilot is a system that controls a vehicle without the intervention of manual
steering. In 1922, Nicholas Minorsky published his study on how a pilot steered
a ship and developed what is now called PID control [45]. The first autopilots
implemented used this approach.

More recently, systems based on Linear Quadratic Gaussian (LQG) control and H∞

control have replaced these methods, mostly because these are efficient in filtering
and attenuating first-order wave forces [46]. The Kalman filter and Linear Quadratic
(LQ) control enabled LQG control, which is useful for purposes of Multi-Input Multi-
Output (MIMO) ship control. Using a Kalman filter has the advantage of estimating
wave-frequency motions and handling the coupling between surge, sway, and yaw, a
task that three separate PID controllers cannot accomplish. For more details, see
[5, Chapter 11].

However, the PID-based approach can yield good practical results, as evidenced in
[47]. In this study, a separate controller is developed for each of the three main
subsystems: a steering autopilot to manage heading errors, a diving system to sta-
bilize the depth and a speed system for the surge motion. It is assumed that the
controllers do not interact (or only interact lightly) with each other. Experiments
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confirmed this, showing that the roll and pitch angles stayed small enough to keep
the system stable and that these worked independently.

Dividing the control task into three independent processes simplifies the design and
tuning processes while still achieving stability and good control. By treating heading,
depth and speed independently, uncertainties in the hydrodynamic model and exter-
nal disturbances like waves are relaxed. Motivated by this, a PID-based approach
was chosen for the two uncoupled subsystems of the speed and steering control.

6.1.1 PID Pole Placement

Since both the surge and yaw systems can be modeled as first-order systems, as
shown in Equation (3.23) and Equation (3.22), a linear PID approach is adopted
for control. In this configuration, the closed-loop system behaves as a second-order
system. The following presents a pole placement approach for calculating the control
parameters. These parameters are subsequently applied for surge and steer control.

A mass-damper-spring system is used to demonstrate the main concept. The two
following equations represent the same system equivalently:

mẍ+ dẋ+ kx = 0, (6.1)

ẍ+ 2ζωnẋ+ ω2
nx = 0, (6.2)

implying that:

2ζωn = d

m
, ω2

n = k

m

Therefore, for second-order systems, it is convenient to define:

Natural frequency: ωn =

√
k

m
,

Relative damping ratio: ζ = d

2mωn
.

The control law based on a PID control can be formulated as:

τ = Kpx̃+Kd ˙̃x+Ki

∫ t

0
x̃(τ)dτ

where Kp > 0, Kd > 0, and Ki > 0, and the tracking error is defined as x̃ = x− xd,
where x is the state of the system and xd is the desired state. After algebraic
calculations, the natural frequency and relative damping ratio become as:

ωn =
√

k +Kp

m+Km
, ζ = d+Kd

2(m+Km)ωn
.
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Specifying a desired ωn and ζ, the values of Kp and Kd can be chosen as:

Kp = (m+Km)ω2
n − k, (6.3)

Kd = 2ζωn(m+Km)− d, (6.4)

and a rule-of-thumb imposes that

Ki = ωn
10
Kp. (6.5)

This approach has been adopted to estimate the gain of the PID for the steering
and surge control as shown in the next sections.

6.1.2 Steering Control Autopilot

Steering control is the process of regulating the yaw dynamics of a vehicle in order to
maintain a desired heading. To accomplish this, the Nomoto model [48] is often used
due to its simplicity and effectiveness. This model is widely employed in autopilot
design. This model can be derived from the linearized maneuvering model as shown
below.

Recalling the manouvering model (3.23):

M ν̇ + N(uo) ν = τ ,

or, in expanded form:[
m− Yv̇ mxg − Yṙ
mxg − Yṙ Iz −Nṙ

] [
v̇

ṙ

]
+

[
−Yv −Yr
−Nv −Nr

] [
v

r

]
+

+
[

0 (m−Xu̇)uo
(Xu̇ − Yv̇)uo mxg uo

] [
v

r

]
=

[
τ2

τ6

]
. (6.6)

in order to control the yaw rate, r is selected as output:

r = cT v, cT = [0, 1].

The Laplace transform yields to:

r

τ6
(s) =

K
(
1 + T3s

)(
1 + T1s

)(
1 + T2s

) , (6.7)

where T1, T2, T3, and K are constants values explained more in detail below.

Equation (6.7) is referred to as Nomoto’s second-order model.

For practical reason, the first-order Nomoto model is used in this project. It is
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obtained by defining the equivalent time constant:

T := T1 + T2 − T3,

such that
r

τ6
(s) = K

1 + Ts
.

Finally, since ψ̇ = r, it can also be written as:

ψ

τ6
(s) = K

s
(
1 + Ts

) .
This last relation is the transfer function used in most commercial autopilot systems.

In the time domain, the Nomoto’s first-order model can be expressed as:

T ψ̈ + ψ̇ = K τ6

where ψ is the yaw angle and τ6 is the control input. Recalling Equation (6.1), the
parameters here under consideration are given by:

m = T

K
, d = 1

K
, k = 0,

where
T = T1 + T2 − T3 = − Iz −Nṙ

Nr
,

K = − 1
Nr

.

Given these parameters and recalling Equations (6.3), (6.4), and (6.5), the gains
are finally defined as:

Kp = ω2
nT

K
> 0,

Kd = 2ζωnT − 1
K

> 0,

Ki = ω3
nT

10K
> 0.

Recalling that the corresponding values are provided in Section 3.5, the obtained
values for the control gains are Kp = 25, Ki = 0, and Kd = 8.

6.1.3 Speed Control Autopilot

Similarly, recalling the surge model described in Equation (3.22)

(m−Xu̇)u̇−Xuu−X|u|u|u|u = τ1,
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according to [5], this can be simplified as:

(m−Xu̇)u̇−Xuu = τ1 + Tloss,

where Tloss represents coupling terms and environmental disturbances. This is a
first-order system which can be controlled using a PI-controller of the form:

τ1 = −Kp(u− ud)−Ki

∫ t

0
(u− ud)dτ.

Therefore, the error dynamics is:

(m−Xu̇)ż + (Kp −Xu)z +Ki

∫ t

0
zdτ = Tloss,

where:
z =

∫ t

0
(u− ud)dτ,

with u representing the measured surge velocity and ud denotes the desired surge
velocity. In order to guarantee a closed-loop stability, a pole placement algorithm is
chosen and the gains Kp > 0 and Ki > 0 are such that:

Kp −Xu

m−Xu̇
= 2ζωn,

Ki

m−Xu̇
= ω2

n,

where the relative damping ratio ζ and natural frequency ωn are chosen according
to the desired behavior. The determined control gains are Kp = 7, Ki = 2, and
Kd = 0.

Simulation results of both the speed and steering control can be seen in Section 7.2.
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6.2 Safety-Critical Control

The control framework now presented is a type of control that is able to ensure
both performance objectives and safety constraints, an important feature that an
autonomous system must satisfy. As highlighted in [20], to synthesise and compute
this type of control system, the use of a Quadratic Program (QP) is often considered.
In this framework, a control objective is defined by a Control Lyapunov Function
(CLF) and a safe region is defined by a Control Barrier Function (CBF). The QP
is implemented with the objective of keeping the system stable while making sure
it stays in a safe region. Here, the stabilization objective is considered as a soft
constraint through a relaxation factor, while safety is considered as a hard constraint.

This framework can be applied to any kind of controller, not just those based on CLFs.
In other words, any control law that guarantees stability can be modified, as little
as possible, to ensure safety. This can be done by solving an optimization problem
that finds the smallest adjustment needed. The modified (optimized) controller will
remain as close as possible to the original (nominal) one while satisfying the safety
requirements.

As already mentioned, in a marine environment, unexpected currents can occur.
These currents may cause the AUV to potentially leave the planned trajectory. To
overcome this problem, a safety controller that enforces a maximum distance from
the trajectory was implemented. This safety mechanism is realized through a CBF
constraint. It behaves as a ”barrier” in the sense that if the AUV reaches a maximum
distance from its predefined trajectory, the barrier activates and prevents the vehicle
from going beyond these limits. The selection of the barrier is a critical aspect since
it has to satisfy specific criteria. The following sections provide some background
and notation for CBFs, showing its characteristics.

6.2.1 Control Barrier Function

Control Barrier Functions effectively act as “barriers”, preventing a system’s state
from migrating into unsafe regions, thereby maintaining safety at all times. To
define a CBF, it is first needed to specify a safe set C = {x ∈ Rn : h(x) ≥ 0},
which represents the region of the state space in which the system must remain.
The CBF is then derived from this safe set in such a way that any control input that
would drive the system toward an unsafe region is “corrected” to keep the system
within C. Practically, the CBF integrates safety constraints directly into the control
design, ensuring that every control input generated maintains the system within
safe limits. In control-affine systems, these constraints can be incorporated into
a quadratic program (QP) formulation, ensuring that the resulting control actions
both respect the safety requirements and achieve the system’s performance goals.
In this section, the fundamental aspects of control barrier functions are presented,
such as the notions of safety, safe sets, and a method to ensure safety with minimal
intervention in a nominal control law.
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A nonlinear affine control system is considered, of the form:

ẋ = f(x) + g(x)u, (6.8)

where f and g are locally Lipschitz, x ∈ D ⊂ Rn, and u ∈ U ⊂ Rm is the set of
admissible inputs.

As already mentioned, ensuring both stability and safety is a fundamental require-
ment for an autonomous system. While stability focuses on guiding the system to
a specific state, safety ensures that it remains within a predefined region, known as
the safe set. To formalize this last concept, we define the safe set C as the superlevel
set of a continuously differentiable function h : D ⊂ Rn → R. This means that the
system operates within the region where h(x) is non-negative, preventing it from
entering unsafe states, yielding:

C = {x ∈ D ⊂ Rn : h(x) ≥ 0},

∂C = {x ∈ D ⊂ Rn : h(x) = 0}, (6.9)
Int(C) = {x ∈ D ⊂ Rn : h(x) > 0}.

C is referred as the safe set. The concept of safety in a control system can be
explained as follows.

Let u = k(x) be a feedback controller such that the resulting dynamical system

ẋ = fcl(x) := f(x) + g(x)k(x), (6.10)

is locally Lipschitz. A function f , defined in f : D ⊆ Rn → Rm, is locally Lipschitz
at a point x0 ∈ D if there exists an open neighborhood U ⊆ D of x0 and a constant
L > 0 such that, for all x, y ∈ U ,

∥f(x)− f(y)∥ ≤ L ∥x− y∥.

If this property holds for every x0 ∈ D, then f is called locally Lipschitz on D. Due
to this assumption, for any initial condition x0 ∈ D, there exists a maximum interval
of existence I(x0) = [0, τmax) such that x(t) is the unique solution to (6.10) on I(x0).

Therefore, this allows to define the concept of forward invariance and safety [20]:

Definition 1. (Safety). The set C is forward invariant if for every x0 ∈ C, x(t) ∈ C
for x(0) = x0 and all t ∈ I(x0). The system (6.10) is safe with respect to the set C
if the set C is forward invariant.

A commonly used barrier function is:

B(x) = −log
(

h(x)
1 + h(x)

)
. (6.11)

41



Control System

To guarantee that Int(C) remains forward invariant, a strict condition would be to
impose:

Ḃ ≤ 0.

However, this condition can be too restrictive, as it requires all sublevel sets of B to
be invariant. Therefore, a relaxed factor is introduced, leading to:

Ḃ ≤ γ

B
, (6.12)

where γ is positive. This modification allows Ḃ to grow when solutions are far from
the boundary of C, while ensuring that when they get closer to the boundary, the
rate of growth decreases to zero.

Therefore, based on Definition 1 and the nonlinear affine control system in (6.8), a
Control Barrier Function is defined as follows:

Definition 2. (CBF) Let C ⊂ D ⊂ Rn be the superlevel set of a continuously
differentiable function h : D → R, then h is a Control Barrier Function (CBF) if
there exists an extended class K∞ function α such that for the control system (6.8):

supu∈U ḣ(x, u) ≥ −α(h(x)), (6.13)

for all x ∈ D, where

ḣ(x, u) = Lfh(x) + Lgh(x)u, u ∈ U . (6.14)

In particular,

Lfh(x) = ∇h(x)⊤f(x) Lgh(x) = ∇h(x)⊤g(x)

are the Lie derivatives of h with respect to the vector f and g, where ∇h(x) is the
gradient of h with respect to x. Also, a continuous function α : [0, a) → [0,∞) is
said to belong to class K if it is strictly increasing and satisfies α(0) = 0. While this
function is said to belong to class K∞ if it belongs to class K, satisfies a = ∞, and
lim
r→∞

α(r) =∞.

If in Equation (6.13) the previously defined barrier function in Equation (6.11) is
substituted, then the CBF condition becomes:

inf
u∈U

[LfB(x) + LgB(x)u] ≤ α
( 1
B(x)

)
. (6.15)

This function B(x) is formally referred to as a Reciprocal Barrier Function because
it satisfies

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) =∞.

This means that as the state nears the boundary ∂C, B(x) becomes infinitely large,

42



Control System

effectively stopping the system from leaving the safe set C. In particular, its defini-
tion is given as follows.

Definition 3. (RCBF) Consider the control system (6.8) and the set C ⊂ Rn defined
by (6.9) for a continuously differentiable function h. A continuously a continuously
differentiable function B : Int(C)→ R called a Reciprocal Control Barrier Function
(RCBF) if there exist class-K functions α1, α2, α3 such that for all x ∈ Int(C):

α1
(
h(x)

)
≤ B(x) ≤ 1

α2
(
h(x)

) , (6.16)

inf
u∈U

[
LfB(x) + LgB(x)u− α3

(
h(x)

)]
≤ 0. (6.17)

The RCBF B is said to be locally Lipschitz continuous if α3 and ∂B
∂x are both locally

Lipschitz continuous.

Finally, it is defined the set of all control values that render C safe as:

Kcbf(x) = {u ∈ U | Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}. (6.18)

And similarly:

Krcbf(x) = {u ∈ U : LfB(x) + LgB(x)u − α3
(
h(x)

)
≤ 0}.

CBFs provide the strongest conditions for ensuring safety, as they are necessary and
sufficient under reasonable assumptions on C, see [21] for more details.

After established that Control Barrier Functions provide the necessary and sufficient
conditions for safety, the next step is to synthesize controllers that enforce these
conditions. The goal is to achieve this in a minimally invasive way, meaning that
the modifications to a nominal controller should be as small as possible while still
ensuring safety. This leads to optimization-based controller, that can be formulated
as follows:

u(x) = argmin
u∈Rm

1
2
∥u− k(x)∥2

s.t. Lfh(x) + Lgh(x)u ≥ −α
(
h(x)

)
,

(6.19)

where u represents the optimized control input, while k(x) denotes the nominal
control input. Equation (6.19) will be called as CBF-QP.

6.2.2 CBF-QP

As mentioned before, when CBFs are integrated with a nominal controller through
a Quadratic Programming framework, safety is guaranteed at all times. In this ap-
proach, the QP ensures that the control input satisfies the barrier condition, while
maintaining safety, which means guaranteeing the objective specified by the nomi-
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nal controller. Whenever the safety and performance objectives conflict, the safety
constraint takes precedence, modifying the performance of the nominal control, as
shown in Figure 6.1.

Figure 6.1: QP-based controller [27].

In particular, in Figure 6.1, the safety constraint and control performance objectives
are unified through a barrier condition. Specifically, the controller usafe is designed to
satisfy the barrier condition, ensuring that the state of the control system x remains
within the safety set, while remaining as close as possible to the given nominal
control. As a result, the performance objective is met whenever it does not conflict
with the safety constraint. The formal formulation of this will be provided in more
detail below in the case under study.

Lane Keeping

Based on the studies presented in [21], it is now introduced the Lane Keeping (LK)
problem. This is of particular importance in underwater scenarios since, during the
path-following phase, an AUV may be subject to current disturbances. Although the
surge and yaw dynamics can address these disturbances by combining their control
and modifying the yaw reference, they do not respond as quickly as a direct control
action on the sway. Since the AUV considered in this project can control its sway
dynamics, this degree of freedom is taken into consideration to keep the lateral error,
from the AUV position to the desired path, within acceptable bounds.

Specifically, the state to be regulated is the lateral position of the AUV (along
the y-axis) relative to a desired reference line, which corresponds to the cross-track
error, Equation (5.1.1), previously defined in the LOS guidance. Consequently, an
additional control action is implemented to ensure that the cross-track error remains
within prescribed bounds. This requirement can be reached by formulating the CBF-
based QP defined in (6.19).
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In this approach, the focus is on the lateral dynamics of the AUV, under the as-
sumption that the vehicle maintains a constant longitudinal speed throughout the
maneuver (Assumption 2, Section 3.2.2).

Problem Setup. Consider the two-state lateral model of the AUV:[
ẏ

ÿ

]
=

[
0 1
0 Yv

m−Yv̇

] [
y

ẏ

]
+

[
0
1

m−Yv̇

]
τ2. (6.20)

Let the state vector be x := (y, ẏ) where y denotes the lateral displacement in the
fixed coordinate frame (NED), which is the cross-track error, and ẏ is the lateral
velocity. The control input τ2 represents the lateral thrust force.

The objective of the Lane Keeping (LK) problem is to determine a lateral force input
that keeps the AUV “centered” along the desired path. In particular, the system
must satisfy specific hard control objectives while keeping the input constraints under
consideration.

Hard Constraint. This constraint ensures that the lateral displacement of the
AUV from the lane center remains below a specified value ymax:

|y| ≤ ymax. (6.21)

An arbitrary value of 0.2 meters was chosen for ymax. Consequently, the hard con-
straint is |y| ≤ 0.2. Equation 6.21 is referred as Lane Keeping - Hard Constraint
(LK-HC). Motivated by the work done in [49], the following barrier function is con-
sidered:

h(x) =
(
ymax − sgn(ẏ) y

)
− ÿ2

2 amax
, (6.22)

here ymax represents the maximum allowable lateral deviation, while the term sgn(ẏ)y
specifies the direction of motion. The quadratic velocity term ẏ2

2amax
ensures that the

vehicle can always return to the safe region under the maximum allowable decelera-
tion amax, both ymax and amax are arbitrarily chosen. Then the feasible set is defined
as C = {x ∈ Rn | h(x) ≥ 0} and for every x ∈ C, the system can remain in C.

It is considered a RCBF of the form:

B(x) = − log
(

h(x)
1 + h(x)

)
, (6.23)

since this formulation ensure that the barrier function takes higher values near the
boundary and lower values as the system moves away from it. The functions h(x)
and B(x) are shown to satisfy the criteria of Equation (6.15), ensuring that the set
C is controlled invariant. See [20] for more details.
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Nominal Control. The nominal control strategy employed, given the linearized
system dynamics in Equation (6.20), is the LQR. LQR is an optimal control tech-
nique that minimizes a quadratic cost function defined over the state and control
input of the system. This method determines an optimal state-feedback gain by
solving the algebraic Riccati equation, using the system dynamics.

The cost function is formulated as:

J =
∫ ∞

0

(
xTQx+ uTRu

)
dt, (6.24)

where the weight matrices Q = QT ⪰ 0 and R = RT ≻ 0 define the relative
importance of the state x and control input u, respectively.

The optimal control law is found by solving the algebraic Riccati equation. This
equation is given by:

ATP + PA− PBR−1BTP +Q = 0. (6.25)

The optimal state-feedback control law is then defined as:

u = −KLQRx, (6.26)

where the feedback gain matrix KLQR is computed as KLQR = R−1BTP . Here, P
is a stabilizing solution to the Riccati equation, ensuring the optimal performance
of the controller.

Here the first state, where the state vector is recalled to be x := (y, ẏ), is given by
the cross-track error of the LOS Guidance, which represents the lateral deviation of
the AUV from the desired path. The LQR approach was chosen due to its efficacy
in stabilizing dynamic systems at a desired equilibrium point. In this case, the
objective is to regulate the cross-track error to zero, ensuring that the AUV remains
as close as possible on the planned path.

Therefore, by unifying the safety hard constraint and the control soft constraint, the
quadratic program (QP) is formulated as:

u∗(x) = arg min
u=[u,δ]T ∈Ulk×R

1
2

u⊤Hlk u

s.t. Alkfcbf u ≤ blkfcbf

u = −KLQRx+ δ,

(LK QP)

where Hlk := diag{p1, p2} ∈ R2×2 is the weighting matrix where p1 penalizes the
control input u and p2 penalizes the relaxation variable δ, which is introduced to en-
sure the feasibility of the QP. KLQR is the optimal feedback gain defined in Equation
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6.26 and finally the CBF constraints are defined by:

Alkfcbf = [LgB(x), 0] and blkfcbf = −LfB(x) + γ

B(x)
.

Note 1: Setting δ = 0 makes the constraint imposed by the nominal controller
“hard”. This means that the system is required to exactly perform as the nomi-
nal control without any relaxation. This means that, if no control input can be
found that simultaneously satisfies both the LQR control objectives and the RCBF
constraints, the QP becomes infeasible.

Note 2: It is important to observe that the formulation of the LK QP is identical
to the one presented in Equation 6.19. Both QPs are designed with the objective of
ensuring system stability and safety at the same time. They do this by keeping the
control input as close as possible to the nominal control law and only switching to a
safer control when necessary to avoid unsafe regions. This way, the system follows
the usual behavior unless a safety issue arises.

Note 3: The function h has a relative degree of 1, where the relative degree is
defined as the minimum order of the time derivative of the output y of a dynamical
system in affine form, that is directly affected by the input u. Recalling that the
sway dinamics is defined as:

v̇ = Yv
m− Yv̇

v + 1
m− Yv̇

τ2,

the h defined in (6.22) has relative degree of 1.If the function h has a relative degree
greater than 1, then Lgh = 0 and the set Krcbf(x) becomes equals to U . When h has
a relative degree r ≥ 2, the use of High-Order Control Barrier Functions (HOCBFs)
becomes necessary, see [50] for more details.
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Simulation Results

This chapter presents the results obtained from the work described in Chapters 4,
5 and 6. In particular, Section 7.1 will provide an overview of the simulation en-
vironment, focusing on the setup and configuration within Gazebo. Subsequently,
Section 7.2 will present and analyze the results obtained from the simulations.

7.1 Simulation Environment

The simulation environments adopted throughout this project are Gazebo integrated
with ROS and MATLAB/Simulink.

Gazebo is a robotics simulator that offers realistic environment and physics interac-
tions between different systems in the simulation, allowing a high-fidelity testing in
complex environments. For example, in a marine world, Gazebo can simulate cur-
rents and buoyancy, thereby replicating real-world conditions. On the other hand,
ROS, which stands for Robot Operating System, though it is more a framework than
an actual operating system for writing robot software, offers a collection of tools and
libraries that help build and simulate various robotic applications. ROS facilitates
communication between different software components (or nodes), supports hard-
ware abstraction, and offers a large and active open-source community.

In this study, the simulation related to path planning, guidance, and control has
been implemented using Gazebo, leveraging its capability of simulating dynamic en-
vironment and offering a visual realistic scenarios for testing. In contrast, the part
of the project dealing with safety-critical control, specifically the implementation
of CBFs, was realized in MATLAB and Simulink, which is ideal to simulate func-
tionality in control systems, and thus to analyze safety-critical aspects. The use of
these two types of tools makes it possible to harness the benefits of both simulators.
That means, simulating through Gazebo/ROS provides an interactive and real-time
world of the AUV behavior underwater, while MATLAB/Simulink offers a better
understanding of control system analysis and validation.
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7.1.1 Gazebo

Figure 7.1 provides an overview of the ROS architecture implemented throughout
the project.

/moving_target /target_pose /planning_node /wpt_path /record_data

/LOS_Guidance_PID_Control /bluerov2/thruster_manager/input_stamped /bluerov2/thruster_allocator

/gazebo /bluerov2/pose_gt /ground_truth_to_tf_bluerov2 /tf

/bluerov2/thrusters/0/input

/bluerov2/thrusters/1/input

/bluerov2/thrusters/2/input

/bluerov2/thrusters/3/input

/bluerov2/thrusters/4/input

/bluerov2/thrusters/5/input

Figure 7.1: Architecture overview of the ROS nodes and topics.
Blue indicates nodes, pink indicates topics.

In ROS, nodes are individual processes that perform specific tasks, here for example
the planning and control. Topics are communication channels that allow nodes to
exchange data using a publisher-subscriber model.

In particular:

• Informations on the moving target: The /moving_target node publishes each
6 seconds the pose of the target on the /target_pose topic.

• Path Planning RRT* Execution: The /planning_node subscribes to /target_pose
and computes an optimal path to the target, publishing the generated way-
points on /wpt_path.

• LOS Guidance and PID Control Execution: The /LOS_Guidance_PID_Control
node processes the planned path and calculates control commands to move the
vehicle.

• Data Logging: The /record_data node captures and logs system information.

• Coordinate Transformations and Thrust Allocation: The
/ground_truth_pub_to_bluerov2 node provides real-world data to the
/bluerov2_thruster_allocator after processing transformations via the /tf
package. The
/bluerov2_thruster_allocator distributes the computed thrust commands
to each individual thruster.

The Gazebo implementation of the BlueROV2 was carried out using the open-source
UUV Simulator, which is an extension of the Gazebo simulator designed specifically
for underwater scenarios. This approach enables realistic hydrodynamic modeling
and sensor simulation (such as sonar and Inertial Measurement Unit, IMU). In
Gazebo, a robot is represented by a model defined through SDF/URDF files that
include its physical properties (such as mass, inertia, and geometry), sensor con-
figurations and actuator specifications. In addition, plugins are used to simulate
dynamics and environmental interactions. More details on how the BlueROV2 was
implemented in the UUV Simulator can be found in [51]. The BlueROV2 is spawned
in Gazebo as shown in Figure 7.2.
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Figure 7.2: Underwater windfarm simulation with BlueROV2 deployed in
Gazebo.

In Gazebo, the underwater windfarm was simulated with 7 wind turbines within a
20×20 m2 area. Note that these values, as well as the arrangement of the turbines,
were chosen arbitrarily. The layout of the turbines and the environment from a top
view is shown in Figure 7.3.

Figure 7.3: Top view of the simulation environment.

The information regarding the display of the reference trajectory and the represen-
tation of the moving intruder is shown in RViz. RViz (ROS Visualization) is a
visualization tool used to display sensor data and robot states. RViz can be seen in
Figure 7.4.

In Figure 7.4, it can be observed that the world, NED (the AUV) reference frames
and the the static obstacles (the blue circles), are represented. In the reference
frames, the red line represents the x-axis, the green line represents the y-axis and
the blue line is the z-axis, which is directed out of the plane. In addition, the
moving target is depicted with the red arrow. Subsequently, the results obtained in
this environment are presented.
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Figure 7.4: RViz simulation environment.

7.2 Simulation Outcome

As previously mentioned, the simulation was carried out partially in ROS/Gazebo
and partially in MATLAB/Simulink. Sections 7.2.1 and 7.2.2 present the results ob-
tained in ROS/Gazebo, where the RRT* is first showed, then the LOS guidance, and
PID control for surge and yaw are simulated. Section 7.2.3 presents the simulation
of the CBF in MATLAB/Simulink.

7.2.1 Path Generation

The RRT* path search is illustrated in the Figure 7.5. The configuration parameters
are provided in Table 4.1. The algorithm explores a 20×20 m² configuration space,
building the tree shown in green. The optimal path found is depicted in red. The
start point (Start) is indicated in blue, while the goal point (Goal) is shown in green.

Figure 7.5: RRT* Path Search.

Additional simulations were performed starting from different initial positions as
shown in Figure 7.6. In all cases, the path generated respects the minimum turning
radius constraint of the AUV. Which has been chosen arbitrarily to be 90°.

51



Simulation Results

Figure 7.6: RRT* Path Searches.

7.2.2 Path Following

Before simulating the path following of the trajectory generated with a moving
target, a zigzag trajectory was tested to validate the LOS and PID parameters. The
zigzag trajectory was used to assess the maneuver performance of the yaw model.
The trajectory was generated using 12 points, with each step of 1 meter. The LOS
parameters, in Table 5.1, and the PID gains chosen, Section 6.1.1, appears to be
satisfactory.

Figure 7.7: Trajectory comparison over time.

Figure 7.7 shows the comparison between the desired and the actual trajectory over
time. The starting point is (0, 0) with an initial yaw angle of 1.57 rad (90 deg),
as illustrated in Figure 7.8, which depicts the yaw error over time. The desired
speed was set to 0.2 m/s, that was done due in order to limit the motion coupling.
Additionally, Figure 7.9 presents the cross-track error. This parameter is the one
that it is taken into account for the evaluation of the CBF, which means for the
decision of the maximum allowable lateral distance. This error oscillates around 0.2
m, a value that is considered to be reasonable.

Once the LOS and PID parameters were evaluated, the following simulation demon-

52



Simulation Results

Figure 7.8: Yaw error. Figure 7.9: Cross-Track error.

strates the path planning generation using the RRT* algorithm with the values
specified in Table 4.1, along with the path following using the LOS and PID pa-
rameters provided in Table 5.1. The simulation was conducted by implementing a
moving target whose position was updated every 6 seconds, with the target moving
at a constant speed of 0.1 m/s computing a straight line path starting from position
(6.0, 12.0).

Figure 7.10: RViz
Path 1.

Figure 7.11: RViz Path
3.

Figures 7.10 and 7.11 show that the path (the green line) generated by the RRT*
is computed based on the current positions of both the AUV and the target. The
time needed to compute a new path, from the moment the AUV detects the updated
target position to the generation of the next trajectory, is approximately 2 seconds.

Note: The approach direction towards the target (i.e., whether the AUV arrives
from the front, back, or side) has not been considered in the path generation. As a
result, the AUV reaches the target with an arbitrary orientation.

Figure 7.12 shows a comparison between the actual path executed by the AUV
versus the desired paths generated during the overall simulation. The actual path
of the AUV is highlighted in black, while the dashed lines indicate the various paths
generated by the RRT*, based on the AUV’s position at each moment. The starting
position of the AUV is in (0,0), represented by a black cross, while the red crosses
represents the position of the target moving throuout the simulation. The target
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is moving in a straight line starting from position (6.0,12.0) and moving towards
positive values of x until the AUV reaches it.

Figure 7.12: Simulation 1: Trajectory
comparison in time with all the

generated paths.

Figure 7.13: Simulation 1: Trajectory
comparison in time with the partial

desired paths.

In particular, Figure 7.13 shows the partial desired path that the AUV follows until
the target updates its position. At that point, a new desired path is computed using
RRT*, and the AUV switches from the old path to the newly generated one. This
process is highlighted by the red crosses in the figure, indicating the points where
the desired path is updated.

Figures 7.14 and 7.15 provide a zoomed view of the trajectory shown in Figure 7.19.
It can be observed that the trajectory is smoother in the first section, where it follows
an almost straight path, while it becomes less accurate during a turn in the second
part of the trajectory.

Figure 7.14: Zoomed view of the
first part of the tracked trajectory.

Figure 7.15: Zoomed view of the
second part of the tracked trajectory.

Finally, Figures 7.16 and 7.17 illustrate the yaw error and the cross-track error,
respectively. The yaw error remains generally stable, with spikes corresponding
to the adjustments in yaw angle required to follow the path. It can be observed
that the error is more evident in the second part of the trajectory, where the AUV
follows an almost circular path. This increased oscillation is due to the continuous
adjustments required to follow the curved trajectory, making the control corrections
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more frequent and pronounced.

Figure 7.16: Simulation 1: Yaw Error.

Meanwhile, the cross-track error oscillates around ±0.2 meters in the first part of
the trajectory. However, in the second part, during the turning phase, this error also
increases significantly. This behavior highlights the fact that during the execution
of a non-straight trajectory, it is necessary to introduce a lateral bound to ensure a
good trajectory following.

Figure 7.17: Simulation 1: Cross-track Error.

Note: The initial time displayed in Figures 7.16 and 7.17 appears to start at around
30 seconds. This happens because the control algorithm was not executed at the
same time as the Gazebo simulation and the path planning process.

The sequence of operations is as follows:

1) Launch of Gazebo environment: The simulation environment is launched,
which includes spawning the AUV and the underwater wind farm. This marks
the start of the simulation timer.

2) Launch of the path planning algorithm: The path planning algorithm is then
activated to compute a feasible trajectory for the AUV.

3) Launch of the control (path following) algorithm: When a valid trajectory has
been generated the control algorithm is executed and the AUV starts following
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the path.

Since the control algorithm is started only after the trajectory has been computed,
the graphs in Figures 7.16 and 7.17 do not record the first 30 seconds of simulation
time. Consequently, the total duration of the simulation is approximately 90 seconds.

Note: The PID controller in Gazebo is implemented in discrete time as in real world.
The integration follows the Forward Euler method, approximating the integral as a
sum of discrete areas with ∆t = 0.2. The derivative is estimated using a backward
difference, introducing discretization effects.

A second simulation was conducted, this time initializing the AUV from a different
starting position.

Figure 7.18: Simulation 2: Trajectory
comparison in time with all the

generated paths.

Figure 7.19: Simulation 2: Trajectory
comparison in time with the partial

desired paths.

It can be observed that, due to this initial placement, the first generated path,Path
1, differs from the subsequent ones. Specifically, in Path 1, the RRT* determined
that the shortest route to the target was to the left of the obstacle. However, from
Path 2 onward, the updated position of the AUV caused the planner to generate a
trajectory where the shortest path to the target was now to the right of the obstacle.
This change of path generation highlights how the position of the AUV influences
the generated path.
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Figure 7.20: Simulation 2: Yaw Error.

Once again, it can be observed that during the path following phase of a non linear
trajectory, both the yaw error and the cross-track error show greater oscillations
compared to those observed in a straight-line path. A possible approach to mitigate
the cross-track error is to implement a control strategy based on Control Barrier
Functions, as previously introduced. The implementation and the analysis of those
is shown in the following section.

Figure 7.21: Simulation 2: Cross-track Error.

7.2.3 Safety Constraints

The study on the barrier function was conducted in MATLAB/Simulink. In partic-
ular, the sway dynamics of the AUV is analyzed and a control based on CBF-QP is
implemented, as described in Section 6.2.2.

For the nominal control design, the LQR gain matrix K was computed using the
weighting matrices Q = diag(100, 10) and R = 1, while for the QP parameters, the
matrix H was chosen as H = diag(1e−5, 10) and F = [0 0].
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In order to deal with the Lane Keeping formulation problem, it is recalled that the
Reciprocal Control Barrier Function adopted is the one defined in Equation 6.23
where h(x) is defined in Equation 6.22. The selected barrier function is designed to
ensure safety. To achieve this, B(x) must remain positive within the safe set, where
h(x) > 0. As the system state approaches the boundary of the safe set, meaning
h(x)→ 0, the function B(x) tends to infinity, preventing the system from violating
safety conditions. This behavior imposes a strong penalty while the system is near
the bound limit, imposing the system not to leave the safe region.

Figure 7.22: Behaviour of the Reciprocal Control Barrier Function.

The RCBF behaviour can be analyzed in Figure 7.22, where the function assumes
higher values near the lane boundaries, ensuring that the control action maintains
the vehicle within the safe set.

In particular, the barrier parameters have been selected as: ymax = 0.2 and amax =
7.8. Here amax is the maximum acceleration allowed by the AUV, while ymax is
the maximum lateral displacement that the AUV must maintain during the path-
following phase. The QP was implemented using the quadprog command in MAT-
LAB.

Assumptions and Considerations.

• The AUV is assumed to follow a straight-line path, meaning the angular veloc-
ity r = 0, while maintaining a constant surge speed U . It is assumed a speed
of 0.2 m/s.

• It is assumed that the AUV has the shape of a rectangular prism.

• The external disturbance is modeled as a force acting perpendicular to the
AUV. This force represents the effect of the ocean current. It is assumed to
behave like a drag force FD acting only in the lateral direction and perpendic-
ular to the lateral surface of the AUV. It is modeled using a quadratic drag
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equation, as cited by [52] and [53], with the following form:

FD = 1
2
ρv2CDA,

where ρ [kg/m3] is the density of water, v [m/s] is the relative velocity between
the AUV and the current, CD is the drag coefficient, and A [m2] is the reference
area exposed to the flow. In particular,

– ρ = 1000 kg/m3 has been used for the density of water.

– Assuming no sway velocity of the AUV, the velocity component v corre-
sponds to the velocity of the current itself. Different values have been
assigned to this parameter, considering a range from 0.2 to 0.7 m/s. This
range is considered reasonable compared to the dimension and thrust
power of a system like the BlueROV2.

– CD = 1. This drag coefficient depends on the shape of the body and
the Reynolds number. For a system with a cube form this could be
approximated to 1.

– A = 0.34× 0.25 = 0.085 m2, again considering the AUV as a full cube.

• One aspect to consider during the simulation is the control input limit. This is
expressed in Newtons [N] and represents the control action needed exclusively
to the sway dynamics. This input must be constrained by the maximum power
that each thruster can provide. The thrusters used in this project are the T200
from BlueRobotics and according to the datasheet, these thrusters can gener-
ate a maximum thrust of approximately 40 N (see Appendix A). Considering
the thruster configuration in the BlueROV2, previously shown in Figure 3.3,
it can be seen that the four thrusters responsible for horizontal motion are
inclined at 45 degrees. Therefore, each thruster can provide a maximum force
of approximately 28 N in the sway direction. Therefore, the total available
force for sway dynamics is 112 N.

Figure 7.23: Thurster input request in Gazebo.

However, since the AUV is moving forward, it is important to determine the
actual force available for sway motion. An analysis of the thrust input required
by the thrusters was conducted during a Gazebo simulation, where the AUV
was computing a straight trajectory starting at a velocity of 0.0 and reaching
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a desired velocity 0.2 m/s.

Figure 7.24: Surge error in time in Gazebo.

As shown in Figure 7.23, the four thrusters operate in pairs. Under steady-
state conditions (see Figure 7.24), each thruster provides a thrust of 2 N. More
specifically, thrusters 0 and 1 (front-right and rear-left) generate positive thrust
values, while thrusters 2 and 3 (front-left and rear-right) generate negative
thrust values. This configuration is done to ensure the AUV to compute a
yaw moment. Thrusters 5 and 6 were not displayed as they are responsible
for vertical motion, therefore are equale to 0 and not considered throughout
this project. This simulation was conducted using the PID controller before
analyzed.

Therefore, the available input force for the sway operation can be set to be
approximately 100 N. Recalling that, after the calculation of this control input,
the Thruster Allocation Matrix distributes this force among the individual
thrusters.

Simulations.

To evaluate the behavior of the sway dynamics under the influence of current during
the path following phase, the following simulations have been performed:

1) Initial conditions: y0 = 0.1, ẏ0 = 0.2

Disturbance: 1) A current disturbance with a velocity of vc = 0.5 m/s is
applied starting at time t = 10 seconds. 2) An additional current disturbance
with a velocity of vc = 0.3 m/s is applied at a opposite direction (which means
decreasing the disturbances) starting at time t = 15 seconds lasting for 5
seconds.

2) Initial conditions: y0 = 0, ẏ0 = 0

Disturbance: 1) A current disturbance with a velocity of vc = 0.5 m/s is
applied starting at time t = 0 seconds. 2) An additional current disturbance
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with a velocity of vc = 0.3 m/s is applied in the same direction (which means
increasing the disturbances) starting at time t = 5 seconds lasting for 15
seconds.

3) Initial conditions: y0 = 0, ẏ0 = 0

Disturbance: 1) A current disturbance with a velocity of vc = 0.2 m/s is
applied starting at time t = 2 seconds. 2) An additional current disturbance
with a velocity of vc = 0.1 m/s is applied at time t = 10 seconds lasting for
2 seconds. 3) An additional current disturbance with a velocity of vc = 0.3
m/s is applied on the opposite direction at time t = 15 seconds lasting for 5
seconds.

Note: The initial conditions has been chosen such that the system starts in a safe
state. Indeed, if the system were set to start in an unsafe state, the QP would not
get a feasible solution, thus it would not guarantee that the system remains within
the prescribed limits. This implies that CBFs are not responsible for driving the
system into the safe set. Instead, given that the system starts within the safe set,
they ensure that it remains inside this region.

In order to visualize the safe set, Figure 7.25 shows the region defined by the the
red dashed and the blue curves where it is guarantee that if y = ymax, then ẏ < 0,
and if y = −ymax, then ẏ > 0.

Figure 7.25: Projection of the safe set onto the (y, ẏ) plane.

Note: In the equation of the barrier function that has been adopted, the presence of
the sign function can cause some problems during the implementation. In fact, the
discontinuity of the sign function can cause numerical issues. The sudden transition
at zero causes sudden changes in the control input.

To address this issue, the sign function has been substituted with an approximation,
which is the sigmoid function. This alternative formulation should ensure a contin-
uous transition between values. The sigmoid function is parameterized by a gain
factor k, which corresponds to the level of approximation to the sign function. By

61



Simulation Results

imposing a sufficiently high values of k and by scaling the function within the range
[−1, 1], the sigmoid function was used in the following simulations.

1) In the first simulation, the initial conditions are set to y0 = 0.1 m and ẏ0 = 0.2 m/s.
Two different disturbances are applied in sequence, the first is applied at time t = 10
with a velocity of the current of vc = 0.5 m/s, after 5 seconds a second disturbance is
applied, on the opposite direction, which means a decreasing value of the disturbance
on the BlueROV2 with a velocity of vc = 0.3 m/s, lasting 5 seconds. After this
disturbances, it is supposed to return in an ideal situation where no currents are
present.

In Figure 7.26 it is presented a comparison between the lateral displacement of the
AUV with and without the application of the CBFs. The blue dashed line represents
the lateral position of the AUV under the control of the only LQR control law, with-
out the additional constraint provided by the CBFs. The red line shows the lateral
position when the CBF constraint is applied. It can be seen that without the CBF,
the AUV exceeds the lateral limit of 0.2 m. However, when the CBF constraint is
incorporated, the maximum lateral displacement is maintained, ensuring safe oper-
ation. It can be notices that the period of time between t = 10 and t = 20, which is
the period od time of the presence of disturbance, the lateral displacement is kept to
the maximim limit. Whenever the disturbance is no longer present (i.e., the vehicle
is no longer influenced by the currents), the lateral position is brought back to 0.

Figure 7.26: Simulation 1: Comparison of sway position obtained with and
without CBF.

Figure 7.27 presents a comparison of the lateral velocities of the AUV with and
without the use of CBFs, similar to the analysis performed for the position. The
blue dashed line represents the lateral velocity when only the LQR controller is
applied, while the red line corresponds to the velocity when the CBF constraint is
applied. In the figure, a chattering effect appears at around t = 13 seconds. Despite
replacing the sign function with a sigmoid function, the chattering persists. This
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happens because the chosen scaling factor k for the sigmoid function has been set
to a very high value to approximate as close as possible the behavior of the sign
function. Since the AUV operates within a small range, given that the bound limit
is set to 0.2, reducing k too much would fail to replicate the behavior of the sign
function.

Figure 7.27: Simulation 1: Comparison of sway velocity obtained with and
without CBF.

Indeed, Figure 7.28 illustrates the evolution of the barrier function over time. As
observed in the velocity profile, a chattering effect is present at t = 13 seconds until
the disturbance goes back to zero. Additionally, due to the initial position of the
vehicle, which is close to the boundary, the barrier function momentarily activates
at the beginning before stabilizing at a constant value when the position returns to
zero. Then, once the disturbance is present, the barrier function is reactivated.

Figure 7.28: Simulation 1: Barrier Function behavior.

Furthermore, the figure provides a representation of the behavior of the Reciprocal
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CBF. Initially, when the starting position of the AUV is nonzero but still within the
boundary, the barrier function assumes a moderate value, with a value of approxi-
mately 3.8. As the AUV approaches the boundary, the CBF rapidly increases, with
a maximum at 5.6. This shows the nature of the barrier, which assumes incremental
higher values when the system is gettiing closer to the boundaries and approaches
zero when it is far away. In fact, when the disturbance returns to zero and the posi-
tion returns to zero, the barrier function stabilizes at a constant value, which menas
that the nominal control action is not modified. However, the presence of chattering
implies that further refinements in the sigmoid function might be required.

Figure 7.29: Simulation 1: Comparison of the control input obtained with and
without CBF.

Figure 7.29 presents a comparison between the control input generated only by the
LQR controller and the one optimized using the Barrier Function. The dashed black
rectangular line represents the disturbance applied to the system, the dashed blue
line corresponds to the CBF-based QP input and the red line represents the control
input from the LQR controller.

Initially, the two control inputs have a similar, but not identical, behavior. This
difference comes up because the AUV starts from a position that is pretty close to
the boundary. As already explained, the constraint is imposed in order to guarantee
the system to stay in the safe set. When the disturbance is introduced, there is a
significant difference between the two control inputs. In particular, the control input
generated by the constrained reaches much larger value compared to the LQR input.

Since the barrier function enforces the AUV to be in the 0.2 bound, the optimized
control input keeps a constant value to ensure the position to be within this bound-
ary, while, the LQR, which objective is to to bring the state y back to zero without
constraints, produces control values that change depending on the disturbance in-
tensity. On the other hand, the CBF control input remains constant regardless the
change on the disturbance. This is because, once the system reaches a limiting state,
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the control input must keep the vehicle to stay in the limit.

As soon as the disturbance goes back to zero, both the control inputs converge back
to zero, which means that the system has returned to the desired position of y = 0,
meaning a null cross-track error.

It is important to also analyze the maximum value that the CBF control has reached.
An absolute value of 25 N is considered to be completely within the maximum range
of 100 N, therefore it is considered an acceptable value.

2) In the second simulation, the initial conditions are set to y0 = 0 m and ẏ0 = 0 m/s.
Two different disturbances are applied in sequence, the first is applied at time t = 0
with a velocity of the current of vc = 0.5 m/s, after 5 seconds a second disturbance is
applied, on the same direction, which means an increasing value of the disturbance
on the BlueROV2 with a velocity of vc = 0.3 m/s, lasting 15 seconds. After this
disturbances, it is supposed to return in an ideal situation where no currents are
present.

Again, Figure 7.30 shows the position of the AUV, with and without the constraint
on the CBF. It can be observed that, given an initial position of 0 and a disturbance
entering at time t = 0, the barrier (shown in Figure 7.32) is activated at t = 0.
However, until approximately t = 3, the barrier gradually increases its value since
the AUV remains within the boundary but has not yet reached its limit. Once
the AUV reaches the boundary, the barrier reaches its maximum values, before
stabilizing again when the disturbance goes back to zero.

Figure 7.30: Simulation 2:
Comparison of sway position obtained

with and without CBF.

Figure 7.31: Simulation 2:
Comparison of sway velocity obtained

with and without CBF.

The effect of the barrier is particularly evident in Figure 7.31, which shows the
velocity. Here, chattering is present during the same time interval in which the
barrier is active. Furthermore, it is once again highlighted that the position is
successfully kept within the limits throughout the entire duration of the disturbance.
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Figure 7.32: Simulation 2: Barrier Function behavior.

Figure 7.33 once again presents a comparison between the control input u generated
with and without the CBFs. It can be observed that, since the disturbance enters at
time t = 0, the control input are very different from the beginning. As in the previous
case, the optimized control input reaches high values, and switching behavior is again
evident around t = 3.

Figure 7.33: Simulation 2: Comparison of the control input obtained with and
without CBF.

The value of 25 N is once again considered within the acceptable range to ensure that
the AUV maintains the desired velocity and is able to perform the lateral correction,
thereby ensuring that the system remains within the desired bounds.

3) In the last simulation, the initial conditions are set to y0 = 0 m and ẏ0 = 0 m/s.
Three different disturbances are applied in sequence, the first is applied at time
t = 2 s with a velocity of the current of vc = 0.2 m/s, after 8 seconds a second
disturbance is applied, on the same direction, which means an increasing value of
the disturbance on the BlueROV2, with a velocity of vc = 0.1 m/s lasting for 3
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seconds. A third current disturbance with a velocity of vc = 0.3 m/s is applied on
the opposite direction at time t = 15 seconds lasting for 5 seconds.

Figures 7.34 and 7.35 show the position and velocity of the AUV, respectively. It can
be observed that the position is maintained with the activation of the LQR controller
alone during the first two disturbances. However, for the third disturbance, which
involves a current with a velocity of 0.3 m/s, the inclusion of CBF becomes necessary.
Also, it is important to highlight that the two position displacement are identical in
the initial phase, as the position stays within the safe bound. Similarly, the velocity
follows the same profile in the first phase but becomes differen whenever a higher
disturbance comes.

Figure 7.34: Simulation 3:
Comparison of sway position obtained

with and without CBF.

Figure 7.35: Simulation 3:
Comparison of sway velocity obtained

with and without CBF.

Figures 7.36 show the comparison between the two different inputs. It can be ob-
served that, as previously stated, with the two disturbances, since the AUV is within
the safe bound, the two control inputs are equal, since it is not required a higher
control input to stay within the limits. Note that this implies that the optimization
delta of the QP is equal to zero, meaning that the optimized control corresponds
exactly to the nominal control.

When a bigger disturbance occurs, a greater input force is again required to remain
within the limits. Once more, it is evident that a value of 10 N is within the maximum
force limits.
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Figure 7.36: Simulation 3: Comparison of the control input obtained with and
without CBF.

Figures 7.37 show the evolution of the barrier function over time. It can be observed
that, between 2 and 9 seconds, the function is moderately activated but does not
reach the highest value, due to the fact that a lateral displacement is present, which
causes the system to approach the boundary at 0.2 m, but it does not reach the
limit bound.

Figure 7.37: Simulation 3: Barrier Function behavior.

At t = 10, following the introduction of a new disturbance, the barrier function
activates again, though without reaching its maximum value, as the system does
not hit the 0.2 m boundary. It is important to note that the behavior of the barrier
function from t = 0 to t = 15 does not significantly impact the control, as the two
control inputs remain identical.

From t = 15 onwards, the barrier function increases once again due to the third dis-
turbance. Around t = 18, a chattering phase begins. In fact, as shown in Figure 7.34,
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the system reaches the boundary precisely at t = 18 and remains there until t = 20,
when the disturbance returns to zero, which leads the barrier function to stabilize
at a constant value and bringing the two control inputs back to be equals.

Therefore, it can be concluded that the barrier function, as defined, shows a good
response in the context of a lane-keeping problem, ensuring that the system remains
within a predefined safe corridor. This result highlights the correct result of satisfying
the constraints without requiring excessive control effort. However, more study on
the selection of the approximation of the sigmoid function is necessary to further
refine the adaptability of the method.
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Chapter 8

Conclusion

The following section presents the overall conclusions. Specifically, Section 8.1 dis-
cusses the outcomes of this thesis, while Section 8.2 outlines potential directions for
future research.

8.1 Thesis Outcome

This thesis presents a study on the motion planning and control of an Autonomous
Underwater Vehicle (AUV), specifically the BlueROV2, for dynamic target tracking
and safe trajectory execution. The research is structured into two major phases.
In the first phase, a standard autopilot problem is conducted within the Gazebo
simulation environment, concentrating on the surge and yaw dynamics of the AUV.
The second phase advances upon this by introducing a control strategy to ensure safe
path following, focusing on the sway dynamics through the incorporation of Control
Barrier Functions (CBF). This method improves the AUV’s ability to follow a safe
path.

Initially, a mathematical modelling of the AUV was presented, followed by a sim-
plified model focused on horizontal motion (surge, sway, yaw). This simplification
allowed the derivation of an effective autopilot strategy, based on two PID controllers
for surge and yaw. The implementation in the ROS/Gazebo environment provided
a realistic simulation framework to validate the proposed approach.

A key point in the study was the need for real-time motion planning, since the
AUV is required to track a moving target while avoiding obstacles. To address
this, the Rapidly-Exploring Random Tree Star (RRT*) algorithm was selected. This
algorithm was chosen because it is suitable for dynamically changing environments
as it iteratively refines the trajectory. For the guidance system, a Line-of-Sight
(LOS) approach was employed, a widely used method in marine applications due to
its effectiveness in directing a vehicle along a predefined path while maintaining a
smooth trajectory.

Despite the satisfactory performance of the PID-based autopilot under nominal con-
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ditions, further improvements can be made to achieve more accurate path following
and to ensure that the AUV remains within a ”safe” corridor during navigation.
To handle this problem, an approach based on Control Barrier Functions (CBFs)
was coducted. A lane-keeping strategy was implemented, introducing an additional
LQR controller in the sway dynamics. This modification ensured that the AUV
remained within a predefined safety corridor. Assumptions regarding disturbance
types and AUV velocity profiles were made in order to simulated them. The results
indicate that the proposed approach successfully maintains the vehicle within safe
operational bounds.

Overall, from a computational standpoint, RRT* was found to be efficient in gener-
ating feasible paths in real-time. The LOS guidance provided accurate directional
control, while the PID-based autopilot offered a simple yet effective control for path
following. However, in scenarios where bounded position limitations are required
when following a predefined path, using CBF-based control is essential to maintain
safety constraints. One of the main challenges in implementing CBF-based control is
the real-time solution of the associated QP problem. However, various experiments
demonstrated that practical implementations of this approach remain feasible and
promising for real-world deployment.

In conclusion, the development of the Rapidly-Exploring Random Tree Star (RRT*),
Line-of-Sight (LOS) guidance systems, and a PID-based autopilot for surge and yaw
control in a dynamic context has proven to be effective. The integration of these
systems allow an efficient path following with a real-time path planning. Addition-
ally, the initial studies into incorporating Control Barrier Functions for sway control
appear promising. This approach suggests potential for improving the ability of the
AUV to maintain stability and safety under varying ocean conditions. The promising
results encourage continued exploration and refinement of CBF integration, aiming
to achieve even higher levels of safety in underwater navigation.

8.2 Future Work

Following this initial phase of study, further analyses has to be computed explored
to validate the applicability of Control Barrier Functions in different operational
scenarios. In order to do it, it is important to test them under different types of
disturbances. Specifically, scenarios should not be constrained to cases where the
Autonomous Underwater Vehicle (AUV) travels at a constant cruise speed in surge
or follows a straight-line trajectory. Instead, more complex situations where both
surge and yaw dynamics are actively involved should be considered. One key aspect
to investigate is the coupling between sway and yaw dynamics. Activating CBFs
in sway could introduce challenges during the calculation of the lookahead point
in the Line-Of-Sight (LOS) guidance. Moreover, an essential factor to take into
account is the maximum input that the thrusters (T200) can sustain. If part of
the power is allocated to surge motion and manouvering control through yaw, it
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becomes necessary to accurately adress the remaining power that CBFs can utilize
to counteract the disturbances. Also, to validate the functionality of CBFs in a more
realistic context, their implementation in ROS/Gazebo should be computed. This
includes designing a surge and yaw autopilot based on PID control, along with an
additional sway control integrating an QLR control and a CBF-based QP.

Furthermore, similarly to the study of the lane keeping problem, an Adaptive Cruise
Control strategy using CBFs can be developed to dynamically regulate velocity in a
dynamic environment. This approach makes sure that the vehicle adapts its speed
in real-time based on the environmental factors. Indeed, simulations in a dynamic
environment with both static and dynamic obstacles should be explored. In such
scenarios, the combination of RRT* for feasible trajectory generation considering
fixed obstacles and CBFs for real-time collision avoidance could be implemented.
These improvements would enable a more robust navigation and make sure the
Autonomous Underwater Interception Drone of being able to generate a real-time
trajectory while ensuring obstacle avoidance of dynamic obstacles. This would guar-
antee the correct execution during the path-following phase, keeping the system
within a desired travel corridor and preventing occurrences of collision with any
obstacle around.

72



Appendix A

Thruster T200 Characteristics

In the graph the thrust characteristics of the Blue Robotics T200 is shown. On the
x axis the ESC PWM input value and on the y axis the thrust in kgf. To convert
kgf to Newton, the value must be multiplied by 9.81.

For a supply voltage of 14V, value considered for this project, the thrust reaches
approximately 5 kgf, which corresponds to 50 N. To remain conservative, a maximum
thrust value of 40 N is considered.

Figure A.1: Thruster T200 characteristic ESC-Thrust. [54]
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