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Abstract

Active matter is a field within out-of-equilibrium statistical physics that
studies systems at the microscopic scale capable of converting ambient en-
ergy into self-propulsion or other forms of mechanical motion. The Vicsek
model (VM), which describes the transition to collective motion in self-
propelled particles, serves as a paradigmatic example in this discipline.
Known for its simplicity and numerical tractability, the VM effectively
captures the onset of flocking behavior. While fundamental forces must
obey Newton’s action-reaction principle, effective descriptions of active
matter systems often involve reciprocity-breaking interactions, especially
at the mesoscopic level, where such interactions may be more the rule than
the exception. A striking consequence of non-reciprocal (NR) interactions
in two-species systems is the emergence of chiral phases. This raises the
question of whether chiral phases, or other forms of chirality, can emerge
in one-species NR active models. Prior work on active smectics intro-
duced variants of the Vicsek model incorporating pairwise non-reciprocal
repulsion and noted the spontaneous emergence of global rotation. In this
study, a numerical investigation of chirality-breaking mechanisms in the
non-reciprocal Vicsek model is presented, aiming to explore the potential
role of NR interactions in the emergence of chiral phases. To this end, a
smectic order parameter is introduced as a numerical tool to analyze rota-
tional dynamics. The dependence on non-reciprocal repulsion strength is
then quantified through an exponential fit of the angular velocity autocor-
relation function.



Chapter 1

Introduction

1.1 Active Matter and Collective Dynamics

Nonequilibrium systems manifest in a broad range of scenarios, each ex-
hibiting unique behaviors. However, they can often be categorized based
on shared features [5]. One such category consists of systems that are re-
laxing toward thermal equilibrium but have not yet fully reached it. This
relaxation can proceed relatively smoothly or, in some cases, become ex-
ceedingly slow, as observed in glassy systems. Despite differences in the
relaxation process, there is always a distinct direction in which the system
evolves or would evolve if not obstructed.

Another class of nonequilibrium systems includes those that are unable
to reach equilibrium due to external constraints that sustain a continuous
flow of energy or matter. A common example is a heat conduction ex-
periment, where a material is placed between two reservoirs maintained at
different temperatures, generating a persistent thermal current.

Figure 1.1: Examples of collective phenomena: (a) flock of birds, (b) school
of fish, (c) Emergence of vortices of microtubules [21].

A third category is active matter, which consists of systems that dissi-
pate energy on a microscopic scale, resulting in irreversible dynamics. In
these systems, self-propelled particles draw energy from an internal or ex-
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ternal source and convert it into directed motion, thereby maintaining a
perpetual nonequilibrium state. Unlike systems that passively relax toward
equilibrium or those influenced by boundary conditions, active matter in-
herently breaks time-reversal symmetry because each particle persistently
dissipates energy. What makes this category particularly intriguing is the
emergence of complex collective behaviors in many-body interactions.

Active matter encompasses a diverse array of self-propelled systems,
including biological examples such as flocks of birds [2], schools of fish[25],
actin filaments [17], and microtubules in motility assays [21], as well as
synthetic examples like autophoretic colloids [22, 4, 13]. The study of
active matter has contributed to the development of theoretical models
that capture the fundamental interactions governing these behaviors. For
example, two widely studied models for active particles are the Run-and-
Tumble Particle (Figure 1.2(a)) and the Active Brownian Particle (Figure
1.2(b)).

The Run-and-Tumble Particle alternates between two phases:

• Run: The particle moves in a straight line with constant velocity.

• Tumble: At random intervals, the particle abruptly changes direction
before initiating a new run.

In contrast, the Active Brownian Particle moves at a constant speed but
undergoes gradual directional changes due to random rotational diffusion,
resulting in a smoother trajectory rather than abrupt reorientations.

Figure 1.2: (a)-(b) Visualization of the dynamics of run-and-tumble and
active brownian particles. (c) Two-dimensional run-and-tumble system
undergoing motility-induced phase separation from [5].

Active matter models can be further classified into scalar and aligning,
based on whether the particles interact by adjusting their orientation in
response to their neighbors:

• Scalar active matter consists of particles that do not align with one
another but instead interact through steric or other non-orientational
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forces. A particularly notable phenomenon in this class, which has
no direct equilibrium counterpart, is Motility-Induced Phase Separation
(MIPS). In MIPS, particles spontaneously segregate into dense “liquid-
like” clusters surrounded by a dilute “gas-like” phase, where movement is
freer. This behavior can be reproduced using minimal models of Active
Brownian Particles or Run-and-Tumble Particles interacting via steric
repulsion. Intuitively, MIPS arises because particle collisions slow move-
ment in dense areas, causing further accumulation and creating a self-
reinforcing feedback loop.

• Aligning active matter, on the other hand, consists of particles that ac-
tively adjust their orientation based on local interactions. A foundational
model in this category is the Vicsek model, introduced in 1995 by Vicsek
and collaborators [24]. This model has been highly influential in active
matter research. In its original form, it describes point-like self-propelled
particles moving at a constant speed within a two-dimensional periodic
domain. The particles follow local alignment rules with an added angular
noise term. A key feature of the Vicsek model is the spontaneous emer-
gence of collective motion: when noise levels are sufficiently low, a large
number of individuals synchronize their movement, forming a coherently
moving cluster. A more detailed and generalized version of this model
will be introduced in the next section.

1.2 The Vicsek Model

In the Vicsek model [24], point particles move at constant speed v0, ad-
justing their direction of motion to that of the average velocity of their
neighbors, up to some noise term accounting for external or internal per-
turbations. For a finite density of particles in a finite box, perfect alignment
is reached easily in the absence of noise: in this fluctuation-less collective
motion, the macroscopic velocity equals the microscopic one. On the other
hand, for strong noise particles are essentially non-interacting random walk-
ers and their macroscopic velocity is zero, up to statistical fluctuations.
Vicsek et al. showed that the onset of collective motion occurs at a finite
noise level. In other words, there exists, in the asymptotic limit, a fluctu-
ating phase where the macroscopic velocity of the total population is, on
average, finite. Working mostly in two space dimensions, they concluded,
on the basis of numerical simulations[9, 24], that the onset of this ordered
motion is well described as a novel non-equilibrium phase transition lead-
ing to long range order, at odds with equilibrium where the continuous XY
symmetry cannot be spontaneously broken in two space dimensions and
below, due to Mermin-Wagner theorem.
Let us now introduce the dynamical rule defining the Vicsek model. Point
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particles labeled by an integer index i move off-lattice in a space of dimen-
sion d(that in the following we will always consider to be 2) with a velocity
vi of fixed modulus v0. The direction of motion of particle i depends on the
average velocity of all particles (including i) in the spherical neighborhood
of radius r0 centered on i. The discrete-time dynamics is synchronous: the
direction of motion and the position of all particles are updated at each
timestep ∆t, in a driven, overdamped manner:

v⃗i(t+∆t) = v0 · (Rη ◦ N )

[∑
j∈Si

v⃗j(t)

]
(1.1)

where N is a normalization operator (N (w⃗) = w⃗/|w⃗|) and Rη performs
a random rotation uniformely distributed around the argument vector: in
d = 2, Rη(v⃗) is uniformely distributed around v⃗ inside an arc of amplitude
2πη; in d = 3, it lies in the solid angle subtended by a spherical cap of
amplitude 4πη and centered around v⃗. The particles’ positions ri are then
simply updated by streaming along the chosen direction as in:

r⃗i(t+∆t) = r⃗i(t) + ∆t · v⃗i(t+∆t) (1.2)

1.2.1 Flocking Transition

In the following, we present some numerical results on the above introduced
model. The natural order parameter for our polar particles is simply the
macroscopic mean velocity, conveniently normalized by the microscopic
velocity v0:

φ⃗(t) =
1

v0
⟨v⃗i(t)⟩i

where ⟨·⟩i stands for the average over the whole population. We will be
interested in the scalar order parameter given by the modulus of of the mean
velocity φ(t) = |φ⃗(t)|. In the following we set, without loss of generality,
∆t = 1 and r0 = 1, and express all time and length scales in terms of these
units. Fixing the microscopic velocity to a specific value (v0 = 0.5 for the
results below), we remain with two main parameters: the noise amplitude
η and the global density of particles ρ0.

In early numerical studies [9][24] the onset of collective motion was
found to be a novel continuous phase transition spontaneously breaking
rotational symmetry. However, it was later shown in [10] that beyond the
typical sizes originally considered, the discontinuous nature of the transition
emerges. This result is reproduced in figure 1.3.

Another sign of the emergence of the discontinuity in the transition is
given by the Binder cumulant [6]:

G(η, L) = 1− ⟨φ4⟩t
3⟨φ2⟩2t
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Figure 1.3: Transition to collective motion for two different system sizes.
The discontinuous nature of the transition arises only for the larger system.

Indeed, at a first-order phase transition point, the Binder cumulant ex-
hibits a sharp drop towards negative values, while varying continuously at
a second-order one. The two mentioned behaviors are shown in figure 1.4.

Figure 1.4: Change of the behavior of the Binder cumulant for higher sys-
tem sizes, due to the emergence of the discontinuous nature of the flocking
transition.

1.2.2 Phase Diagram and Micro-phase Separation

As mentioned earlier, the two main parameters controlling the system’s
behavior are the noise intensity η and the global density ρ0. So far, we have
analyzed how the system responds to increasing noise at a fixed density.
However, one can explore the full (ρ0, η) phase space and observe that at
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high noise levels or low densities, the system remains in a disordered state,
where particles move randomly with no global coordination. In contrast,
at low noise and sufficiently high densities, the system undergoes a first-
order transition to an ordered phase, where particles spontaneously align,
resulting in large-scale collective motion.

Figure 1.5: Phase diagram of the Vicsek model from [20]. The curves ρh(η)
and ρl(η) mark the limit of the coexistence region.

At very low densities, the system stays disordered regardless of noise
because there are too few interactions to sustain collective motion. As den-
sity increases, the critical noise ηc required to destroy order also increases,
defining a clear phase boundary in the (ρ0, η) plane. Near this transi-
tion, the system exhibits a coexistence of ordered and disordered regions,
where high-density, ordered traveling bands emerge and move through a
disordered background. This behavior resembles a liquid-gas transition:
the ordered (flocking) phase acts like a dense liquid, while the disordered
phase behaves like a gas. The (ρ0, η) phase diagram is shown in Figure 1.5.

The arrangement of the ordered phase into traveling bands within the
coexistence region is known as microphase separation. This phenomenon
is a distinct feature of the Vicsek model and is not a general property of
flocking transitions. For instance, the active Ising model (Appendix A),
despite also displaying a coexistence region, does not exhibit microphase
separation. This difference has been investigated using continuum theories
[20], but a full analytical understanding is still lacking.

Within the coexistence region, increasing the density leads to the for-
mation of more bands, while their width remains constant. Bands can be
detected by analyzing the density or the order parameter averaged along
the direction perpendicular to their motion (which coincides with the direc-
tion of polar order). In the presence of bands, both ⟨ρ⟩⊥ and ⟨φ⟩⊥ exhibit
distinct peaks, as illustrated in Figure 1.6.
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Figure 1.6: Configurations with increasing values of ρ0(1.05, 1.45, 1.95, re-
spectively for (a),(b),(c)). The number of bands increase with the mean
density of the system. For each configuration is shown the plot of both ⟨ρ⟩⊥
and ⟨φ⟩⊥ exhibiting peaks in corrispondence of the position of the bands.
Other parameters of the model are fixed: Lx = 400, Ly = 50, η = 0.4,
v0 = 0.5.

1.3 Continuous Theory for the Vicsek Model

Understanding collective motion in active systems requires models that
go beyond particle-based simulations. While microscopic models provide
detailed insights, they often become computationally expensive and difficult
to analyze at large scales. A more effective approach is to describe the
system using continuum theories, which capture the macroscopic behavior
of the system through a set of coarse-grained equations.

1.3.1 The Toner-Tu Hydrodynamic Equations

The first continuous theory for the Vicsek model where developed by Toner
and Tu[23]. In this framework, the system is described by two main fields:
the density ρ(r⃗, t) and the velocity v(r⃗, t), which evolve according to a set
of nonlinear partial differential equations built phenomenologically, con-
sidering all the terms allowed by rotational symmetry. These equations,
account for both the spontaneous emergence of order and the fluctuations
that govern large-scale dynamics. In their most general form the PDEs are:

∂tρ+∇ · (ρv⃗) = 0 (1.3)

∂tv⃗+λ1(v⃗ ·∇)v⃗+λ2(∇· v⃗)v⃗+λ3∇|v⃗|2 = D∇2v⃗+νb∇(∇· v⃗)+(r−u|v⃗|2)v⃗+
−∇P (ρ) + η⃗ (1.4)
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The first equation represents mass conservation, while the second de-
scribes the evolution of the velocity field, including several terms each rep-
resenting:

• Advection: λ1(v⃗ · ∇)v⃗ + λ2(∇ · v⃗)v⃗ + λ3∇|v⃗|2

• Viscosity: D∇2v⃗

• Bulk viscosity: νb∇(∇ · v⃗)

• Aligning: (r − u|v⃗|2)v⃗

• Pressure −∇P (ρ)

• Noise: η⃗

And can be thought as a Navier-Stokes equation plus an aligning Ginzburg-
Landau term.

A key prediction of the Toner-Tu theory is that long-range order can
persist in two dimensions, defying the expectations from equilibrium sys-
tems, where the Mermin-Wagner theorem would forbid such ordering. The
theory also predicts phase coexistence between ordered and disordered re-
gions.

1.3.2 Generalized Vicsek Model

A significant limitation inherent to the Toner-Tu framework lies in its dis-
connection from the parameters governing the microscopic level of the sys-
tem. Without the connection between the parameters of the Vicsek model
and the coefficients present in the Toner-Tu equations, constructing phase
diagrams that correspond to those obtained from microscopic models or
experimental studies becomes difficult. Therefore, the reliability and rep-
resentational power of hydrodynamic equations cannot be rigorously eval-
uated.

For this reason, methodologies have been developed to begin with a
specific microscopic model and derive the corresponding hydrodynamic
equations, establishing a link between microscopic parameters and hydro-
dynamic transport coefficients. Although exact derivations are currently
confined to a narrow subset of microscopic models, alternative methods rely
on constructing an intermediate kinetic-level description before proceeding
to derive hydrodynamic equations from it.

In the following we will introduce a more general formulation of the
Vicsek model, more suitable to the development of a kinetic description[15].

Particles are described by their position r⃗ and a unit vector defined by
θ ∈ [−π,+π]. The update rule is the same of 1.2. However, we consider
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v⃗ as a random vector drawn from a displacement distribution ϕ(v, θv − θ),
θv being the angle defining the orientation of v⃗. Note that the numerical
model is recovered in the case ϕ(v, θv − θ) = δ(v − v0)δ(θv − θ).
The heading angle of a particle θ evolves according to the stochastic dy-
namics given by:

θ′ = ψ(p)(θ, θi1 , ..., θip) + δθ

Where δθ is an angle drawn from a symmetrically distributed random dis-
tribution Pη and ψ

(p) is the interaction rule for the p-neighbours case. When
no neighbours are present, particles simply experience self-diffusion events
ψ(0)(θ) = θ + η.
Before entering the continuous theory, let us consider the two-body inter-
action rule ψ(θ1, θ2). We are still considering isotropic interactions, this
impose that for an arbitrary rotation of angle α:

ψ(θ1 + α, θ2 + α) = ψ(θ1, θ2) + α mod (2π)

Choosing α = −θ1, we find that the two-body interaction rule is determined
by a function only of the angles difference:

ψ(θ, θ +∆) = θ +H(∆)

1.3.3 Boltzmann-Ginzburg-Landau Approach

For most systems similar to the Vicsek model, kinetic equations are for-
mulated to govern the one-body probability distribution function f(r⃗, θ, t).
This function describes the likelihood of finding particles at a specific po-
sition r⃗, heading the direction defined by θ, at time t. Deriving such an
equation necessitates factorizing a multi-body distribution function into a
product of one-body functions, a step justified under the strong “molecular
chaos” assumption. This assumption posits that the orientations of the par-
ticles become decorrelated between successive interactions. However, the
molecular chaos hypothesis is particularly stringent: particles that have
just interacted often remain aligned for a significant duration, preserving
correlations. Consequently, quantitative agreement between kinetic-level
descriptions and microscopic models is often not obtained.

Moreover, additional assumptions are required to derive hydrodynamic
equations from kinetic ones. As a result, hydrodynamic theories should
realistically aim to provide qualitative, or at best semi-quantitative, con-
sistency with the underlying microscopic dynamics.

Here we focus on the approach pioneered and developed by Eric Bertin
and his collaborators [3, 15], referred to as the Boltzmann-Ginzburg-Landau
(BGL) framework.

The BGL approach is particularly suited for systems like the Vicsek
model and serves as a robust methodology for deriving hydrodynamic equa-
tions. To illustrate this, we will apply the BGL framework directly to the
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generalized Vicsek model. The derivation begins by formulating a Boltz-
mann equation, a step that formally requires the assumption of particle
diluteness. The generalized Boltzmann equation for polar Vicsek particles
can be expressed as follows (a full derivation is provided in Appendix B):

∂tf(r⃗, θ, t)+v0nα(θ)∂αf(r⃗, θ, t) = D0δαβ∂α∂βf(r⃗, θ, t)+D1qαβ∂α∂βf(r⃗, θ, t)+

+ Isd[f ] + Icol[f ] (1.5)

Where n̂(θ) is the unit vector pointing in the direction θ, D0 and D1 are the
isotropic and anisotropic diffusion coefficients proportional, respectively, to
the identity δαβ and the nematic tensor qαβ(θ) = nα(θ)nβ(θ)− 1

2
δαβ. It can

be shown that the coefficients are expressed by:

D0 =
1

4

(
⟨v2⟩ − v20

)
∆t (1.6)

D1 =
1

2

(
⟨v2 cos 2δθ⟩ − v20

)
∆t (1.7)

Note that both vanish for the case that we studied numerically, for which
we do not have diffusion in the positional part of the dynamics

(
ϕ = δ(v−

v0)δ(θv − θ)
)
. Regarding the other terms, we have the integrals describing

the dynamics of the heading angle θ:

Isd[f ] = −λf(r⃗, θ, t) + λ

∫ 2π

0

dθ′f(r⃗, θ′, t)Pη(θ − θ′) (1.8)

Icol[f ] = −2r0v0f(r⃗, θ, t)

∫ 2π

0

dθ′K(θ′ − θ)f(r⃗, θ, t)+ (1.9)

+ 2r0v0

∫ 2π

0

dθ1

∫ 2π

0

dθ2K(θ2 − θ1)f(r⃗, θ1, t)f(r⃗, θ2, t)Pη
(
θ −Ψ(θ1, θ2)

)
Which describe self-diffusion and two-body collision events, respectively. λ
is the rate for self-diffusion events, while K(∆) is the collision kernel and it
depends only on the angle difference, to respect the symmetry of the sys-
tem. Since we are considering polar particles, it holds K(∆) = 2

∣∣ sin (∆
2

)∣∣.
We can make the Boltzmann equation dimensionless by rescaling appropri-
ately the quantities:

t→ λ−1t ,

∂x,y → λv−1
0 ∂x,y ,

f(r⃗, θ, t) → ρ0f(r⃗, θ, t).

In such way, we ramain with only two control parameters: the variance η2

of the noise distribution and the dimensionless density ρ̃0
.
= 2r0v0ρ0λ

−1.
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The next step is to exploit the periodicity of the angular part of the single-
particle distribution f(r⃗, θ, t), expanding it in terms of angular Fourier
modes:

f(r⃗, θ, t) =
1

2π

+∞∑
k=−∞

fk(r⃗, t) e
−ikθ (1.10)

Where

fk(r⃗, t) =

∫ 2π

0

dθf(r⃗, θ, t)eikθ (1.11)

Being f a real-valued function, we will have f−k(r⃗, t) = f ∗
k (r⃗, t). We observe

also that when working near onset of orientational order we have smooth
angular variations of f(r⃗, θ, t), implying that the modes fk quickly decay
to zero for increasing values of k. This will be useful to obtain hydrody-
namic equations, which has to be a closed set of equations for the first few
modes, indeed the first three modes correspond, respectively, to the com-
plex representation of density ρ, momentum w⃗ = ρv⃗ and nematic S = ρQ
fields:

f0(r⃗, t) =

∫ 2π

0

dθf(r⃗, θ, t) = ρ(r⃗, t) , (1.12)

f1(r⃗, t) =

∫ 2π

0

dθf(r⃗, θ, t)eiθ = wx(r⃗, t) + iwy(r⃗, t), (1.13)

f2(r⃗, t) =

∫ 2π

0

dθf(r⃗, θ, t)e2iθ = 2[Sxx(r⃗, t) + Sxy(r⃗, t)] . (1.14)

Now we will switch to the Fourier space in the Boltzmann equation 1.5,
multiplying by eikθ and integrating over θ all members, this will result in
an infinite hierarchy of PDEs governing the evolution of the modes fk.
In the following, we will consider a class of systems for which it is not
necessary to consider the angle diffusion dynamics(D0 = D1 = 0) so those
term will we discarded. Space and time dependencies of the functions will
be implicit, to lighten the notation. Let us consider the terms one by one:

• Drift term:

n̂(θ) · ∇⃗f(θ) −→
∫ 2π

0

dθeikθ
(
cos θ
sin θ

)(
∂x
∂y

)
f(θ) =

1

2
(∇∗fk+1 +∇fk−1)

Where we used the complex gradient ∇ = ∂x + i∂y.

• Self-diffusion integral:

Isd[f ] = −λf(r⃗, θ, t) + λ

∫ 2π

0

dθ′f(r⃗, θ′, t)Pη(θ − θ′) −→ (Pk − 1)fk

Where Pk is the kth mode of the distribution Pη, and we exploited the
properties of the convolution product with respect to the Fourier trans-
form.
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• Collision integral: Let us consider just the gain contribution for the
moment.∫ 2π

0

dθeikθ
∫ 2π

0

dθ1

∫ 2π

0

dθ2K(θ2 − θ1)f(θ1)f(θ2)P
[
θ − θ1 −H(θ2 − θ1)

]
Expanding Pη and f(θ2) in Fourier modes and applying the change of
variable θ2 → ∆+ θ1:

1

(2π)2

∑
q,l

Plfq

∫ 2π

0

dθei(k−l)θ
∫ 2π

0

dθ1e
i(l−q)θ1f(θ1)

∫ 2π

0

d∆K(∆)ei
[
−q∆+lH(∆)

]
=

=
1

2π

∑
q,l

Plfqδk,lfl−q

∫ 2π

0

d∆K(∆)ei
[
−q∆+lH(∆)

]
=

= Pk
∑
q

Ik,qfqfk−q

Where we have defined the mode coupling function:

Ik,q =
1

2π

∫ 2π

0

d∆K(∆)ei
[
−q∆+kH(∆)

]
The loss contribution can be computed similarly. Summing the two
contributions the collision term can be written as:∑

q

Jk,qfqfk−q

With Jk,q = ρ̃0(PkIk,q − I0,q).
To go further, we have to specify the function H(∆) defining the inter-
action rule. Let us then consider the canonical Vicsek model, which de-
scribes polar particles interacting with a ferromagnetic interaction(H(∆) =
∆
2
). For such system the node coupling function becomes:

Ik,q =
1

2π

∫ 2π

0

d∆ 2
∣∣∣ sin(∆

2

)∣∣∣ei( 1
2
k−q

)
∆ =


4
π

1−(k−2q)(−1)q sin
(

kπ
2

)
1−(k−2q)2

if |k − 2q| ≠ 1

2
π

otherwise

After collecting all the terms, we end up with the following hierarchy:

∂tfk +
1

2
(∇∗fk+1 +∇fk−1) = (Pk − 1)fk +

∑
q

Jk,qfqfk−q (1.15)

The above system of equations admits the trivial disordered solution:

f0 = ρ = 1 , fk = 0 ∀k > 0
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The linear stability for this solution with respect to space-independent
perturbations is given by:

∂tδfk = [Pk − 1 + Jk,0 + Jk,k]δfk = µkδfk (1.16)

Where we have introduced the linear coefficients µk[ρ] = Pk−1+Jk,0+Jk,k,
which as one can deduce from 1.16 determine the stability of the disordered
solution (guaranteed only if µk < 0 ∀k). For the scaling analysis that we
are about to do, it is useful to write explicitly the first equations of the
hierarchy:

∂tρ = −ℜ(∇∗f1) ,

∂tf1 = −1

2
(∇∗f2 +∇ρ) + µ[ρ]f1 + (J1,2 + J1,−1)f

∗
1 f2 + . . . ,

∂tf2 = −1

2
(∇∗f3 +∇f1) + µ2[ρ] + J2,1f

2
1 + . . . ,

...

∂tfk = −1

2
(∇∗fk+1 +∇fk−1) + µk[ρ]fk + (Jk,1 + Jk,k−1)f1fk−1 + . . . ,

...

(1.17)

Now, it can be shown that only µ1 = P1 − 1 + 4
π
(P1 − 2

3
)ρ0 can become

positive at low noises and large densities. We can visualize a schematic
phase diagram in figure 1.7. The line defined by µ1 = 0 in the (ρ0, η) plane
delimits the theoretical change of stability of the disordered solution. Be-
low that line, the polar order |f1| grows and close to the transition we can
thus assume that |f1| ≈ ϵ with ϵ ≪ 1. Using this information, we can see
from 1.17 that each k > 1 mode takes non-zero value due to its non-linear
coupling with mode f1. This value is however kept small thanks to the
negative coefficients µk>1, we thus have |f2| ≈ |f1|2 , . . . , |fk| ≈ |f1fk−1| ∀k.
Moreover, the first equation of the hierarchy, which is simply a continuity
equation, imposes |∂tρ| ≈ |∇∗f1|, while the pressure in the polar field equa-
tion (k+1) gives |∂tf1 ≈ |∇ρ|. Therefore, |δρ| = |ρ−ρ0| = |ρ−1| ≈ |f1| ≈ ϵ
and ∂t ≈ ∇ ≈ ϵα. The exponent is finally determined balancing in the po-
lar field equation the terms f ∗

1 f2 and ∇∗f2, resulting in α = 1.

Thus, there is a unique scaling ansatz that allows one to attribute an
ϵ order to each term of the hierarchy. Keeping terms up to second order,
we can remove all equations of the hierarchy up to k = 2. Moreover, the
equation for the nematic field reduces to:

f2 =
1

µ2

[
1

2
∇f1 − J2,1f

2
1

]
13



Figure 1.7: Schematic phase diagram from [7] of the hydrodynamic equa-
tions derived using the BGL method in the (ρ0, η) plane. The Sgas line
marks the (lower) limit of stability of the disordered solution and is defined
by µ1 = 0. The Sliq line marks the (upper) limit of stability of the homoge-
neous ordered solution. The outermost lines (Bgas and Bliq) are the binodal
lines. They mark the limit of existence of inhomogeneous band solutions.

Replacing f2 by the above expression in the f1 equation we finally get the
closed hydrodynamic equations that we were looking for:

∂tρ = −ℜ(∇∗f1) ,

∂tf1 = −1

2
∇ρ+ (µ[ρ] + ξ|f1|2)f1 + ν∆f1 − k1f1∇∗f1 − k2f

∗
1∇f1 ,

(1.18)

With

µ1[ρ] = P1 − 1 +
4

π

(
P1 −

2

3

)
ρ0ρ ,

ξ = −16(5P1 − 2)(3P2 + 1)ρ20
15π2µ2

,

k1 = −4(1 + 3P2)ρ0
3πµ2

,

µ2 = P2 − 1− 8

15π
(7 + 5P2)ρ0 ,

ν = − 1

4µ2

,

k2 =
2(5P1 − 2)ρ0

5πµ2

.
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Chapter 2

Study of a Non-reciprocal
Vicsek Model

We have already introduced the concept of active matter, where time-
reversal symmetry is broken at the microscopic level by the continuous con-
version of energy in self-propulsion. The most interesting part of this field
comes when interactions are introduced: considering free single-particle
dynamics does not bring much new physics with respect to its equilibrium
counterpart. Thus, the interesting non-equilibrium features of active par-
ticles are displayed only when we make them interact with each other or
the environment. We have seen, as an example, the emergence of collective
motion in aligning active matter with the minimal Vicsek model.

While at the elementary level interactions must respect Newton’s action-
reaction principle, effective descriptions of active matter, which treats meso-
scopic scales, often include reciprocity-breaking interactions. Examples of
such behavior include predator-prey and promoter-inhibitor systems [12],
but also systems whose dynamics depend on information propagation as in
crowds of social animals [11, 1, 14, 8]. It is not necessary to consider binary
system to observe non-reciprocity to arise. Based on the studies proposed
in [16], we will propose a numerical study of a Vicsek model in which non-
reciprocity is introduced, bringing to a novel type of smectic order and a
surprising emergence of chirality in a microscopically achiral model.

2.1 Description of the Model

As already anticipated, we will study the variant of the Vicsek model pro-
posed in [16]. In the spirit of the original dynamics, particles will evolve
in a two-dimensional domain with periodic boundary conditions under the
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following update rules:

r⃗i(t+ 1) = r⃗i(t) + v0ê
(
θi(t+ 1)

)
(2.1)

θi(t+ 1) = arg
[
A⃗i(t) + βR⃗i(t)

]
+ σχi(t) (2.2)

Where ê(θ) = (cos θ, sin θ)T and, again, we have expressed all time and
length scales in terms of ∆t and r0, respectively.

Figure 2.1: (a) Anisotropy of the interaction represented by the factor
cos2(ϕji−γ). (b) Schematic representation of the non-reciprocity generated
by the lack of symmetry of ϕij under indices exchange.

χi is an angular white noise uniformly distributed in [−π
2
, π
2
], which

makes the parameter σ the angular noise strength. The terms inside the arg
function represent the attractive and repulsive interactions, respectively:

• A⃗i is the usual alignment term of the Vicsek model:

A⃗i =
1

Ni

∑
i∼j

ê(θj)

• R⃗i is a repulsion, which can be chosen to be:

R⃗i =


1

Ni−1

∑
j∼i,j ̸=i r̂ji isotropic,

1
Ni−1

∑
j∼i,j ̸=i cos

2(ϕji − γ)r̂ji anisotropic.

Where r̂ji is the unit vector pointing from j to i, and ϕji is the angle
between r̂ij and v⃗i.

Given the above definitions, it is clear that the role of β is the repulsion’s
strength, and together with the noise amplitude σ, they are the two main
parameters of the model.
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The fact that interactions are normalized by the number of neighbors
Ni already introduces some non-reciprocity. In fact, even in the standard
Vicsek model, Newton’s third law is not strictly followed. However, the
non-reciprocity in the repulsion has a bigger impact, as we will see. In the
anisotropic case the explicit dependence on the angle ϕij adds another layer
of such non-reciprocity, as illustrated in figure 2.1.

2.2 Emergence of Smectic Order

In the following, we examine the collective dynamics of the system for three
different types of repulsive forces: isotropic and anisotropic, with γ = 0 and
γ = π

2
.

Similar to the repulsion-free model, we observe an orientational order-
disorder transition when σ increases or ρ0 decreases. Our focus will be
on how the system behaves as a function of σ and β, while keeping the
remaining parameters fixed in accordance with [16] (v0 = 0.25,ρ0 = 10).
At such high densities, the coexistence phase of the orientational order
transition is practically absent.

The most significant effect of introducing repulsion is the emergence of
smectic order in all the cases considered, provided σ and β take appropriate
values. This smectic ordering becomes more stable at higher densities,
which is why we have chosen to keep ρ0 at a large fixed value.

Figure 2.2: Emergence of smectic P order for isotropic(a) and anisotropic
sides repulsion(c), and smectic A order for anisotropic front-and-back re-
pulsion(b). Color indicates direction of particles.

The specific type of smectic order depends on the nature of the repulsive
force. In the cases of isotropic repulsion and anisotropic repulsion with
γ = π

2
(side repulsion), we observe a novel form of smectic order not found

in equilibrium systems. In this newly identified phase, the particle axes
align parallel to the layers, leading to what has been termed ‘smectic P’. On
the other hand, when anisotropic repulsion acts with γ = 0, the strongest
repulsion occurs at the front and back of the particles, resulting in a smectic
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A configuration. However, before reaching this final state, the system may
undergo a long transient period where patches of smectic C order appear,
forming local chevron-like structures due to competition between different
smectic arrangements. Examples of all three cases are illustrated in Figure
2.2. The spacing between the smectic lines, as one could expect, is of the
order of the interaction radius.

2.3 Phase Diagram Analysis

We have observed the emergence of smectic order in our models. To analyze
this more quantitatively, we focus on the anisotropic model with γ = π

2
, as

this case is of particular interest for reasons that will become clear in the
next section.

As an alternative to the conventional smectic order parameter, we pro-
pose a numerical approach that successfully reproduces a phase diagram
consistent with the one reported in [16]. Finally, we conclude with a brief
finite-size scaling analysis of the smectic order.

2.3.1 Smectic Order Parameter

Smectic order is typically quantified using the order parameters Sn, defined
as:

Sn(t) =
⟨|ρ(q⃗n, t)|2⟩t

N2
(2.3)

Where ρ(q⃗n, t) is the spatial Fourier transform of the density, computed
at q⃗n = n2π

al
ẑ:

ρ(q⃗n, t) =

∫
d2rρ(r⃗, t)e−iq⃗n·r⃗ (2.4)

Here, n is an integer, al ≈ r0 represents the layer spacing, and ẑ is the
direction normal to the smectic layers.

Although fast Fourier transform methods have been developed to com-
pute Sn efficiently, Equation (2.3) can still be simplified to make the anal-
ysis of smectic order more practical and computationally accessible. To
achieve this, we first recall the spatial correlation function:

g(r⃗) =
⟨ρ(⃗0)ρ(r⃗)⟩

ρ20
(2.5)

Focusing on the domain within a circle of radius a ≲ al, we expect g(r⃗)
to be nearly uniform for configurations that preserve translational sym-
metry, while exhibiting peaks at layer positions in smectic configurations.

18



Since our primary interest lies in the angular dependence, we integrate over
the radial coordinate within this region, defining the angular correlation
function:

G(ψ) =

∫ a

0

drrg(r, ψ) (2.6)

Using the angular correlation function is advantageous because it can
be directly computed via the empirical definition:

G(ψ) =
1

N

∑
i

∑
j∈Ca,j ̸=i

δ(ψij − ψ) (2.7)

where ψij represents the angular position of particle j relative to particle
i, and Ca denotes the set of particles within a circle of radius a centered in
r⃗i.

Figure 2.3 illustrates two examples of the typical profile of G(ψ) for a
uniform configuration and a smectic one. At this stage, we can extract
smectic order information by quantifying how peaked G(ψ) is around its
maximum:

S =

∣∣∣∣∣
∫ 2π

0
dψG(ψ) cos(2(ψ − ψ∗))∫ 2π

0
dψG(ψ)

∣∣∣∣∣ (2.8)

Where ψ∗ = argmaxψ∈[0,2π)G(ψ). As evident from Equation (2.8), S
is bounded within the range [0, 1], making it a good candidate to be the
smectic order parameter.

In Figure 2.3, we also compare the angular correlation function of both
configurations with cos(2(ψ − ψ∗)), illustrating how S effectively captures
smectic order information.
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Figure 2.3: (a),(b) Snapshots of configurations right after particles have
been generated from a uniform distribution(left) and after some time, when
smectic order has emerged(right).(c),(d) Colormap of the angular correla-
tion function rescaled into the interval [0, 1].(e),(f) G(ψ) and cos(2(ψ−ψ∗))
in the same plot. The two configuration correspond respectively to S ≈ 0
and S ≈ 0.77.

2.3.2 Phase Diagram and Finite Size Scaling of Smec-
tic Order

With the order parameter defined in the previous section, we are now ready
to analyze smectic order more quantitatively. Our focus will be on the
anisotropic model with side repulsion. As previously mentioned, smectic
order emerges within the orientationally ordered phase at low noise levels
and moderate repulsion strengths.

The maximum noise level at which a significant smectic order is ob-
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served increases with β, as expected from the competition between order
and disorder. Additionally, smectic order tends to be more stable at higher
densities. This can be explained by the fact that increasing the number
of particles does not alter the number of smectic layers but instead makes
them denser. As a result, these layers gain a form of rigidity due to align-
ment interactions.

Figure 2.4 presents a portion of the (β, σ) plane, displaying the corre-
sponding levels of smectic order. The agreement with the results in [16]
confirms that S is a reliable and effective smectic order parameter.

Figure 2.4: Average smectic P order parameter (S) over the (β, σ) plane,
for a system of size L = 24.

An analysis of the system’s behavior with increasing size reveals that
global smectic order tends to decay beyond a certain length scale, even
though it remains present locally. This suggests that the emergence of
global smectic order is more likely a finite-size effect rather than a true
phase.

This decay of smectic order can be understood through a phenomeno-
logical hydrodynamic theory [16]. Similar to the Toner-Tu equations dis-
cussed in the previous chapter, one can introduce a displacement field for
the smectic layers and construct a symmetry-based system of partial dif-
ferential equations for both this field and the density field. This theoret-
ical framework explains the decay of smectic order in larger systems, as
symmetry-allowed nonlinearities become more significant at larger scales
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while remaining negligible in smaller systems.
The decay of smectic order as system size increases is illustrated in

Figure 2.5, for a fixed noise level.

Figure 2.5: Finite size scaling for the smectic order with fixed noise (σ =
0.15). Beyond some length scale the global smectic order starts to decay.

2.4 Chiral Simmetry Breaking

In the following section, we will explore another phenomenon associated
with the emergence of smectic order in the anisotropic model with γ = π

2
:

the onset of chirality. It has been observed that in this model, smectic
configurations begin to rotate in either direction, spontaneously breaking
right-left symmetry. This global rotation occurs through the breaking and
reattachment of layers to neighboring ones, rather than individual particles
hopping between layers. By tracking the maximum of G(ψ), we can quan-
tify the angular velocity Ω. In Figure 2.6, we present the average angular
velocity of the global smectic order over an interval of 2 · 104, plotted as a
function of the repulsion strength for different noise levels. This behavior
brings up the issue of determining the nature of the transition to rotation.

By examining the dynamics of the smectic angle (Figure 2.7), it becomes
evident that there is an inversion rate for the rotation, which depends on
the repulsion strength. This phenomenon can also be analyzed from the
perspective of the distribution of local angular velocities. By selecting a
small time interval, one can compute the average angular velocity over that
period, and by repeating this process, construct the histogram of the oc-
currences of Ω. As β increases, the behavior of the distribution becomes
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Figure 2.6: Average global angular velocity as a function of repulsion
strength β, for different noise intensities. averages have been computed
over an interval ∆t = 2 · 104 for a sistem of size L = 40.

clearer. Initially, it starts as a zero-centered, symmetric distribution. How-
ever, as β increases, the distribution splits and becomes bimodal, with two
maxima that are symmetric with respect to zero. This bimodal distribu-
tion reflects that symmetry is not fully broken. If enough time is allowed,
the histogram will eventually become symmetric again.

Figure 2.7: Typical smectic order angle’s trajectories for increasing values
of repulsion strength.

To study the mean angular velocity and its inversion rate, we can remove
fluctuations in the modulus and model Ω(t) as a telegraphic process:

Ω(t) = r(t)Ω0 (2.9)

Where Ω0 is a constant, and r ∈ {−1, 1} is a telegraphic process with a
constant rate λ = 1

2τ
. Once the model parameters are fixed, we can evaluate

Ω0 and τ by using the autocorrelation function:

⟨Ω(0)Ω(t)⟩ = C(t) = Ω2
0e

t
τ (2.10)
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Figure 2.8: Histograms of global angular velocity computed within a time interval
∆t = 50, over T = 106 time steps for a system of size L = 40 and for noise strength
σ = 0.13.(a),(b) and (c) show the results for increasing values of β: 0.21,0.28 and
0.30, respectively.

At this point, it remains to collect sufficient data to perform an exponential fit
on the autocorrelator. We are particularly interested in how this behavior varies
with the repulsion strength. Some examples of the fitting results are shown in
Figure 2.9 for different values of β.

Figure 2.9: Examples of exponential fit for the angular velocity’s autocorrelation
function. (a),(b),(c),(d) correspond respectively to β = 0.195, 0.200, 0.205, 0.215.
Averages have been computed over 2 · 107 time steps.
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The behavior of the modulus of the angular velocity was found to be
consistent with the results in Figure 2.6. The study of the rotational dy-
namics revealed that up to a certain level of smectic order emergence, only
diffusion occurs. This explains why, in Figure 2.10, errors in τ tend to be
higher for smaller values of β.

Interestingly, the inversion time τ exhibits an exponential increase with
repulsion strength (Figure 2.10). While one would also expect τ to increase
with system size, it should be noted that, since smectic order is a finite-size
effect, there is no case of divergence. Moreover, for higher values of β the
smectic order is destroyed, and rotation cannot occur. This implies that
chiral symmetry is not fully broken and is, in fact, restored for timescales
much larger than τ .

Figure 2.10: (a) Result of the exponential fit for the parameter τ . (b) Zoom
on the strongly rotating regime, in logaritmic scale.

25



Chapter 3

Conclusions

In this thesis, we have reproduced and analyzed in detail some of the known
results on Vicsek-like flocking models. The focus of this work is to inspect
the role of non-reciprocal interactions in the collective dynamics of such
non-equilibrium systems.

In Chapter 2, we concentrated particularly on the global rotation of
smectic P configurations in the case of repulsion being stronger to the sides.
We found a clear difference between isotropic and anisotropic interactions:
global rotation was observed only in the latter case, despite the emergence
of a new type of smectic order (type P) in both. The minimal necessary
ingredients for chirality to emerge are still to be determined, and further
insights must be extracted from microscopic simulations.

The next step would be to develop continuous theories derived from
microscopic models, capable of accounting for chiral phases, as the current
phenomenological smectic P hydrodynamic equations do not capture this
behavior.
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Appendix A

Active Ising Model

The Active Ising Model (AIM) [18] was introduced as an alternative ap-
proach to studying the flocking transition. It helps to overcome some of the
numerical and analytical challenges posed by the Vicsek model while still
capturing the essential ingredients of flocking: self-propulsion and align-
ment interactions. However, unlike the Vicsek model, which has continuous
rotational symmetry, the AIM is based on a discrete Ising-like symmetry. In
this model, particles move in a two-dimensional space but self-propulsion is
restricted to only two possible directions: left or right. Despite its simplic-
ity, the AIM reproduces much of the same physics as Vicsek-type models
while being more mathematically and computationally tractable.

We consider N particles moving on a 2D lattice with periodic boundary
conditions. Each particle carries a spin ±1 and there are no exluded volume
interactions, meaning there can be an arbitrary number of particles n±

i with
spin ± on each site. The local density and magnetization are then defined
as ρi = n+

i + n−
i and mi = n+

i − n−
i . The dynamics is determined as a

continuous-time Markov process in which particles can both flip their spins
and hop to neighboring lattice sites at rates that depend on their spin:

• Spin flip: represents the alignment.
A particle with spin s on site i flips its spin at rate:

W (s→ −s) = γ exp

(
− sβ

mi

ρi

)
(A.1)

Where β = 1
T

plays the role of inverse temperature and the rate
γ can be set γ = 1 by rescaling time. This interaction is purely
local: particles only interact within the same site. The flipping rate
varies depending on the local magnetization: it is highest when all
neighboring spins are opposite and lowest when they are aligned.

• Hopping: represents the self-propulsion.
Particles undergo free diffusion on the lattice with a left/right bias

27



depending on the sign of their spins: a particle with spin s hops with
rate D(1+ sϵ) to its right, D(1− sϵ) to its left and D in both up and
down directions. Thus, the parameter ϵ controls the strength of the
self-propulsion.

Figure A.1: Adapted from [20]. Phase separation in the active Ising model.
Lx = 800, Ly = 100, D = 1, ϵ = 0.9, β = 1.9, ρ1 = 2.35(left), ρ2 =
4.7(right). Red arrows indicate direction of motion.

In this model, flocking corresponds to a phase transition similar to a
liquid-gas transition, where an ordered, dense liquid phase coexists with a
disordered gas phase. However, unlike the Vicsek model, where flocking
appears as traveling bands within a disordered background, the AIM ex-
hibits complete phase separation: a single large, dense cluster moves as a
coherent unit through a dilute gas (Figure A.1). This macroscopic phase
separation has been extensively studied using both numerical simulations
and mean-field theoretical approaches [19].
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Appendix B

Boltzmann Equation for Polar
Vicsek Particles

It is possible to develop a kinetic theory for the generalized Vicsek model
through the introduction of a generalized Boltzmann equation [15]. We
first define the single-particle distribution function f(r⃗, θ, t), connected to
the probability to find a particle at position r⃗ heading in the direction
specified by θ, at time t. The normalization is chosen such that:

1

V

∫
V

dr⃗

∫ π

−π
dθf(r⃗, θ, t) = ρ0

Where V is the total volume and ρ0 is the mean density of the system.
Let us begin the derivation from the positional part of the master equa-

tion. The starting point involves expressing the single-particle distribution
as:

f(r⃗, θ, t) =

∫
dv⃗ϕ(v, θv − θ)f(r⃗ − v⃗∆t, θ, t)

On time scales much larger than ∆t we can apply Itô calculus to expand
f inside the integral, leading to:

∂tf(r⃗, θ, t) + ⟨vα⟩∂αf(r⃗, θ, t) =
1

2
⟨δvαδvβ⟩∆t∂α∂βf(r⃗, θ, t)

Where ⟨·⟩ denotes the average over ϕ(v, δθ) and δv⃗ = v⃗ − ⟨v⃗⟩. Since we
are considering polar particles, ⟨v⃗⟩ points in the direction defined by θ. We
can then write ⟨v⃗⟩ = v0n̂(θ), where n̂(θ) = (cos θ, sin θ) and v0 = ⟨v cos δθ⟩.
The covariance term can be evaluated, yielding a decomposition into an
isotropic term proportional to the identity δαβ and an anisotropic term
proportional to the nematic tensor qαβ(θ) = nα(θ)nβ(θ)− 1

2
δαβ:

⟨δvαδvβ⟩ =
1

2
⟨v2

(
1− cos 2δθ

)
⟩δαβ +

(
⟨v2 cos 2δθ⟩ − v20

)
nα(θ)nβ(θ)
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which can be rewritten as:

⟨δvαδvβ⟩ =
1

2

(
⟨v2⟩ − v20

)
δαβ +

(
⟨v2 cos 2δθ⟩ − v20

)
qαβ

Thus, the positional part of the Boltzmann equation becomes:

∂tf(r⃗, θ, t) + v0nα(θ)∂αf(r⃗, θ, t) = D0∆f(r⃗, θ, t) +D1qαβ∂α∂βf(r⃗, θ, t)
(B.1)

where

D0 =
1

4

(
⟨v2⟩ − v20

)
∆t (B.2)

D1 =
1

2

(
⟨v2 cos 2δθ⟩ − v20

)
∆t (B.3)

are the isotropic and anisotropic diffusion constants, respectively.
To derive the full master equation, we must also consider the dynamics

of the heading angle θ. This requires two main assumptions:

• Low-density regime: In this regime, the dynamics of θ are dominated
by self-diffusion and binary collision events, with interactions involv-
ing more than two particles being negligible.

• Molecular chaos: This assumes that the headings of particles become
uncorrelated between consecutive collisions, allowing for the factor-
ization of the two-particle distribution function as:

f (2)(r⃗, θ1, θ2, t) ≈ f(r⃗, θ1, t)f(r⃗, θ2, t). (B.4)

Let us now analyze the two events separately.
In self-diffusion, the heading angle changes by an amount drawn from the
symmetric distribution Pη(δ), with a standard deviation η. To incorporate
the finite-time dynamics of Vicsek-like models, we include tumbling events
occurring at a rate λ:

Isd[f ] = −λf(r⃗, θ, t) + λ

∫ 2π

0

dθ′f(r⃗, θ′, t)Pη(θ − θ′) (B.5)

In binary collisions, two particles with initial heading angles θ1 and θ2
have their headings updated after the collision to:

θ′1 = Ψ(θ1, θ2) + δ1

θ′2 = Ψ(θ2, θ1) + δ2

Where δ1 and δ2 are drawn from Pη(δ).
Since we consider polar particles, the interaction rule Ψ must be 2π-periodic.
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Additionally, due to the isotropy of the model, Ψ must satisfy the following
symmetry property for any rotation by an angle ϕ:

Ψ(θ1 + ϕ, θ2 + ϕ) = Ψ(θ1, θ2) + ϕ mod 2π

By choosing ϕ = −θ1, we obtain:

Ψ(θ1, θ1 +∆) = θ1 +Ψ(0,∆) (B.6)

Where ∆ = θ2 − θ1.
From (B.6), it follows that the interaction rule can be parameterized by
H(∆)

.
= Ψ(0,∆).

The collision rate can be expressed through a collision kernel K(∆). The
number of collisions per unit volume and unit time for a particle at (r⃗, θ1)
interacting with another particle with heading θ2 is given by:

Nc = 2r0v0K(∆)f (2)(r⃗, θ1, θ2, t)

where r0 is the interaction radius. Using the molecular chaos assumption,
we substitute the factorized form of f (2) from (B.4). The collision contri-
bution then becomes:

Icol[f ] = −2r0v0f(r⃗, θ, t)

∫ 2π

0

dθ′K(θ′ − θ)f(r⃗, θ, t)+

+ 2r0v0

∫ 2π

0

dθ1

∫ 2π

0

dθ2K(θ2 − θ1)f(r⃗, θ1, t)f(r⃗, θ2, t)Pη
(
θ −Ψ(θ1, θ2)

)
(B.7)

Combining the heading dynamics contributions from (B.5) and (B.7) with
the positional part of the Boltzmann equation (B.1), we arrive at the full
master equation:

∂tf(r⃗, θ, t) + v0nα(θ)∂αf(r⃗, θ, t) = D0∆f(r⃗, θ, t) +D1qαβ∂α∂βf(r⃗, θ, t)+

+ Isd[f ] + Icol[f ] (B.8)

Finally, we must specify the functional forms of the collision kernel K(∆)
and the interaction rule H(∆). For the scenario of interest, the kernel takes
the form:

K(θ2 − θ1) = |n̂(θ2)− n̂(θ1)| = 2

∣∣∣∣ sin(∆2 )∣∣∣∣ (B.9)

while the interaction rule, in the canonical Vicsek model corresponds to:

H(∆) =
∆

2
∀∆ ∈ (−π, π] (B.10)
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