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1 Introduction
Biology has been a source of inspiration for non-equilibrium statistical physics, providing many
systems in which single agents are able to convert an available source of energy into mechanical
work. Birds, ants, bacteria, and cell organelles are all examples of agents that are able to perform
complex behaviors in large groups, managing it without the need for a top-down organization to
command them. Our interest as complex systems physicists is to develop simplified descriptions of
these systems where a set of minimal ingredients is able to reproduce those non-trivial behaviors.
One of the most common simplifications involves discretizing space into a lattice, choosing the sim-
plest topology that captures the physics of the problem under study. The diffusion of this approach
has certainly been contributed to by one of the most studied models of non-equilibrium physics,
the Totally Asymmetric Simple Exclusion Process (TASEP), which will be referred to later in the
thesis. It was first introduced for studying the motion of ribosomes during the translation of mRNA
[MGP68], and the discretization had the physical justification that ribosomes move during transla-
tion by jumping from one codon to the next. Therefore, they must move in line because the process
is optimized for having the highest number of ribosomes passing through and translating the same
sequence. The TASEP has later become a cornerstone model for non-equilibrium phase transitions
[Kru91] and has been exactly solved. A review on this model that emphasizes its importance as a
paradigmatic model for non-equilibrium statistical physics is [CMZ11].
The biological inspiration on which the thesis is founded comes instead from bacterial motion: indi-
vidual cells like E. coli move in a medium via a run-and-tumble dynamics, which is the alternation
of straight paths at constant speed and chaotic rotational motion [Ber04]. The fascination with this
type of system is part of the larger field of research into active matter, due to the variety of behaviors
that emerge when they move collectively: flocking, hydrodynamic interactions, trapping, and phase
separation. Dissertations on the physical phenomenologies of run-and-tumble bacteria can be found
in the review [EWG15] and in [Cat12].
The lattice model at the center of this thesis was introduced in [Tho+11] to study how flocking and
domain formation emerge when density-affected velocity is added to self-propulsion and stochastic
reorientation events. The latter fact was demonstrated within the field-theoretic framework [TC08],
but a microscopic model was needed to confirm the result. The discretization of space was thus
introduced to define, study, and simulate a system where the velocity depends on the local density
of particles.
Here, we will consider hard-core run-and-tumble particles, so hopping is not allowed into an occupied
site, as it was considered in [SG14] to study the distribution of waiting times in bacterial biofilms,
which allows a cell that has been standing still for long enough to differentiate its gene expression.
The bacterial motion model we consider has not become as popular as the TASEP, and therefore the
need to name it univocally has not yet arisen. Here, to emphasize the connection with the TASEP,
we will call it the Persistent Exclusion Process (PEP), because the motion of a particle persists
in the same direction between tumbles, and the hard-core interaction is the same excluded volume
constraint of the TASEP.
The same model was also proposed for describing counterflowing cargo transportation on micro-
tubules inside eukaryotic cells [MSR11], with particles that can be injected or extracted at the
boundaries, whereas the other studies always considered reflecting or periodic boundary conditions.
The PEP on a one-dimensional lattice has not proven capable of undergoing phase separation at sta-
tionarity, as opposed to its counterparts which allow more than one particle per site. Nevertheless,
we found it interesting to treat the model as a variation of the TASEP. With this perspective, we
decided to test the pair approximation on the PEP, because it has been successful on other TASEP
variants, and we compared the results against other methods used to study the PEP. These were
taken from [DCR20], a study that was able to obtain insightful results on the PEP by switching the
focus from particles to gaps of empty sites. They also demonstrated that hydrodynamic descriptions
of the PEP cannot be defined as simply as for other models, since in this system, the Einstein
relation between hydrodynamic quantities does not hold.
In the second part of the thesis, we introduce a more general model that includes both the PEP
and the TASEP as limiting cases and explore through simulations how it behaves when coupled
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to infinite particle reservoirs at the boundaries. All the simulations performed where done using a
kinetic Monte Carlo algorithm, which we describe in some detail in appendix A.

2 Persistent Exclusion Process
In this section we will discuss the persistent exclusion process(PEP), a model for active matter in-
spired by the motion of bacteria moving in thin biofilms. Bacteria that move using flagella often
travel along trajectories composed of linear sections at constant speed, interrupted by quick tumble
events where they perform a chaotic rotational motion that makes them change the pointing direc-
tion, that happens at time intervals that are Poisson distributed [Ber04]. When many bacteria form
a crowd, their ability to move is affected.
The present model for their collective motion is defined on a lattice where each site can be occupied
by at most one particle, so they are subject to an exclusion interaction that prevents them from
moving if they have another particle in front (we are enforcing crowding in the most strict way).
A configuration of the system is determined if one knows the particles positions and their internal
degrees of freedom deciding the direction in which they are moving at a given time. The system
evolves in continuous time through two stochastic processes: the run process where a particle makes
one step with rate λ if the lattice site in which it points is empty; the tumble process in which the
internal degree of freedom changes randomly to a new direction with rate η. The inverse of the jump
rate λ is taken as the time unit, and in general all quantities will be considered adimensional.
We are assuming that every single process, with its rate, is associated to a poissonian clock, so that
the model follows a random sequential update.
The model particles tend to form clusters. Particles inside a cluster are stuck because the presence
of other particles prevents them from hopping, conversely particles at the cluster ends can leave if
they tumble in a direction which is clear. The cluster grows by absorbing particles at its ends and
shrinks when a particle evaporates by doing a tumble, so clusters are not change their position while
their borders move stochastically. Clusters can always form because of the exclusion interaction the
smaller η, the longer they will last because evaporation events happen less frequently.
If the tumble happens quickly (η ≫ λ), so that a particle changes direction many times before
hopping to a new site, then the particle effectively chooses randomly the direction of each step it
takes and the model reduces to the Symmetric Simple Exclusion Process (SSEP) 1, where particles
simply behave as random walkers with excluded volume. In the opposite limit η = 0, the Markov
chain loses the ergodic property, with different sets of configuration that can be reached for a given
starting configuration, because that fixes the directions of the particles. This singular limit will
always be ignored.
The system reaches a steady state that does not satisfy detailed balance, so we say that the model
is out of equilibrium. This is due to the persistence in the trajectory of each particle. In fact if we
consider a system configuration C with a particle that is moving, it will evolve in the configuration
C′ where the particle has moved to the site ahead with rate 1, whereas there is no single transition
that can make C′ into C. Since particles can evaporate from clusters the probability P (C) that the
system is in a configuration where a particle can move is always different from 0 and detailed balance
cannot be satisfied: {

WCC′P (C) = WC′CP (C′)

P (C) ̸= 0
(1)

where WCC′ WC′C indicate the rate of transition from configuration C to C′, which is 1 in the case
we considered, and from configuration C′ to C, which is 0 instead.
On a 1D lattice, the situation that will be considered all the time, the internal degree of freedom
of a particle can assume only two values {−1,+1}, indicating the direction in which the lattice is
traversed, so that a state of the system can be represented as a collection of variables that indicate
the occupation of each site: ni ∈ {−1, 0,+1}, where i assumes values from 1 to L indicating the
position on the lattice and an empty site is indicated by a 0.

1For references on the SSEP see [Sch01] or [KRB10]
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Refer to [SG14] for a discussion of the collective behavior of RTPs subject to excluded volume inter-
action, focused on the scalings of cluster size and particle stopping time, both in 1D and 2D. These
results are expanded in [CMT23], where the effect of the finiteness of the system on the maximum
and typical cluster sizes of the system are discussed2.
The article [DCR20] develops approximated descriptions for high and low tumble regimes that are
used to calculate hydrodynamic quantities for the system at stationarity. It is particularly interest-
ing because it switches the description of the system, from the dynamics of particles moving on a
lattice to the dynamics of gaps that exchange "masses" depending on the orientation of the neigh-
boring particles. It enables to do approximate calculations with pretty good results. In section 2.1,
we will review and expand the results that we need in the discussion of the thesis. In subsequent
sections we will use the pair approximation on the PEP and then compare the predictions with the
approximations on the mass model. To do so, attention will be paid to the gap distributions and two
quantities, namely the average size of particle clusters lc, a very important quantity for the PEP, and
the particle current as a function of the particle density J(ρ), which is important for TASEP-like
models where this relation is called the fundamental diagram. Both quantities will depend on the
tumbling rate η.
Since at stationarity there is the same average number of particles moving rightward and particles
moving leftward, it is straightforward to say that J will be zero, so the actual quantity considered
will be the current of particles moving rightward J+, which has the same magnitude and opposite
sign of the current of particles moving leftward J−.

2.1 Mass Model
We present here the approximated methods used to describe the PEP in the paper [DCR20]. These
are based on an alternative description of the PEP where the gaps between particles become the
variables describing the state of the system. As it was done in the paper, we will refer to this
description as a mass transport model. After the PEP has been mapped, it will be possible to apply
the MF approximation, that neglects correlations between different gaps, to obtain approximated
results for the stationary mass distribution. The MF is effective only in regimes where the tumble
frequency is high (comparable with the rate of motion of particles η ∼ λ), so to complete the
description a method based on coalescence and fragmentation of masses is used to describe what
happens when η ≪ λ.
Consider a configuration {ni}Li=1 with N =

∑L
i=1 |ni| particles that occupy L sites on a ring. Since

the particles cannot overtake one another, their order remains fixed and the gaps between particles
can be mapped into N masses {mk}Nk=1, so that each mk represents the number of empty sites
between the k-th and the (k+1)-th particle. If ik is the position of the k-th particle on the lattice
then

mk = ik+1 − ik − 1 (2)

where, in order to account for the PBCs, it is sufficient to consider modular arithmetic with modulus
L. It is easy to see that the total mass of the system is

∑N
k=1 mk = L −N , so that the density of

the masses in the system can be defined and related to the total density of particles ρ = N
L in the

original system

ρmass =
L−N

N
=

1

ρ
− 1 (3)

since in this picture masses live on a lattice with N sites. When a particle moves, a unit of mass gets
transferred from the mass in front of the particle to the mass behind it. So the mass flow is in the
opposite direction w.r.t. the direction the particle is pointing, this is why we encode the particle’s
directions into spin variables defined as

sk− 1
2
= −nik (4)

2In the model considered in [CMT23] particles can tumble only when they are next to another particle, nonetheless
the behavior of the system becomes the same of the PEP when η is small because particles are anyway in clusters
most of the time.
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where the use of half-integer position indices highlights the fact that the spin determines the direction
of the mass flow between two adjacent mass sites. Now it is possible to translate the probability of
having at time t a certain configuration in the PEP in the new representation

P
({

nt
i

}L
i=1

)
⇔ P

({
mt

k

}N
k=1

,
{
stk+ 1

2

}N

k=1

)
(5)

where t denotes the continuous time variable. From this change of description will come all the
following reasoning.

2.1.1 Mean-Field

We derive the steady-state mass distribution within the MF approximation. This method is expected
to give better predictions with respect to the MF done over sites because it is better describing
the behavior of the gaps between particles, sometimes this is sufficient to get exact results if the
correlations within a gap are the only thing that matters in a system [SS97]. The probability
of finding the system in a certain configuration of masses {mk} and spins {sk+ 1

2
} can always be

expressed using the conditional probability:

P
({

mt
k

}
,
{
stk+ 1

2

})
= P

({
mt

k

}∣∣∣{stk+ 1
2

})
P
({

stk+ 1
2

})
(6)

Since each spin flips independently, the probability for the spins at stationarity will be straight-
forwardly:

P
(
{sk+ 1

2
}
)
=
∏
k

P
(
sk+ 1

2

)
=

1

2N
. (7)

In the following it will be assumed that the system is always in a state where the spins have
orientations that are randomly distributed with this probability, otherwise we would need to write
equations for the dynamical evolution of the spin variables while we are only interested in the
behavior of the system at stationarity. The remaining conditional probability is not as simple, this
is because the system shows clusters, that become larger for smaller values of η, so the probability
of finding two particles next to each other (mk = 0 for some k) will be affected by the piling up
of other particles accumulated in the neighboring lattice sites. Nonetheless the following step is to
implement a single-site mean-field approximation, where, for each mass, only the neighboring spins
get tracked. This allows to rewrite the conditional mass distribution as:

P
(
{mk} | {sk+ 1

2
}
)
≈
∏
k

P
(
mk | sk− 1

2
, sk+ 1

2

)
Thus, depending on the four values the spin pair can take, there will be four conditional distribu-
tions that we call P++

m , P−+
m , P+−

m , P−−
m , the superscripts refer to the sign of the spins and express

the direction in which the left and the right bonds are making the mass flow. These probability
distributions do not depend on the site index since the steady-state is assumed to be translation
invariant, as simulations show. For convenience, the following shorthands can be defined:

α ≡ P−+
0 , β ≡ P++

0 , γ ≡ P−−
0 , δ ≡ P+−

0 (8)

Once the equations that control the distributions at stationarity are solved, they will allow us to
write these four quantities in terms of the mass density ρmass and spin-flip rate η.
The model as it has been defined is characterized by a left-right symmetry that makes P++

m = P−−
m ,

because particles hop with rate 1 regardless of their direction. This is a great simplification to the
equations because the number of independent probabilities decreases by one, nonetheless here this
simplification will be introduced later in order to write the equations in a more general case. In
order to do this, the left-right symmetry has to be broken, so it will be assumed that a mass that
is transferred to the right, equivalent to a particle moving to the left, does it with rate λ, while the
rate of leftward mass transfer is fixed to 1.
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First of all the temporal evolution of the probabilities has to be written, then the time derivative
may be set at zero because of the steady-state. These equations should describe how the probability
of observing a certain configuration at one site of the mass model can be changing in time. Consider,
for example, a mass site k that contains m masses and has both neighboring spins pointing rightward
(++), this site can be affected by many possible processes, each corresponding to an increase or a
decrease of the probability of observing that configuration at a given time. The equation is the
following:

dP++
k,m

dt
=η
(
P+−
k,m + P−+

k,m − 2P++
k,m

)
+ λ

(
P++
k,m+1 − (1− δm,0)P

++
k,m

)
+

+ λ
∑

s=+,−

∑
n>0

1

2
P s+
k−1,n

(
(1− δm,0)P

++
k,m−1 − P++

k,m

) (9)

A short description of the terms on the r.h.s. is:

1. the first term is due to tumbling. Each site can change its state through the flip of one of its
neighboring spins

2. the second describes a unit of mass being transferred to site (k + 1) since the spin at (k + 1
2 )

points rightward. This process cannot happen when the site is empty (m = 0)

3. the last term describes the transfer of particles from site (k − 1) when this site is non empty.
Since the process of adding a mass cannot make site k empty, then when m = 0 only the
negative part of this term is present

In order to construct the equations for other configurations of the spins the same three kinds of terms
are needed. Assuming translational invariance and using definitions (8) to write the probability that
a site is non empty, the MF dynamical equations of the mass model read:

dP−+
m

dt
=η
(
P++
m + P−−

m − 2P−+
m

)
+ (1 + λ)

(
P−+
m+1 − (1− δm,0)P

−+
m

)
(10)

dP++
m

dt
=η
(
P+−
m + P−+

m − 2P++
m

)
+ λ(P++

m+1 − (1− δm,0)P
++
m )+

+
λ

2
(2− α− β)

(
(1− δm,0)P

++
m−1 − P++

m

) (11)

dP−−
m

dt
=η
(
P+−
m + P−+

m − 2P−−
m

)
+ (P−−

m+1 − (1− δm,0)P
−−
m )+

+
1

2
(2− α− γ)

(
(1− δm,0)P

−−
m−1 − P−−

m

) (12)

dP+−
m

dt
=η
(
P++
m + P−−

m − 2P+−
m

)
+

+
1

2
[(2− α− γ) + λ(2− α− β)]

(
(1− δm,0)P

+−
m−1 − P+−

m

) (13)

In the steady state, time derivatives vanish and equations (10-13) become a system of coupled
difference equations. The equations at stationarity can serve as recursive relations that allow one to
obtain the values of the distributions for m > 0 knowing α, β, γ, δ. This justifies the statement that
the MF equations are solved once the aforementioned four probabilities are written in terms of the
parameters.
To solve the system, the generating function method may be used since stationary probabilities are
defines by recursion relations, so we define:

P̃ ss′(z) =

∞∑
m=0

P ss′

m zm
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Multiplying each of the equations (10-13) by zm and summing over m, the following linear system
can be obtained:

ηz(P̃−−(z) + P̃++(z)− 2P̃−+(z)) = (1 + λ)(z − 1)(P̃−+(z)− α)

ηz(P̃−+(z) + P̃+−(z)− 2P̃++(z)) = λ(z − 1)(P̃++(z)− β − 1
2z(2− α− β)P̃++(z))

ηz(P̃−+(z) + P̃+−(z)− 2P̃−−(z)) = (z − 1)(P̃−−(z)− γ − 1
2z(2− α− γ)P̃−−(z))

η(P̃−−(z) + P̃++(z)− 2P̃+−(z)) = 1
2 (1− z) (λ(2− α− β) + (2− α− γ)) P̃+−(z)

(14)

where the following relations have been used:

∞∑
m=0

zm(1− δm,0)P
ss′

m−1 = zP̃ ss′(z)

∞∑
m=0

zmP ss′

m+1 =
P̃ ss′(z)− P ss′

0

z

Before solving the system for the generating functions, it is convenient to restore the left-right
symmetry in order to reduce the number of unknowns and parameters, making the expressions of
the solutions more manageable. This is obtained by choosing λ = 1, which implies that:

P̃−−(z) = P̃++(z) γ = β

The expressions for the generating functions turn out to be:

P̃++(z) =
2 [(α+ β − 2)(z − 1) + 2η] [(α+ β)ηz + β(z − 1)]

h(z)
(15)

P̃+−(z) =
4η [(α+ β)ηz + β(z − 1)]

h(z)
(16)

P̃−+(z) =
1

h(z)

{
2η(z − 1)

(
3α2z + α((4β − 6)z + 2) + (β − 2)βz

)
+

+ 4η2z(α+ β) + α(z − 1)2(α+ β − 2)(z(α+ β − 2) + 2)
} (17)

where the denominator of all three expressions is:

h(z) = [(α+ β − 2)(1 + η)z + 2− α− β + 2η]
[
(α+ β − 2)z2 + (4− α− β + 4η)z − 2

]
(18)

By setting z = 0 in the expression of P̃+−(z), one obtains the result:

δ =
2ηβ

2η + 2− α− β
(19)

The remaining quantities α and β need some additional considerations, if we want to be able to
determine their expressions. The first consideration regards how the mass distributions should
behave for large m, the second comes from the fact that the number of particles in the system is
conserved so there is a constraint due to the mass density ρmass. The asymptotic behavior of the
distribution P ss′

m is determined by the poles of the generating functions, namely, if z∗ is the smallest
pole then

P ss′

m ∼ e−m/m∗
with m∗ =

1

ln z∗

The expression (18) is factorized and its zeros, which are the poles, can easily be obtained:

z1 =
2− α− β + 2η

(1 + η)(2− α− β)

z2 =
α+ β − 4η − 4 +

√
(α+ β − 4η)2 + 32η

2(α+ β − 2)

z3 =
α+ β − 4η − 4−

√
(α+ β − 4η)2 + 32η

2(α+ β − 2)
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Among these, it can be shown that z1, z2 > 1 and z3 < 1. From the expression of m∗, it can be
seen that poles smaller than unity imply a diverging behavior of the mass distributions, which is not
possible because they must remain finite and normalizable, in order to be physically meaningful. In
order to prevent the divergence at z3 one can impose that the numerators of the generating functions
(15) vanish exactly at z3. The result of these requirements is one constraint that is valid for all three
expressions:

α =
2β
√
β + 2η + η2 − β2

β + 2η
(20)

Now we consider the number of particles in the system. In particular it is necessary to connect the
generating functions to the mass density, which is a conserved quantity. First, one has to define
the generating function associated to the probability of finding a generic gap unconditioned on the
neighboring spin:

Pm =
1

4
P−+
m +

1

2
P++
m +

1

4
P+−
m (21)

P̃ (z) =

∞∑
m=0

zmPm =
1

4
P̃−+(z) +

1

2
P̃++(z) +

1

4
P̃+−(z) (22)

so that the average gap size, the mass density, can be written as

ρmass =

∞∑
m=0

mPm = z
dP̃ (z)

dz

∣∣∣∣
z=1

(23)

⇒ 1− 1

ρ
=
(α+ β)(3α+ β) + 8(2− 2α− β)

8η(α+ β)
+

2− α− β

α+ β
(24)

where the relation between ρ and ρmass, present in equation (3), has been used. Constraints (20)
and (24) can be used to obtain α and β as functions of η and ρ, so that all steady state quantities
regarding the MF mass model can be determined, further details can be found in [DCR20].
The predictions of the MF mass model match well with Monte Carlo simulations when many tumble
happen in the time needed for a particle to collide with another, since the mean distance between
particles is ρ−1, this translates to η−1 ≪ ρ−1 [DCR20]. Since deviations occur for small η, this
indicates that clustering is not captured well enough by the mean-field approximation.

2.1.2 Observables in the Mean-Field Mass Model

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

η

J
+ ρ=0.1

ρ=0.5

ρ=0.9

Figure 1: Rightward current J+ plotted against rate of tum-
ble η. Dots represent simulated values of the current (system
size L = 500), while the continuous line is the current pre-
dicted by the MF mass model

The current J+ is the probability of
finding a lattice site occupied by a
particle pointing in the positive di-
rection and an empty site in front of
it, multiplied by the unitary rate of
motion. This has to be translated in
terms of the mass model. Here, it is
important to note that in order to re-
late the pair marginals probabilities
defined over sites to the probabilities
of the mass model, that are instead
defined over particles, one has to take
into account the conditioning on the
probability to find a given lattice site
occupied. Since the system is transla-
tionally invariant at stationarity, any
site i can be picked and the probabil-
ity that it will be occupied by one of
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the N particles will be N
L , the proba-

bility of any orientation is 1
2 . These

have to be multiplied to the probabil-
ity of having a gap of any size in front of it. With all these considerations, we can write the
probability that the generic k-th particle is occupying the generic i-th site and the site in front of it
is empty:

J+ = P [ni = 1, ni+1 = 0] = P [ni = 1]P [ni+1 = 0|ni = 1] =

=
1

2

N

L

∑
s=+,−

P
[
sk+ 1

2
= s
]
P
[
mk > 0|sk− 1

2
= −1, sk+ 1

2
= s
]

=
1

2

N

L

∑
s=+,−

1

2

∑
m>0

P−,s
m =

ρ

4
(2− α− β)

(25)

Note that this is an exact relation, the approximation lays in the fact that α(ρ, η) and β(ρ, η) assume
their MF values.
As it can be seen from figure1, the MF mass model is able to give a pretty good estimate of the
values observed in the simulations, which improves as the value of η increases. A plot of the current
as function of ρ can be found in figure8 in section 2.3, where the predictions of different methods
will be compared.

Now consider the average cluster size lc. A cluster is a contiguous sequence of lattice sites
occupied by a particle, regardless of the orientations. The quantity lc will be the average of the
lengths weighted by the probability of finding the cluster of that length in the system. A possible
reasoning to obtain this probability is the following: first define the probability that picking a random
site on the lattice, it has on its right an empty site, followed by l occupied sites and another empty
site after these

Ps(l) = P [n0 = 0, n1 ̸= 0, ...nl ̸= 0, nl+1 = 0] (26)

then this can be used to evaluate the probability that picking a random site i it belongs to a cluster
of size l and the probability that i belongs to a generic cluster

P [find a cluster of size l] = Ps(l) P [find a cluster of any size] =
∞∑
h=1

Ps(h) (27)

Note that we are also including single particles as clusters of size 1 and so the sum starts from 1.
The probability distribution of the cluster sizes Pc(l) will be given by the probability to have found
a cluster of a specific size, in any site of the lattice, conditioned on the probability to have found a
generic cluster on the lattice. In this way Pc(l) is a probability defined over clusters

Pc(l) = P [find a cluster of size l|find a cluster] =
P [find a cluster of size l]

P [find a cluster]
=

Ps(l)∑∞
h=1 Ps(h)

(28)

Using this, the average over the clusters sizes can be performed

lc =

∞∑
l=1

lPc(l) =

∑∞
l=1 lPs(l)∑∞
h=1 Ps(h)

(29)

To use this formula we write (26) in the terms of the mass model. As in the case of the current, to
pass from a probability defined over sites, to one defined over particles, it is needed to condition on
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the probability to find a particle at a site, so we write:

Ps(l) =P[n1 ̸= 0]
P [n0 = 0, n1 ̸= 0, ...nl ̸= 0, nl+1 = 0]

P[n1 ̸= 0]
=

=
N

L

∑
{σ

k− 1
2
=+,−}l+1

k=0

P
[
m0 > 0,m1 = 0, ...,ml−1 = 0,ml > 0; s− 1

2
= σ− 1

2
, ..., sl+ 1

2
= σ− 1

2

]
≈

≈ ρ

2l+2

∑
{σ

k− 1
2
=+,−}l+1

k=0

∑
m0>0

P
σ− 1

2
σ 1

2
m0

l−1∏
h=1

P
σ
h− 1

2
σ
h+1

2
0

∑
ml>0

P
σ
l− 1

2
σ
l+1

2
ml =

=
ρ

2l+2

2− α− β

2− δ − β

T β δ

α β

l−1 2− δ − β

2− α− β


(30)

where the last form uses the matrices to write the expression in a more compact way. By further
manipulating the expression it is possible to write the following:

Ps(l) =
2−l−3ρ√

αδ

{(√
α+

√
δ
)2 (√

αδ + β − 2
)2 (√

αδ + β
)l−1

+

−
(√

α−
√
δ
)2 (√

αδ − β + 2
)2 (

β −
√
αδ
)l−1

} (31)

This probability depends on l through an exponential so expressions (28) and (29) can be evaluated
using the geometric series

∞∑
l=1

xl =
x

1− x

∞∑
l=1

lxl =
x

(1− x)2
(32)

obtaining
∞∑
l=1

Ps(l) =
ρ

4
(4− α− 2β − δ)

∞∑
l=1

lPs(l) = ρ

Now we evaluate their ratio, so that the average cluster size reads

lc =
4

4− α− 2β − δ
(33)

2.1.3 Coalescence Fragmentation Picture

Now we briefly discuss the coalescence fragmentation model that describes the PEP in the limit
η → 0: when η is small, there is an evident separation of the time scales, the one related to tumble
events η−1, and the one in which particles move between clusters, so that mass transfers occur
instantaneously with respect to the first. This translates into the fact that masses move toward
mass sites with neighboring spins +−, and remain on those sites until one of the neighboring spins
flips. This framework has been described in [DCR20] to address the relaxation to the steady state,
obtaining scaling forms for the time dependent quantities. We will only talk about the steady state.
These kind of models are commonly denoted as reaction-diffusion processes, for an introduction to
the topic refer to [KRB10].
Imagine to coarse-grain time and observe the system at time scales of the order of η−1. Let us
denote with an A a site with non-zero mass and with ∅ an empty site. A typical configuration has
all sites with spin configuration +− that are either A or ∅, while all the other sites with different
spins are ∅, other kinds of configurations are transient. When a spin flips on one side of a site of
type A then a mass transfer is triggered, targeted toward the nearest site in configuration +− that
is in the same direction of the flipped spin, there are three possible outcomes:

• diffusion: the target site is an empty one, then the entire mass gets transferred there, with A
and ∅ simply interchanging positions;
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• coalescence: the target site is non-empty, so the mass is added to the target A and the original
A has vanished;

• fragmentation: during the transient of the mass transfer a spin flip occurs in one of the sites
between the original and the target one, blocking a fraction of the mass that ends up split
between the target site and the site where the spin has flipped, so that an additional A gets
produced.

Now we use an heuristic argument to evaluate the stationary density of non-empty sites nc (number
of A sites over N) and the typical mass size m∗: in order to be a steady state the total rate at
which new sites of type A appear must be equal to the total rate at which they disappear, otherwise
the density of clusters would grow or decrease over time. So we need to evaluate the total rate of
coalescence rc and the total rate of fragmentation rf .
Non-empty sites must have spins in configuration +−, so it is impossible to find two sites with A next
to each other. In addition we assume that A sites are sparse nc ≪ 1, and each site is independently
occupied or empty with probability nc and 1− nc respectively. If the latter was true we could write
that the possibility to find two A at a distance n is n2

c(1−nc)
n−1, but we can write an approximate

form for small nc

n2
c(1 + ϵ(n)) (34)

where ϵ(n) is a correction O(nc).
In order for an A to diffuse into another A site and coalesce after a spin flip, it must happen that all
the spins in between the two A sites point in the same direction. One of the spins is already pointing
in the needed direction because it belongs to the target A site, so the probability that the spins are
in the right direction is ( 12 )

n−2. The total probability of finding two A in the right condition times
the frequency at which one of the two spins neighboring an A flips gives the total rate of coalescence:

rc = 2η
∑
n≥2

2−n+2 n2
c(1 + ϵ(n)) = 4η n2

c +O(η n3
c) (35)

Let us turn our attention to fragmentation. Consider a site A, with rate η one of its spins can flip,
initiating a mass transfer in the spin’s new direction. Suppose that the right spin flips, becoming
positive, and that the target site is at a distance of k ≥ 1 sites. Since the target can be either empty
or occupied, the probability of it being at a distance k is equal to the probability of having a number
k−1 of "+" spins consecutively after the one that flipped and the successive being "−". So we have
that the rate at which a mass transfer over k sites happens is η nc 2

−k. The mass transfer can give
place to a fragmentation in two ways:

• the + spin on the left of the original site flips so that part of the original mass is transferred
to another target site on the left;

• the transfer gets interrupted on the right by the flip of one of the + spins, so that the transfer
to the target site is partial and the rest of the mass stays where the spin has flipped;

if the spin flip during transfer happens on the left of the target site the outcome would be that all
the mass is transferred to the site in the left of the target site, resulting in a diffusion at a distance
k − 1, without fragmentation. The event that splits the transfer has to happen during the time of
the transfer, so if we assume that this time is roughly m∗ + δ(k), where m∗ is the typical mass of
an A and δ(k) is a correction o(m∗), we can say that the rate at which a transfer over k sites leads
to a fragmentation is

η k (m∗ + δ(k)) (36)

If we consider that what we described leads to the same result if the first spin to flip is on the left
of the original A site, then the total rate of fragmentation is

rf = 2
∑
k≥1

η nc 2
−k η k (m∗ + δ(k)) = 4 η2 nc m

∗ +O(η2 nc) (37)
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By equating the rate of coalescence and fragmentation we get

rc = rf −→ 4 η n2
c = 4 η2 nc m

∗ −→ nc = ηm∗ (38)

the latter relation can be used with the constraint m∗ nc =
L−N
N = 1

ρ − 1 to obtain

n2
c = η

(
1− ρ

ρ

)
m∗ =

√
1− ρ

ρ η
(39)

These results are consistent with the assumptions we made. The inverse of the density of A sites
gives the average distance between non-empty sites which corresponds to the cluster size in the
picture of run and tumble particles

lc =
1

nc
=

√
ρ

(1− ρ) η
(40)

These results match well with simulations done at η ≪ 1. In section 3 we use this same reasoning
to estimate the cluster size for other models. A scaling behavior of this form has been found
to be universal throughout many models of active matter [Dol+20]. In [DCR20] the coalescence
fragmentation model has been used also to obtain the scalings for the relaxation of the system
toward stationarity at small η.

2.2 Pair Approximation
In this section we switch to consider the so-called pair approximation. This method tries to improve
the MF by assuming that the probability measure of the configuration over lattice sites factorizes
in pair marginals instead of single site marginals. The necessity of using this refinement of the MF
for describing the PEP, comes from the fact that this method cannot capture the dependence on η
shown by the simulated system, at stationarity. This will be displayed after the definition of some
quantities and the description of the equations governing their time evolution.

Using the PA, the problem of describing the system passes from that of solving the time evolution
of the probability of a full configuration P ({nt

i}Li=1), which means characterizing 3L time dependent
quantities, one for each possible configuration, to the problem of characterizing L probability distri-
butions P (nt

i, n
t
i+1), one for each pair of adjacent sites, that can take 32−1 independent values. One

has to enforce also that single site marginals are consistent between pairs that share a site, giving
two additional constraints that lower to 6L the number of quantities needed to describe the system
in this approximation.
To lighten the notation for the marginal probabilities, that will appear also in other sections, we
introduce a way of writing probabilities for configurations of adjacent sites:

P t
i [ν1, ν2, ..., νl−1] = P[nt

i = ν1, n
t
i+1 = ν2, ..., n

t
i+l = νl−1] (41)

The same notations without the t superscript will be used for time independent quantities at sta-
tionarity. The set of marginal probabilities that become our variables in the discussion of the PA
can be chosen with some freedom, here we have used

ρt+,i = P t
i [1]

ρt−,i = P t
i [−1]

ϕt
++,i = P t

i [1, 1]

ϕt
−−,i = P t

i [−1,−1]

ϕt
+−,i = P t

i [1,−1]

ϕt
−+,i = P t

i [−1, 1]

for i ∈ {1, ..., L} (42)

When i = L the second site is i+ 1 = 1, for taking into account the PBCs.
Thanks to the simplification from an exponential problem (# of variables ∼ 3L) to a linear problem
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(# of variables ∼ L), the implementation of numerical techniques becomes feasible for systems with
system sizes L ∼ 100 sites even for a common PC. So it was possible to numerically integrate the
6L equations describing the dynamical evolution of the marginals, for given values of the tumble
rate η and system size L, starting from certain initial conditions for the probabilities (that implicitly
set the number of particles in the system and consequently ρ) up to some final time T . After the
integration we evaluated the stability of the resulting stationary state profiles, in order to verify in a
more rigorous way the validity of the integration that, by itself, cannot guarantee that the operation
has reached a true stationary configuration.
The dynamical equations for the chosen marginals are obtained by marginalizing the master equation
governing the time evolution of P

(
{nt

i}Li=1

)
, the probability that the system is in some configuration

at time t. The equations contain three-site marginals that need to be rewritten using the PA

P t
i [σ1, σ2, σ3] ≈

P t
i [σ1, σ2]P

t
i [σ2, σ3]

P t
i [σ2]

(43)

In this way a set of differential equations that is closed with respect to the pair and single-site
marginals is obtained. The equations read

dρt+,i

dt
= η(ρt−,i − ρt+,i) + λ1(ρ

t
+,i−1 − ϕt

++,i−1 − ϕt
+−,i−1)− λ1(ρ

t
+,i − ϕt

++,i − ϕt
+−,i) (44)

dρt−,i

dt
= η(ρt+,i − ρt−,i) + λ2(ρ

t
−,i−1 − ϕt

−+,i−1 − ϕt
−−,i−1)− λ2(ρ

t
−,i − ϕt

−+,i − ϕt
−−,i) (45)

dϕt
++,i

dt
= η(ϕt

+−,i + ϕt
−+,i − 2ϕt

++,i)+

+ λ1

(ρt+,i−1 − ϕt
++,i−1 − ϕt

+−,i−1)(ρ
t
+,i+1 − ϕt

++,i − ϕt
−+,i)

1− ρt+,i − ρt−,i

+

− λ1

ϕt
++,i(ρ

t
+,i+1 − ϕt

++,i+1 − ϕt
+−,i+1)

ρt+,i+1

(46)

dϕt
+−,i

dt
= η(ϕt

++,i + ϕt
−−,i − 2ϕt

+−,i)+

+ λ1

(ρt+,i−1 − ϕt
++,i−1 − ϕt

+−,i−1)(ρ
t
−,i+1 − ϕt

+−,i − ϕt
−−,i)

1− ρt+,i − ρt−,i

+

+ λ2

(ρt+,i − ϕt
++,i − ϕt

+−,i)(ρ
t
−,i+2 − ϕt

+−,i+1 − ϕt
−−,i+1)

1− ρt+,i+1 − ρt−,i+1

(47)

dϕt
−+,i

dt
= η(ϕt

++,i + ϕt
−−,i − 2ϕt

−+,i)+

− λ2

ϕt
−+,i(ρ

t
−,i − ϕt

−+,i − ϕt
−−,i)

ρt+,i+1

− λ1

ϕt
−+,i(ρ

t
+,i+1 − ϕt

++,i+1 − ϕt
+−,i+1)

ρt+,i+1

(48)

dϕt
−−,i

dt
= η(ϕt

+−,i + ϕt
−+,i − 2ϕt

−−,i)+

+ λ2

(ρt−,i−1 − ϕt
−+,i−1 − ϕt

−−,i−1)(ρ
t
−,i+1 − ϕt

+−,i − ϕt
−−,i)

1− ρt+,i − ρt−,i

+

− λ2

(ρt−,i − ϕt
−+,i−1 − ϕt

−−,i−1)ϕ
t
−−,i

ρt−,i

(49)

Before discussing the numerical solutions of these equations let us make some considerations.
The simulations show that the system, at stationarity, reaches a homogeneous state, so it makes
sense to search for a solution of equations (44) that is uniform over sites.
By setting time derivatives at zero, and eliminating the dependence on the lattice indices in the
equations for ρ̇t+,i and ρ̇t−,i, it is straightforward to see that the terms associated to particles hopping
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cancel out and the equations just impose that, at a given site, the probability of finding a particle
pointing rightward or leftward is the same, so that the uniform density profile is the one where

ρ+.i = ρ−,i =
1

2
ρ =

1

L

L∑
i=1

(ρ0+,i + ρ0−,i) ∀i ∈ {1, ..., L} (50)

Here we have the opportunity to explain why the simple MF is not enough to describe the PEP. In
fact this approximation can only give predictions for the single site marginals, and from the previous
result, that is valid also in the case of MF, we see that the homogeneous stationary state would
have had no trace of the tumbling dynamics and its consequences. The density ρ is independent of
η, consequently any quantity written in MF approximation, using only single site marginals, would
have been wrong. Only in the limit η → ∞ the MF is a good description as the system becomes a
symmetric simple exclusion process, whose stationary probability measure factorizes over sites.

Now we go back to the discussion of the homogeneous solution of (44). To obtain relations for
the pair marginals it is sufficient to substitute the values of the single-site marginals (50) in the
remaining equations in which time and space invariance has been imposed, so that the equations’
variables are ϕ++, ϕ+−, ϕ−+, ϕ−−, without the site and time indices. Homogeneity and the fact that
there is the same probability of finding particles independently of their orientation, implies that
ϕ++ = ϕ−−, in this way the net current at stationarity is equal to 0. So in the end a system of
equations in three variables is obtained:

η(1− ρ)(ϕ++ − ϕ+−) +
(
ρ
2 − ϕ++ − ϕ+−

)2
= 0

η ρ
2 (ϕ++ − ϕ−+)− ϕ−+

(
ρ
2 − ϕ++ − ϕ+−

)
= 0

η
ρ

2
(1− ρ)(ϕ+− + ϕ−+ − 2ϕ++)− ϕ++(1− ρ)

(ρ
2
− ϕ++ − ϕ+−

)
+

+
ρ

2

(ρ
2
− ϕ++ − ϕ+−

)(ρ
2
− ϕ++ − ϕ−+

)
= 0

(51)

Unfortunately the non-linear nature of the equations makes it difficult to obtain all solutions in closed
form, so we used the Mathematica software to obtain the values of the marginals as a function of
the tumble rate η and the density ρ.
One simple solution of the system is the following:

ϕ++ = ϕ+− = ϕ−+ =
ρ

4
(52)

This solution implies the absence of currents J± = ρ
2 −ϕ++−ϕ+− = 0 in the system. Unfortunately

it does not make sense as a global solution unless the system is completely full, ρ = 1, or empty,
ρ = 0 .
Fortunately the other solution actually depends on η, this can be seen in figure 2 where the values of
ϕ++, ϕ+−, ϕ−+ obtained by numerically solving (51) have been plotted against η, for a fixed density
ρ = 0.5 . These predictions are compared with simulations and results of the other method in the
next section, in Fig 7. It can be said that the PA is always worse than the other approximation.

2.2.1 Observables in Pair Approximation

In order to compare the PA with the MF mass model we derive the approximated expressions for our
quantities of interest, the current J± and the average cluster size lc, plus the gap size distribution
for a direct comparison of the two approximations:

• The current is the probability to find a particle that can hop in the site in which it is point-
ing, times the unitary hopping rate, so, considering any site i of the translationally invariant
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Figure 2: From up to bottom the
PA predictions for ϕ++, ϕ+−, ϕ−+,
as a function of η at fixed ρ =
0.5. The dashed line is the asymp-
totic uncorrelated value ρ2

4 that the
marginals reach at η → ∞

stationary state , we have

J+ = P [ni = 1, ni+1 = 0] =

= P [ni = 1]− P [ni = 1, ni+1 = 1]− P [ni = 1, ni+1 = −1] =

=
ρ

2
− ϕ++ − ϕ+−

(53)

• In order to use (29) to evaluate lc, first it is needed to approximate the probability to find a
cluster of size l at some lattice site (26)

Ps(l) ≈
P [n0 = 0, n1 ̸= 0]

∏l−1
i=1 P [ni ̸= 0, ni+1 ̸= 0]P [nl ̸= 0, nl+1 = 0]∏l

j=1 P [nj ̸= 0]
=

=
∑

{si=±}l
i=1

1∏l
i=1 ρsi

(ρs1 − ϕ+s1 − ϕ−s1)

(
l−1∏
i=1

ϕsi,si+1

)
(ρsl − ϕsl+ − ϕsl−) =

=

(
2

ρ

)l
ρ

2 − ϕ++ − ϕ−+

ρ
2 − ϕ+− − ϕ++

T ϕ++ ϕ+−

ϕ−+ ϕ++

l−1 ρ
2 − ϕ++ − ϕ+−

ρ
2 − ϕ−+ − ϕ++


(54)

where in the last step ρ+ = ρ− = ρ
2 and ϕ−− = ϕ++ have been used. Now the same procedure

carried out in the previous section leads to:

Ps(l) =

=
2l−3ρ−l√
ϕ−+ϕ+−

{(√
ϕ−+ +

√
ϕ+−

)2 (√
ϕ−+ϕ+− + ϕ++

)l−1 [
ρ− 2

(
ϕ++ +

√
ϕ−+ϕ+−

)]2
+

−
(√

ϕ+− −
√
ϕ−+

)
2
(
ϕ++ −

√
ϕ−+ϕ+−

)
l−1
[
ρ− 2

(
ϕ++ −

√
ϕ−+ϕ+−

)]2}
(55)

∞∑
l=1

Ps(l) = ρ− ϕ+− − 2ϕ++ − ϕ−+

∞∑
l=1

lPs(l) = ρ

the probability of finding a cluster of any size at a lattice site correctly sums up to ρ, the prob
of finding a particle. In the end the average cluster size is obtained from equation (29), giving
the PA prediction

lc =
ρ

ρ− ϕ+− − 2ϕ++ − ϕ−+
(56)
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• The gap size distribution can be obtained with the same reasoning used for the distribution of
the cluster sizes Pc(l). Starting from the the of finding a gap of size m at a given site, we can
write the probability that a gap has a size m:

Qc(m) = P [find a gap of size m|find a gap] =
P [find a gap of size m]

P [find a gap]
(57)

The approximation comes in place when writing the probability over sites Qs(m), in a similar
way to equation (54), giving:

Qs(m) = P [n0 ̸= 0, n1 = 0, ...nm = 0, nm+1 ̸= 0] ≈

≈
P [n0 ̸= 0, n1 = 0]

∏m−1
i=1 P [ni = 0, ni+1 = 0]P [nm = 0, nm+1 ̸= 0]∏m

j=1 P [nj = 0]
=

=
∑

s0,sm+1=±
(ρs0 − ϕs0+ − ϕs0−)

(
ρsm+1

− ϕ+sm+1
− ϕ−sm+1

)
×

× (1− ρ+ − ρ− − ρ+ + ϕ++ + ϕ−+ − ρ− + ϕ+− + ϕ−−)
m−1

(1− ρ+ − ρ−)m
=

= (ρ− ϕ+− − 2ϕ++ − ϕ−+)
2 (1− 2ρ+ ϕ+− + 2ϕ++ + ϕ−+)

m−1

(1− ρ)m

(58)

this is valid for all m ≥ 1. The probability of finding a gap is obtained by summing Qs(m)
from 1 to ∞. Substituting into equation (57), the gap size distribution is obtained:

Qc(m) =
Qs(m)∑∞
n=1 Qs(n)

=

=

(
1− 2ρ+ ϕ+− + 2ϕ++ + ϕ−+

1− ρ

)m 1− 1
1−ρ (1− 2ρ+ ϕ+− + 2ϕ++ + ϕ−+)
1

1−ρ (1− 2ρ+ ϕ+− + 2ϕ++ + ϕ−+)
=

=

(
1− 2ρ+ ϕ+− + 2ϕ++ + ϕ−+

1− ρ

)m−1 [
ρ− ϕ+− − 2ϕ++ − ϕ−+

1− ρ

] (59)

Its average is:
∞∑

m=1

mQc(m) =
1− ρ

ρ− ϕ+− − 2ϕ++ − ϕ−+
=

L−N

N
lc (60)

With these tools, we will discuss the predictions in section 2.3.

2.2.2 Numerical Integration and Phase Separation

Equations (44) have been numerically integrated using the built-in functions given in Mathematica,
that allow to solve systems of differential equations, so that all 6L marginals are obtained as functions
of time. The initial conditions were defined by deciding a profile (the values assumed by a quantity
over the lattice) for ρ0+,i and ρ0−,i, such that ρ0+,i + ρ0−,i < 1 ∀i, in this way the probabilities cannot
go above 1 and equations do not stumble upon singularities during the integration (the densities
appear in denominators). The pair marginals at t = 0 were obtained as products of single-site ones
for simplicity, in any case the stationary state should not depend in a relevant way on this particular
choice.
The stability of the profiles at t = T , obtained by the integration has been verified by linearizing the
system of equations (44) and studying the coefficient matrix of the resulting differential equation. In
fact (44), if we consider the collection of the marginals x =

{
ρt+,i, ρ

t
−,i, ϕ

t
++,i, ϕ

t
+−,i, ϕ

t
−+,i, ϕ

t
−−,i

}L
i=1

,
can be rewritten as dx

dt = f(x(t)), where f(x) contains the expressions on the r.h.s. of (44) and the
following matrix can be defined

Ma,b =
∂fa
∂xb

∣∣∣∣
x=x∗

(61)
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If M is negative semi-definite then x∗ is a stationary state that is stable, otherwise the fixed point
is unstable, because positive eigenvalues appear and some perturbation can bring the system to
another state.

What appears from the integrations is a behavior that is not observed in the simulations of
the model. These show that the system reaches a uniform stationary state for all values of the
parameters, and all initial conditions, with clusters that can evaporate and form everywhere in the
lattice, on the other hand the PA seems to describe a phase separation: when the tumble rate is low
enough the stationary profile of all quantities is inhomogeneous, with regions that are at a constant
density of particles which can be higher or lower then the total density ρ = N

L . Examples of these
kind of profile for different values of η are shown in figure 3, these data are obtained starting the
integration from a profile where the lattice is half filled (ρ = 0.5), with the particles concentrated
in one half of the lattice. Using values of η ≥ 0.04 the phase separation is not observed anymore.
Another observation is that the values of the pair marginals where the density is constant seems
to satisfy the relations ϕ++(η, ρ), ϕ+−(η, ρ), ϕ−+(η, ρ) obtained by solving the system of equations
(51).
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Figure 3: Profiles of the
density {ρi}Li=1, for mean
density ρ = 0.5 and
some values of the tum-
ble rate. obtained by nu-
merically integrating the
pair approximated dy-
namical equations up to
time T = 5 × 106 time
units

The uniform profile is always a fixed point of equations (44) since a solution to the system (51) can
always be found. The results show that if the integration starts with the density profile such that
ρ±,i = ρ

2 , then the only evolution that can be observed is the relaxation of the pair marginals to
the values predicted by equations (51), this has been tested for many values of η. What changes
is the stability of this profile. By numerically evaluating the spectrum of M , using the uniform
configuration in place of x∗, one can see that it becomes unstable for η ≲ 0.04, the spectrum of M
acquires some eigenvalues ν with positive real part, on the other hand the same evaluation done
using the inhomogeneous stationary configurations seems to show that they are stable (eigenvalues
with positive real parts are present but they are negligible with respect to the real part found for
the uniform solution, and they appear to become smaller by increasing L or reducing η). A plot of
the eigenvalues in the complex plane for a stable configuration and a uniform one when η = 0.01
can be found in figure 4. By numerically evaluating the eigenspace S associated to one of these
ν it can be found that dim(S) = 2 and the eigenvectors have a sinusoidal profile in space, with a
wavelength that is a fraction of L and changes depending on the considered ν. If one considers that
the new inhomogeneous stable stationary states (ISSS) present the alternation of regions at high
and low densities and ISSS with a number of cluster regions greater than 1 seem to be possible,
it is possible to speculate that each ν corresponds to the possible relaxations to a family of fixed
points characterized by a common shape that can produce L profiles by translating the shape on
the lattice.
We mention that the appearance of ISSS with more than one high density region can be obtained
with certain initial conditions and values of the parameters η and ρ, but they most often happen to
be transient states that undergo abrupt coalescence processes after periods characterized by small
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Figure 4: Plot of the eigenvalues of the coefficient matrix M for η = 0.01, ρ = 0.5,L = 500, for
an inhomogeneous state and the stationary homogeneous state, zoomed out in the region near the
origin where the eigenvalues with positive real part appear. The eigenvalues with maximum real
part are 0.006 + 0i for uniform, 8.9× 10−11 + 0i for the inhomogeneous profile.

variations. Also the position of the high density region depends on the initial state of course.
This phenomenon described by the PA has no match with the simulations since, as it is expected,
there is no trace of breaking of the translational symmetry at stationarity, independently of the
starting state. Even if the system is prepared with all the particles close to each other to form a
cluster, this configuration lasts a time ∼ η−1, and time averages do not suggest the existence of the
local stability of an high density region. For this reason the ISSS have not been further explored
and better characterized in this work.
Nonetheless some considerations can be made on this behavior of the PA applied to the PEP on a
1D chain. Many studies have conjectured that a mobility induced phase separation (MIPS) could
happen in active systems with run and tumble particles [CT15]. The study [MRM23] has argued
that a phenomenon of this type is not possible in the 1D PEP. Summarizing the paper, it considers
a model analogous to the PEP characterized by a lower mobility of particles for which an exact
solution is available. Since the MIPS does not happen in the aforementioned system then it can be
argued that it cannot happen in the PEP.
The same wrong behavior of the PA appears if one solves the MF equations at stationarity [Cat12],
and it can be observed that the critical value of η seems to get smaller in the PA. From this it
is possible to speculate that this phenomenon could disappear for more refined mean field cluster
approximation (the class of approximations to which MF and pair belong, that use respectively
"clusters" of size 1 and 2), with the critical η tending to 0 as the size of the cluster increases. This
can be seen in figure 5 where the difference between the stationary state obtained by numerical
integrations is compared with the homogeneous solution, this is done by evaluating:

d =

√√√√ L∑
i=1

(
ρi −

N

L

)2

(62)

the difference becomes zero for η ≈ 0.1 in the case of the MF and for η ≈ 0.03 in case of the PA.
A more rigorous proof of this reduction could be obtained by searching the value of η for which the
homogeneous stationary state becomes unstable, but this goes beyond the scope of this work.
In general, it can happen that MF cluster approximations, for small clusters, capture phase transi-
tions that are present at dimensionalities higher than 1, because it cannot take into consideration
the shape of the lattice.
Another consideration can be done, it is based on the fact that there is the possibility to restore the
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translational symmetry of the ISSS by performing an averaging of the profile over the sites, obtaining
values of {ϕ++, ϕ+−, ϕ−+} that are different by the ones obtained from (51) at equal total density
ρ. This can be regarded as averaging of the stationary profiles with respect to the initial states. For
this reason in order to carry out this average in a more rigorous way, one should average over sites
and over the possible ISSS that it is possible to obtain for some η and ρ, using weights that reflect
how likely it is to obtain a given shape of the stationary profile. In absence of a way to enumerate
all the possible ISSSs in a controllable way (even for fixed parameters), and evaluate the weights,
here we will give some results obtained by averaging only on the ISSSs with one cluster region, just
to have an example of how this operation improves the PA predictions for the pair marginals at low
tumble rates. These results are present in the next section 2.3, figure 7.

2.3 Comparing the methods
In this section we will compare the results of the two different MF theories to mean-field that have
been used to approximately describe the PEP: the first one can be regarded as an example of so-
called particle-oriented mean-field (POMF) approximations [SS97], whereas the pair approximation
falls in the family of the cluster methods that are instead site-oriented MF approximations [bK92].
The difference between the two methods is in the variables used to describe the state of the system,
in the former case the distances between particles {mk}Nk=1 are used and they are assumed to be
uncorrelated, in the latter case the variables are the sites occupations {ni}Li=1 and correlations are
neglected between sites at a distance greater then one. So here we are making a comparison between
these two approaches to MF.
The approximation presented in subsection 2.1 is not a simple particle oriented MF because the size
of the gaps are conditioned on the internal states of both particles at the end of the gap, while usually
this method has been used on traffic models where particles move in one direction (the method is
also regarded as car oriented mean field) and so the conditioning is usually done on the internal
state of the particle at the left end of the gap:

P
(
{mk} | {sk+ 1

2
}
)
≈
∏
k

P
(
mk | sk+ 1

2

)
This was the approach in the study [PG13], on the pausing TASEP (pTASEP) where particles can
go in a motionless state, in the same way as in the PEP particles can change direction. In the
PEP the conditioning done in this way would have been not so reasonable considering its left-right
symmetry, where no preferred direction of motion exists and so both particles at the end of a gap
affect it in the same way.
Both approximations, site oriented and particle oriented, underestimate the clustering phenomenon.

20



2 4 6 8 10 12 14

10-5

10-4

0.001

0.010

0.100

1

m

Q
c
(m

)

(a) Symbols: simulations. Solid lines:
MF mass model predictions

2 4 6 8 10 12 14

10-5

10-4

0.001

0.010

0.100

1

m

η = 0.01

η = 0.1

η = 0.5

η = 1

(b) Simbols: simulations. Dashed lines: PA pre-
dictions

Figure 6: Gap size distributions Qc(m) for some η. Comparison of the approximations with the
simulated values obtaines for ρ = 0.5. Simulations done with L = 1000.

Clusters are temporary structures whose life and size increase for smaller η values, so they tend
to correlate particles. Neither PA nor POMF are able to fully capture this mechanism: PA tries
to describe just the nearest-neighbor correlations, while the MF mass model tries to describe the
behavior of gaps between particles but still neglects correlations beyond particle pairs. The latter
method ends up giving better predictions, this could mean that clusters that correlate particles at
large distances end up correlating also the vacancies. The MF mass model is able to well capture
this, very well when η approaches 1, while the PA underestimates the probability of having large
gaps for all values of η. This can be seen in figure 6, where the predictions of the two approximations
are compared with statistics of gaps obtained from simulations, and it is possible to see that the
MF mass model does a better job in describing how the exponential decay of the gap distribution
changes with η. The mass distribution Pm, given in equation (21), cannot be directly compared
with Qc(m), instead one has to consider:

Pm

1− P0
for m ≥ 1 (63)

where
∑∞

m=1 Pm = 1− P0 = 4−α−2β−δ
4 is written in terms of spin conditioned probabilities defined

in equation (8).
While Pm is defined for m ≥ 0, while the distribution of gaps sizes Qc(m) is defined for m ≥ 1 (see
equation (57)) because the probability is conditioned to having found a gap, and corresponds to how
statistics are done in simulations where sequences of empty sites are counted.

Let us continue by comparing the predictions for the pair marginals at stationarity. In the mass
model the probabilities are defined over particles so to compare them with the pair marginals, which
are defined over sites, we need to observe that:

P[ni = σ, ni+1 = σ′] = P [ni = σ]P [ni+1 = σ′|ni = σ] =
N

L
P
[
mk = 0; sk− 1

2
= −σ, sk+ 1

2
= −σ′

]
(64)

so that ϕ++, ϕ+−, ϕ−+ will be compared respectively with ρ β, ρ α, ρ δ. In figure 7 this comparison
has been done by varying ρ while considering a fixed value of tumbling rate, η = 0.01, which is
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Figure 7: Plots of pair marginals ϕ++, ϕ+−, ϕ−+ as a function of ρ at fixed η = 0.01. Comparison of
the approximated predictions from MF mass mode, homogeneous PA, inhomogeneous PA with the
simulated values

a value at which clustering is important and η−1 is not comparable with the system size L. The
figure also includes values of the pair marginals obtained from simulations and the predictions of
ϕ++, ϕ+−, ϕ−+ obtained by averaging an inhomogeneous stationary profile. From the graphs it can
be seen that both POMF and PA tend to overestimate the pair marginal [+−] (the POMF does
it slightly), and underestimate the marginals [−+] and [++]. The largest discrepancies are in the
predictions of ϕ−+. Let us look at the structure of the equation for dynamical evolution of this pair
marginal in both approximations, equation (48) and equation (13) in the case m = 0: at stationarity
and with small η, the term due to the tumble is not compensating the negative terms that describe
the particles moving away from each other.
When η ≪ λ, it happens in the simulations that most of the particles are in clusters and only a small

fraction is moving, inside a cluster the orientations of particles are random and are continuously
shuffled by the tumble dynamics, so these particles contribute to the pair marginals that we are
considering with a term ρ

4 , since if a particle is found inside a cluster it will have for sure another
particle near it and the probability to find them with given orientations is 1

2 × 1
2 . This is captured

by the MF mass model, for [+−], [++], and it is remarkable, the problem is that the various P ss′

m

decay more slowly at large m in simulations [DCR20].
At the border of the clusters it is most probable to find two particles that point toward the cluster, so
that they prevent other particles from leaving the cluster. Conversely, particles moving in the regions
between clusters do not contribute much to the probabilities of configurations [++], [−+], because
they can form these structure only temporarily when they are close to one anothr. Configuration
[+−] is different because, when two moving particles collide to form it, this structure will last until
one of the two particles tumbles, unless other particles collide and in this case the cluster will start
to grow.

The above considerations for the behavior at small η are directly reflected in the predictions of
the observables given by the approximations. The expressions of the current, in equation (53) and
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equation (25), do not contain the probability ϕ−+, so the approximation for this quantity ends up
not so far from the simulated results. This can be seen in figure 8, where one can appreciate the
greater accuracy of the MF mass model, as well as the fact that there is good qualitative matching,
even though the approximations always overestimate the current, which is the same as saying that
they overestimate the amount of particles that are not in a cluster.
The average cluster size lc is a much less trivial quantity. While the current is a correlation between
two adjacent sites, lc depends on the probabilities of observing sequences of l particles in the system,
see equation (26) and equation (29), so it is expected that approximations give poor results in regimes
where particles are highly correlated.
A general expression for lc is not available, but we have the expression obtained in section 2.1.3

in the limit of η ≪ ρ, when the behavior of particle clusters can be effectively described by an
equilibrium process of growth and evaporation [SG14] [CMT23] and the average cluster size scales
as

lc ∼ Lc =

√
ρ

(1− ρ)η
(65)

The match with simulations done at small tumbling rates can be seen in figure 9. All the simulated
values of lc shown here are obtained using the total number of clusters of size l obtained in all the
samples:

lsimc =

∞∑
l=1

l

∑
C∈samples #{clusters of size l in C}∑

C∈samples #{clusters in C}
(66)

the other possibility would have been to first average over l and then over sampled configurations,
this is a conceptually different quantity because of the finiteness of the system, but we compared
the values and they practically coincide, at least for the values of η that we consider. In general the
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different values of the particle density ρ. Comparison of the predictions from various approximations
against simulations. Simulations done for systems with lattice sizes L = 1000

size of the system is known to have effects on the cluster sizes [CMT23]. In figure 10, it can be seen
that the approximations fail to capture the low η scaling (65) and become close to the simulations
only for the higher values of η. The predictions approach the exact asymptotic result

lc
η→∞−−−−→ 1

1− ρ
(67)

This result was expected because the PEP becomes a symmetric exclusion process for η → ∞
[DCR20], and this system has a probability measure of the stationary configurations that factorizes
over sites:

P
(
{ni}Li=1

)
=

L∏
i=1

P (ni) P (ni) =

{
ρ
2 if ni = ±1

1− ρ if ni = 0
(68)

substituting the latter in equation (26), and using it to evaluate the average cluster size (29), the
result (67) is recovered.
From the results considered, it can be said that the MF mass model can be considered a refinement
of the PA when describing the PEP, as it always gives better predictions for the pair marginals. The
PA is less involved in the calculations and it has the possibility to be easily modified in the case of
different BCs, while this would be much less trivial for the mass model, since the definition of the
quantities relies on the fixed order of the particles. The mass model has no possibility to be used
for systems with lattice dimensionality different from 1.
Numerically, the PA is easier to handle and it can be used to study the dynamical behavior of
the finite system and how it reaches stationarity, as well as the behavior of the system when the
translational invariance is not satisfied. The MF mass model presents the following complications if
one wants to make numerical integrations:

• The system of dynamical equations, as it is written in eqs. (10)-(13), works only in the
thermodynamic limit, to use them numerically a cut-off value for m has to be included, for
example it can be mcut = L−N , which is the maximum value m can assume in a finite system.
This is needed because an infinite system of equations cannot be defined on a computer, but
in order to have a cut-off, the equations need to be modified to ensure that the normalization
is conserved and that ρmass is conserved;
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• Another complication is that the stationary P ss′

m reach really small values quickly with m, and
numerically this can become a problem;

• When considering the inhomogeneous case, it occurs that the number of degrees of freedom
grows quadratically in the system size L, assuming a number of particle N that is proportional
to L and mcut = L−N :

# of variables = 4Nmcut ∼ L2

which is quite worse then the linear growth of the PA.

3 Generalized Persistent Exclusion Process
Before introducing the generalized model we briefly review the phenomenology of the simple TASEP,
with a focus on the phase diagram of the OBCs system.

3.1 Totally Asymmetric Simple Exclusion Process
The Totally Asymmetric Simple Exclusion Process, can be considered among the simplest possible
stochastic transport models. First introduced to describe transport inside cells, where molecular
machines are able to perform motion and are kept running through mechanochemical reactions, this
model has later become important in physics, where it has become paradigmatic for nonequilibrium
and modeling of traffic problems, with many available results.
Details on the TASEP, exact results and some variations of the model, can be found in the dedicated
chapter of the book [SCN11]. For additional details on the exact solution and the OBCs phase
diagram can be found in the TASEP section of [Sch01]. The present description is a short resume
without derivations, containing some minimal ideas, the ones we need as references for describing
the behaviors of systems with open boundary conditions at stationarity, so that we will be able to
discuss a richer model with some fixed concepts.
The TASEP is a driven diffusive model where particles live on a one-dimensional lattice with L
sites, their motion is totally asymmetric because they move in one direction, say from left to right,
with the restriction that a site cannot be occupied by more than one particle. The latter rule is
the exclusion interaction. Each particle independently attempts to make a step forward with rate
λ, so we are considering the sequential update version of the model, as we do for all the other
models throughout this thesis. In the OBCs version of the model a particle can enter at site 1 if the
latter is empty, while a particle at site L can leave the lattice, it is customary to call the rates of
these two processes respectively α and β, respectively, not to be confused with the α and β symbols
introduced in section 2. This is totally analogous to having reservoirs at the two ends of the system,
with densities3

ρ0 =
α

λ
ρL+1 =

1− β

λ

Time can be rescaled to make λ unitary without loss of generality.
In describing the phenomenology of the stationary state we will consider the current at stationarity,
that we call J , and that is the main quantity characterizing a phase. We will also describe the
stationary density profile {ρi}Li=1, which is the collection of the probabilities of finding a particle at
each site. The density profile can be roughly divided into three regions, two near the boundaries
and a central one that constitutes the bulk of the lattice.
In a uniform density profile, J is determined by the density ρ through the relation:

J = ρ(1− ρ) (69)

This is the fundamental diagram of the model, which can be obtained by studying the TASEP with
periodic boundary conditions, on an infinite lattice. It tells us that particles in this ideal situation,
become uncorrelated at stationarity.

3The fact that α and β must be constrained in order to keep the reservoir densities between 0 and 1 turns out to
be irrelevant to the physics of the system.
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Figure 11: Phase diagram of the TASEP in the α-β plane

Another important relation between densities and currents is the continuity equation, which can be
obtained by studying the master equation of the model

dρti
dt

= J t
i−1 − J t

i for i = 1, ..., L (70)

where the currents have the following expressions with OBCs

J t
i =


P t
i [1, 0] for i = 1, ..., L− 1

αP t
1 [0] for i = 0

βP t
L[1] for i = L

. (71)

The notation introduced in (41) has been used.
At stationarity the system can be in three distinct phases, that appear because the current through-
out the lattice must be uniform, according to equation (70) when time derivatives vanish, and it can
be said that there are three ways in which J can be limited, each leading to a phase:

• when the left boundary limits the inflow, the system is in the low density(LD) phase;

• when the right boundary limits the outflow, the system is in the high density(HD) phase;

• when the transport is limited by the bulk hopping, then the system is in the maximum cur-
rent(MC) phase.

These three statements are enough to have an intuition on why the three phases come in place, but
there is actually a non-rigorous argument that is able to describe the behavior of the system, and
the regions of the phase diagram. It is a picture that uses the diffusion of domain walls and the
propagation of localized perturbations, described both in [SCN11] and [Sch01]. The regions of the
α-β plane associated to each stationary phase can also be obtained in the MF approximation, by
solving the system of equations resulting from the approximation of equation (70). It is the same
phase diagram obtainable in the domain wall picture and in the exact solution of the model. We
proceed to give a brief characterization of the phases that we report in figure 11.

3.1.1 Low Density Phase (α < 1
2 , α < β)

When α < 1
2 and α < β, the left reservoir controls the system. The current is equal to

J = α(1− α) (72)
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The density ρi is constant (in the limit L → ∞) at the left end of the system and throughout the
bulk with the same value of the input reservoir, so that a density of the bulk can be identified:

ρbulk = ρ0 = α (73)

At the right end the density smoothly varies from ρbulk to ρL+1 = 1− β, giving rise to a boundary
layer(BL). The density in the BL decays exponentially to the value of the bulk.
Both J and ρbulk are determined solely by the injection rate α, this is why it can be said that the LD
is input controlled, β can only have a role in defining the length scale over which the BL develops,
which occupies a finite part of the infinite lattice.

3.1.2 High Density Phase (β < 1
2 , β < α)

When β < 1
2 and β < α, the right reservoir controls the system. The behavior in this phase follows

from the one of the LD phase if one considers the particle-hole symmetry of the TASEP: holes
behave as particles moving leftward throughout the lattice, with the same rules of actual particles
and the roles of the boundaries interchanged, holes exit at the left boundary with rate α and enter
at the right with rate β. The results for the HD phase can be obtained by performing the following
substitutions:

ρi −→ 1− ρL+1−i α ↔ β

So the current and the bulk density become

J = β(1− β) (74)
ρbulk = 1− β (75)

The density profile is uniform at the right end and throughout the bulk and the boundary layer
forms at the left end.

3.1.3 Maximum Current Phase (α > 1
2 , β > 1

2)

When both α and β become larger than 1
2 , the current reaches the maximum value of the fundamental

diagram JMAX = 1
4 . The average current of particles on the lattice does not exceed this value. It

is said that the bulk is controlling the phase because the boundaries play no role in defining the
main physical quantities that instead depend on the limited transport of particles in the bulk. The
quantities of interest in this case assume values:

J =
1

4
ρbulk =

1

2

The density profile in this case has BLs at both ends of the chain, the density decays from the bulk
value with a power-law behavior4.
The current changes continuously when crossing all transition lines of the phase diagram. It follows
eqs. (72), in the LD phase, and (74), in the HD phase, (the equations are equal on the line α = β)
until α or β reach the threshold value 1

2 , after which it stops growing and it becomes constant with
J = JMAX.

3.2 Generalized Model
In order to obtain a generalization of the TASEP that includes the PEP as a specific case we consider
a model with two particle species, or states, with the possibility of changing between state 1 and
state 2 through a process that will be called tumble even if the two types of particles could be
moving in the same direction, and the tumbling rate notation will again be η. The model includes
the exclusion interaction between particles, so that they can hop only if the arrival site is empty.

4In simulations ρbulk = 1
2

can only be found at site i = L
2

because really large sizes are needed to fully develop a
BL with a power law decay.
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The processes of injection and extraction will be interpreted as couplings with reservoirs of particles
that maintain their occupation constant over time, as in the case of the ordinary TASEP. Particles
can enter if the target site is empty; the target site depends on the motion direction as will be
exemplified later.
We shall call α the probability to find a particle in the left reservoir and 1−β in the right reservoir,

1 2

2

1 1

2

Figure 12: Pictorial representation of the generalized PEP when both particles species move in the
same direction (i.e. rightward).

1 21

1 1

22

Figure 13: Pictorial representation of the generalized PEP with particles moving in opposite direc-
tions (i.e. species 1 rightward and species 2 leftward).

with equal amounts of particles of type 1 and 2 so that they enter with rate λs
ρR

2
and exit with

rate λs(1− ρR), where λs is the hopping rate of a particle of type s = 1, 2, and ρR = α, 1− β is the
occupation of the reservoir. The particles of type 1 always move in the positive (rightward) direction
of the lattice, those of type 2 can move in positive or negative (leftward) direction, or stay still when
λ2 = 0. The boundary rates are explained in the following scheme:

• Type 1 always moving from left to rightλ1
α

2
Left Boundary injection rate

λ1β Right Boundary extraction rate
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• Type 2 can move from left to right, right to left

positive direction

λ2
α

2
Left Boundary injection rate

λ2β Right Boundary extraction rate

negative direction


λ2(1− α) Left Boundary extraction rate

λ2
1− β

2
Right Boundary injection rate

In case λ2 = 0, the particles in state 2 do not move, so they cannot enter or exit the system, they
only appear in the system through the tumble process. A pictorial representation of the processes
occurring in the model has is given in figure 12 and figure 13. There was actually a lot of freedom
available in the choice of the boundary conditions, for example the relative presence of particles of
type 1 and type 2 or even the correlation between the injection and extraction of two consecutive
particles, here the choice was taken in order to maintain the number of the parameters limited while
trying to build up a model that resembles as much as possible a TASEP with reservoirs.
Indeed, from the point of view of the TASEP, this model describes the possibility that particles
may assume a defective behavior during their motion for some time, restricting the flow of ordinary
particles (i.e. the ones in state 1). For example, the case λ2 = 0, the so-called pausing TASEP where
particles can enter and exit a state where they do not move, may have some biological relevance in
describing the effect of antibiotics [Kei+24], or some behaviors observed in Myosin motion [PG13].
The main quantity of interest will be the particle current at a given site of the lattice Ji evaluated
at stationarity, defined in the following way:

Ji = J1,i + J2,i (76)

where the definitions of the currents can be written using notation (41)

J1,i = λ1Pi[1, 0] (77)

J2,i =

{
λ2Pi[2, 0] if particles in state 2 move rightward
−λ2Pi[0, 2] if particles in state 2 move leftward

(78)

The latter definitions hold in the bulk (1 ≤ i < L), while boundary currents have the expressions
reported in Tables 1 and 2. For clarity Ji refers to the net current between the lattice sites i and
i+ 1, whereas J1,i and J2,i are the contributions from particles in state 1 and 2, respectively.

Table 1: Boundary currents of fast particles (state 1)

Left boundary Right boundary

J1,0 = λ1
α
2P1[0] J1,L = λ1βPL[1]

At stationarity, when the system falls in a state that is time invariant, Ji becomes independent
of the position i on the lattice, because it has to satisfy the continuity equation for the density per
site ρi = ρ1,i + ρ2,i

dρi
dt

= Ji−1 − Ji
d
dt=0
−−−→ Ji−1 = Ji = J

Where of course ρi = ρ1,i + ρ2,i is the total density and ρs,i = Pi[s] = P[ni = s] for s = 1, 2 are the
single species densities. The continuity equation can be obtained by summing the two equations of
the dynamical evolutions of the single species densities

dρ1,i
dt

= η(ρ2,i − ρ1,i) + J1,i−1 − J1,i

dρ2,i
dt

= η(ρ1,i − ρ2,i) + J2,i−1 − J2,i

∀i ∈ {1, ..., L} (79)
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Table 2: Boundary Currents of slow particles (state 2)

Left boundary Right boundary

state 2 particles move
rightward

J2,0 = λ2
α
2P1[0] J2,L = λ2βPL[2]

state 2 particles move
leftward

J2,0 = −λ2(1− α)P1[2] J2,L = −λ2
1−β
2 PL[0]

state 2 particles do
not move

J2,0 = 0 J2,L = 0

From the latter equations it is easy to see that, even at stationarity, the single species currents have
the possibility to vary over lattice sites if ρ1,i ̸= ρ2,i, as for example it may happen at the boundaries
of the system, with the following constraint

η(ρ1,i − ρ2,i) = J1,i−1 − J1,i = −(J2,i−1 − J2,i) (80)

The importance of the current for the OBCs system considered here comes from the fact that, in
the TASEP, the study of how J depends on the boundary rates is sufficient to outline the phase
diagram in the α-β plane.
Some considerations can be made to reduce, as much as possible, the range of values that needs to
be explored in the parameter space {α, β, η, λ1, λ2}. First of all the jump rate of particles in state
1 can be taken as reference for the time scale and so from now on it will be λ1 = 1. The other
hopping rate λ2 will always be smaller then 1 because we want to consider the particles in state
1 always the fast ones. To distinguish between the cases of particles moving in the same direction
and in opposite directions we will refer to v2, the average velocity of a single state 2 particle on the
lattice, which corresponds to the hopping rate λ2 with the sign of the motion direction because the
lattice has unitary spacing

v2 =

{
λ2 if particles in state 2 move rightward
−λ2 if particles in state 2 move leftward

(81)

The two numbers α, β will vary in [0, 1] since they represent the densities of the boundary reservoirs
and for how we defined the injection and extraction rates they cannot exceed 1. The tumble rate
has the two limiting cases of 0, where tumbling does not happen, and +∞ where particles become
random walkers, choosing randomly their direction at each step, but this loss of the persistent motion
can be considered to be accomplished already with η = 1.
We will not consider values of η that are too small, because otherwise finite size effects become
relevant in the model, with parts of the system that stay jammed for very long times. The importance
of finite size effects in such a case has been discussed in [Kei+24], for the pausing TASEP which
is analogous to λ2 = 0 in our discussion, with the difference that the rates of processes 1 → 2 and
2 → 1 can be different.
Using the Gillespie algorithm it was possible to obtain data on the behavior of the system with open
boundaries in the restricted parameter space we just described {α ∈ [0, 1], β ∈ [0, 1], η ∈ (0, 1], λ2 ∈
[0, 1), v2/λ2 ∈ {−1, 1}}, but also to do simulations of the system with periodic boundary conditions
in order to know the form of J(ρ) and estimate the value of the maximum current reachable for
given values of v2 and η. Always keeping in mind the simple TASEP, results will be presented in
a way that outlines several phase diagrams in the α-β plane, since the goal is to address how that
phase diagram varies with v2 starting from the one of the TASEP. For this reason we will use the
same notation of the TASEP to classify the phases:

• LD stands for the input-controlled phase and J plotted against ρbulk reproduces the ascending
branch of the fundamental diagram;
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• HD stands for the output-controlled phase, J(ρbulk) reproduces the descending branch of the
fundamental diagram;

• MC stands for the bulk-controlled phase, the current becomes independent of the boundary
rates, and it takes the extremal value of the fundamental diagram.

In the following we investigate in detail some subcases, featuring some of the relevant behaviors of
the system.

3.2.1 One direction of motion (0 ≤ v2 < 1)

The qualitative behavior of the system when all particles move rightward is similar to the simple
TASEP and in fact all the three phases can be recognized pretty easily. In figure 14 it is possible

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.02

0.04

0.06

0.08

0.10

α

J

(a) β = 0.1
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η=0.01

(b) β = 0.8

Figure 14: J as a function of α for v2 = 0.1. Simulations for systems with L = 500. Symbols: OBCs.
Horizontal lines: maximum current estimates, PBCs.

to see the phase transitions that can occur as α varies for two fixed values of β, the first one low
enough to observe the phase transition from LD to HD figure 14a, and the second one high enough
to get the phase transition from LD to MC figure 14b.
When λ2 and η vary in the interval [0, 1], the macroscopic effect on the system is a change in the
phase diagram, where an enlargement of the area occupied by the MC phase can be observed. This
is due to the decrease of the critical values αc and βc that mark the transitions from LD to MC and
HD to MC respectively. These values seem to decrease by slowing down the species 2 particles and
also by reducing the tumbling frequency. This means that the limiting effect on the flow of particles
that is allowed in the bulk is becoming more prominent. This direct consequence of the presence
of slow particles and the mechanisms through which they appear in the system should be better
understood by doing some comparisons between the observed behavior of the model and the known
behavior of the TASEP, as it has been attempted in the continuation of the section.
The first effect of having slow particles in the system is to reduce the maximum current reachable in
the system, by limiting the mobility of all particles that fall behind a slow moving one. Considering
the fundamental diagrams in figure 15, it is possible to observe that this effect becomes more severe
as the tumble rate decreases. This can only be explained by the emergence of cooperative effects in
the motion of particles that appear, due to the exclusion interaction. Consider the average trajectory
of a single particle moving in an empty lattice, that is subject to the tumble dynamics: the average
time spent in each state would be half the total time T taken to cross a lattice of length L. Knowing
the average speed in each state, one lattice site per unit time in state 1 and λ2 sites per unit time
in state 2, one can evaluate the total time needed to cross the lattice and find that it is independent
of the rate of tumble:

L = 1
T

2
+ λ2

T

2
−→ T =

2L

1 + λ2
(82)
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So the tumbling mechanism does not change the particles’ average speed by itself. What is happening
is that, when a particle slows down by going into state 2, it affects the particles behind it, creating a
jam. The size of the resulting queues, which is the number of particles affected by a slow one ahead,
is larger if the time spent in state 2 increases and this is what happens when η decreases. In the
limit of η → 0 the particles in state 2 are only the one that entered the lattice in that state and
the system can be effectively described in terms of particles moving with rate λ2 that have a finite
extension [Bot17]. For higher values of the tumble rate this description cannot be successful because
slow particles can appear inside a queue or disappear from its head, making the picture much more
complex.

Another phenomenon that can be observed is the discrepancy between the occupations of the
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Figure 16: ρbulk as a function of α for λ = 0.1. Simulations for systems with L = 500. Symbols:
OBCs. Solid lines: TASEP predictions of ρbulk, included for reference

reservoir and the bulk densities. In phases other than MC, far enough from the boundaries the
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Figure 17: Density profiles {ρi}Li=1 for
some η, with α = 0.8, β = 0.15, λ = 0.1.
Simulations for systems with L = 500.

density profile becomes flat, taking the value ρbulk, independent of the lattice site i. In the simple
TASEP, ρbulk takes the value corresponding to the reservoir that is limiting the flow of particles,
so in the LD phase ρbulk = ρ0 = α and in the HD phase ρbulk = ρL+1 = 1 − β. Conversely, in the
presence of two species and with a finite tumbling rate, ρbulk > α is observed in the LD phase and
ρbulk < 1− β in the HD phase. Since the density in the bulk is constant, we have that the current
of the system must satisfy J = J(ρbulk)

5 and so saying that J reaches its limiting value in the MC,
implies that ρbulk approaches ρ∗ = argmaxρ∈[0,1] J(ρ) as the system approaches the MC phase. For
what we said before, the system reaches the condition ρbulk = ρ∗ before α and 1 − β reach that
density value. If this were not true the critical values of the boundary rates could have increased
with a smaller η instead of being always decreasing.
The discrepancy is affected by the value of η and tends to disappear as λ2 → 1, where the system
becomes the simple TASEP. Plots where the phenomenon can be appreciated are displayed in figure16
and figure 16c, where we report a comparison of the values of ρbulk and the reservoir densities,
obtained at fixed λ2 and varying η, the simple TASEP results for ρbulk have also been included as
reference.
Another observation is that the simulated density profiles show boundary layers that were not present
in the simple TASEP. The new boundary layers can appear at the left (resp. right) end of the lattice
in the LD phase (resp. HD phase), while ρbulk remains independent of β (resp. α). This means that
at the boundaries there are some accelerations and decelerations of the particles, since motion in the
bulk is affected by cooperative structures that correlate particles, while injection and extraction at
the boundaries depend just on the first and last site, respectively, so that structures and correlations
are neglected in some sense.
In the LD phase, with all the other parameters fixed, it seems that as η decreases, ρbulk always

increases. From figure 16b it can be seen that the lower the value of η, the faster ρbulk grows with
α so the maximum current phase is reached for smaller and smaller injection rates. The fact that
ρbulk is lower than 0.5 for η = 0.5 and bigger for η = 0.01 should depend on the fact that the value
of ρ that maximizes J has the same behavior, as can be seen in figure 15.
It must be specified that, due to BL the bulk density in the simulations is calculated by summing
the stationary densities of the sites far enough from the boundaries, for example

∑900
i=100 ρi on a

lattice of size L = 1000. Furthermore in the MC phase, the density is not constant in the bulk so
ρbulk plotted in the figure represents an average over sites.
The behavior of the HD phase seems less trivial: the density in the bulk remains consistently below
the reservoir density 1−β but, instead of always decreasing, it can happen that ρbulk starts increasing
for values of η low enough. This can be seen in figure 16b where some data for λ = 0.1 are reported.

3.2.2 Motion in both directions with a preferred one (−1 < v2 < 0)

Now particles in state 2 move leftward and the behavior of the right reservoir changes. Also in this
case the three phases can be found. In fact looking at the currents plotted against α, in figure18

5at least to a good approximation because the simulations cannot be done on an infinite system
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Figure 18: Case λ2 = 0.5. Simulations results for the current J , plotted against α for two values
of β. Different values of η are considered, while the lattice size is L = 500. The horizontal lines
are estimated values of maximum currents obtained from simulations of the PBCs system, they are
needed as reference to distinguish between the HD and MC phases because in both cases the current
becomes independent of the entry rate α.
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Figure 19: Case λ2 = 0.5. Simulations results for the current J , plotted against β for α = 0.8.
Different values of η are considered. The horizontal lines are estimated values of maximum currents
needed to distinguish between the LD and MC phases.

and figure19, the transitions between LD, HD and MC can be identified. The main difference in
the phase diagram is, roughly speaking, that now the phase that tends to occupy the area of the
diagram more than the others, is the HD phase, with the critical values of α and β respectively
reducing and increasing when η → 0 and λ2 → −1. Because of this fact it may become difficult to
identify the MC and LD phases.

As in the previous case the system is affected by the collective behaviors of particles, with a
difference: when v2 > 0, particles in state 2 can create queues behind them, and in such structures
the particles get slowed down but still move rightward. Now, a particle in state 2, at the right end
of a sequence of occupied sites, prevents the others from moving, or, in other words, the particle
clusters have fixed positions now. We stress that the latter thing is true also for v2 = 0, but the fact
that in this case particles do not move leftward makes it possible to have single particles that are
stopped and so non-moving clusters can be composed of one particle, and this implies that Pi[0, 2]
is much higher with respect to the v2 < 0 case, as it can be seen for η = 0.1 in figure 20.

Before discussing further the currents and the behavior of the OBCs system, let us take a small
detour and discuss the formation of clusters in this case. Considering small values of η, the coales-
cence fragmentation picture used to obtain the average cluster size (see the final part of section 2.1)
can be adapted to the case v2 ≤ 0:
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• when the leftward hopping rate is much bigger than the tumble rate λ2 ≫ η, the coalescence
and fragmentation picture is totally analogous to the one discussed with the only difference
that the rightward mass transfer is slower. When moving rightward a mass m∗ takes roughly
a time m∗ λ−1

2 , as the motion of a single mass unit happens with rate λ2. So (36) has to be
modified for fragmentations triggered by the flip of a negative spin and one obtain a total rate
of fragmentation equal to

rf ≃
∑
k≥1

η nc 2
−k η k

(
m∗ +

m∗

λ2

)
= 2

(
1 +

1

λ2

)
η2 nc m

∗ (83)

which gives an average cluster size

lc =

√
2

1 + λ−1
2

ρ

(1− ρ)η
; (84)

• For λ2 = 0 the description becomes different, masses cannot move rightward so a positive spin
stops the masses. The consequence of this is that a mass can have a positive spin on its right
side and remain still and mass transfers can only go leftward. The calculation of the total rate
of coalescence has to be modified accordingly, because the distance between the original and
the target site can be 1, and there is an additional spin that has to point in a given direction
to allow the coalescence, so the rate becomes

rc = η
∑
n≥1

2−n+1 n2
c(1 + ϵ(n)) = 2η n2

c +O(η n3
c) (85)

Also fragmentation changes a bit because the leftward mass transfers can be interrupted by all
the k spins in between the original and the target site, while the flip of the right spin has no
effect on the mass transfer. The calculation of rf is the same given in equation (37) without
the factor 2 because now only spin flips on the left of an occupied site can trigger a mass
transfer

rf ≃
∑
k≥1

η nc 2
−k η km∗ = 2 η2 nc m

∗ (86)

So incidentally the two rates have changed by the same multiplicative factor and the average
cluster size is the same as that of the PEP, namely

lc =

√
ρ

(1− ρ)η
. (87)

The comparison of these results with simulations can be found in figure 21, a good agreement can be
observed. It is interesting that the pTASEP and the PEP produce the same cluster sizes, because
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Figure 21: Average cluster size lc obtained in simulations of the PEP with particles hopping leftward
(v2 ≤ 0) with rate λ2 and PBCs. Simulations done with L = 1000

this is true also in the uncorrelated limit η → ∞. The data we collected showed that the whole
distributions of the cluster sizes coincide, meaning that the two models share further connections
between their statonary states even if the pTASEP sustains a current and the PEP does not. When
λ2 ∼ η the description we used does not hold because mass transfers happen too slowly rightward, so
fragmentations in this direction happen easily but masses end up close to one another and spin flips
can easily make them coalesce, making the assumption for the independent occupation of mass sites
not applicable. The latter fact makes lc deviate from (84), smoothly reaching its value at λ2 = 0.

Now we go back to discussing the transport in the system. The current J in the system is
smaller with respect to the case of particles moving in the same direction. The decrease of J1 is
less important than the negative contribution of J2 (that now contains Pi[0, 2] in place of Pi[2, 0]).
In fact in figure 22a, it can be seen that J1 does not change much when λ2 varies from 0 to −1.
Instead figure 22b shows how the fundamental diagrams changes with the tumble frequency η, for a
given value of λ2. The magnitude of the currents changes for other values of λ2 but the effect of η
is similar.
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(a) Plot of J1(ρ) for different values of λ2 and tum-
bling rate η.
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Figure 22: Currents of leftward moving particles J1 and total current J as a function of the particle
density ρ, for the PEP with particles hopping leftward (v2 ≤ 0) with rate λ2 and PBCs. Symbols
are the result of simulations on systems of size L = 500

The fact that the HD phase becomes so important in the phase diagram, is due to the substantial
change in the role of the right boundary condition. It changes from the role of a pure sink to being
both a sink and a source of particles. In the previous case, the right reservoir could limit the flow
of particles by reducing the amount of particles that are able to exit the system, now it has the
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possibility of blocking the flow with the injection of a leftward moving particle. This blockage is
more severe the smaller η is, because a particle in state 2 will tumble after a time 1

η on average.
During the time in which no particle reaches the right reservoir, particles in state 2 can still be
injected, filling the right part of the lattice even more. So we have that it becomes easier for the
right reservoir to limit the flow in the system.
It can be argued that the filling of the system happens because the "equilibrium" of fragmentations
and coalescence of gaps is broken in some way when the injection of particles at the right end of the
system becomes too frequent.
As in the previous case, the density profile becomes flat far from the boundaries, so that a bulk
density ρbulk can be defined.
The phenomenon of the additional boundary layers is present, similarly to the previous case, with
the difference that now ρbulk > 1 − β in the HD phase. When β is close to 0, the BL that forms
at the left end of the lattice becomes increasing. This fact is consistent with the higher critical β
marking the transition between HD and MC phase: when β varies from 0 to 1, ρbulk decreases,
approaching the value ρ∗ that maximizes the current, if the BL makes ρbulk < 1 − β the critical β
will be reached before with respect to the case of ρbulk > 1− β.
The tumbling frequency plays a non-trivial role in making ρbulk exceed 1− β, because density vari-
ations at the BL become bigger as η decreases. This can be seen in figure 23a where ρbulk is plotted
against β for different values of η, picking any value of β for which the system is in the HD phase;
a decrease of the tumble frequency increases the bulk density.
Another phenomenon can be seen in the same figure, when η is low (≲ 0.01), it appears that ρbulk
becomes independent of β in the HD phase, in most of the [0, 1] interval. In figure 23b the plot of
ρbulk is given for different values of λ2, with η = 0.01 and more values of β considered to see what
happens at its extremal values. From the figure it can be seen that if particles move quickly enough
toward the left then the system always has the same behavior: the system almost fills up completely,
with the gaps between particle clusters that prevent the bulk density from reaching 1, so below a
certain threshold value of β the system saturates to a certain value of ρbulk which can be overcome
only when the right reservoir density 1− β exceeds the bulk density.

In figure 24 it can be seen that when the system saturates with clusters the current vanishes and
that a condition of maximal current is always achieved which makes us say that, excluding λ2 = 1
where J(ρ) = 0, the MC phase is always present (for λ2 = 0.95 the estimate of the maximum current
was poor, this because the system is close to the condition of symmetric hopping where the current
in the translationally invariant system is 0).
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Figure 23: Data of the simulated ρbulk: points are taken for various extraction rates β. Lattice size
L = 1000. The values of the left reservoir density is α = 0.8 so the system is either in the HD or
MC phase.
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3.2.3 No preferred direction of motion (v2 = −1)
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Figure 25: Simulated density pro-
file, reported as they vary with η,
while the rates of injection and ex-
traction are α = 0.4, β = 0.75.
Lines are estimates of the maximal
current of the phase diagram J(ρ)

Now particles move symmetrically, without directional bias. This means that the two reservoir
play the same role and that transport between them has become purely diffusive, since the net
contribution, due to different hopping rates amplitudes that make transport driven, has vanished.
Without considering the persistent motion, this situation resembles that of the Symmetric Simple
Exclusion Process(SSEP) with open boundary conditions [Sch01], a model analogous to the TASEP,
where particles can hop to the right or the left. The solution of the SSEP, shows that at stationarity
it gets established a density profile that interpolates linearly between the reservoir densities

ρi = ρ0 − (ρ0 − ρL+1)
i

L
=

α(L− i) + (1− β)i

L
(88)

with the uniform current that satisfies Fick’s law:

Jdiff =
ρ0 − ρL+1

L
=

α− (1− β)

L
(89)

A similar thing happens for the model we are considering: when η ≳ 1 the density profiles becomes
almost linear, with the current that is proportional to the density

J = D
ρ0 − ρL+1

L
(90)

where D is the diffusion constant that deviates from 1 the rate of tumble is comparable with hopping
rate η ∼ 1. The fact that the density profile becomes linear can be seen in figure 25 where it can be
seen how the density profile varies with η at fixed boundary rates. While the fact that the current is
diffusive can be seen in figure 26 where the simulated J of the PEP with OBCs was plotted against
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Figure 26: Dots represent the simulated current J
in the PEP with OBCs plotted against the theoret-
ical diffusive current (see equation (89)). Values
are taken for α that varies with regular intervals
from 0.1 to 0.9, while β = 0.25 and L=500.

Jdiff. This result was also confirmed in [DCR20] where D was calculated by extending the MF mass
model to systems with small density gradients.
When η decreases the system starts filling up with particles: unless the reservoir densities are close

to 0, the system seems unable to sustain a non-vanishing current because the lattice is full of clusters
that prevent the diffusion of particles. In figure 25 it can be seen how the density profile changes as
η decreases, while in figure 27 it can be clearly seen that the current can become ≪ Jdiff for most
values of the injection rate α. The stationary current appears noisy in the simulations performed as
it is linked to the vanishing density gradients between adjacent sites that make J+ and J− slightly
different.

For η = 0.01, when α is close enough to 0, a current appears, this corresponds to the system
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Figure 27: Dots represent the
simulated current J in the PEP
with OBCs plotted against α for
β = 0.75 and L=500. More
points were sampled near α = 0.

becoming more empty, as it can be seen in figure 28, where the density per site saturates to an
almost uniform profile for α > 0.05, otherwise the particles concentrate in the right part of the
lattice, where the reservoir density is higher, ρL+1 = 1 − β = 0.25 in this case. To see how the
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Figure 28: Simulated density profiles
{ρi}Li=1 of the PEP with OBCs. With
fixed parameters β = 0.75, η = 0.01,
while α varies from 0.01 to 0.1 (from top
to bottom) at regular intervals of 0.01.
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system reaches the situation where the density can saturate we show plots of the mean density of
the lattice evaluated as the total stationary density over the lattice size:

N

L
=

1

L

L∑
i=1

ρi (91)

In figure 29, the latter quantity is plotted against the density of the left reservoir α, for various η
while two values of β are considered. Comparing the two figures it can be seen that for η ≤ 0.01 the
occupation of the lattice does not change in a perceivable way for the two values of β considered.
We imagine that there is an entire region of the α-β plane where the bulk density ρbulk becomes
independent of the boundary conditions. The size of the region increases with η.
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Figure 29: Mean density of the lattice defined in equation (91) as a function of the left reservoir
density α, for various η. Simulations done for lattice of size L = 500.

4 Conclusions
In this study, we examined the persistent exclusion process following two routes. Initially, we
evaluated how approximate methods are effective in characterizing the steady state of systems with
periodic boundary conditions. Subsequently, we used simulations to investigate system behaviors
when open boundaries and different particle velocities are included, leading us to a generalized model
that allowed us to explore the phenomenology of OBCs in a wider framework that includes the well
known TASEP as a special case.
The study of the PEP using the mass model and the pair approximation has presented the possibility
to compare the effectiveness of the particle oriented MF against MF cluster approximation which
is instead site oriented, which had not been done previously in the literature. Comparing the two
MF methods has showed that the gap oriented method represents always an improvement with
respect to the PA: as one could have expected the MF mass model is much better in describing the
gap distributions as this is the core of the approximation, at the same time both methods neglect
particle correlations beyond nearest-neighbor pairs but the quantitative predictions of these are
improved by accounting correlations between vacant sites. The we have introduced the Generalized
Persistent Exclusion Process which offers a versatile framework for probing biological and synthetic
systems, from bacterial colonies to intracellular transport, even if the model as a whole cannot
be traced to a biological system. The phenomenology of the generalized model has proven to be
very rich, regardless of the direction of motion of the particles of species 2, collective phenomena
become dominating in the model with the particles that form larger and larger structures as the
rate with which particles change state decreases. The results presented in section 3.2.2 regarding
the coalescence-fragmentation model show how a reframing that focuses on gaps description can be
useful in such contexts of emerging collective behaviors. Such variety has prevented us from using
approximations on the generalized model in this thesis due to lack of time. It remains of interest to
test at least the PA on the OBCs system we investigated. Some preliminary attempts not included
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in this report have shown that the PA applied to the v2 < 0 OBCs system seem to show some
periodicity, with the system that empties and refills over time, something that resembles what has
been described in [Kei+24]. The latter work studies the pausing TASEP, which corresponds to our
model with v2 = 0, to describe transcription bursts performed by ribosomes that can be inhibited
and they discussed how this phenomenon is linked to finite size effects. It would be interesting to
see how the PA performs in describing this behavior, and in general it could be profitable to focus
further researches on specific phenomena that have emerged in our OBCs system. Important finite
size effects are known to be present also in the PEP [CMT23].
Restricting the rates of injection and extraction to values that describe the coupling to reservoirs
has allowed to facilitate the exploration of the phenomenology of the OBCs system, representing
both a reduction of the space of parameters that needed to be considered and a tool for creating
interpretations of what was happening.
Our system has proven to be able to undergo boundary induced phase transitions analogous the ones
of the TASEP despite having counterflowing particles, as long as the fundamental diagram is different
from J(ρ) = 0. Even in the latter case, which corresponds to the symmetric PEP, the system shows a
non trivial behavior as we have unveiled the presence of a region of the α-β phase diagram where the
system reaches a saturated state where the number of particles in the system becomes independent
of the boundary conditions and the current vanishes. We have observed a trace of this regime also
in the HD phase of the system with a preferred motion direction. This behavior seems to be novel
in the field of driven lattice gases and it may be related with condensation transitions observed in
mass transport model with open boundaries [LMS05]. We have not fully explored any route in the
development of a theory that could explain it but we believe this could be done in further researches.
Other inspirations for further research are the development of a theory that is able to predict the
location of the transitions between LD, HD, MC phases and explain the observed boundary effects,
very different from the well-known TASEP ones, that make the bulk density depend non-trivially on
the occupation of the boundary reservoirs. It may be worth exploring generalizations of the domain
wall theory like the one proposed in [MSR11].
A remarkable result has been the finding that the pTASEP and the PEP share the same statistics for
their clusters sizes, so that the only qualitative difference between the two systems is that the first is
able to sustain a current while the other is characterized by a zero net current at stationarity. It is
interesting because it means that observing temporal snapshots of the configurations is not enough
to distinguish one model from the other. The similarity of the cluster size distributions has been
verified in simulations and a heuristic argument valid at low rate of tumble confirms the equality
of their average, what we have done here does not exhaust the possibility to further explore the
connection between the two systems. Our generalized model could be used to further explore these
and the other effects we cited in a unified framework.

A Gillespie Algorithm
The Gillespie algorithm, is an efficient way of simulating continuous-time Markov processes [Gil76].
In short, the algorithm produces a new configuration starting from an initial one by evaluating
first the time necessary for the transition to occur and then the new configuration, in this way the
algorithm does not require any rejection steps, making the simulation of a trajectory 100% efficient.

A.1 Algorithm Overview
Consider a system in an initial configuration C at time t0. Let WCC′ represent the transition rate from
the current configuration to a new configuration C′. Let S be the set of all possible configurations
in which C can do a transition. Knowing that the times of occurrence of each transition C → C1
obey exponential distributions with average time 1

WCC1
, the most straightforward way to simulate a

trajectory would be to sample all these times and pick the smallest one τ , at least a fraction of the
sampled times will be discarded, leading to the inefficiency Gillespie was able to eliminate.
The algorithm samples directly τ , which is a stochastic variable, that is the time elapsed from t0 to
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the transition to the new configuration, its probability distribution is equivalent to the probability
that none of the available transitions has occurred in the infinitesimal time steps dt that compose τ :

P (τ) = lim
∆t→0

(
1−∆t

∑
C′∈S

WCC′

) τ
∆t

= exp

(
−τ

∑
C′∈S

WCC′

)
(92)

So the time of the next transition can be sampled from the latter distribution given the transition
rates WCC′ . It can be shown that the probability that the process CC1 has produced the smallest
time τ is:

P (C → C1) =
WCC1∑

C′∈S WCC′
(93)

In order to implement this method it will be sufficient to generate two random numbers, uniformly
distributed in the interval [0, 1] ξ1 and ξ2 and to use them in the following equations where the
possible transitions have numerated, so that rate labels CC′ get replaced by l ∈ {1, ...,K}, with
K = |S|, and becomes possible to write:

τ = − 1∑K
l=1 Wl

ln ξ1, (94)

k−1∑
l=1

Wl < ξ2

K∑
l=1

Wl ≤
k∑

l=1

Wl (95)

The Gillespie algorithm implemented for the models considered in this work does the following
operations:

1. Set the values for the parameters, the initial configuration C0 and the maximum time the
trajectory can reach T .

2. Having enumerated all processes that are possible in the model, it is now necessary to associate
the rate, calculated from the parameters, to the processes that can actually occur in the system
in configuration C0, all the other processes will have rate 0, so that when the configuration
changes it will be sufficient to update the collection of rates without enumerating them every
time.

3. Generate a random number ξ1 and use equation (94) to compute τ . Update the total elapsed
time to t′ = t+ τ .

4. Generate a second random number ξ2 and choose the next transition k by checking which
inequality in equation (95) is satisfied. Based on the result, identify the specific transition.

5. Update the state of the system and the rates with the new processes available and set to 0 the
ones that are not possible anymore (this is convenient in the model considered here because
when something happens on a lattice site it affects at most its next-nearest neighbors)

6. Repeat steps 3–5 until the elapsed time is smaller then T .

This is the basic algorithm, then in order to collect data on the trajectory, configurations C were
sampled at time intervals larger than a given value ∆t. A quantity of interest can then be evaluated
by averaging over the sampled configurations. For example the density of particles in one state:

ρs,i =
1

# of samples

∑
C∈samples

1
[
nC
i = s

]
(96)

The other average quantities were obtained in similar ways. To have an appropriate ∆t, it has been
usually chosen to use a value proportional to the inverse rate of the slowest process present in the
system6.

6Most of the time this has been the tumble of a particle, so ∆t = η−1
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