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Abstract

In recent years, space exploration has experienced an exponential increase
in activities within low Earth orbit (LEO), a trend that is expected to continue
in the coming years. This growth has drawn attention to the problem of
orbital debris overcrowding and the need to design missions capable of actively
mitigating this issue. As a result, there is a growing interest in developing more
efficient missions, particularly in optimizing transfer manoeuvres to minimize
either time or propellant consumption. LEO is an environment where the
Keplerian orbit approximation alone is insufficient to accurately describe all
relevant dynamics. In particular, the perturbation due to Earth’s J2 effect
must be considered to obtain precise results. However, these perturbations
can also be exploited to optimize transfer trajectories. Electric propulsion is
a promising candidate for future missions, offering significant advantages in
terms of propellant efficiency. Numerous methods exist for optimizing low-
thrust, multi-revolution transfers. Among these, the indirect method is a robust
approach that relies on the numerical integration of differential equations and
the shooting method to achieve optimal transfers. However, it poses significant
challenges in terms of implementation and computational cost. Conversely, the
arc-impulse method is based on an approximate analytical optimal solution
and requires only a few iterations to converge. Although the optimal strategies
derived from approximate methods may differ from those obtained using the
indirect method, within its range of applicability, the arc-impulse method proves
to be an effective approach for quickly estimating both propellant costs and the
minimum time required for a mission. This becomes particularly advantageous
when studying multi-target solutions.
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Chapter 1

Introduction

1.1 Purpose of the Study

In this work, the subject of trajectory optimization is addressed. The problem
considered involves a low-thrust transfer between two LEO orbits with a single
target, where the effect of the J2 perturbation is included. The optimiza-
tion problem is studied using two different approaches: applying an indirect
optimization method, which requires numerical algorithms for solution, and
an approximate optimization method that relies on simplifications to obtain
analytical solutions.

Optimization strategies related to LEO transfer manoeuvres are of great
interest today. On the one hand, this is due to the significant advantages that
LEO orbits offer for both commercial and scientific applications, and on the
other hand, due to the overcrowding of these orbits, which leads to space debris
problems. The following chapters aim to provide a brief overview of these
issues and explain why they require significant attention from the scientific
community.

1.2 Space Debris

There are numerous applications today that rely on satellites in orbit: from
meteorology and climatology to telecommunications and navigation systems,
all the way to human space exploration. It is certain that the use of satellite
systems offers significant advantages, both from a commercial and scientific
perspective. However, the exponential growth and use of such systems have led
to a considerable issue: space debris.

The term space debris refers to all human-made objects, including fragments
and parts thereof, that are present in Earth’s orbit or re-entering the atmosphere
and are no longer operational (definition according to the Inter-Agency Space
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Figure 1.1: Tracked objects in Earth’s orbit in 2019 [17]

Debris Coordination Committee - IADC).
In recent years, this problem has become increasingly pressing, threatening

the safety of operations in Earth’s orbit. According to the ESA Space Environ-
ment Report 2024, more satellites were launched in 2023 than in previous years,
and the number and scale of commercial constellations in certain LEO orbits are
continuously growing. Moreover, not enough satellites are leaving these highly
congested orbits at the end of their operational life, leading currently active
satellites to perform an increasing number of collision avoidance manoeuvrers.
The adoption of countermeasures for space debris mitigation is slowly improving
the situation, but it is still not enough to stop the increase in debris. Without
changes, the current collective behaviour of space entities (government agencies
and private companies) is not sustainable in the long term.

1.3 Historical Background

The launch of Sputnik I in 1957 not only marked the beginning of the Space
Age but also the creation of the first piece of space debris. The need to track
all artificial objects in orbit led the USAF (United States Air Force) to establish
Project Space Track.

Space activities during the 1960s, from launches to anti-satellite (ASAT)
weapon tests and the explosions of old satellites, contributed to an increase in the
orbital debris population. Additional projects were created to track spacecraft in
orbit, such as the Space Object Catalogue by NORAD (North American Aerospace
Defense Command). The number of elements in this database tripled on June
29, 1961, following the explosion of the final stage of the Thor-Ablestar rocket,
which had successfully placed the Transit-4A satellite into orbit, generating
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more than 200 recorded fragments. This was the first known event of the
unintentional destruction of an object in space.

In 1978, NASA scientists Donald J. Kessler and Burton Cour-Palais pub-
lished the paper Collision frequency of artificial satellites: The creation of a
debris belt in the Journal of Geophysical Research: Space Physics, presenting
a catastrophic scenario in which the growth of the space debris population is
primarily driven by collisions rather than new launches. This study brought
significant attention to the issue, and the scientific community began referring
to this phenomenon as the Kessler Syndrome.

Between the 1970s and 1980s, various initiatives and programs addressing
this issue emerged, including what is now known as the Orbital Debris Program
(OPDO). OPDO began discussions with ESA in 1987, which later expanded to
include other space agencies. During the 1980s, the Air Force Space Debris
Research Program was established following multiple fragmentation events
involving Delta launch vehicles and ASAT tests.

In 1993, the Inter-Agency Space Debris Coordination Committee (IADC)
was founded with the goal of developing guidelines and coordinating efforts to
manage the space debris issue and assess associated risks.

Finally, in 2001, the U.S. government released the Orbital Debris Mitigation
Standard Practices (ODMSP), which represents the official U.S. guidelines for
mitigating and preventing the increase of space debris. In 2004, the European
Code of Conduct for Space Debris Mitigation was published, introducing reg-
ulations aimed at the same objective. More recently, in 2023, new policies
regarding space debris mitigation came into effect as part of the ESA’s Zero
Debris Approach initiative.

1.4 Classification of Space Debris

In general, objects in orbit can be classified into two main categories: objects
that can be traced back to a launch event and whose nature can be identified,
and objects for which this is not possible. The latter are classified as Unidentified
(UI), while the former are divided into:

• Payloads (PL), objects designed to perform specific functions in the
space environment, excluding launch functions. This category includes
operational satellites.

• Payload mission-related objects (PM), objects released as debris that
served a function for the payload. A typical example is the covers of
optical instrument lenses.

• Payload fragmentation debris (PF), fragments or objects unintentionally
released from a payload whose origin can be traced back to a single event.
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This category includes debris created by a payload explosion or a collision
with other objects.

• Payload debris (PD), fragments or objects unintentionally released from
a payload whose origin is unknown, but whose orbital or physical charac-
teristics allow identification of the source.

• Rocket body (RB), objects designed to perform functions related to the
launch. This includes upper stages of launch vehicles.

• Rocket mission-related objects (RM), objects intentionally released that
served a function for the launcher.

• Rocket fragmentation debris (RF), fragments or objects unintentionally
released from a launcher whose origin can be traced back to a single event.

• Rocket debris (RD), fragments or objects unintentionally released from
a launcher whose origin is unknown, but whose orbital and physical
characteristics allow identification of the source.

Space debris is primarily classified based on its size and the altitude at
which it is located. The size of an object is important for tracking and for
assessing the damage it can cause in the event of a collision. The larger the
object, the higher the probability of collision with another object, and the
greater the number of fragments generated upon impact. However, even small
objects pose a significant threat, as in low Earth orbit (LEO), orbital velocities
reach the order of 10 km/s. At these velocities, even fragments of 1 mm or 1
cm can cause severe impact damage to active satellites. Space debris can be
therefore classified into three main categories:

• Large Space Debris, objects larger than 10 cm. These objects are tracked
and cataloged.

• Medium Space Debris, objects with sizes between 1 cm and 10 cm. These
objects are tracked, but with lower reliability.

• Small Space Debris, objects with sizes between 1 mm and 1 cm. These
objects are currently not tracked.

Of particular interest are Lethal Non-Trackable debris (LNT). These are
a subcategory of small objects, with sizes between 5 mm and 1 cm. They
are too small to be tracked but large enough to cause catastrophic damage
in the event of a collision with a satellite. While smaller debris is mitigated
using passive protection systems such as shields, and larger debris is managed
through collision avoidance maneuvers, LNT debris poses the highest impact
risk. Debris larger than 10 cm in size are called massive derelicts: these include
upper stages of launch vehicles and non-operational satellites. The primary
threat posed by these objects is their large mass, which has the potential to
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Figure 1.2: Typical risk Profile for a satellite in LEO orbit [16]

significantly increase the space debris population in the event of an explosion
or collision.

1.5 Space Debris Environment

According to statistics from ESA (European Space Agency), since the beginning
of the space age in 1957, approximately 6,740 launches have been conducted,
placing a total of 19,590 satellites into orbit. Currently, around 36,860 objects
are present in orbit and regularly tracked by the US Space Surveillance Network
(SSN), of which 10,200 are currently active satellites. It is estimated that the
total mass in orbit around the Earth exceeds 13,000 tons. Unfortunately, not
all objects in orbit are tracked and cataloged. Using statistical models, it is
estimated that there are:

• 40,500 space debris objects larger than 10 cm

• 1,100,000 space debris objects between 1 cm and 10 cm in size
• 130 million space debris objects between 1 mm and 1 cm in size

Large objects are continuously tracked with high precision by systems such
as the U.S. Space Surveillance Network. The SSN tracks and maintains a public
database of these objects. Medium-sized objects can be tracked with current
technologies, but not always reliably: some can be tracked periodically and
with reduced accuracy. The creation of the Space Fence radar system in 2020
by the U.S. Space Force has improved tracking capabilities for medium-sized
objects. Tracking ability also depends on the altitude of the debris: objects in
GEO orbit are more difficult to monitor precisely and rely on optical systems,
whereas radar systems are used for LEO orbits.

The number of space debris objects larger than 1 cm (large enough to
cause catastrophic damage) is extremely concerning. Particularly affected zones
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Figure 1.3: Number of objects tracked by US SSN in 2020 by altitude [3]

include certain LEO orbits. As shown in Figure (1.5), approximately two-thirds
of active satellites are located between 500 km and 600 km. The number of
satellites in this region is continuously increasing, as many of the launches
conducted in 2023 were directed toward these orbits.

Every collision or explosion generating a large number of debris poses a
threat to all satellites occupying these densely populated orbits and to all
spacecraft that must traverse them. The number of events requiring collision
avoidance manoeuvres is increasing, both due to the growing number of space
debris and the increasing traffic in orbit.

1.6 Space Debris Formation Mechanisms

The sources of space debris can be multiple, both accidental and intentional.
Almost always, the formation is related to the launcher used to place the
satellite in orbit, or the satellite itself once in orbit. Among the sources of

Figure 1.4: Annual objects in orbit, categorized by type [5]
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Figure 1.5: Launches to LEO orbits (left), number of active satellites in these
orbits (right) [9]

intentional debris, there are:

• Objects released during spacecraft separation from the upper stage or
during orbital commissioning. These objects include: release springs,
fragments caused by pyrotechnic mechanisms, dispensers left in orbit
after a multiple launch, and protective covers.

• Upper stages of launchers.
• Debris caused by the destruction of satellites due to anti-satellite (ASAT)

weapon tests.
• Satellites that have reached the end of their life and are left to de-orbit

naturally over several years.
• Small aluminium oxide particles produced by solid propellant rocket.

Among the sources of accidental debris, there are:

• Damage or destruction of satellites and launchers in orbit (fragmentation
events). This can occur due to a collision with another spacecraft or space
debris, or as a result of an accidental explosion.

• Intact spacecraft that, following a failure, have become inactive.
• Tools lost by astronauts during extravehicular activities.

Despite human space activity having lasted for decades, the events that
have created the largest amounts of space debris have occurred in the last 20
years. Some of the most significant events include:

• Fengyun-1C, a Chinese meteorological satellite that was intentionally
destroyed during an ASAT test in January 2007. It is estimated that this
created 300,000 objects of 1 cm or larger (thus fatal size), of which about
3,300 were 10 cm or larger. Most of these objects remain in the satellite’s
orbit (850 km altitude, 99 inclination).
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Figure 1.6: Number of conjunction events that a typical satellite at different
attitudes can expect in one year [9]

• Iridium 33 and Cosmos 2251, two satellites that collided in February
2009. This was the first accidental collision between two large objects.
Iridium 33 was an operational satellite in the Iridium constellation for
telecommunications services, while Cosmos 2251 was an inactive Russian
military satellite. The collision occurred at 11 km/s, destroying both
satellites, creating about 200,000 objects 1 cm or larger, with about 2,000
of them being 10 cm or larger. Most of the debris is in the orbits of the two
satellites, at 780 km altitude, with 86 and 74 inclinations, respectively.

• Cosmos 1408, an inactive Russian military satellite that was intentionally
destroyed during an ASAT test in November 2021. It is estimated to have
generated 1,500 trackable objects and several hundred thousand smaller
objects. Most of the debris is located in a region between 300 km and
1,100 km in altitude and at an 82 inclination.

1.7 Response to Space Debris

The accumulation of space debris is an increasing problem that necessitates
action to safeguard the future use of Earth orbits. The response to space debris
can be broken down into three main strategies: Space Situational Awareness
(SSA), Space Traffic Management (STM), and Space Environment Management
(SEM).
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Space Situational Awareness (SSA) encompasses all activities involved
in providing information on orbiting objects. This includes not only the discov-
ery, tracking, and characterization of space objects but also the distribution
of this information to enable collision avoidance and ensure safe operations.
SSA serves as the foundation for the other response strategies. The Space
Surveillance Network (SSN), as mentioned earlier, is currently the primary
source of space object data.

Space Traffic Management (STM) refers to the management of interac-
tions between space operations and the debris population catalog, as well as
the coordination of collision avoidance maneuvers. Organizations involved in
STM include the Space Data Association (SDA) and Slingshot Aerospace.

Space Environment Management (SEM) activities can be divided
into two categories: Passive Mitigation activities, which aim to prevent the
formation of debris, and Active Remediation activities, which seek to reduce
the risk once debris has already been created.

The goal of passive mitigation activities is to prevent the generation of new
debris by slowing down the growth of the space debris population through
careful planning and good practices during satellite operations. These measures
concern both the satellite’s life before launch and during its operational period.
All these activities are outlined and formalized in the guidelines mentioned
earlier. The main passive mitigation strategies are:

• Adequate design of the Post Mission Disposal (PMD), which includes
deorbiting LEO satellites at the end of their life within a limited number
of years, and reorbiting GEO satellites into a "graveyard" orbit.

• Collision avoidance strategies.
• Spacecraft passivation.
• Spacecraft shielding.

Active remediation activities aim to reduce the risks posed by debris once it
has been generated, either by removing debris from orbit or by altering debris
trajectories before predicted collisions occur. One such activity is Active
Debris Removal (ADR), which involves the removal of debris from space
using specialized spacecraft designed for this purpose. Debris are captured
using nets, harpoons, or robotic arms and then de-orbited.

The first mission to successfully demonstrate some of these technologies
in orbit was the RemoveDEBRIS mission in 2019. The mission consisted of
a mini satellite that demonstrated four key technologies: a deployable net, a
vision-based navigation system, a space harpoon, and a drag sail. The vision-
based navigation system was used for debris observation and for determining
distances and spin rates, while the drag sail accelerated the deorbit process.

9



Introduction

Astroscale is one of the first private companies dedicated solely to on-
orbit servicing, End of Life (EOL), and ADR services. EOL services refer to
the removal of objects that were launched with a docking plate, allowing for
semi-cooperative removal of these objects.

The first uncrewed removal of a derelict object is planned to be conducted
by the ClearSpace-1 mission, scheduled for launch in 2028 [7]. This mission
will remove the PROBA-1 satellite from orbit using four robotic arms. The
mission, developed by the European Space Agency (ESA), is an in-orbit demon-
stration with OHB SE leading an industrial team, including the Swiss company
ClearSpace and other subcontractors. The mission will demonstrate the tech-
nologies required for active debris removal and serve as a first step toward
establishing a sustainable commercial sector in space.
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Chapter 2

Fundamentals of Astrodynamics

This section provides a brief introduction to some fundamental aspects of
Astrodynamics, aimed at facilitating a full understanding of the concepts and
mathematical models discussed later in this work. For further information see
[2], [26] and [23].

2.1 Two-Body Problem

To describe the motion of a satellite around a celestial body, the simplest
mathematical model that can be used is the so-called two-body problem (2-
BP). The 2-BP represents a simplified version of the more complex N-body
problem. Two major assumptions are considered: the system consists only of
two spherically symmetric bodies, allowing them to be treated as though their
masses were concentrated at their centres, and there are no forces acting on
the system other than gravitational forces.

Considering two bodies with masses M and m placed in an inertial reference
frame, Newton’s laws can be applied to obtain the equations:

mr̈m = −GMm

r2
r
r

(2.1)

M r̈M = −GMm

r2
r
r

(2.2)

where rm and rM are the position vectors of the two bodies with respect to the
inertial reference frame, and r = rm − rM . By subtracting the two equations,
we obtain:

r̈ = −G(M + m)
r3 r (2.3)

When studying the motion of artificial satellites around the Earth or other
planets, the mass of the orbiting object m is much smaller than the mass of
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the central body M . Therefore:

G(M + m) ≃ GM (2.4)

and Equation (2.3) can be rewritten as:

r̈ + µ

r3 r = 0 (2.5)

where the parameter µ = GM is called the gravitational parameter.

2.1.1 Specific Mechanical Energy

Gravitational forces are known to be conservative, as they are always directed
radially toward the centre of the larger mass. Consequently, an object moving
under the influence of gravity alone does not lose or gain mechanical energy,
although kinetic energy can be exchanged for potential energy and vice versa.

Taking the dot product of Equation (2.5) with the velocity vector V yields:

V · V̇ + V ·
µ

r3r = 0 (2.6)

where V̇ = r̈. The dot product V · r can be written as:

V · r = rV cos θ = rṙ (2.7)

where ṙ is the radial component of the position vector’s rate of change. Substi-
tuting this into Equation (2.6) and simplifying the dot products leads to:

V V̇ + ṙ
µ

r2 = 0 (2.8)

The two terms on the left-hand side can be written as:

d

dt

A
V 2

2

B
= V V̇ ; d

dt

3
−µ

r

4
= µ

r2 ṙ (2.9)

so Equation (2.8) can be rewritten as:

d

dt

A
V 2

2 − µ

r

B
= 0 (2.10)

Integrating Equation (2.10) with respect to time yields the expression for the
specific mechanical energy:

E = v2

2 − µ

r
+ c (2.11)
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where E is defined up to a constant c. In astrodynamics, c is conventionally set
to zero. The term V 2/2 represents the specific kinetic energy, while the term
µ/r represents the specific potential energy. The specific mechanical energy is
also known as a constant of motion.

2.1.2 Specific Angular Momentum

Another constant of motion is the specific angular momentum h. This relation
can also be derived from Equation (2.5) by taking the cross product with the
radius vector r:

r × r̈ + r × µ

r3 r = 0 (2.12)

The second term on the left-hand side vanishes, since r × r = 0. The first term
can be expressed as:

d

dt
(r × ṙ) = r × r̈ (2.13)

so Equation (2.12) simplifies to:

d

dt
(r × ṙ) = 0 (2.14)

Since the time derivative of r × ṙ is zero, the quantity r × ṙ must be a constant.
Substituting ṙ = V, we obtain:

h = r × V = cost (2.15)

This implies that a satellite’s motion is confined to a fixed plane in space, since
both r and V are perpendicular to h.

2.2 Trajectory of Motion

By taking the cross product of the equation of motion (Equation (2.5)) with h,
we obtain:

r̈ × h = µ

r2 (h × r) (2.16)

Observing the left-hand side and knowing that h is constant, it is straightforward
to verify that:

d

dt
(ṙ × h) = r̈ × h (2.17)

Applying some vector identities, the right-hand side of Equation (2.16) can be
written as:

µ

r2 (h × r) = µ

r
v − µṙ

r2 r = d

dt

3r
r

4
(2.18)
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Figure 2.1: Type of conic section [2]

Thus, equation (2.16) can be rewritten as:

d

dt
(ṙ × h) = d

dt

3r
r

4
(2.19)

Integrating both sides and taking the dot product with r yields the scalar
equation:

h2 = µr + rB cos ν (2.20)

where B is the magnitude of the constant vector of integration B, and ν is
the angle between B and the radius vector r. Solving for r, we obtain:

r(ν) = h2/µ

1 + B
µ

cos ν
(2.21)

Equation (2.21) represents the trajectory expressed in polar coordinates. Com-
paring this expression with the general equation of a conic section in polar
coordinates:

r(ν) = p

1 + e cos ν
(2.22)

we see that the two equations are identical. Therefore, the solution of the
two-body problem is a conic section. The parameter p = h2/µ is called the
semi-latus rectum, and e = B/µ is the eccentricity, which determines the type
of conic section. The polar angle ν, known as the true anomaly, is the angle
between r and the periapsis.

There are four types of conic sections, showed in Figure (2.1) : the circle
(e = 0), the ellipse (0 < e < 1), the parabola (e = 1) and the hyperbola (e > 1).
All conic sections have two foci, one of which marks the location of the central
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body. Geometrically, the eccentricity is defined as:

e = c

a
(2.23)

where c is the distance between the foci, and a is the semi-major axis. The
semi-latus rectum p is geometrically defined as:

p = a
1
1 − e2

2
(2.24)

The extreme endpoints of the semi-major axis are called the apses. The nearest
point to the central body is known as periapsis, while the farthest point is
called apoapsis. These can be expressed geometrically by substituting ν = 0◦

and ν = 180◦ into the polar equation:

rp = p

1 + e
= a(1 − e) (2.25)

ra = p

1 − e
= a(1 + e) (2.26)

Another important angle is the flight-path angle ϕ, defined as the angle between
the velocity vector V and the local horizon. The angular momentum h can be
expressed in terms of ϕ:

h = rv cos ϕ. (2.27)

At the apses, the velocity vector is aligned with the local horizon, so ϕ = 0,
and:

h = rpvp = rava. (2.28)

By specifying the energy equation at the periapsis:

E = v2

2 − µ

r
= h2

2r2
p

− µ

rp

, (2.29)

and using p = h2

µ
, as well as p = a (1 − e2), leads to:

h2 = µa
1
1 − e2

2
, (2.30)

and substituting Equations (2.25) and (2.30) into (2.29), yields:

E = µa (1 − e2)
2a2(1 − e)2 − µ

a(1 − e) = − µ

2a
. (2.31)

Thus, the specific mechanical energy E is inversely proportional to the semi-
major axis a, indicating that an increase in mechanical energy corresponds to
an increase in orbit size. To summarize, h determines p, E determines a, and
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together they determine e:

p = a
1
1 − e2

2
−→ e =

ò
1 − p

a
=
ó

1 + 2Eh2

µ2 . (2.32)

2.2.1 The Elliptical Orbit

One of the most common types of orbits is the elliptical orbit. All the planets
in the solar system, as well as the orbits of Earth satellites, follow elliptical
trajectories. The ellipse is a closed curve, meaning that an object in an elliptical
orbit repeatedly travels along the same path. The time required for an object
to complete one full revolution around its orbit is called the orbital period.

Referring to Figure (2.2), it is easy to observe that the quantity (r + r′)
remains constant. It can be straightforwardly demonstrated that:

r + r′ = 2a (2.33)

where a is the semi-major axis. Similarly, the apoapsis (ra) and periapsis (rp)
are related to the semi-major axis as follows:

rp + ra = 2a (2.34)

It can also be easily verified that:

ra − rp = 2c (2.35)

where c is the distance from the center of the ellipse to one of its foci. By
combining these relations with Equation (2.23), a new expression for the
eccentricity e is obtained:

e = ra − rp

ra + rp

(2.36)

Referring to Figure (2.3), the horizontal component of the velocity of an object

Figure 2.2: Geometric construction of an ellipse [2]
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Figure 2.3: Horizontal component of V [2]

in an elliptical orbit can be expressed as:

V cos ϕ = rν̇ (2.37)

Using the definition of specific angular momentum, it is possible to write:

h = r2 dν

dt
−→ dt = r2

h
dν (2.38)

The differential area dA swept by the radius vector as it moves through an
angle dν can be expressed as:

dA = 1
2r2dν (2.39)

Combining Equations (2.38) and (2.39), yields:

dt = 2
h

dA (2.40)

Over one orbital period, the total area swept by the radius vector is the entire
area of the ellipse, so integrating the Equation (2.40) over one orbital period
gives:

T = 2πab

h
(2.41)

where b is the semi-minor axis. Using the geometric relation between the
semi-major and semi-minor axes, a2 − b2 = c2, and knowing that h = √

µp,
leads to:

T = 2π
√

µ
a3/2 (2.42)

Thus, the orbital period of an elliptical orbit depends only on the size of the
orbit, specifically the semi-major axis a. This equation also confirms Kepler’s
third law: "The square of the orbital period is proportional to the cube of the
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semi-major axis".

2.2.2 The Circular Orbit

A circular orbit can be considered a special case of an elliptical one. In this
case, e = 0, meaning that ra = rp. In this scenario, the semi-major axis is
equivalent to the radius, and equation (2.42) simplifies to:

T = 2π
√

µ
r3/2 (2.43)

A useful quantity is the circular speed, which represents the velocity required
to maintain an object in a circular trajectory. This velocity can be directly
evaluated using the mechanical energy equation for a circular orbit:

E = v2
c

rc

− µ

rc

= − µ

2rc

. (2.44)

Solving for vc leads to:

vc =
ó

µ

rc

. (2.45)

Circular velocity is inversely proportional to the orbit radius. Thus, maintaining
a satellite in a low-altitude Earth orbit requires greater velocity compared to a
much higher orbit.

2.3 Coordinate System

The first step in describing an orbit is to select a suitable inertial reference
frame. The choice of the reference frame depends on the specific problem being
studied. For instance, when studying orbits of planets, asteroids, comets, or
deep-space probes, a heliocentric-ecliptic coordinate system is commonly used.
Conversely, for satellites orbiting the Earth, a geocentric-equatorial coordinate
system is often a more suitable choice.

To fully define these coordinate systems (e.g., x, y, z), three key elements
must be specified:

• The location of the origin of the system.

• The orientation of the fundamental plane (e.g., the x-y plane).

• A principal direction within the fundamental plane (e.g., the x direction).

One axis of the reference frame is defined as being perpendicular to the
fundamental plane (e.g., the z axis), with its positive direction explicitly
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Figure 2.4: Heliocentric-ecliptic coordinate system [2]

specified. The final axis is then chosen to complete a right-handed coordinate
system.

2.3.1 The Heliocentric-Ecliptic Coordinate System

The Heliocentric-Ecliptic Coordinate System [Xe,Ye,Ze] (with reference to
Figure (2.4)) has its origin at the centre of the Sun. The fundamental plane,
Xe-Ye, coincides with the ecliptic, which is the plane of Earth’s orbit. The
principal direction, Xe, is defined as the line of intersection between the ecliptic
plane and Earth’s equatorial plane at the time of the Vernal Equinox. The Ze

axis is perpendicular to the ecliptic plane, with its positive direction pointing
towards the hemisphere that contains Polaris. Finally, the Ye axis completes
the right-handed coordinate system.

This coordinate system is not perfectly inertial: the Earth experiences
a slight wobble, and its axis of rotation gradually shifts direction over the
centuries. As a result, the line of intersection between Earth’s equatorial plane
and the ecliptic plane slowly changes position. This phenomenon is known as
the precession of the equinoxes.

2.3.2 The Geocentric-Equatorial Coordinate System

The Geocentric-Equatorial Coordinate System [̂I, Ĵ, K̂] (with reference to
Figure (2.5)) has its origin at the centre of the Earth. The fundamental plane,
Î-Ĵ, is defined as Earth’s equatorial plane. The principal direction, Î, is always
parallel to Xe, with its positive direction pointing toward the Vernal Equinox.
The K̂ axis is perpendicular to the equatorial plane, with its positive direction
pointing toward the hemisphere that contains Polaris. Finally, the Ĵ axis
completes the right-handed coordinate system.

19



Fundamentals of Astrodynamics

Figure 2.5: Geocentric-equatorial coordinatfl system [2]

This coordinate system is sometimes referred to as the Earth-Centered
Inertial (ECI) system. It is not fixed to the Earth, instead, the Earth rotates
relative to it.

2.3.3 The Perifocal Coordinate System

The perifocal coordinate system [p̂, q̂, ŵ] (with reference to Figure (2.6)) is one
of the most commonly used reference systems for describing the motion of a
satellite. Its origin is located at the centre of the central body. The fundamental
plane, p̂-q̂, is defined as the orbital plane. The principal direction, p̂, points
toward the perigee. The q̂ axis is rotated 90◦ from the p̂ axis in the direction
of the satellite’s motion, and it identifies the semilatus rectum. The ŵ axis
is perpendicular to the orbital plane, completing the right-handed coordinate
system.

Figure 2.6: Perifocal coordinate system [2]
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2.4 Classical Orbital Elements

Six scalar values are required to fully describe an orbit. These can be represented,
for example, by the three components of the radius vector and the three
components of the velocity vector. However, these components are time-
dependent and may not be an optimal choice for orbital representation.

In Astrodynamics are commonly used the Classical Orbital Elements, a set
of five scalar values which are time-independent for a Keplerian orbit, that
describe the size, shape, and orientation of the orbit. Additionally, one time-
dependent scalar value is needed to determine the position of the satellite along
the orbit at a specific time. These values are defined as follows with reference
to Figure (2.7):

• a (semi-major axis): Defines the size of the orbit.

• e (eccentricity): Defines the shape of the orbit.

• i (inclination): The angle between the K unit vector and the orbital
angular momentum vector h.

• Ω (longitude of the ascending node): The angle in the fundamental plane
between the I unit vector and the ascending node, the point where the
satellite crosses the fundamental plane in a south-to-north direction.

• ω (argument of periapsis): The angle, within the plane of the satellite’s
orbit, between the ascending node and the periapsis (the point of closest
approach to the central body).

• ν (true anomaly): The angle, within the orbital plane, that specifies the
satellite’s position at a given time. It is measured between the periapsis
and the radius vector pointing to the satellite.

These elements are commonly used to describe the orbit of a satellite in the
geocentric-equatorial system or the orbit of a planet in the heliocentric-ecliptic
system. In certain special cases, when some of the classical orbital elements
are undefined, alternative elements are used (Figure (2.8)):

• Π (longitude of periapsis): The angle in the orbital plane from I to the
periapsis. This element is particularly useful when the ascending node is
undefined (e.g., in an equatorial orbit). If both Ω and ω are defined, then
Π = Ω + ω.

• u (argument of latitude at epoch): The angle in the orbital plane between
the ascending node and the radius vector. It is used when the periapsis
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Figure 2.7: Classical Orbital elements [2]

(and consequently ν) is undefined (e.g., in a circular orbit). If both ω and
ν are defined, then u = ω + ν.

• l (true longitude at epoch): The angle in the orbital plane between I and
the radius vector. It is used when both Ω and ω are undefined (e.g., in a
circular equatorial orbit). If both Ω and ω are defined, then l = Ω + ω. If
Ω is undefined, then l = Π + ν, and if ω is undefined, then l = Ω + u.

2.5 Orbital Perturbation

A perturbation is a deviation from the expected motion. The two-body problem
is a simplification of the real problem of satellite motion. In the assumptions
made in the 2-BP, the gravitational pull of the central body is considered
the only force acting on the system. The orbits that are solutions to the
2-BP are known as Keplerian orbits, which are idealized orbit inertially fixed.
However, the action of other forces, such as the gravitational pull of other
objects, atmospheric drag, or the radiation pressure of the Sun, perturbs the
orbit, making the results of the 2-BP inaccurate in certain cases.

For example, during interplanetary missions, the gravitational attraction of
other objects can be as large as, or even larger than, the primary gravitational
force. If the perturbing effects of these bodies were not considered, the spacecraft
could miss its target entirely. For satellites in low-altitude orbits, neglecting
atmospheric drag can significantly shorten their operational lifespan, as this
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Figure 2.8: Relations between orbital elements [2]

perturbation causes the orbit to decay. It is important to understand the
environment in which satellites operate to determine which perturbative effects
must be taken into account to accurately predict their motion.

The study of perturbations requires specific techniques. There are two main
categories, referred to as Special Perturbations and General Perturbations. In
Special Perturbation methods, all necessary perturbing effects are included in
the equations of motion, which are then directly integrated using numerical
methods. Two widely known Special Perturbation methods are Cowell’s method
and Encke’s method. In this approach, the satellite’s trajectory is no longer a
conic section. In General Perturbation methods, the perturbing acceleration is
expressed as a series expansion and is then integrated analytically. This analytic
approach produces closed-form solutions. In general, these techniques are more
complex and time-consuming, but they provide a deeper understanding of the
sources and effects of perturbations.

Generally, perturbations can be divided into periodic and secular perturba-
tions. Periodic perturbations cause the orbital elements to change in a periodic
fashion, while secular perturbations cause the orbital elements to continuously
increase or decrease over time. Periodic perturbations can be further classified
into Short-Period variations, where the period of the perturbation is less than
or comparable to the orbital period, and Long-Period variations, where the
period is greater than the orbital period.

2.5.1 The Nonspherical Earth

In the previous sections, we represented the gravitational potential of the Earth
as µ/r, which is valid for a spherically symmetric mass body. However, the
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Figure 2.9: Earth’s geoid as seen by GOCE [8]

Earth cannot be accurately represented as a spherically symmetric mass body,
as its shape is more complex: it bulges at the equator, is flattened at the poles,
and is generally asymmetric. This causes the gravitational potential field to be
distorted and not fully represented by µ/r. The field of Geodesy is dedicated
to studying and representing the geometry and gravitational field of the Earth.
This discipline introduces the concept of the Geoid, a surface that coincides
with the mean ocean surface and is used to describe the Earth’s shape.

General potential theory shows that the gravitational field at a point P ,
external to the Earth, can be described in geocentric spherical coordinates as:

U(r, ϕ, λ)

= −µ

r

C
1 +

∞Ø
n=2

nØ
m=0

3
Re

r

4n

Pn,m(sin ϕ) {Cn,m cos (mλ) + Sn,m sin (mλ)}
D

(2.46)

where:

• r, ϕ, and λ are the geocentric spherical coordinates: r is the geocentric
distance of point P , ϕ is the geocentric latitude, and λ is the geocentric
longitude measured from the Greenwich meridian.

• Re is the Earth’s mean equatorial radius.

• Cn,m is known as the tesseral harmonic coefficient.

• Sn,m is known as the sectorial harmonic coefficient.

• Pn,m(sin ϕ) is the associated Legendre polynomial of the first kind, of
degree n and order m.
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Typically, terms with m = 0 are separated from those with m ̸= 0, allowing
equation (2.46) to be rewritten as:

U(r, ϕ, λ) = −µ

r

C
1 +

∞Ø
n=2

Cn,0

3
Re

r

4n

Pn,0(sin ϕ)

+
∞Ø

n=2

nØ
m=1

3
Re

r

4n

Pn,m(sin ϕ) {Cn,m cos (mλ) + Sn,m sin (mλ)}
D

(2.47)

It is possible to further define:

Jn = Jn,0 = −Cn,0 ; Pn = Pn,0 (2.48)

Cn,m = Jn,m cos (mλn,m) ; Sn,m = Jn,m sin (mλn,m) (2.49)

and substituting into equation (2.47), yields:

(2.50)
U(r, ϕ, λ) = −µ

r

C
1 −

∞Ø
n=2

Jn

3
Re

r

4n

Pn(sin ϕ)

+
∞Ø

n=2

nØ
m=1

Jn,m

3
Re

r

4n

Pn,m(sin ϕ) cos (m(λ − λn,m))
D

where Pn(sin ϕ) are the Legendre polynomials of degree n and Jn are known as
the zonal harmonic coefficients.

A gravity model essentially consists of the values of Cn,m, Sn,m, Jn,m, along
with the values of µ and Re. For example, the EGM84 model (Earth Gravi-
tational Model 84 ) contains up to 32,400 terms (n = m = 180), the EGM96
model contains up to 130,000 terms (n = m = 360), and the EGM2008 model
includes more than 4.6 · 106 terms (n = 2190, m = 2159).

For most applications in astrodynamics, a simplified version of these models
is used, including only the terms that significantly contribute to orbital pertur-
bations. It is useful to decompose Equation (2.50): the first term represents the
gravitational potential of a spherically symmetric mass body, the second term
represents the zonal harmonics, and the third term represents the tesseral and
sectorial harmonics. Tesseral and sectorial harmonics are sometimes neglected,
as their effects are difficult to predict and do not contribute significantly to
secular perturbations. In this work, only zonal harmonics are considered.

2.5.1.1 Zonal Harmonics

The zonal harmonics represent the influence of deviations in the shape and
mass density distribution of the Earth in the north-south direction. Extracting
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Figure 2.10: Zonal harmonics (left), sectorial harmonics (centre) and tesseral
harmonics (right) [26]

the relevant terms from Equation (2.50), yields:

Uzonal(r, ϕ) = −µ

r

∞Ø
n=2

Jn

3
Re

r

4n

Pn (sin ϕ) (2.51)

where the Legendre polynomials are given by:

Pn(x) = 1
2nn!

dn

dxn

1
x2 − 1

2n
(2.52)

Through substitution and algebraic manipulation, the terms that compose
Uzonal(r, ϕ) can be derived:

U0 = −µ

r
UJ1 = 0

UJ2 =
3

Re

r

42
J2 (3 sin2 ϕ − 1)

UJ3 =
3

Re

r

43
J3 (5 sin3 ϕ − 3 sin ϕ)

(2.53)

As can be seen in Table (2.1), the first zonal harmonic term, J2, is sig-
nificantly larger than the others, making it the dominant perturbative effect.
This is why, in astrodynamics, it is commonly referred to as the J2 effect or J2

perturbation, which is the most significant perturbation considered in this work.
The primary influence of J2 is on the right ascension of the ascending node, Ω,
and the argument of periapsis, ω. The effect on Ω is known as the regression
of the line of nodes, which consists of the rotation of the orbital plane around

Jn(10−6)
J1 0
J2 1082.6357
J3 -2.5324737
J4 -1.6199743
J5 -0.2279051

Table 2.1: Selected coefficients from the GRACE GGM02C Earth gravity
field model [26]
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Figure 2.11: Variation of Ω̇J2 for different combinations of altitude and orbital
inclination [23]

the Earth’s rotation axis at a rate that depends on both orbital inclination and
altitude. By manipulating equation (2.53), we obtain:

A
dΩ
dt

B
J2

= −3
2J2

A
Re

a(1 − e2)

B2ò
µ

a3 cos(i) (2.54)

Thus, the regression of the line of nodes is inversely proportional to the
altitude of the orbit and directly proportional to the cosine of the inclination.
As shown in Figure (2.11), Ω̇J2 is strongest for low Earth orbits. This effect
can be exploited to achieve a special type of orbit called a Sun-synchronous
orbit (SSO), where the angular velocity of the line of nodes, Ω̇, matches the
Earth’s revolution around the Sun. When i = 90◦ (polar orbits) Ω̇J2 is zero
regardless the altitude, for i > 90◦ the line of nodes precedes.

Another effect of the zonal harmonics is the rotation of the line of apsides,
which consists of the in-plane rotation of the major axis. The rate of this
precession (or regression) also depends on orbit altitude, inclination angle and
eccentricity:

A
dω

dt

B
J2

= 3
4J2

A
Re

a(1 − e2)

B2ò
µ

a3 (5 cos2 i − 1) (2.55)

As shown in Figure (2.12), there exists a critical inclination angle of 63.4◦ at
which ω̇J2 = 0 regardless of altitude. This is often exploited in special orbits
known as Molniya orbits. For inclinations less than 63.4◦, the line of apsides
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Figure 2.12: Variation of ω̇J2 for different combinations of altitude and orbital
inclination [23]

rotates in the direction of motion, whereas for inclinations greater than 63.4◦

and smaller than 116.6◦, it rotates in the opposite direction.

2.5.2 Atmospheric Drag

In analogy with common practice in aeronautics, the acceleration due to
atmospheric drag acting on the satellite can be expressed as:

f = −1
2ρ

A

m
CD|Vr|Vr (2.56)

where ρ is the atmospheric density and Vr is the satellite’s velocity relative
to the Earth’s atmosphere. CD is the drag coefficient related to the reference
surface A, m is the mass of the satellite. Atmospheric drag is a non-conservative
force; its effect is a reduction in total mechanical energy, leading to a decrease
in the semi-major axis and the orbital period. As the semi-major axis decreases,
the effect of atmospheric drag becomes stronger because ρ increases. In the
long run, the satellite tends to fall toward the Earth. This phenomenon is
known as orbital decay, and it is crucial for determining the mission’s lifespan.

The effect of atmospheric drag can be approximated as an impulsive, negative
velocity increment occurring at perigee

m
dvr

dt
= −1

2ρACdV 2
r (2.57)
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if the relative velocity is assumed approximately equal to the orbital velocity:

m
dV

dt
= −1

2ρACdV 2 (2.58)

differentiating the total mechanical energy equation leads to:

ȧ = 2a2

µ
V V̇ (2.59)

substituting Equation (2.58) in to Equation (2.59) leads to:

ȧ = −√
µa

ρACD

m
(2.60)

The term ACD/m is also known as ballistic coefficient and it is used as a
measure of the ability of a body to overcome air resistance in flight. A high
ballistic coefficient indicates a high capability to ’penetrate’ the atmosphere
and results in a low negative acceleration due to drag.

2.5.3 Third-body Perturbations

The presence of other celestial bodies, as the Sun and the Moon, lead to other
perturbing forces that affect satellites orbits due to their gravitational pull. A
result of the N-body problem is the equation of perturbing potential, which
expresses the gravitational perturbations exerted by multiple bodies j on the
motion of body i relative to a non-rotating reference frame fixed at body k:

R = −G
Ø

j ̸=k,i

mj

A
1
rij

− ri · rj

r3
j

B
(2.61)

where ri and rj are the positions vectors form body k to body i and form body k

to body j respectively. If body k is the Earth and body j is a single perturbing
body (e.g. the Moon), then the perturbing acceleration of the satellite caused
by the gravitational attraction between the satellite and the perturbing body
can be written as:

f = −∇
C
−µj

A
1
rij

− xixj + yiyj + zizj

r3

BD
(2.62)

where rij is
rij = (xj − xi)2 + (yj − yi)2 + (zj − zi)2 (2.63)
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The perturbing acceleration can be decomposed as:

fx = µj

xj − xi

r3
ij

−
xj

r3
j


fy = µj

yj − yi

r3
ij

−
yj

r3
j


fz = µj

zj − zi

r3
ij

−
zj

r3
j


(2.64)

If the positions of the satellite and the disturbing body are known (with respect
to the non-rotating reference frame) then the acceleration components can be
computed. The ratio between the magnitude of the perturbing acceleration and
the magnitude of the acceleration due to the gravitational pull of the Erath
can be expressed as: A

fd

fE

B
max

= 2 md

mE

3
ri

rd

43
(2.65)

where md and mE are the mass of the perturbing body and the mass of the
Earth. The perturbing acceleration increases with increasing orbital altitude of
the satellite, causing the attraction of the perturbing body to become the most
important perturbing force.

2.5.4 Solar Radiation Pressure

The solar irradiance is known as the power per unit of area received from
the Sun in the form of electromagnetic radiation in the wavelength range
of the entire electromagnetic spectrum. The mean solar irradiance observed
at a distance of 1 AU, measured on a surface perpendicular to the rays is
Is = 1361 W/m2, also known as solar constant. According to Maxwell’s theory
of electromagnetism, an electromagnetic wave carries momentum, which will
be transferred to an opaque surface it strikes. The solar pressure is defined as
the radiation pressure on the effective surface and can be computed as:

ps = Is

c
= 4.5 · 10−6 Pa (2.66)

where c is the speed of light. An Earth satellite, in general, is exposed to a
radiation force produced by direct sunlight, sunlight reflected by the Earth
(albedo radiation), and thermal infrared radiation emitted by the Earth. The
force an momentum generated by radiation pressure are generally too small to
be noticed when other perturbation forces are acting on the satellite. The total
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force produced by the solar pressure upon a spacecraft can be expressed as:

Fs = K · A · ps (2.67)

where K is a coefficient which characterizes the interaction of the photons with
the spacecraft surface. In general this perturbation can produce change in all
orbital elements.

2.5.5 Special and General Perturbations Methods

As mentioned, the study of perturbations requires specific techniques. There
are two main categories, referred to as Special Perturbations and General
perturbations. When the motion of a satellite is described relative to a non-
rotating geocentric reference frame and perturbing forces are taken into account,
the equation of motion can be written as

d2r
dt2 + µ

r3 r = −∇R + f (2.68)

where R is the perturbing potential, that describe all perturbing forces that can
be expressed by a potential function, and f represents all other perturbing forces
that cannot be written as the gradient of a scalar function of the satellite’s
coordinates.

Equation (2.68) cannot be solved analytically and required numerical meth-
ods (special perturbations methods) or approximative analytical methods
(general perturbations methods).

2.5.5.1 Cowell’s Method

The Cowell’s Method is the simplest method used for the computation of
perturbed satellite orbits. In this method the equation of motion is written in
the form

d2r
dt2 = ft (2.69)

where ft is
ft = − µ

r3 r − ∇R + f (2.70)

The equation (2.69) is numerically integrated to compute the satellite trajectory.
However Cowell’s Method required small integration steps in the integration
process, this implies long computation times and a steadily growing numerical
integration error.
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2.5.5.2 Encke’s Method

The Encke’s method makes use of a reference orbit, known as osculating orbit,
and the deviations from the reference orbit are numerically integrated. For
example, a reference orbit can be a Keplerian one. The equation of motion
integrated in this method is

d2∆r
dt2 = µ

A
ρ

ρ3 − r
r3

B
− ∇R + f (2.71)

where ρ is the position vector of the satellite if the satellite would follow the
unperturbed reference orbit, and r is the actual position vector. The ∆r is
defined as

∆r = r − ρ (2.72)

and represent the deviation of the actual trajectory from the osculating one.
As in Encke’s method only the perturbing accelerations are integrated, the
integration step can be chosen larger than in Cowell’s method, but it required
more computing time. If ∆r become too large, the reference orbit can be
rectified, such that ∆r = 0.

2.5.5.3 Variation of Parameters

Most analytical solutions used in general perturbation methods rely on a
process known as variation of parameters (VOP). In this method, the motion
is described using classical orbital elements, which are constant in Keplerian
orbits but time-dependent in perturbed ones.

The concept is based on the premise that the constants of motion in the
solution can be generalized to time-varying parameters. The VOP equations
of motion form a system of first-order differential equations that describe the
rate of change of the orbital elements. Two of the most well-known VOP
formulations are the Lagrange planetary equations of motion and the Gauss
planetary equations of motion. The latter is the one used in this work.

Gauss’s planetary equations are developed in the {R̂, Ŝ, Ŵ} reference frame,
where R̂ identifies the direction of the radius vector, Ŝ is perpendicular to R̂
within the orbital plane in the direction of the satellite’s motion, and Ŵ is
normal to the orbital plane and oriented such that R̂, Ŝ, and Ŵ form a right-
handed set of axes. The perturbing force per unit mass, f , can be decomposed
as:

f = fRR̂ + fSŜ + fW Ŵ (2.73)
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The derivation of the Gauss planetary equation is shown in [23]:

da

dt
=

2
n

√
1 − e2

e sin νfR +
p

r
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de

dt
=

√
1 − e2
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sin νfR +
cos ν +

e + cos ν
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√
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dω
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nae

− cos νfR + sin ν

1 +
r
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 fS

−
r cot i sin (ω + ν)

h
fw

dM0
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=

1
na2e

[(p cos ν − 2er) fR − (p + r) sin νfS] −
dn

dt
(t − t0)

(2.74)

It is important to note that these equations present some limitations. The
eccentricity must be less than 1 due to the presence of

√
1 − e2, and they

exhibit singularities for particular sets of orbital elements. For example, in the
Ω̇ equation, sin i appears in the denominator, making the equation indeterminate
when i = 0. A similar problem affects the ω̇ equation when e is small.
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Chapter 3

Fundamental of Space
Propulsion

This section provides a brief introduction to some fundamental concepts re-
garding space propulsion systems and orbital manoeuvres, with the aim of
facilitating a full understanding of the optimization method discussed later in
this work.

Space propulsion systems can be divided into three main categories: chemical
rocket propulsion, nuclear rocket engines, and electric rocket propulsion. The
most commonly used propulsion systems today are chemical propulsion and
electric propulsion. In chemical propulsion, the energy converted to kinetic
energy is stored in the propellants. When chemical propulsion is employed,
the manoeuvres are typically considered impulsive. In contrast, an electric
propulsion system derives its energy from an external source, the resulting
trajectories are typically referred to as low-thrust trajectories.

For further information, see [2], [26], and [21].

3.1 Generalities of Space Propulsion

To evaluate the thrust of a rocket engine, an isolated system with mass m and
velocity V is considered, with only the thrust force acting on it. After a time
interval dt, the system expels a small particle of mass dmp with velocity c, while
its own velocity increases by dV , as shown in Figure (3.1). The momentum
conservation equation for the system is given by:

mV = (V + dV )(m − dm) − dmp(c − V ) (3.1)

Neglecting higher-order infinitesimal terms leads to:

mdV = dmpc −→ m
dV

dt
= T = ṁpc (3.2)
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Figure 3.1: Isolated system of mass m before and after a time interval dt.

where T is the thrust force of the rocket engine, ṁp is the propellant mass
flow rate. Equation (3.2) is written under the assumption that the expelled
mass dm does not interact with the propellant inside the spacecraft. If the
momentum exchange through pressure forces between the ejected propellant
and the propellant inside the spacecraft is considered, the thrust force can be
expressed as:

T = ṁpue + Ae (pe − p0) (3.3)

where ue is the velocity of the exhausted gas, Ae is the exit area, pe is the
pressure at the exit surface, and p0 is the external pressure. If pe = p0, then
ue coincides with c; in space propulsion, p0 is typically considered to be zero.
Since the values of ue and pe are not always available, and only thrust and
propellant mass flow rate are relevant for trajectory optimization, the effective
exhaust velocity c is introduced:

c
def= T

ṁp

= ue + Ae (pe − p0)
ṁp

(3.4)

Thus, the thrust force can be expressed as:

T = ṁpc (3.5)

Dividing Equation (3.5) by m, the thrust acceleration is obtained:

T

m
= ṁpc

m
(3.6)

Since ṁp = −dm
dt

, Equation (3.6) can be rewritten as:

T

m
= −dm

dt

c

m
(3.7)

This equation must be integrated from an initial time t0 to a final time tf :
Ú tf

t0

T

m
dt =

Ú mf

m0
−c

dm

m
(3.8)

which leads to:
∆V = c ln m0

mf

(3.9)
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Equation (3.9) is known as the Tsiolkovsky equation or rocket equation. Knowing
the required ∆V to change orbit, it is possible to compute the amount of
propellant necessary to complete the maneuver. Conversely, knowing the
available propellant mass, it is possible to compute the ∆V that the propulsion
system can achieve. For a given mission, the characteristic velocity ∆V is
approximately constant. In Table (3.1), some characteristic velocities for
different missions are reported.

Two useful quantities used to describe the performance of propulsion systems
are the total impulse It and the specific impulse Isp. The total impulse is found
by integrating the thrust force over the time of application:

It =
Ú tf

t0
T dt (3.10)

If the thrust force is assumed to be constant, It can be computed as:

It = T∆t (3.11)

with ∆t = tf − t0. In general, for a given spacecraft mass, the total impulse
can be approximated as:

It ≈ mavg∆V (3.12)

and it depends only on the mission. It is proportional to the total energy
released by all the propellant utilized by the propulsion system. The specific
impulse is defined as:

Isp = It

mpg0
(3.13)

Mission ∆V [km/s]
LEO Insertion 10

1 year station keeping 0.5
LEO-GEO (impulsive) 3.5

LEO-GEO (spiral) 6
Earth escape (impulsive) 3.2

Earth escape (spiral) 8
Earth-Mars (impulsive) 5.5

Earth-Mars (spiral) 6
Earth-Jupiter (spiral) 16.7
Earth-Alpha Centauri 3000

Table 3.1: Typical characteristic velocities for different missions [4]
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If T and ṁp are assumed constant, Equation (3.13) simplifies to:

Isp = T

ṁpg0
= c

g0
(3.14)

The specific impulse represents the thrust per unit propellant weight flow rate.
It is an important figure of merit of the performance of any rocket propulsion
system, as it represents the ’cost’ of thrust in terms of propellant usage. In
fact, we can express mp as:

mp = mavg∆V

Ispg0
(3.15)

The mass of propellant is inversely proportional to the specific impulse: the
higher the Isp, the less mp is required to achieve the same ∆V . Note that Isp

and c are related only by the constant g0, so they essentially represent the same
concept.

3.2 Impulsive Manoeuvres

Whit impulsive manoeuvres is intended a brief firings of onboard rocket motors
that change the magnitude and the direction of the velocity vectors instanta-
neously. The duration of the impulse ∆t is assumed tending to 0, during the
impulsive manoeuvre T → ∞ and the position of the spacecraft is considered
to be fixed (r=cost) while the velocity changes. The assumption of impulsive
manoeuvre is generally used when chemical propulsion is used.

3.2.1 Transfer Between Coplanar Circular Orbits

Consider two coplanar circular orbits with radii r1 and r2, where r2 > r1, and
a transfer orbit that moves a satellite from orbit r1 to orbit r2, as shown in
Figure (3.2). The transfer orbit must intersect (or be tangent to) both circular
orbits. This condition is satisfied ifrP t = pt

1+et
≤ r1

rAt = pt

1−et
≥ r2

−→

et ≥ pt

r1
− 1

et ≥ 1 − pt

r2

(3.16)

where rP t and rAt are the perigee and apogee of the transfer orbit, respectively.
By representing this equations in the et-pt/r1 plane, the feasible region can
be identified. As shown in Figure (3.3), hyperbolic, parabolic, and elliptical
transfer orbits are possible. The transfer manoeuvre presented is a two-impulse
manoeuvre: the first impulse is required to inject in to the transfer orbit while
the second one is needed to circularize the orbit and finalize the transfer. The
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Figure 3.2: Geometry of a transfer
orbit between two coplanar circular
orbits [26].

Figure 3.3: Region of possible
transfer orbits between two copla-
nar circular orbits [4].

total ∆V can be computed as:

∆V = |∆V1|+|∆V2| (3.17)

where |∆V1| and |∆V2| can be computed using the cosine rule, knowing the
flight path angle at the two intersection points:

|∆V1|=
ñ

V 2
1 + V 2

c1 − 2V1Vc1 cos γ1

|∆V2|=
ñ

V 2
2 + V 2

c2 − 2V2Vc2 cos γ2

(3.18)

where Vc1 and Vc2 are the circular velocities on orbits r1 and r2:

V1 =
ó

µ

r1
; V2 =

ó
µ

r2
(3.19)

V1 and V2 are the velocity on the transfer orbit after the first impulse and the
velocity on the transfer orbit before the second impulse respectively. V1 and V2

can be computed from the total mechanical energy equation:

V 2
1 = 2

3
µ

r1
+ ϵt

4
; V 2

2 = 2
3

µ

r2
+ ϵt

4
(3.20)

The flight path angle can be evaluated using Equation (2.27):

cos γ1 = ht

r1V1
; cos γ2 = ht

r2V2
(3.21)

When rP t = r1 and rAt = r2, we have γ1 = γ2 = 0, meaning that V1 is parallel
to Vc1 and V2 is parallel to Vc2. This particular transfer orbit is known as the
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Hohmann transfer, which is the orbital maneuver requiring the minimum ∆V

to transfer from r1 to r2. In this case, the total mechanical energy ϵt of the
transfer orbit can be written as:

ϵt = − µ

2aH

= − µ

r1 + r2
(3.22)

Substituting equation (3.22) into equation (3.20) leads to:

V 2
1 = V 2

c1
2r2

r1 + r2
; V 2

2 = V 2
c2

2r1

r1 + r2
(3.23)

and substituting into equation (3.18) yields:

∆V1 = V1 − Vc1 = Vc1
1ñ

2r2
r1+r2

− 1
2

∆V2 = Vc2 − V2 = Vc2
1
1 −

ñ
2r1

r1+r2

2 (3.24)

While the Hohmann transfer is the most ∆V -efficient transfer between two
coplanar circular orbits, it is also the one requiring the longest transfer time:

TH = π

öõõôa3
H

µ
(3.25)

3.2.2 Transfer between Orbits in different Orbital planes

When only the variation of the inclination of the orbital plane is intended, this
manoeuvre is referred to as a simple plane change. Assuming a plane change
from an inclined orbit to an equatorial one, as shown in Figure (3.4), it is
immediate from the velocity triangle to verify that:

∆V = 2V sin θ

2 (3.26)

The ∆V is applied perpendicular to the orbital plane and is proportional to V ,
so it is optimal to perform orbital plane change manoeuvre when the velocity
is low, for example, at the apogee. Note that a pure plane change is possible if
the manoeuvrer point is one of the nodes. If the ∆V is applied at other points,
a change in both inclination and RAAN is obtained, and the change in i is less
efficient in terms of ∆V . A change in semi-major axis and inclination can be
combined in a single manoeuvre, applying the vector sum of the velocities V1

and V2. Using the cosine rule lead to:

∆Vcomb =
ñ

V 2
1 + V 2

2 − 2V1V2 cos ∆i (3.27)
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Figure 3.4: Simple plane change [2].

where V1 and V2 are the velocities on the departure and arrival orbits, respec-
tively.

3.3 Chemical Propulsion

In a chemical propulsion system, two propellants are generally used: a fuel
and an oxidizer. These propellants are mixed in a combustion chamber with
an appropriate mixture ratio, which affects the performance of the propulsion
system, and then ignited. The hot gas produced is subsequently expanded
through a nozzle.

It is evident that the chemical energy stored in the propellants is first
converted into thermal energy through combustion and then into kinetic energy
through expansion. This represents a fundamental limitation of chemical
propulsion: the specific impulse Isp is constrained by the intrinsic energy of the
chemical reaction.

The chemical power stored in the propellants can be expressed as:

PT = ṁpEch (3.28)

where Ech is the energy per unit mass released by the chemical reaction. The
kinetic power can be expressed as:

Pk = 1
2ṁpc2 = 1

2Tc (3.29)

Since chemical power is converted into kinetic power, an efficiency coefficient η

must be introduced in a real system:

PT η = Pk −→ ṁpEchη = 1
2ṁpc2 (3.30)
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Propellants State Specific Impulses [s]
LOX / LH2 L 500-450
LOX / RP-1 L 300-330
LOX / CH4 L 280-310

NTO / Hydrazine L 280-310
NTO / MMH L 280-310

NC / NG S 200-250
AP / PBAN / AI S 260-290

Table 3.2: Typical value of specific impulse for some oxidizer-fuel pair [4]

From this equation, the exhaust velocity c can be expressed as:

c =
ñ

2ηEch (3.31)

Equation (3.31) clearly shows that the specific impulse (Isp = c/g0) depends on
the choice of propellants. Table (3.2) presents typical values of specific impulse
for different oxidizer-fuel pairs.

One of the main advantages of chemical propulsion systems is that an
external power source is not required, as the energy is directly stored in the
propellants. Furthermore, since the thrust force is directly related to the
propellant mass flow rate, both low and high thrust levels can be achieved.

3.4 Electric Propulsion

Unlike a chemical propulsion system, where the propellants serve as both the
power source and the exhaust medium, an electric propulsion system has a
separate power source and power conversion unit to impart the propulsive
energy to the propellant. An electric propulsion system is characterized by very
low thrust but a very high exhaust velocity, allowing the thrust to be sustained
for long periods while minimizing propellant consumption.
Electric propulsion systems can be grouped into three categories:

• Electrothermal propulsion system: This type of system includes
resistojets and arcjets. The propellant is heated electrically, and the hot
gas generated is thermodynamically expanded and accelerated through
an exhaust nozzle. In a resistojet, the heating element is a high-resistance
metal part that heats the propellant flowing over it. Arcjets heat the
propellant gas flow directly through an electric arc discharge. The Isp for
an electrothermal propulsion system can vary from 500 s to 1000 s.

• Electrostatic propulsion: This type of system includes the Kaufman
thruster and the Field Emission Electric Propulsion (FEEP) thruster.
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In a Kaufman thruster, the propellant atoms are ionized by electron
bombardment, and then the ions are accelerated through an electric
field. The energetic electrons are provided by a hot cathode filament and
accelerated in the electrical field of the cathode fall to the anode. The
ion beam needs to be neutralized by injecting a stream of electrons into
the exhaust beam to avoid charge accumulation on the spacecraft. The
Isp for an electrostatic propulsion system can vary from 2000 s to 4000 s.

• Electromagnetic propulsion: In this type of system, a highly-ionized
propellant plasma is generated, and the ions are accelerated by the
interaction of electrical and magnetic fields. After acceleration, the
plasma beam is neutralized by picking up electrons. Hall thrusters use
the Hall effect to set up an electrostatic field, which accelerates the
propellant ions, while Magnetoplasmadynamic thrusters use an electric
arc discharge, similar to arcjets. The Isp for Hall thrusters can vary from
1500 s to 2500 s.

In an electric propulsion system, the energy is provided by an external
source. The relationship between the electric power and the kinetic power can
be expressed as:

Pe η = 1
2ṁpc2 = 1

2Tc (3.32)

Solving for c:

c =
ó

2ηPe

ṁp

= 2ηPe

T
(3.33)

The specific impulse depends on both the electric power and the propellant
mass flow rate, and unlike in chemical propulsion, it is not fundamentally
limited. However, achieving high thrust values requires high values of Pe, which
are generally not feasible or would require excessively heavy power generators.

Another key difference from chemical propulsion systems, where a higher
Isp is generally preferable,is that in electric propulsion, each mission has an
optimal Isp value. As a result, selecting the appropriate thruster is fundamental
for mission design.

For further details on electric propulsion systems, refer to [13].

3.4.1 Limits of Electric Propulsion

The necessity of an external power source is also a limitation of an electric
propulsion system. The total spacecraft mass can be expressed as:

m = mu + mg + mp (3.34)
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where mu is the payload mass, mp is the propellant mass, and mg is the
generator mass. The acceleration due to the applied thrust is given by:

a = T

m
(3.35)

It is evident that a is lower than the acceleration the spacecraft would experience
if its mass were composed only of the generator:

a <
T

mg

(3.36)

The generator mass can be related to the electric power it provides as:

mg = αPe (3.37)

where α represents the "technology level" of the power source: a lower α

corresponds to a lighter generator, indicating better technology. Substituting
this expression into Equation (3.36) yields:

a <
T

αPe

(3.38)

and, incorporating Equation (3.32), results in:

a <
η

α

2
c

(3.39)

The acceleration that an electric propulsion system can sustain is constrained
by the right-hand side of the inequality. It is easy to verify that for η = 0.5, α =
1 kg/kW, and c = 10 km/s (which are very optimistic values), the acceleration
is limited to:

a < 0.1 km/s2 (3.40)

which is less than one hundredth of Earth’s gravitational acceleration g0. This
implies that the effect of thrust on the trajectory is small, and significant
changes in orbital parameters can only be achieved over many revolutions.

Indeed, in the case of electric propulsion, the considered trajectories are
low-thrust trajectories, where both the thrust direction and magnitude can
be continuously varied. These types of trajectories are the subject of the
optimization study in this work.
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Chapter 4

Mathematical Models for
Trajectory Optimization

The term optimal control problem refers to a mathematical problem in which
the objective is to determine the inputs to a dynamic system that maximize or
minimize a specified performance index while satisfying any constraints on the
system’s motion. More specifically, when the inputs to the system are static
parameters and the goal is to determine the values of these parameters along
with the trajectory that optimizes a given performance index, the problem is
referred to as trajectory optimization. Instead, if the inputs to the system are
functions and the objective is to determine both the optimal input function
and trajectory, the problem is referred to as optimal control.

Numerical methods for solving optimal control problems are classified into
two major categories: indirect methods and direct methods. In the former, the
calculus of variations is used to derive optimality conditions, leading to a two-
point (or, in the general case, a multiple-point) boundary-value problem, which
must be solved to determine candidate optimal trajectories, known as extremals.
In contrast, a direct method reformulates the optimal control problem as a non-
linear optimization problem or non-linear programming problem, which is then
solved using numerical optimization techniques. To summarize, in an indirect
method, the optimal solution is obtained by solving a system of differential
equations that satisfy the endpoint conditions. On the other hand, in a direct
method, the optimal solution is found by converting an infinite-dimensional
optimization problem into a finite-dimensional one.

At the core of any optimization method, three fundamental components can
be identified: a method for solving differential equations, a method for solving
systems of non-linear algebraic equations, and a method for solving non-linear
optimization problems. In an indirect method, the numerical solution of differ-
ential equations is combined with the numerical solution of non-linear equation
systems, whereas in a direct method, the numerical solution of differential
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equations is combined whit non-linear optimization.
In this work, two approaches are considered: the indirect method and an

approximate method. The latter introduces simplifications that allow for the
integration of the differential equations, leading to an analytical solution.

For further details see [18] or [14].

4.1 Optimal Control Problem Formulation

A dynamic system can be described by a set of non-linear differential equations
that govern the time evolution of a state vector :

ẋ = f [x(t), u(t), t; p], t0 ≤ t ≤ tf (4.1)

where x(t) is the state vector, u(t) is the control vector and p is the vector of
static parameters:

x(t) =


x1(t)

...
xn(t)

 ; u(t) =


u1(t)

...
um(t)

 ; p =


p1
...

pq

 ; (4.2)

x(t0) is given and some components of x(tf) are specified. The final time tf

can be either fixed or free. The optimal control problem consists of finding u(t)
that minimizes (or maximizes) a given performance index:

J = φ[x(tf ), tf ; p] +
Ú tf

t0
Φ[x(t), u(t), t, ; p] dt (4.3)

Equation (4.3) represents the "quality" of the trajectory, where Φ[x(t), u(t), t; p]
can be interpreted as the rate of cost associated with exerting u in state x, and
φ[x(tf ), tf ; p] represents the cost associated with reaching the final state x(tf ).
Path constraint can be included as follow:

Cmin ≤ C[x(t), u(t), t; p] ≤ Cmax (4.4)

and the boundary conditions are included as follow:

Smin ≤ S[x(t0), t0, x(tf ), tf ; p] ≤ Smax (4.5)

An optimal control problem can be divided into multiple phases p ∈ [1, . . . , P ],
which are interconnected. In a multi-phase optimal control problem, the total
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cost to be optimized is given by:

J =
PØ

k=1
J (k) (4.6)

where J (k) represents the cost associated with each phase.

4.2 The Indirect Method

As previously mentioned, the calculus of variations is used to determine the
first-order optimality conditions for the optimal control problem. The calculus
of variations is the field concerned with determining a function that optimizes
a function of a function, also known as a functional. Applying the calculus of
variations to the optimal control problem described by Equations (4.1), (4.3),
(4.4), and (4.5), leads to the necessary conditions for an extremal trajectory. To
derive these conditions, it is necessary to introduce the Hamiltonian, defined
as:

H = λT f (4.7)

where λ are the time-varying Lagrange multipliers, also known as adjoint
variables (or costate variables). The Pontryagin’s maximum principle states
that the optimal trajectory x∗, reached with the optimal control u∗ and the
corresponding Lagrange multipliers λ∗, must maximize the Hamiltonian H,
such that:

H(x∗(t), u∗(t), λ∗(t), t) ≥ H(x(t), u(t), λ(t), t), t0 ≤ t ≤ tf (4.8)

This can be achieved if the adjoint variables satisfy the adjoint equations:

dλ

dt
= −

A
∂H

∂x

BT

(4.9)

and the algebraic equations for the control satisfy:
A

∂H

∂u

BT

= 0 (4.10)
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To summarize, the optimal control problem can be reformulated as a two-point
boundary value problem: 

dx
dt

= f [x(t), u(t), t; p]

dλ

dt
= −

∂H

∂x

T

∂H

∂u

T

= 0

(4.11)

To find a solution to this problem, the initial values of the unknown variables
must be determined, and integrating the differential equations leads to the
optimal trajectory of x. This can be achieved using a shooting method.

A shooting method consists of numerically integrating the differential equa-
tions from t0 to tf with a set of trial initial values for the unknown variables.
Once tf is reached, the obtained terminal conditions are compared with the
known terminal conditions. If they do not match, the trial initial values are
adjusted. This process is iterated until the difference between the integrated
terminal conditions and the required terminal conditions is below a specified
threshold.

4.3 Edelbaum Dynamic Model

In this work, the target and chaser orbits are assumed to be nearly circular,
so the dynamics can be described using Edelbaum’s dynamical model, which
assumes constant circular orbits. The dynamic model is derived from Gauss’s
equations, considering several assumptions: the orbit is nearly circular with low
inclination, and the thrust is very low (smaller than the gravitational force).
These assumptions lead to the following simplifications:

a ≈ p ≈ r; V 2 ≈ µ/r; e ≈ 0; sin i ≈ i; cos i ≃ 1; E ≈ ν ≈ M

fV = fT ≪ µ/r; fR ≪ µ/r; fW ≪ µ/r; θ = ω + ν + Ω
(4.12)
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The Gauss planetary equations (Equation (2.74)) then become:

V
ȧ

a
= 2fT

V ė = 2 cos νfT + sin νfR

V i̇ = cos (ω + ν)fW

iV Ω̇ = sin (ω + ν)fW

V ω̇ = −V Ω̇ + (2 sin νfT − cos νfR)/e

θ̇ = n =
ñ

µ
a3

(4.13)

Next, the angle α is introduced, defined as the in-plane angle between the
thrust vector and the velocity, and the angle β, defined as the out-of-plane angle
between the thrust vector and the velocity. The three acceleration components
can then be expressed as:

fT = f cos α cos β; fR = f sin α cos β; fW = f sin β (4.14)

where f = T/m is the magnitude of the acceleration. Substituting Equation
(4.14) into Equations (4.13), yields:

ȧ = 2af

V
cos α cos β (4.15)

ė = 2f

V
cos ν cos α cos β + f

V
sin ν sin α cos β (4.16)

i̇ = f

V
cos (ω + ν) sin β (4.17)

Ω̇ = f

iV
sin (ω + ν) sin β (4.18)

ω̇ = −Ω̇ + f

eV
(2 sin ν cos α cos β − cos ν sin α cos β) (4.19)

4.3.1 One Revolution Transfer

To analyse a one-revolution transfer, Equations (4.15)-(4.17) are integrated
over one revolution. A variable change dt =

ñ
a3/µ dν is performed, and the

integration limits are set from 0 to 2π. This leads to:

∆a = 2af

V

Ú 2π

0
cos α cos β dν (4.20)

∆e = f

V

Ú 2π

0
(2 cos ν cos α + sin ν sin α) cos β dν (4.21)

∆i = f

V

Ú 2π

0
cos (ω + ν) sin β dν (4.22)
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Note that the equations for Ω̇ and ω̇ are neglected in this case. The optimal
values of α and β can be determined based on the desired changes in orbital
parameters:

• A maximum increase in a requires β = 0 (since ∆i = 0) and α = 0 (since
∆e = 0).

• A maximum increase in e requires β = 0 (since ∆i = 0) and tan α = tan ν
2 .

• A maximum increase in i requires α = 0 (since ∆e = 0) and β = π
2 if

cos (ω + ν) > 0, or β = −π
2 if cos (ω + ν) < 0.

When both ∆a and ∆i must be maximized, applying the optimal control theory
to the equations (4.15) and (4.17) leads to:

tan β = K cos (ω + ν) (4.23)

where K is a constant. The angle α must be set to 0, as it is optimal for
maximizing changes in a and does not influence changes in i. From Equation
(4.23), the expressions for cos β and sin β can be derived:

cos β = 1ñ
1 + (K cos (ω + ν))2

; sin β = K cos (ω + ν)ñ
1 + (K cos (ω + ν))2

(4.24)

These expressions must be substituted into Equations (4.20) and (4.22) and
integrated. This results in elliptic integrals, which do not have an analytical
solution and must be evaluated numerically. Additionally, the practical imple-
mentation of this control law may be complex. Therefore, the control law for β

can be approximated using a piecewise constant function:

β =

β, cos (ω + ν) ≥ 0
−β, cos (ω + ν) < 0

(4.25)

Substituting this expression into Equations (4.20) and (4.22) and integrating
over one revolution yields:

∆a

a
= 4πf cos β

nV
; ∆i = 4π sin β

nV
(4.26)

The difference between the optimal control law and the approximate control
law is negligible, as shown in Figure (4.1).
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Figure 4.1: Difference between the optimal control law and the constant
control law for β [4]

4.3.2 Multiple-Revolution Transfer

When larger changes in ∆a and ∆i are involved, a multi-revolution low-thrust
transfer becomes necessary. To evaluate an optimal control law, the trajectory
is assumed to remain nearly circular, and β is assumed to be constant during
each revolution. The problem is now to determine the optimal value of β for
each revolution along the transfer manoeuvre. The time derivatives of a and i

are computed as the variation occurring over one revolution, averaged over the
revolution period:

ȧ

a
=

2f cos β

V
; i̇ =

2f sin β

πV
; V̇ = −

nȧ

2 (4.27)

After performing a change of variable, we get:

di

dV
= −

2 tan β

πV
;

dt

dV
= −

1
f cos β

(4.28)

By applying optimal control theory to Equations (4.28), the optimal control
law is derived:

V sin β = V0 sin β0 = cost (4.29)

This implies that the quantity V sin β must be conserved throughout the transfer
manoeuvre, meaning that β must increase as the velocity decreases, i.e., as
the spacecraft moves farther from the central body. This result is expected,
as changes in inclination are optimal for low velocities, as discussed in the
previous chapter. Figure (4.2) represents various transfer manoeuvres. For
all initial values of β0, there is a maximum reachable altitude rmax, which is
attained when β = 90◦. Beyond this point, β cannot increase any further.
For larger inclination changes, a two-way transfer is required: after reaching
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Figure 4.2: Edelbaum’s three-dimensional multi-revolution transfer manoeuvre
[4]

rmax, β is reduced, and the spacecraft is decelerated to lower the orbit altitude.
Higher values of rmax can be achieved by starting with a lower β0. Integrating
Equations (4.28) yields:

∆V = V0 cos β0 − V1 cos β1

∆i =
2
π

sin−1

V0 sin β0

V1
− β0

 (4.30)

The maximum one-way inclination change is obtained for β → 0, which gives
rmax → ∞, ∆i = 57.3◦ and ∆V = V0 − V1. When rmax → ∞, inclination
changes become unrestricted, and i can be increased without bounds. For a
two-way transfer, integrating from V0 to Vrmax and then from Vrmax to V1 leads
to:

∆V =


ò

V 2
0 + V 2

1 − 2V0V1 cos
1

π
2 ∆i

2
if ∆i ≤ 114.6◦

V0 + V1 if ∆i > 114.6◦
(4.31)

4.4 Edelbaum Dynamic Model with J2 Pertur-
bation

Low Earth orbits cannot be fully described using the two-body problem ap-
proximation due to the presence of perturbing forces such as atmospheric drag
and the Earth’s non-sphericity. As discussed in Chapter (2.5.1), the primary
effects of the Earth’s non-sphericity, known as the J2 perturbation, are the
regression of the line of nodes and the rotation of the line of apsides.

In this work, only the regression of the line of nodes is considered as a
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perturbing effect. Consequently, the Edelbaum dynamical model must be
modified to account for this influence. The effect of J2 on Ω is described by
the equation:

Ω̇J2 = −3
2J2

A
Re

a(1 − e2)

B2ò
µ

a3 cos(i) (4.32)

Since the trajectory is assumed to remain nearly circular, e can be neglected:

Ω̇J2 = −3
2J2

R2
e µ1/2

a7/2 cos(i) (4.33)

Including Ω̇J2 in the dynamic model leads to:

ȧ = 2af
V

cos α cos β

i̇ = f
V

cos (ω + ν) sin β

Ω̇ = f sin (ω + ν)
sin β

V sin i
−

3
2J2

R2
e µ1/2

a7/2 cos(i)

(4.34)

Equations (4.34) describe the dynamics of the system, including the perturba-
tion due to the J2 effect. The equations for ν, ω, and e are omitted, as nearly
circular orbits are considered. Furthermore, the rendezvous phase between the
chaser and the target is not analyzed in this work.

4.4.1 One Revolution Transfer

The optimal control law for a one-revolution transfer is studied following a
similar approach to that in Chapter (4.3). To this end, it is useful to introduce
θ = ω + ν and rewrite Equations (4.34) using θ as the dependent variable and
V as

ñ
µ/a:

da

dθ
=

2fa3

µ
cos α cos β,

di

dθ
=

fa2

µ
cos θ sin β,

dΩ
dθ

=
fa2

µ

sin θ sin β

sin i
−

3
2J2

Re

a

2

cos(i),

dt

dθ
=

öõõôa3

µ
.

(4.35)

The thrust and mass of the spacecraft are assumed to be constant over one
revolution. To obtain an indirect optimization of the problem, a Hamiltonian
must be constructed as previously defined:

H = λT f , (4.36)
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where λ = [λa, λi, λΩ] in this case. By performing some algebraic manipulations:

(4.37)
H = λa

2fa3

µ
cos α cos β + λi

fa2

µ
cos θ sin β

+ λΩ
fa2

µ

sin θ sin β

sin i
− λΩ

3
2J2

3
Re

a

42
cos(i).

Since one revolution is being studied, H does not depend on the state variables
(as a, i, and Ω have small variation in one revolution and can be considered as
constants), and the adjoint variables result to be constant:

dλa

dt
= −∂H

∂a
= 0,

dλi

dt
= −∂H

∂i
= 0,

dλΩ

dt
= −∂H

∂Ω = 0. (4.38)

The optimal control law for the β angle can be obtained by setting the partial
derivative of the Hamiltonian to zero:

∂H

∂β
= 0 =⇒ tan β =

λi cos θ + λΩ
sin θ
sin i

2λaa
. (4.39)

It is useful to define the angle θ0 as:

tan θ0 = λΩ

λi

sin i. (4.40)

The parameter θ0 helps analyze the thrust strategy, as it represents how the
out-of-plane thrust effort is distributed between changes in i and changes in
Ω. When tan θ0 is close to 1 (λΩ ≫ λi), thrust is mainly used to change Ω,
whereas when tan θ0 is close to 0 (λΩ ≪ λi), thrust is mainly used to change i.
Another auxiliary variable, Λ, is defined as:

Λ =

öõõôλ2
i +

A
λΩ

sin i

B2

. (4.41)

Equation (4.41) can be inverted to obtain expressions for λi and λΩ:

λi = Λ cos θ0, λΩ = Λsin θ0

sin i
. (4.42)

Substituting these expressions into Equation (4.39) results in:

tan β = Λ
2λaa

cos (θ − θ0) = K cos θ′. (4.43)

From Equation (4.43), expressions for cos β and sin β can be derived:

cos β = 1ñ
1 + (K cos θ′)2

, sin β = K cos θ′ñ
1 + (K cos θ′)2

. (4.44)
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Substituting these into Equations (4.35) leads to:

da

dθ′ =
2fa3

µ

1ñ
1 + (K cos θ′)2

,

di

dθ′ =
fa2

µ

K cos θ′ñ
1 + (K cos θ′)2

cos (θ′ + θ0),

dΩ
dθ′ =

fa2

µ

sin (θ′ + θ0)
sin i

K cos θ′ñ
1 + (K cos θ′)2

−
3
2J2

Re

a

2

cos(i),

dt

dθ
=

öõõôa3

µ
.

(4.45)

As in Chapter (4.3), solving Equations (4.45) requires elliptic integrals. In this
case as well, β can also be assumed constant without losing precision, leading
to:

∆a =
4πa3f

µ
cos β,

∆i =
fa2

µ
cos θ0 sin β,

∆Ω =
fa2

µ

sin β

sin i
sin θ0 − 3πJ2

Re

a

2

cos i,

∆t = 2π

öõõôa3

µ
.

(4.46)

The same solution is found for ∆a. The main differences between the standard
Edelbaum model and the modified Edelbaum model with J2 lie in ∆i and ∆Ω
obtained through one revolution:

∆i = ∆i0 cos θ0, ∆Ω = ∆i

sin i
sin θ0 − 3πJ2

3
Re

a

42
cos i, (4.47)

where ∆i0 is the result obtained through one-revolution integration of the
standard Edelbaum model. The main differences lie in the presence of θ0, which
distributes the out-of-plane thrust effort between inclination changes and Ω
changes, and the inclusion of the J2 term.

4.4.2 Multiple-Revolution Transfer

To extend the study from one-revolution transfer to a multiple-revolution
transfer, the same assumptions made in Chapter (4.3.2) are considered: the
trajectory is assumed to be nearly circular at all times, and β is assumed to be
constant during each revolution. The time derivatives of the orbital elements
are computed by averaging the changes over one revolution with respect to the
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orbital period. In a multiple-revolution transfer, the spacecraft mass cannot be
considered constant. Therefore, the time-derivative equation of the mass must
be included, and f is written as T/m:

da

dt
= 2

T

m

öõõôa3

µ
cos β

di

dt
=

T

2πm

öõõôa

µ
sin β cos θ0

dΩ
dt

=
T

2πm

öõõôa

µ

sin β

sin i
sin θ0 −

3
2J2

Re

a

2
öõõô µ

a3 cos i

dm

dt
= −

T

c

(4.48)

where c is the effective exhaust velocity. To obtain an indirect optimization, an
Hamiltonian is constructed:

H = λT f ; λT = [λa, λi, λΩ, λm] (4.49)

(4.50)
H =

2T

mπ

öõõôa

µ

λaπa cos β + λi sin β cos θ0 + λΩ
sin β

sin i
sin θ0



− λΩ
3
2J2

Re

a

2
öõõô µ

a3 cos i − λm

T

m

The time-derivative of the adjoint variables is computed as defined in Chapter
(4.2):

(4.51)

dλa

dt
= −

∂H

∂a

= −3λa

T

m

öõõôa

µ
cos β − λi

T

πm
√

aµ
sin β cos θ0

− λΩ
T

πm
√

aµ

sin β

sin i
sin θ0 + λΩ

21
4

Re

a

2
öõõô µ

a5 cos i

dλi

dt
= −

∂H

∂i
= λΩ

2T

mπ

öõõôa

µ

cos i

sin2 i
sin β sin θ0 −

3
2J2

Re

a

2
öõõô µ

a3 sin i (4.52)

dλΩ

dt
= −

∂H

∂Ω = 0 (4.53)
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(4.54)

dλm

dt
= −

∂H

∂m

=
2T

πm2

öõõôa

µ

λaπa cos β + λi sin β cos θ0 + λΩ
sin β

sin i
sin θ0


The control variables for this problem are the thrust magnitude T , the out-of-
plane thrust angle β, and θ0. To obtain the optimal control law, the partial
derivatives of the Hamiltonian with respect to θ0 and β are nullified:

∂H

∂θ0
= 0 −→ tan θ0 =

λΩ

λi sin i
(4.55)

∂H

∂β
= 0 −→ tan β =

λi cos θ0 + λΩ
sin θ0
sin i

2λaa
(4.56)

From Equations (4.55) and (4.56), the expressions for the sine and cosine of β

and θ0 can be derived, using the auxiliary variable Λ:

sin β = ± Λñ
Λ2 + (πaλa)2

(4.57)

cos β = ± πaλañ
Λ2 + (πaλa)2

(4.58)

sin θ0 = ± λΩ

Λ sin i
(4.59)

cos θ0 = ±λi

Λ (4.60)

In agreement with Pontryagin’s Maximum Principle, the optimal control laws
must maximize the Hamiltonian. To achieve this, there must be consistency
among the signs, and the correct quadrant for β and θ0 must be selected.
Assuming sin β is positive leads to:

sin β = Λñ
Λ2 + (πaλa)2

(4.61)

cos β = πaλañ
Λ2 + (πaλa)2

(4.62)

sin θ0 = λΩ

Λ sin i
(4.63)

cos θ0 = λi

Λ (4.64)
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Note that cos β has the same sign as λa. The same applies for cos θ0 and sin θ0,
which have the same signs as λi and λΩ, respectively. It is important to note
that the Hamiltonian is a linear function of T , so grouping the terms that
contain T , Equation (4.50) can be written as:

H = TSF − λΩ
3
2J2

Re

a

2
öõõô µ

a3 cos i (4.65)

where SF is called the Switching function, and it is defined as:

SF = 2
πm

ó
a

µ

ñ
(πaλa)2 + Λ2 − λm

c
(4.66)

According to Pontryagin’s Maximum Principle, T and the switching function
must be consistent: when SF > 0, the thrust must be set to its maximum
value, and when SF < 0, the thrust must be set to its minimum value (i.e., the
thruster should be turned off).

4.4.3 Boundary Conditions

The optimal control law depends on the boundary conditions of the problem
and on the performance index. In this study, a set of initial orbital elements
a0, i0, and Ω0 at t0 = 0 of the chaser orbit is given. The orbital elements of the
target orbit, representing the final conditions, are also known and are defined
as:

af = a0 + ∆a

if = i0 + ∆i

Ωf = Ω0 + ∆Ω + Ω̇J2 · tf

(4.67)

where ∆a, ∆i, and ∆Ω are given, and tf is the final time. To close the problem,
two additional boundary conditions must be specified. These conditions are
provided by optimal control theory and depend on the objective to be optimized.
In the case of a minimum-time solution (with free final mass), the performance
index to minimize is the final time, and the boundary conditions for optimality
are:

Hf − λΩΩ̇J2tf = 1
λmf = 0

(4.68)

In a minimum-time solution, the switching function always assumes positive
values, and the thrust is always at its maximum value. The other unknown
boundary conditions represent the unknowns of the two-point boundary value
problem: tf , λa0, λi0, λΩ, and λm0. Note that λΩ is constant since λ̇Ω = 0. It is
important to mention that this problem is homogeneous in the adjoint variables,
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so the solution is "scalable," meaning it is determined up to a scale factor.
Therefore, it is possible to specify the initial value of one adjoint variable, in
this case λΩ. Note that the sign of λΩ must be assigned correctly to avoid
negative flight times: the sign must match that of ∆Ω. The unknowns of the
problem are then reduced to four: tf , λa0, λi0, and λm0.

In a minimum-propellant solution (or maximum final mass), the cost function
to maximize is the final mass of the spacecraft, and the boundary conditions
for optimality are:

λmf = 1
tf = k

(4.69)

where k is given. If the final time is not given, then the last boundary condition
can be substituted with:

Hf − λΩΩ̇J2 · tf = 0 (4.70)

In this case, the switching function can assume both positive and negative
values, and the engine can be turned off.

4.5 Approximate Optimization Method

The indirect trajectory optimization through the Edelbaum dynamic model,
modified with J2, cannot be obtained analytically and can only be solved
using numerical methods, such as the shooting method, which involves a
significant computational cost. This requires the implementation of techniques
to obtain numerical solutions to differential equations, such as time-marching
methods (Euler method, Crank-Nicolson method, Runge-Kutta methods, etc.)
or collocation methods. Another critical point is that a good initial guess
for the adjoint variables is necessary; otherwise, the algorithm risks failing to
converge to the solution.

On the other hand, an analytical solution does not require numerical iteration
and can be useful for easily assessing trajectory optimization problems. In the
following chapters, an approximate optimization method based on analytical
solutions is presented, for further details see [20].

4.5.1 Approximate Transfer Cost

In Chapter (4.3), the expression for ∆V for a transfer between circular orbit
with combined change in inclination and altitude was derived:

∆V =
ó

V 2
0 + V 2

f − 2V0Vf cos
3

π

2 ∆i
4

(4.71)
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The quantity π
2 ∆i is now assumed small in order to perform the following

approximation:

cos
3

π

2 ∆i
4

≈ 1 −

1
π
2 ∆i

22

2 (4.72)

substituting Equation (4.72) into Equation (4.71) leads to:

∆V =
ó

V0Vf

3
π

2 ∆i
42

+ (V0 + Vf )2 (4.73)

for small ∆a the equation can be further simplified, obtaining:

∆V = V

öõõô3π

2 ∆i
42

+
A

∆a

2a

B
(4.74)

where a and V are the average values of the semi-major axis and velocity
respectively:

a = a0 + af

2 V =
ò

µ

a
(4.75)

Equation (4.75) considers only change in inclination and altitude, the two terms
contained in the parenthesis can be interpreted as the transfer cost for changing
i and a. To modify Equation (4.75) to include Ω changes, the time-derivatives
of i and of Ω from Equations (4.13) must be computed averaging the angular
position from the unaveraged di/dt and dΩ/dt, using as integration limits
u′ − π/2 and u′ − π/2:

d̃i

dt
= 1

2π

Ú 2π

0

di

dt
dθ =

2f sin β

2πV

Ú u′+π/2

u′−π/2
cos θ dθ =

2f sin β

πV
cos u′ (4.76)

dΩ̃
dt

=
1

2π

Ú 2π

0

dΩ
dt

dθ =
2f sin β

2πV sin i

Ú u′+π/2

u′−π/2
sin θ dθ =

2f sin β

πV sin i
sin u′ (4.77)

where u′ is the argument of latitude of the common point between the two
orbits. Eliminating the tilde, the dynamic model can be written as:

di

dt
=

2f

πV
sin β cos u′

dΩ
dt

=
2f

πV

sin β

sin i
sin u′

dV

dt
= −f cos β

(4.78)

If small changes in velocity, inclination and RAAN between subsequent circular
orbits are considered, the common point u′ and inclination i on the right-hand
side of Equations (4.78) can be assumed constant. This assumption allows the
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analytic integration of Equations (4.78). The Hamiltonian can be constructed
as:

H = λi
2f

πV
sin β cos u′ + λΩ

2f

πV

sin β

sin i
sin u′ − λV f cos β (4.79)

and the adjoint equations are:

dλV

dt
= −

∂H

∂V
= λi

2f

πV 2 sin β cos u′ + λΩ
2f

πV 2

sin β

sin i
sin u′

dλi

dt
= −

∂H

∂i
= 0

dλΩ

dt
= −

∂H

∂Ω = 0

(4.80)

The optimal control law for β can be obtained by nullifying the partial derivative
of the Hamiltonian:

∂H

∂β
= 0 −→ tan β = − 2

πV sin i

λΩ

λV

sin u′ − 2
πV

λi

λV

cos u′ (4.81)

As stated before, for a minimum-time solution the cost function to minimize is
represented by the final time, which gives Hf = 1 as the boundary condition,
and together with Equation (4.79) yields:

λV = −cos β

f
(4.82)

λi

A
2f

πV
cos u′

B
+ λΩ

A
2f

πV sin i
sin u′

B
= sin β. (4.83)

Since λi and λΩ are constant, dV/dt in Equations (4.78) can be integrated to
obtain:

V =
ñ

V 2
0 + f 2t2 − ftV0 cos β0 (4.84)

With some manipulation, the expressions for ∆i and ∆Ω are obtained:

∆i = 2 cos u′

π

C
arctan

A
ft − V0 cos β0

V0 sin β0

B
+ π

2 − β0

D
(4.85)

∆Ω = 2 sin u′

π sin i

C
arctan

A
ft − V0 cos β0

V0 sin β0

B
+ π

2 − β0

D
(4.86)

The three variables β0, t and u′ and the three constraints (Equations (4.84),
(4.85) and (4.86)) enable Vf , if and Ωf to be the desired ones. Equations (4.85)
and (4.86) can be combined to obtain:

ñ
∆i2 + (sin i∆Ω)2 = 2

π

C
arctan

A
ft − V0 cos β0

V0 sin β0

B
+ π

2 − β0

D
(4.87)
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This is a result similar to that obtained in the analysis of the combined maneuver
of changing a and i, except for the term

ñ
∆i2 + (sin i∆Ω)2 appearing on the

right-hand side instead of ∆i. Equation (4.71) can therefore be written, by
analogy, as:

∆V =
ó

V 2
0 + V 2

f − 2V0Vf cos
3

π

2

ñ
∆i2 + (sin i∆Ω)2

4
(4.88)

As before, the quantity π/2
ñ

∆i2 + (sin i∆Ω)2 is assumed to be small, so
Equation (4.88) can be written as:

∆V =

öõõôµ

a

3π

2 ∆i
42

+
3

π

2 sin i∆Ω
42

+
A

∆a

2a

B2
 1

2

(4.89)

Note that Equation (4.89) is similar to a root-sum-square of all individual
∆V values: the terms enclosed in parentheses represent the transfer cost for
changing a, i and Ω to reach the target orbit.

4.5.2 Approximate J2-perturbed Transfer Cost

After obtaining an expression for the ∆V of a combined transfer of a, i, and Ω,
the effect of the J2 perturbation is incorporated into the model. Referring to
Equation (4.89), the three velocity changes can be denoted as x, y, and z:

x = π

2 (Ωt(t) − Ωc(t)) sin i V (4.90)

y = af − a0

2a

ò
µ

a
(4.91)

z = π

2 (if − i0) V (4.92)

where a = (af −a0)/2 and i = (if −i0)/2. Two cases are considered: an analytic
solution for a combined a and i transfer, where the changes in Ω are accounted
for only by natural drift, and an analytic solution for a combined a, i, and Ω
transfer, where thrust is actively used to modify Ω.

4.5.2.1 Analytic Solution for a combined a and i transfer

With a given flight time, a thrust-coast-thrust profile is considered, where the
∆a and ∆i are distributed between the two thrust arcs. The change in Ω
is obtained by natural drift, as long as the transfer time is long enough. To
identify the changes in y and z at each thrust arc, the scaling terms ky and kz
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are introduced. They represent the percentage of the velocity change at the
first thrust arc. Thus, the velocity change during the first thrust phase, ∆V1,
can be written as:

∆V1 =
ñ

(kyy)2 + (kzz)2 (4.93)

Note that there are no constraints on ky and kz, which means that the changes
in a and i can be larger than the original differences, in order to exploit the J2
effect to change Ω. The expression for Ω̇J2 (Equation (4.32)), for small changes
in semi-major axis and inclination, can be written as:

∆Ω̇
Ω̇

= −7
2

∆a

a
− tan(i∆i) (4.94)

Equation (4.94) can be combined with Equations (4.91) and (4.92) to obtain
two auxiliary variables, m and n:

m = 7π

2 Ω̇ sin it n = Ω̇ tan i sin it (4.95)

where Ω̇ is the average RAAN rate of the chaser and the target. During the
transfer time, the control of altitude and inclination by the first arc leads to a
change in Ω:

∆x = mkyy + nkzz (4.96)

The velocity change associated with the second arc, ∆V2, can be written as:

∆V2 =
ñ

(y − kyy)2 + (z − kzz)2 (4.97)

Therefore, the total ∆V is:

∆V = ∆V1 + ∆V2 =
ñ

(kyy)2 + (kzz)2 +
ñ

(y − kyy)2 + (z − kzz)2 (4.98)

The change in Ω is entirely due to the J2 effect, so:

x + ∆x = 0 (4.99)

To find the minimum ∆V , an analytic approximation is derived by squaring
the two velocities to remove the square roots:

∆V 2
1 + ∆V 2

2 = (kyy)2 + (kzz)2 + (y − kyy)2 + (z − kzz)2 (4.100)

Note that the cross-product term 2∆V1∆V2 is neglected. To obtain the minimum
∆V 2

1 +∆V 2
2 , a constrained minimization problem must be solved, with Equation
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(4.99) as the constraint. Thus, a Lagrangian function can be constructed:

L = (kyy)2 + (kzz)2 + (y − kyy)2 + (z − kzz)2 + ρ(x + mkyy + nkzz) (4.101)

where ρ is the Lagrange multiplier. Nullifying the partial derivatives of the
Lagrangian function with respect to ky and kz yields:

∂L

∂ky

= (4yky − 2y + ρm)y = 0

∂L

∂kz

= (4zkz − 2z + ρn)z = 0

∂L

∂ρ
= x + mkyy + nk = 0

(4.102)

Equations (4.102) can be manipulated to obtain the unknowns ky and kz:

ky =
2mx − n2y + mnz

2(m2 + n2)y

kz =
2nx + mny − m2z

2(m2 + n2)z

(4.103)

Substituting ky and kz into Equation (4.98), the optimal ∆V can be estimated.

4.5.2.2 Analytic Solution for a combined a, i and Ω transfer

When active Ω changes are involved, Equation (4.98) becomes:

∆V = ∆V1 + ∆V2 =
ñ

(kxx)2 + (kyy)2 + (kzz)2+

+
ñ

(x − kxx + ∆x)2 + (y − kyy)2 + (z − kzz)2
(4.104)

where kx is a term introduced to describe the magnitude of active control
within the required velocity change for a Ω change of x. Equation (4.96), which
expresses the change in ∆V required to close the RAAN difference due to
the changes in semi-major axis and inclination, remains valid. Similar to the
previous cases, the optimal values of kx, ky, and kz can be obtained by setting
the partial derivatives of ∆V 2

1 + ∆V 2
2 to zero:

∂(∆V 2
1 +∆V 2

2 )
∂kx

= 2x(2xkx − myky − nzkz − x) = 0
∂(∆V 2

1 +∆V 2
2 )

∂ky
= 2y(−mxkx + 2yky + m2yky + mnzkz − y + mx) = 0

∂(∆V 2
1 +∆V 2

2 )
∂kz

= 2z(−nxkx + mnyky + 2zkz + n2zkz − z + x) = 0

(4.105)
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From Equations (4.105), the optimal values of kx, ky, and kz can be derived:

kxx =
2x + my + nz

4 + m2 + n2

kyy =
2mx − (4 + n2)y + mnz

8 + 2m2 + 2n2

kzz =
2nx + mny − (4 + m2)z

8 + 2m2 + 2n2

(4.106)

By substituting Equations (4.106) into Equation (4.104), the approximate
optimal ∆V can be obtained.

4.5.3 The Arc-Impulse Method

To summarize Chapter (4.5.2), considering a thrust-coast-thrust combined
[a, i, Ω] transfer manoeuvre, Equations (4.106) and (4.104) allow for the
determination of the optimal velocity change for both the first and second
thrust phase.

The Arc-Impulse method is a simple algorithm that improves the analytical
results by accounting for the duration of the thrust arc, thereby enabling
the analysis of minimum-time solutions. It is important to note that, in the
cases presented in Chapter (4.5.2), the flight time ∆t is given. Initially, the
manoeuvre is modelled as a two-impulse transfer, with the first impulse ∆V1

applied at t0 and the second impulse ∆V2 at tf . These velocity changes are
computed as in Chapter (4.5.2.2), using:

∆a = af − a0; ∆i = if − i0; ∆Ω = Ωtar(t0) − Ωch(t0) (4.107)

and the given ∆t = tf − t0. Additionally, the transfer cost can be evaluated as
a single-impulse transfer by setting:

kx = ky = kz = 1 (4.108)

which considers only an impulse at the initial time, or by setting:

kx = ky = kz = 0 (4.109)

which considers only an impulse at the final time. The minimum total ∆V is
then selected. Once ∆V1 and ∆V2 are determined, the impulses are converted
in thrust arcs, with their durations computed as follows:

∆ta = ∆V1

a
, ∆tb = ∆V2

a
(4.110)
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Time Event

Thrust Arc a
t0 −→ ta = t0 + ∆ta/2 The spacecraft waits on the departure orbit

ta First impulse ∆V1
ta −→ t1 = ta + ∆ta/2 The spacecraft waits on the transfer orbit

Coast Arc t1 −→ t2 = t1 + ∆tcoast The spacecraft waits on the transfer orbit

Thrust Arc b
t2 −→ tb = t2 + ∆tb/2 The spacecraft waits on the transfer orbit

tb Second impulse ∆V2
tb −→ tf = tb + ∆tb/2 The spacecraft waits on the arrival orbit

Table 4.1: Description of the two-impulse manoeuvre with the impulses
positioned at the midpoint of their respective thrust arcs

Subsequently, the two impulses are shifted from t0 and tf so that they are
positioned at the midpoints of their respective thrust arcs. The new two-impulse
transfer is structured as shown in Table (4.1). At this stage, the actual duration
of the manoeuvre is given by:

∆ttransfer = ∆t − ∆ta

2 − ∆tb

2 = ∆tcoast + ∆ta

2 + ∆tb

2 (4.111)

where ∆tcoast represents the duration of the coasting phase between the two
thrust arcs. Additionally, Ωtar and Ωch must be updated, since the transfer
manoeuvre starts at ta = t0 + ∆ta/2:

Ωtar(ta) = Ωtar(t0) + Ω̇tar · ∆ta

2 ; Ωch(ta) = Ωch(t0) + Ω̇ch · ∆tb

2 (4.112)

With the updated values of Ωtar, Ωch and ∆ttransfer, the transfer cost can be
reevaluated, and the entire process can be iterated until ∆V converges.

4.5.3.1 Arc-Impulse algorithm for minimum-time solution and min-
imum propellant solutions

To summarize, the steps performed to obtain the minimum-propellant
solution are shown below:

1. ∆a, ∆i, ∆Ω, and ∆t are taken as inputs.

2. ∆V is computed by considering: an optimal 2-impulse transfer, an impulse
at the initial time and an impulse at the final time. The minimum ∆V is
selected.

3. The feasibility of the maneuver is assessed: if ∆V/a0 ≤ ∆t, the transfer
is feasible; otherwise, the process is terminated. a0 is computed as
a0 = T/m0, with T and m0 given.
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4. The duration of the thrust arcs is computed as: ∆ta = ∆V1/a0, ∆tb =
∆V2/a0.

5. The two impulses are shifted so that they are positioned at the midpoints
of their respective thrust arcs. The values of ∆t, Ωch, and Ωtar are
updated. ∆V is reevaluated as in step 2.

6. Steps 2 to 6 are repeated until the relative difference between the ∆V

values of two consecutive iterations is less than ϵ, with ϵ given.

7. ∆V and mf/m0 = e−∆V/c are returned as outputs.

In a minimum-time solution, ∆t is an unknown. The previous algorithm
is modified by adding another loop:

1. ∆a, ∆i, and ∆Ω are taken as inputs.

2. A trial value of ∆t is given.

3. ∆V is computed by considering an optimal 2-impulse transfer: an impulse
at the initial time and an impulse at the final time. The minimum ∆V is
selected.

4. The feasibility of the maneuver is assessed: if ∆V/a0 ≤ ∆t, the transfer
is feasible; otherwise, ∆t is incremented by a given value δt. Steps 2 and
3 are repeated until the feasibility condition is met.

5. The duration of the thrust arcs is computed as: ∆ta = ∆V1/a0, ∆tb =
∆V2/a0.

6. The two impulses are shifted so that they are positioned at the midpoints
of their respective thrust arcs. The values of ∆t, Ωch, and Ωtar are
updated. ∆V is reevaluated as in step 3.

7. Steps 3 to 6 are repeated until the relative difference between the ∆V

values of two consecutive iterations is less than ϵ, with ϵ given.

8. ∆t, ∆V , and mf/m0 = e−∆V/c are returned as outputs.

Note that, in the previous algorithm, the acceleration a0 is assumed to
be constant throughout the maneuver: the mass reduction due to propellant
consumption is not taken into account. The algorithms can be modified to
account for this effect:

• Once ∆V1 and ∆V2 are determined, the spacecraft mass after the two
impulses is computed as: ma = m0e

−∆V1/c, mb = mae−∆V2/c.
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• The acceleration during the first thrust arc is computed as: aa =
T

1/2(m0+ma) . The acceleration during the second thrust arc is computed
as: ab = T

1/2(ma+mb) .

• The duration of the two thrust arcs is computed as: ∆ta = ∆V1/aa,
∆tb = ∆V2/ab.

• The feasibility condition becomes ∆V1/aa + ∆V2/ab ≤ ∆t.

67



Chapter 5

Results

In this chapter, the solutions for various low-thrust many-revolution transfer
manoeuvres are presented, focusing on transfer optimization through the indi-
rect method and the approximate arc-impulse method. The indirect method
solutions are implemented using a FORTRAN script, while the approximate
arc-impulse method solutions are implemented using a MATLAB script.

All transfer manoeuvres assume a chaser orbit at an altitude of h = 400 km,
with an orbital inclination of i0 = 51◦ and a right ascension of the ascending
node of Ω0 = 0◦. The spacecraft considered for these case studies has an initial
mass of m0 = 15 kg, and its propulsion system is characterized by a thrust
of T = 0.01 N and a specific impulse of Isp = 2500 s. All parameters are
summarized in Table (5.1).

The transfer manoeuvres are categorized into different groups:

• Manoeuvres involving changes in altitude with ∆Ω > 0 (∆a ̸= 0 , ∆i = 0,
∆Ω ̸= 0)

• Manoeuvres involving changes in altitude with ∆Ω < 0 (∆a ̸= 0 , ∆i = 0,
∆Ω ̸= 0)

• Manoeuvres involving only changes in Ω (∆a = 0 , ∆i = 0, ∆Ω ̸= 0)

• Manoeuvres involving combined changes in altitude and orbital inclination
with ∆Ω > 0 (∆a ̸= 0 , ∆i ̸= 0, ∆Ω ̸= 0)

• Manoeuvres involving combined changes in altitude and orbital inclination
with ∆Ω < 0 (∆a ̸= 0 , ∆i ̸= 0, ∆Ω ̸= 0)

Additionally, the solutions are further divided into minimum-time solutions
and minimum-propellant solutions.
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Chaser Orbit S/c Parameters
h 400 km T 0.01 N
i0 51◦ Isp 2500 s
Ω0 0◦ m0 15 kg

Table 5.1: Chaser orbit and spacecraft parameters

5.1 Change of Altitude with ∆Ω > 0

5.1.1 Case 1 - Manoeuvre with ∆a = 700 km and ∆Ω = 10◦

5.1.1.1 Minimum time solution

The trends of altitude and ∆i over time are shown in Figures (5.1) and (5.2),
respectively. The optimal strategy followed by the indirect method consists of
an increase in altitude above the target orbit, reaching a maximum altitude of
hmax = 1473 km at thmax = 14.49 d, and then a decrease in altitude to reach the
target orbit. The same applies to ∆i. Even though the orbital inclinations of the
chaser and target orbits are the same, ∆i is not zero throughout the manoeuvre.
Instead, it increases to a maximum of ∆imax = 0.2803◦ at t∆imax = 13.03 d and
then decreases to zero to match the target orbit’s inclination. This strategy is
used to optimize the ∆Ω change.

As discussed in the previous chapter, the nodal precession due to the J2
perturbation is inversely proportional to the square root of a cubed and directly
proportional to the cosine of i. When ∆Ω > 0 at t0, the two orbits tend to drift
apart since the chaser orbit regresses faster than the target orbit, widening
the ∆Ω gap, as seen in Figure (5.3). To take advantage of the J2 effect, the
altitude must be increased above the target orbit, and the small increase in
orbital inclination aids this process.

It is worth noting that the maximum ∆i is reached before the maximum
altitude. This is an unexpected behaviour since, to optimize inclination changes,
a should be as high as possible. It is possible that this behaviour occurs
because, at higher altitudes, changes in i are less effective in influencing the J2
perturbation. Therefore, ∆imax is achieved first to optimize the ∆Ω change.

Figure (5.4) shows the trends of β and θ0 over time. From t0 to t∆imax , β

lies in the first quadrant (0 < β < 90◦) to achieve positive changes in h and
∆i. As altitude increases, β increases as well. As expected, the out-of-plane
thrust component is higher when the spacecraft is near the maximum altitude,
as inclination changes become more efficient. At thmax , β = 90◦, and then the
thrust vector is oriented to reduce h.

When ∆i is near its maximum, θ0 remains close to 90◦, indicating that the
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Figure 5.1: Trend of h over time
(Minimum-time solution, ∆a = 700 km
∆i = 0◦ ∆Ω = 10◦)

Figure 5.2: Trend of ∆i over time
(Minimum-time solution, ∆a = 700 km
∆i = 0◦ ∆Ω = 10◦)

Figure 5.3: Trend of ∆Ω over time
(Minimum-time solution, ∆a = 700 km
∆i = 0◦ ∆Ω = 10◦)

out-of-plane thrust effort is focused on reducing ∆Ω. This is evident in Figure
(5.3), where, between t∆imax and thmax , the slope of the curve is steeper.

The strategy followed by the approximate method is the same. The max-
imum altitude reached is almost the same as in the indirect method, while
the maximum ∆i is higher. Both maxima are achieved simultaneously at
t = 13.75; d. This difference is due to the fact that, to reach the target orbit,
the approximate method considers two thrust arcs, ta and tb. In the minimum-
time solution, the arc tb starts immediately after the end of arc ta, so the
changes in altitude and inclination occur at the same time.

On the other hand, in the minimum-time solution of the indirect method,
by adjusting the thrust vector angle β, the thrust effort can be distributed to
achieve changes in a, i, and Ω. As a result, the maxima of altitude and ∆i can
occur at different times. It is worth noting that the average of thmax and t∆imax

is approximately equal to ta.
The approximate solutions closely follow the behaviour of the indirect

solution during the first thrust arc. However, in the second thrust arc, a greater

70



Results

Figure 5.4: Trend of θ0 and β angle over time in the indirect solution
(Minimum-time solution, ∆a = 700 km ∆i = 0◦ ∆Ω = 10◦)

discrepancy arises due to the temporal offset between the peaks of h and ∆i.
The time evolution of ∆Ω deviates the most due to the "impulsive" nature of
the approximate method.

In terms of ∆V and ∆t, the results are close to those of the indirect method,
with a 6% difference in ∆V and a 4.5% difference in ∆t. The solution of the
modified arc-impulse method is similar to that of the arc-impulse method and
does not provide any significant advantages.

5.1.1.2 Minimum propellant solution

For the minimum propellant solution, a flight time of ∆t = 1.5 · tminind
is

considered. In figures (5.5) and (5.6), the trends of h and ∆i over time are
shown.

The optimal strategy adopted by the indirect method consists of two thrust
1Average between thmax

and t∆imax

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 1.3297 1.2350 1.2445
∆t [days] 22.4704 21.4430 21.0678

∆V [km/s] 0.8092 0.5205 0.7921 0.4429 0.7966 0.4479
∆t [days] 13.763 1 8.707 13.752 7.688 13.609 7.458

∆V∆a [km/s] 0.7709 -0.4037 0.7746 -0.4074
∆a [km] 1473.43 -773.43 1469.67 -769.63 1476.72 -776.68

∆V∆i [km/s] 0.0660 -0.0660 0.0664 -0.0664
∆i [deg] 0.2803 -0.2803 0.3219 -0.3219 0.3238 -0.3238

∆Ωtot [deg] 35.959 35.577
∆ΩJ2 [deg] -33.830 -33.396
∆V∆Ω [km/s] 0.1696 0.1697 0.1737 0.1737
∆Ω [deg] 1.0645 1.0651 1.0902 1.0902

Table 5.2: Results of the three methods for ∆a = 700 km, ∆i = 0◦, ∆Ω = 10◦
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Figure 5.5: Trend of h over time
(Minimum-propellant solution, ∆a =
700 km ∆i = 0◦ ∆Ω = 10◦, duration =
33.705 d)

Figure 5.6: Trend of ∆i over time
(Minimum-propellant solution, ∆a =
700 km ∆i = 0◦ ∆Ω = 10◦, duration =
33.705 d)

Figure 5.7: Trend of ∆Ω over time
(Minimum-propellant solution, ∆a =
700 km ∆i = 0◦ ∆Ω = 10◦, duration =
33.705 d)

arcs with an intermediate coasting phase. During the first thrust arc, the
altitude is increased above the target altitude, after which the thrust is turned
off. At the end of the coasting phase, the thrust is turned on again, and the
altitude is decreased to reach the target orbit. The same strategy applies to ∆i.

As observed in the minimum-time solution, this strategy is used to take
advantage of the differential precession between the coasting orbit and the
target orbit, since the coasting orbit is higher than the target orbit. The hmax

and ∆imax achieved are significantly lower than in the minimum-time solution
because the J2 effect can be exploited for a longer period of time.

The approximate solutions closely follow the behaviour of the indirect
solution, but the maximum altitude reached is lower, while the maximum ∆i is
higher. Another notable difference is that the two thrust arcs are shorter, and
the coasting phase is longer. Figure (5.7) shows that the effect of the differential
precession between the coasting orbit and the target orbit (the linear portion
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Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.7250 0.6449 0.6427

∆V [km/s] 0.5468 0.1782 0.5028 0.1421 0.5017 0.1410
∆t [days] 9.437 3.033 8.730 2.468 8.621 2.392

∆V∆a [km/s] 0.5003 -0.1331 0.4992 -0.1320
∆a [km] 1066.79 -351.734 953.84 -253.84 951.70 -251.71

∆V∆i [km/s] 0.0355 -0.0355 0.0354 -0.0354
∆i [deg] 0.1553 -0.1553 0.1735 -0.1735 0.1729 -0.1729

∆Ωtot [deg] 57.89 57.95
∆ΩJ2 [deg] -57.46 -57.52
∆V∆Ω [km/s] 0.0348 0.0348 0.2175 0.2175
∆Ω [deg] 0.2190 0.2190 0.2175 0.2175

Table 5.3: Results of the three methods for ∆a = 700 km, ∆i = 0◦, ∆Ω = 10◦

and ∆t = 33.705 d.

Figure 5.8: Trend of ∆V over
∆t/tmin (∆a = 700 km ∆i = 0◦ ∆Ω =
10◦)

Figure 5.9: Trend of the relative error
of ∆V for the two approximate meth-
ods (∆a = 700 km ∆i = 0◦ ∆Ω = 10◦)

of the graph) is the same for both methods.
The solution of the modified arc-impulse method is similar to that of

the arc-impulse method and does not provide any significant advantages. In
terms of ∆V , the two approximate solutions show a 10% difference compared
to the indirect solution, which is higher than the difference observed in the
minimum-time solution.

Figure (5.8) shows the ∆V for this manoeuvre with different flight times.
The ∆V initially decreases rapidly as the manoeuvre flight time increases:
doubling the flight time results in a 55% reduction in ∆V . However, as the
flight time continues to increase, the reduction in ∆V becomes less significant.
All three solutions follow the same trend and tend to converge as the manoeuvre
time increases. The maximum discrepancy between the methods is observed
near the minimum flight time, where the slope of the curves is steeper.
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Figure 5.10: Trend of h over time
(Minimum-time solution, ∆a = 100 km
∆i = 0◦ ∆Ω = 10◦)

Figure 5.11: Trend of ∆i over time
(Minimum-time solution, ∆a = 100 km
∆i = 0◦ ∆Ω = 10◦)

Figure 5.12: Trend of ∆Ω over time
(Minimum-time solution, ∆a = 100 km
∆i = 0◦ ∆Ω = 10◦)

5.1.2 Case 2 - Manoeuvre with ∆a = 100 km and ∆Ω = 10◦

5.1.2.1 Minimum time solution

As can be seen in figures (5.10) and (5.11), the strategy followed by the indirect
method is the same as in case 1. This optimization strategy is commonly
used when ∆Ω > 0 and the target orbit is higher than the chaser orbit. The
maximum altitude and maximum ∆i reached are significantly lower than in
the previous case, as the target orbit is much closer to the chaser orbit. As
shown in figure (5.12), ∆Ω starts to decrease from the very beginning. It is
worth noting that, in this case as well, the maximum ∆i is reached before
the maximum altitude (t∆imax = 6.79; d and thmax = 6.98; d), but the temporal
distance between the two peaks is much smaller. Regarding β, the trend is
also similar to case 1. When ∆i is close to its maximum, θ0 is close to 90◦,
indicating a thrust contribution to change Ω, as shown in figure (5.12) with
the point of maximum slope in the graph.

The approximate solutions follow the trend of the indirect solution much
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Figure 5.13: Trend of θ0 and β angle over time in the indirect solution
(Minimum-time solution, ∆a = 100 km ∆i = 0◦ ∆Ω = 10◦)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.7563 0.7379 0.7428
∆t [days] 12.9291 12.8120 12.7026

∆V [km/s] 0.4016 0.3545 0.3946 0.3433 0.3946 0.397
∆t [days] 6.8842 6.044 6.850 5.961 6.836 5.866

∆V∆a [km/s] 0.3657 -0.3098 0.3675 -0.3116
∆a [km] 599.84 -499.84 653.64 -553.72 656.85 -556.94

∆V∆i [km/s] 0.0379 -0.0379 0.0381 -0.0381
∆i [deg] 0.1493 -0.1493 0.1809 -0.1809 0.1818 -0.1818

∆Ωtot [deg] 12.490 12.474
∆ΩJ2 [deg] -10.731 -10.692
∆V∆Ω [km/s] 0.1431 0.1431 0.1451 0.145
∆Ω [deg] 0.8790 0.8790 0.8913 0.8907

Table 5.4: Results of the three methods for ∆a = 100 km, ∆i = 0◦, ∆Ω = 10◦

.

more closely than in the previous case, due to the fact that the two peaks are
very close in time. The maximum altitude and ∆i reached are higher, but in
terms of ∆V and ∆t, the approximate methods are much closer to the indirect
method, with only a 2% difference in ∆V and a 1% difference in ∆t.

5.1.2.2 Minimum propellant solution

The minimum propellant solution considers a flight time of ∆t = 1.5 · tminind
.

As can be seen in figures (5.14), (5.15), and (5.16), the approximate solutions
are almost identical and closely follow the indirect solution. As in the previous
case, the thrust arcs of the approximate solutions are shorter (about 6%), the
altitude and ∆i reached in the first arc differ by about 5%, but the effect on
the reduction of ∆Ω is the same as in the indirect method. The difference in
∆V is higher than in the minimum time propellant case; as shown before, this

2Average between thmax
and t∆imax
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Figure 5.14: Trend of h over time
(Minimum-propellant solution, ∆a =
100 km ∆i = 0◦ ∆Ω = 10◦, duration =
19.394 d)

Figure 5.15: Trend of ∆i over time
(Minimum-propellant solution, ∆a =
100 km ∆i = 0◦ ∆Ω = 10◦, duration =
19.394 d)

Figure 5.16: Trend of ∆Ω over time
(Minimum-propellant solution, ∆a =
100 km ∆i = 0◦ ∆Ω = 10◦, duration =
19.394 d)

happens when the flight time is close to the minimum time.

5.1.3 Case 3 - Manoeuvre with ∆a = 1400 km and ∆Ω =
10◦

5.1.3.1 Minimum time solution

In this case study, the altitude of the target orbit is significantly higher than that
of the chaser orbit. This leads the indirect solution to reach a higher maximum
altitude and a much larger ∆i. While in the previous case the reduction of ∆a

caused the peaks of altitude and ∆i to occur closer in time, in this case, the
temporal gap increases: the maximum ∆i is reached at t∆imax = 20.93 d, and
the maximum altitude is reached at thmax = 23.95 d. The average between thmax

and t∆imax is close to the duration of the first thrust arc of the approximate
methods, with only a 3.5% difference. Regarding the β angle, the trend is
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Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.3519 0.3279 0.3275

∆V [km/s] 0.2041 0.1478 0.1913 0.1365 0.1912 0.1363
∆t [days] 3.588 2.521 3.322 2.370 3.306 2.342

∆V∆a [km/s] 0.1887 -0.1327 0.1885 -0.1325
∆a [km] 367.32 -267.32 337.25 -237.25 336.90 -236.90

∆V∆i [km/s] 0.01804 -0.01804 0.01802 -0.01802
∆i [deg] 0.0903 -0.0903 0.0861 -0.0861 0.0860 -0.0860

∆Ωtot [deg] 14.611 14.614
∆ΩJ2 [deg] -14.287 -14.291
∆V∆Ω [km/s] 0.0263 0.0263 0.0262 0.0262
∆Ω [deg] 0.1620 0.1620 0.1615 0.1615

Table 5.5: Results of the three methods for ∆a = 100 km, ∆i = 0◦, ∆Ω = 10◦

and ∆t = 19.394 d.

as expected, and when ∆i is close to its maximum, θ0 remains close to 90◦,
indicating a thrust contribution to the change in Ω.

The increase in ∆a has made the differences between the indirect method
and the arc-impulse methods more pronounced, as shown in figures (5.17),
(5.18), and (5.19). The approximate solution has a shorter manoeuvre time
(about 10% shorter), which is due to the longer timespan between t∆imax and
thmax . Additionally, the ∆V differs by about 13% from the indirect solution.

5.1.3.2 Minimum propellant solution

As in the previous cases, the minimum propellant solution considers a flight
time of ∆t = 1.5 · tminind

. There are no significant differences compared to the
previous cases; the trends of h and ∆i are as expected for this type of transfer

3Average between thmax and t∆imax

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 2.1337 1.8345 1.8503
∆t [days] 35.476 31.850 30.946

∆V [km/s] 1.3331 0.8004 1.2475 0.5869 1.2550 0.5953
∆t [days] 22.438 3 13.037 21.658 10.190 21.244 9.702

∆V∆a [km/s] 1.2283 -0.5449 1.2347 -0.5513
∆a [km] 2754.06 -1354.07 2516.24 -1116.26 2529.35 1129.37

∆V∆i [km/s] 0.0996 -0.0996 0.1003 -0.1003
∆i [deg] 0.4497 -0.4497 0.4976 -0.4976 0.5011 -0.5011

∆Ωtot [deg] 75.315 73.705
∆ΩJ2 [deg] -72.820 -71.120
∆V∆Ω [km/s] 0.1940 0.1941 0.2011 0.2012
∆Ω [deg] 1.2471 1.2478 1.2928 1.2934

Table 5.6: Results of the three methods for ∆a = 1400 km, ∆i = 0◦, ∆Ω = 10◦
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Figure 5.17: Trend of h over
time (Minimum-time solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = 10◦)

Figure 5.18: Trend of ∆i over
time (Minimum-time solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = 10◦)

Figure 5.19: Trend of ∆Ω over
time (Minimum-time solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = 10◦)

manoeuvre (figures (5.21) and (5.22)). The main differences lie in the maximum
altitude reached and the respective durations of the thrust arcs, which are more
pronounced between the indirect method and the arc-impulse methods. The
approximate solutions reach a maximum altitude 16% lower and a maximum
∆i 10% higher than the indirect solution. This leads the second thrust arc
being half the duration of that in the indirect solution and results in a ∆V

that is 20% lower.

5.1.4 Manoeuvre with different ∆a

In the previous cases, we examined different transfer manoeuvres between orbits
with the same orbital inclination but different altitudes. It is evident that as
the ∆a between the target and chaser orbits increases, the error introduced by
using the approximate method becomes more pronounced.

This can be observed in figures (5.24) and (5.25), where the results in terms
of ∆V and ∆t for minimum-time transfer manoeuvres are presented. In the
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Figure 5.20: Trend of θ0 and β angle over time in the indirect solution
(Minimum-time solution, ∆a = 1400 km ∆i = 0◦ ∆Ω = 10◦)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arco a Arco b Arco a Arco b Arco a Arco b

∆V [km/s] 1.1916 0.9716 0.9661

∆V [km/s] 0.9397 0.2518 0.8213 0.1502 0.8185 0.1475
∆t [days] 16.230 4.257 14.260 2.608 13.977 2.470

∆V∆a [km/s] 0.8187 -0.1353 0.8160 -0.1325
∆a [km] 2002.57 -602.57 1677.27 -277.27 1671.60 -271.6

∆V∆i [km/s] 0.0535 -0.0535 0.0532 -0.0532
∆i [deg] 0.2455 -0.2455 0.2677 -0.2677 0.2661 -0.2661

∆Ωtot [deg] 136.726 136.896
∆ΩJ2 [deg] -136.250 -136.423
∆V∆Ω [km/s] 0.0371 0.0371 0.0367 0.0367
∆Ω [deg] 0.2387 0.2387 0.2362 0.2362

Table 5.7: Results of the three methods for ∆a = 1400 km, ∆i = 0◦, ∆Ω = 10◦

and ∆t = 53.215 d.

indirect method, as the target orbit altitude increases, the cost of the manoeuvre
and the minimum flight-time tend to grow in a non-linear fashion. Meanwhile,
the two approximate solutions tend to grow in a more linear manner, causing
the solutions to drift apart. For transfer manoeuvres with ∆a < 600-700 km
(∆a/a ≃ 0.1), the difference between the indirect and approximate solutions
is less than 5%, and for manoeuvres with ∆a < 1200 km (∆a/a ≃ 0.2), the
difference is less than 10%. However, for larger ∆a, the difference grows rapidly.

This behaviour is not unexpected. As discussed in the previous chapter, one
of the assumptions considered in deriving the ∆V equation in the approximate
method is that ∆a should be small. As ∆a increases, this assumption no longer
holds true.
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Figure 5.21: Trend of h over time
(Minimum-propellant solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = 10◦, duration
= 53.215 d)

Figure 5.22: Trend of ∆i over time
(Minimum-propellant solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = 10◦, duration
= 53.215 d)

Figure 5.23: Trend of ∆Ω over time
(Minimum-propellant solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = 10◦, duration
= 53.215 d)

5.2 Change of altitude with ∆Ω < 0

5.2.1 Case 1 - ∆a = 700 km and ∆Ω = −20◦

5.2.1.1 Minimum time solution

In this case study, the strategy followed by the indirect method is the opposite
of that used in the corresponding case with ∆Ω > 0. As shown in Figure (5.27),
the altitude of the chaser orbit is initially decreased, reaching a minimum
altitude of hmin = 150 km at thmin

= 3.56 d, after which the altitude is
increased to achieve the desired target orbit. A similar trend is observed for
∆i in Figure (5.28), where the inclination of the chaser orbit initially decreases,
reaching a minimum of ∆imin = −0.1816◦ at t∆imin

= 4.91 d, before increasing
to match the target orbit’s inclination.

This strategy aims to maximize the effect of differential precession between
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Figure 5.24: Trend of ∆V over ∆a
for minimum time solution (∆i = 0◦

∆Ω = 10◦)

Figure 5.25: Trend of ∆t over ∆a
for minimum time solution (∆i = 0◦

∆Ω = 10◦)

Figure 5.26: Relative error between
approximate solutions and indirect so-
lution (∆i = 0◦ ∆Ω = 10◦)

the two orbits, in order to optimize ∆Ω change. Since the target orbit’s
ascending node is behind that of the chaser orbit, and since the chaser orbit’s
ascending node regresses faster, the two orbits naturally tend to close the ∆Ω
gap. Decreasing both the altitude and orbital inclination enhances this effect.

It is worth noting that, in this case, the minimum altitude is reached before
the minimum ∆i, which is the opposite behaviour observed in cases with
∆Ω > 0, where the peak of ∆i occurred before the maximum altitude. This
suggests that the observed behaviour is due to the fact that the lower the
orbit, the more effective the inclination change due to J2 perturbation, thus
optimizing the change in ∆Ω.

This phenomenon is evident in the trends of β and θ0 over time, as shown
in Figure (5.30). At t0, the thrust is used to reduce both the altitude and
the orbital inclination, and at thmin

, β reaches 90◦. Subsequently, the thrust
is directed to increase the altitude while the orbital inclination continues to
decrease. At t∆imin

, ∆i starts to increase. Around this point, θ0 is close to
−90◦, indicating that the out-of-plane thrust effort is used to change Ω. This
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Figure 5.27: Trend of h over time
(Minimum-time solution, ∆a = 700 km
∆i = 0◦ ∆Ω = −20◦)

Figure 5.28: Trend of ∆i over time
(Minimum-time solution, ∆a = 700 km
∆i = 0◦ ∆Ω = −20◦)

Figure 5.29: Trend of ∆Ω over time
(Minimum-time solution, ∆a = 700 km
∆i = 0◦ ∆Ω = −20◦)

is also evident in Figure (5.29), marked by the point of maximum slope. It
is important to mention that the minimum altitude reached is below 200 km,
a value conventionally considered the boundary of the atmosphere. This
could render the obtained solution impractical, as the perturbative effects
of atmospheric drag are not accounted for in this analysis. To make up for
this limitation, a constraint on the minimum reachable altitude should be
implemented in the indirect method algorithm.

Regarding the two approximate solutions, the strategy followed is the same,
and the trends of altitude and ∆i over time follow those of the indirect solution.
The main difference is that the minimum altitude and the minimum ∆i reached
are lower, but the effect of the ∆Ω reduction is similar to that of the indirect
solution. The duration of the first arc ta is close to the average between
thmin

and t∆imin
, as noted in the previous cases. In terms of ∆V and ∆t, the

approximate solutions are closer to the indirect solution, much more so than
the corresponding cases with ∆Ω > 0, with only a 1% difference in ∆V and a
2% difference in ∆t.
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Figure 5.30: Trend of θ0 and β angle over time in the indirect solution
(Minimum-time solution, ∆a = 700 km ∆i = 0◦ ∆Ω = −20◦)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.7869 0.7945 0.8008
∆t [days] 13.445 13.793 13.679

∆V [km/s] 0.2452 0.5417 0.2345 0.5600 0.2379 0.5630
∆t [days] 4.235 4 9.210 4.071 9.722 4.109 9.570

∆V∆a [km/s] -0.1686 0.5358 -0.1710 0.5381
∆a [km] -250.09 950.09 -321.40 1021.40 -325.92 1025.92

∆V∆i [km/s]
∆i [deg] -0.1816 +0.1816 -0.1929 0.1929 -0.1942 0.1942

∆Ωtot [deg] -6.823 -6.879
∆ΩJ2 [deg] 4.838 4.864
∆V∆Ω [km/s] -0.1581 -0.1581 -0.1605 -0.1605
∆Ω [deg] -0.9924 -0.9924 -1.0074 -1.0074

Table 5.8: Results of the three methods for ∆a = 700 km, ∆i = 0◦ and
∆Ω = −20◦

5.2.1.2 Minimum propellant solution

For this case study of the minimum propellant solution, a ∆t = 1.2 · tminind
is

considered. The expected strategy is the opposite of the strategies observed in
the previous cases: a first thrust arc that decreases the altitude and the orbital
inclination, followed by a coasting phase during which the thrust is turned off,
and both the altitude and inclination remain constant. Finally, a second thrust
arc increases the altitude and orbital inclination to the desired values.

As can be seen in Figure (5.31), the trend of altitude over time matches
the expected behaviour, but the trend of ∆i exhibits an unexpected behaviour
(Figure (5.6)). The maximum ∆i is reached during the second thrust arc, after
which the orbital inclination increases to reach the desired value. This can be
explained by examining the trend of β, shown in Figure (5.34). During the
first thrust arc, the thrust vector is oriented to reduce the altitude, with a

4Average between thmin
and t∆imin
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Figure 5.31: Trend of h over time
(Minimum-propellant solution, ∆a =
700 km ∆i = 0◦ ∆Ω = −20◦, duration
= 16.133 d)

Figure 5.32: Trend of ∆i over time
(Minimum-propellant solution, ∆a =
700 km ∆i = 0◦ ∆Ω = −20◦, duration
= 16.133 d)

Figure 5.33: Trend of ∆Ω over time
(Minimum-propellant solution, ∆a =
700 km ∆i = 0◦ ∆Ω = −20◦, duration
= 16.133 d)

small out-of-plane component that decreases the orbital inclination. During the
second arc, the thrust vector is oriented to increase the altitude, also with a
small out-of-plane component that continues to decrease the orbital inclination.
When ∆imin is reached, the inclination starts to increase. At this point, θ0

is close to −90◦, so the out-of-plane thrust component is used to reduce ∆Ω.
When the in-plane thrust component is large, it is optimal to introduce a small
out-of-plane thrust component (as observed in impulsive combined inclination
and semi-major axis change manoeuvres), as in this case.

The approximate solutions do not exhibit this particular behaviour and
show the expected pattern: a decrease during the first thrust arc, a coasting
phase, and an increase during the second arc. The trend of ∆i over time shows
the most significant differences from the indirect solution. The first thrust
arc decreases the orbital inclination much more than in the indirect solution.
However, the altitude trend over time closely matches that of the indirect
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Figure 5.34: Trend of θ0 and β angle over time in the indirect solution
(Minimum-propellant solution, ∆a = 700 km ∆i = 0◦ ∆Ω = −20◦, duration =
16.133 d)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.4054 0.4292 0.4275

∆V [km/s] 0.0160 0.3893 0.0523 0.3769 0.0517 0.3758
∆t [days] 0.323 6.776 0.908 6.544 0.897 6.461

∆V∆a [km/s] -0.0062 0.3733 -0.0051 0.3723
∆a [km] -26.273 726.273 -11.7663 711.7663 -9.721 709.716

∆V∆i [km/s] -0.0213 0.0213 -0.0212 0.0212
∆i [deg] -0.0195 -0.0316 5 -0.1040 0.1040 -0.1034 0.1034

∆Ωtot [deg] -1.025 -0.967
∆ΩJ2 [deg] 0.431 0.377
∆V∆Ω [km/s] -0.0473 -0.0473 -0.0469 -0.0469
∆Ω [deg] -0.2972 -0.2972 -0.2945 -0.2945

Table 5.9: Results of the three methods for ∆a = 700 km, ∆i = 0◦ e
∆Ω = −20◦ and ∆t = 16.133 d.

solution. Another difference is that the first thrust arc is longer due to the
larger ∆V of the first impulse (as a result of the greater ∆i). The duration of
the second thrust arc is similar to that of the indirect solution.

It is interesting to note that the solution is close to a ’waiting’ type strategy,
where the first thrust arc is eliminated, leaving only an initial coasting phase
followed by a thrust arc that leads to the desired orbit.

5.2.2 Case 2 - ∆a = 100 km and ∆Ω = −20◦

5.2.2.1 Minimum time solution

Looking at the trend of altitude over time (Figure (5.35)), it can be seen
that this transfer manoeuvre is not feasible, as the minimum altitude reached
is negative. As discussed earlier, a constraint on the minimum reachable

5Value of ∆imin
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Figure 5.35: Trend of h over time
(Minimum-time solution, ∆a = 100 km
∆i = 0◦ ∆Ω = −20◦)

Figure 5.36: Trend of ∆i over time
(Minimum-time solution, ∆a = 100 km
∆i = 0◦ ∆Ω = −20◦)

Figure 5.37: Trend of ∆Ω over time
(Minimum-time solution, ∆a = 100 km
∆i = 0◦ ∆Ω = −20◦)

altitude must be implemented, so this solution should only be considered a
"mathematical" solution to discuss the differences between the indirect method
and the arc-impulse methods. The strategy followed by the indirect solution
consists of a decrease in altitude well below the target orbit, reaching the
minimum altitude at thmin = 7.07 d, followed by an increase to reach the target
altitude. The minimum altitude reached is much lower than in the previous
case; this is necessary to exploit the J2 effect, as the target and chaser orbits
are closer. The same behaviour applies to ∆i, which reaches its minimum at
t∆imin = 7.30 d. It is worth noting that the temporal distance between the two
minima is shorter compared to Case 1, reflecting the same trend observed in
cases with ∆Ω > 0.

This is also evident in Figure (5.38), where the point at which θ0 crosses
−90◦ is very close to the point where β crosses 90◦. When ∆i is at its minimum,
θ0 is close to −90◦, meaning that the out-of-plane thrust effort is used to change
Ω. The arc-impulse solution follows the same strategy as the indirect solution,
but the minimum altitude reached is lower, and the magnitude of ∆i is larger.
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Figure 5.38: Trend of θ0 and β angle over time in the indirect solution
(Minimum-time solution, ∆a = 100 km ∆i = 0◦ ∆Ω = −20◦)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.8831 0.9296 0.9383
∆t [days] 15.058 16.138 15.982

∆V [km/s] 0.4155 0.4676 0.4384 0.4912 0.4428 0.4955
∆t [days] 7.190 6 7.868 7.612 8.527 7.619 8.364

∆V∆a [km/s] 0.4384 0.4912 -0.4137 0.4696
∆a [km] -588.926 688.926 -732.8463 832.8463 -739.388 839.388

∆V∆i [km/s] -0.0492 0.0492 -0.0496 0.0496
∆i [deg] -0.2077 0.2077 -0.2348 0.2348 -0.2368 0.2368

∆Ωtot [deg] -16.992 -17.0114
∆ΩJ2 [deg] 15.1829 15.1689
∆V∆Ω [km/s] -0.1473 -0.1473 -0.1500 -0.1500
∆Ω [deg] -0.9047 -0.9047 -0.9213 -0.9213

Table 5.10: Results of the three methods for ∆a = 100 km, ∆i = 0◦ and
∆Ω = −20◦

The second thrust arc is the one that deviates the most, as the first arc is
longer. The ∆V shows a 5% difference from the indirect solution, while the ∆t

shows a 7% difference. The difference in ∆V and ∆t between the methods is
much larger than the corresponding cases with ∆Ω > 0.

5.2.2.2 Minimum propellant solution

For the minimum propellant solution a flight-time of ∆t = 1.2 · tminind
is

considered. The strategy followed by the indirect methods is the expected one
(figures (5.39) and (5.40)): a three-phase manoeuvre, with a first thrust arc that
decreases the chaser’s altitude and orbital inclination, followed by a coasting
phase in which the thrust is turned off, and a second thrust arc that increases
the altitude and orbital inclination to reach the target orbit. The minimum
altitude reached is higher, and the magnitude of ∆i is smaller compared to the

6Average between thmin and t∆imin
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Figure 5.39: Trend of h over time
(Minimum-propellant solution, ∆a =
100 km ∆i = 0◦ ∆Ω = −20◦, duration
= 18.07 d)

Figure 5.40: Trend of ∆i over time
(Minimum-propellant solution, ∆a =
100 km ∆i = 0◦ ∆Ω = −20◦, duration
= 18.07 d)

Figure 5.41: Trend of ∆Ω over time
(Minimum-propellant solution, ∆a =
100 km ∆i = 0◦ ∆Ω = −20◦, duration
= 18.07 d)

minimum-time solution, as the J2 effect can be exploited for a longer time.
The two arc-impulse solutions closely follow the trend of the indirect solution,

but they reach a lower altitude and ∆i, as observed in previous cases. The ∆V

shows a 15% difference compared to the indirect solution.

5.2.3 Case 3 - ∆a = 1400 km and ∆Ω = −20◦

5.2.3.1 Minimum time solution

In this case study, the target orbit is significantly higher than the chaser orbit,
resulting in a greater differential precession between the two orbits. As shown
in Figure (5.44), at the beginning of the manoeuvre, ∆Ω rapidly decreases.
The first difference in the strategy followed by the indirect method, compared
to the previous cases, is that the altitude is nearly monotonically increasing
(Figure (5.42)). The trend of ∆i over time is as expected (Figure (5.43)), with
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Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.5148 0.5901 0.5856

∆V [km/s] 0.2294 0.2854 0.2678 0.3222 0.2656 0.3200
∆t [days] 3.975 4.969 4.650 5.594 4.586 5.461

∆V∆a [km/s] -0.2590 0.3149 -0.2569 0.3129
∆a [km] -379.59 479.59 -462.90 562.90 -459.22 559.22

∆V∆i [km/s] -0.0322 0.0322 -0.0320 0.0320
∆i [deg] -0.1333 0.1333 -0.1539 0.1539 -0.1527 0.1527

∆Ωtot [deg] -16.132 -16.115
∆ΩJ2 [deg] 15.3934 15.387
∆V∆Ω [km/s] -0.0601 -0.0601 -0.0593 -0.0593
∆Ω [deg] -0.3695 -0.3695 -0.3641 -0.3641

Table 5.11: Results of the three methods for ∆a = 100 km, ∆i = 0◦,
∆Ω = −20◦ and ∆t = 18.07 d.

the maximum |∆i| reached being lower than in the previous cases.
The trend of the β angle (Figure (5.49)) shows a strong out-of-plane com-

ponent of the thrust vector, at the beginning of the transfer manoeuvre, which
slightly reduces the altitude while rapidly decreasing the orbital inclination.
The out-of-plane component is then reduced, and when the inclination i is near
its minimum, the out-of-plane component is used to change Ω (with θ0 close to
−90◦). After this phase, the orbital inclination starts to increase, with a small
out-of-plane component of the thrust vector. As previously discussed, this is
optimal when the in-plane component of the thrust vector is large.

The strategy followed by the arc-impulse solution is slightly different in
terms of the altitude trend. The first thrust arc slightly increases the orbital
altitude instead of reducing it, while the second arc reaches the target orbit
altitude. The ∆i trend closely follows that of the indirect solution during the
first arc but reaches a lower ∆i.

In terms of ∆V and ∆t, the two approximate solutions are much closer to
the indirect solution compared to the corresponding maneuver with ∆Ω > 0,
showing only a 2% difference in ∆V and a 3.5% difference in ∆t.

5.2.3.2 Minimum propellant solution

If the transfer flight time is increased slightly from the ∆t of the minimum-time
solution (1.05 times larger), the optimal strategy for a minimum propellant
solution is a ’waiting’ type strategy, as shown in Figures (5.46) and (5.47). The
first thrust arc is no longer present; the manoeuvre starts with a waiting phase
on the chaser orbit, and after a period of time, the second thrust arc increases
the altitude to reach the target orbit.

7Average between thmin
and t∆imin
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Figure 5.42: Trend of h over
time (Minimum-time solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = −20◦)

Figure 5.43: Trend of ∆i over
time (Minimum-time solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = −20◦)

Figure 5.44: Trend of ∆Ω over
time (Minimum-time solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = −20◦)

While the trend of altitude over time is monotonically increasing, ∆i shows a
decreasing-increasing trend, with the inclination of the chaser’s orbit decreasing
by a very small amount. Indeed, the in-plane components of the thrust vector
is dominant over the out-of-plane component, as shown in Figure (5.49). The
∆Ω gap is closed solely through the J2 effect, without involving the out-of-plane
thrust.

The strategy followed by the arc-impulse solutions is a three-phase manoeu-
vre. The ∆a is distributed between the two thrust arcs, and the ∆i trend shows
behavior similar to Case 1, with a change in orbital inclination larger than that
of the indirect solution. Although the strategies differ, the solutions are very
similar in terms of ∆V .

8Value of ∆imin
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Figure 5.45: Trend of θ0 and β angle over time in the indirect solution
(Minimum-time solution, ∆a = 1400 km ∆i = 0◦ ∆Ω = −20◦)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.8160 0.8304 0.8325
∆t [days] 13.932 14.417 14.282

∆V [km/s] 0.1974 0.6185 0.1520 0.6784 0.1528 0.6797
∆t [days] 2.438 7 11.494 2.639 11.778 2.653 11.630

∆V∆a [km/s] 0.0219 0.6615 0.0207 0.6627
∆a [km] -16.89 1416.889 44.863 1355.12 42.40 1357.57

∆V∆i [km/s] -0.0359 0.0359 -0.0360 0.0360
∆i [deg] -0.1607 0.1607 -0.1794 0.1794 -0.1799 0.1799

∆Ωtot [deg] -1.3745 -1.4214
∆ΩJ2 [deg] -0.5034 -0.4687
∆V∆Ω [km/s] -0.1461 -0.1460 -0.1470 -0.1470
∆Ω [deg] -0.9393 -0.9386 -0.9450 -0.9450

Table 5.12: Results of the three methods for ∆a = 1400 km, ∆i = 0◦ and
∆Ω = −20◦

5.3 Pure change of Ω
We observed in the previous case studies that in transfer manoeuvres with
∆Ω > 0, the maximum ∆i is reached before the maximum altitude. When ∆a

is increased, the time gap between the two maxima tends to increase, while the
opposite occurs when ∆a is decreased.

For transfer manoeuvres with ∆Ω < 0, the minimum altitude is reached
before the minimum orbital inclination, and decreasing ∆a reduces the time
gap between the two minima. This behaviour is due to the fact that changes in
i are less effective for the J2 effect at higher altitudes. This result is obtained
by appropriately adjusting the β angle of the thrust vector. We also noted that
when ∆i is close to its maximum (or minimum), the out-of-plane thrust effort
is used to change Ω. The arc-impulse methods do not exhibit this behaviour,
as the maxima (or minima) of altitude and ∆i are reached simultaneously due
to their impulsive nature. However, the duration of the thrust arc ta is close to
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Figure 5.46: Trend of h over time
(Minimum-propellant solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = −20◦, duration
= 14.567 d)

Figure 5.47: Trend of ∆i over time
(Minimum-propellant solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = −20◦, duration
= 14.567 d)

Figure 5.48: Trend of ∆Ω over time
(Minimum-propellant solution, ∆a =
1400 km ∆i = 0◦ ∆Ω = −20◦, duration
= 14.567 d)

the average of thmax and t∆imax (or between thmin and t∆imin).
Figures (5.50), (5.51), and (5.52) show the trends of altitude, ∆i, and ∆Ω

for a minimum-time transfer manoeuvre involving a pure change of Ω (∆a = 0
and ∆i = 0). The strategy followed by the indirect method is similar to the
other cases with ∆Ω > 0, featuring an increase-decrease trend. However, in
this case, the solution is symmetrical, and the maxima of altitude and ∆i are
reached simultaneously at t = 5.85 d.

The arc-impulse solution closely follows the same trend, with the duration
of the first arc ta = 5.83 d being close to that of the indirect solution. The
two thrust arcs have the same duration, making the approximate solution
symmetrical as well. The main difference lies in the fact that the achieved hmax

and ∆imax are higher. The ∆V is close to that of the indirect solution, with a
1.5% difference. The same applies to ∆t, with a difference of less than 1%.

This suggests that this behaviour is related to the simultaneous optimization
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Figure 5.49: Trend of θ0 and β angle over time in the indirect solution
(Minimum-propellant solution, ∆a = 1400 km ∆i = 0◦ ∆Ω = −20◦, duration
= 14.567 d)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.6873 0.6834 0.6834

∆V [km/s] 0 0.6873 0.0877 0.5956 0.0982 0.5852
∆t [days] 0 11.727 1.524 10.341 1.702 9.999

∆V∆a [km/s] 0.1297 0.5537 0.1393 0.5441
∆a [km] 0 1400 265.72 1134.28 285.38 1114.62

∆V∆i [km/s] -0.0238 0.0238 -0.0227 0.0227
∆i [deg] 0 -0.0048 8 -0.1190 0.1190 -0.1136 0.1136

∆Ωtot [deg] 2.9465 3.3570
∆ΩJ2 [deg] -4.0467 -4.3975
∆V∆Ω [km/s] -0.0856 -0.0856 -0.0809 -0.0809
∆Ω [deg] -0.5501 -0.5501 -0.5203 -0.5203

Table 5.13: Results of the three methods for ∆a = 1400 km, ∆i = 0◦ e
∆Ω = −20◦ and ∆t = 14.567 d.

of two objectives: achieving ∆a and reducing ∆Ω. It is worth noting that
without the time gap between the two peaks, the arc-impulse solutions are
much closer to the indirect solution in terms of ∆V and ∆t.

Figure (5.53) and (5.55) shows the ∆V and ∆t for minimum-time pure
Ω-change transfer manoeuvres with different ∆Ω values. The arc-impulse
solutions are close to the indirect solutions for small ∆Ω and tend to diverge
as ∆Ω increases. For −10 < ∆Ω < 30, the difference between the indirect and
approximate solutions is less than 5%, while for −40 < ∆Ω < 60, the difference
is less than 10%.

For comparison, Figures (5.54) and (5.56) show the ∆V and ∆t for minimum-
time transfer manoeuvres with ∆a = 700 km and varying ∆Ω. In these cases,
the solutions with ∆Ω < 0 tend to be much closer: for −30 < ∆Ω < 15, the
difference between the indirect and arc-impulse solutions is less than 5%, while
for −70 < ∆Ω < 20, the difference is less than 10%.
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Figure 5.50: Trend of h over time
(Minimum-time solution, ∆a = 0 km
∆i = 0◦ ∆Ω = 10◦)

Figure 5.51: Trend of ∆i over time
(Minimum-time solution, ∆a = 0 km
∆i = 0◦ ∆Ω = 10◦)

Figure 5.52: Trend of ∆Ω over time
(Minimum-time solution, ∆a = 0 km
∆i = 0◦ ∆Ω = 10◦)

For pure Ω-change manoeuvres with positive ∆Ω, the approximate solutions
are more accurate because both solutions reach the maxima of altitude and
∆i simultaneously. When ∆a ̸= 0, the solutions with negative ∆Ω tend to
be more accurate. This may be due to the fact that, as previously discussed,
the methods do not include a constraint on the minimum reachable altitude.
Therefore, in cases with ∆a = 0, the minimum altitude can become too low or
even negative in some cases.

5.4 Combined change of altitude inclination

5.4.1 Combined change of altitude orbital inclination
with Ω > 0

In this cases, in addition to reaching the required altitude, it is necessary to
change the inclination of the chaser’s orbit. For comparison, a ∆i = 1◦ and
a ∆i = −1◦ are considered. Looking at Figures (5.57) and ((5.58), the trends
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Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.6835 0.6716 0.6758
∆t [days] 11.703 11.661 11.573

∆V [km/s] 0.3417 0.3417 0.3358 0.3358 0.3379 0.3379
∆t [days] 5.851 5.851 5.830 5.831 5.827 5.747

∆V∆a [km/s] 0.3042 -0.3042 0.3057 -0.3057
∆a [km] 482.58 482.58 537.79 -537.79 540.47 -540.47

∆V∆i [km/s] 0.0342 -0.0342 0.0343 -0.0343
∆i [deg] 0.1329 0.1329 0.1625 -0.1625 0.1633 -0.1633

∆Ωtot [deg] 10 10
∆ΩJ2 [deg] -8.31 -8.29
∆V∆Ω [km/s] 0.1380 0.1380 0.1398 0.1398
∆Ω [deg] 0.8449 0.8449 0.8555 0.8555

Table 5.14: Results of the three methods for ∆a = 0 km, ∆i = 0◦ and
∆Ω = 10◦

Figure 5.53: Trend of ∆V over ∆Ω
for minimum time manoeuvre with
∆a = 0

Figure 5.54: Trend of ∆V over ∆Ω
for minimum time manoeuvre with
∆a = 700 km

of altitude over time is similar to the corresponding case with ∆i = 0: the
chaser’s altitude is increased beyond the target altitude, and then decreased to
reach the desired altitude.

The trends of ∆i (Figures (5.59) and ((5.60)) show different behaviours. In
the case with ∆i = 1◦, the trend is almost monotonically increasing. In the
final part of the manoeuvre, ∆i slightly exceeds 1◦ and then decreases to reach
the target orbital inclination.

Looking at Figure (5.61), we can see that in the first part of the manoeuvre,
the in-plane thrust component is dominant (to increase the altitude), while
the inclination increases due to a small out-of-plane thrust component. As
the altitude increases, β starts to rise, as it becomes optimal to change the
orbital inclination. When ∆i is near its maximum, θ0 approaches 90◦, and the
out-of-plane thrust component is primarily used to change Ω. This behaviour
is due to the fact that the reduction of ∆i to reach the target orbit inclination
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Figure 5.55: Trend of ∆t over ∆Ω for
minimum time manoeuvre with ∆a = 0

Figure 5.56: Trend of ∆t over ∆Ω for
minimum time manoeuvre with ∆a =
700 km

is in contrast with the increase in ∆i needed to optimize the reduction of ∆Ω.
In the case with ∆i = −1◦, the behaviour is also different. In the first half

of the manoeuvre, the chaser’s orbital inclination is slightly increased, and
the out-of-plane thrust effort is used to change Ω (Figure (5.62)). When the
altitude approaches its maximum, the inclination decreases rapidly to reach
the desired value.

In the arc-impulse solutions, ∆i does not exhibit the same behaviour: the
total ∆i is distributed between the two thrust arcs. However, similar trends
are followed: in the case with ∆i = 1◦, the first arc achieves the largest portion
of ∆i, while in the case with ∆i = −1◦, it is the second arc that achieves the
largest portion.

It is worth noting that the duration of the first arc is close to thmax in both
cases. The differences in ∆V and ∆t are similar to the corresponding cases
with ∆i = 0.

9time at hmax

Figure 5.57: Trend of h over time
for ∆i = 1 (Minimum-time solution,
∆a = 700 km ∆Ω = 10◦)

Figure 5.58: Trend of h over time
for ∆i = −1 (Minimum-time solution,
∆a = 700 km ∆Ω = 10◦)
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Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 1.3879 1.2859 1.2953
∆t [days] 23.426 22.324 21.905

∆V [km/s] 0.8861 0.5017 0.8277 0.4582 0.8322 0.4631
∆t [days] 15.1099 8.316 14.370 7.955 14.206 7.699

∆V∆a [km/s] 0.7918 -0.4246 0.7955 -0.4283
∆a [km] 1524.06 -824.06 1509.46 -809.46 1516.49 -816.49

∆V∆i [km/s] 0.1720 0.0330 0.1725 0.0325
∆i [deg] 0.8392 0.1608 0.8412 0.1588

∆Ωtot [deg] 38.4964 38.0571
∆ΩJ2 [deg] -36.3891 -35.8982
∆V∆Ω [km/s] 0.1691 0.1691 0.1732 0.1732
∆Ω [deg] 1.0537 1.0537 1.0795 1.0795

Table 5.15: Results of the three methods for ∆a = 700 km, ∆i = 1◦ and
∆Ω = 10◦

5.4.2 Combined change of altitude orbital inclination
with Ω < 0

The trends of altitude over time (Figures (5.63) and (5.64)) are as expected for
cases with ∆Ω < 0: the altitude is first decreased and then increased to reach
the target altitude.

The ∆i trend in the ∆i = 1◦ case (Figure (5.65)) shows a significant increase
in orbital inclination during the first half of the manoeuvre, due to the large
out-of-plane component of the thrust vector (Figure (5.67)); in the second
half, the orbital inclination continues to steadily increase with a small β angle.
In the ∆i = −1◦ case (Figures (5.66)), the trend is similar, with an initial
rapid decrease in orbital inclination due to the large β (Figure (5.68)), followed

10time at hmax

Figure 5.59: Trend of ∆i over time
for ∆i = 1 (Minimum-time solution,
∆a = 700 km ∆Ω = 10◦)

Figure 5.60: Trend of ∆i over time
for ∆i = −1 (Minimum-time solution,
∆a = 700 km ∆Ω = 10◦)
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Figure 5.61: Trend of β and θ0 over
time for ∆i = 1◦ (Minimum-time solu-
tion, ∆a = 700 km ∆Ω = 10◦)

Figure 5.62: Trend of β and θ0 over
time for ∆i = −1◦ (Minimum-time so-
lution, ∆a = 700 km ∆Ω = 10◦)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 1.2913 1.2110 1.2199
∆t [days] 21.838 21.023 20.663

∆V [km/s] 0.8251 0.4662 0.7656 0.4453 0.7699 0.4500
∆t [days] 14.08510 7.752 13.292 7.731 13.160 7.502

∆V∆a [km/s] 0.7464 -0.3792 0.7500 -0.3828
∆a [km] 1420.85 -720.85 1423.02 -723.02 1429.83 -729.83

∆V∆i [km/s] -0.0404 -0.1646 -0.0400 -0.1650
∆i [deg] -0.1971 -0.8029 -0.1952 -0.8048

∆Ωtot [deg] 33.9912 33.6473
∆ΩJ2 [deg] -31.8986 -31.5047
∆V∆Ω [km/s] 0.1655 0.1655 0.1695 0.1695
∆Ω [deg] 1.0463 1.0463 1.0713 1.0713

Table 5.16: Results of the three methods for ∆a = 700 km, ∆i = −1◦ and
∆Ω = 10◦

by a continued decrease in the second half with a small out-of-plane thrust
component. The arc-impulse solutions follow the trends of both altitude and
∆i. In both cases, the total ∆i is distributed between the two thrust arcs. It is
worth mentioning that the end of the first arc (and the beginning of the second
arc) is close to the point where the graph changes concavity.

5.4.3 Manoeuvre with different ∆i

In the previous case studies, we considered ∆i = ±1◦. We observed that the
differences between the indirect solution and the arc-impulse solution in terms
of ∆V and ∆t are of the same order of magnitude as the corresponding cases
with ∆i = 0.

Figures (5.69) and (5.70) show the ∆V and ∆t for minimum-time transfer
11time at hmin
12time at hmin
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Figure 5.63: Trend of h over time
for ∆i = 1 (Minimum-time solution,
∆a = 700 km ∆Ω = −20◦)

Figure 5.64: Trend of h over time
for ∆i = −1 (Minimum-time solution,
∆a = 700 km ∆Ω = −20◦)

Figure 5.65: Trend of ∆i over time
for ∆i = 1 (Minimum-time solution,
∆a = 700 km ∆Ω = −20◦)

Figure 5.66: Trend of ∆i over time
for ∆i = −1 (Minimum-time solution,
∆a = 700 km ∆Ω = −20◦)

manoeuvres with different values of ∆i. As ∆i increases, the ∆V and ∆t of
the indirect solution tend to grow in a non-linear fashion, whereas the two
arc-impulse solutions exhibit a more linear growth. Consequently, for larger ∆i

values, the two methods tend to diverge.
For −15◦ < ∆i < 15◦, the difference between the two methods is less than

5%. This behaviour is not unexpected, since, as discussed in the previous
chapter, one of the assumptions made when deriving the ∆V equation in the
approximate method is that the quantity

ñ
∆i2 + (sin i∆Ω)2 must be small. As

∆i increases, this assumption no longer holds true.
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Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.7921 0.7970 0.8032
∆t [days] 13.531 13.837 13.719

∆V [km/s] 0.1996 0.5925 0.2304 0.5666 0.2336 0.5696
∆t [days] 3.450 11 10.080 4.000 9.837 4.037 9.683

∆V∆a [km/s] -0.1594 0.5266 -0.1619 0.5290
∆a [km] -237.72 937.72 -303.94 1003.94 -308.58 1008.58

∆V∆i [km/s] 0.0633 0.1417 0.0630 0.1420
∆i [deg] 0.2167 0.7833 0.3087 0.6913 0.3073 0.6927

∆Ωtot [deg] -6.1478 -6.2100
∆ΩJ2 [deg] 4.2302 4.2624
∆V∆Ω [km/s] -0.1538 -0.1538 -0.1562 -0.1562
∆Ω [deg] -0.9588 -0.9588 -0.9738 -0.9738

Table 5.17: Results of the three methods for ∆a = 700 km, ∆i = +1◦ and
∆Ω = −20◦

Figure 5.67: Trend of β and θ0 over
time for ∆i = 1◦ (Minimum-time solu-
tion, ∆a = 700 km ∆Ω = −20◦)

Figure 5.68: Trend of β and θ0 over
time for ∆i = −1◦ (Minimum-time so-
lution, ∆a = 700 km ∆Ω = −20◦)

Indirect Arc-Imp. Mod. Arc-Imp.
Method Method Method

Arc a Arc b Arc a Arc b Arc a Arc b

∆V [km/s] 0.8015 0.8128 0.8193
∆t [days] 13.690 14.112 13.989

∆V [km/s] 0.2178 0.5837 0.2608 0.5521 0.2640 0.5553
∆t [days] 3.765 12 9.925 4.527 9.585 4.559 9.430

∆V∆a [km/s] -0.1600 0.5272 -0.1627 0.5299
∆a [km] 238.87 938.87 -305.11 1005.11 -310.17 1010.17

∆V∆i [km/s] -0.1404 -0.0646 -0.1407 -0.0643
∆i [deg] -0.5131 -0.4869 -0.6849 -0.3151 -0.6864 -0.3136

∆Ωtot [deg] -6.9689 -7.0330
∆ΩJ2 [deg] 5.0655 5.0981
∆V∆Ω [km/s] -0.1505 -0.1505 -0.1530 -0.1530
∆Ω [deg] -0.9517 -0.9517 -0.9675 -0.9675

Table 5.18: Results of the three methods for ∆a = 700 km, ∆i = −1◦ and
∆Ω = −20◦
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Figure 5.69: Trend of ∆V over ∆i
(Minimum-time solution, ∆a = 700 km
∆Ω = 10◦)

Figure 5.70: Trend of ∆t over ∆i
(Minimum-time solution, ∆a = 700 km
∆Ω = 10◦)

Figure 5.71: Relative error between
approximate solutions and indirect so-
lution (Minimum-time solution, ∆a =
700 km ∆Ω = 10◦)
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Chapter 6

Conclusions

6.1 Conclusions

The increasing interest in LEO orbits for both commercial and scientific pur-
poses, along with the growing population of space objects in these orbits, has
drawn the attention of the scientific community to the problem of space debris.
Whether for future Active Debris Removal (ADR) missions or other types of
space operations, trajectory optimization plays a crucial role in mission design,
aiming to minimize either flight time or propellant consumption.

After defining how an optimal control problem is formulated, two opti-
mization methods have been considered: an indirect method, which relies on
numerical solutions, and an approximate method that includes assumptions
and relies on analytical solutions. The types of transfers analysed were single-
target, many-revolution, low-thrust transfers. The dynamic model considered
is the Edelbaum dynamic model whit the addition of the influence of the J2

perturbation.
The indirect approach consists in reformulating the optimal control problem

as a boundary value problem, solved using a shooting method; the system
of differential equations is then solved numerically. In the Approximate Arc-
Impulse method, the assumption of a small difference between the chaser and
target orbits is introduced. The transfer cost is then evaluated using average
quantities and the variations ∆a, ∆i, and ∆Ω. The transfer manoeuvre is
initially treated as impulsive, and the impulses are subsequently converted into
thrust arcs through an iterative process.

The optimal strategy obtained via indirect optimization shows that the
effect of J2 can be exploited to reduce the gap between RAAN by increasing
(or decreasing) orbital altitude and inclination relative to the target orbit. This
is achieved through the optimal control law governing the out-of-plane thrust
angle β. The approximate method tends to follow the same transfer strategies
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but exhibits some differences. In the minimum-time solutions, the maximum
(or minimum) values of altitude and inclination are reached simultaneously
due to the "impulsive" nature of the approximation. However, this does not
happen in the indirect solution, as it depends on the control law of β, which the
approximate methods do not provide. The maximum (or minimum) altitude
and inclination reached may also differ as a result of the optimization of the
analytical equations. Furthermore, the duration of the thrust arcs may vary, as
it is evaluated through ∆V .

The solutions provided by the indirect method are "exact", as they result
from integrating the differential equations. However, implementing this method
is more complex, and the use of a shooting method requires a good initial guess
for the adjoint variables. Additionally, a large number of iterations is typically
needed to converge to a solution. On the other hand, the Arc-Impulse method
relies on algebraic formulas and converges within very few iterations (10–15),
making its computational cost significantly lower than that of the indirect
method.

Although the transfer strategy may differ (or be less accurate compared
to the indirect approach), within its range of applicability—small changes in
orbital elements—the transfer cost and minimum flight time remain accurate,
with discrepancies below 5%. Therefore, the Arc-Impulse methods can be a
useful tool for quickly assessing minimum flight time and transfer costs. This
can be particularly advantageous when considering multi-target solutions for
future ADR missions.
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