
Politecnico di Torino
Master’s Degree in Aerospace Engineering

1

MSc Aerospace Engineering Thesis

Best Supply Chain, Manufacturing and Aircraft
Systems identification leveraging a Model-based

Product Line Engineering Approach
 An integrated Product Line Engineering and Model Based Sys-

tem Engineering approach

Supervisors:
Dr. Roberta Fusaro
Dr. Davide Ferretto

Dr. Giuseppa Donelli (DLR)

Candidate:
Gabriele Allegra

A.y.2024/2025

2

3

Abstract
Public perception of aviation is a key driver of demand for enhanced environmental sustaina-

bility, with the aim of mitigating the industry's effects on climate change. The Flightpath 2050

initiative reflects this perception by aiming for environmental neutrality, global leadership, and

societal responsiveness(Flightpath 2050, 2011). Achieving these objectives requires a shift in

the approach used to the design of aeronautical systems, particularly concerning the integration

of manufacturing and supply chain processes. The systems for system approach (S4S) aims to

interconnect these systems from the conceptual design phase, enhancing integration and effi-

ciency while minimizing costs and time losses. The objective of this thesis is to propose a

methodology that leverages concepts derived from Model-Based Systems Engineering

(MBSE) and Product Line Engineering (PLE) to generate all possible S4S architecture variants.

As a consequence, all the possible combinations, the architecture, obtained by changing varia-

bles related to the aircraft design (e.g. number of components), manufacturing (e.g. materials),

and supply chain are created.

In detail, the process starts with the identification of the stakeholder's needs, which are then

translated into systems requirements. It continues with the development of a system architec-

ture baseline. Variability is then introduced into the model by modifying materials, processes,

and enterprises, driving the generation of the 150% model. Multiple variants of baseline archi-

tecture are then generated and compared in terms of aircraft, manufacturing, and supply chain

performance (e.g. mass, production time). The best architecture is finally identified, based on

the production and design criteria, by leveraging the value model theory. The approach pro-

posed in this thesis enables a value-driven trade-off analysis that considers the performance of

the aircraft system and the manufacturing and supply chain systems simultaneously, seeking

the optimal solution for stakeholders and the overall performance of the three systems. An

aeronautical case study demonstrates the benefits of applying the proposed methodology.

4

La percezione del settore avionico da parte dell'opinione pubblica è un fattore chiave per com-

prendere i motivi di un maggiore richiesta di sostenibilità ambientale, con l'obiettivo di miti-

gare gli effetti della aviazione sul cambiamento climatico. L'iniziativa Flightpath 2050 riflette

questa percezione puntando alla neutralità ambientale, alla leadership globale e alla capacità di

risposta della società (Flightpath 2050, 2011). Il raggiungimento di questi obiettivi richiede un

cambiamento nell'approccio alla progettazione dei sistemi aeronautici, in particolare per quanto

riguarda l'integrazione dei processi di produzione e della catena di fornitura. L'approccio “sy-

stems for system” (S4S) mira a interconnettere questi sistemi fin dalla fase di progettazione

concettuale, migliorando l'integrazione e l'efficienza e minimizzando i costi e le perdite di

tempo. L'obiettivo di questa tesi è proporre una metodologia che sfrutti i concetti derivati dalla

Model-Based Systems Engineering (MBSE) e dalla Product Line Engineering (PLE) per ge-

nerare tutte le possibili varianti di architettura S4S. Di conseguenza, vengono create tutte le

possibili combinazioni dell'architettura ottenute cambiando le variabili relative alla progetta-

zione del velivolo (ad esempio, il numero di componenti), alla produzione (ad esempio, i ma-

teriali) e alla catena di fornitura.

In dettaglio, il processo inizia con l'identificazione delle esigenze delle parti interessate, che

vengono poi tradotte in requisiti di sistema. Prosegue con lo sviluppo di un'architettura di base

del sistema. La variabilità viene quindi introdotta nel modello modificando i materiali, i pro-

cessi e le imprese, portando alla generazione di un modello al 150%. Vengono quindi generate

più varianti dell'architettura di base e confrontate in termini di prestazioni del velivolo, della

produzione e della catena di fornitura (ad esempio, massa e tempi di produzione). L'architettura

migliore viene infine identificata, sulla base dei criteri di produzione e progettazione, sfrut-

tando la teoria dei modelli di valore. L'approccio proposto in questa tesi consente un'analisi di

trade-off orientata al valore che considera le prestazioni del sistema aeronautico e dei sistemi

di produzione e di supply chain simultaneamente, cercando la soluzione ottimale per gli stake-

holder e le prestazioni complessive dei tre sistemi. Un caso di studio aeronautico dimostra i

vantaggi dell'applicazione della metodologia proposta.

5

Contents

Abstract .. 3

List of Figures .. 8

List of Tables ... 12

1 Introduction .. 13

2 Literature review .. 16

2.1 MBSE approach ... 16

2.1.1 Document based approach vs MBSE ... 17

2.1.2 Motivation to use MBSE ... 19

2.1.3 State of the Art ... 21

2.1.4 System model charateristics ... 22

2.1.5 Future Trends ... 23

2.1.6 Missing capabilities ... 24

2.2 PLE approach ... 24

2.2.1 PLE origins and development .. 25

2.2.2 State of the Art ... 26

2.2.3 PLE and MBSE connection ... 26

3 Methodology Formulation ... 28

3.1 Glossary ... 29

3.2 S4S concurrent approach ... 31

3.3 Needs and Requirements Formulation ... 35

6

3.4 System Architecture ... 38

3.4.1 SysML Structure .. 39

3.4.2 S4S design methodology.. 42

3.5 System variability .. 49

3.6 Value-Driven analysis .. 54

4 Methodology Implementation .. 58

4.1 Tools supporting system specification and architecting .. 59

4.2 Tools supporting system variability ... 62

4.3 Tools supporting evaluation and decision making... 64

5 Methodology Application .. 67

5.1 Introduction to the application test case... 67

5.2 Requirement ... 70

5.3 Behavior and composition ... 75

5.3.1 Sequence Diagram ... 77

5.3.2 System structure ... 78

5.3.3 System components ... 82

5.4 150% model and variations .. 86

5.5 MAUT analysis .. 93

6 Conclusion ... 97

6.1 Summary .. 97

6.2 Finding and next steps ... 99

7 References .. 100

7

8

List of Figures
Figure 1: How costs to address defects increase in each step of the system life-cycle(INCOSE,

2023) .. 14

Figure 2: Document System engineering approach (Dutta Banik & Sengupta, 2024) 17

Figure 3: Problem detection linked to errors made in previous steps(Siddique, 2025). 18

Figure 4: Differences between Document based engineering and MBSE(AWS, n.d.) 19

Figure 5: PLE approach in a scheme (Engineering, 2022) .. 25

Figure 6: S4S methodology formulation leveraging MBSE and PLE approaches 29

Figure 7:Traditional approach in the development of an aircraft system. 32

Figure 8: Concurrent approach in the development of an aircraft system. 32

Figure 9: Processes included in the S4S framework .. 33

Figure 10: First methodology step ... 35

Figure 11: Requirement Statement structure ... 36

Figure 12: Second methodology step ... 39

Figure 13: SysML structure (inserire citazione) .. 40

Figure 14: Example of a Use Case Diagram .. 44

Figure 15: Example of a use case specification using a sequence diagram 45

Figure 16: Example of Sequence Diagram .. 46

Figure 17: Activity Diagram example ... 47

Figure 18: Example of a hierarchical structure in a BDD ... 48

Figure 19: Example of IBD and its structure ... 49

Figure 20: Third methodology step.. 50

9

Figure 21: Representation of PLE approach of a system model .. 53

Figure 22:Example of relations implemented in the feature model ... 54

Figure 23: Forth methodology step .. 55

Figure 24: Example of results of a MUAT analysis .. 56

Figure 25: Tools used in each step of the methodology .. 59

Figure 26: Requirement tree inside IBM Doors Next Generation ... 60

Figure 27: Example of how IBM Rhapsody menus change depending on the diagram in use.

From left to right the menus presented are BDD, IBD, Use Case, Activity 61

Figure 28: Feature Model design in Pure::Variants , features and relationships are dispayed.

.. 62

Figure 29: Matrix overview of feature selection for different variants 63

Figure 30: Pure::Variants integration tool present in IBM Rhapsody 63

Figure 31: The four codes implemented by the DLR to calulate the value of a S4S architecture

.. 64

Figure 32: An example of connection of tools in RCE .. 65

Figure 33: VALORISE Dashboard settings ... 66

Figure 34:Three views and main characteristics of the reference aircraft 67

Figure 35: Stakeholders List .. 71

Figure 36: Stakeholders Needs and their Identification number ... 72

Figure 37: Requirement view inside IBM DOORS with attributes ... 73

Figure 38: Requirement view inside IBM DOORS ... 74

Figure 39: Use Case Diagram for the S4S context .. 75

Figure 40: Summary of the three processes used to derive the architecture 77

10

Figure 41: Sequence Diagram showing the messages exchange between supply chain,

manufacturing and actors ... 78

Figure 42: Activity Diagram that specifies the producing use case .. 79

Figure 43: BDD of all the activities inside the producing use case linked to the requirements

from which they derive .. 79

Figure 44: Example of callBehavior .. 80

Figure 45: IBD of all S4S .. 82

Figure 46: Produce component activity diagram showing the link between requirements and

actions. ... 83

Figure 47: IBD of manufacturing aluminum machining ribs showing the link between actions

and components and performance requirements .. 84

Figure 48: Aircraft System Architecture.. 84

Figure 49: Supply Chain System Architecture .. 85

Figure 50: Manufacturing System Architecture .. 85

Figure 51: Basic architecture in which the behavior of the system is modelled. 86

Figure 52: Supply chain structure considering all possibilities ... 87

Figure 53: Example of IBD for the supply chain ... 88

Figure 54: Manufacturing system BDD considering all processes .. 89

Figure 55: The 18 variants selected to be evaluated .. 92

Figure 56: Model 150% after the Variant Model is applied .. 93

Figure 57: FC Value-Cost Diagram ... 94

Figure 58: Risk Value-Cost Diagram .. 94

Figure 59: Time Value-Cost Diagram ... 95

Figure 60: Quality-Cost Diagram .. 95

11

Figure 61: Value-Cost Diagram ... 96

12

List of Tables
Table 1: Example of linguistic rules that requirement statement has to follow 37

Table 2: Example of attribute types and their patterns .. 37

Table 3: List of used requirements’s attributes .. 38

Table 4:Reference Aircraft Main Parameters .. 68

Table 5: Numbers of materials, processes and enterprises for each component. 68

Table 6: Possible materials choice for each component. ... 69

Table 7: Possible process choice for each component. .. 69

13

1 Introduction

The public perception of aviation has changed in recent years. Particular attention is now being

paid to the quality, price, and speed of transport connections and to the impact aviation has on

the environment and the noise levels emitted. The FlightPath 2050 links public priorities with

the roadmaps of the various aviation stakeholders in a single vision to set milestones that will

help transform and evolve today's aviation (Flightpath 2050, 2011). The goal? To achieve cli-

mate neutrality, prioritize customers’ needs and be a leading example.

Research is a key process in achieving these goals, through which crucial technological break-

throughs can be researched and developed for cleaner, more sustainable aviation. The search

for new technological breakthroughs alone is not enough to achieve the goals set. A review of

how aviation systems are designed and built is necessary. One proposed change is the integra-

tion of manufacturing and supply chain systems within the conceptual phase of a product

(Donelli Giuseppa, 2024). This change would make it possible to identify risks, unforeseen

costs, and availability of materials and processes before obstacles are realized that could lead

to delays, increased costs or lower product quality. At the same time proposing better collabo-

ration with global suppliers, manufacturing companies, and regulatory agencies.

This approach makes it possible to design components and systems that are not only feasible

but also less costly than a traditional approach (Donelli, Ciampa, et al., 2023a). Design

knowledge of bottlenecks or slowdowns due to the non-feasibility of certain solutions makes

it possible to build a system that bypasses the problems or addresses them upstream(Tang et

al., 2009a). Thus, avoiding delays or redesigns during the production phase. Better synergy

between stakeholders would reduce waste and increase efficiency throughout the life cycle of

the system, and this would reverberate in future systems that could be lighter, less costly, and

with higher performance. The result for the aviation sector is increased competitiveness, lower

environmental impact, and technological advancement.

Considering manufacturing and supply chains at an early stage of the system aligns with the

goals of Flightpath 2050. The integration of the three systems is necessary to overcome the

limitations of the traditional sequential approach. In the traditional approach, the

14

conceptualization of the manufacturing and supply chain systems has always taken place down-

stream of the aircraft conceptualization and when development begins. This approach has some

downsides the main one is not considering manufacturing and supply chain a part of the

knowledge that the designer could have immediate access to. The result is that any defects in

the system are carried over to the next stages and the costs to resolve these defects increase as

the system life cycle advances as shown in Figure 1.

Figure 1: How costs to address defects increase in each step of the system life-cy-
cle(INCOSE, 2023)

In the history of aviation, many examples of projects that suffered sudden stoppages due to the

disregard of supply chain and manufacturing: In the case of the Boeing 787 Dreamliner which

suffered production bottlenecks and delays due to design changes(Mocenco, 2015)(Tang et al.,

2009b), or in the case of the Concorde by not taking into account the technological develop-

ment of many parts, as the aircraft aged, became increasingly difficult to source until this factor

contributed to its withdrawal from service(What Was the Problem with Concordia?, n.d.).

Other industries have also experienced negative effects, as in the automotive sector(Canis,

2011).

15

Following the 2011 Fukushima tsunami, Toyota and Honda suffered production slowdowns

and consequent loss of profits due to a lack of flexibility in the supply chain system in response

to a localized event (Canis, 2011; Matsuo, 2015). By introducing supply chain and manufac-

turing system experts, possible limitations or constraints, such as those presented in the exam-

ples, can be identified earlier and thus enable the designer to avoid running into such problems.

The aim of this thesis is therefore to verify that the presented methodology results in time and

cost savings leading to a better product.

The research is presented in chapters:

• Chapter 2. Literature review: it presents the current studies about this topic and systems

engineering approaches that are used in Chapter 3. It also shows the gap in the research

where this thesis is placed.

• Chapter 3. Methodology formulation: its objective is to explain step-by-step the entire

methodology.

• Chapter 4. Methodology implementation: presents the tools and software used to im-

plement the methodology presented in Chapter 3.

• Chapter 5 Methodology application: introduces the reader to a case study used to test

methodology. Here, the results of the test case are offered.

• Chapter 6 Conclusions: in this chapter, a summary of the objectives achieved is reported

together with some suggestions for future steps.

16

2 Literature review

This section reports the literature review currently available regarding the two approaches of

systems engineering that are exploited in the following sections. Section 2.1 defines the Model-

Based System Engineering approach, and its origins, history, and applications are reported.

The same is done for the Product Line Engineering approach in Section 2.2.

2.1 MBSE approach

In recent decades, engineering projects in every field have grown in complexity and integra-

tion. Since this trend began, engineers have been facing the task of rethinking their approach

to developing them (Ramos et al., 2012). One result of this challenge is MBSE (Model Based

System Engineering). The term MBSE was first introduced by Wymore in 1993, but the initial

idea differed from what we have today. The term included mathematical ideas such as algebraic

relationships and mathematical rules for writing requirements (Madni & Sievers, 2018). Today,

the approach is further away from the mathematical field MBSE is used to create models that

link requirements, design components, analysis, verification, and validation tests (Tepper,

2010).

MBSE is defined as a system engineering approach with the purpose of creating and exploiting

a model of a system that represents the primary source of information and the place where this

information can be exchanged between designers, engineers, and stakeholders (Friedenthal,

2014). Using models to capture the fundamental element of a system enables better understand-

ing, communication, and management of complex systems. This approach is particularly suited

when paired with complex engineering projects, where the interactions between components

and subsystems are particularly complex, and extreme coordination has to be implemented to

achieve the desired outcome (Cloutier, 2010).

17

2.1.1 Document-based approach vs MBSE

The Document-Based Approach (DBA) for systems engineering is a traditional approach that

relies on the use of formal documents, such as reports, to represent and communicate infor-

mation about the system under analysis. Although DBA has been widely used it has several

limitations, one of the main problems is update changes, in fact, changes to one document often

require manual updates in all related documents. This task increases the risk of errors and in-

consistencies (Walden et al., 2015). Moreover, documents are static tracking changes, and

communicating them to other teams becomes complex, leading to increased costs, delays, and

reduced quality of the final product (Friedenthal, 2014). The lack of an integrated view of the

system can also make it difficult to identify and resolve issues before they become critical. A

traditional approach flow is represented by the flow below, Figure 2

Figure 2: Document System engineering approach (Dutta Banik & Sengupta, 2024)

18

When a great mole of documents needs to be updated errors can be made that lead to costly

rework, schedule delays, and late-stage changes. Errors made in capturing requirements, in

system analysis and architecting phases, and system design, sometimes are only noticed when

problems appear during the system acceptance phase, as shown in Figure 3.

Figure 3: Problem detection linked to errors made in previous steps (Siddique, 2025).

19

Figure 4: Differences between Document based engineering and MBSE (AWS, n.d.)

The transition from a document-based approach, in which system specifications and designs

are dispersed across multiple documents, to a model-based approach that integrates a shared

system model helps in enhancing collaboration and mitigating the errors made. This approach

is particularly useful for complex systems. Although MBSE offers many advantages, its im-

plementation requires specialized skills and tends to increase the initial complexity (Frieden-

thal, 2014).

2.1.2 Motivation to use MBSE

In MBSE, a model is a ‘single source of truth’ meaning that all important information is rep-

resented within the model (Madni & Sievers, 2018). Having all the information gathered in a

single place is an advantage. It makes it easier to connect information, as well as the compo-

nents of the system, and the result is that it is easier to find information quickly and find errors

and inconsistencies. Moreover, since the model is the core of all information by update it

changes are shared between all designers.

20

The interest in MBSE comes from the need to overcome known difficulties and undesirable

practices. The best time to explore different solutions is at the beginning when the problem is

first defined, but one of the major issues in systems engineering is building the wrong features

at the beginning of the conceptual phase (London, 2011), a mistake like this can lead to a waste

of time and money. Another problem is that engineers often start modeling without fully un-

derstanding if they are solving the right problem (R. Karban T. Weilkiens R. Hauber M. Zam-

parelli R. Diekmann A.M. Hein, 2011). If system architecture is not carefully planned problems

can appear in later phases, such as when integrating different parts of the system. It is important

to understand that as designers make decisions, the available options decrease and the cost

related to decisions taken are locked even if the system is not developed. Designers often rush

through this phase, generating costs and wasting time on later processes.

MBSE was introduced also to better manage requirements. Studies show that engineers spend

a lot of time searching for information and creating reports, as systems become more complex,

requirements increase, and the more they increase, the harder it is to manage them with simple

tools like checklists or separate databases. So, traditional document-based approaches make it

easy to miss important details and connections between system parts (J.S. Topper N.C. Horner,

2013). Because of this, many engineering teams are moving from document-based to model-

based methods. MBSE allows engineers to generate up-to-date system documents automati-

cally.

One of the biggest challenges in system engineering is communication. Many different spe-

cialists, like designers, users, testers, and stakeholders need to share a common understanding

of the system. This requires clear documentation, clear requirements and needs, and documen-

tation about system interfaces. This shared information helps creating a common understanding

of the system to improve collaboration, and MBSE helps achieve it. Traditionally, system in-

formation is stored in a multitude of different documents that need to be updated every time a

change is made. However, when working with many stakeholders or complex systems, these

documents can easily become inconsistent or outdated. MBSE solves this problem because the

system is a model, and every update is shared with other designers and stakeholders, this way

the information is always up-to-date (Madni & Sievers, 2018).

A strategy utilized starts with simple components and gradually builds more complex subsys-

tems until eventually the full system is developed. The model can store information, such as

21

relationships between subsystems, system behavior, and requirements, in an organized way.

Since all information is linked it is easy for engineers to track decisions, analyze changes, and

maintain consistency.

2.1.3 State of the Art

Estefan’s survey can be read to understand the latest developments in MBSE (Estefan, 2007),

it describes different MBSE methods and introduces Systems Modeling Language (SysML)

(Weilkiens T. et al., 2016). MBSE has been widely used in system architecture development.

During this phase, system’s structure, behavior, and main functions are derived. MBSE helps

to visualize these system elements easily and also it helps to connect them to stakeholders’

requirements. This is the reason why both in the USA and in Europe, MBSE is starting to be

more used.

More experts every year believe that MBSE is a powerful way to improve speed, reduce

costs, and increase quality (Paredis Christiaan, 2011). The use of MBSE has shown that it can

shorten development time and reduce errors, this is partly because it helps engineers better

understand the problem from the beginning, as stated before this is a common issue. Addi-

tionally, studies suggest that traditional document-based methods capture only about 50% of

the problems (Jorgensen, 2011), instead using MBSE techniques, like use cases, can increase

understanding to over 90%. But still little data is available to demonstrate what is said, and

even less data is available to check the actual time savings. However, studies are carried out

to prove MBSE's Value (Estefan Jeffrey, 2011).

MBSE is growing quickly. INCOSE (the International Council on Systems Engineering) has

an active MBSE working group that continues to grow. In 2013, the IEEE Systems, Man, and

Cybernetics Society created the MBSE Technical Committee intending to share research find-

ings. This committee is working closely with INCOSE.

The standardized language SysML is being studied to be improved and to identify any gaps in

how models represent systems. MBSE is also becoming part of professional and academic

education, major aerospace companies like Lockheed Martin, Boeing, and Northrop Grumman

now offer MBSE courses. From the academic point of view programs at leading universities,

22

including MIT, Georgia Tech, USC, Johns Hopkins, and the University of Tokyo, have added

MBSE to their curricula. MBSE is now so important that it is recognized as a best practice in

systems engineering at major research institutions and federally funded labs, such as NASA’s

Jet Propulsion Laboratory, Sandia National Laboratories, NASA Glenn Research Center, and

MITRE Corporation (Madni & Sievers, 2018).

2.1.4 System model characteristics

In MBSE, the model is initially only a basis for the final system. As work on the model con-

tinues, the abstract model becomes more and more concrete and what was initially only an

abstraction of reality, perhaps starting only from an analysis of the system's behavior, eventu-

ally becomes a model that represents reality in which the hardware and software components

are also modeled.

Modeling begins with the key questions that the model must reply to. These questions drive

system initial behavior, but it may change in the course of system development. A model is

considered “fit for purpose” when it can reliably answer all the relevant questions posed above.

As the model changes its behavior, components, or the way it answers the questions asked over

time, it is considered a 'living representation' of the system (Madni & Sievers, 2018).

A model can describe a system at different levels of detail or abstraction. Indeed, it can be

simplified by ignoring certain details that are not relevant to its purpose, this flexibility allows

different stakeholders and designers to visualize and focus on what part of the system is im-

portant to them. For example, a structural engineer may care about the size and weight of elec-

tronic components but not their function, while a software engineer focuses on functionality

instead of physical details.

Models can take different forms, and some of them are informal, like sketches or basic con-

cept diagrams, while others are formal and use precise and standardized representations such

as SysML diagrams or state charts (Friedenthal, 2014). Formal models can be purely descrip-

tive (static) or executable (dynamic), meaning they can simulate system behavior.

If used correctly models can improve understanding, communication and at the end stake-

holder decision-making. They help visualize complex systems, track requirements, and

23

support verification and validation. However, poorly used models can lead to incorrect con-

clusions. As statistician George Box (Box George E.P., 1987) said, “All models are wrong;

the practical question is how wrong they have to be to not be useful.”

Two important concepts in modeling are verification and validation.

• Model verification checks the model to see if it is correctly built. To be a verified model

it should be complete (cover all necessary details), consistent (use the same definitions

and assumptions), and traceable (linked to requirements and standards).

• Model validation ensures that the model accurately represents real-world behavior and

follows relevant theories, data, and regulations. A model is tested to see if it behaves as

expected. If it fails, it is adjusted and tested again in an iterative process that builds

confidence in its accuracy (Madni & Sievers, 2018).

2.1.5 Future Trends

The system engineering field is currently evolving, and MBSE is evolving as well. Some new

trends are emerging to update MBSE capabilities, one of the most significant is MBSE inte-

gration to AI (Artificial intelligence), the Internet of Things (IoT), and the idea to develop

digital twins (Heydari S.A., 2023).

The contribution of artificial intelligence to system models can guarantee a greater capacity

for analysis and decision-making of the system and should also be able to automate the gen-

eration of certain models, optimize them, and test the behavior of these systems under ad-

verse conditions that could not be tested before. All these new capabilities should allow for a

reduction in the time for system creation, thereby lowering costs (Gore, 2020). The integra-

tion of MBSE with IoT, on the other hand, is particularly interesting for those industries

where the ability to update systems and monitor them is particularly important, such as the

aerospace industry (Holt, 2010). This integration would allow a large amount of data to be

collected from systems and analyzed them, so that the system can be updated faster than

could have been done before.

Finally, the representation of real systems, or digital twins, combined with the capabilities of

the MBSE, would allow more accurate and detailed models to be created, especially for

24

complex systems. The impact would be significant, especially in the testing part of the model,

and could be closer to the final system and thus reduce errors and risks (Gore, 2020).

All these new technologies, when combined with the already great capabilities of MBSE would

reduce errors, time, and risks, making MBSE an indispensable tool (Heydari S.A., 2023).

2.1.6 Missing capabilities

Despite MBSE's great capabilities in clarifying and simplifying the understanding of the sys-

tem and connecting its elements. MBSE is only capable of creating one model of the system.

If more than one instance is created, several models must be implemented in parallel. The rapid

creation of multiple instances is a necessity, which is why extensions to the SysML language

(Bussemaker et al., 2024), the basis of MBSE, has been implemented to add variability to the

system. Examples are CVL (Broodney et al., 2012) and VAMOS (Weilkiens, 2015), or more

recently SysML v2 in which variability is a key point (Bajaj et al., 2022) demonstrating how

important it is for future developments. Other attempts include including variability using fea-

ture models (Gedell & Johannesson, 2013).

2.2 PLE approach

Product Line Engineering (PLE) is a methodology used in system and software engineering.

Its main objective is to efficiently manage a family of systems based on shared elements. At

its core PLE enables the creation of different systems by sharing and managing assets and then

combining them to generate a system based on market requests o specific needs from clients.

By leveraging this approach time can be saved and limited costs are needed to develop cos-

tumed solutions (INCOSE, 2021). In the last decades, this approach has been more used thanks

to the market need for these costumed systems.

25

Figure 5: PLE approach in a scheme (Engineering, 2022)

PLE defines a shared set of assets that can be systematically reused across multiple systems.

The Feature Catalogue is a structured list of all possible features that can be included in a

product line. Each product within the product line is defined by a Bill of Features (BoF), which

specifies the exact combination of features selected from the Feature Catalogue. A Shared As-

set Superset includes all reusable assets, these shared assets are configured based on the fea-

tures selected in the BoF. The connection between these elements is depicted in Figure 5

2.2.1 PLE origins and development

The PLE approach has its origin in the manufacturing industry. The need was to reduce costs

related to the development of a system that shared common components. Then this approach

has been extended to software solutions. In the last decade of the last century software industry

started to formalize the “software product lines” concept, the objective once more was to re-

duce costs and improve the reusability of software development. Then this approach evolved

until it touched software-hardware systems that were complex like the ones that can be found

26

in the automotive and aerospace industries(Clements & Northrop, 2001). Once this approach

became more interesting and used, new tools were introduced to better design and manage

product instances. These tools enable the companies to have an instrument to develop product

variability systemically. At the integration with MBSE was natural to have a better methodol-

ogy to manage variants.

2.2.2 State of the Art

Nowadays PLE approach is used in the aerospace industry where systems are complex, and it

is important to manage them. Airbus and Boing are two examples of companies that leverage

the PLE approach to develop families of products (aircraft) that all share some common com-

ponents or common structures(INCOSE, 2022). Using this approach to generate these aircraft

allows us to save development costs and even maintenance costs. The A320 Programme by

Airbus is a state-of-the-art example. This project includes different variants (A318, A319,

A320, A321) that all share a common base(Forlingieri, 2022; Forlingieri & Weilkiens, 2022a,

2022b). On the other side of the ocean, Boeing has also adopted similar strategies with its 737

and 787 projects. The results are different aircraft configurations that share the same fuselage

module or similar avionic systems (Wiley, 2023).

In the military field, another virtuous example is the Lockheed-Martin F-35, the different var-

iations of this fighter share common structural and software components. This results in an

impact on maintenance for USA military forces and allies (Springer, 2023).

2.2.3 PLE and MBSE connection

PLE and Model-Based Systems Engineering (MBSE) are two complementary approaches that

improve the management of the complexity of modern engineering systems. As stated before,

PLE focuses on the management of product variants and the reuse of components as much as

possible. Meanwhile, MBSE approach uses system digital models to support the design, devel-

opment and verification of the product under development.

27

The last INCOSE work highlights how the integration between PLE and MBSE allows the

improvement requirement's traceability and management configuration of variants in a more

efficient way (Madeira et al., 2023). Using modelling tools such as SysML, it is possible to

graphically represent the variants of the system and analyze them to understand the impact of

changes in system life cycle.

A significant case study is the Boeing 787 Dreamliner project where PLE and MBSE were

used. For this project, Boeing used digital models to optimize the design of the different vari-

ants of the aircraft, by doing so it was able to reduce development costs and improve system

reliability. This synergy has allowed Boeing to maintain a high level of quality and safety for

its product (Wiley, 2023).

28

3 Methodology Formulation

This thesis aims to present a methodology to find out the best solution for a Systems for system,

featuring as a System of Interest the aircraft and as Enabling Systems the manufacturing and

the Supply chain systems, leveraging MBSE and PLE. Model-Based System Engineering is

chosen as the methodology to formulate the system structure, while the Product Line Engineer-

ing approach is used to generate a family of system variants in preparation for the MAUT anal-

ysis. To select the best solution for the S4S, this study considers both the performance of the

aircraft and the production line (supply chain system and manufacturing system combined).

MAUT analysis enables the evaluation of multiple solutions for the same system thereby en-

hancing knowledge of the system before committing capital through a specific decision that

will influence the development process and further steps.

The methodology starts with the collection of stakeholder needs, identifying key areas of inter-

est that must be translated into requirements by the designer (Boggero et al., 2020). Subse-

quently, once the stakeholders’ and systems’ requirements are gathered, the process continues

with the modeling of the system architecture for the three systems under analysis. The PLE

approach is then applied to this baseline design resulting in the generation of a family of archi-

tectures for the same system.

Finally, these architectures are evaluated using a value-driven approach and a trade-off analysis

is performed to select the optimal solution. This evaluation considers the performance of the

system of interest (the aircraft), the performance of the two enabling systems, and the stake-

holders' interests(Donelli, Boggero, et al., 2023a).

The figure below schematically illustrates the proposed methodology.

29

Figure 6: S4S methodology formulation leveraging MBSE and PLE approaches

The methodology is linked to a test case that is presented in Section 4. A small preview is

reported to simply the understanding of the theory. In the case under analysis, the system of

interest is Horizontal Tail plane of an aircraft, it is composed of four kinds of structural ele-

ments: ribs, stringers, skin panel and spars. The two enabling systems are the supply chain,

composed of Suppliers Tier 1, Tier 2 and OEM facilities, and the manufacturing system that is

composed of the machine that will perform the processes to build the HTP. The variability of

the system is introduced considering different materials, processes and facilities.

3.1 Glossary

Before proceeding and delving into the core of the methodology it is necessary to introduce

some key definitions and concepts that will recur throughout this thesis.

According to ISO/IEC/IEEE standards, a system is defined as: “An arrangement of parts or

elements that collectively demonstrate properties, behavior, or meaning that the individual com-

ponents do not.”(E. Freund, 2005)

A System of Interest (SoI) is defined as the system under analysis(E. Freund, 2005), develop-

ment, and design. In this case, the SoI is the aircraft. The aircraft is described as a system

whose purpose is to fly, to achieve this goal many components (e.g. wings, fuselage, landing

30

gear, tail, etc.) are needed, each with distinct purposes. For instance, the horizontal tail plane is

designed to control the longitudinal dynamic. The collective function of these components is to

fulfill the primary function of the aircraft system.

The two systems, supply chain, and manufacturing, are classified as Enabling Systems

(ES)(E. Freund, 2005), their role is to support and facilitate the SoI during the various phases

of its life cycle, particularly during production(Donelli et al., n.d.). They are defined as follows:

the supply chain system is a network or, cluster of companies and facilities, responsible for

producing and assembling the components of the aircraft. The supply chain has the capability

to produce the entire aircraft, meanwhile, a single facility may be capable of completing one or

more components. Meanwhile, the manufacturing system is defined as the system consisting of

machinery and processes that transform raw materials into finished components or subcompo-

nents. The two systems are part of the aircraft’s production. (Donelli Giuseppa, 2024)

The language usually used to design the model of a MBSE system is SysML. This language is

used in this thesis and therefore some key elements have to be introduced. These definitions are

taken from (A Practical Guide to SysML The Systems Modeling Language, n.d.; Weilkiens,

n.d.):

• Block is an element that describes parts of the system’s structure. It can represent a

logical or a physical unit of the system. It is represented as a rectangle, it always has a

name that determines the element described. It can be further characterized by values,

operations, constraints, and references. A block can always be divided into other

blocks, they are, also, parts of the main block.

• Part is an element of the system that is a child of a block. While blocks can only show

the hierarchy between the units of the system. Parts are used to show the connection

between the elements inside a block.

• Ports represent input and output of a part, and they represent the way the unit interacts

with the world. Ports can be parts themselves or just a way to show how the part interacts

with the connector.

• Item Flow is an item that flows between two parts, it is bond to the connector that

connects the two or more parts considered. It can be an abstract element, like an event,

or a physical object.

• Actor is a system, group of people, or others that interacts with the system, but it’s not

part of it.

31

• Use Case is a way to describe an interaction between the system and an actor. It de-

scribes a service or a function that the system performs. Usually, the actor starts the

service via a trigger.

• Activity is a way to describe the actions that the system has to be able to do to perform

a function or to arrive at a precise state.

• Action is an elementary step performed by the system or a system’s component.

The definitions introduced form a basis to help the reader in the understanding of the following

chapters. Obviously, these definitions are only some of the many presents in the SysML lan-

guage, that’s the reason why further are introduced when necessary.

3.2 S4S concurrent approach

The concurrent approach is designed to address the need to overcome certain limitations of the

traditional sequential approach. Considering a typical life cycle, such as the one proposed in

ISO/IEC/IEEE 15288:2023(E. Freund, 2005) and adopted here, a system progresses through

six stages during its life span: conceptualization, development, production, utilization, support,

and retirement. Some of these stages may overlap, occur in parallel or they may be absent de-

pending on the system's functionalities. In the case under consideration, each system follows

the six stages presented. The first stage, conceptualization, begins with exploratory research by

the designer into the stakeholders' needs to identify both stakeholder requirements and technical

system requirements. At this phase, these requirements are transformed into functions that the

system must fulfill through its architecture. Then, multiple architectures are conceived and an-

alyzed finally, various studies are conducted to justify the selection of the final configuration.

Subsequently, the selected system architecture is developed while the requirements are refined

until the prototype of the concept is validated. Then the system is implemented, utilized, main-

tained, and ultimately retired from use, marking the end of the system's lifecycle.

In the aerospace industry, it is standard practice for supply chain and manufacturing systems to

be designed and developed only after the final definition of the system of interest has been

determined and the development stage is started, as the red arrow illustrates in the image be-

low(Donelli Giuseppa, 2024).

32

Figure 7:Traditional approach in the development of an aircraft system.

This approach allows the optimization of aircraft performance postponing analyses related to

logistics, production cost evaluations, feasibility assessments for certain components, potential

production issues, and supplier selection(Donelli, Boggero, et al., 2023a). All these limitations

can lead to cost overruns, production delays, and the need for component redesigns.

Figure 8: Concurrent approach in the development of an aircraft system.

33

The presented concurrent approach involves the conceptual design of the three systems being

carried out in parallel, interactions are design aim to minimize or eliminate the disadvantages

of the traditional approach. This approach enables the S4S to derive a solution that considers

the strong points and limitations of all three systems.

During the conceptual stage, the traditional standard foresees 14 processes throughout the sys-

tem lifecycle(E. Freund, 2005), but only 6 are related to the phase under examination (concep-

tual). The proposed S4S framework includes only 5 and these are applied in parallel to all three

systems under consideration.(Donelli Giuseppa, 2024)

Figure 9: Processes included in the S4S framework

• System identification: This first phase of the S4S framework gathers the interests, needs,

and expectations of the stakeholders regarding the system. To identify needs it is first

necessary to identify all the system's stakeholders. A stakeholder represents an individ-

ual, a group of people, or an organization that has an interest in the system. For example,

in the case of a passenger aircraft, the pilot, the airline, ground personnel, and regula-

tions are all stakeholders of the system. Through interviews, stakeholders express their

interests which are then gathered, but their needs, by definition, lack structure, rules, or

patterns so they can be misunderstood and often they are confusing. For this reason,

needs must be translated into requirements which, in contrast, have a clear structure,

precise rules, patterns, types, attributes, and identifiers that allow the needs to be made

explicit in a clear and unambiguous way, as well as providing limitations and guidelines

for the system to be designed.

• System Specifications: As previously introduced, needs are translated into requirement

expressions. Requirement expressions consist of the requirement statement and

34

attributes, for the former, it is expected that certain patterns and rules are followed; alt-

hough each agency may choose different patterns to follow, it is important to maintain

consistency in the choice made. In this work, the rules and patterns introduced by the

INCOSE (International Council on Systems Engineering) guide are followed.

Requirement expressions are characterized by a type, using these types, it is possible to

quickly identify the category of the requirement expression, additionally, for each type

of the requirement pattern to follow also changes.

Finally, attributes are concepts that characterize a requirement expression. The main

ones include ID, Parent Source, Means of Compliance, Attribute Type, Version, Owner,

etc. At the end of this phase, a considerable number of stakeholder requirements and

system requirements are derived, and they will drive the system design.

• System Architecture: Leveraging the previously collected requirements is possible to

generate functions that the system must fulfil. The generation of functions using re-

quirements explains how the requirements drive the design of the system. These func-

tions have to be implemented by one subsystem or the integration of more subsystems.

The result is a series of system architectures that meet the stakeholders' requirements

and the derived requirements.

• System synthesis and exploration: Evaluation is undertaken based on indicators deemed

significant by stakeholders, such as cost, risk, quality, and time. A trade-off between

performance and costs is necessary during the decision-making phase, the objective is

to select a final architecture, based on the stakeholders’ needs. The chosen architecture

can then proceed to the validation processes and only after it can enter the production

phase. In the specific instance of the concurrent approach, the performance to be eval-

uated encompasses not only that of the aircraft itself but, also, that of the production

system in its entirety, the supply chain system and the manufacturing process.

The present work focuses on the acquisition of the stakeholders' needs and requirements,

and the architectural design phase, in particular, at the end of the architecture phase it pro-

poses a new methodology for the formulation of multiple architecture variants, leveraging

a combination of MBSE and PLE approach. Subsequently, the methodology is applied to a

test case in order to verify the quality of the results. Finally, a value-driven analysis is ap-

plied to evaluate the different architectures and validate stakeholder requirements.

35

3.3 Needs and Requirements Formulation

This chapter deals with system identification and specification, and before the identification of

requirements can begin, it is necessary to identify the relevant stakeholders.

Figure 10: First methodology step

According to ISO 29148, "stakeholders are defined as individuals or organizations with a right,

share, claim, or interest in a system or in its possession of characteristics that meet their needs

and expectations"(Engineering Standards Committee of the IEEE Computer Society, 2011).

The stakeholders to be identified span across the three systems and can range from government

entities who prescribe regulations regarding groups of people working within or in contact with

the system, to users of the system, to companies that create a product or a service for the system.

Subsequently, to the identification of the relevant stakeholders, expectations regarding the three

systems are collected through interviews (Boggero et al., 2020). This process focuses on the

collection of information regarding the functions that stakeholders want the system to perform,

the system's objectives, and limitations. Stakeholders' needs are essentially statements made in

the form of requests, and for this reason, they lack structure and may be subject to misinterpre-

tation(Ryan & Wheatcraft, 2022). This is the reason why they are then translated into require-

ments. Each need must be assigned an identifier and linked to the relevant stakeholder. This

approach ensures that every need can be traced back to its respective stakeholders during the

requirements writing phase. A requirement is defined as "a statement that translates or expresses

a need and its associated constraints and conditions”(Engineering Standards Committee of the

IEEE Computer Society, 2011), written in a language that can take the form of a natural

36

language. If expressed in the form of a natural language, the statement should comprise a sub-

ject, a verb, and a compliment." The process of translating needs into structured expressions is

referred to as "requirements", though they are technically termed "requirement expressions".

Each requirement expression comprises a requirement statement and several attributes(Ryan &

Wheatcraft, 2022). The former represents the text of the requirement, while the latter includes

additional characteristics that ensure the traceability of the requirement to the need from which

it originates, specify how it will be verified, identify the author, or provide a unique identifier.

Figure 11: Requirement Statement structure(Ryan & Wheatcraft, 2022)

In agreement with the standard proposed every requirement expression has to satisfy the fol-

lowing characteristics(Ryan & Wheatcraft, 2022):

• It has to be necessary, it must define a capacity, characteristic, or limit that is essential

for the system. In the event the requirement expression is deleted the capability de-

scribed by it cannot be expressed by the other existing requirements.

• It has to be unambiguous, it can only be interpreted in one way, with no possibility of

misunderstanding its meaning.

• It has to be consistent, it cannot conflict with other requirements expressions.

• It has to be complete, it does not require further processing.

• It has to be traceable, it must be possible to be able to identify where a requirement

comes from.

37

• It has to be feasible, it is to be achieved by implementing contemporary technologies.

• It has to be verifiable, the architecture of the system has to be able to satisfying the

requirement expression.

These characteristics ensure the clarity, validity, and practicality of the requirements throughout

the system design process.

Every requirement statement is characterized by an attribute type. The attribute type helps to

categorize the requirement, examples of attribute types are functional, performance, design con-

straints, and so forth. The attribute type is chosen based on the requirement statement meaning

and the requirement statement structure depends by the attribute type(Boggero et al., 2020).

Depending on the meaning of the requirement the designer selects a specific attribute type and

then based on it the designer has to follow specific patterns, an example of patterns is provided

in Table 2. The employment of these patterns serves to ensure the requirement statement is

unambiguous. In addition, many linguistic rules have to be observed by the requirement state-

ment, some of these are show in Table 1.

Table 1: Example of linguistic rules that requirement statement has to follow

Table 2: Example of attribute types and their patterns

38

Attributes, at last, complete the requirement expression. They guarantee traceability, identifi-

cation, uniqueness and the verifiability of the requirement. The following Table 3 shows the

attributes used.

Table 3: List of used requirements’s attributes

After the translation of needs into requirement expression, the possibility exists to add further

requirements derived from the existing ones(Ryan & Wheatcraft, 2022). These additional re-

quirements delineate a specific component of the stakeholder's requirement or restrict a subsys-

tem of the primary system of interest. The generation of requirements derived from other re-

quirements creates a hierarchy that enables traceability from the stakeholder requirement to the

component requirement and vice versa.

3.4 System Architecture

Once the stakeholder and system requirements have been determined, the system architecture

design phase can begin, Figure 12. The ultimate goal of this phase is to generate a system ar-

chitecture that is able to satisfy the stakeholder requirements.

39

Figure 12: Second methodology step

To achieve this objective, it is considered good practice to follow specific steps(A Practical

Guide to SysML The Systems Modeling Language, n.d.; Weilkiens, n.d.):

1. Defining the system boundaries;

2. Identifying the core functions the system must perform;

3. Decomposing the complex system into subsystems until reaching the component level.

4. Connect components and assign behavior

These steps are explained in detail in section 3.4.1.

Prior to proposing the methodology used for the system’s architecture design, it is crucial to

introduce the SysML language.

3.4.1 SysML Structure

SysML stands for Systems Modeling Language, it was first introduced in 2007 to replace the

UML language, and since then it became a fundamental tool in the development of systems.

40

Figure 13: SysML structure (Benina et al., 2023)

Figure 13 above shows the structure of the language. SysML is composed of nine diagrams,

highlighted by the colors in the picture, each diagram is intended to represent a specific view

of the system. But in general, there are three functions that each diagram can be associated

with(Friedenthal, 2014; Weilkiens, n.d.):

• Structural

• Behavior

• Requirement structure

Starting from the requirement diagram, was introduced to enable the possibility of showing

requirements inside the system model. Usually, requirements are managed using specific soft-

ware outside of the system model, the requirement diagram permits to import and show these

requirements. On top of that, it has the ability to represent the dependence between the require-

ments and other model elements. The two dependences <<deriveReqt>> and <<satisfy>> can

be used to visualize, the derivation from requirements to others for the former and the satisfac-

tion of a requirement by the design. Other dependencies are <<refine>> <<verify>> and <<ra-

tionale>>, in this work they are not used.

The structure of the system is expressed using four diagrams: Block Definition Diagram, Inter-

nal Block Diagram and Package Diagram.

The Block Definition Diagram (BDD) is used to express the relationships between blocks.

The main relationship used is the <<Directed Composition>> that is used to express the

41

hierarchy between blocks. In the example in Figure 18 can be seen that the Power train is com-

posed by the other blocks under it, this connection is expressed via the reference introduced.

The connector having an arrow at one end and a turbot on the other is the SysML symbol for a

<<Directed Composition>>. The blocks connected to the Power train are parts of that in the

Internal Block Diagram (IBD). These diagram boundaries represent the contours of the de-

picted block, meaning that everything inside represents components or subsystems of it. The

boundaries can have interconnection, those represent the interconnection with other subsystems

that are not part of the one depicted by the internal block diagram. The elements used to repre-

sent the connections between the block's components are:

• Ports: standard ports are used to represent a connection request-reply between two elements,

in contrast, flow ports are used to express a flow of data, materials, or else that can enter, leave,

or both the part. If only one element is flowing the port depicted is an atomic flow port, if a set

of elements are flowing it’s necessary to model a “fuel specification”, a list of all the items that

flow. In this case, the port is a non-atomic flow port. The element flowing can be a block, a

ValueType, a DataType, or Signal.

• Connectors: used to visualize the elements to which a component is connected. It can be char-

acterized by flows. Flows represent transmitted elements or information (Item Flow) or events

that trigger a state in another component.

• Parts: These represent the system components. Parts cannot be created independently, they

are automatically generated when a system is decomposed in the BDD. The blocks that com-

pose the father block are represented as parts in its IBD. This assists the designer in ensuring

that no parts are defined within an IBD unless they have already been assigned to a system.

Figure 19 in Section 3.4 provides an example of an Internal Block Diagram.

The Parametric Diagram is a specialized IBD, it is stripped of some elements and a new ele-

ment class of block is introduced to represent constraints that have to be applied to system

properties. This block is the constraintBlock. This block supports the engineer in representing

properties’ constraints. A constraint can also be a mathematical formula. Parameters and prop-

erties are depicted by small square boxes, while the constraintBlock is depicted by a box.

Finally, the Package Diagram is used to organize the model, the model can be organized in

packages (or folders), they are then shown in the package diagram.

42

The behavior of a system can be designed using the remaining diagrams (in Figure 13 the four

diagrams on the left). The Use Case Diagram describes the behavior in terms of high-level

functionality. It is composed of three elements: Actors, System Context, and Use Cases.

• Actors represent all entities that interact with the system, they can be individuals or

other systems but are always external to the System Context.

• The System Context is represented by a box and the functions that the system must

perform are represented by the function inside this box, outside are represented by the

actors and the systems that interact with the system of interest.

• Use Cases, describe interactions between the system and an actor, and usually the inter-

action is initiated by the actor. They can be considered as the fundamental functions that

the system has to complete derived by the requirement expression.

Activity Diagram provide a more detailed representation of the actions that the system must

perform and the sequence in which they should be executed. An activity describes flows that

consist of various actions and additionally specifies input and output data that may be required

during an action flow. The purpose of the diagram is to illustrate the order of actions, whether

they can be executed in parallel, and to indicate the requirements. The diagram always com-

mences with an "initial flow" that initiates the control flow. Two different kinds of flows are

used in this diagram: control and object flow. The first is used to indicate a sequence of actions

but no physical object is flowing between the two actions, the latter is used to show the flow of

materials, information, data, etc. activity’s flow concludes when the final node is reached. The

Sequence Diagrams is used to represent the sequential exchange of messages between actors,

systems, and the system’s subsystems. These diagrams can also be employed to describe inter-

actions between system components. The diagram represents a timeline which is represented

by element lifelines, messages, and responses, the last two are depicted by arrows connecting

the various lifelines. Messages can be synchronous or asynchronous depending on whether the

sender expects a response from the receiver or not. When the receiver receives a message, it

may indicate the need to initiate behavior or request information. The State machine Diagram

is used to model the different states of the system and their transitions.

3.4.2 S4S Design Methodology

43

The first step of the system design phase is the identification of system boundaries. This oper-

ation is crucial to the system's success, a lack of clarity in defining these boundaries can lead to

an oversizing of the system(A Practical Guide to SysML The Systems Modeling Language,

n.d.; Weilkiens, n.d.), the modeling of external functions, or the failure to identify critical func-

tions. For a system such as the one under examination, this activity may be particularly complex

due to both the scale and the intricacy of integrating the design of three complex systems sim-

ultaneously. To delineate the system effectively it is necessary to combine the designer's intui-

tion with a systematic approach.

The first step is to consider the definition assigned to the system, and then, use this definition

and a degree of intuition to establish preliminary and approximate system boundaries. The next

step involves identifying the elements that are part of the system, those that interact with it, and

those that have no relationship with it. In the early stages, useful criteria for determining

whether an element belongs to the system is to verify if the designer has control over its design

or not the following example illustrates this concept.

Suppose you want to design a two-seater car for road use. By common knowledge or intuition,

it is easy to imagine the following things: the vehicle must interact with the driver, the passen-

ger, and the road. It is easy to understand that the road is connected to the system of interest but

is not part of it the vehicle designer cannot modify the road, he can only consider the possible

scenarios and possible interconnections with the system. The same applies to the vehicle pas-

senger and the driver. Therefore, while the road and the driver interact with the system, they

are not considered part of it. A more rigorous approach to defining system boundaries involves

utilizing the requirements identified. By analyzing stakeholder requirements, functional ones

in particular, it is possible to derive the core functions that the system has to perform. By con-

sidering both the entities that perform the functions and those that interact with the system to

be part of them, it is possible to further refine the system boundaries. As the design process

progresses, it is necessary to iterate previous steps to continuously refine and adapt both the

system's functions and its boundaries.

To facilitate the boundaries identification process, the SysML language offers a dedicated dia-

gram already introduced, the Use Case Diagram.

44

Figure 14: Example of a Use Case Diagram(Friedenthal, 2014)

As previously stated, the functions introduced are of a high level and therefore require further

definition. It is important to remember that the requirements drive the modeling of functions.

The relationship between the utilized requirements and high-level functions must be demon-

strated to ensure traceability throughout the project. For this reason, a satisfying relationship is

necessary. The child requirements of functional ones are employed to further specify the use

cases. As previously mentioned, high-level requirements are typically associated with high-

level functions, while derived requirements correspond to increasingly specific activities. Use

cases are specified in detail by decomposing the actions required to perform the functions. To

derive these functions, it is always necessary to refer to the requirements, as they guide the

designer. Additionally, the designer must possess knowledge of the subject under analysis;

therefore, a literature study or consultation is required in parallel.

45

As stated, Activity Diagram and Sequence Diagram are the tools that a system designer uses to

specify the high-level function. Having the use case and the actor, the sequence diagram is

usually the one that is to be analyzed first. Considering the car example and its Use Case dia-

gram, the Drive Vehicle use case is taken into consideration. From the diagram, the only actor

interacting with the use case (high-level function) is the driver. The two entities in connection

are the driver and the vehicle. The diagram is represented in Figure 15, in this diagram, a series

of behaviors are listed “turn on vehicle”, “control power”, “control direction” and so on. All

those behaviors are derived from the requirements. For example, “control direction” can derive

from a functional requirement that requires that the vehicle shall be able to change direction,

this requirement can be the child of a more general requirement the vehicle shall be able to be

driven. This is repeated in cascade. To show an easy example of messages between components

the “turn on vehicle” sequence is presented in Figure 16

Figure 15: Example of a use case specification using a sequence diagram(Friedenthal, 2014)

46

Figure 16: Example of Sequence Diagram(Friedenthal, 2014)

The driver sends a message “start vehicle” and the system replies with a message “vehicle on”.

Another important piece of information that can be modeled in this diagram is time, it goes

from the top to the bottom. The two bars represent the time the elements are active. Activity

diagrams can also express system behavior and specify the functions. Usually, it is used when

representing continuous behaviors. The same link activity to the requirement introduced can be

applied here. Note that not every action has to be connected to a requirement, same actions are

introduced based on system engineer knowledge or literature studies. Figure 17 represents the

ability to control power, the driver has to perform two actions “control accelerator position”

and “Control Gear Select” The system receives as input two object flows “accelerator com-

mand” and the “gear selected” to fulfill the “provide power” action. The activity ends when the

signal “ignition off” is sent by another activity.

47

Figure 17: Activity Diagram example(Friedenthal, 2014)

Use Cases, Activity Diagrams and Sequence Diagrams serve the purpose of describing how the

system must behave, as required by the project requirements. This group of diagrams, along

with the State Machine Diagram (not utilized in this project), considers the system as a black

box at this stage and enables the designer to define what is referred to as the system’s behavior.

Once this behavior is established, the component design phase can commence.

The component design phase marks the beginning of the actual modeling of the system archi-

tecture. At this stage, the designer perspective switches from a black box perspective to a white

box. The identification of components remains linked to the system's activities and functions

and the ultimate objective is to integrate components that fulfil the requirements and all together

are able to perform the function asked for by the stakeholder requirements. The same approach

utilized to derive behaviors from the requirements is adopted to derive components from those

behaviors and the performance requirement.

The decomposition of the system follows a hierarchical order, it is broken down into N subsys-

tems, which are divided into N sub-subsystems until the components are identified. The collec-

tive assembly of components must ensure the fulfillment of both the functions derived and the

system requirements, including performance requirements and constraints. In SysML, the sys-

tem breaks down in a hierarchical structure and can be facilitated through the use of a Block

48

Definition Diagram (BDD). To accomplish the action “provide power” in Figure 17 some com-

ponents are required. The selection of the components derives from literature studies or expe-

rience. Taking into consideration all the behaviors of the system, the decomposition of the ele-

ment can commence. In Figure 18 the example for the car, the action stated before is performed

by the power train block. Every component of the sub-system will perform one or more behav-

iors.

Figure 18: Example of a hierarchical structure in a BDD(Friedenthal, 2014)

The hierarchical decomposition shown in the BDD is still not capable of showing how each

subsystem operates for example, while the Power Train composition is clear, how the four ele-

ments can interact together to fulfill the “provide power” function is still unclear. These com-

ponents interact by exchanging materials information or torque and interfacing with one an-

other. To model the internal exchange of information within a system, the SysML language

provides the Internal Block Diagram. Figure 19 represents the IBD of the car’s power subsys-

tem, and the red rectangle represents the IBD of the Power Train component.

49

Figure 19: Example of IBD and its structure(Friedenthal, 2014)

Using the elements (ports, connectors, itemflows, parts etc) presented in Chapter 3.4.1 the in-

teraction between the components is shown. Port kind and number and itemflows choice rely

on the designer of the system. The same system can have different configurations depending

on who the designer is. The procedure presented for the power train has to be repeated for every

component of the system, until all the components are designed or until the level of detail re-

quired is reached.

3.5 System variability

The outcome of the second step is a fundamental structure that encompasses the three systems.

Now the objective shift is to develop a family of variants.

50

Figure 20: Third methodology step

Exploring various architectures and solutions of the system, during the conceptual phase, is

important because the decisions made during this phase, while not incurring immediate material

costs, have significant downstream impacts on the production process. Decisions made at this

stage commit substantial financial resources later in the process. This is the reason why, via the

generation of variants, it is possible to enhance system knowledge, thereby enabling a more

informed selection of the optimal solution.

To develop the variants, it is necessary to introduce all possible design solutions. Two choices

can be made, create a large number of systems in parallel, or, as this study proposes, leverage

a technique commonly used for generating product families, Product Line Engineering (PLE).

The nature of the traditional approach leads to spending more time or using more staff. Using

the latter approach to generate different variants from a single model can result in cost and time

savings. But a shift from the traditional PLE approach has to be made, rather than working on

a plethora of architectures of similar systems, identifying shared elements, and selecting the

feature from a catalog to generate a family of systems, the approach proposed uses fixed ele-

ments, such as requirements, functions and some components and a feature model of elements

can be changed to generate a variant of the same system.

A small introduction to PLE is presented below.

NOTE: Usually, in PLE terms used are "Product Line" and "Product"; however, these terms

can be translated as "system family" and "system" and in this work the last ones will be used.

51

The four typical processes are as follows:

• Define Product Line Feature Models (or Feature Catalogue): Features represent the

variability of member products derived from the product line. They are defined as dis-

tinguishing characteristics of a product that are shared with and understood by custom-

ers (ISO/IEC 26580:2021, n.d.). Features are modeled hierarchically and can be inter-

connected through requires and conflict relationships (Forlingieri & Weilkiens, 2022a).

Mandatory features are also allowed, primarily when they are parents of optional fea-

tures.

• Define Product Line MBSE Assets (or Shared Asset Supersets): To generate a sys-

tem, it is necessary to develop and model all the required assets (e.g., requirements,

architecture models, V&V). In a family system, it is important to distinguish between

common assets (shared across systems) and varying ones (specific to individual sys-

tems). These assets are linked to system features to systematically manage variabil-

ity(Forlingieri & Weilkiens, 2022a).

• Select Member Product Feature Configuration (or Bill-of-features): In this phase,

by selecting the desired features it is possible to create a feature configuration for dif-

ferent systems(Forlingieri & Weilkiens, 2022a).

• Derive Member Product MBSE Assets (or Product Asset Instances): In this activity,

feature configurations are translated into concrete, customized MBSE models tailored

to individual systems. The system’s components are filtered based on the selected fea-

ture configuration, thereby generating the system(Forlingieri & Weilkiens, 2022a).

As stated, the proposed approach differs from the traditional one. It will use the PLE ability to

easily generate different architectures from an initial set of elements, but rather than create a

product line (or system family), the objective is to identify a family of variants of the same

system. So, the activities list mentioned above is distinct for the approach used.

The feature catalog continues to represent which features can be selected, but there is no longer

a shared super asset because the assets belong to a basic architecture, the distinction is no longer

between shared and non-shared assets, but rather between varying and stable assets. The third

activity remains unchanged, but the selection of features determines which architecture is gen-

erated. Finally, models of various architectures are created, resulting not in a family of systems

but in a family of architectures for the same system. This approach is applied to the three sys-

tems: the aircraft and the two enabling systems, supply chain and manufacturing.

52

The PLE approach involves modifying the baseline architecture by introducing variability

points(Hummell & Hause, 2015), i.e. specific locations where the system can accommodate

different design solutions. The variation points are in the system architecture, so neither the

system requirements nor its core functions will change, the variability will be limited to the

components and their interconnections. Adding variation points and new elements in the system

model leads to the creation of a 150% model, this model is so named because it considers all

possible components, both fixed and variable. Through a selection of variability points a spe-

cific system variant is generated resulting in a 100% system, meaning a fully defined and real-

izable configuration.

Figure 21 provides a visual representation of the explained concept. The box on the left

represents the 150% model. Machine 1, which is part of the manufacturing system, has three

possible variants, which means that it can have three different structures, the same components

can be connected in different ways, or can perform the same process with different performance.

In the three generated variants (box on the right), each includes only one of the three

alternatives, resulting in a fully defined and operational final model.

53

Figure 21: Representation of PLE approach of a system model

Given their different compositions, these newly generated architectures will exhibit varying

overall system performance. Before selecting the optimal configuration, a thorough analysis of

these performance differences must be conducted.

In terms of best practice, the first step is to identify the points that may vary. The identification

of these points is dependent on the intended design, and in the case of the examined test, vari-

ability points are identified in processes, facilities, and materials. These points are sought within

the identified base architecture, once the variability points have been determined the model is

populated with additional blocks representing the variables to be introduced. Facilities are in-

corporated into the supply chain, possible processes are added, and potential materials are in-

troduced. By adding these elements, the base model is enriched with components that will not

be present in all variations, and, at the end of this phase, the model becomes the 150% model.

The selection is then entrusted to an external configurator, which is used to select the compo-

nents to be retained in a particular architectural variant. The configurator must enable the im-

plementation of rules to guide the selection of features, as without such rules, there is a risk of

selecting conflicting elements. Rules or relationships are modeled inside the feature model, two

features can be connected by a <<conflict>> relationship or <<requires>>, the first makes sure

that if one feature is selected another one is excluded, the second, if one feature is selected

others, are selected automatically(pure-systems GmbH, 2024).

These rules between the various features are illustrated in Figure 22. In the example in the

picture, the “Skin Aluminum Machining” feature requires that the material selected is Alumi-

num (Skin Aluminum feature), if selected all the features listed cannot be selected anymore.

54

Figure 22:Example of relations implemented in the feature model

Finally, the features implemented in the selector are linked to the 150% model and the compo-

nents in the system architecture. Through the selector, the features desired are chosen, the out-

come is a variant of the system architecture. This process is repeated for all the possible variants

until the ultimate result is a family of variants of the same system, which can then be analyzed.

3.6 Value-Driven analysis

This family of architectures is systematically evaluated to facilitate a comprehensive compari-

son among all architectural variations, to identify the one that best meets the stakeholders' re-

quirements.

55

Figure 23: Fourth methodology step

The process of selecting the most appropriate alternative is influenced by various criteria de-

fined by the stakeholders, which can include factors such as production cost, associated risks,

and aircraft performance. In this study, Multi-Attribute Utility Theory (MAUT) is employed as

the value-model technique to assess and identify the best alternative.

To carry out this evaluation, the methodology proposed in Donelli Giuseppa’s PhD thesis

(Donelli Giuseppa, 2024)is carried out. This methodology allows for the evaluation of systems

that consider both production and product parameters.

For the case considered, the product performance depends on the material used during the man-

ufacturing and the process. These two factors lead to different technical performances, like

mass, that can have an impact on the performance of all systems, like the overall fuel consump-

tion. The production line’s performance is evaluated based on risk, quality, cost, and time. Each

facility possesses a level of skill for a specific process, and the level of competence dictates the

performance, to consider the performance of the entire supply chain all the facilities selected

for that specific architecture variant must be taken into account. The MAUT value model usage

enables the concurrent coupling of these systems(Donelli, Boggero, et al., 2023b)(Donelli,

Ciampa, et al., 2023b). The criteria considered for the production domain have already been

stated, the product criteria is fuel consumption (linked to the HTP’s mass). All these criteria,

except for cost, are aggregated into a final Value. To all performance indicators, a specific

weight and a corresponding utility function are assigned. The weights reflect the relative im-

portance of each criterion, while the utility functions quantify the stakeholders' preferences

concerning each individual criterion (Ross, Rhodes, & Fitzgerald, 2005). Performance metrics

56

are scaled and then aggregated into a single dimensionless term, referred to as Value. This

Value is plotted as a function of cost, with the final graph illustrating the relationship between

the value of each variant and its associated cost. This graph represents the solution trade space.

The chosen solution is not necessarily the one with the highest Value or the lowest cost but

rather depends on stakeholder preferences. The analysis provides a foundation for stakeholders

to conduct a trade-off assessment, ultimately leading to the selection of the most suitable solu-

tion.

The figure presents two graphs. The graph on the left represents one of the metrics used to

calculate the final system value (quality), while the graph on the right illustrates the total value-

cost of the different variants. In this graph, the solution with the highest value achieves the best

overall performance. However, it should be noted that the best-performing solution is not nec-

essarily the one selected. Depending on stakeholder preferences or market demands, the chosen

solution may prioritize lower cost, higher quality, or a balanced trade-off between these factors.

Figure 24: Example of results of a MUAT analysis

The equations used to evaluate the performance of the production system are presented below.

Three contributors are presented in the equation, a fixed term, manufacturing term linked to the

competence of the supply chain to perform the processes selected and a transportation term.

𝐶𝑜𝑠𝑡𝑆𝐶 = 𝐶𝑜𝑠𝑡𝑓𝑖𝑥𝑒𝑑 + 𝐶𝑜𝑠𝑡𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 + 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒𝑆𝐶 = 𝑇𝑖𝑚𝑒𝑓𝑖𝑥𝑒𝑑 + 𝑇𝑖𝑚𝑒𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 + 𝑇𝑖𝑚𝑒𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛

57

𝑅𝑖𝑠𝑘𝑆𝐶 = 𝑅𝑖𝑠𝑘𝑓𝑖𝑥𝑒𝑑 + 𝑅𝑖𝑠𝑘𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 + 𝑅𝑖𝑠𝑘𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑆𝐶 = 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑓𝑖𝑥𝑒𝑑 + 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔

Equation 1: Production's performance equations(Donelli Giuseppa, 2024)

The fixed term relates to the fixed production time, quality, cost, and risk of all supply chain.

The second addend is linked to the assembly competencies of the selected processes, the higher

is the competence higher is the quality, and lower are cost, time, and risk. The third addend is

linked to the transportation system, how much it takes to get from A to B, cost and risk involved.

Quality is not affected by transportation. To calculate the transportation term the four kinds of

transportation systems are considered, by road, by railway by airplane and by boat.

The Value is calculated by the sum of these four criteria and the product criteria. The formula

is presented.

Value =∑ λiU(Xi)
N

i=1

Equation 2: Value equation

In which N is the number of criteria, 𝜆𝑖 is the weight and the U(Xi) is the attribute utility

function. (Donelli Giuseppa, 2024)

Through this methodology the alternative that satisfies the most the stakeholders' needs and

expectations is identified, ensuring that the final system architecture is balanced between pro-

duction performance, aircraft performance, and cost considerations. This approach helps in the

decision-making process.

58

4 Methodology Implementation

The processes of the S4S framework, in conjunction with the methods outlined in Chapter 3

for achieving the concurrent conceptual design of aircraft, manufacturing, and supply chain

systems, can be executed through either a document-based or a model-based approach. The

document-based approach prevails as the predominant method employed in the industrial sec-

tor for the management of requirements and information, relying on the creation of textual

documents, reports, and other materials to represent information at a given point in time. These

documents are shared both within the company and with system stakeholders. While the func-

tionality of this approach is not contested, it presents a critical limitation, due to the very nature

of documents, they become outdated as soon as they are saved document approach has at least

3 major limitations:

• Updated documents do not automatically change other related documents, so they need

to be updated manually. This process can lead to errors, omissions, or misunderstand-

ings, especially when done by different people.

• Updated documents are shared via email or other communication channels. However,

changes made by one person are not always visible to others working on different parts

of the same document. This can lead to inconsistencies even within a single document.

• The continuous updating process results in a huge increase in the number of documents

generated.

Although the use of shared cloud-based files has mitigated some issues mentioned, particularly

those related to real-time modification by more users, the limitations of the document-based

approach persist.

Model-based approach is an emerging method for managing a system throughout its lifecycle.

It is often referred to as Model-Based Systems Engineering (MBSE). Rather than relying on

documents, this approach is based on a shared model that is updated in real time therefore

information is interconnected and represented within the model itself.

The key benefit of this approach is that all information is contained within a single, authorita-

tive model serving as the primary source of truth. Any modifications made to the model are

automatically updated across the system ensuring that all stakeholders have an up-to-date

59

representation of the system and minimizing consistency errors caused by working with out-

dated documents. The model-based approach employs diagrams, schematics, and flowcharts

to represent information providing a clear and easily interpretable depiction of the system mak-

ing it particularly suited for representing large and complex models, such as those found in the

aerospace sector. Furthermore, the interconnection of tools enabled by this approach enhances

requirement traceability by linking requirements to system functions and components. Finally,

it facilitates automation simulations and optimization analyses. So, it helps to reduce the overall

time required for system validation.

This next section focuses on presenting the tools employed in the application case discussed in

Chapter 5 leveraging MBSE. The picture below schematically presents the tools used for each

step of the methodology.

Figure 25: Tools used in each step of the methodology(DLR, 2020; IBM, 2024b, 2024a;
pure-systems GmbH, 2024)

4.1 Tools supporting system specification and
architecting

As outlined in Figure 25, the implementation of these two phases is supported by a range of

commercially available tools, these tools are not proprietary but rather consist of solutions cur-

rently on the market. Their integration is managed by an Environmental Workshop Manager,

it facilitates seamless communication and mutual updating among them.

60

Stakeholders' needs are collected using an Excel file and subsequently imported into the web-

based DOORS Next Generation (DNG) software by IBM(IBM, 2024a). Within this platform,

requirements are directly defined from the stakeholders’ needs and managed. DNG facilitates

efficient creation, organization, hierarchical structuring, and derivation of requirements state-

ments. The software automatically generates a unique ID attribute for each requirement to pre-

vent consistency errors, the remaining attributes have to be defined within the software itself

by the user. The designers can specify the attributes that she/he find best. In the analyzed case

study, the attributes used are those presented in Table 3 in Chapter 3.3.

Figure 26: Requirement tree inside IBM Doors Next Generation

Relationships between different requirements can be visualized directly within the software, in

fact, DNG facilitates the generation of tree diagrams that illustrate these relationships, starting

from one or more requirements, this feature enhance traceability and comprehension of de-

pendencies. In Figure 26 an example of tree diagram is presented, the plus button close to the

requirements is a sign that the tree can be further extended.

61

Additionally, requirement statements can be directly linked to system components, functions,

or diagrams modeled in IBM Rhapsody through an OSLC connection.

The system architecture is developed using the IBM Rhapsody client(IBM, 2024b), which is

based on SysML version 1. As previously introduced, IBM Rhapsody is integrated with DNG

for requirement import and traceability. Rhapsody allows users to define the modelling lan-

guage required for system architecture representation, and by selecting the appropriate lan-

guage and specifying the user's level of expertise the software automates various operations,

assisting designers in minimizing errors. Built-in guidance provides step-by-step instructions

for correctly modeling a system, following the methodology introduced and SysML rules.

Figure 27: Example of how IBM Rhapsody menus change depending on the diagram in use.
From left to right the menus presented are BDD, IBD, Use Case, Activity

62

IBM Rhapsody also supports the implementation of the Product Line Engineering (PLE) ap-

proach, the generated baseline architecture is expanded, using SysML formalism, to represent

the 150% model. Through the Pure::Variants tool, variability can be applied to the system.

4.2 Tools supporting system variability

Pure::Variants is a software solution that facilitates the generation of a feature model(pure-

systems GmbH, 2024). This client allows users to define relevant features and establish rela-

tionships among them, such as required, conflicts, and parent-child dependencies. In the feature

model all the features of the system are represented.

Figure 28: Feature Model design in Pure::Variants, features, and relationships are displayed.

The selection of specific features enables the transformation of the 150% model into a 100%

model, each selection is stored within a dedicated variant model, and multiple variant models

can be generated. The matrix representation facilitates the identification of previously created

models, increasing the ability to detect errors or duplicated variant models.

63

Figure 29: Matrix overview of feature selection for different variants

The feature model is applied to the 150% model through an integration tool available in IBM

Rhapsody, this tool has the ability to link system elements modelled in Rhapsody to specific

features. As a result, the number of 100% models generated corresponds to the number of de-

fined variant models.

Figure 30: Pure::Variants integration tool present in IBM Rhapsody

64

4.3 Tools supporting evaluation and decision
making

To implement the methodology described in Section 3.6 a series of tools are used. Python-

based codes implement the equation for the value-model theory and calculate the performance

of the production domain and the product domain.

Figure 31: The four codes implemented by the DLR to calculate the value of a S4S architec-
ture

The four codes presented in Figure 31 have been already implemented by the DLR Institute of

System Architectures in Aeronautics. If the reader desires a better understanding of the tools

Donelli Giuseppa’s Thesis can provide more inside. In this work a small introduction is pre-

sented.

Python codes are connected to exchange information to generate the value-driven trade space

and achieve the automatic execution of these methodologies. CPACS (Common Parametric

Aircraft Configuration Schema), developed in Hamburg by the German Aerospace Center, is

the common language that enables communication between the domains. It is an XML file that

saves the most important properties of the aircraft, but it can be expanded using toll-specific

branches. The Python code can extract input from CPACS and upload outputs in the same file

and since all the CPACS communicate in the same language they can be connected in a work-

flow.

The workflow is implemented in RCE (Remote Component Environment)(DLR, 2020), who

can connect the different domains and recreate the workflow needed to execute the analysis.

65

Figure 32: An example of connection of tools in RCE

VALORISE, an interactive dashboard developed by DLR, stands for 'Value-driven trade space

visualization, exploitation and assessment'. It supports the modelling of value-driven decision-

making processes, facilitates analysis of real-time strategic scenarios and explores value-driven

trade spaces to identify robust solutions. VALORISE is an interactive dashboard that decision-

makers can use directly to identify the best solution. It can also be used as an executable tool

integrated into a tool chain to explore many weight combinations and/or utility functions.

Decision-makers are able to interactively draw utility functions in order to represent their ex-

pectations with respect to each selected attribute. They can also set several weight combina-

tions in order to analyze the scenario of interest. Many scenarios can then be investigated in

real-time in VALORISE.

66

Figure 33: VALORISE Dashboard settings

67

5 Methodology Application

The methodology proposed in Section 3 and the tools described in the previous section are

applied to an aeronautical case study to demonstrate the advantages of using such a methodol-

ogy. In this section, first, the assumptions of this case study are provided and then the results

are discussed.

5.1 Introduction to the application test case

The case study refers to the design, manufacturing, and supply chain of a horizontal tail plane

(HTP) of a 90-passenger regional aircraft, whose main characteristics of the aircraft are re-

ported in Figure 34 and the main parameters are reported in Table 4.

Figure 34:Three views and main characteristics of the reference aircraft(Donelli Giuseppa,

2024)

68

Table 4:Reference Aircraft Main Parameters

The HTP under consideration is composed of four kind of structural components, skin panels,

stringers, ribs and spars. The whole architecture is made up of 2 panels, 30 stringers, 2 spars

and 20 ribs.

The S4S framework involves the supply chain and the manufacturing system as enabling sys-

tems and HTP as product or system of interest. The variability of the system is introduced

considering different materials, processes and facilities for the manufacturing of the system. In

Table 5 are reported the exact numbers.

Table 5: Numbers of materials, processes, and enterprises for each component.

69

The possible materials for each component are illustrated in Table 6.

Table 6: Possible materials choice for each component.

The possible processes for each component are, instead, illustrated in Table 7.

Table 7: Possible process choice for each component.

The facilities are divided into three categories. Five are OEM sites, seven of them are Suppliers

Tier 1 and nine are Suppliers Tier 2. For each of them, position, competences and processes

available are known.

70

The supply chain is responsible for combining all the components to deliver the final product.

In the case under consideration, three main assembly phases are considered. The first is to join

stringers and skin panels. The second is the main assembly line where all the components are

joined together, and the final product is the HTP. The last phase is the assembly of the HTP to

the aircraft. Different processes can be used to perform the assembly and different facilities.

However, in this test case, the OEM site 1 is the only facility that will perform the assembly,

the assembly processes are fixed and will not change.

Following the methodology presented in Section 3, first the requirements are presented, fol-

lowing the base architecture is design and the variability is introduced to the system, finally

the best solution is found as a result of the MAUT analysis.

5.2 Requirement

In Section 3.3 is introduced the methodology to translate stakeholders’ needs into stakeholders’

requirements and then derives system requirements. In this section, the methodology is applied

to the test case under consideration. First needs and stakeholders are presented, then the re-

quirements are derived, and finally, requirements expression is imported into IBM Rhapsody

to be connected to system components and behaviors.

Stakeholders have been identified through a combination of interviews and literature research.

Figure 35 groups the stakeholders involved and shows them in a hierarchy. They are part of

the production of the system, or they have an interest in the product, also, since the HTP is part

of the aircraft stakeholders linked to the whole aircraft are identified, such as passengers or

airlines. For the OEM, different sections of the company are shown, each with different inter-

ests. In addition, Figure 36 lists and identifies the needs discussed, using an identification code

(ID).

71

Figure 35: Stakeholders List

72

Figure 36: Stakeholders Needs and their Identification number

73

The identified needs are then translated using the methodology previously presented. Within

IBM Doors, requirements are derived from needs following the rules and patterns introduced

in the methodology. In this software, it was decided to use a screen displaying all the predefined

type attributes. In column 5 from left, the needs from which each requirement originates are

displayed. If a requirement is not directly referable to a need but rather to a parent requirement

this relationship is shown in the same box as the needs.

Figure 37: Requirement view inside IBM DOORS with attributes

The text of the requirement is highlighted in different colors to echo the requirement patterns

presented in Table 2. Green represents the system to which the requirement refers, red is the

function, yellow is the condition, and brown is the performance.

The visualization of the requirements hierarchy is possible through the visualization in Figure

38, in the image requirement 1790 is the parent of requirements 1792 and 1724, this is dis-

played by the arrow on the side of the requirement. A better visualization is possible through

the tree view that can be called up within the software, also this option enables the possibility

of displaying the links and relationships between requirements, Figure 26 shows this mode.

74

Figure 38: Requirement view inside IBM DOORS

For the supply chain the requirements sought concern OEMs and suppliers, for the manufac-

turing system the requirements involve the system itself and the machinery that makes it up. A

further level of detail is not necessary for the purposes of this exercise, but for a real system

the systems must be further specified and consequently the requirements reach a higher level

of detail.

Once the requirements formulation is finished, the system architecture can begin. In this spe-

cific case, to start the next phase, it was decided to import the requirements into IBM Rhapsody

and to model the relationships between requirements and system components within this soft-

ware.

75

5.3 Behavior and Composition

Once the requirements have been translated from the needs and linked to other requirements

derived it is possible to start construct the architecture of the system. In this section the meth-

odology introduced in Section 3.4 is exploited for the system under consideration.

The first step is to delimit the system using the Use case Diagram to identify the context, actors,

and use case. The diagram is shown in Figure 39.

Figure 39: Use Case Diagram for the S4S context

The actors considered are part of the staff, customers, or groups of people who interact with

the system in one or more moments of the system life cycle. That is the reason why the

76

operators, companies responsible for the disposal of the system at the end of its life

(EOL_company), and the maintenance staff are considered. However, the focus is on the sup-

ply chain, divided into OEM and Suppliers Tier 1 and 2, who have the function to produce the

aircraft. Three requirements are considered to show how from the Use Case, activities, com-

position of the system, and connection between components can be achieved. The functional

requirement 1699 “the supply chain shall share data of production with suppliers” is satisfied

by the use of a sequence diagram that shows how messages between elements of the supply

chain allow to sharing of production information. The functional requirement 1797 “the supply

chain shall be able to produce the aircraft” is used to demonstrate that from a requirement it

is possible to derive information about the structure of the system. Finally, requirement 1790

“the manufacturing shall produce high quality components” is used to demonstrate how it is

possible to have information about specific components of the system. Figure 40 summarizes

these three processes in 3 flows that start from the producing use case.

77

Figure 40: Summary of the three processes used to derive the architecture

5.3.1 Sequence Diagram

As introduced in Section 3.4, functional requirements are linked to the use case to assign a

function that the system must perform to satisfy stakeholders’ expectations. In this case the

supply chain, who is the actor in the production use case, has to be able to interact with and

share information about production with suppliers, transport system and OEM. The sequence

diagram represents the message that the system components share to update the information in

their possession.

78

Figure 41: Sequence Diagram showing the messages exchanged between supply chain, man-
ufacturing, and actors

5.3.2 System structure

The left part of the diagram in Figure 40 is, instead, used to show the procedure to structure

the system. The derivation of requirement 1797 into requirement 1799 and 1800 has been done

in the requirement phase. From these two requirements it is possible to understand the two

functions that the supply chain has to perform. It is possible to build an activity that shows the

actions that the systems must implement to satisfy the requirements. Figure 42 shows the dia-

gram.

79

Figure 42: Activity Diagram that specifies the producing use case

Figure 43: BDD of all the activities inside the producing use case linked to the requirements

from which they derive

80

Figure 44: Example of callBehavior

The swimlanes are used to represent who is responsible for implementing specific actions. In

this case, the supply chain is responsible for implementing the actions in the left box and the

manufacturing system the actions on the left. The fork inside the actions represents a particular

action called “callBehavior”, which represent an action that is used more than once. Every

“callBehavior” is represented by another activity diagram, an example is given in Figure 44

where the “supplier receiving order” is displayed. The whole activity diagram is able to repre-

sent the actions to build the HTP (last action needed is the assembly of the components) while

the ability to produce the specific components are assigned to the manufacturing. From this

activity and considering the actions inside the “callBehavior” is possible to identify how the

system is structured. The BDD is shown but the Internal Block Diagram in Figure 45 is actually

more interesting since it is possible to recognize the connection between action and component.

81

82

Figure 45: IBD of all S4S

The diagram is to be read from left to right, the first block represents the components of the

supply chain who receive the order to manufacture the component, this block is linked to the

action “supplier receive order” in the activity diagram. The second block represents the begin-

ning of production by the manufacturing system. Only the process used is shown in this dia-

gram, the components of the process are displayed in the internal block diagram of the process.

The manufacturing system is responsible for acting “manufacturing X”. Then the transportation

sub-system is responsible for executing the action “Trasport to OEM” and finally the OEM,

who is part of the supply chain system, is responsible for the assembly.

5.3.3 System components

The right arm of the diagram in Figure 40 is used to demonstrate how a requirement can lead

to the selection of a specific component. The two requirements 1728 and 1722 are used to link

requirement 1790 to the rest of the structure. These two requirements are linked to two actions

inside the callBehavior “produce component”, which is part of the “Produce HTP” presented

83

in Figure 42. From these requirements and other performance requirements it is possible to

select two components for the Aluminum Machining process, the CNC machine, which can

achieve the performance required, and the Quality control machine which can perform the

quality action.

Figure 46: Produce component activity diagram showing the link between requirements and
actions.

84

Figure 47: IBD of manufacturing aluminum machining ribs showing the link between actions
and components and performance requirements

These three examples show how the methodology is applied for the system under considera-

tion. Once the basic architecture is complete the variability is introduced.

Figure 48: Aircraft System Architecture

85

Figure 49: Supply Chain System Architecture

Figure 50: Manufacturing System Architecture

86

Figure 51: Basic architecture in which the behavior of the system is modeled.

5.4 150% model and variations

As introduced in the previous section, the basic architecture of the system has been found. In

this section, the other variable elements of the supply chain and manufacturing system are

added.

In the basic architecture, OEM site 1 is responsible for the manufacturing of all components.

The material used for all components is aluminum and the process is aluminum machining. In

the test case under consideration, the requirements do not vary and neither do the system func-

tions, but only the blocks that perform those functions. The first source of variability to be

considered concerns the supply chain. To achieve the 150% model, all facilities, five sites for

OEM, seven for Supplier Tier 1, and nine for Supplier Tier 2, are part of the supply chain.

Therefore, the supply chain's BDD is modified by considering the new blocks representing the

different enterprises. The IBD of the system also changes and the connections between the

various ports within the supply chain system explode in number. Figure 52 below shows how

the two diagrams vary from the basic architecture.

87

Figure 52: Supply chain structure considering all possibilities

88

Figure 53: Example of IBD for the supply chain

The same is to be done with the processes in the manufacturing system. In which the processes

selected for each component vary. The material change is not visible within the IBD s4s as the

materials are characterized within each process. Selecting the process to be used automatically

selects the material to be utilized. Figure 54 shows the BDD of the manufacturing system.

89

Figure 54: Manufacturing system BDD considering all processes

The 150% model is thus achieved. To derive N system variables, the feature model must be

modeled. The model is constructed, using the two relationships introduced in section 3.5, by

selecting the process for each component automatically the material is selected and the enter-

prises that cannot carry out the process are eliminated. Figure 55 shows the model.

90

Figure 55: Feature Model and the 18 variants selected for the test case

91

However, the feature model can also be used in a more classical manner in which first the

material is selected, then the process and finally the enterprise. The use of relations still allows

a possible structure to be arrived at from any given feature. If an incorrect feature is selected,

the model automatically deselects the error.

For the case under consideration, thousands of solutions are possible but only 18 are consid-

ered. The only care taken in the selection is that all processes and materials are selected at least

once and that at least one variant of the system shows a supply chain consisting only of OEMs

and one variant in which the supply chain consists only of suppliers. Figure 56 shows the dif-

ferent variants.

92

Figure 56: The 18 variants selected to be evaluated

Before the variants of the architecture can be displayed, each feature must be connected to the

variable elements of the model 150%. The connection must be made with the blocks in the

BDD representing the supply chain facilities and the connectors inside the IBD representing

the information flows. This is achieved using the Pure::Variants integration tool in IBM Rhap-

sody, which precisely allows the variants to be connected to the system elements and the de-

sired variant model to be selected.

Following the selection of the variant model, the elements connected to the non-selected fea-

tures are removed from the architecture. One example of an architecture variant is presented in

Figure 57: Model 150% after the Variant Model is applied.

93

Figure 57: Model 150% after the Variant Model is applied

In order to derive all architecture, it is no longer necessary to connect features to elements, but

to repeat the variant model selection procedure.

Once all architectures are derived, they can be analyzed using the methodology presented in

Section 3.6.

5.5 MAUT analysis

Depending on the variable to be selected, the workflow input file varies. This is why 18 differ-

ent files are created, the only thing that varies within the CPACS file input are the vectors that

refer to the processes, and thus the materials selected for the variant. Each process is associated

with a vector containing twenty-one elements, one per facility. The vector is null if that process

is unused in the selected variant, it has only one non-null component, located at the position

that identifies the facility used, to indicate that the process is used. The first five positions of

the vector are for OEM, the next seven for Supplier Tier 1, and the last nine for Supplier Tier

2. At the end of the workflow, the data is retrieved from the output CPACS file and uploaded

to Excel to analyze the results. Five diagrams are shown below, the first is the value associated

with the fuel consumption of the aircraft as a function of cost. The next three diagrams are the

94

values concerning the supply chain as a function of cost (risk, quality, and time), and finally

the last one shows the total value as a function of cost. The variants with the best fuel con-

sumption risk, quality, and time are highlighted respectively by black, green, red, and blue for

better visualization.

Figure 58: FC Value-Cost Diagram

Figure 59: Risk Value-Cost Diagram

1
2 3

4

5
6

7

8
91011

1213

14

15
1617 18

0

0,01

0,02

0,03

0,04

0,05

0,06

20 21 22 23 24 25 26 27 28 29 30

FC Value [-]

Cost [-]

Fuel Consumption Value-Cost Diagram

1

2

3

4

5

6

7

8

9

10
11

12

13

14
15

16

17

18

0,73

0,74

0,75

0,76

0,77

0,78

0,79

0,8

0,81

0,82

0,83

20 21 22 23 24 25 26 27 28 29 30

Risk Value [-]

Cost [-]

Risk Value-Cost Diagram

95

Figure 60: Time Value-Cost Diagram

Figure 61: Quality Value-Cost Diagram

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16
17

18

0,72

0,74

0,76

0,78

0,8

0,82

0,84

0,86

0,88

20 21 22 23 24 25 26 27 28 29 30

Time Value [-]

Cost [-]

Time Value-Cost Diagram

1

2
3

4

5

6
7

8

9

10
11

12

13
14

15

16

17

18

0,83

0,84

0,85

0,86

0,87

0,88

0,89

0,9

20 21 22 23 24 25 26 27 28 29 30

Quality Value[-]

Cost [-]

Quality Value-Cost Diagram

96

Figure 62: Value-Cost Diagram

In the eighteen cases analyzed, solution 1, in which all components are made of aluminum by

machining and all processes are carried out by OEM site 1, is the one with the highest value.

From the data available the OEM has high skills, and this translates into low risk, high quality,

and low time plus having assumed all assembly done by this facility the transport time and

costs are zero helping. For these reasons, these results were expected, with variant number 1

being the best solution for the model used. However, it should be noted that other solutions can

be considered. Solution 17, in which all processes are carried out by the OEM but in different

plants presents a higher quality and fuel consumption value, stakeholders might opt for this

solution if they value these factors more than others. Solution 8 is also interesting and has a

similar total value to the first solution with higher risk and fuel consumption.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

0,64

0,65

0,66

0,67

0,68

0,69

0,7

20 21 22 23 24 25 26 27 28 29 30

V
al

u
e

[-
]

Cost [-]

Value-Cost Diagram

Area of Best solutions

Area of Worst solutions

97

6 Conclusion
This section summarizes the results found and suggests activities to be addressed to deepen the

research.

6.1 Summary

The proposed thesis discloses a methodology, pertinent to the field of systems engineering, to

be applied to the conceptual design phase of a system. The aim is to reduce the costs, design,

and production times of an aeronautical system and its environmental impact.

To enable this, the methodology presents two innovations:

• A concurrent design phase extended to three systems: System of Interest and two sys-

tems related to the production of the system components, namely supply chain and

manufacturing. This approach contrasts with the traditional sequential approach.

• Secondly, through the joint use of MBSE and PLE-related dictates, combining them to

quickly and efficiently generate the system architecture according to stakeholder re-

quirements and also generating the variables to be analyzed to provide as much infor-

mation as possible to make a considered choice.

The conceptual design phase of the three systems considered, aircraft, manufacturing, and sup-

ply chain, follows the five processes depicted in Figure 9. Of these five, the methodology

touches on four, namely System Specifications, System Architecture, System synthesis, and

exploration.

Figure 9: Processes included in the S4S framework

98

• For requirements, the standard is followed, the spectrum of stakeholders to be consid-

ered is not limited to SoI, but also embraces the two enabling systems. Thus, not only

are the goals, wishes, limits, and constraints of the SoI considered but also those of the

other systems. This results in unfeasible solutions being automatically excluded and

also tightens the relationship between the stakeholders of the three systems.

• Following the stipulation of the requirements, the architecture comprising the three sys-

tems is identified. To search for it, the requirements were considered as a pivot for

development: first by considering functional requirements to search for high-level func-

tions that the system must perform, then through lower-level requirements to identify

more specific behaviors to be performed by components or subsystems. Finally,

through performance requirements or design constraints select components with the

required performance. Once the basic architecture is reached, it is updated by consid-

ering all the variable elements of the system, reaching what is called the 150 percent

model.

• After that, variants are generated using the PLE approach. A feature model with all

variable features is modeled, and variant models of the different architectural variants

of the system are generated and bound to the model 150%. The result is N 100% mod-

els.

• Finally, the system variants are evaluated considering product and production perfor-

mance. This is done by considering several criteria, weighed and aggregated into a sin-

gle value, which is then plotted in a dimensionless value-cost space.

To test the soundness of the methodology, a case study is considered, in which the product

developed, the horizontal tail plane of an aircraft, its supply chain, and the manufacturing of

its components are taken into account. The four components are ribs, spars, stringers, and skin

panels and constitute all the structural elements of the system considered. Variability is added

by considering a multitude of different materials, processes, and facilities. Of the thousands of

possible solutions, eighteen are analyzed through a MAUT analysis. To evaluate the best solu-

tion, the competencies and position of the companies are taken into account, as well as the fuel

consumption of the aircraft.

99

6.2 Finding and next steps

The selected case study made it possible to verify the present methodology. In fact, the results

showed not only variants that meet all stakeholder requirements, but also variants that, respect-

ing the constraints imposed by supply chain and manufacturing, should not be delayed due to

redesign or process infeasibility. Consequently, once the most suitable variant has been chosen

according to stakeholder objectives, it can be produced without further delay. The contribution

of the PLE approach has been vital in speeding up modeling time and providing numerous

variants to choose from.

However, some improvements can be considered in future research. In setting up the model,

no experts from the manufacturing system were involved and, in general, little data is available

on processes and production lines. Future work can address this problem by initiating conver-

sations and collaborations with experts in the field to improve the model.

Furthermore, although the PLE approach was instrumental in speeding up the timeline, feature

selection for each variant model was done manually. This constitutes a bottleneck in the pro-

cess. Future work can try to solve this problem by proposing a tool or extension to automate

the creation of variant models, so that all possible variants can be generated based on the rela-

tionships between features. Another possibility is to develop a methodology that allows certain

solutions to be excluded upstream based on the specific knowledge of each facility.

100

7 References
AWS. (n.d.). What is MBSE and why do industries start to use? . Model Based Systems Engi-

neering (MBSE) on AWS: From Migration to Innovation. (n.d.)..). Https://Docs.Aws.Am-

azon.Com/Whitepapers/Latest/Model-Based-Systems-Engineering/What-Is-Mbse-and-

Why-Do-Industries-Start-to-Use.Html.

Bajaj, M., Friedenthal, S., & Seidewitz, E. (2022). Systems Modeling Language (SysML v2)

Support for Digital Engineering. INSIGHT, 25(1), 19–24.

https://doi.org/10.1002/inst.12367

Benina, F., Benlahrache, N., Belala, F., & Kacem, A. H. (2023). Modélisation et Analyse des

Systèmes Cyber-physiques : Cas du Système de Surveillance Continue du Glucose.

http://ceur-ws.org

Boggero, L., Ciampa, P. D., & Nagel, B. (2020). The application of the agile 4.0 MBSE archi-

tectural framework for the modeling of system stakeholders, needs and requirements.

Box George E.P., D. N. R. (1987). Empirical Model-Building and Response Surfaces (Wiley,

Ed.).

Broodney, H., Dotan, D., Greenberg, L., & Masin, M. (2012). 1.6.2 Generic Approach for

Systems Design Optimization in MBSE1. INCOSE International Symposium, 22(1), 184–

200. https://doi.org/10.1002/j.2334-5837.2012.tb01330.x

Bussemaker, J. H., Boggero, L., & Nagel, B. (2024, July 29). System Architecture Design

Space Exploration: Integration With Computational Environments and Efficient Optimi-

zation. AIAA AVIATION FORUM AND ASCEND 2024. https://doi.org/10.2514/6.2024-

4647

Canis, B. (2011). CRS Report for Congress The Motor Vehicle Supply Chain: Effects of the

Japanese Earthquake and Tsunami The Motor Vehicle Supply Chain: Effects of the Jap-

anese Earthquake and Tsunami Congressional Research Service. www.crs.gov

101

Clements, P., & Northrop, L. (2001). Software Product Lines: Practices and Patterns.

Springer.

Cloutier, R. , B. M. , & L. D. (2010). MBSE in support of complex systems engineering.

INCOSE International Symposium, 1767–1779.

DLR. (2020). Official RCE website. Available online at https://rcenvironment.de/.

Donelli, G., Boggero, L., & Nagel, B. (2023b). Concurrent Value-Driven Decision-Making

Process for the Aircraft, Supply Chain and Manufacturing Systems Design. Systems,

11(12). https://doi.org/10.3390/systems11120578

Donelli, G., Ciampa, P. D., Mello, J. M. G., Odaguil, F. I. K., Cuco, A. P. C., & van der Laan,

T. (2023b). A Value-driven Concurrent Approach for Aircraft Design-Manufacturing-

Supply Chain. Production and Manufacturing Research, 11(1).

https://doi.org/10.1080/21693277.2023.2279709

Donelli, G., Mello, J. M. G. D., Odaguil, F. I. K., Van Der Laan, T., Boggero, L., & Nagel, B.

(n.d.). Value-driven Tradespace Exploration for Aircraft Design, Manufacturing and Sup-

ply Chain.

Donelli Giuseppa. (2024). Systems Engineering holistic approach for aircraft, manufacturing

and supply chain concurrent design. University of Naples.

Dutta Banik, P., & Sengupta, Dr. S. (2024, October 9). Compare and Analysis MBSE Benefits

with Document-Centric Traditional System Engineering Approach. Proceedings of the

International Conference on Industrial Engineering and Operations Management.

https://doi.org/10.46254/wc01.20240082

E. Freund. (2005). INTERNATIONAL ISO/IEC STANDARD 15288:2002 systems engineering-

system life-cycle processes.

Engineering, P. L. (2022). What is Product Line Engineering? Https://Productlineengineer-

ing.Com/Resources/What-Is-Product-Line-Engineering/.

Engineering Standards Committee of the IEEE Computer Society, S. (2011). ISO/IEC/IEEE

29148:2011(E), Systems and software engineering — Life cycle processes — Require-

ments engineering. www.iso.org

102

Estefan, J. A. (2007). Survey of model-based systems engineering (MBSE) methodologies.

Incose MBSE Focus Group, 25(8), 1-12.

Estefan Jeffrey. (2011). Methodology and Metrics Activity: Overview, Update, and Breakout

Agenda. INCOSE International Workshop.

Flightpath 2050. (2011). Flightpath 2050 : Europe’s vision for aviation : maintaining global

leadership and serving society’s needs. Publications Office.

Forlingieri, M. (2022, February 23). The four dimensions of Variability and their impact on

MBPLE: How to approach variability in the development of aircraft product lines at Air-

bus. ACM International Conference Proceeding Series.

https://doi.org/10.1145/3510466.3511275

Forlingieri, M., & Weilkiens, T. (2022a). Two Variant Modeling Methods for MBPLE at Air-

bus. INCOSE International Symposium, 32(1), 1097–1113.

https://doi.org/10.1002/iis2.12984

Friedenthal, M. & S. (2014). A Practical Guide to SysML The Systems Modeling Language.

Gedell, S., & Johannesson, H. (2013). Design rationale and system description aspects in prod-

uct platform design: Focusing reuse in the design lifecycle phase. Concurrent Engineer-

ing, 21(1), 39–53. https://doi.org/10.1177/1063293X12469216

Gore, A. , L. R. , V. W. A. , & S. B. (2020). The digital twin and beyond: The evolution of

MBSE in the era of smart systems. In Journal of Systems Engineering (Vol. 23, pp. 145–

159).

Ryan, M., & Wheatcraft, L. (2022). Guide to Writing Requirements. http://www.incose.org

Heydari S.A. (2023). Model-Based Systems Engineering (MBSE) for Complex Engineering

Projects. Management Strategies and Engineering Sciences.

Holt, J. , & P. S. (2010). Modelling enterprise architectures. Springer.

Hummell, J., & Hause, M. (2015). Model-based Product Line Engineering - enabling product

families with variants. 2015 IEEE Aerospace Conference, 1–8.

https://doi.org/10.1109/AERO.2015.7119108

103

IBM. (2024a). BM Engineering Requirements Management DOORS. Software for require-

ments management. Version 9.7: IBM Corporation. Available online at

https://www.ibm.com/.

IBM. (2024b). IBM Engineering Systems Design Rhapsody. Software for systems and software

development. Version 9.0: IBM Coroporation. Available online at https://www.ibm.com/.

International.

INCOSE. (2021). Product Line Engineering: Managing Variability and Complexity. Interna-

tional Council on Systems Engineering (INCOSE).

INCOSE. (2022). Model-Based Systems Engineering in Aerospace: The Boeing 787 Case

Study. International Council on Systems Engineering (INCOSE).

INCOSE. (2023). INCOSE systems engineering handbook (John Wiley & Sons, Ed.).

ISO/IEC 26580:2021. (n.d.). Software and systems engineering — Methods and tools for

the feature-based approach to software and systems product line engineering.

Jorgensen, R. (2011). Defining Operational Concepts using SysML: System Definition from

the Human Perspective. INCOSE International Symposium, 21(1), 3005–3138.

https://doi.org/10.1002/j.2334-5837.2011.tb01307.x

J.S. Topper N.C. Horner. (2013). Model-Based Systems Engineering in Support of Complex

Systems Development. Johns Hopkins APL Technical Digest, 32, 419–432.

London, B. (2011). A Model-Based Systems Engineering Framework for Concept Develop-

ment. MIT.

Madeira, R. H., de Sousa Pinto, D. H., & Forlingieri, M. (2023). Variability on System Archi-

tecture using Airbus MBPLE for MOFLT Framework. INCOSE International Sympo-

sium, 33(1), 601–615. https://doi.org/10.1002/iis2.13041

Madni, A. M., & Sievers, M. (2018). Model‐based systems engineering: Motivation, current

status, and research opportunities. Systems Engineering, 21(3), 172–190.

https://doi.org/10.1002/sys.21438

104

Matsuo, H. (2015). Implications of the Tohoku earthquake for Toyota׳s coordination mecha-

nism: Supply chain disruption of automotive semiconductors. International Journal of

Production Economics, 161, 217–227. https://doi.org/10.1016/j.ijpe.2014.07.010

Mocenco, D. (2015). SUPPLY CHAIN FEATURES OF THE AEROSPACE INDUSTRY

PARTICULAR CASE AIRBUS AND BOEING. DOAJ (DOAJ: Directory of Open Ac-

cess Journals).

Paredis Christiaan. (2011). Model-Based Systems Engineering: A Roadmap for Academic Re-

search.

pure-systems GmbH. (2024). Pure Variants. Software for variant management. Version 5.4:

pure-systems GmbH.

R. Karban T. Weilkiens R. Hauber M. Zamparelli R. Diekmann A.M. Hein. (2011). MBSE

Initiative – SE2 Challenge Team: Cookbook for MBSE with SysML.

Ramos, A. L., Ferreira, J. V., & Barcelo, J. (2012). Model-Based Systems Engineering: An

Emerging Approach for Modern Systems. IEEE Transactions on Systems, Man, and Cy-

bernetics, Part C (Applications and Reviews), 42(1), 101–111.

https://doi.org/10.1109/TSMCC.2011.2106495

Siddique, I. M. (2025). MBSE Implementation in Small Satellite Systems: Rationale for Adop-

tion over Traditional Document-Based Systems Engineering. International Journal of

Geoinformatics Science and Technology, 1(1), 1–13.

https://doi.org/10.46610/IJGST.2025.v01i01.001

Springer. (2023). Systems Engineering and Product Line Management in the F-35 Program.

Springer.

Tang, C. S., Zimmerman, J. D., & Nelson, J. I. (2009b). Managing New Product Development

and Supply Chain Risks: The Boeing 787 Case. Supply Chain Forum: An International

Journal, 10(2), 74–86. https://doi.org/10.1080/16258312.2009.11517219

Tepper, N. A. (2010). Exploring the use of Model-Based Systems Engineering (MBSE) to de-

velop systems architectures in naval ship design.

105

Walden, D. D., Roedler, G. J., & Forsberg, K. (2015). INCOSE Systems Engineering Hand-

book Version 4: Updating the Reference for Practitioners. INCOSE International Sympo-

sium, 25(1), 678–686. https://doi.org/10.1002/j.2334-5837.2015.00089.x

Weilkiens, T. (n.d.). Systems Engineering with SysML/UML. http://www.omg.org/.

Weilkiens T., Jesko G. Lamm, Roth S., & Walker M. (2016). Model-Based Systems Architec-

ture (Wiley, Ed.).

What was the problem with concordia? (n.d.). 2024. Retrieved March 18, 2025, from

https://simpleflying.com/ problems-with-concorde/

Wiley. (2023). Managing Product Lines in Aerospace Engineering. Wiley.

