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Abstract

Recent advancements in composite technology using fiber-reinforced polymeric ma-
terials have greatly benefited the aerospace industry, which requires lighter and
more efficient materials. Since the 1970s, thermoset composites have been favored
due to their high failure strength, low creep, and high elastic modulus at a relatively
low cost. However, thermosets have limitations, including storage, aging, tough-
ness, and complex processing steps. As a result, research is increasingly focused
on replacing thermoset matrices with thermoplastic ones. Fiber-reinforced thermo-
plastic composites offer advantages like better damage tolerance, impact resistance,
recyclability, repairability, and faster production cycles, making them an attractive
alternative. This work presents the development of a constitutive model for fiber-
reinforced thermoplastics, implemented in finite element method software and being
experimentally verified.





Contents

1 Introduction 1
1.1 Project introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and scope of this project . . . . . . . . . . . . . . . . . . . 1

2 Theoretical background 3
2.1 Composite materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Damage mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Fiber breakage . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Matrix micro-cracking . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Fiber-matrix debonding . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Delamination . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 Fiber micro-buckling and kinking . . . . . . . . . . . . . . . . 8

2.3 Strain rate effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Numerical theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Orthotropic materials macro-mechanics . . . . . . . . . . . . . 12
2.4.2 Classical lamination theory . . . . . . . . . . . . . . . . . . . 14

3 Material model and properties 17
3.1 UMAT and VUMAT subroutines . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Logical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Required inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 In situ effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Fiber rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.5 Plasticity effect . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.6 Diffuse damage . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.7 Failure criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.8 Failure damage . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.9 Jacobian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.10 Modus operandi . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Hashin model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Static validation: compact tensile test (CT) 39
4.1 Initial sample geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 FEM model: UMAT and Hashin . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2



4.3 CT Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Experimental setup and procedure . . . . . . . . . . . . . . . 44
4.3.2 Data post-processing methods . . . . . . . . . . . . . . . . . . 45

4.4 Test 1: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Geometrical modifications . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Test 2: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 UMAT: Numerical and experimental results comparison . . . . . . . . 53
4.8 VUMAT: Numerical and experimental results comparison . . . . . . . 54

5 Static validation: compact compressive test (CC) 57
5.1 Sample geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 FEM model: UMAT and Hashin . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Test setup and procedure . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Numerical and experimental results comparison . . . . . . . . . . . . 62

6 Dynamic application: Hopkinson bar test 68
6.1 Sample geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 FEM model: VUMAT . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.4 Analysis output requests . . . . . . . . . . . . . . . . . . . . . 72
6.2.5 Post processing: strain rate calculus . . . . . . . . . . . . . . . 73

6.3 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.1 Experimental setup and procedure . . . . . . . . . . . . . . . 75
6.3.2 Experimental data post processing . . . . . . . . . . . . . . . 78
6.3.3 Preliminary test . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.4 Geometrical modifications . . . . . . . . . . . . . . . . . . . . 86

6.4 Numerical and experimental results comparison . . . . . . . . . . . . 87
6.5 Strain rate effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusions and future developments 101

A SHPB Tests complete tests results 103



Chapter 1

Introduction

1.1 Project introduction
One of the key developments of recent times is, without any doubts, composite tech-
nology using fiber reinforced polymeric materials. The excellent specific properties
of these materials perfectly meet the requirements of the aerospace industry which
is in need of more light and, overall, more efficient materials.

Since the 1970s, thermoset composites have been the preferred type of composite
material because of their high failure strength, low creep, high elastic modulus with
a relatively low cost compared to thermoplastic composites. Thermosetting compos-
ites have, however, limitations in terms of storage, aging and toughness other than
processing constraints due to the long and strict multi-step processing. Because of
these limitations extensive research with the goal of replacing thermoset matrices
with thermoplastic ones, is on the rise [1].

Fiber reinforced thermoplastic composites are a promising alternative to thermoset
composites because of their better damage tolerance and impact resistance. This
kind of composites also have an high potential for recyclability and repairability
which attracts the interests of researchers and developers as part of a broader focus
towards sustainability. Last but not least thermoplastic composites also offer faster
production cycles.

As a key partner in the aeronautical industry, Airbus Atlantic is working towards
the development of thermoplastic composites to be used in the cockpit design. As a
part of development and posterior certification process, a constitutive model, tailored
towards fiber reinforced thermoplastics has to be proposed. The model here proposed
is implemented in a finite element method solver software and it’s being verified
experimentally.

1.2 Objectives and scope of this project
The ultimate aim of this project is the development of a constitutive model de-
signed, in particular, for carbon fiber reinforced thermoplastics for the use in the
finite element method solver Abaqus CAE. In Abaqus is, indeed, possible to define
the matherial behaviour through user subroutines: in this case these are the user
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material (UMAT) subroutine to be used with implicit analysis and the vectorized
user material (VUMAT) to be used with explicit analysis.

This author contribution to the project starts in September 2024 and the main goals
from then to March 2025 are the following ones:

• Test of the present day subroutine in order to identify and correct any flaws
present in the code;

• Experimental tests to validate the present day subroutine;

• Initiation of studies regarding strain rate sensitivity whose results will be added
to the subroutine;

• Perform experimental tests and process the obtained data to include in the
subroutines experimentally identified material parameters.
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Chapter 2

Theoretical background

During the development of the material model on which this work focuses on, many
sources have been consulted in order to obtain an accurate picture of the most
important behaviors of fiber reinforced composite materials. In the following sections
insights about these materials are given.

2.1 Composite materials

Figure 2.1: Examples of composite materials with different forms of constituents
and distribution of the reinforcements. [2]

Composite materials morphology
Type Description Type Description

A Laminate with uni- or
bidirectional layers E Random arrangement

of continuous fibres

B Irregular reinforcement
with long fibres F Irregular reinforcement

with short fibres
C Reinforcement with particles G Spatial reinforcement

D Reinforcement with plate
strapped particles H Reinforcement with surface

tissues as mats, woven fabrics, etc.

Table 2.1: Description of the different distributions of reinforcement of Figure 2.1
[2]

Composite materials are defined as a combination of two or more materials called
constituents that can be distinguished by physical or chemical properties, with the
intention to produce a new material with augmented properties.
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Different classes of composite materials can be delineated depending on the nature
of their constituents. According to the nature of the matrix material it is possible
to classify [2]:

• Organic matrix composites that are polymer resins with fillers. In this case
the reinforcement can be mineral (like glass fibers), organic (like Kevlar fibers)
or metallic;

• Mineral matrix composites that are ceramic with fibers or with metallic or
mineral particles;

• Metallic matrix composites are metals with mineral or metallic fibers.

Composite materials can also be classified by the form and distribution of their
constituents (Figure 2.1). The following distributions can be found:

• Fibrous reinforcement constituent

– with continuous fibers: long fibers

– with discontinuous fibers: short fibers

• Particulate reinforcement constituent with different possible shapes and ar-
rangements:

– random distribution

– regular distribution with preferred orientations

Particular attention must be paid to fiber reinforced composites which are exception-
ally important in the aeronautical field. These composite materials are made up of
continuous matrix with fibers inside that act as the reinforcement. The fibers carry
the majority of the load while the matrix provides support maintaining the fibers
in the correct position. The matrix also transfers load between fibers and protects
them from the external environment. Because of this distinction in the functions of
the two constituents some material properties depends highly on the characteristics
of the matrix like the shear strength, the strength along the direction transverse to
the direction of the fibers and the strength longitudinal to the direction of the fibers
when under compression.
Extremely interesting in high performance engineering applications are the fiber re-
inforced composites where the reinforcement is represented by carbon fibers.
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Figure 2.2: Fiber reinforced laminate structure

Commonly fiber reinforced composites are produced as plies, each ply contains the
fibers, with specific orientations, soaked in the matrix (Figure 2.2).
Specifically, polymeric matrices are the most used for aeronautical applications be-
cause of their very low weight. There are two major groups of plastic matrix mate-
rials that can be described as follows:

• Thermoset matrices: extensively used for engineering applications. Compos-
ite materials with thermoset matrix and fibrous reinforcement compose a large
portion of modern aircraft structures. One of the main issues of these mate-
rials is their low failure strain. As a consequence of this, composites will
have low resistance to stresses in the thickness direction. These materials also
absorb moisture that, as a result, reduces mechanical properties. Moreover,
the manufacturing process of thermoset matrix composites is very long and
complex.

• Thermoplastic matrices: they present high failure strain and consequently high
impact resistance. Also the moisture absorbance is lower than their counter-
part and solvent resistance is higher. The most interesting feature is that they
can be remelted and reformed multiple times which creates the possibility to
recycle it. In contrast the manufacturing cost increases with these matrices.

The material used in this work is a carbon fiber reinforced thermoplastic matrix,
specifically PEAK matrix is considered (Polyaryletherketone).

2.2 Damage mechanisms
The foundation for modeling material behaviors lies in the understanding of their
damage mechanisms. Before further details on the topic, it is necessary to differen-
tiate the following concepts: fracture and damage .
Conventionally the term fracture implies the breakage of the material, or at a more
fundamental level, breakage of its atomic bonds. This rupture results in the cre-
ation of internal surfaces. Whereas the term damage refers to all the irreversible
changes brought in the material as a consequence of dissipating physical or chemical
processes [3].
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Some of the most common damage mechanisms observed in composite materials are
shown in this section.

2.2.1 Fiber breakage

Figure 2.3: Sequence of failure events leading to failure under axial tensile loading
[3]

Fiber breakage is one of the most negative factors that affect the mechanical behavior
of fiber reinforced composites. This phenomena can occur if the composite is loaded
in tension along the fiber direction and can take place at load levels lower than the
failure load. Fiber breakages occur at weak points along fibers, that is where fiber
defects are sufficient to make that area reach the fiber failure stress (Figure 2.3). As
load increases more fibers fail in the vicinity of already broken fibers [4].
The progression of fiber breakage is stochastic and depends strongly on the condi-
tions of the failure region. Because of this the fiber failure process can be described
just in statistical therms.
It is, therefore, quite arduous to predict the longitudinal tensile strength of a com-
posite.

2.2.2 Matrix micro-cracking

Figure 2.4: Schematic representation of matrix micro-cracking
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Matrix micro-cracks are intralaminar or ply cracks that traverse the thickness of
the ply running parallel to the fiber of that ply. Since these cracks are typically
perpendicular to the loading direction they are also called transverse cracks and
they form predominantly in plies off-axis with loading direction. This phenomenon
can be observed during tensile loading, fatigue loading or thermocycling and it is a
consequence of the fact that the mechanical properties of the composite in the direc-
tion transverse to fibers orientation depends mostly on matrix properties. Matrix
material generally has poor mechanical properties.
The effect of micro-cracking is degradation of mechanical properties including effec-
tive moduli, change in the Poisson ratio and thermal expansion coefficient.
As a secondary effect micro-cracking is the basis for other damage forms like delam-
ination and fiber breaks [5].

2.2.3 Fiber-matrix debonding

Figure 2.5: X-ray microtomography observation of interfacial debonding [6]

Fiber-matrix debonding concerns the separation of the fibers from the surrounding
matrix. The bond between matrix and fibers has a major impact on the performance
of the fiber reinforced composite because it determines how effectively stresses are
shifted between the two constituents.
Because of the dissimilar mechanical properties of fibers and matrix, they tend to
have distinct deformations as loading increases. When this difference is high enough
the resulting stresses result in the separation of fiber and matrix along their interface
(Figure 2.5).
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2.2.4 Delamination

Figure 2.6: Schematic representation of delamination process

The leading weakness of fiber reinforced laminate materials is their little interlam-
inar strength. Because of this, delamination between layers interfaces is a very
common and critical problem for these materials. The term delamination refers to
the separation of adjacent layers due to weakening of the interface layer between
them (Figure 2.6). The process of delamination can be triggered by manufacturing
process of the laminate or during the operation service of the composite.
Delamination can occur because when the material is loaded in in-plane direction,
defects can generate normal and shear stresses through the thickness. Delamination
can also happen as a result of previous interlaminar cracking [7].

2.2.5 Fiber micro-buckling and kinking

Figure 2.7: Schematic representation of fiber micro-buckling and kinking [8]

The term fiber micro-buckling refers to the phenomenon because of which fibers
under compressive load in fiber direction undergo transverse displacement caused
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by the buckling effect (2.7). There are two general ways in which this instability
can occur:

• elastic buckling of the fiber that involves also deformation of the matrix. This
phenomenon is generally referred to as fiber micro buckling;

• Plastic deformation of the fiber known as fiber kinking.

Micro-buckling may occur as a periodic mode with periodic deformation of the fibers
and shear of the matrix but also as non-periodic mode in which shear is negligible and
the process is dominated by transverse deformations. The matrix shear properties
and material imperfections play an important role in the micro-buckling mechanical
modes. The kinking process, instead, is governed by shear stresses and can be a
consequence of misalignment of the fibers during their manufacturing process [9].

2.3 Strain rate effect
Composite materials are widely used for applications concerning dynamic loads.
Works on dynamic characterization of composite materials is relatively limited com-
pared to quasi static-tests because of the difficulty of high strain-rate testing and
data interpretation. Because of this, it is very difficult to find unanimous conclusions
in literature regarding high strain rate composite material behavior. H.M. Hsiao and
I.M. Daniel tested both Carbon/Epoxy and Carbon/PEEK materials [10] and be-
cause of the similarities of these materials with the one under study their result seem
the most meaningful in the context of this research.

Transverse compressive behavior

Figure 2.8: Comparison of transverse compressive stress–strain curves between
AS4/APC2 carbon/PEEK and IM6G/3501-6 carbon/epoxy under quasi-static and
high strain rate loading [10]
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Figure 2.8 shows transverse compressive stress-strain curves to failure under quasi-
static and high strain rate loading. It is clear that the behavior is strongly influenced
by strain-rate. The transverse strength, which is dominated by matrix’s properties,
increases with the strain rate. A similar phenomenon happens with the initial mod-
ulus but no effect seems to appear looking at the ultimate strain. The material
stiffens as the strain rate increases and this phenomena is more significant in the
non linear region. Hsiao proposes two explanations:

• Viscoelastic nature of the polymeric matrix

• Time dependent nature of accumulating damage: at higher rates damage does
not have time to develop so the damage accumulation process has a lower
effect on the stress-strain curve

Both Carbon/PEEK and Carbon/Epoxy show this behavior

In-plane shear behavior

Figure 2.9: Comparison of shear stress–strain curves obtained from 30° and 45° off-
axis tests under quasi-static and high strain rate compressive loading [10]

Figure 2.9 shows the compressive shear stress-strain curves obtained from 30° and
45° off-axis specimens under quasi-static and high strain-rates loading. It appears
that the shear stress-strain curves obtained from different angles agree for similar
strain rate and for both cases a strong behavior dependence from strain-rate can be
observed. The yield point increases with increasing strain rate just as strength and
initial modulus.
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Longitudinal compressive behavior

Figure 2.10: Longitudinal compressive stress–strain curves for unidirectional
IM6G/3501-6 carbon/epoxy under quasi-static and high strain rate loading [10]

Longitudinal compressive stress-strain curves under quasi-static and high strain-rate
loading are shown in Figure 2.10. The stiffening behavior in the non-linear range
can be observed also in this loading condition. The magnitude of the stiffening is
way lower compared to the transverse behavior. In this case both the strength and
ultimate strain are higher in the high strain rate loading condition than their static
values. This last phenomena can be due to shear behavior of the composite and
the change in failure modes. Indeed, longitudinal compressive failure is related to
in-plane shear response of the composite in the presence of even the slightest initial
fiber misalignment [11]. The longitudinal compressive strength can be expressed as
follows:

F1c =
τ ∗

ϕ+ γ∗ (2.1)

where ϕ is the initial fiber misalignment, τ ∗ and γ∗ are the values of shear stress
and strain defined as in Figure 2.11.

Figure 2.11: Graphical determination of longitudinal compressive strength [10]
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It is clear that, if the in-plane shear behavior stiffens substantially with increasing
strain rate than this would lead to the increase in longitudinal compressive strength.

Finally it is widely accepted that the longitudinal tensile properties of unidirectional
carbon-epoxy composites are not strain rate sensitive as demonstrated in a study
by J. Harding and L.M. Welsh [12] [13].

2.4 Numerical theories
In this section the theory behind the numerical model used for this work is presented.

2.4.1 Orthotropic materials macro-mechanics

Constitutive equations define material behavior of a structure under applied loads.
The most general form of the linear constitutive equation for infinitesimal deforma-
tions is known as the generalized Hooke law [14]:

σij = Cijklϵkl (2.2)

Where Cijkl is called stiffness tensor and generally has 81 scalar components. This
number can be reduced to 36 considering the symmetry of σij and ϵkl. The constitu-
tive equation can therefore be expressed in an alternate form using single subscript
notation for stresses and strains and double subscript notation for the material stiff-
ness coefficients:

σi = Cijϵj (2.3)

This notation is called engineering notation or Voigt-Kelvin notation.

In matrix notation the previous equation can be rewritten as follows:

σ1

σ2

σ3

σ4

σ5

σ6


=


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ϵ1
ϵ2
ϵ3
ϵ4
ϵ5
ϵ6


(2.4)

Orthotropic materials, like one layer of unidirectional fiber reinforced composite
material, show three mutually orthogonal planes of symmetry. Because of this the
number of independent elastic coefficient is reduced to 9 and the constitutive equa-
tion changes in: 

σ1

σ2

σ3

σ4

σ5

σ6


=


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ϵ1
ϵ2
ϵ3
ϵ4
ϵ5
ϵ6


(2.5)

Classically material’s characteristics are determined through laboratory tests in
terms of engineering constants such as Young modulus (E), shear modulus (G)
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and Poisson ratio (ν). The 9 independent coefficients of the Hooke’s equation can
be expressed using the material engineering constants as follows:

C11 =
1− ν23ν32
E2E3∆

C12 =
ν21 + ν31ν23
E2E3∆

C13 =
ν31 + ν21ν32
E2E3∆

(2.6)

C22 =
1− ν13ν31
E1E3∆

C23 =
ν32 + ν12ν31
E1E3∆

C33 =
1− ν12ν21
E1E2∆

(2.7)

C44 = G23 C55 = G31 C66 = G12 (2.8)

in which:
∆ =

1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13
E1E2E3

(2.9)

For the Poisson ratio the following relation is valid:

νij
Ei

=
νji
Ej

(2.10)

The constitutive equations are defined in terms of stresses and strains components
that are referred to a coordinate system which coincides with the principal material
coordinate system (Figure 2.12).

Figure 2.12: Composite plate coordinates systems

Unfortunately in the problem formulation this coordinate system does not coincide
with the general laminate coordinate system called problem coordinate system. It
is also necessary to consider that every lamina of the laminate has its own material
coordinate system with its specific orientation. The relation between the material
coordinate system (x1 x2 x3) and the problem coordinates (x y z) is expressed below:

x1

x2

x3

 =

 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1


x
y
z

 = [L]


x
y
z

 (2.11)

The inverse of the previous equation is:
x
y
z

 =

cosϕ −sinϕ 0
sinϕ cosϕ 0
0 0 1


x1

x2

x3

 = [L]T


x1

x2

x3

 (2.12)
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Considering that each quantity related to the material reference system is indicated
by the subscript m and those related to the problem reference systems by the sub-
script p, it results:

{σ}p = [L]T{σ}m[L] ϵp = [L]T{ϵ}m[L] (2.13)

The material stiffness are transformed from the material coordinate system to the
problem coordinates as follows:

{σ}p = [L]T{σ}m[L] = [L]T [C]m{ϵ}m[L] = [L]T [L][C]m[L][L]
T{ϵ}p = [C]p{ϵ}p

(2.14)
Defining [Q] = [C]p, [C] = [C]m and [T ] = [L]T [L]:

[Q] = [T ][C][T ]T (2.15)

This last equation can be written for each layer of the considered laminate.

2.4.2 Classical lamination theory

The classical lamination theory (CLT) represents one of the fundamental simplified
models used to analyze the mechanical behavior of multi-layered materials. Thanks
to this theory it is possible to consistently proceed directly from the composite basic
building block, the lamina, to the end result, the structural laminate. The process
is based on assumptions that enable to transform a complicated three dimensional
elasticity problem, into a solvable two dimensional mechanics of deformable bodies
problem.

Figure 2.13: Classical lamination theory hypothesis scheme

The laminate is presumed to consist of perfectly bonded laminae and the bonds are
presumed to be infinitesimally thin as well as non shear-deformable. That means
that the displacements are continuous across lamina boundaries so that no lamina
can slip relative to another. The laminate, therefore, acts as a single layer with very
special properties [14].

The previous assumptions lead to the application of Kirchhoff theory to define me-
chanical behavior of the lamina. This classical lamination theory is thus based on
the Kirchhoff hypothesis (Figure 2.13):
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1. Straight lines perpendicular to the mid-surface (i.e transverse normals) before
deformation, remain straight after deformation

2. Transverse normals do not experience elongation

3. Transverse normals rotate such that they remain perpendicular to the mid-
surface after deformation.

As a result of the first two assumptions it is possible to conclude that the transverse
normal displacement is independent of the thickness coordinate and the transverse
normal strain is zero (ϵzz = 0). The consequence of the last assumption is that the
shear strains are zero (γxz = γxz = 0).
The plate displacement field, because of these assumptions, is:

u(x, y, z) = u0(x, y)− z δw0

δx

v(x, y, z) = v0(x, y)− z δw0

δy

w(x, y, z) = w0(x, y)

(2.16)

The strains are linked with the displacement and they have a constant component
and a component linear in the variable z:

ϵxx
ϵyy
ϵxy

 =


ϵ
(0)
xx

ϵ
(0)
yy

ϵ
(0)
xy

+ z


ϵ
(1)
xx

ϵ
(1)
yy

ϵ
(1)
xy

 (2.17)

{ϵ0} =


ϵ
(0)
xx

ϵ
(0)
yy

ϵ
(0)
xy

 =


δu0

δx
δv0
δy

δu0

δy
+ δv0

δx

 {ϵ1} =


ϵ
(1)
xx

ϵ
(1)
yy

ϵ
(1)
xy

 =


− δ2w0

δx2

− δ2w0

δy2

−2 δ2w0

δxδy

 (2.18)

where the constant components (ϵ(0)xx , ϵ
(0)
yy , ϵ

(0)
xy ) are the membrane strains while coef-

ficients of the linear component (ϵ(1)xx , ϵ
(1)
yy , ϵ

(1)
xy ) are the bending strains, also known

as curvatures.

The simplified kinematic assumptions used in this theory to move from a three di-
mensional structure to a two dimensional one generate a phenomena called Poisson
locking. Specifically, this phenomena is due to the use of plane strain hypothesis in
a shell theory. The analysis of shell problems is, in fact, often associated to plane
stress assumption while plane strain hypothesis is usually used for beam theories.
Because of the Poisson locking equivalent single layer analysis with transverse nor-
mal displacement constant or linear through the thickness do not lead to the 3D
solution in case of thin plate.

In order to avoid this problem it is necessary to force the following condition:

σzz = 0 (2.19)

By imposing this condition in the Hooke’s law it is possible to calculate the reduced
stiffness coefficients by imposing the new condition in σzz and calculating the new
ϵzz. Considering an orthotropic material:

σzz = C13ϵxx + C23ϵyy + C33ϵzz = 0 (2.20)
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ϵzz = −C13

C33

ϵxx −
C23

C33

ϵyy (2.21)

The so calculated ϵzz is then substituted in Hooke’s law equations for σxx and σyy

finally obtaining the reduced coefficients.

The final constitutive equation for the classical lamination theory considering all the
assumptions is the following one:

σxx

σyy

σxy

 =

C̄11 C̄12 0
C̄12 C̄22 0
0 0 C̄66


ϵxx
ϵyy
ϵxy

 (2.22)

with

C̄11 = C11 −
C2

13

C33

C̄12 = C12 −
C13C23

C33

C̄22 = C22 −
C2

23

C33

C̄66 = C66 (2.23)

A laminate shell is loaded by stress resultants which are integrals of the stress
components through the thickness. The following integrals can be defined along the
thickness in case of multi-layered plate:

Nxx

Nyy

Nxy

 =

∫ h
2

h
2


σxx

σyy

σxy

 dz


Mxx

Myy

Mxy

 =

∫ h
2

h
2


σxx

σyy

σxy

 zdz (2.24)

Through the substitution of the 2.23 equation the following relations are obtained:

Nx

Ny

Nxy

Mx

My

Mxy


=


A11 A12 A14 B11 B12 B14

A21 A22 A24 B12 B22 B24

A14 C24 C44 B14 B24 B44

B11 B12 B14 D11 D12 D14

B12 B22 B24 D12 D22 D24

B14 B24 B44 D14 D24 D44





ϵ0x
ϵ0y
ϵ0xy
κx

κy

κxy


(2.25)

In wich:

(Aij, Bij, Dij) =

∫ h
2

−h
2

C̄ij(1, z, z
2)dz =

N∑
k=1

∫ zk+1

zk

C̄
(k)
ij (1, z, z2)dz (2.26)

with k representing the number of the considered layer of the N layers composite
material. These new coefficients have a physical significance:

• Aij is the extensional stiffness

• Dij is the bending stiffness

• Bij is the bending-extensional coupling stiffness

The classical lamination theory, while being very useful and at the base of every com-
mercial structural analysis software, does not take into account many phenomena
that occur inside a composite plate during loading.
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Chapter 3

Material model and properties

3.1 UMAT and VUMAT subroutines
This work presents, as one of the main objectives, the validation of the material
model previously developed at ISAE Supaero. In this chapter the main features of
this material model are discussed but for a complete understanding of it reference
should be made to the previous work of L.L. Pérez [15] and G.L.M. da Rocha Coelho
[16].

The material models are implemented in the ABAQUS finite element solver through
a User Material (UMAT) subroutine and a Vectorized User Material (VUMAT) sub-
routine. Both options were developed because the UMAT provides higher fidelity
results for static simulations, where convergence of the implicit formulation is achiev-
able while the VUMAT, is especially useful for dynamic cases. In this last case,
given the high non-linearity, the convergence of the implicit formulation is difficult.
A scheme of the ABAQUS solver stages is presented in Figure 3.1.

Figure 3.1: Simplified flowchart of the ABAQUS solver

3.1.1 Logical scheme

The scheme in Figure 3.2 shows the logical flow of the UMAT and VUMAT subrou-
tine. Everything is furtherly specified in the following sections.
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Figure 3.2: UMAT and VUMAT subroutines flowchart

3.1.2 Required inputs

The properties given in Table 3.1 are the necessary inputs to run the UMAT and
VUMAT subroutines:

Props(1) E1 Props(14) ϵfc22 Props(27) GT
fc

Props(2) E2 Props(15) ϵfc33 Props(28) GC
fc

Props(3) E3 Props(16) ϵf12 Props(29) GT
mc

Props(4) G12 Props(17) ϵf13 Props(30) GC
mc

Props(5) G13 Props(18) ϵf23 Props(31) GS
mc

Props(6) G23 Props(19) χT Props(32) η
Props(7) ν12 Props(20) χC Props(33) In situ configuration
Props(8) ν13 Props(21) YT Props(34) t
Props(9) ν23 Props(22) YC Props(35) ηT
Props(10) ϵft11 Props(23) SL Props(36) ηL
Props(11) ϵft22 Props(24) ST Props(37) Θ0

Props(12) ϵft33 Props(25) α0 Props(38) Ec
1

E1

Props(13) ϵfc11 Props(26) β Props(39) Diffuse damage model

Table 3.1: Property vector inputted at the beginning of each iteration of the sub-
routines

In the VUMAT subroutine one further input needs to be given: Props(40) which
is the strain at which the user wants the deletion of the element to happen. This
variable is not necessary in the UMAT subroutine because it doesn’t have the element
deletion option in it.

3.1.3 In situ effect

Considering a multi-layered composite there is an effect that appear when the plies
are oriented with different directions: the in situ effect. Because of this response
when a ply is constrained between plies with different orientation, it shows higher
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transverse tensile and shear strengths compared to its equivalent in a unidirectional
laminate. The in situ strength depends also on the number of plies and on their
orientation [17]. The UMAT model calculates the new strengths produced by this
effect known as in situ strengths. Their calculus depends on the configuration of the
considered ply.

Figure 3.3: Thick embedded ply [17]

The thick ply configuration (Figure 3.3) is considered when transverse cracks in the
matrix are shorter than the ply thickness. In this case the in-situ transverse tensile
strength is calculated as follows:

Y is
T =

√
2GIc(T )

πa0Λ0
22

(3.1)

where GIc(T ) is the intralaminar critical energy release rate for mode 1 crack growth
in direction 3 and Λ0

22 is a coefficient that takes into account the engineering con-
stants of the ply. The in-situ in-plane shear strength can be calculated as follows:

Sis
L =

√
(1 + βϕG12)

1
2 − 1

3βG12

(3.2)

where β is a parameter that defines the non-linearity of the relationship between
shear stress and shear strain and ϕ is:

ϕ =
12S2

L

G12

+ 18βS4
L (3.3)

Figure 3.4: Thin embedded ply [17]

The thin ply configuration (Figure 3.4) is considered when the length of the trans-
verse cracks in the matrix is equal to the thickness of the ply. In this case the in
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situ strengths are calculated as follows:

Y is
T =

√
8GIc(L)

πtΛ0
22

Sis
L =

√
8GIIc(L)

πtΛ0
44

(3.4)

where t is the ply thickness, GIc and GIIc are the intralaminar critical energy release
rate, respectively, for mode 1 and 2 of crack growth in direction 1.

Figure 3.5: Thin outer ply [17]

The last case considered is the thin outer ply (Figure 3.5) that corresponds to the
first or last ply of the laminate. Considering the intralaminar energy release rate
for mode 1 crack growth in the direction 1, the in-situ tensile transverse strength is
calculated as follows:

Y is
T =

√
4GIc(L)

πtΛ0
22

(3.5)

while the in-situ in-plane shear strength can be calculated with equation 3.2 using
the following ϕ:

ϕ =
24GIIc(L)

πt
(3.6)

The in-situ compressive transverse strength (Y is
C ) and the in-situ through the thick-

ness shear strength (Sis
T ) are calculated using the expression proposed in Catalanotti

et al. [18]:

Y is
C = −Sis

L (2cos
2(α0)− 1)

ηLcos2(α0)
Sis
T =

Sis
L (2sin

2(α0)− 1)

2ηL
√

1− sin2(α0)sin(α0)
(3.7)

where α0 = 53± 2◦ [19] is the fracture angle under pure transverse compression and
ηL is the longitudinal friction coefficient.

3.1.4 Fiber rotation

When a composite material is loaded, fibers reorient themselves towards the loading
direction. This phenomena leads to an increase in the apparent axial modulus and
intra-ply stresses of the material. The rotation can be up to 10°.

Different methodologies exists to evaluate the effect of fiber rotation and the one
selected for the UMAT and VUMAT sub-routines is the one used by J.Fuller and
M.Wisnom [20]. The fibers are considered inextensible and they act in a scissor
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motion, realigning towards the direction of applied stress. The new fiber angle (θ′)
depends on the strains (ϵx and ϵy):

θ′ = arctan

(
tan(θ) + ϵy

1 + ϵx

)
(3.8)

where θ is the original fiber orientation, i.e the ply orientation.

The two dimensional formulation previously presented, needs some modifications in
order to take into account all the strains components of a three dimensional case.

3.1.5 Plasticity effect

In order to create a plasticity model it is necessary to define a plastic potential func-
tion, a hardening law and an algorithm that calculates plastic deformation for each
strain increment that in this case corresponds to each time step of the ABAQUS
analysis.

For the UMAT subroutine the Hill-type plastic potential function [16] independent
of longitudinal effective stresses is chosen:

fp(σ̃) =
√

σ̃2
12 + σ̃2

13 + σ̃2
23 + c2(σ̃2

22 + σ̃2
33) (3.9)

where c is a coupling parameter that describes the level of plastic deformation de-
veloped under normal loads compared to shear loads [21].

The hardening law is obtained from experimental tensile tests performed on [±45]2s
AS4/PEEK coupons:

σy(p) = K(p+ βp)
αp (3.10)

where K,αp and βp are obtained form the experimental data

Figure 3.6: Stress returns corresponding to CPA algorithm [22]
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The computing algorithm chosen is a modified version of the cutting plane algorithm
(CPA) as presented in J.Huang and D.V.Grifiths [22]. The way plastic strains is
calculated at each step is unfolded in the following bullet list:

1. Trial stress:
The stress that would be obtained if the strain increment during this time step
were purely elastic (i.e the trial effective stress) is calculated:

σ̃trial = C : (ϵn+1 − ϵpn) (3.11)

where ϵn+1 is the total strain tensor at the end of the current time step, its
value is known because ABAQUS calculates the total strain increment in each
step, and ϵpn is the plastic strain tensor at the end of the previous time step.
C is the stiffness tensor written in the 6 ∗ 6 matrix form as seen in equation
2.5.

2. Initial check of the yield condition:
The yield function is evaluated using the trial effective stress and the value of
the accumulated plastic strain at the beginning of every time step (pn):

Fp(σ̃trial, pn) = fp(σ̃trial)− σy(pn) (3.12)

If Fp(σ̃trial, pn) ≤ 0 only elastic deformation is taking place and elastic strain,
plastic strain and accumulated plastic strain are respectively calculated as
follows:

ϵen+1 = ϵn+1 − ϵpn (3.13)

ϵpn+1 = ϵpn (3.14)

pn+1 = pn (3.15)

In this case all the following step can be skipped. Alternatively, if Fp(σ̃trial, pn) >
0 plastic deformation is occurring and to calculate the value of the plastic
strain, the value of the plastic strain rate λ̇ for which Fp = 0 must be found.
That is because of the Kuhn-Tucker condition:

Fp(σ̃n+1, pn+1) = 0 (3.16)

It is important to note that numerically finding the exact value of λ̇ would
add too much computational time so a tolerance value is used. The condition
to be met is therefore |Fp| ≤ TOL.

3. Initialization:
Before the iterative CPA algorithm can be used, some initial values needs to
be set:

F 0
p = Fp(σ̃trial, pn) ϵp

0

n+1 = ϵpn p0n+1 = pn (3.17)

The initial value for the gradient of the yield function with respect to stresses
of plastic flow is defined as follows:

a0 =
δFp

δσ̃

∣∣∣∣
σ̃trial,pn

=
1

fp(σ̃trial)



0
c2σ̃22trial

c2σ̃33trial

σ̃12trial

σ̃13trial

σ̃23trial


(3.18)
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4. Plastic strain rate:
This is the first step of the CPA algorithm. The plastic strain rate is calculated
as follows:

λ̇i+1 =
F i
p

aiT : C : ai +H
(3.19)

where H i is calculated as:

H i =
δσy

δp

∣∣∣∣
pin+1

= Kαp(p
i
n+1 + βp)

(αp−1) (3.20)

5. Plastic strain:
The plastic strain can now be calculated:

ϵp
i+1

n+1 = ϵp
i

n+1 + δϵp
i+1

n+1 = ϵp
i

n+1 + λ̇i+1ai (3.21)

6. Effective stress:
The effective stress is calculated as follows:

σ̃i+1 = σ̃i + δσ̃i+1 = σ̃i − λ̇i+1C : ai (3.22)

7. Accumulated plastic strain:
The accumulated plastic strain is calculated:

pi+1
n+1 = pin+1 + λ̇i+1 (3.23)

8. Plastic flow:
Using the effective stress calculated in Step 6, the plastic flow is:

ai+1 =
δFp

δσ̃

∣∣∣∣
σ̃i+1,pi+1

n+1

=
1

fp(σ̃i+1)



0
c2σ̃i+1

22

c2σ̃i+1
33

σ̃i+1
12

σ̃i+1
13

σ̃i+1
23


(3.24)

9. Yield condition:
The final step of the CPA algorithm is to check if values of the yield function
is consistent with the tolerance requirements when using the values calculated
in the last iteration:

F i+1
p = Fp(σ̃

i+1, pi+1
n+1) = fp(σ̃

i+1)− σy(p
i+1
n+1) (3.25)

If |F i+1
p | ≤ TOL then the solution is found and the values calculated in the

last iteration can be saved as correct values, otherwise if |F i+1
p | > TOL the

solution is not correct, so i is set to i + 1 and the process starts again from
Step 4.

If the maximum number of iteration is reached without convergence to the correct
solution ABAQUS will abandon the current time increment and reattempt with a
smaller one.
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3.1.6 Diffuse damage

There are three elements necessary to define a multidimensional damage model:

• One or more scalar variables known as damage variables that describe the
internal state of the material. Each of these variables represents a particular
type of damage.

• Thermodynamic forces associated to each of the damage variables. This can
be done using the Helmholtz or Gibbs free energy density

• Damage evolution laws that describe how the damage develops. This can
be done with kinetic equations developed from thermodynamic principles or
functions developed from experimental results and material characteristics.

In the UMAT diffuse damage model [16] two damage variables are defined, d22 and
d12, that are respectively associated with transverse matrix micro-cracking (Section
2.2.2) and fiber-matrix debonding (Section 2.2.3 ).

In the UMAT subroutine three different diffuse damage models are set out: the
Ladeveze model [23], a modified version of the Wang model [24] and a custom
model. In particular, the Wang model is modified with the aim of making it work
with only two diffuse damage variables and taking into account the crack closure.
The custom model uses the same damage variables and damage evolution laws of
the Ladeveze model but expands the definition of the Helmholtz free energy density
to include terms related to a three dimensional case.

Ladeveze model

P. Ladeveze and E. Le Dantec model from 1992 uses the following definition of the
Helmholtz free energy density [23]:

Ψ =
1

2ρ

[
σ2
11

E1

+
⟨σ22⟩2+

E2(1− d′)
+

⟨σ22⟩2−
E2

− 2
ν12σ11σ22

E1

+
σ2
12

G12(1− d)

]
(3.26)

where ⟨x⟩ are the Macaulay brackets:

⟨x⟩+ =

{
0 x < 0
x x ≥ 0

(3.27)

⟨x⟩+ =

{
x x < 0
0 x ≥ 0

(3.28)

This operator is used to take into consideration crack closure in compression. d and
d′ are the scalar damage variables.
The associated thermodynamic forces Yd and Yd′ control damage development the
same way that energy release rate govern crack propagation:

Yd = −ρ
δΨ

δd
=

σ2
12

2G12(1− d)2
(3.29)

Yd = −ρ
δΨ

δd′
=

⟨σ22⟩2+
2E12(1− d′)2

(3.30)
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Modified Wang model

The definition of the Helmholtz free energy density used in the modified Wang model
is:

Ψ =
1

2ρ

[
σ2
11

E1

+
σ2
22

E2(1− d22)
+

σ2
33

E3

− 2
ν12σ11σ22

E1

(3.31)

−2
ν13σ11σ33

E1

− 2
ν23σ22σ33

E2

+
σ2
12

G12(1− d12)
+

σ2
13

G13

+
σ2
23

G23

]
(3.32)

Custom model

The definition of the Helmholtz free energy density used in the custom model is:

Ψ =
1

2ρ

[
σ2
11

E1

+
⟨σ22⟩2+

E2(1− d22)
+

⟨σ22⟩2−
E2

+
⟨σ33⟩2+

E3(1− d22)
(3.33)

+
⟨σ33⟩2−
E3

− 2
ν12σ11σ22

E1

− 2
ν13σ11σ33

E1

− 2
ν23σ22σ33

E2

(3.34)

+
σ2
12

G12(1− d12)
+

σ2
13

G13(1− d12)
+

σ2
23

G23(1− d12)

]
(3.35)

Damage evolution laws

The following damage evolution laws are used to control changes in the diffuse
damage variables:

d22 =

{
adYd22 Yd22 ≤ Yd22 < Yd22

0 otherwhise (3.36)

d12 =


bdYd22 + cd Y 0

d12
≤ Yd22 < Y c

d22

ddY
ed
d12

+ fd Y trans
d12

≤ Yd12 < Y c
d12

0 otherwhise
(3.37)

where ad, bd, cd, dd, ed, fd, Y 0
d22

, Y 0
d12

and Y trans
d12

come directly from experimental
data and Y c

d22
and Y c

d12
can be calculated as the values of the thermodynamics forces

when failure strain is reached. Finally, Yd22 and Yd12 are calculated following the
Ladeveze model:

Yd22(t) = supτ≤t

(√
Yd22(τ)

)
(3.38)

Yd12(t) = supτ≤t

(√
Yd12(τ) + bYd22(τ)

)
(3.39)

where b is a material characteristic [23].

3.1.7 Failure criterion

The failure criterion implemented in the UMAT material model is the interactive
Catalanotti failure criterion [18] with the addition of a further failure index. This
criterion identifies diverse failure modes associated to either fiber or matrix failure
under tension or compression, it also includes in-situ effects in its formulation:

25



• Matrix tensile failure: the following index is proposed

ϕmT =

{
0 σn < 0(

σn

Sis
T

)2
+
(

τL
Sis
L

)2
+
(

τT
Sis
T

)2
+ λ

(
σn

Sis
T

)(
τL
Sis
L

)2
+ κ

(
σn

Sis
T

)
σn ≥ 0

(3.40)
where:

κ =
(Sis

T )
2 − (Y is

T )2

Sis
T Y

is
T

λ = 2ηL
Sis
T

Sis
L

− κ (3.41)

It is important to note that in some cases the parameter κ can be negative
leading to loading cases with a negative failure index. This inaccurate result
can be due to the effect of in-situ strengths, the problem is not addressed in
the original publication.
The stress components on the fracture plane are calculated as follows:

σn =
σ̃22 + σ̃33

2
+

σ̃22 − σ̃33

2
cos(2α) + σ̃23sin(2α) (3.42)

τL = − σ̃22 − σ̃33

2
sin(2α) + σ̃23cos(2α) (3.43)

τT = σ̃12cos(α) + σ̃13sin(α) (3.44)

where α is the fracture plane angle. This angle is found calculating the fail-
ure index for all possible angles between 0◦ and 90◦, the angle for which the
maximum failure index is obtained is considered the correct one.

• Compressive matrix failure: a modified version of the A. Puck and H. Shur-
mann [19] defined as follows:

ΦmC =

{(
τT

Sis
T −ηT σn

)2
+
(

τL
Sis
L −ηLσn

)
σn < 0

0 σn ≥ 0
(3.45)

The stresses on the fracture plane are calculated as shown for the tensile matrix
failure

• Tensile fiber failure: a non interacting maximum strain criterion is used [18]:

ΦfT =

{
0 ϵ11 < 0
ϵ11
ϵfT11

ϵ11 ≥ 0 (3.46)

where ϵfT11 is the tensile failure strain in the fiber direction.

• Compressive fiber failure: A non-interacting maximum strain criterion is used:

ΦfC =

{
ϵ11
ϵfC11

ϵ11 < 0

0 ϵ11 ≥ 0
(3.47)

where ϵfC11 is the compressive failure strain in fiber direction.
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Fiber kinking is also considered because it is usually recognized as the most common
to occur when the component is under longitudinal compression. The creation of
kink bands is due to the rotation of initially misaligned fibers. This phenomena
induces shearing in the matrix. Catalanotti et al. [18] proposes two failure indexes
associated with fiber kinking:

ΦfkT =

 0 σ
(m)
n < 0(

σ
(m)
n

Sis
T

)2
+

(
τ
(m)
L

Sis
L

)2

+

(
τ
(m)
T

Sis
T

)2

+ λ
(

σ
(m)
n

Sis
T

)(
τ
(m)
L

Sis
L

)2

+ κ
(

σ
(m)
n

Sis
T

)2
σ
(m)
n ≥ 0

(3.48)

ΦfkC =


(

τ
(m)
T

Sis
T −ηT σ

(m)
n

)2

+

(
τ
(m)
L

Sis
L −ηLσ

(m)
n

)
σ
(m)
n < 0

0 σ
(m)
n ≥ 0

(3.49)

Whether the resulting fracture plane is under tension or compression is what deter-
mines which failure index needs to be used. The normal and shear stresses on the
fracture plane can be calculated as follows.

σ(m)
n = σ̃α

22 =
σ̃φ
22 + σ̃θ

33

2
sin(2α) +

σ̃φ
22 − σ̃θ

33

2
cos(2α) + σ̃φ

23sin(2α) (3.50)

τmT = σ̃α
23 = − σ̃φ

22 − σ̃θ
33

2
sin(2α) + σ̃φ

23cos(2α) (3.51)

τmL = σ̃φ
12cos(α) + σ̃φ

13sin(α) (3.52)

where:

• σ̃α
22,σ̃α

23 and σ̃α
12 are the effective stress components on the third of the three

coordinates systems associated with fiber kinking,

• σ̃φ
22,σ̃

φ
12,σ̃

φ
13 are the effective stress components on the second of the three co-

ordinates systems associated with fiber kinking

• σ̃θ
33 an effective stress component in the first of the three coordinates systems

associated with fiber kinking.

In order to obtain the effective stress tensors in these coordinates systems it is
necessary to perform the following coordinate transformations:

σ̃(θ) = R()→(θ) → σ̃RT
()→(θ) (3.53)

σ̃(φ) = R(θ)→(φ) → σ̃RT
(θ)→(φ) (3.54)

σ̃(α) = R(φ)→(α) → σ̃RT
(φ)→(α) (3.55)

where:

R()→(θ) =

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 (3.56)

R(θ)→(φ) =

 cos(φ) sin(φ) 0
−sin(φ) cos(φ) 0

0 0 1

 (3.57)
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R(θ)→(φ) =

1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)

 (3.58)

The angles θ and φ can be calculated as follows:

θ =
1

2
arctan

(
2σ̃23

σ̃22 − σ̃33

)
(3.59)

φ =

{
−γm σ̃12 < 0
γm σ̃12 ≥ 0

(3.60)

where γm is calculated numerically using the Newton-Raphson method. The con-
verge condition consists in a simple comparison between the relative error of the
value γm in successive iterations and a maximum tolerance value.
Lastly the angle α can be obtained as it is done for the fracture angle in the tensile
and compressive failure cases: both Φfkt and Φfkc are calculated for all possible val-
ues of α between 0◦ and 90◦. The angle with which the maximum index is obtained
is considered the correct α value.

3.1.8 Failure damage

The failure damage model used in the UMAT subroutine is the Linde model [25].
Since this model uses two damage variables, one for the fiber failure and one for the
matrix failure, it is necessary to introduce some adaptations in order to use it with
the Catalanotti failure criterion [18] described in section 3.1.7. The following failure
model is the result of the previously announced modifications:

• Matrix failure damage: The value of the matrix failure damage variable is
calculated for each failure index:

dTm = 1− 1

Φmt

exp

(
(1− Φmt)C22Lc(ϵ

fT (α)
eq )2

GT
mc

)
(3.61)

dCm = 1− 1

ΦmC

exp

(
(1− Φmc)C22Lc(ϵ

fC(α)
eq )2

GC
mc

)
(3.62)

where GT
mc and GC

mc are the interlaminar fracture toughness of the matrix re-
spectively under tension and compression. In the case of longitudinal (σ̃11)compression
it is necessary to take into account fiber kinking:

dffkT = 1− 1

Φfkt

exp

(
(1− Φfkt)C22LC(ϵ

fKT (α)
eq )2

GT
mc

)
(3.63)

dffkC = 1− 1

Φfkc

exp

(
(1− Φfkc)C22LC(ϵ

fKC(α)
eq )2

GC
mc

)
(3.64)

The UMAT subroutine calculates an equivalent failure strain on the fracture
plane in order to perform these calculations. The equivalent failure strain is
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saved for each failure mode when the corresponding failure index reaches the
unit value. The equivalent failure strain is calculated as follows:

ϵf(α)eq =

√
(ϵfn)2 + (γf

T )
2 + (γf

L)
2 =

√
(ϵ

f(α)
22 )2 + (2ϵ

f(α)
23 )2 + (2ϵ

f(α)
12 )2 (3.65)

The value of the matrix failure damage is obtained as:

df
′

m =


max(dfmt, d

f
fkt) + dfmc ϵe22 ≥ 0 σ̃11 < 0 max(dfmt, d

f
fkt) + dfmc < 1

max(dfmc, d
f
fkc) ϵe22 < 0 σ̃11 < 0 max(dfmc, d

f
fkc) < 1

dfmt + dfmc ϵe22 ≥ 0 σ̃11 ≥ 0 dfmt + dfmc < 1
dfmc ϵe22 < 0 σ̃11 ≥ 0 dfmc < 1
1 otherwise

(3.66)
dfm = supτ≤t(d

f ′

m) (3.67)

• Fiber failure damage: As mentioned in section 3.1.7 the failure criterion uses
two different indices for fiber failure. The value of the failure damage is calcu-
lated for both indices and then the maximum is considered the correct value:

dft = 1− 1

Φft

exp

(
(1− Φft)C11Lc(ϵ

fT
11 )

2

GT
fc

)
(3.68)

dfc = 1− 1

Φfc

exp

(
(1− Φfc)C11Lc(ϵ

fC
11 )

2

GC
fc

)
(3.69)

dff =

{
supτ≤t

(
max(dfft, d

f
fc)
)

max(dfft, d
f
fc) < 1

1 max(dfft, d
f
fc) ≥ 1

(3.70)

where GT
fc and GC

fc are the fracture toughness of the fiber respectively under
tension and compression.

3.1.9 Jacobian matrix

The major difference between the UMAT and VUMAT subroutine is that the UMAT,
used for implicit computation, calculates the Jacobian matrix in each iteration while
the VUMAT, used in explicit, does not.

The Jacobian matrix is defined as:

J =
δ∆σ

δ∆ϵ
=



δσ11

δϵ11

δσ11

δϵ22

δσ11

δϵ33
0 0 0

δσ22

δϵ11

δσ22

δϵ22

δσ22

δϵ33
0 0 0

δσ33

δϵ11

δσ33

δϵ22

δσ33

δϵ33
0 0 0

δσ12

δϵ11

δσ12

δϵ22
0 δσ12

δϵ12
0 0

δσ13

δϵ11
0 δσ13

δϵ33
0 δσ13

δϵ13
0

0 δσ23

δϵ22

δσ23

δϵ33
0 0 δσ23

δϵ23


(3.71)

The calculation of the Jacobian matrix is necessary because of the use of a back-
ward Euler procedure by the Standard ABAQUS solver which requires the Newton
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Raphson method to be implemented.
Each of the terms is analytically specified, an example of one is here given:

J11 =
δσ11

δϵ11
=(1− df1)(1− dd1)C11 −

δdd1
δϵ11

(1− df1)C11ϵ11

− δdf1
δϵ11

(1− dd1)C11ϵ11 −
δdf1
δϵ11

(1− dd2)(1− df2)C12ϵ22

− δdf1
δϵ11

(1− dd3)(1− df3)C13ϵ33

(3.72)

3.1.10 Modus operandi

As mentioned in the previous sections, different material behaviors are modeled
through the UMAT and VUMAT subroutines. To provide the user with the option
to choose which one to activate, these subroutines have been separated into distinct
modules within the main subroutine, which can be enabled using a flag in the Fortran
code.
The following sections can be activated or deactivated in the subroutines:

• DIF-DAM : computes the diffuse damage of the component as explained in
Section 3.1.6. The wanted diffuse damage model can be selected using a flag
in the subroutine.

• THREE-DD It is a sub-option of DIF-DAM and activates the three-dimensional
model instead of the classical bi-dimensional one.

• PLASTICITY : computes the pseudo-plasticity behavior as explained in Sec-
tion 3.1.5.

• FAIL-DAM : calculates the failure of fibers or matrix due to the loading condi-
tion at the considered step of the analysis. The failure criterion is extensively
explained in Section 3.1.7.

• FIBRE-ROT : Takes into account fiber reorientation towards loading direction
as shown in Section 3.1.4.

• COMPRESSION : Computes the compression effect on material modulus. Be-
cause of fiber misalignment, indeed, stiffness in fiber’s direction with compres-
sive load can be up to 25% lower than in tensile loading.

A simple finite element model is created in ABAQUS in order to better understand
the contribution of the multiple sections of the UMAT and VUMAT subroutines.
The cube showed in Figure 3.7 is modelled and one single eight node linear brick
element (C3D8) is used to discretize it.
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Figure 3.7: UMAT and VUMAT subroutine testing geometry

The following boundary conditions are applied to the cube surfaces as shown in
Figure 3.8:

• Uz = 0 for both the XY surfaces

• Uy = 0 for both the XZ surfaces

• Uy = 0 for negative YZ surface

• Ux > 0 for traction testing and Ux < 0 for compression testing on the positive
YZ surface

Figure 3.8: Boundary conditions applied to the testing geometry

The material used to test the subroutines is one layer of a unidirectional fiber rein-
forced composite material. Tests are performed with fibers at 0° and 90° from the
loading direction.

To better visualize the effect of each section of the UMAT and VUMAT subroutine
they are activated one by one. The results in pure tensile and pure compressive
loading condition are shown below.
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Pure tensile loading: [0] case

Figure 3.9: Stress-strain curve of [0] cube with tensile load

By observing Figure 3.9 one notices that the only section of the subroutine that
gives a contribution with a zero degree layer of material is the FAIL-DAM one.
Diffuse damage and pseudo-plasticity behavior are mostly due to the matrix so in
this case their effect is not visible.

Pure compressive loading: [0] case

Figure 3.10: Stress-strain curve of [0] cube with compressive load

The compressive behavior of the cube is shown in Figure 3.10. In this case only
FAIL-DAM and COMPRESSION give visible contribution. Specifically it is clear
that compressive loading reduces conspicuously the material modulus.
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Pure tensile loading: [90] case

Figure 3.11: Stress-strain curve of [90] cube with tensile load

The tensile behavior of the cube with [90] layup is displayed in Figure 3.11. When
the layer has a ply angle different from 0 all the sections of the subroutine have an
impact on the cube behavior. It is interesting to point out that the contribution of
plasticity and diffuse damage in, respectively, giving some non linearity and lowering
the slope of the curve, is imperceptible even after zooming in on the first segment
of the graph (Figure 3.12).

Figure 3.12: Detail of the tress-strain curve of [90] cube with tensile load

Since with the current layup it is possible to see di effect of the diffuse damage,
the analysis is performed by activating all the sections and by choosing a different
diffuse damage model each time. The results are shown in Figure 3.13.
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Figure 3.13: Diffuse damage models effect on the material behavior

Apparently no noticeable difference exists between the diffuse damage models. Zoom-
ing in the after failure area (Figure) it is possible to notice some minor variations
3.14.

Figure 3.14: Detail of diffuse damage models effect on the material behavior
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Pure compressive loading: [90] case

Figure 3.15: Stress-strain curve of [90] cube with compressive load

Finally, compressive behavior on the [90] cube is shown in Figure 3.15. Diffuse dam-
age and plasticity have no contribution in compressive loading. Moreover, matrix
properties have no changes in the slope due to compressive loading, therefore with
this layup there is no contribution given by the COMPRESSION section. Only the
FAIL-DAM section of the subroutine has an impact in the final behavior of the
material.

3.2 Hashin model
The Hashin failure criteria is a failure theory developed by Zvi Hashin to predict
failure mostly in composite materials distinguishing between fiber and matrix failure
[26]. This theory is useful in finite elements analysis because:

• It has a better accuracy in failure prediction than maximum stress or strain
theories because it considers differential failure in matrix and fiber which is a
more accurate representation of composite behavior

• It can be used both for tensile and compressive failure

• It accounts for combined loading making it suitable also for complex loading
conditions

The Hashin criteria can be applied both in two and three dimensional stress states,
the idea is the same in both cases what changes is the number of considered stresses.
The two dimensional theory focuses on the in-plane stresses and it’s composed of
the following criteria.

1. Fiber tension: (
σ11

XT

)2

+

(
τ12
SL

)2

≥ 1 (3.73)

where:
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• σ11 is the longitudinal stress in fiber direction

• XT is the longitudinal tensile strength of the fibers

• τ12 is the shear stress

• SL is the longitudinal shear strength

2. Fiber compression: (
σ11

Xc

)2

≥ 1 (3.74)

where: XC is the longitudinal compressive strength of the fibers.

3. Matrix tension (
σ22

YT

)2

+

(
τ12
SL

)2

≥ 1 (3.75)

where:

• σ22 is the transverse normal stress

• YT is the transverse tensile strength of the matrix

4. Matrix compression:(
σ22

2ST

)2

+

[(
YC

2ST

2

− 1

)](
σ22

YC

)
+

(
τ12
SL

)2

≥ 1 (3.76)

where:

• YC is the transverse compressive strength of the matrix

• ST is the transverse shear strength

In the three dimensional case also out-of-plane stresses are considered in the criteria.

Figure 3.16: Properties reduction in composites after failure initiation [26]

In ABAQUS this criteria is used for damage initiation and when failure is identified
at a specific material point properties in that point need to be modified based on a
specified degradation law. There are three possibilities of property degradation laws
that can be applied in combination with the Hashin failure criteria:

1. Instantaneous reduction: all the material strength is removed at the failure
point.
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2. Constant reduction: the stress is limited to a fixed value after failure. In this
case some residual strength is preserved.

3. Gradual reduction: progressive loss. It simulates how damage propagates
over time and under continued loading. Only linear progressive reduction is
available as gradual reduction in ABAQUS.

This criterion is selected for running preliminary simulations of the static tests due to
its lower computational time compared to the UMAT and VUMAT subroutines. It
is useful for testing material properties with a model that has already been validated,
before utilizing the Fortran subroutines.

3.3 Material properties
The composite used is TORAY CETEX TC1225. This composite uses T700GC
carbon fibers and a PEAK matrix. The roving used has 12000 filaments, resulting
in a fiber areal weight FAW of 124g/m2 per ply. The resin content by weight is 34%.
The ply thickness is 0.184mm. The initial properties used to model this materials
are listed in table 3.2.

37



Property Value Unit Origin
E1 140000 Mpa Experimental data
E2 8860 MPa Experimental data
E3 8860 MPa Experimental data
G12 4300 MPa Experimental data
G13 7340 MPa Experimental data
G23 3700 MPa Experimental data
ν12 0.396 Experimental data
ν13 0.396 Assumed from experimental data
ν23 0.45 Assumed from experimental data
ϵfT11 0.01684 Experimental data
ϵfT22 0.00673 Experimental data
ϵfT33 0.00673 Assumed from experimental data
|ϵfC11 | 0.00836 [16]
|ϵfC22 | 0.00637 [16]
|ϵfC33 | 0.00637 [16]
γf
12 0.345 Experimental data

γf
13 0.195 [16]

γf
23 0.195 [16]

XT 2400 MPa Experimental data
XC 950 MPa [16]
YT 57 MPa Experimental data
YC 205 MPa [16]
SL 130 MPa Experimental data
ST 72 MPa [16]
α0 53 deg [27]
β 4.72 ∗ 10−8 [16]

GT
fC 218 N/mm [16]

GC
fC 104 N/mm [16]

GT
mC = GIc 1.156 N/mm [16]

GC
mC = GIIc 1.98 N/mm [16]

η 0.0025 Assumed
In situ configuration Thin ply Assumed

t 0.184 mm Airbus Atlantic
ηT 0.287 [18]
ηL 0.515 [18]
Θ0 deg Test dependent

χ =
EC

1

E1
0.75 Assumed

Diffuse damage model Test dependent

Table 3.2: Material properties
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Chapter 4

Static validation: compact tensile
test (CT)

Fiber breaking can take place during longitudinal tension or compression. Exper-
imental determination of the fracture toughness associated with both these fiber
failure modes is fundamental for both material characterization and numerical mod-
eling.

Currently there are no standards to determine these properties on composite ma-
terials. Compact tensile (CT) and compact compressive (CC) tests are selected for
this purpose following the example of many precedents in literature [28].

This type of test is inspired by the same tests for polymers described by the ASTM-
D5045 standard [29] but the coupons are designed for the specific requirements of
the composite material utilized during the present study. The material properties
are listed in Section 3.3.

4.1 Initial sample geometry
The coupons used for the compact tensile tests are reminiscent of those proposed
by the ASTM-D5045 standard. However, the ones used for the tests here described
are lightly different and have their own dimensions presented in Figure 4.1.

Figure 4.1: CT Test coupon geometry
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The dimensions chosen for these coupons are the same used in precedent tests at
ISAE-Supaero on Carbon-Epoxy coupons. For this reason there is no certainty about
the correctness of this geometry in the case of the material here studied. Only after
the first tests it is possible to determine if this geometry is suitable for the purpose.

Figure 4.2: CT Test real coupon

As further explained in the ASTM-D5045 standard it is necessary to create a pre-
crack in the coupon geometry, this can be observed clearly in Figure 4.2. The
pre-crack is made using a diamond wire cutting machine and has a length of 5mm.

The material used is the one presented in Section 3.3 with the following stacking
sequence: [0 90]5s

4.2 FEM model: UMAT and Hashin
The coupon is modeled using ABAQUS/CAE. Specifically, two different models are
created:

• Hashin damage model: uses the ABAQUS routine with the same name for the
material behavior

• UMAT model: uses the UMAT subroutine (Chapter 3 ) for the material be-
havior.

Differences between the two models are explained in the following sections.
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4.2.1 Geometry

Figure 4.3: 2D Sketch of the CT coupon

The 3D volume representing the CT coupon is created starting from the sketch
showed in Figure 4.3 and then extruded in order to obtain the wanted thickness of
3.7 mm. The pre-crack is created through an extruded cut of the volume.

Figure 4.4: Cells partitions

In order to facilitate the meshing phase the partitions in the volume showed in Figure
4.4 are created. Because of the operating method of the UMAT subroutine, it is
necessary to apply an additional partition to the dedicated model: in the thickness
direction one cell corresponding per composite layer needs to be created (Figure
4.5).
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Figure 4.5: Thickness partition detail in the UMAT model

The cylinders representing the loading pins are modeled using a simple rigid shell
with a radius slightly lower than the coupon holes one to avoid interpenetration.
In the centers of these cylinders a reference point is created in order to measure
reaction forces and displacements. The final assembly is showed in Figure 4.6.

Figure 4.6: CT model’s final assembly

4.2.2 Mesh

Figure 4.7: Mesh morphology of the CT coupon
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As can be seen in Figure 4.7 different mesh dimensions are used in order to discretize
the crack growth correctly without increasing excessively the computational cost. To
achieve this result the characteristic mesh size is set to 1.7 mm away from the pre-
crack while in the area of expected failure propagation it is refined to 0.4 mm.
Different element types are used in the two models here described:

• C3D8 for the UMAT model

• SC8R for the Hashin damage model

In both cases the element deletion feature is activated.

Figure 4.8: Mesh morphology of the loading cylinders

Regarding the loading cylinder mesh (Figure 4.8) discrete rigid elements with a
characteristic length of 0.2 mm are used. It is crucial that the cylinder mesh is
highly refined to obtain an accurate contact detection between the cylinders and
the CT coupon during analysis.

4.2.3 Boundary conditions

Figure 4.9: Boundary conditions

With the aim of simulating the real test loading process, the following boundary
conditions are applied to both models (Figure 4.9):
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• clumping conditions at the reference point defined at the center of the lower
cylinder (Ux = Uy = Uz = 0 URx = URy = URz = 0)

• Ux = Uz = URx = URy = 0 at the reference point defined at the center of the
upper cylinder

• Uy = 4 mm at the reference point defined at the center of the upper cylinder

Since the Hashin damage model volume is discretized using just one element in the
thickness direction it is necessary to apply an additional condition in that model to
obtain a plane strain condition: for this reason Uz = 0 is applied to the whole CT
coupon part.

Finally contacts between the pins and the specimen are defined as hard contact with
a friction coefficient of 0.15.

4.2.4 Analysis

The analysis carried out with the two models is an implicit one using the Newton-
Raphson convergence method. The following parameters are selected:

• Minimum step: 10−7

• Maximum step: 0.1

• Automatic stabilization: Specify dissipated energy fraction set to 0.0002

• Adaptive stabilization is used with a Max ratio of stabilization to strain energy
is set to 0.05

4.3 CT Test

4.3.1 Experimental setup and procedure

The tests are performed using an Instron machine following the procedure of the
ASTM-D5045 standard [29]. A displacement rate of 1mm/min is imposed to avoid
dynamic effects during the experiment and two CCD cameras are placed on one side
of the machine recording the crack propagation on the specimen face. Specifically,
the face that is recorded gets painted in order to allow the camera to better recog-
nize different points of the specimen separately.

During the test the following parameters are measured:

• Displacement of the machine

• Load applied to the machine

• Crack length monitored by the crack gauge (Figure 4.10) and the FRAC-
TOMAT system

• Crack length visually measured from the images taken by the CCD cameras
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• Specimen deformation through the CCD cameras.

Figure 4.10: Crack gauge sensor

The procedure of the experimental campaign can be summarized in the following
steps:

1. The coupon is placed in the machine. The metal pin is inserted through
the hole in the upper support making it coincide with the upper hole of the
specimen. The machine is then adjusted so that the hole in the lower support
of the machine and the lower hole in the specimen coincide and the second pin
can be inserted;

2. The machine is slightly loaded until the specimen is securely fixed. This en-
sures that the specimen does not rotate during the firsts loading phases of the
test;

3. The cables of the crack gauge are connected to the FRACTOMAT system;

4. The test is started and the data is recorded until the load of the machine is
near null and the crack has propagated almost along the whole width of the
specimen.

4.3.2 Data post-processing methods

Different post processing methods can be found in literature to analyze CT tests
data.
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Area method

Figure 4.11: Graphic interpretation of the area method [30]

The area method is a simple approach to obtain the critical energy release rate
of the material. The base concept is that the energy release rate is seen as the
area below the force-displacement curve [30]. This method estimates Gc from the
load and displacement of two consecutive peaks of the force displacement graphic.
Moreover, the energy release rate depends on the crack length of the specimen, since
the change in elastic energy is related with the surface created by crack propagation
[31]:

GIC =
1

ep∆a

P1u2 − P2u1

2
(4.1)

where ep represents the thickness of the specimen, ∆a is the crack length increase
between two consecutive measures, P1 and u1 are the load and displacement of the
pins for the first measure and P2 and u2 of the second one.

The main drawback of this method is the high sensitivity to errors for low incre-
ments in the crack length [30].

ASTM E399

The ASTM standard E399 [32] proposes the following procedure valid for an isotropic
material. The critical intensity factor for a fracture load P is given by:

KIc =
P

h
√
w
f
( a
w

)
(4.2)

with:

f
( a
w

)
=

2 + a
w

(1− a
w
)1.5

[
0.886 + 4.64

( a
w

)
− 13.32

( a
w

)2
+ 14.72

( a
w

)3
− 5.6

( a
w

)4]
(4.3)

where h is the thickness of the specimen, w is the distance between the load line and
the right hand edge of the specimen and a is the crack length whose initial value is
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a0. The critical energy release rate of the laminate can be calculated from KIc as
follows:

GIclam =
K2

Ic√
2ExEy

√√√√√Ex

Ey

+
Ex

2Gxy

− νxy (4.4)

where Ex, Ey, Gxy and νxy are respectively: the Young’s modulus in fiber direction
and transversal to fiber direction, shear modulus and Poisson’s ratio of the laminate.
These values are obtained from the laminae properties in table 3.2 using lamination
theory (Section 2.4.2 ).

Compliance Calibration method

A different method that can be used is the compliance calibration (CC) method.
This method estimates the release energy rate as a function of the compliance vari-
ation with the crack propagation according to the following equation [30]:

GIc =
P 2

2ep

δC

δa
(4.5)

in which:

• P is the load measured at each time instant of the propagation

• ep represents the thickness of the specimen

• a is the crack length

• C is the compliance of the specimen that can be calculated dividing the dis-
placement (u) by the applied load (P ).

The method here explained requires to obtain a function to approximate the com-
pliance dependence on crack length. In order to do so, it is necessary to plot the
experimental data of compliance against the crack variation along the test. The
curve obtained is, then, fitted with a function in accordance with the results. In
this case the shape of the function used is the following one, where α3 and α0 are
constants estimated to best fit the experimental results:

C = f(a) = α3a
3 + α0 (4.6)

Introducing the expression 4.6 in equation 4.5:

GIc =
P 2

2ep
f ′(a) =

P 2

2ep
(3α3a

2) (4.7)

In order to avoid the dependence of the energy release rate on the crack length,
the function f(a) can be inverted obtaining the crack length as a function of the
compliance:

GIc =
P 2

2ep
f ′(f−1(C)) (4.8)

This is called the ’Modified compliance calibration method’ and its main advantage
is that it eliminates the error induced by the use of the visually measured crack
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propagation length [31].

For the present study the crack length used in the computation of the compliance
is obtained from the crack gauge. These measurements are considered to be more
accurate than the ones visually determined, consequently the compliance calibra-
tion method is considered accurate enough and the modified compliance calibration
method is not used.

4.4 Test 1: Results

Figure 4.12: Scheme of the CT specimen with the location of the considered failure
mechanisms [33]

The failure mechanisms that can appear during a CT test, besides crack propagation,
are outlined in Figure 4.12[33]:

• FM1: fiber fracture due to longitudinal compressive stress (σyy) at the right
edge of the specimen

• FM2: Fiber fracture due to longitudinal compressive stress (σxx) at the upper
and lower edges of the specimen

• FM3: matrix cracking due to in-plane shear stress (σxy)

• FM4: bearing in the holes of the specimen due to compressive stress

• FM5: Shear-out in the holes of the specimen due to shear stress

• FM6: buckling due to the high compressive stresses at the right edge
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Figure 4.13: CT Coupon after test

In Figure 4.13 is shown the CT coupon after the first test. As easily noticeable
the coupon has an unexpected torsion because of which the results obtained are
unusable in order to validate the numerical models. The result can still be useful
for some discussions and deliberations:

• The crack propagates in the expected area;

• The coupon unexpected torsion is probably due to buckling behavior in the
compressive areas appointed as FM1 in Figure 4.12. It is possible that the
compressed area reaches the energy necessary for buckling behavior before the
crack is able to propagate;

• The Hashin model is not able to simulate the real behavior because of the
added condition on the out of plane displacements. Additionally, it is pos-
sible to see that both models simulate correctly the linear part of the curve
representing the pre-damaged behavior but none of them is able to show the
buckling problem.

The problem might be created by the sample and the pre-crack geometry. The ge-
ometry, as explained in Section 4.1, comes from previous similar tests carried out on
ISAE-Supaero on carbon-Epoxy coupons. Since thermoset resins need less energy to
make the crack propagate than thermoplastic ones, it is possible that some changes
in the geometry need to be applied in order to obtain wanted results during tests.

A new geometry is proposed in order to make the crack propagate and obtain some
useful test results.

4.5 Geometrical modifications
Detailed observations of the coupon stacking sequence are performed in order to
understand why the coupon is showing out of plane displacements.
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Figure 4.14: Magnification x50 of the stacking sequence of the CT sample

As observable in Figure 4.14 the stacking sequence is symmetrical, therefore out-
of-plane displacements are not imputable to couplings in the material behavior. In
order to read correctly the image it is necessary to point out that dark stripes are
layers in which fiber direction is parallel to the image plane while the bright ones
have fibers that come out of the image plane.

Figure 4.15: Observation direction of the microscope during the magnification

Taking into account the direction of observation during the magnification (Figure
4.15) it is clear that external layers do not have fibers in loading direction. This can
result in lower buckling critical load. In order to increase the buckling critical load,
the stacking sequence is rotated of 90°in the new samples.
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Figure 4.16: In red the modification in the CT geometry dimensions

In order to reduce the load needed to open the crack, the dimension showed in Figure
4.16 is changed from the original geometry.

4.6 Test 2: Results
First test is performed with 10 mm pre-crack. The coupon shows a better behavior
than the original one but it broke in compression after one step of damage propa-
gation.

Figure 4.17: Test results with updated geometry

The observation of the after test coupon in Figures 4.18 and 4.19 leads to the
conclusion that no buckling appeared during test, no out-of-plane displacement is
indeed visible except for the area where fibers broke in compression. Near the pre-
crack it is possible to visualize small propagation of the damage.
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Figure 4.18: After test coupon
top view

Figure 4.19: After test coupon side
view

Using the procedure showed in Section 4.3.2, with a test measured crack propagation
of 3 mm, it is possible to calculate the following critical energy release rate: GIc =
185 kJ/m2. Updating the FEM model with this information as showed in the graph
in Figure 4.17 the model is able to detect correctly the failure force even though it
remains stiffer than the real test coupon.

Figure 4.20: Numerical and experimental comparison with Hashin damage model

It is important to notice that the displacements measured during test are the ones
of the machine and not directly the sample ones. This leads to higher displacements
in the test results than the real ones. To take into account this phenomena the
experimental displacements are multiplied by a constant factor of 0.25. The final
comparison is showed in Figure 4.20.
After all the model’s information are udated, they can be applied to the UMAT
model that can be finally compared with the test results.
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4.7 UMAT: Numerical and experimental results com-
parison

Figure 4.21: Numerical and experimental comparison with Hashin damage model
and UMAT model

Figure 4.21 shows the comparison between experimental results, and numerical re-
sults calculated with both the UMAT subroutine and the Hashin model. The pre-
mature interruption of the UMAT curve stands out right away. This is due to a
non convergence of the analysis. In order to localize the problem the model is run
activating one by one the various subroutines (Section 3.1.10), the results are shown
in Figure 4.22.

Figure 4.22: Non convergence problem identification

The problematic subroutine seems to be the FAIL-DAM one. The reasons behind
this problem are still unclear and under study. It is still possible to observe that, as
long as it converges, the UMAT graph follows correctly the test behavior.
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4.8 VUMAT: Numerical and experimental results
comparison

In order to overcome the convergence issue an explicit analysis is run on the FEM
model using, therefore, the VUMAT subroutine instead of the UMAT. This gives
the possibility to check the accuracy of the material model even if convergence issues
will still need to be solved with the implicit subroutine.

The CT test is a quasi-static test that lasts for a few minutes and, consequently,
cannot be simulated explicitly as it is because the number of time steps required
would be too high for any calculator. The following changes are applied to the model
to make the analysis less time consuming:

• Mass scaling factor of 10000

Figure 4.23: Displacement comparison with and without the application of the
smoothing function

• Smoothing of the imposed displacement on the upper pin reference point.
(Figure 4.23 shows the classical applied displacement compared to the smooth
one)

• Time period reduced to 1 s

When changes, like the one previously listed, are applied to a model there is the risk
that the results are not coherent with the real phenomena. To avoid this problem
it is necessary to pay attention to the followings:

• No abrupt changes in the energy must happen. That is why there is a smooth-
ing of the applied displacement (Figure 4.23).

• The mass scaling operation increases the time increment and the kinetic en-
ergy. At the end of the simulation it is necessary to check that the kinetic
energy is a small fraction compared to the internal energy. If that does not
happen the mass scaling factor must be reduced.
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Figure 4.24: Internal and Kinetic energy comparison

The comparison between internal and kinetic energy of the analysis is shown
in Figure 4.24: the kinetic energy is a very small fraction compared to the
internal energy so the chosen mass scaling factor doesn’t influence excessively
the results.

• It is better to use a double precision floating point format.

Figure 4.25: Numerical and experimental comparison with VUMAT model

Figure 4.25 shows the comparison between CT test data and the numerical VUMAT
results:

• The elastic behavior is perfectly calculated by the model;

• The small pseudo-plastic behavior due to the thermoplastic matrix is correctly
evaluated by the FE model;

• Because of the mass scaling and increased velocity of the model some vibrations
appear in the curve that do not represent the real behavior of the sample;
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• The failure of the model appears with the correct force value but at a lower
displacement level. The test coupon, because of the breakage of fibers in com-
pression, undergoes both delamination and interpenetration of the laminae
after the first crack propagation step. This phenomena is not taken into ac-
count in the numerical model and this could be the reason of the different
failure displacements.

Figure 4.26: Mises stresses map on the CT coupon

The stress distribution of the numerical model is coherent with the expected dis-
tribution shown in Figure 4.12. Moreover the failure pattern (Figure 4.27) seems
correct compared to the test one shown in Figure 4.18.

Figure 4.27: Numerical failure pattern
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Chapter 5

Static validation: compact
compressive test (CC)

5.1 Sample geometry
The specimens used for the compact compressive tests are reminiscent of those pro-
posed by the ASTM-D5045 standard. The geometry and dimensions of the sample
used for the tests here described are presented in Figure 5.1 .

Figure 5.1: CC test coupon geometry

The material used is the one presented in Section 3.3 with the following stacking
sequence: [0 90]5s

5.2 FEM model: UMAT and Hashin
The coupon is modeled using ABAQUS/CAE. Using the same approach of the CT
tests, two models are created: one model uses the Hashin model to define material’s
behavior and the other uses the UMAT subroutine. Differences between the two
models are explained in the following sections.
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5.2.1 Geometry

Figure 5.2: 2D Sketch of the CC coupon

The 3D volume representing the CC sample is created starting from the sketch
showed in Figure 5.2 and then extruded in order to obtain the wanted thickness of
3.7 mm.

Figure 5.3: Cells partitions

In order to facilitate the meshing phase the partitions in the volume showed in Figure
5.3 are created. Because of the operating method of the UMAT, it is necessary to
apply an additional partition to the dedicated model: in the thickness direction one
cell per ply has to be created (Figure 5.4).
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Figure 5.4: Thickness partition detail in the UMAT model

The cylinders representing the loading pins are modeled in the same way used for
the CT coupon (Section 4.2.1). The final assembly is showed in Figure 5.5.

Figure 5.5: CC models final assembly
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5.2.2 Mesh

Figure 5.6: Mesh morphology of the CC coupon

As can be seen in Figure 5.6 different mesh dimensions are used in order to discretize
the sample correctly without increasing excessively the computational cost. To
achieve this result, the characteristic mesh size is set to 2mm away from the expected
failure area where the mesh dimension is refined to 0.4 mm. The element types used
are the same type of the CT coupon model (Section 4.2.2). Cylinders representing
the loading pins are treated the same way as the CT coupon ones.

5.2.3 Boundary conditions

Figure 5.7: Boundary conditions

With the aim of simulating the real test loading process the following boundary
conditions are applied to both the Hashin and UMAT model (Figure 5.7):
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• clumping conditions at the reference point defined at the center of the lower
cylinder (Ux = Uy = Uz = 0 URx = URy = URz = 0)

• Ux = Uz = URx = URy = 0 at the reference point defined at the center of the
upper cylinder

• Uy = −5 mm at the reference point defined at the center of the upper cylinder

As for the CT test model (Section 4.2.3), since in the Hashin model the volume
of the sample is discretized using just one element in the thickness direction, it is
necessary to apply an additional condition in that model to obtain a plane strain
condition: for this reason Uz = 0 is applied to the whole CC coupon part.

Finally contacts between the loading pins and the coupon are defined as hard contact
with a friction coefficient of 0.15.

5.2.4 Analysis

The analysis settings are the same used for the CT test showed in Section 4.2.4.

5.3 Test setup and procedure
The tests are performed using an Instron machine following the procedure of the
ASTM5045 [29]. A compressive displacement rate of 0.5 mm is imposed to avoid
dynamic effects during the experiment. Exactly how it gets done for the CT tests
(Section 4.3.1) two CCD cameras are placed on one side of the machine in order to
record not only the crack propagation but also deformations of the specimen’s face.
Also in this case, the recorded face is painted in order to allow the camera to better
recognize different points of the specimen separately (Figure 5.8).

Figure 5.8: CC coupon face painted for augmented detectability

The procedure of the experiment can be summarized as follows:

1. The coupon is placed in the machine. The metal pin is inserted through
the hole in the upper support making it coincide with the upper hole of the
specimen. The machine is then adjusted so that the hole in the lower support
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and the lower hole of the coupon are aligned, at this point the lower pin can
be inserted

2. The top cross-bar of the Instron machine starts moving down with the chosen
velocity. The compression movement continues until a crack is generated in
the correct area.

3. The load is reversed and the coupon is pulled into traction until it goes back
to its original position

4. A second compressive load cycle is applied until the compressive load reaches
the first breakage level again

It is necessary to carry out an entire compression-traction-compression cycle in order
to perform the data post-processing using the area method (Section 4.3.2)

During test the following parameters are measured:

• Displacement of the machine

• Load applied to the machine

• Crack length visually measured from the images taken by the CCD cameras

• Specimen deformation through the CCD cameras

5.4 Numerical and experimental results comparison

Figure 5.9: CC coupon after test

Figure 5.10: Detail of crack in the CC
sample

As shown in Figure 5.9 and Figure 5.10 a crack of 2 mm is generated during test in
the compressed area. It is interesting to highlight that just one step of propagation
appears and that is because only one cycle of compressive-tractive-compressive forces
is applied. Load displacement graph of the first coupon is shown if Figure 5.11.
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Figure 5.11: Load-displacement history during CC test

Observing the graph it is immediately noticeable the displacement with no associ-
ated force that appears between 0 mm and 0.5 mm. This part of the curve is
due to some movements of the test setup which is not perfectly interlocked. This
phenomena does not appear in the CT tests because a traction pre-load is applied
in that case to avoid the problem, this solution, however, is not applicable with
compressive loads.

Figure 5.12: First compressive loading test results compared with Hashin model
results

With the aim of comparing test results with the Hashin FEM model, test curves
are translated horizontally. This process makes it possible to eliminate the firsts
displacements caused by machine movements. Observing the graph in Figure 5.12
one notices some differences:

• The FEM model is way stiffer than the test coupon: this is mostly because
displacement of the machine is measured and not the real displacement of the
coupon. As done for the CT tests (Section 4.6), during post-processing, test’s
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displacement are multiplied by a constant factor of 0.25 in order to take into
account differences between sample and machine’s displacement.

• It is also necessary to consider that because of fiber misalignment stiffness in
fiber’s direction with compressive load can be up to 25% lower than in tensile
loading. In order to consider this phenomena E11 is decreased by 25% in the
Hashin ABAQUS model. This modification its not necessary in the input
properties of the UMAT model because the COMPRESSION subroutine does
it automatically.

• The model doesn’t find the correct breaking point. Using the area method the
correct compressive critical strain energy release rate is calculated and results
in: GIc = 32 kJ/m2. During this calculation ep is considered as half of the
real thickness of the specimen because only layers with fibers in load direction
give contribution in resisting the compressive load, that is half of the coupon
layers.

After updating the model with the new informations it follows better all the exper-
imental results but the breaking force and displacements are still too high (Figure
5.13).

Figure 5.13: Comparison between CC test data results and updated Hashin FEM
model

After all the model’s informations are updated, they can be applied to the UMAT
model that can be finally compared with test results.
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Figure 5.14: Numerical and experimental comparison with Hashin damage model
and UMAT model

Figure 5.14 shows the comparison between the averaged experimental results and
numerical results calculated with both the UMAT subroutine and the Hashin model.
Exactly as the CT tests (Section 4.7) there is non convergence of the analysis after
a few steps. It is still possible to observe that, as long as it converges, the UMAT
graph follows the test behavior correctly.

In order to overcome the convergence issue an explicit analysis is run on the FEM
model using, therefore, the VUMAT subroutine instead of the UMAT. This, as ex-
plained in Section 4.8, gives the possibility to check the accuracy of the material
model even if convergence issues will still need to be solved with the implicit sub-
routine. To be able to run the CC test explicit simulation, the same modifications
applied to the CT UMAT model, described in Section 4.8, need to be performed on
the CC UMAT model. The obtained results are shown in Figure 5.15.

Figure 5.15: Numerical and experimental comparison with VUMAT model

The following observations can be done:
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• The elastic behavior is correctly calculated by the model;

• The model is able to simulate the small pseudo-plastic behavior that the
coupon shows because of its thermoplastic matrix;

• Because of the mass scaling and increased velocity of the model, after failure,
some vibrations are visible in the results graph that do not represent any
physical behavior. Figure 5.16 shows, however, that kinetic energy remains a
small fraction compared to the internal energy for the whole analysis. Because
of this, the results can still be considered acceptable;

Figure 5.16: Internal and kinetic energy comparison

• The failure of the model appears with lower force and displacement compared
to the real one.

Figure 5.17: Mises stresses map on the CC coupon
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Figure 5.18: Numerical failure pattern

The stress distribution of the numerical model shown in Figure 5.17 is coherent
with the expected one. Moreover the failure pattern (Figure 5.18) seems correct if
compared to the test one (Figure 5.9).
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Chapter 6

Dynamic application: Hopkinson bar
test

It is widely demonstrated that the longitudinal tensile properties of UD carbon fiber
are not strain rate sensitive [13]. For the longitudinal compressive properties, how-
ever, different results can be found in literature.

In recent years the split Hopkinson pressure bar (SHPB) has become a popular tool
in the study of the dynamic behavior of materials. This testing device dates back
to 1914 when Hopkinson designed it to measure transient impulsive stresses. The
bar was then further updated by Kolsky and is now the most common experimental
method used in the study of engineering materials under high strain rate loading
ranging from 103 1

s
to 104 1

s
[34].

Figure 6.1: Schematic configuration of the SHPB

The Hopkinson bar consists of a set of two cylindrical steel bars that are both free
to move along their common axis. Along this line, a shorter bar, referred to as the
striker bar, can be accelerated to a certain velocity using for instance compressed
gases or a mechanical mechanism. When the striker bar impacts the incident bar
an incident elastic stress wave is generated. The wave thus generated partly reflects
onto it when it impinges upon the specimen ultimately reaching the transmitted bar
(see Figure 6.1). That is because of the change in impedance at the interface be-
tween the sample and the entry bar that results in the reflection of part of the entry
pulse and the transmission of the remaining portion. The incident stress pulse and
the transmitted stress pulse are measured in real life during the test using gauges
on the incident and transmitted bars. If the two bars remain elastic and the wave
dispersion is ignored, then the measured stress pulses can be assumed to be the same
ones acting on the sample. Starting from wave propagation theory it is possible to
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deduce the equations to be used to extract the stress-strain curve in the sample
using SHPB test output data.

In the following sections compressive SHPB tests are performed on the material
defined in section 3.3 in order to initiate the comprehension of its behavior under
loads with different strain rates. The experimental results are subsequently com-
pared with the numerical results obtained through an ABAQUS model of the setup
which utilizes the VUMAT subroutine. These tests aim to be the basis for an up-
date of the VUMAT model that will take into account differences in the material
behavior owed to a variation of strain rate in the loading.

6.1 Sample geometry
In designing the sample for a compressive SHPB test it is decisive to consider the
following things:

• The length of the coupon has an impact in the maximum strain rate that can
be reached during the test. Typically the longer the coupon the lower the
strain rate.

• The specimen must be short enough to allow stress equilibrium to occur in a
reasonable time scale [35].

• The thickness of the specimen, besides the implications on the strain rate,
needs to be high enough to not make the coupon bend during test. At the same
time it should not be too high to avoid too much resistance of the specimen
that can cause breakage in the bars.

• The section of the specimen should be completely within the bars at which it
is attached.

Different coupon geometries can be found in literature, specifically the ones initially
chosen in the present case are shown in Figure 6.2 [13].

Figure 6.2: SHPB sample geometry and dimensions

6.2 FEM model: VUMAT
The test setup is simulated using ABAQUS/CAE and the VUMAT subroutine
(Chapter 3). In order to reduce the computational cost, the symmetry of the prob-
lem is exploited so just a quarter of the setup is actually modelled.

69



6.2.1 Geometry

Figure 6.3: Coupon part

Three parts are created in order to simulate the test setup:

• The coupon: a three dimensional cuboid with the dimensions of a quarter of
the specimen (Figure 6.3)

Figure 6.4: Striker part

• A quarter of a 20 mm diameter cylinder representing the striker bar with a
length of 500 mm (Figure 6.4)

• A quarter of a 20 mm diameter cylinder representing the incident bar with a
length of 2000 mm

• A quarter of a 20 mm diameter cylinder representing the transmitted bar
with a length of 2000 mm
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Figure 6.5: Test set-up assembly

A detail of the assembly is showed in Figure 6.5.

6.2.2 Mesh

Considering that the bars are not the target of the analysis and that they do not
have particular geometrical characteristics or properties that require special atten-
tion, C3D8 elements with an average characteristic length of 5 mm are chosen for
them.

Regarding the coupon it is necessary to do a convergence analysis to understand the
best mesh dimensions. The element type is C3D8R for the coupons as well. The
results are showed in Figure 6.6.

Figure 6.6: Mesh dimension convergence analysis

Except for the 1 mm mesh which is too rough for the coupon dimensions, all
the other dimensions imply very similar results. In order to have a mesh that is
fine enough and at the same time not too much time consuming, the 0.4 mm
characteristic element length is chosen.
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6.2.3 Boundary conditions

Figure 6.7: Symmetry boundary conditions

As shown in Figure 6.7, boundary conditions are applied on the symmetry planes
to take into account the volumes that are not modeled. Specifically the following
degrees of freedom are blocked:

• On the YZ plane: Ux = URy = URz = 0

• On the XZ plane: Uy = URx = URy = 0

Figure 6.8: Applied velocity on the striker bar

The movement is given to the striker bar through the application of a velocity to
it in the axial direction as showed in Figure 6.8. This velocity changes in different
analysis based on the ones used during tests.

6.2.4 Analysis output requests

The output requested for the analysis are the strain in three elements of the model:

• Central element of the coupon

• Central element of the entry bar

• Central element of the exit bar
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6.2.5 Post processing: strain rate calculus

After data are collected from the ABAQUS model analysis they can be used to ob-
tain an idea of the strain rate ranges reached by the coupon. This calculus is very
important in order to evaluate the velocity of the striker bar to impose during the
testing phase.

The strain rate can easily be defined as follows:

ϵ̇ =
δϵ

δt
(6.1)

In order to calculate it with the data obtained from the analysis that are in a dis-
crete number it is necessary to calculate the derivative through the finite differences
method:

ϵ̇ =
∆ϵ

∆t
(6.2)

This is calculated for every time step obtaining the strain rate time history (Figure
6.9).

Figure 6.9: Example of strain rate output

Since the graph obtained with this method has a lot of noise it is necessary to use
a filter to obtain a smoother signal. The filter used is the Savitzy-Golay filter 6.10.
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Figure 6.10: Example of strain rate output after smoothing

Various methods exist to smooth noisy signals but the Savitzy-Golay filter stands
out with its ability to smooth data while preserving the features of the original sig-
nal, such as peaks and valleys, which might be lost with other smoothing techniques.
This makes it particularly useful in applications like this one where is fundamental
to preserve the shape of the curve. This filter smooths data by fitting a successive
sub sets of adjacent data points with low degree polynomial using the method of
the linear least squares

The core idea is to approximate the data points within a moving window by a
polynomial of a certain degree. If there is a set of data points (xi, yi) where i
ranges form 1 to N , the goal is to fit a polynomial of degree p to these points. The
polynomial can be expressed as follows:

y = a0 + a1x+ a2x
2 + ...+ apx

p (6.3)

For a given window of data points centered in xk, it is necessary to determine the
coefficients ai to obtain the polynomial data that fits best the data points. This is
achieved by minimizing the sum of the squares of the differences between the actual
data points yi and the corresponding polynomial values yih:

min
m∑

i=−m

(yk+1 −
p∑

j=0

ajx
j
k+1)

2 (6.4)
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6.3 Test

6.3.1 Experimental setup and procedure

Figure 6.11: Test setup

The tests are performed using a split Hopkinson pressure bar custom built by Institut
Clément Ader (ICA). The test setup consists of the following items:

• Three aluminium bars: the striker bar, the incident bar and the transmitted
bar whose role during test is further described at the beginning of the current
section;

• Two hard metal cylinders: they have the same diameter of the bars and protect
them from the impact with the coupon that could damage them. They are
positioned at the interfaces between the sample and the bars.
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Figure 6.12: Striker bar velocity - tank pressure relation

• Gas tank: It contains the pressurized gas that, when released, gives the initial
force to accelerate the striker bar. The pressure of the tank can be modified in
order to obtain different velocities of the striker bar. The relationship between
the pressure of the tank and the velocity of the striker bar is shown in the
graph in Figure 6.12;

Figure 6.13: High speed camera setup

• High speed camera and lights 6.13: this allows to obtain detailed pictures of
the phenomena. The pictures can also be used to directly extract from them
the deformation of the coupon;

• Eight strain gauges : four are attached to the incident bar, and four to the
transmitted bar. These strain gauges measure the deformation of the bars,
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which, as previously explained, will be used to calculate the stress and strain
distribution of the coupon during the post-processing phase. The strain gauges
are placed in pairs at selected positions on each bar, with each pair mounted on
diametrically opposite sides. This setup helps eliminate bending waves during
post-processing, ensuring that only pure compression strains are measured.
Two positions are chosen on each bar for redundancy.

The dimensions of the whole test setup and the position of the strain gauges is
shown in Figure 6.14.

Figure 6.14: Dimensions of the ICA test setup

The following steps summarize the test procedure:

1. The cylindrical interphases between bars and sample is covered in grease. The
thin layer of grease allows to smoothen the wave before it hits the coupon
obtaining a more clear response;

2. The two cylinders are attached to the bars using adhesive tape;

3. The coupon is positioned between the two bars and blocked there with a little
compression;

4. The tank is pressurized

5. Pressure is released from the tank and pushes the striker bar that starts the
testing phase;

6. For security reason the tank needs to be depressurized before considering the
test concluded;

7. Data from the strain gauges and video from the high speed camera can be
visualized.
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6.3.2 Experimental data post processing

Starting from the measurements of strains in the bars it is possible to calculate
the stress, strain and strain rate of the sample [34]. Having records of the incident,
reflected and transmitted pulses (respectively ϵI , ϵR and ϵT ) it is possible to establish
conditions at the specimen interphase. From the one dimensional theory of elastic
wave propagation:

u− c0

∫ t

0

ϵdt′ (6.5)

where u is the displacement at time t, c0 is the wave velocity and ϵ is the strain.
The displacement u1 of the face of the incident bar is the result of both the incident
strain pulse traveling in the positive x direction and the reflected strain pulse ϵR
traveling in the negative x direction, this results in:

u1 = c0

∫ t

0

ϵIdt
′ + (−c0)

∫ t

0

ϵRdt
′ = c0

∫ t

0

(ϵI − ϵR)dt
′ (6.6)

Similarly, the displacement u2 at the face of the transmitted bar is calculated using
ϵT as follows:

u2 = c0

∫ t

0

ϵTdt
′ (6.7)

The nominal strain in the specimen is therefore obtained:

ϵs =
u1 − u2

l0
=

c0
l0

∫ t

0

(ϵI − ϵR − ϵT )dt
′ (6.8)

where l0 is the initial length of the specimen. Expression 6.8 can be simplified if the
stress across the specimen is considered constant, this assumption becomes more
exact as l0 approaches zero. If the deformation at the interfaces of the sample are
considered equal, the following expression can be written:

ϵR = ϵT − ϵI (6.9)

By substituting expression 6.9 in 6.8:

ϵS = −2c0
l0

∫ t

0

ϵRdt
′ (6.10)

The loads applied on the faces of the sample are shown below:

P1 = EA(ϵI + ϵR) P2 = EAϵI (6.11)

Hence, the average stress in the specimen σs can be expressed as follows:

σs =
P1 + P2

2As

=
1

2
E

(
A

As

)
(ϵI + ϵR + ϵT ) (6.12)

where E is the modulus of elasticity of the pressure bars and A
As

is the area ratio
between sections of pressure bars and specimen. Using 6.9, equation 6.12 can be
simplified as shown below:

σs = E

(
A

As

)
ϵT (6.13)
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In all previous expressions the recorded signals ϵI , ϵR and ϵS are shifted along the
time axis to have coincident beginnings.
After experimental tests the post processing phase is handled by a Matlab program
with the following steps:

1. The signal recorded by the strain gauges in the incident bar corresponds to
both the incident and reflected deformation. At the beginning of the program
Matlab reads the test output data through a text file.

Figure 6.15: Selection of incident and reflected wave limits

2. The user selects the beginning and ending point of the incident wave through
an interactive graph. The time-span corresponding to this wave will be con-
sidered from this moment on the base time of all the signals (Figure 6.15).

3. The user selects the beginning point of the reflected wave. The ending point is
automatically found by the program considering that all signals need to have
the same length.

79



Figure 6.16: Selection of transmitted wave beginning

4. The user selects the beginning of the transmitted wave (Figure 6.16), the
ending of it is automatically found using the same logic of the reflected wave.

5. Strain rate is calculated as follows:

ϵ̇s =
2c0ϵR
l0

(6.14)

6. The deformation of the sample is calculated:

ϵs =

∫ t

0

ϵsdt
′ (6.15)

The integral value is determined using the trapezoidal method.

7. The coupon stress is calculated using equation 6.12;

8. Graphs with stress, strain and strain rate of the sample are shown as final
output (Figure 6.17).

80



Figure 6.17: SHPB test sample behavior

6.3.3 Preliminary test

The minimum pressure of the machine has been used (0.8 Bar corresponding to a
striker bar velocity of 8.5 m/s) but it still resulted in the failure of the coupon as it
is shown in the following sections. New tests with lower pressures, and consequently
lower striker velocities, need to be performed in order to obtain knowledge about
linear behavior of the material.

[0]16 Coupon

Figure 6.18: [0]16 coupon test result
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Results obtained with this test cannot be used to have a comparison with the numer-
ical model. As shown in Figure 6.18 the failure of the coupon is due to delamination
and not compression. This can be caused by a non perfect contact on the interface
between the coupon and supports.

Figure 6.19: Entry bar strain Figure 6.20: Exit bar strain

Figure 6.21: Sample strain Figure 6.22: Sample strain rate

As noted above, many differences arises from the experimental and numerical com-
parison shown in Figures 6.19 6.20 6.21 6.22:

• The entry bar strain levels are correctly simulated by the numerical model.
It is interesting to notice that the first wave, representing the incident pulse,
perfectly overlaps the test curve while the reflected pulse has a different shape.
This is due to the fact that the numerical model cannot simulate the breakage
of the sample if not caused by compression.

• The numerical exit bar strain level is way higher than the test one. The
breakage of the sample reduces the energy transferred to the exit bar that
deforms less than expected.

• For the reasons listed above the strain level of the coupon is way higher during
test than what the numerical results show

• The numerical model correctly calculates the strain rate level of the coupon.
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[90]16 Coupon

Figure 6.23: [90]16 coupon test result

Figure 6.23 shows a classical compressive breakage with the angled failure through
the thickness with a striker bar velocity of 8 m/s. Since in this case the coupon
broke correctly the data shown are usable but new tests with lower pressures still
need to be performed.

Figure 6.24: Entry bar strain Figure 6.25: Exit bar strain

Figure 6.26: Sample strain Figure 6.27: Sample strain rate

Figures 6.24 6.25 6.26 6.27 show the comparison between the VUMAT model results
and the test data. The following observations can be done:
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• The levels of strain and the wave shape of the entry bar is correctly foreseen
by the numerical model

• The strain and strain rate graphs of the sample show good accordance between
test and numerical results

• The numerical exit bar strain is way higher than the test one.

Figure 6.25 shows clearly how little the transmitted wave is if compared to the entry
pulse in Figure 6.24. This is due to the very low impedance of the sample material
that can cause the transmitted pulse to be so weak to be confused with noise. Some
solutions can be applied to the setup to obtain a stronger signal in the transmitted
bar [35]:

• More sensible strain gauges

• Bigger sample transversal area

• Changing the bar material for one with lower impedance to reduce the differ-
ence with the sample one

Unfortunately none of these solutions could be applied to the setup used with the
available time frame but it is still possible to obtain fairly accurate result even with
very weak transmitted wave.

[+45 − 45]4s Coupon

Figure 6.28: [+45− 45]4s coupon test result

The [+45 −45]4s coupon has undergone an extreme bending condition that resulted
in its failure as shown in Figure 6.28. Further tests will be performed with shorter
coupons in order to avoid this problem.
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Figure 6.29: Entry bar strain Figure 6.30: Exit bar strain

Figure 6.31: Sample strain Figure 6.32: Sample strain rate

Figures 6.29 6.30 6.31 6.32 show the comparison between the VUMAT model results
and the test data. In this case, like in the [0]16 case, the numerical model is not able
to simulate the failure of the coupon since that is due to sample imperfections. The
following observations can still be done:

• The levels of strain and the wave shape of the entry bar is correctly foreseen
by the numerical model

• The strain of the sample show higher results coming from the FE model than
test data. That is because in the model the sample does not undergo a failure.
For the same reason the numerical exit bar strain is way higher than the test
one.

• The FEM model overestimates the sample strain rate levels.
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6.3.4 Geometrical modifications

Figure 6.33: Split Hopkinson pressure bar setup at ISAE-Supaero

In order to avoid problems encountered during preliminary testing new dimensions
are chosen for the sample geometry (Figure 6.34).

Figure 6.34: SHPB Test sample updated geometry

Moreover a new Split Hopkinson bar with mechanical activation custom made at
ISAE Supaero (Figure 6.33) is used in place of ICA’s setup. This choice is made
because through mechanical activation it is possible to generate less intense waves
that coupled with shorter specimens should result in a non-break of the sample.
This should allow to observe elastic behavior of the material.
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Figure 6.35: Dimensions of the ISAE test setup

New dimensions of the test setup with new positions of the strain gauges are shown
in Figure 6.35.

6.4 Numerical and experimental results comparison
In the following sections comparison between numerical and experimental results
of the split Hopkinson bar test with the new setup are showed. Samples with the
following layups are tested:

• [0]16

• [90]16

• [+45− 45]4s

Each type of sample is tested with three different striker bar velocities:

• 4.3 m/s

• 5.1 m/s

• 6.2 m/s

For each velocity, three samples with the same layup are tested. The results pre-
sented are the average of the results of the same layup samples tested at the same
striker bar velocity. For the sake of completeness, stress-strain curves of all the
samples are shown in Appendix A.

Because of some problems with the setup results for [0]16 samples with 4.3 m/s ve-
locity were not saved correctly so they are not presented in the corresponding section.

It is important to underline that the accuracy of the results obtained with the
method described in Section 6.3.2 is strongly dependent from the correctness of its
assumptions. It is notably important, in this context, the uniformity of stress and
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strains of the sample. This can be verified through the comparison of ϵI and ϵR+ϵT :
small differences in their modulus allow to corroborate the assumption [34].

Figure 6.36: Wave comparison to check uniformity of stress and strains

Figure 6.36 shows the comparison between ϵI and ϵR+ϵT for the [90]16 coupon tested
with striker bar velocity of 5.1 m/s. The graph shows differences acceptable for the
test. Similar comparison are done for each coupon tested and they all resulted in
the validation of the assumption of uniformity of stress and strains.

[0]16 Coupon

In this section results for [0]16 samples are shown. Prior to the observation of the
result it is important to specify that, even with the new geometry, these samples
have undergone failure as reported in Figure 6.37.

Figure 6.37: Failure on [0]16 samples

The sample has undergone a bearing failure process because of the compressive forces
involved in the test. Since this kind of failure is not considered in the material model
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here under study, some differences can be noticed between the numerical model and
experimental results.

Figure 6.38: Entry bar strain Figure 6.39: Exit bar strain

Figure 6.40: Sample strain Figure 6.41: Sample strain rate

Figure 6.42: Sample stress Figure 6.43: Coupon behavior

Figure 6.44: Test results with striker bar velocity of 5.1 m/s
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Figure 6.45: Entry bar strain Figure 6.46: Exit bar strain

Figure 6.47: Sample strain Figure 6.48: Sample strain rate

Figure 6.49: Sample stress Figure 6.50: Coupon behavior

Figure 6.51: Test results with striker bar velocity of 6.2 m/s

The following observations can be made:

• Strain of the entry bar is perfectly simulated by the numerical model. The
abrupt drop and following rise in the reflected wave of the test is due to the
failure of the coupon, because of this the shape od the numerical reflected
wave is different.

• Levels of the exit bar strains are different between FEM model and test results.
The failure of the sample results in lower levels of the transmitted wave.
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• During the test the coupon undergoes, because of the failure, higher strain
and strain rate than expected from the simulations.

• Stress levels are correctly simulated by the numerical model.

• Until the failure point is reached, stress-strain behavior of the sample is co-
herent with the numerical results.

[90]16 Coupon

Figure 6.52: Failure on [90]16 samples

In this section results for [90]16 samples are shown. It is important to notice that the
coupon failed in compression with the highest striker bar velocity (Figure 6.52), in
this case greater discrepancies appear between numerical and experimental results.
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Figure 6.53: Entry bar strain Figure 6.54: Exit bar strain

Figure 6.55: Sample strain Figure 6.56: Sample strain rate

Figure 6.57: Sample stress Figure 6.58: Coupon behavior

Figure 6.59: Test results with striker bar velocity of 4.3 m/s
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Figure 6.60: Entry bar strain Figure 6.61: Exit bar strain

Figure 6.62: Sample strain Figure 6.63: Sample strain rate

Figure 6.64: Sample stress Figure 6.65: Coupon behavior

Figure 6.66: Test results with striker bar velocity of 5.1 m/s
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Figure 6.67: Entry bar strain Figure 6.68: Exit bar strain

Figure 6.69: Sample strain Figure 6.70: Sample strain rate

Figure 6.71: Sample stress Figure 6.72: Coupon behavior

Figure 6.73: Test results with striker bar velocity of 6.2 m/s

In these cases, the FEM model correctly predicts the coupon’s behavior, but the
stress levels are typically overestimated when compared to experimental data. This
can be attributed to the increased stiffness caused by high strain rate loading, a
factor not considered in the material model under investigation
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[+45− 45]4s Coupon

Figure 6.74: [+45− 45]4s sample after test

This section shows the comparison between numerical and experimental results on
[+45 − 45]4s samples with different striker bar velocities. No failure has happened
during these tests as shown in Figure 6.74.
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Figure 6.75: Entry bar strain Figure 6.76: Exit bar strain

Figure 6.77: Sample strain Figure 6.78: Sample strain rate

Figure 6.79: Sample stress Figure 6.80: Coupon behavior

Figure 6.81: Test results with striker bar velocity of 4.3 m/s
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Figure 6.82: Entry bar strain Figure 6.83: Exit bar strain

Figure 6.84: Sample strain Figure 6.85: Sample strain rate

Figure 6.86: Sample stress Figure 6.87: Coupon behavior

Figure 6.88: Test results with striker bar velocity of 5.1 m/s
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Figure 6.89: Entry bar strain Figure 6.90: Exit bar strain

Figure 6.91: Sample strain Figure 6.92: Sample strain rate

Figure 6.93: Sample stress Figure 6.94: Coupon behavior

Figure 6.95: Test results with striker bar velocity of 6.2 m/s

In these cases, the FEM model accurately predicts the coupon’s behavior, although
the strain and stress levels are generally slightly overestimated compared to the
experimental results. It’s important to note that this type of layup creates a pure
shearing loading condition, leading to very high friction levels that result in highly
nonlinear behavior of the sample. This phenomenon is accounted for in the numerical
model, which explains why the unloading curve, even when the sample does not fail,
does not return to zero strain. The residual strain is due to the viscoelasticity of
the PEAK matrix.
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6.5 Strain rate effect
In the present section coupon behaviors at different strain rates are compared.

Figure 6.96: Strain rate effect on [0]16 samples

The observations of Figure 6.43 and Figure 6.50, when compared to Figure 2.10,
lead to the conclusions that numerical stress levels are the expected ones for these
longitudinal compression tests. However, due to the delamination failure that occurs,
the stress levels are significantly lower, with higher corresponding strains. As a result
of these phenomena the data shown in Figure 6.96 are not particularly indicative
of the strain rate dependency of the longitudinal behavior of the material under
study. Nevertheless, It is still possible to observe that, until the delamination process
begins, there is no noticeable effect of strain rate on sample stiffness.

Figure 6.97: Strain rate effect on [90]16 samples
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Figure 6.97 shows different strain rate behaviors of [90]16 samples. The following
observations can be done:

• The elastic modulus of the linear part of the curve stays practically the same
with the increase of the strain rate;

• In the non-linear part of the curve some stiffening can be observed with the
increase of the strain rate

Figure 6.98: Strain rate effect on [+45− 45]4s samples

Ultimately, Figure 6.98 shows different strain rate behaviors of [+45−45]4s samples.
From the observations of the curves one can conclude that:

• A slight stiffening of the sample appears with the increase of the strain rate;

• High nonlinearity appears with a plateau region at a stress level that increase
as the strain rate increases;

In conclusion, while some changes in the material behavior are observed due to
variations in the strain rate, the relatively narrow range of strain rates tested in this
study makes these changes appear less significant. To gain a clearer understanding
of the relationship between strain rate and material behavior, it is necessary to test
a broader range of loading strain rates.
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Chapter 7

Conclusions and future developments

The primary objective of this thesis is to statically validate the composite material
model, specifically designed for fiber-reinforced thermoplastics, which was previously
developed at ISAE-Supaero, and to begin exploring the dynamic behavior of these
materials, particularly in relation to strain rate effects.

The first goal is achieved by conducting compact compressive and tensile tests, then
comparing the results with simulations based on the material model under investiga-
tion. The comparison produces very positive results, confirming that the equations
and methods used in the model are correct. However, during these simulations, a
new issue emerged: convergence problems with the implicit model when applied to
complex geometries, such as those in the tests. Further studies are needed to iden-
tify the cause of these convergence issues and ultimately find a solution.

The study of the dynamic effects begins with Split Hopkinson Pressure Bar tests
on the coupon, which allow for the observation of strain rate effects on the material
behavior. However, since the range of strain rates tested is limited, it is not possible
to derive a clear relationship between the material’s behavior and the strain rate of
the applied loading based solely on the results presented in this work. Additional
tests should be conducted with a broader range of striker bar velocities to achieve
this.

Figure 7.1: Proposal for new SHPB test setup [36]
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However, conducting tests at higher velocities requires slight modifications to the
setup to prevent the bearing issues discussed earlier in this thesis. Various methods
for securing the sample in the correct position are available in the literature, with
the most suitable one shown in Figure 7.1. Additionally, thicker coupons should be
manufactured to achieve higher transmitted wave levels, resulting in more precise
results.

In conclusion, this thesis builds upon the static work previously carried at ISAE-
Supaero, providing a foundation for the further investigation of the mechanical be-
havior of fiber-reinforced thermoplastics. The insights gained not only continue this
line of research but also establish the groundwork for studying the dynamic behavior
of these materials.
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Appendix A

SHPB Tests complete tests results

In the current appendix, stress-strain curves of all the coupons tested with ISAE-
Supaero split Hopkinson pressure bar are shown.

[0]16 Coupon

Figures A.1 and A.2 present the results for the [0]16 samples. Unfortunately, some
issues arose when saving the 6.2 m/s data, which means that only the results from
the first sample are usable.

Figure A.1: Stress-strain behavior with striker bar velocity of 5.1 m/s
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Figure A.2: Stress-strain behavior with striker bar velocity of 6.2 m/s

[90]16 Coupon

Figures A.3, A.4 and A.5 present the results for the [90]16 samples. Unfortunately,
some issues arose when saving the 6.2 m/s data, which means that only the results
from the first and second sample are usable. Note that the results are in good
agreement with each other.

Figure A.3: Stress-strain behavior with striker bar velocity of 4.3 m/s
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Figure A.4: Stress-strain behavior with striker bar velocity of 5.1 m/s

Figure A.5: Stress-strain behavior with striker bar velocity of 6.2 m/s

[+45 − 45]4s Coupon

Figures A.6, A.7 and A.8 present the results for the [+45 − 45]4s samples. Note
that the results are in good agreement with each other.
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Figure A.6: Stress-strain behavior with striker bar velocity of 4.3 m/s

Figure A.7: Stress-strain behavior with striker bar velocity of 5.1 m/s
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Figure A.8: Stress-strain behavior with striker bar velocity of 6.2 m/s
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