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Abstract

The significant reduction in automotive powertrain noise, due to electric vehicles
and stringent emissions regulations, has highlighted wind noise and its mitigation
as a key area of automotive development. Consequently, the precise identification
of aeroacoustic noise sources is vital for enhancing vehicle acoustic comfort in
a cost-effective and efficient manner, particularly as many of the noise sources
now observed were once masked by powertrain sounds.

Currently, beamforming techniques, which utilize one or more microphone arrays
to detect noise sources on a virtual plane near the vehicle, are the industry
standard for external aeroacoustic assessment. However, assuming that all noise
sources reside on this defined plane can lead to inaccuracies in estimating the
intensity and location of off-plane sources. To address this limitation, Pininfarina
has implemented a multi-plane approach for its overhead microphone array. This
strategy defines several planes that more accurately capture the vehicle’s vertical
dimensions, with the natural evolution of this method being the direct mapping
of noise sources onto a three-dimensional scan of the vehicle.

This thesis aims to develop a new algorithm that merges data from three
arrays into a single acoustic map of the vehicle’s surface using a Multiplica-
tive Beamforming technique. This approach minimizes localization errors and
inaccuracies in source strength caused by focus deviations.
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Chapter 1

Introduction

1.1 Overview

The transition to electric vehicles and more stringent emission standards have
radically changed the focus of automotive acoustics research over the last two
decades. Wind noise has become an issue due to the significant reduction in
powertrain noise in electric vehicles, and it is therefore important to understand
and control aeroacoustic noise sources to ensure that vehicles are comfortable
and efficient. It is therefore essential to identify and control the aeroacoustic
noise sources so that the acoustic performance of the vehicle becomes competitive
without compromising the efficiency of the design process. With the increasing
complexity of vehicle shapes, classical noise assessment methods cannot be
applied to three-dimensional objects and complex noise sources. However, to
meet these challenges, motivated by academic and industrial requirements, new
advanced measurement methods have been developed to capture the complexity
of the acoustic response of modern vehicles.

In wind tunnel conditions, acoustic source localisation has historically been
carried out using techniques such as elliptical mirrors [1]. These devices work
on the concept of spatial filtering, using mirrors to direct the acoustic energy
from a particular source to a particular focus. The elliptical mirror technique
was implemented based on the far-field formulation of acoustic propagation as
acoustic rays to perform Fourier analysis on the received signals to quantify the
noise power as a function of frequency. The main drawback of this approach was
that it had some practical limitations. The method required high mechanical
precision and long sampling times; in addition, the high storage costs of the
traversing systems and the specialised equipment required made this method
unsuitable for large-scale industrial application.
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The mid-1990s saw the advent of digital computing, high-speed data acqui-
sition systems and improved data storage, which changed the world of acous-
tic measurement [1].The development of very sophisticated microphone array
techniques, using more than a hundred digital sensors, greatly improved the
robustness and spatial resolution of acoustic source mapping. This was made
possible by the use of miniaturised digital microphones first developed for the
telecommunications and smartphone industries. The use of these microphones
led to a sharp reduction in the cost per channel due to economies of scale and
improvements in digital multiplexing. As a result of these technological im-
provements, not only have the spatial resolution and reliability of acoustic maps
in wind tunnels and outdoor environments been improved, but beamforming
techniques have also been made available to small and medium sized companies
involved in product development and noise control.

Beamforming methods are widely used in various applications such as aeroa-
coustic characterisation of aircraft and trains, noise assessment of helicopters
and jet engines. These methods work by designing directional spatial filters
using an array of microphones to separate and measure noise sources to produce
acoustic maps that have a main lobe that points to the source and side lobes
that are the remaining artifacts of beamforming. The spatial resolution of these
acoustic maps is limited by the width of the main lobe and the side lobes, which
can mask the signal from weaker sources in the presence of stronger sources. The
accuracy of source localisation is largely influenced by the point spread function
(PSF) of a beamformer, which is a function of the number of microphones,
array geometry, aperture size, frequency content and the characteristics of the
filters used. DAMAS (Deconvolution Approach for the Mapping of Acoustic
Sources) and CLEAN-SC (Clean based on Source Coherence) are examples
of advanced deconvolution techniques that have been proposed to address the
blurring effects of the PSF and increase the accuracy of the acoustic maps [2].
Under difficult measurement conditions, these techniques have been shown to
significantly improve the ability to separate and measure the levels of multiple
nearby noise sources.

However, while beamforming techniques have brought about several improve-
ments, the limitations of planar beamforming are most evident in the complex
geometries of modern vehicles. The projection of acoustic data onto a single
virtual plane leads to many misinterpretations of the location and intensity of
noise sources [2], especially for components that are not parallel to the mea-
surement plane, such as overhead structures or curved surfaces. To overcome
these problems, Pininfarina introduced multi-plane beamforming formulations.
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Pininfarina’s approach to approximating the three-dimensional shape of vehi-
cles using multiple parallel virtual planes was designed to increase the spatial
correspondence between the mapping surface and the source locations. Al-
though the use of multi-plane mapping was an improvement over purely planar
methods, it was still an approximation; the simplification of representing a
three-dimensional surface as a few two-dimensional slices cannot capture the
complexity of real-world vehicle topologies and out-of-plane effects.

In response to the persistent limitations of both planar and multi-plane
methods, three-dimensional beamforming has been developed, directly mapping
acoustic sources onto the vehicle’s surface using high-resolution 3D scans. This
innovative technique eliminates the need for planar approximation by integrating
the actual geometric contours of the vehicle into the analysis, thereby enhancing
the accuracy of noise source localization and the estimation of their acoustic
strength by accounting for the complete surface topology. This enhanced preci-
sion is of particular value in the context of modern electric vehicles, where even
minor inaccuracies in noise mapping can impede the development of effective
noise reduction strategies.The approach involves integrating data from multiple
microphone arrays into a unified acoustic map, which is then projected onto a
detailed three-dimensional model of the vehicle.This unified mapping provides a
more precise representation of the aeroacoustic environment and streamlines the
evaluation process in wind tunnel tests, reducing both time and cost. In essence,
3D beamforming establishes a direct correlation between the measured acoustic
data and the actual vehicle geometry, thereby facilitating a more intuitive com-
prehension of the manner in which airflow interacts with complex surfaces to
generate noise.

In summary, the rapid evolution of automotive acoustics research from the
early elliptical acoustic mirrors to modern 3D beamforming techniques is in
line with advances in both hardware and signal processing. As electric vehicles
gradually eliminate conventional powertrain noise and change the acoustic
environment, the accurate mapping of wind noise on complex vehicle geometries
becomes increasingly important. This paper describes the application of a new
3D beamforming technique that combines data from multiple microphone arrays
and presents the results of acoustic mapping in a single map superimposed on
the vehicle surface. This method, which overcomes the limitations of planar
and multi-plane methods, greatly improves the reliability and accuracy of wind
tunnel evaluations and could be a useful practical tool for improving vehicle
acoustic comfort and reducing time to market in a highly competitive market.
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1.2 Objectives of the Thesis

The objective of this research is to investigate the potential of 3D beamforming
algorithms in the context of vehicle aeroacoustics. To this end, the study will
firstly examine the limitations of 2D beamforming techniques, encompassing
both planar and multiplane methods. Subsequent experiments and research
endeavours will be undertaken to enhance and refine 3D beamforming techniques.
The thesis is structured into six primary chapters.

1. The present one, namely the Introduction, introduces the research problem
and outlines the objectives of the thesis.

2. Chapter 2 provides a comprehensive review of the theoretical foundations
pertinent to the interpretation of the experimental results, and it also
presents the beamforming algorithms utilised in this thesis.

3. Chapter 3 provides a comprehensive description of the Pininfarina wind tun-
nel facility and a detailed characterisation of the experimental measurement
instruments utilised.

4. In chapter 4, a detailed comparison is conducted among three beamforming
formulations — single-plane, multiplane, and three-dimensional. The anal-
ysis focuses on a parametric vehicle model tested in the Pininfarina wind
tunnel, which is equipped with two synchronised white noise sources.

5. Chapter 5, the beamforming analysis is expanded from a Pininfarina wind
tunnel vehicle parametric model to a real production vehicle case, with the
investigation of the aeroacoustic sources.

6. Chapter 6 provides a synopsis of the findings and a discussion of potential
avenues for future research.
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Chapter 2

Theoretical Background

This chapter provides a thorough review of the theoretical underpinnings and
basic principles that underpin the research presented in this thesis. The dis-
cussion is divided into two main sections: The first section, entitled ’Linear
Acoustics’, provides a thorough review of the theoretical underpinnings and fun-
damental concepts that underpin linear acoustics. The second section, entitled
"Beamforming", delves into the intricacies of beamforming techniques and their
applications.

Section 2.1 introduces the principles of linear acoustics. It commences with
the derivation of the acoustic wave equation and proceeds to examine the
sound generation mechanisms associated with a small sphere. The subsequent
exploration of the principle of superposition alongside the far field approximations
is then followed by an analysis of various sound sources, namely monopole, dipole,
and quadrupole sources. This systematic exposition establishes the mathematical
and physical foundations and thus provides a foundation for the more advanced
discussions that follow.

The formulation of beamforming techniques is the focus of the section 2.2.
It starts with the description of Delay-And-Sum Beamforming as the initial
approach and further developments. The Pininfarina Conventional Beamform-
ing technique is then introduced, followed by the Multiplicative Beamforming
approach developed for three-dimensional scenarios. Figures and equations are
used throughout the chapter to aid understanding of the discussion and to relate
the information to the established notation and structure.

2.1 Linear Acoustics

Acoustic waves constitute oscillatory disturbances that propagate through an elas-
tic medium, conveying energy without any net displacement of mass. In gaseous
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media, these minute variations in pressure, density, and velocity travel as longi-
tudinal waves, creating alternating regions of compression and rarefaction. For
isentropic disturbances, the speed at which these waves propagate—commonly
known as the speed of sound—is defined by

c0 =

öõõôA∂p

∂ρ

B
s

, (2.1)

where c0 represents the speed of sound, p the pressure, and ρ the density.
In the case of an ideal gas, the speed of sound may be expressed as

c0 =
ñ

γRT , (2.2)

with γ denoting the adiabatic index, R the specific gas constant, and T the
absolute temperature. Under standard conditions (e.g., T = 15◦C), the value
of c0 is approximately 340 m/s. Moreover, the frequency f of a sound wave is
related to its wavelength λ by

f = c0

λ
. (2.3)

Sound is detected by the human auditory system through pressure variations
that impinge upon the tympanic membrane. The range of audible frequencies
for humans extends from roughly 20 Hz to 20 kHz, with maximum sensitivity
occurring between 1 kHz and 5 kHz. Consequently, investigations in acoustics
frequently focus on phenomena related to human noise perception.

Since the propagation of sound entails energy transport [3], two primary
quantities are defined: the sound power Pw (expressed in Watts) and the sound
intensity I, which is the power per unit area (W/m2). As indicated in Table 2.1,
the span of sound power levels is extremely broad, necessitating the use of a
logarithmic scale for their representation.

Type of Sound PW [W]
Whisper 10−10

Scream 10−5

Jet engine 105

Rocket engine 107

Table 2.1: Sound power levels for various sound types.
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The sound power level (PWL) is defined in decibels (dB) as

PWL = 10 log10

A
Pw

Pw,ref

B
, (2.4)

where Pw,ref is a reference sound power.
Similarly, the sound pressure p′ is defined as the deviation in pressure relative

to a specified reference value. For a periodic signal with period T , its effective,
or root mean square (RMS), value is given by

⟨p′2⟩ = p′2
rms = 1

T

Ú t0+T/2

t0−T/2
p′2(t) dt. (2.5)

Owing to the wide dynamic range of pressure variations, the sound pressure
level (SPL) is likewise expressed on a logarithmic scale:

SPL = 10 log10

A
p′2

rms
p2

ref

B
= 20 log10

A
p′

rms
pref

B
, (2.6)

where pref is typically taken as 20 µPa in air, corresponding to the threshold of
human hearing. Inverting this relationship yields

p′
rms = pref 10SPL/20. (2.7)

Furthermore, it is common practice to apply a frequency weighting to p′
rms to

account for the varying sensitivity of human hearing across different frequencies.
The weighted RMS pressure is defined as

1
p′2

rms

2
w

= W (f) p′2
rms, (2.8)

with the weighting function specified by W (f) = 10∆Lw(f)/10.

2.1.1 The Acoustic Wave Equation

Acoustic wave propagation in a continuous medium is fundamentally described
by the complete Navier–Stokes equations. However, for most common and
industrial sound levels (typically below 130 dB), the disturbances are so small
that the propagation may be assumed to be linear and isentropic [4]. Under these
circumstances, the otherwise complex governing equations can be considerably
simplified, leading to both the linear acoustic wave equation and its frequency-
domain equivalent, the Helmholtz equation.
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To obtain these simplified models, one begins by assuming that the medium
is initially at rest and exhibits uniform, time-invariant properties. In this setting,
the acoustic pressure p′ and density ρ′ are regarded as small perturbations around
the equilibrium state [5], so that the total pressure and density are expressed as

p = p0 + p′, ρ = ρ0 + ρ′,

with p′ ≪ p0. In many instances, the perturbations satisfy

ρ′
rms
ρ0

= p′
rms

ρ0c2
0

= p′
rms

γp0
≲ 10−3,

where c0 =
ñ

γp0/ρ0 (for example, ρ0 = 1.225 kg/m3, γ = 1.4, and c0 ≈ 338 m/s).
This smallness condition justifies the linearization of the full equations.

By substituting ρ = ρ0 + ρ′ into the continuity equation

∂ρ

∂t
+ ∇ · (ρ v) = 0, (2.9)

and neglecting nonlinear terms, one obtains the linearized continuity equation

∂ρ′

∂t
+ ρ0 ∇ · v = 0. (2.10)

Similarly, by omitting viscous effects and the nonlinear convective terms in the
momentum equation, the linearized momentum equation becomes

ρ0
∂v
∂t

+ ∇p′ = 0. (2.11)

Differentiating Eq. (2.10) with respect to time and then subtracting the diver-
gence of Eq. (2.11) yields

∂2ρ′

∂t2 − ∇2p′ = 0. (2.12)

By applying the isentropic relation p′ = c2
0 ρ′, this equation can be recast as the

homogeneous acoustic wave equation

1
c2

0

∂2p′

∂t2 − ∇2p′ = 0. (2.13)

Together, Eqs. (2.11) and (2.13) constitute the basis of linear acoustics in a
stationary medium with uniform properties.
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In many practical applications, however, it is necessary to account for the
generation of sound by a source. For example, when an elementary monopole
source is present, the wave equation is augmented by a forcing term:

A
1
c2

0

∂2

∂t2 − ∇2
B

p(x, t) = q(t) δ(x − x0), (2.14)

where q(t) quantifies the source strength and δ(x−x0) is the Dirac delta function
that locates the source. Under free-field conditions, the solution to Eq. (2.14) is
given by

p(x, t) = 1
4π

q
1
t − |x − x0|/c0

2
|x − x0|

. (2.15)

This expression emphasizes two fundamental aspects of acoustic propagation:
(i) the amplitude decays inversely with the distance from the source, and (ii)
the acoustic pressure at time t corresponds to the source output at the retarded
time

t0 = |x − x0|
c0

, (2.16)

thereby accounting for the finite speed of sound.
Often, interest lies in characterizing a sound field as a function of frequency

rather than time. To do so, one may consider a harmonic signal of the form
f(t) = A cos(ωt − Φ). In this situation, a solution to Eq. (2.13) is given by

p′(r, t) = A cos(ωt − ωr/c0 − Φ)
r

, (2.17)

where A and Φ are real constants that determine the amplitude and phase of
the wave, respectively.

It is often advantageous to represent a harmonic time series as the real part
of a complex exponential e−iωt. With this approach, Eq. (2.17) may be rewritten
as

p′(r, t) = Re
è
p̂(r)e−iωt

é
= Re

C
Âe−iωt+ikr

r

D
, (2.18)

where the symbol Â denotes a complex amplitude defined by Â = A exp(iΦ),
and k = ω/c0 is the acoustic wavenumber. For brevity, the time dependence is
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often suppressed, leading to the notation

p̂(r) = Âeikr

r
. (2.19)

More generally, the linear acoustic wave equation (2.13) can be reformulated in
terms of the complex pressure amplitude p̂(x) by assuming

p′(x, t) = Re
è
p̂(x)e−iωt

é
,

which leads directly to the Helmholtz equation:

∇2p̂ + k2p̂ = 0. (2.20)

2.1.2 Sound generation by a small sphere

In addressing a sound radiation or scattering problem, the initial step is to
select an appropriate solution of the wave equation, following which the relevant
boundary conditions are applied to evaluate any undetermined constants, such as
the constant Â as demonstrated in Eq. 2.19. To illustrate this procedure,consider
the sound emission from a small pulsating sphere of radius a, which exhibits a
normal surface velocity of u0e

−iωt, as depicted in Fig. 2.1.

Figure 2.1: A small sphere with a radial surface velocity [5]

In this instance, the valid solution of the wave equation that complies with
the boundary condition is presented in Eq. 2.19. The unknown constant Â

is then determined by equating the particle velocity in the radial direction is
equated to the surface velocity, namely, [ν̂r]r=a = u0, and subsequently applying
the acoustic momentum equation, iωρ0v̂ = ∇p̂:

C
1

iωρ0

∂p̂

∂r

D
r=a

= u0 (2.21)
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From Eq. 2.19, the following expression can be deduced:

∂p̂(r)
∂r

= −Â(1 − ikr)eikr

r2 (2.22)

At the sphere’s surface, that is, when r = a, the following condition holds:
C

∂p̂(r)
∂r

D
r=a

= −Â(1 − ika)eika

a2 (2.23)

By inserting this result into Eq. 2.21 and solving for Â, the value of the constant
is determined.

Â = −iωρ0a
2u0e

−ika

(1 − ika) (2.24)

The complete solution for the acoustic field is then given by Eq. 2.19 as

p̂ = −iωρ0a
2u0e

−ik(r−a)

(1 − ika)r (2.25)

It is important to note that when the sphere is sufficiently small (i.e., ka ≪ 1),
the exponential term e−ika can be approximated by 1 − ika, leading to a simpli-
fied form of the solution.

p̂ = −iωρ0a
2u0e

−ikr

r
(2.26)

Eq. 2.25 illustrates that the acoustic field in the domain is governed exclusively
by boundary conditions. Since a harmonic time dependence was assumed, no
initial conditions were necessary. It should also be noted that the surface area
of the sphere is given by S = 4πa2, and one can express the rate of change in
the volume of the sphere as

Qe−iωt = u0Se−iωt (2.27)

so

p̂ = −iωρ0Qe−ikr

4πr
(2.28)

Consequently, the acoustic pressure is directly linked to the rate at which the
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volume changes due to the surface displacement. For this reason, a sphere
undergoing radial pulsations is commonly identified as a volume displacement
source. It is also referred to as a simple source or an acoustic monopole, since
the resulting sound field depends only on the distance from the sphere’s center.
Furthermore, the term ρ0Qe−iωt physically represents the “rate of change of
mass” of the fluid displaced by the surface movement.

In the resolution of the wave equation, the propagation of sound waves through
the medium was characterized, and by imposing the boundary conditions, the
initiation of these waves was determined. This solution is valid exclusively for
the specific boundary motion described here. For example, if the surface were
an ellipsoid, the solution to the wave equation would have to be formulated
in ellipsoidal coordinates, a considerably more complex task. Other shapes
necessitate the solution of the wave equation in different orthogonal coordinate
systems, and only a limited number of these systems admit analytical solutions.
Thus, this approach addresses only a finite set of problems, with numerical
methods required for arbitrary geometries. An illustrative case that allows an
exact solution is that of a sphere oscillating along the x1 direction with a velocity
of νoe

iωt, as shown in Fig. 2.2.

Figure 2.2: Sound radiation from a translating sphere [5]

In this case, the radial component of the surface velocity, perpendicular to
the sphere’s surface, serves as the essential boundary condition. The tangential
component is disregarded due to the omission of viscous effects. Thus, the
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surface velocity is expressed as

[ν̂r]r=a = ν0 cos θ,

where θ is the angle between the point on the surface and the x1 axis. To address
this situation, a solution to the wave equation that adheres to this boundary
condition is required. This is achieved by differentiating Eq. 2.19 with respect
to the x1 direction, yielding

p̂(r) = ∂

∂x1

A
Âeikr

r

B
(2.29)

It can be demonstrated that this differentiated expression is indeed a solution
to the wave equation, since any derivative of a solution to the wave equation
remains a solution (see the homogeneous acoustic wave equation, Eq. 2.13).
Evaluating the derivative in Eq. 2.29 results in

p̂(r) = ∂

∂x1

∂

∂r

A
Âeikr

r

B
(2.30)

Furthermore, considering that

r =
ñ

x2
1 + x2

2 + x2
3,

it follows that
∂r

∂x1
= x1

r
= cos θ.

Substituting into the derivatives in Eq. 2.30 yields

p̂(r) = ikcosθ

A
Âeikr

r

B3
1 − 1

ikr

4
(2.31)

This solution exhibits a cos θ directional dependence, which is employed to match
the boundary condition for the translating sphere. It is also observed that the
amplitude of the sound field is not solely a function of 1/r; an additional factor
of 1/(ikr) appears in the solution. This extra term is negligible at distances
where kr ≫ 1 but becomes dominant in regions with kr ≪ 1. Hence, the domain
where kr ≫ 1 is defined as the acoustic far field, in which the sound wave’s
amplitude diminishes inversely with distance from the source.

Evaluating the radial component of the acoustic momentum equation,

∇p̂ = iωρ0v̂,
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yields

∂p̂

∂r
= iωρv̂ · n (2.32)

Here, n denotes a unit vector pointing radially outward from the sphere’s surface.
At the boundary, where

v̂ · n = ν0 cos θ,

Gives
C

1
iωρ0

∂p̂

∂r

D
r=a

= cosθ

ρ0c0

A
Âeika

a

B3
ik − 2

a
+ 2

ika2

4
= ν0cosθ (2.33)

For a sphere of sufficiently small dimensions (i.e., when ka ≪ 1), the approximate
solution for the acoustic field can be obtained by retaining only the dominant
term 2/(ika2). By solving for Â and substituting into Eq. 2.31, the following
result is obtained:

p̂(r) = ikcosθ

A
iωρ0ν0a

3eikr

2r

B3
1 − 1

ikr

4
(2.34)

The presence of a cos θ factor indicates that the acoustic field generated by
the translating sphere is primarily directed along the x1 axis and vanishes
in directions perpendicular to the motion. This behavior contrasts with that
of a uniformly pulsating sphere, as described in Eq. 2.26, which produces an
omnidirectional field. It is also noted that, if u0 and ν0 are assumed to be equal,
the peak pressure associated with the translating sphere is reduced by a factor
of ka/2 relative to that of the pulsating sphere at the same distance. Since
ka ≪ 1, the sound levels radiated by the translating sphere for a given surface
velocity are considerably lower than those from the pulsating sphere.

The physical rationale behind this observation is that the pulsating sphere
displaces a certain mass of fluid during each cycle, compelling the medium to
propagate this displacement as an acoustic wave. In contrast, the translating
sphere does not induce any net mass displacement; rather, the fluid in the near
field adjusts to accommodate the motion. Nevertheless, a fraction of the energy
still escapes as sound, propagating into the acoustic far field.

2.1.3 Superposition and Far Field Approximations

The acoustic wave equation (Eq. 2.13) is linear, which implies that the principle
of superposition is applicable. Consequently, the overall acoustic field can be
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represented as the sum of the individual fields generated by distinct sources. To
illustrate this concept, consider a configuration of N monopole sources located
at positions y(n), with n = 1,2, . . . , N , as depicted in Fig. 2.3. Accordingly, the
total pressure field at an observation point x is given by

p̂(x) =
NØ

n=1

Ân eik|x−y(n)|

|x − y(n)|
, (2.35)

where Ân denotes the complex amplitude associated with the n-th source and
|x − y(n)| represents the distance between the source and the observer.

Figure 2.3: Sources distributed over a region [5]

At sufficiently large distances from the sources, this expression can be simpli-
fied by expanding |x − y(n)| as a Taylor series. In general, one can write

|x − y| = r(xi − yi) =
ñ

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 (2.36)

where r = r(xi−yi) explicitly defines the distance from the source to the observer
in terms of the coordinates xi and yi. By choosing the coordinate origin to lie
near the sources, and noting that in the far field |x| ≫ |y|, the propagation
distance may be approximated using a Taylor series expansion.

r(xi − yi) = r(xi) − yi
∂r(xi)

∂xi

+ yiyj

2
∂2r(xi)
∂xi∂xj

+ · · · (2.37)

In this expansion, the term ∂r/∂xi = xi/|x| serves as a direction cosine and
is independent of |x|. In contrast, the second-order derivative ∂2r/∂xi∂xj
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varies inversely with |x| and thus becomes progressively less significant at large
distances from the source.

Retaining the first order terms gives r(xi − yi) = |x| − xiyi/|x|, so

p̂(x) ≈ eik|x|

|x|

NØ
n=1

Ân e−ik y(n)· x
|x|
1
1 + y(n) · x/|x|2

2
(2.38)

With |x| ≫ |y(n)|. Consequently, the term

y(n) · x
|x|2

within the brackets can be neglected, except in the case—demonstrated later—when
the sum of the source amplitudes is zero. However, the dependence on y(n)

within the complex exponential must be retained, as it can dominate the outcome
when phase cancellation occurs among the sources. Physically, this effect arises
when destructive interference between multiple sources results in a residual
sound field that is sensitive to the phase differences among them. The far-field
approximation is thus expressed as

p̂(x) ≈ eik|x|

|x|

NØ
n=1

Ân e−ik y(n)· x
|x| (2.39)

A crucial aspect of this result is that, in the acoustic far field, the directionality
of the field is determined by both the relative positions of the sources and their
relative amplitudes, a dependency encapsulated by the unit vector x/|x|. In
this region, the amplitude of the field decays inversely with distance, while the
phase increases linearly along surfaces of constant |x|. This finding constitutes
an important result that will be extensively utilized in subsequent sections of
the text.

This formulation highlights several key features:

• Directional Dependence: The phase term depends on the directional cosines
x/|x|, indicating that the relative positions and strengths of the sources
determine the overall directivity of the acoustic field [6].

• Amplitude Decay: The amplitude of the field decays inversely with the
distance from the source region, as evidenced by the 1/|x| factor.

• Linear Phase Variation: The phase increases linearly along directions of
constant |x|, a property that is fundamental in beamforming and array
processing applications [7].

17



Theoretical Background

This far-field approximation is widely employed in practical acoustic analyses
when the observer is located at a distance much greater than the extent of
the source distribution, thus facilitating simplified analytical and numerical
evaluations of the sound field.

2.1.4 Monopole, Dipole, and Quadrupole Surces

As noted in Section 2.1.2, a source that produces a simple volume displacement
is commonly termed a monopole. Its acoustic field is omnidirectional and decays
inversely with the distance from the source center. In this section, the discussion
turns to multipole sources, which are constructed by combining simple sources
of identical magnitude but opposite phase.

The most fundamental example of a multipole source is the dipole. This
configuration consists of two monopole sources of equal strength and opposing
phase, separated by a small distance d (with kd ≪ 1), as illustrated in Fig. 2.4.

Figure 2.4: Two sources of opposite phase that define a dipole source [5]

The far-field expression for a dipole is derived from Eq. 2.38 by positioning
the positive source at y1 = −d/2 and the negative source at y1 = d/2, and by
assigning Â1 = iωρ0Q/4π and Â2 = −iωρ0Q/4π. Accordingly, one obtains

p̂(x) ≃ iωρ0Qeik|x|

4π|x|
1
eikdx1/2|x|(1 − x1d/2|x|2 + · · · ) − e−ikdx1/2|x|(1 + x1d/2|x|2 + · · · )

2
(2.40)

under the assumption that |x| ≫ d. Given that kd ≪ 1, the result can be
simplified by employing the expansion

e±ikdx1/2|x| = 1 ± ikdx1/2|x| − 1
2(kdx1/2|x|)2 + · · · (2.41)

Substituting this expansion into Eq. 2.45 reveals that the zeroth-order terms
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cancel, leaving

p̂(x) ≃
A

iωρ0Qeik|x|

4π|x|

BA
ikd

x1

|x|
− x1d

|x|2
+ · · ·

B
, |x| ≫ d (2.42)

which may be further simplified by noting that cos θ = x1/|x|. Consequently,
one finds

p̂(x) ≃ ikdcosθ

A
iωρ0Qeik|x|

4π|x|

BA
1 − 1

ik|x|
+ · · ·

B
, |x| ≫ d (2.43)

The acoustic dipole is characterized by a directional field whose amplitude is
modulated by the cosine of the angle between the observer’s direction and the
line joining the two sources that define the dipole axis. Consequently, its far-field
behavior is analogous to that of a transversely oscillating sphere, exhibiting a
maximum along the dipole axis and a null at 90° relative to it (see Fig. 2.5).
Furthermore, the spatial decay of the field follows a d/|x|2 dependence when
k|x| ≪ 1 and a kd/|x| dependence when k|x| ≫ 1, corresponding respectively
to the acoustic near-field and far-field approximations. In the far-field regime,
the observer must satisfy both the geometric condition |x| ≫ d and the acoustic
condition k|x| ≫ 1, so that the phase shift due solely to the difference in
propagation distances becomes significant.

Figure 2.5: The cosine directionality of a dipole source. [5]

It is also important to note that the dipole source has no net volume dis-
placement because the total source strength is zero. Nonetheless, a nonzero
acoustic field is produced owing to the finite separation d between the sources.
Moreover, the maximum amplitude of the dipole field is ikd times that of the
corresponding monopole field at the same distance, and since kd ≪ 1, the dipole
is intrinsically an inefficient radiator of sound.
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A quadrupole source can be constructed by placing two dipole sources in a
back-to-back arrangement, with the positive sources located at y1 = −3d

2 and
y1 = 3d

2 , and the negative sources at y1 = −d
2 and y1 = d

2 . Under the acoustic
far-field condition (k|x| ≫ 1), the net pressure field is given by

p̂(x) ≃ iωρ0Qeik|x|

4π|x|

3
e

3ikdx1
2|x| − e

ikdx1
2|x| − e− ikdx1

2|x| + e− 3ikdx1
2|x|

4
, |x| ≫ d (2.44)

Application of Eq. 2.41 shows that both the zeroth-order and first-order terms
in kd cancel, yielding

p̂(x) ≃ −2(kd)2
A

x1

|x|

B2
iωρ0Qeik|x|

4π|x|
, |x| ≫ d, k|x| ≫ 1 (2.45)

This configuration is known as a longitudinal quadrupole because the sources are
collinear and the net volume velocity is zero. The directivity of the quadrupole
is governed by a cos2 θ factor (as depicted on the left side of Fig. 2.6), and
its effective source strength scales with (kd)2, rendering its field an order of
magnitude weaker than that of the monopole.

Alternate quadrupole configurations can also be devised. For example, if
two sources with amplitude iωρ0Q/4π are positioned at y = (d/2, d/2) and
y = (−d/2, −d/2), while two sources with strength −iωρ0Q/4π are placed at
y = (d/2, −d/2) and y = (−d/2, d/2), then in the acoustic far field the pressure
is approximated by

p̂(x) ≃ iωρ0Qeik|x|

4π|x|

3
e

ikdx1
2|x| + ikdx2

2|x| + e− ikdx1
2|x| + ikdx2

2|x| − e
ikdx1
2|x| − ikdx2

2|x| − e− ikdx1
2|x| + ikdx2

2|x|

4
(2.46)

Then, by employing the expansion

e− ikdx1
2|x| ± ikdx2

2|x| = 1 − ikdx1

2|x|
± ikdx2

2|x|
− 1

2

A
kdx1

2|x|
∓ kdx2

2|x|

B2

+ · · · ,

The following equation is obtained:

p̂(x) ≃ −(kd)2 iωρ0Qeik|x|

4π|x|

A
x1x2

|x|2

B
, |x| ≫ d, k|x| ≫ 1 (2.47)

This result implies a directivity pattern proportional to sin θ cos θ, which is
equivalent to 1

2 sin(2θ) (as shown on the right side of Fig. 2.6), with the field
magnitude scaling as (kd)2.

20



Theoretical Background

Figure 2.6: The directionality of different types of quadrupole. [5]

2.2 Beamforming

Beamforming is a signal processing technique applied to sensor arrays for localiz-
ing and characterizing acoustic sources through phased array principles. Its main
objective is to determine the spatial location, intensity, and frequency content
of multiple sources simultaneously [8]. Owing to its robustness and accuracy,
beamforming is widely used in both research and industrial applications [1].

2.2.1 Delay-And-Sum Beamforming

Delay-and-Sum (DSB) beamforming is one of the simplest and most effec-
tive methods for localizing and characterizing acoustic sources. This method,
schematically presented in Fig. 2.7, employs an array of m microphones and a
defined search grid within the plane presumed to contain the noise source(s).
The noise localization process comprises the following steps:

1. A plane is defined to encompass the possible locations of the noise sources,
which is then discretized into a grid.

2. Each grid node is examined sequentially. For every node, the signals received
by the microphones are delayed according to their respective retarded times
t0 = |x − x0|/c, compensating for propagation differences.

3. The delayed signals from all microphones are summed and normalized by
the number of microphones (M) to produce the beamformer output map.

When a noise source aligns with a grid node, constructive interference enhances
the beamformer output. Conversely, if no source is present at a given location,
phase mismatches lead to signal cancellation, resulting in a low beamformer
response, effectively indicating the absence of a source [1].

Once the conceptual framework for Delay-and-Sum Beamforming has been
established, the corresponding mathematical analysis is introduced, with the
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Figure 2.7: Delay-and-Sum Beamforming [1]

formulation derived from the Brüel & Kjær Technical Review [8]. Consider a
planar array of M microphones, located at positions rm in the xy-plane, as
depicted in Fig. 2.8. The pressure signals pm received by each microphone are
individually delayed and then summed:

b(κ, t) =
MØ

m=1
wmpm(t − ∆m(κ)) (2.48)

Here, wm denotes the weighting coefficients applied to the microphone signals.
In this case, uniform shading is assumed (wm ≡ 1), and therefore these coefficients
are omitted in the subsequent discussion. The term ∆m represents the time delay
applied to each microphone, which is adjusted to achieve directional sensitivity
towards a specific direction κ. These delays are set so that the signals arriving
at the array are aligned in time before being summed. From a geometrical
perspective, the time delay is given by:

∆m = κ · rm

c
(2.49)

where c is the speed of sound. As previously mentioned, signals arriving
from other directions will not align coherently and thus will not contribute
constructively to the summation, leading to the desired directional sensitivity,
as illustrated in Fig. 2.8(b).

In the frequency domain, the output of the beamformer is given by:

B(κ, ω) =
MØ

m=1
Pm(ω)e−jω∆m(κ) (2.50)

where Pm(ω) is the Fourier transform of pm(t), and ω is the angular frequency.
Expressing this in terms of the wave vector k = −kκ, the beamformer output
becomes:

B(κ, ω) =
MØ

m=1
Pm(ω)e−jk·rm . (2.51)
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Figure 2.8: (a) A microphone array, a far-field focus direction, and a plane
wave incident from the focus direction. (b) A typical directional sensitivity
diagram with a main lobe in the focus direction and lower sidelobes in other
directions [8]

Figure 2.9: A plane wave, with wave number vector k0, incident from a
direction different from the focus direction κ [8].

The selection of time delays ∆m(κ), or equivalently the "preferred" wave number
vector k ≡ −kκ, aligns the beamformer toward a specific far-field direction. The
goal is to capture only the signals arriving from this direction, ensuring optimal
localization of sound sources.

To assess potential leakage from plane waves arriving from other directions,
consider a plane wave with a wave number vector k0 that deviates from the
preferred k. The pressure recorded by the microphones is:

Pm(ω) = P0e
−jk0·rm (2.52)
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which, according to equation (2.51), results in the following beamformer output:

B(κ, ω) = P0

MØ
m=1

ej(k−k0)·rm ≡ P0W (k − k0) (2.53)

Here, the function W is the Array Pattern, which depends only on the array
geometry when wm ≡ 1:

W (K) ≡
MØ

m=1
ejK·rm . (2.54)

2.2.2 Pininfarina Conventional Beamforming

The Pininfarina Conventional Beamforming algorithm is based on the cross-
spectral imaging function with the omission of diagonal terms. In fact, the
beamformer filter is realized by calculating the weighted sum of the microphone
sound pressures using complex-valued weight factors [8]. Mathematically, this
process is described by

pF (xt) = h(xt)Hp, (2.55)

where the vector h(xt), known as the steering vector, is determined based on
the assumed source position, and the superscript H denotes the Hermitian
transpose.

The steering vector is fundamental in defining the beamformer’s performance,
and it is designed to meet two principal criteria:

• The beamformer should yield a maximal response when the assumed source
position coincides with the actual source position.

• The magnitude of the beamformer output should provide a reliable measure
of the source strength.

Numerous formulations of the steering vector exist in the literature [2]. One
common formulation compensates for both the phase delay and the amplitude
attenuation between the presumed noise source and each individual microphone.
This formulation is expressed as

h(xg) = |xMik − xg| e−iωtg , (2.56)

where tg represents the propagation time from the grid point xg to the corre-
sponding microphone, and ω is the angular frequency.

Moreover, rather than directly utilizing pF , one may construct a source map
by employing the real-valued autopower spectrum B of the beamformer output:

B(xt) = E{pF (xt)p∗
F (xt)} = hH(xt)E{ppH}h(xt) = hH(xt)Gh(xt), (2.57)

with E{·} denoting the expectation operator, (·)∗ indicating the complex conju-
gate, and G representing the cross-spectral matrix of the measured signals.
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2.2.3 Multiplicative Beamforming

Multiplicative beamforming is an alternative processing technique developed
specifically for three-dimensional (3D) beamforming applications employing
non-planar microphone arrays [9]. Unlike conventional planar beamforming
methods, which typically process signals from a single array configuration, the
multiplicative approach divides the array into multiple subarrays, each covering
different spatial orientations. This technique has been shown to improve 3D
spatial localization by reducing sidelobe levels and eliminating the directional
bias of the main lobe in the beamformer output.

Numerical simulations indicate that multiplicative beamforming enhances
the accuracy of source localization, particularly in scenarios involving dipole
sound sources commonly encountered in aeroacoustics.

In practice, the multiplicative beamforming technique is implemented by
performing conventional beamforming on two or more distinct subarrays, each
scanning a 3D grid. For instance, consider an implementation using two mutually
perpendicular subarrays, each containing an equal number of microphones. Let
the outputs of the two subarrays be defined by

B1(xg) = hH
1 (xg) C1 h1(xg)

and
B2(xg) = hH

2 (xg) C2 h2(xg),

where C1 and C2 are the cross-spectral matrices corresponding to the first and
second subarrays, respectively, and h1(xg) and h2(xg) represent the steering
vectors evaluated at the grid point xg. The final beamformer output is then
obtained by taking the square root of the product of these individual outputs:

Bt(xg) =
ñ

B1(xg) B2(xg).

The square root operation is critical, as it ensures that Bt accurately represents
the true source power when the beamformer is steered to the correct source
location.

A significant advantage of multiplicative beamforming is its ability to achieve
accurate source localization on complex geometries, such as the surface of a
vehicle, while maintaining a limited computational cost. Unlike conventional
planar beamforming—where microphone coordinates are referenced to the center
of each array independently—the 3D formulation of multiplicative beamforming
considers the entire sensor configuration within a global coordinate system. For
example, in wind tunnel experiments, the reference system is often defined with
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its origin at the midpoint of the nozzle exit, thereby ensuring consistency in
spatial measurements across the entire array.

In summary, multiplicative beamforming provides a robust and efficient alter-
native for 3D acoustic source localization, particularly in applications involving
non-planar microphone arrays. Its ability to reduce sidelobe interference and
correct directional bias makes it especially valuable in challenging aeroacoustic
environments.
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Chapter 3

Pininfarina Wind Tunnel
Facility

With over 50 years of expertise in aerodynamic and aeroacoustic testing, the
Pininfarina Wind Tunnel stands as a state-of-the-art facility dedicated primarily
to full-scale passenger vehicles. Beyond optimizing aerodynamic performance, a
key focus is on aeroacoustic analysis, crucial for enhancing user comfort across
various applications, from automotive interiors to architectural structures and
marine environments. Leveraging advanced methodologies, including external
microphone arrays, beamforming analysis, and calibrated acoustic heads, the
facility enables precise identification and characterization of noise sources, both
inside and outside the vehicle. This comprehensive approach ensures an in-depth
understanding of aeroacoustic phenomena, supporting the development of quieter
and more refined designs.

The wind tunnel employs frontal, lateral, and overhead external microphone
arrays [10], which have the following characteristics:

• An overhead array, Fig. 3.1 (a), located on the ceiling of the test section (4
m from the floor), which consists of 78 Brüel & Kjær Type 4951 microphones
whose specifications are reported in the Tab. 3.1.

• A lateral array,Fig. 3.1 (a), placed on the side wall of the test section, with
66 Brüel & Kjær Type 4951 microphones whose characteristics are the same
already introduced in Tab. 3.1.

• A smaller frontal array, Fig. 3.1 (b), installed above the nozzle exit, with 15
Brüel & Kjær Type 4189 microphones whose specifications are summarized
in Tab. 3.2.
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Sensitivity 6.3 mV/Pa
Frequency 100 Hz – 20 kHz

Dynamic Range 35 – 140 dB
Temperature -10 °C to +55 °C
Polarization prepolarized

Table 3.1: Brüel & Kjær 4951 spec-
ifications

Sensitivity 50 mV/Pa
Frequency 6.3 Hz – 20 kHz

Dynamic Range 14.6 – 146 dB
Temperature -30 °C to +150 °C
Polarization prepolarized

Table 3.2: Brüel & Kjær 4189 spec-
ifications

(a) Pininfarina side and overhead arrays (b) Pininfarina frontal array

Figure 3.1: Pininfarina arrays

3.1 Array Resolution

The resolution of a beamformer indicates its capacity to differentiate between
waves arriving from closely spaced directions. For sources in the far field,
resolution is defined as the smallest angular separation between two plane waves
that allows them to be distinguished. For sources at finite distances, resolution
is practically defined as the minimum separation between two sources at which
they can still be resolved. Consider two plane waves with wave number vectors
k1 and k2, |k1| = |k2| = k, incident on a beamformer array characterized by an
array pattern W . Assuming both plane waves have unit amplitude, the output
of the beamformer is a superposition of the form:

B(κ, ω) = W (k − k1) + W (k − k2) (3.1)

According to the Rayleigh criterion [11], two directions can be resolved precisely
when the peak of W (k − k2) coincides with the first zero of = W (k − k1), as
illustrated in Fig. 3.2.
If the angular separation between k1 and k2 is minimal, the minimum resolvable
source separation in the radial direction R(θ), at a finite distance z, is given by :

R(θ) = zRK

k

1
cos3θ

(3.2)
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Figure 3.2: The curves show the beamformer output,B(κ, ω), cf. eq.3.1
resulting from two plane waves with wave number vectors k1 and k2 incident on
a planar array [8]

Where RK is the main lobe width in the array pattern, that according to the
Rayleigh criterion is given by the dirt minimum of the array pattern RK = R0

min;
and θ is the off-axis angle.

It is essential to consider that the exact value of R0
min depends on the positions

of all array microphones, as described in Eq. 2.54 of the array pattern. A general
estimate, however, can be derived by examining limiting cases, such as when
an infinite number of transducers is uniformly distributed along a line segment
of length D or over a circular disc with radius D/2. This scenario assumes
continuous sampling of the sound field across the entire aperture, rather than at
discrete points. For this continuous case, an integral expression is used for the
array pattern in Eq. 2.54, known as the aperture smoothing function:

W (K) = 1
(2π)d

Ú
|r|<D/2

w(r)ejK·rddr (3.3)

Where d = 1 for line segment and d = 2 for circular aperture and w(r) is a
continuous shading function. In case of uniform shading the above equation can
be evaluated through the Bessel function of order 1 [11], that allow to find the
first zero in the array pattern as:

K0
min = α

2π

D
(3.4)

Where α = 1 for the linear aperture and α = 1.22 for the circular aperture.
Now, given that the wave number k is related to the wavelength λ by k = 2π/λ,
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substitution into Eq. 3.2 yields the expression for beamformer resolution:

R(θ) = α

cos3θ

z

D
λ (3.5)

or on-axis incidence, θ = 0, the resolution is given by:

RAXIS = α
3

z

D

4
λ (3.6)

It is observed that resolution is directly proportional to wavelength and improves
with increased aperture size, while it decreases as the distance between array
and object increases.
Comparing the on-axis resolution and general off-axis resolution, as per Eqs. 3.6
and 3.5, the ratio between them is given by:

R(θ)
RAXIS

= 1
cos3θ

(3.7)

This ratio, shown in Fig. 3.3, indicates that for angles of incidence exceeding
30° off-axis, the resolution becomes more than 50% greater than the on-axis
resolution, effectively limiting the practical opening angle of the beamformer to
30°

Figure 3.3: variation of the ratio between off-axis and on-axis resolution as
given by eq. 3.7
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3.2 Array Pattern

The performance of a beamformer array is predominantly determined by its
geometry, which defines the beamforming response via the array pattern, gives
by the equation 2.54:

W (K) =
MØ

m=1
ejK·rm , (3.8)

where K = k − k0 represents the wave number vector, with k corresponding
to the incident wave from an arbitrary direction and k0 corresponding to the
wave incident from the focal direction. The vector rm denotes the position of
the m-th microphone.

The spatial arrangement of sensors within the array directly influences spatial
sampling, thereby affecting the beamforming system’s performance and capa-
bilities. An optimally designed array geometry ensures compliance with the
Nyquist criterion and minimizes adverse effects such as spatial aliasing. Hence,
precise optimization of the array elements’ placement is crucial for achieving
high directivity and overall robustness in beamforming applications.

In the case of the Pininfarina array, distinct array patterns are observed across
different configurations. The top and side arrays (Fig. 3.5 and 3.4) display similar
patterns, each characterized by a markedly pronounced main lobe relative to the
sidelobes. Conversely, the front array pattern (Fig. 3.6) exhibits a main lobe
that is comparable in magnitude to the sidelobes, a phenomenon attributable to
the substantially lower number of microphones in that configuration.

Figure 3.4: Pininfarina Side Array Pattern
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Figure 3.5: Pininfarina Top Array Pattern

Figure 3.6: Pininfarina Front Array Pattern
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3.3 Maximum Sidelobe Levels

The presence of sidelobes in the array pattern (Fig. 3.4 to 3.6) allows waves from
off-axis directions to interfere with measurements of the main lobe direction,
resulting in false peaks or sources in a measured directional source map. A
well-designed phased array is characterized by a low Maximum Sidelobe Level
(MSL), defined from the radial profile of the array pattern Wp(K), as

MSL(K) ≡ maxWp(K) ≡ 10 · log10

C
max

|W (K)|2
M2

D
(3.9)

Where |W (K)| is the real part of the array pattern equation. Fig. 3.7 shows
the result. In accordance with expectations, the top and side arrays exhibit
secondary lobes that are considerably smaller than those observed in the front
array.

Figure 3.7: Maximum Sidelobe Levels of Pininfarina Arrays
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Chapter 4

2D and 3D Beamforming
Formulations comparison

The purpose of this chapter is to compare three different beamforming formula-
tions —single-plane, multi-plane, and three-dimensional— and to examine the
limitations inherent in two-dimensional approaches.

Conventional beamforming techniques employ microphone arrays to map noise
sources onto virtual planes near the vehicle; however, such planar beamforming
is inherently constrained when dealing with the complexities of real vehicle
geometries, particularly with respect to out-of-plane noise sources, often resulting
in the misinterpretation of both the location and intensity of these sources.

To overcome these limitations, Pininfarina initially introduced a multi-plane
formulation that approximates the complex vehicle geometry by aligning several
virtual planes with potential noise sources. Although this method improves
localization, it still falls short of fully capturing the three-dimensional nature of
the vehicle’s structure.

As a more advanced solution, the three-dimensional beamforming technique
maps acoustic sources directly onto the vehicle surface using a 3D scan. Among
the various methods proposed in the literature, the Multiplicative Beamforming
approach [9] has been implemented here; this method integrates data from
multiple microphone arrays into a unified acoustic map projected onto the vehicle
surface, thereby eliminating the need for planar approximations or multi-plane
techniques. By accurately accounting for the complex surface topology of the
vehicle, this approach improves the accuracy of the location of the noise source
and the estimation of the strength - a critical improvement in the development
of noise reduction strategies for modern electric vehicles, where even small errors
can significantly affect overall effectiveness.
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4.1 Limitations of 2D Beamforming Formula-
tion

Mapping acoustic data onto a predetermined single plane, often adopted for its
apparent computational simplicity, often leads to misinterpretation of both the
location and intensity of noise sources, as the chosen plane does not necessarily
capture the full three-dimensional propagation of acoustic waves and the com-
plex shape of the vehicle. In ordet to quantitatively assess these limitations,
a comprehensive numerical study was carried out using the overhead array
configuration.

In this investigation, a monopole noise source, acting as a basic acoustic
radiator, was introduced and mathematically characterized by the following
equation:

p(t) =
√

2Iρ0c

rmic-source
sin [ω · (t − t0)] , (4.1)

where I = 1 W/m2 represents the acoustic intensity, ρ0 the density of the
ambient medium, c the speed of sound, rmic-source corresponds to the distance
between the microphone and the source, and ω represents the angular frequency
(2πf), with f systematically varied over 1, 5, and 10 kHz to investigate the
frequency dependence of the observed phenomena. The source was positioned
at a distance of 2 meters from the overhead array, as shown in Figure 4.1,
which illustrates the geometrical arrangement of the microphones and the source
location.

Figure 4.1: Monopole noise source at z = 2 m from the overhead array
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In order to quantitatively assess the effect of the mismatch between the focal
plane and the actual source location, a series of controlled experiments were
performed. The z-coordinate of the mapping plane was deliberately modified
to emulate scenarios where the assumed source plane is not co-planar with the
actual source, while the source was maintained at its reference position. The
conventional beamforming algorithm was then applied to determine both the
power of the noise source and its spatial coordinates. The results obtained were
then carefully compared with the nominal values at different mapping plane
distances and source frequencies to determine the effect of the focus plane error
on the accuracy of the reconstructed acoustic field, as shown in Figures 1 and 2.

The result of this research is conclusive; even small deviations from the
optimum imaging plane can lead to significant errors in source localisation and
intensity estimation. For instance, a focal plane error of 500 mm resulted in
intensity inaccuracies of up to 12 dB and positioning errors of up to 200 mm.
These errors were found to be frequency dependent, with higher frequencies
generally resulting in larger errors. The consequences of such deviations can
be categorised into two primary effects. Firstly, they affect the accuracy of
the generated acoustic map, which can lead to incorrect interpretations of the
noise source distributions. Secondly, these errors have the potential to misguide
noise control measures, leading to erroneous or misdirected efforts. The primary
objective of this paper is to achieve this through the analysis of the experimental
data and the interpretation of the results. The results of this research are used
to support the hypothesis and justify the initial assumptions. Furthermore, by
comparing the results with the literature review, the contribution of this research
to the existing knowledge in the field can be assessed.

Figure 4.2: Decrease in source strength as a function of focal plane deviation
for different source frequencies
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Figure 4.3: Decrease in source location error as a function of focal plane
deviation for different source frequencies

The findings outlined in this study elucidate the inherent limitations of two-
dimensional beamforming formulations, particularly in scenarios where sources
are not confined to the imaging plane. These findings underscore the necessity
for three-dimensional approaches that can more accurately represent the actual
spatial nature of acoustic sources in real-world vehicular environments. Such
environments are often characterised by complexity in geometry, presence of
reflection, and the existence of multiple noise sources.
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4.2 Validation Case

The purpose of the present section is to provide a comparison of the three
different beamforming formulations already introduced: single-plane, multi-
plane, and 3-D. The analysis is conducted on a Pininfarina wind tunnel vehicle
parametric model, whose geometry has been defined by the SAE “Open-Jet
Interference Committee” [12]. Two synchronized white noise sources have been
installed on the model, one on the roof and the other on the windshield, and
their signals have been acquired and processed considering the overhead array
only and absence of wind.

4.2.1 Front and Lateral Array

In the first scenario, a solitary speaker is positioned on the windshield, with
the front array serving exclusively for beamforming. In the 2D formulation,
the calculation plane is parallel to the array plane and is located at a certain
distance. Ideally, the plane would coincide with the vehicle surface; however,
as illustrated in Figure 4.4, the complexity of the geometries prevents this.
As previously highlighted, this can result in errors in the localization and an
underestimation of the source intensity, particularly when sources are partially
outside the calculation plane.

Figure 4.4: Frontal array 2-D calculation plane

As depicted by Figure 4.5, the 2-D Beamforming output seems to be weaker.
The 2-D method assumes a flat surface, thus resulting in spatial inaccuracies
due to its inability to adapt to the vehicle’s shape. In comparison, the 3-D
formulation, which conforms to the actual geometry, eliminates these errors. As
shown in Figure 4.6, it provides a more precise source representation, improving
spatial accuracy and reliability. It is also noteworthy that all of the maps are
shown at the same scale which makes the comparison easier.
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Figure 4.5: Frontal array 2-D Beamforming at 2500 Hz in the third-octave
band

Figure 4.6: Frontal array 3-D Beamforming at 2500 Hz in the third-octave
band

In the second case, the considerations are analogous to those previously
discussed. A solitary speaker is positioned on the side door, with the side
array employed for beamforming analysis. As previously outlined, in the 2D
formulation, the calculation plane is assumed to be parallel to the array plane
and fixed at a predetermined distance. This results in localization errors and
underestimation of source intensity, especially when the source is partially
outside the calculation domain. The effect is evident in Figure 4.7, where the 2D
beamforming result appears attenuated due to the flat-surface assumption. In
contrast, the 3D formulation (Fig. 4.8), which conforms to the actual geometry,
effectively mitigates these errors, yielding a more accurate representation of the
source.
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Figure 4.7: Side array 2-D Beamforming at 2500 Hz in the third-octave band

Figure 4.8: Side array 3-D Beamforming at 2500 Hz in the third-octave band
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4.2.2 Top Array

In the third case, two synchronized white noise sources were installed on the
model, one on the roof and the other on the windshield, and their signals were
recorded and processed considering the overhead array only in the absence of
wind. All the maps have the same scale to facilitate comparison.

The single-plane approach facilitates precise focusing on a specific acoustic
source through the alignment of a calculation plane at a designated location,
as illustrated in Figures 4.9 and 4.10. These figures depict the beamforming
outcomes for the 2500-Hz one-third octave band, demonstrating that this method
effectively highlights the source within the selected plane but fails to capture
sources outside it. For instance, if the calculation plane is aligned with the roof
source (Fig. 4.9) , the contribution from the windshield source is substantially
underestimated, and the reverse is equally true (Fig 4.9).

Figure 4.9: Conventional Beamforming results for the 2500 Hz one-third octave
band; calculation plane aligned with the roof

Figure 4.10: Conventional Beamforming results for the 2500 Hz one-third
octave band; calculation plane aligned with the windshield
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In order to address this issue, the multi-plane formulation extends the 2D
approach by incorporating multiple parallel calculation planes (see Figure 4.11).
This method significantly reduces underestimation errors by allowing a more
accurate representation of sources at different heights. However, as depicted in
Figure 4.12, while source strength estimation improves, localization inaccuracies
may persist. These errors stem from the assumption that the source distribution
is confined to a set of discrete planes rather than a complex surface.Similar to
the front array case, the inability of the 2D method to conform to the vehicle’s
geometry introduces spatial deviations in the estimated source positions.

Figure 4.11: Multi-plane 2-D Beamforming calculation planes

Figure 4.12: Multi-plane 2-D Beamforming approach for the 2500 Hz one-third
octave band

The 3-D formulation builds upon the multi-plane approach by incorporating
an infinite number of planes, thereby fully conforming to the vehicle’s geometry.
As shown in Figure 4.13, this approach eliminates both localization and intensity
estimation errors, ensuring precise and reliable acoustic characterization.
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Figure 4.13: 3-D Beamforming results for the 2500 Hz one-third octave band

The model presented here is intended to demonstrate the advantages of
three-dimensional mapping, without emphasising the limitations of a single
microphone array. Because of the simplicity of the model, the grid points
captured by the overhead array resulted in a scanning grid that is closely aligned
with the vehicle’s upper surface, with minimal extension in the direction normal
to the array.

In real-world scenarios involving more intricate geometries, the scanning grid
obtained from the overhead array would demonstrate greater height variation,
resulting in iso-contour noise maps that are substantially elongated in the
direction perpendicular to the array. As discussed in section2.2.3, a potential
solution to this limitation is to employ the Multiplicative Beamforming technique,
which integrates the information from different arrays into a unified map, thereby
enhancing the spatial resolution. This approach will be discussed in the next
paragraph, using a production vehicle at various wind speeds as a case study.
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Chapter 5

Real Case

This section presents the experimental findings obtained by applying the 2D and
3D Conventional Beamforming and Multiplicative Beamforming algorithms to a
production vehicle equipped with luggage bars. The vehicle was tested under
various wind speeds.

The investigation followed a standard setup used in aeroacoustic research,
where the vehicle was precisely positioned within the test section of the wind
tunnel. It was aligned with the streamwise centreline to ensure optimal ex-
posure to the airflow, and both the wheels and the floor were kept stationary
throughout the experiment to maintain a controlled testing environment. The
static configuration is crucial for accurately simulating a vehicle’s aeroacoustic
behaviour, as opposed to aerodynamic experiments, where components like the
Wheel Drive Units (WDU) and the moving belt system are in motion. In static
aeroacoustic tests, these elements are kept stationary, preventing extraneous
noise generation. Keeping all components stationary ensures that the recorded
sound data accurately reflects the vehicle’s true acoustic signature, without
contamination from mechanical noise.

The data acquisition process involved the utilisation of microphone arrays,
with recordings lasting T = 6.25 seconds at a high sampling frequency of
fs = 32768 Hz. This high sampling rate ensured the capture of even the
most subtle acoustic details with precision. Furthermore, to facilitate clear and
direct comparisons across different tests, all the maps corresponding to the same
one-third octave band were generated using an identical scale.
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5.1 Conventional 2D Beamforming

The initial scenario under consideration is that of the vehicle being struck by a
wind at 60 km/h. At this speed, the roof bars were identified as a significant
contributor to the generation of aerodynamic noise. This is clearly demonstrated
by the Conventional Planar Beamforming results applied to both the overhead
and side microphone array, as shown in Figures 5.1 and 5.2. In particular, the
left front bar support stands out as a dominant noise source and plays a key role
in shaping the overall acoustic signature of the vehicle. However, it is important
to note that this beamforming approach can introduce typical two-dimensional
errors. These inaccuracies arise when the chosen computational plane does not
coincide with the actual position of the noise source, potentially leading to errors
in both the localisation and intensity estimation of the source.

Figure 5.1: Conventional planar Beamforming results using the overhead arrays
for the 1600 Hz one-third octave band

Figure 5.2: Conventional planar Beamforming results using the side arrays for
the 1600 Hz one-third octave band
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5.2 Conventional 3D Beamforming and Multi-
plicative Beamforming

Subsequent to the analysis of the aforementioned scenario, the 3-D Beamforming
technique was employed, for which a 3-D scan of the vehicle was conducted.

The initial phase of the analysis employed Conventional 3-D Beamforming
using two distinct planar microphone arrays: the overhead and the side array.
The grid points captured by each array were included in the analysis to create a
detailed acoustic map of the vehicle. However, planar arrays inherently exhibit
anisotropic spatial resolution, meaning that they provide high resolution along
the plane of the array but have significantly limited resolution in the direction
perpendicular to that plane. Consequently, accurately localising the noise
sources remains challenging, necessitating further refinement of the beamforming
technique to overcome these spatial limitations.

As illustrated in Figure 5.3, the conventional beamforming outcomes derived
from the overhead array for the 1600-Hz one-third octave band are presented.
This representation demonstrates that the overhead array exhibits a remarkably
narrow beamwidth along directions parallel to its plane, indicative of a high level
of resolution and enabling precise localization of sound sources. Conversely, in
the direction perpendicular to the plane, the beam becomes elongated, indicating
a marked reduction in resolution and making depth localization more challenging.

Figure 5.3: Conventional 3D Beamforming results using the overhead arrays
for the 1600 Hz one-third octave band
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A comparable pattern should be observed for the side array, as shown in Figure
5.4. However, its calculation plane does not extend as far in the perpendicular
direction, which slightly alters the resolution characteristics observed in that
orientation.

Figure 5.4: Conventional 3D Beamforming results using the side arrays for the
1600 Hz one-third octave band

In order to address the limitations previously discussed, the Multiplicative
Beamforming technique was introduced as a refined method to enhance local-
ization accuracy. This innovative approach takes full advantage of the spatial
complementarity offered by two mutually orthogonal arrays.Initially, Conven-
tional Beamforming is applied separately to the overhead and the side arrays,
generating individual acoustic maps that capture the unique strengths of each
configuration. These maps are then combined through a pointwise multiplication
process, which retains the high-resolution details inherent in each array while
simultaneously mitigating the adverse effects associated with low-resolution
regions.This multiplication reinforces the precise localization of sound sources
along the array planes and compensates for the directional disparities, resulting
in a more isotropic localization map.As illustrated in Figure 5.5, the final source
map demonstrates a uniform spatial resolution that is free from any directional
bias. Although some side lobes remain visible, they are significantly reduced
compared to the outputs produced by Conventional Beamforming alone, thereby
providing a much clearer and more reliable representation of the acoustic field.

Increasing the wind tunnel flow speed to V = 120 km/h reveals additional
noise sources that were not as apparent at lower speeds. Notably, the vehicle’s
front grille begins to emit a distinct tonal noise, which is clearly evident in the
2500 Hz one-third octave band.Due to the specific location of this source, the
Multiplicative Beamforming algorithm was adapted to incorporate data from
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both the front and the overhead microphone arrays. This dual-array approach
is predicated on the complementary spatial information provided by each array,
thus resulting in a more precise and robust localization of the tonal emission.
The enhanced acoustic map, as demonstrated in Figure 5.6, clearly delineates
the source location, thereby demonstrating the effectiveness of this technique
in isolating and accurately characterising noise contributions at higher wind
speeds.

Figure 5.5: Multiplicative Beamforming results obtained considering overhead
and side arrays for the 1600 Hz one-third octave band

Figure 5.6: Multiplicative Beamforming results obtained considering front and
overhead arrays for the 2500 Hz one-third octave band
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Chapter 6

Conclusion

This study proposes a pioneering three-dimensional (3D) beamforming algorithm
that signifies a substantial advancement in the domain of vehicle aeroacoustic
research. In contradistinction to conventional methodologies, this novel approach
directly maps noise sources onto the vehicle surface, thereby facilitating a
more intuitive and precise visualisation of the acoustic energy generation. By
integrating data from multiple microphone arrays into a unified acoustic map,
the proposed multiplicative beamforming technique successfully circumvents
the inherent limitations associated with conventional planar and multi-plane
beamforming methods.

A detailed comparative analysis revealed that conventional 2-D beamforming
techniques often suffer from localization errors and intensity distortions, primarily
due to focus deviations, particularly when dealing with noise sources that lie out
of the measurement plane. In contrast, the advanced 3-D approach effectively
mitigates these issues by accounting for the complex geometry of the vehicle.
This approach ensures that noise source localization is not only more precise but
also more reflective of the true spatial distribution of acoustic emissions across
the vehicle’s body.

Furthermore, the implementation of the Multiplicative Beamforming method
has been demonstrated to enhance spatial resolution by leveraging the com-
plementary strengths of diverse microphone arrays. Through the integration
of data from these arrays, the algorithm facilitates the identification of noise
sources with enhanced reliability and robustness. This enhancement in spatial
resolution results in an acoustic map that offers a more precise and detailed
depiction of noise distribution, a critical aspect for both diagnostic purposes
and the subsequent development of noise reduction strategies.

The validity of the proposed technique was further substantiated through
real-world testing on a production vehicle. The method demonstrated its
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capacity to accurately detect and localise noise sources under various wind
speeds, thus underscoring its practical applicability. This enhanced resolution
and source mapping capability positions the technique as a potent tool for
optimising vehicle acoustic performance. This is particularly salient in the
contemporary automotive landscape, where the reduction of wind noise is of
paramount importance, especially for electric vehicles that often feature quieter
powertrains.

6.1 Future works

Subsequent research efforts will be dedicated to refine the algorithmto further
increase spatial resolution and computational efficiency. This will involve opti-
mizing 3D vehicle scanning techniques and minimizing processing time to align
with wind tunnel testing requirements.

Moreover, there is considerable scope for extending the application of this
method to more intricate vehicle configurations. The integration of the algorithm
with other advanced noise reduction strategies could yield even more profound
insights, providing automotive manufacturers with a valuable resource in their
endeavours to enhance cabin comfort and overall vehicle performance.

54



Bibliography

[1] Leandro de Santana. «Fundamentals of Acoustic Beamforming». In: De-
partment Thermal Fluid Engineering University of Twente (2017) (cit. on
pp. 1, 2, 21, 22).

[2] Ennes Sarradj. «Three-Dimensional Acoustic SourceMapping with Different
Beamforming Steering Vector Formulations». In: Department of Technical
Acoustics, Brandenburg University of Technology (2012) (cit. on pp. 2, 24).

[3] R. Arina. Slides del corso di aeroacustica. Politecnico di Torino, 2024
(cit. on p. 7).

[4] Allan D. Pierce. Acoustics: An Introduction to Its Physical Principles and
Applications. Acoustical Society of America, 1989 (cit. on p. 8).

[5] S. Glegg and W. Devenport. Aeroacoustics of Low Mach Number Flows.
Academic Press of Elsevier, 2017 (cit. on pp. 9, 11, 13, 16, 18, 19, 21).

[6] Michael Brandstein and Darren Ward. Microphone Arrays: Signal Process-
ing Techniques and Applications. Springer, 2001 (cit. on p. 17).

[7] P. M. Morse and K. U. Ingard. Theoretical Acoustics. Princeton University
Press, 1968 (cit. on p. 17).

[8] J.J. Christensen and J. Hald. Beamforming. Tech. rep. Brüel&Kjær, 2004
(cit. on pp. 21–24, 30).

[9] R. Porteous, Z. Prime, V. Valeau, C. Doolan, and D. Moreau. «Three-
dimensional beamforming of aeroacoustic sources». In: Inter-noise (2014)
(cit. on pp. 25, 36).

[10] Francesco Uffreduzzi, Alessandro Aquili, and Raj Mattias Mehta. «Coherence-
based Beamforming algorithm for vehicle cabin acoustic comfort evalua-
tion». In: Rivista Italiana di Acustica v. 48, n. 1 (2024) (cit. on p. 28).

[11] Johnson D. H. and Dudgeon D. E. Array Signal Processing: Concepts and
Techniques. P T R Prentice Hall, 1993 (cit. on pp. 29, 30).

55



BIBLIOGRAPHY

[12] A. Cogotti. «A Parametric Study on the Ground Effect of a Simplified Car
Model». In: SAE International, Warrendale, PA, SAE Technical Paper
980031, (1998) (cit. on p. 40).

56


	List of Tables
	List of Figures
	Introduction
	Overview
	Objectives of the Thesis

	Theoretical Background
	Linear Acoustics
	The Acoustic Wave Equation
	Sound generation by a small sphere
	Superposition and Far Field Approximations
	Monopole, Dipole, and Quadrupole Surces

	Beamforming
	Delay-And-Sum Beamforming
	Pininfarina Conventional Beamforming
	Multiplicative Beamforming


	Pininfarina Wind Tunnel Facility
	Array Resolution
	Array Pattern
	Maximum Sidelobe Levels

	2D and 3D Beamforming Formulations comparison
	Limitations of 2D Beamforming Formulation
	Validation Case
	Front and Lateral Array
	Top Array


	Real Case
	Conventional 2D Beamforming
	Conventional 3D Beamforming and Multiplicative Beamforming

	Conclusion
	Future works

	Bibliography

