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Abstract

In the present study the optimization of an acoustic liner will be discussed. The
problem linked to the noise generated by an aircraft, especially when the take-off or
landing site is near a populated area, is becoming more and more important. This
increasing interest in this topic is due to the increase in the number of flights. An
acoustic liner could be represented as a boundary condition thanks to its impedance
value. There are different way to compute it and different impedance models will
be discussed. A specific geometry for the nacelle is used and a particular set of
frequency is studied. A first part is dedicated to the reduction of the noise generated
with a single frequency. The second part will be dedicated to the optimization of a
liner that could work well in a series of frequency. Different optimizer are used to
find a minimum for specific noise functions and in particular for the Average Sound
Pressure Level and the Overall Sound Pressure Level. The number of liners is also a
subject of these analyses. The main tool used in this study is the Actran software.
This is a powerful tool for the computation of the noise generation and propagation
in a medium. Its integration with the python language will be important and a
python script will be used for the optimization process. A final configuration that
produces the best noise reduction will be found. A representation of its integration
inside the nacelle could be found in the last part.



Chapter 1

Introduction

Aviation is playing an important role in todays transportation, and it is growing
continuously. Up to now around 100.000 flight are made every day transporting
millions of passengers and this numbers will increase in the next years. Among the
different problematic related to this, the acoustic noise generated from the aircraft
is an important topic that must be studied. To reduce this noise different aviation
organizations are imposing more stringent regulations on the noise levels that can
be reached in all the flight phases. These levels affect the nature and human beings.
A long-term exposure to high levels could increase stress and anxiety in people and
this could affect the psychomotor performances with a negative effect in tasks that
require concentration, calculation etc. (14) This long exposure could also increase
the rick of disease in human ears. The main source of this noise is the turbofan
noise coming from the rotation of the blade (fan) and the combustion and by-pass
flow (jet).

1.1 Acoustic liners

To reduce this noise some approaches can be used and there are 3 types: 1) active
control, 2) geometric shape optimization, 3) passive control. This study will focus
on a passive control system, perforated liners. With its structure made by a per-
forated plate, the noise is reduced due the transformation of the acoustic pressure
fluctuations into a non-radiating vortical fluctuations. The mechanism is about the
conversion of sound energy into turbulent kinetic energy with sound absorption that
involves also the formation and shedding of the vortices at the orifice discharge (15).
The position of liners can be different depending on the main noise that must be
reduced. For what concern the jet noise, the interest is on two different part of the
engine as shown in Figure 1.1. In particular, the interested zones are the front and
back part of the motor.

Today’s tendency on engines is to increase the Bypass Ratio to improve the effi-
ciency with the consequence of a reduction in the jet noise but with a more dominant
broadband fan noise component. As a consequence, the liners must absorb sound
over a wide frequency range.(1). Acoustic modes propagating in the duct give the
noise source characteristic and the panel design depends on it. SDoF (Single Degree
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Figure 1.1: Engine nacelle with liners (1)

of Freedom) and DDoF (Double Degree of Freedom) liners are resonator panels. The
damping that the resistance give, have an influence on their acoustic properties that
can be linear or nonlinear. The damping resistance of a nonlinear liner face sheet (or
septum face sheet) depends on the amplitude of the incident acoustic wave, whereas
for linear liner face sheet (or septum face sheet) the behaviour is independent from
the amplitude of the incident wave. Typically liners with a hole diameter between
0.6 and 0.8 mm(6) can present a nonlinear behavior. Motsinger and Kraft (6) de-
scribe three different type of liners depending on the range of frequencies in which
the suppression is required.

1. The fist type of liners is the SDoF, Single Degree of Freedom depicted in
Figure 1.2. This liner is composed by a sandwich where in the middle there
is an honeycomb structure between a solid back-plate in the lower part and
a porous face sheet in the upper part. This is effective in presence of the
narrowest frequency range and, adjusting its main properties it can be tuned to
the frequency band containing the single fan tone. The behavior is similar to an
Helmholtz resonator with its absorption peak at the resonance frequency. The
main parameters of the SDoF liner are the orifices diameter d, the honeycomb
depth h, the thickness of the porous face-sheet t and the porosity σ defined
as the number of orifices per unit surface. The key factor to reach a resonant
response, and so maximum attenuation, is the cell dept (h). The honeycomb
cell size will be sized to consider the liner as locally reacting. (16)

Figure 1.2: Single Degree of Freedom liners (1)

2. The second type of linear is the DDoF, Double Degree of Freedom. This is
essentially the union of two SDoF liners. It is composed by a two porous sheet,

2



Figure 1.3: Double Degree of Freedom liners (1)

the face and mid sheets, two honeycomb structure and a rigid backplate. A
first honeycomb is positioned between the porous face sheet and the septum
while the second honeycomb is positioned between the septum and the rigid
backplate. This type of acoustic treatment is shown in Figure 1.3. This liner
has a wider bandwidth respect to the SDoF liners with two resonance frequen-
cies in with the absorption is maximum. In this case the basic parameters are
the same but doubled. Is possible to find the two cells height h1 and h2, the
two orifice diameters d1 and d2 and so on.

3. The third acoustic treatment is the bulk absorber as shown in Figure 1.4. In
this liner the honeycomb core is substituted with a porous material. The bulk
absorber is effective for the widest bandwidth (2).

Figure 1.4: Bulk absorber (2)

Sugimoto et al. (3) present another type of acoustic treatment, the folded cavity.
The concept of this liner is based on the assumption that the liner cavity is folded to
lie parallel to the duct axis to do not intact excessively the liner depth but providing
at the same time a large reactive volume. This can be applied for the reduction of
noise at lower frequency. This type of liner can present different geometries as shown
in Figure 1.5. The values of resistance and reactance depend on this.

Jones and Parrott (4) presented a honeycomb porous liner. This is composed by
a structure similar to the SDoF liner but in this case there are rigid porous plates
instead of a honeycomb structure as shown in Figure 1.6. Some studies demonstrate
that the attenuation bandwidth is increased by 70% but with a peak attenuation
reduction of 20%. A disadvantage can be found in more complex liner models to
develop and produce.

3



Figure 1.5: Different geometries for folded cavity (3)

Figure 1.6: Porous honeycomb liner (4)

1.1.1 Extended and local reacting liners

Generally liners are subdivided into two big family: extended-reacting liners and
locally-reacting (or point-reacting (6)) liners as shown in Figure 1.7. In the extended-
reacting liner the core is filled with foam without internal rigid partition and can be
covered on the top with a porous rigid plate or can be let free if the foam material
is sufficiently robust. The majority of the acoustic resistance is given by the foam
and the acoustic wave propagates in all directions in the liner. This type of liner
has a bigger bandwidth but less resonant behavior compared to the other type (1).

The local-reacting liner presents in its core several rigid partitions that prevent
the acoustic wave to move inside the liner. In the upper part is possible to find
a porous face-sheet that enhance the fluid pumping with a spatially concentrated
absorption. This can provide a strong absorption in a narrow bandwidth (1).

Figure 1.7: extended- and local-reacting liners (1)

1.1.2 Bias and Grazing flow

Figure 1.8: Bias and Grazing flow (2)
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As shown in Figure 1.8 liners are subjected to two different flows. The grazing
flow is characteristic of liners mounted in an engine inlet and is the flow that moves
along the perforated face-sheet. Usually this is a turbulent boundary layer. The
structure can be designed to have also ad in- or outflow over the liner face-sheet
and can be used to have a boundary layer suction or blowing, to ensure a cooling
of the liner and to tune the frequency response of the liner. The grazing flow has
an important influence on the liner’s performances. In fact, this flow can carry
downstream a series of merged vortices created by the orifices upstream having an
influence on the invested orifices (17).

1.2 Resonance

The SDoF liner can be seen as a panel of Helmholtz resonators (2). The ideal form
of the Helmholtz resonator has a ”cavernous space” with a thin wall that almost
close the space and in which there is a small orifice that allow the communication
between the internal and external gas. Helmholtz arrived to this theory with the
supposition that the perforation is small and so the wavelength of the vibration is
great (18).

1.2.1 Mechanical system

Figure 1.9: Spring-mass system(5)

The basis of the Helmholtz resonator can be found in the resonance concept.
There are systems that, when moved from their equilibrium point, have forces that
tend to restore the initial equilibrium position. This is the case for example of a
spring-mass system, composed by a frictionless mass attached to a spring as shown in
Figure 1.9. When the mass is moved from this point the elastic force tends to move
back the mass into its equilibrium position, moving it through this point and beyond
of it, only to return again and repeat the process. This movement repeats itself for
a given period and so at a characteristic frequencies, called natural frequency or
resonant frequency (5). The governing equation for the mass-spring system is the
Hooke’s law described in Equation 1.1

F = −k · x (1.1)

and k is the spring constant.
During the motion the spring force is counterbalanced by the inertial forces,

given by the mass, according with the Newton’s second law:

F = m · a = m
d2x

dt2
(1.2)
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where F in the force applied to the mass m and a is the acceleration produced by
the force. The two forces that play a role in the spring-mass system are the inertial
force of the accelerating mass and the spring force. From Equation 1.1 and 1.2 it is
possible to obtain the equation of motion

m
d2x

dt2
+ k · x = 0 (1.3)

d2x

dt2
+ ω2

n · x = 0 (1.4)

In Equation 1.4 it is possible to see the parameter ωn that is linked to the natural
frequency. Solving this equation it is possible to extract the period T= 2π

√
m/k

and so the natural frequency fn (5).

fn =
1

2π

√
k

m
(1.5)

1.2.2 Helmholtz resonator

Helmholtz resonator is a special type of air spring oscillator (5) depicted in Figure
1.10. This oscillator is composed by a frictionless mass and a volume of air. Being
compressed, the pressure of the air increases creating a force on the surface and the
behavior is similar to a mass-spring system.

Figure 1.10: Air spring oscillator and Helmholtz resonator(5)

As in the mass-spring system, from the Newton’s second law is possible to obtain
the natural or resonant frequency. The pressure change is related the the change of
volume in the neck as shown in Equation 1.6.

dP = −γP
dV

V
(1.6)

More similar to a liner is the neckless Helmholtz resonator (Figure 1.11), an
enclosed volume with an opening area with a thickness τ (or l0) that act like a small
neck. The air compressed generates a pressure and so a force on the air surface of
the neck S.

dF = S · dP = −γPS
dV

V
(1.7)

Now the Newton’s second law can be applied as shown in Equation 1.8. In this case
the air mass m = ρ0Sτ and the volume variation dV = Sx in the neck must be
considered.
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Figure 1.11: Neckless Helmholtz Resonator (5)

dF = md2x
dt2

−γPS Sx
V

= ρ0Sτ
d2x
dt2

ρ0Sτ
d2x
dt2

+ γP S2

V
x = 0

(1.8)

Equation 1.8 is now similar to Equation 1.3 and so is possible to obtain the
natural frequency. In the first left hand term is possible to see the mass m = ρ0Sτ
and in the second left hand term the spring stiffness k = γPS2/V . Considering also
the relation c20 = γP/ρ0 the natural frequency for a neckless Helmholtz resonator
can be written as:

fn = 1
2π

√
γPS2

V ρoSτ

fn = c0
2π

√
S
V τ

(1.9)

Long (5) refers to a ”end effect” both in the top and bottom end of the orifice
leading to the replacement of the real thickness with an effective length l0+2·(0.85a)
obtaining the final expression for the natural frequency of this resonator presented
in Equation 1.10. The term a=d/2 represents the radius of the hole.

fn =
c0
2π

√
S

V (τ + 1.7a))
(1.10)

This equation find a confirmation in Ingard (19) that introduced the end correction
δ= (16/3π)a ≃ 1.7a. This is valid for a circular piston and to make it applicable to
other aperture shapes, Ingard (19) defined the end correction as δ= 0.96

√
S.

Usually SDoF and DDoF liners present multiple orifice in the face-sheet and this
must be considered introducing a new parameter called porosity σ. The porosity
represents the number of openings per unit area. Considering the volume as V = S ·d
where d is the depth of the airspace behind the orifices it is possible to obtain the
natural frequency for multiple orifice resonator.

fn =
c0
2π

√
σ

d(τ + 1.7a))
(1.11)

1.3 Acoustic Impedance

In sound absorption the most important parameter is the impedance that character-
ize how well the liner can reduce the noise. In the case of a locally-reacting liner the
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impedance can be defined as the ratio between the Fourier coefficient of the sound
pressure and the normal component of the acoustic particle velocity in a given point.
The impedance can be also normalized by using the characteristic impedance of the
air Z0 = ρ0 ·0 c where ρ0 is the air density and c in the speed of sound. This is shown
in Equation 1.12 (1).

ζ =
p

ρc (−→u · −→n )
= θ + iχ (1.12)

It is possible to notice two terms: θ is the resistance and χ is the reactance. The
resistance is an indication of the force responsible to dissipate the acoustic energy
and the reactance gives an indication about the frequency at which the absorption
is maximum. In fact, when the reactance is zero, the resistance is maximum and
so there is a peak in the absorption. These two parameters depend on frequency,
aeroacoustic environment and liner geometry. In this work the study will be focus
on the optimization of liner characteristics such as orifice diameter, cavity depths
etc.

1.4 Optimization

The main goal of this thesis is to find the optimal value for the different liner’s
parameters. The objective functions to minimize are the Average Sound Pressure
Level (ASPL) and the Overall Sound Pressure Level (OSPL). This is an iterative
process and in each step the SPL is measured from a series of microphones located at
a certain distance from the inlet. The sound pressure level comes from the compu-
tation of the field using aeroacoustic simulation software like ACTRAN that, among
other equation types, solves the Linearized Euler Equation (LEE) to compute the
required quantities in the space. The process can be automated using a Python
script linked with ACTRAN. Initial parameter must be chosen in order to compute
the impedance boundary condition in ACTRAN, using one of the models presented
in the following. ACTRAN gives as output the sound pressure level on each mi-
crophone and then an average value can be obtained. The optimization algorithm
chosen will now choose a new value for the parameters that must be optimized, and
compute a new value of impedance. Then this value is changed in ACTRAN and as
output it extract a new set of sound pressure level on the microphones. The process
will stop when a minimum is reached and depending on the optimizer chosen, this
can be a local or global minimum. In the optimization process very important are
the physical constrains in order to obtain a more realistic acoustic liner.
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Chapter 2

Impedance models

The main goal of noise research is to find a way to predict the acoustic performance
of a new treatment (20). In this way, many problems described above can be solved
finding the best set of liner’s parameters that result in a better noise reduction.
Depending on the situation, a different impedance model must be used and this
plays an important role in the optimization loop.

2.1 Motsinger and Kraft

Motsinger and Kraft (6) present the Impedance in the classical way, as the ratio
between the cause (pressure) and the effect (normal particle velocity) and this is
reported in Equation 2.1.

Z =
p

v
= R + iX (2.1)

Motsinger and Kraft (6) used the convention e+iωt for the wave solution of acoustic
pressure and velocity and in which ω represent the circular frequency and t is the
time. In this study they considered liner with internal rigid partitions to prevent
the propagation of the wave in the liner and these are the so called point-reacting
liners. The impedance is usually normalized with the characteristic impedance of
the air ρc obtaining what was shown in Equation 1.12. Each wave are considered
the superposition of a series of plane waves, where each of them hits the wall at
different angles. The solution of the plane-wave is the same of an acoustic mode
that propagates in a duct. In an idealized case it is possible to compute the fraction
of incident energy absorbed by the acoustic treatment that depends on the angle of
incidence with the convention shown in Figure 2.1, with the use of Equation 2.2.

α =
4θ cosϕ

(1 + θ cosϕ)2 + (χ cosϕ)2
(2.2)

In the case of a plane-wave mode with ϕ = 90◦ and with a duct of rectangular
shape, the Cremer’s analysis give the optimal impedance.

Zopt

ρc
= (0.92− 0.77i)

H

λ
(2.3)
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Figure 2.1: Wavefront on an acoustic treatment panel

In Equation 2.3 is possible to find the non-dimensional frequency parameter that is
the ratio between the duct height H and the wavelength of sound λ.

Single Degree of Freedom liners

Z

ρc
=

R

ρc
+ i

(
Xm

ρc
+

Xc

ρc

)
(2.4)

In Equation 2.4 there are the face sheet normalized resistance R/(ρc), the nor-
malized face sheet mass reactance Xm/(ρc) and the normalized cavity reactance
Xc/(ρc) = − cot(kh) where k in cm−1 is the wavenumber and h in cm is the cavity
depth.

Double Degree of Freedom liner

Z

ρc
=

Z1

ρc
+

Z2

ρc
cot(kh1) sin(kh2)

sin(kh)
− i cot(kh)

1 + iZ2

ρc
sin(kh1) sin(kh2)

sin(kh)

(2.5)

In Equation 2.5 there is the contribution of two impedance Z1 and Z2 that can be
written as follow.

Z1

ρc
=

R1

ρc
+

Xm1

ρc
(2.6)

Z2

ρc
=

R2

ρc
+

Xm2

ρc
(2.7)

In these equation the quantities with the subscript 1 and 2 indicate respectively
the face-sheet and the septum impedance, resistance and reactance. The term h
indicate the total depth of the liner.

Bulk absorber panels

Z

ρc
=

ZB

ρc
+ ξB coth(γh) (2.8)

where
ZB

ρc
=

RB

ρc
+ i

XB

ρc
(2.9)

In Equation 2.8, ξB represent the characteristic impedance ratio between the impedance
of the bulk absorber and the impedance of air, and γ is the propagation coefficient
in the bulk absorber that represent the wavenumber.
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Resistance and Reactance

In all the three cases above, is possible to find the same parameters like resistance,
mass reactance etc. There are some formulation to compute these terms given by
Motsinger and Kraft (6).

The general expression for the resistance is shown in 2.10.

R

ρc
= A+BVi (2.10)

where Vi is the incident velocity, computed experimentally or with the root-mean
square of the fluctuating acoustic velocity, and A and B were determined experi-
mentally. In Equation 2.10 A is the linear term of the resistance while B is the non
linear term, being in the velocity-dependent component. This last term makes the
resistance a function of the incident wave amplitude. A and B for a perforated plate

Figure 2.2: Flow mechanics for the resistance (6)

can be computed from fluid dynamics taking into account that the pressure differen-
tial across the sample generates an energy loss mechanism. Referring to Figure 2.2
the first term in Equation 2.10 is given by the pressure loss due to hole-flow friction
and the second term is due to the turbulence given by the entrance and exit loss.
Depending on the hole opening area the flow inside can be laminar or turbulent and,
depending on this, one term is predominant on the other. If the flow is laminar the
first term is more important while if the flow is turbulent, in most of perforated
sheet of SDoF and DDof, the second nonlinear term is predominant. The general
expression for the resistance is

R

ρc
=

∆p

ρcVi

(2.11)

Is possible to compute the ratio between the pressure loss and the dynamic pressure
within the hole as

∆p

q
=

Fτ

d
+Ki +Ke (2.12)

where τ is the face-sheet thickness, F is the friction factor for pipe flow, Ki and Ke

are the dimensionless entrance and exit loss respectively (Ki + ke is approximately
1 (6)). The friction factor and the dynamic pressure can be written as follow

F =
a

NRe

=
aµ

ρVhd
(2.13)
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q =
1

2
ρV 2

h (2.14)

In Equation 2.13 and Equation 2.14 appear the in orifice velocity Vh= Vi/(CDσ)
where CD≃ 0.76 (6) is the orifice discharge coefficient and σ = πnd2/4 is the porosity
in a multi-hole plate. In Equation 2.13 a= 64 (6) is a dimensionless proportionality
constant and NRe is the Reynold’s number. Now rewriting the Equation 2.11

R

ρc
=

∆p

ρcVi

=
aµτ

2ρc(σCD)d2
+

Ki +Ke

2c(σCD)2
Vi = A+BVi (2.15)

the term A and B can be computed

A =
aµτ

2ρc(σCD)d2
(2.16)

B =
Ki +Ke

2c(σCD)2
(2.17)

The mass reactance can be computed in the same way for the face-sheet and
septum as

Xm

ρc
=

k(τ + ϵd)

σ
(2.18)

where the dimensionless end correction ϵ= 0.85 (6) depends on the material of the
face-sheet and the septum. Ingard (19) presented also a porosity effect that must
be added to this end effect.

ϵ = 0.85(1− 0.7
√
σ) (2.19)

It is possible to compute also the impedance for the bulk absorber of Equation
2.8 as

ZB

ρc
= 1 + 0.05854

(
fρ

P

)−0.75

+ i0.08777

(
fρ

P

)−0.73

(2.20)

where P is the linear part of the flow resistance per unit thickness of the material.
In is also possible to compute the value of γ in the second term of Equation 2.8 as

γ = αB + iβB = 0.19478k

(
fρ

P

)−0.59

+ ik

[
1 + 0.09476

(
fρ

P

)−0.7
]

(2.21)

The coefficients of Equation 2.21 were obtained experimentally by Delany and Ba-
zley (21). Experiment were done on different fibrous commercial material in an
impedance tube and the results were plotted leading to a simple power-law relation
for αB and βB.

Effect of grazing flow and Sound Pressure Level

Grazing flow and Sound Pressure Level have an influence on the impedance model.
Using Equation 2.10 and substituting the expression of Vi given by Motsinger and
Kraft (6) the resistance became

R

ρc
= A+

Bp

ρc
√

(R/ρc)2 + (X/ρc)2
(2.22)
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If A is negligible and the reactance is zero, the Resistance can be written as

R

ρc
=

√
Bp

ρc
(2.23)

In the absence of grazing flow the magnitude of the pressure p can be computed as
a function of the SPL of the incident wave.

|p| = pref10
SPL/20 (2.24)

When a flow turbulence is present the effect of a flow turbulence pressure fluctuation
must be added and to estimate these fluctuation experimental data were used with
different Mach number. A good fit was shown between the measured and predicted
resistance data when they used a value of the pressure fluctuation equal to pF =
90′000M2.

With all these information, the final expression of the resistance in the zero
reactance case can be found.

Rgf

ρc
=

√
(Ki +Ke)90′000

2cC2
Dρc

M

σ
(2.25)

In this equation Ki + Ke = 1, ρc = 41.5 rayls, c = 34′380 cm/sec and CD =
(1− 2δ∗/d)2 with the assumption of its typical value of CD = 0.76 (6). With these
data the term multiplying M/σ is 0.25, similar to the value indicated by Heidelberg
and Rice (22) of 0.3. In a first approximation Heidelberg and Rice (22) ignored
the influence of the boundary-layer. Later in the study was demonstrated that
the boundary-layer was thicker than predicted and that it has an influence on the
resistance of a perforated plate. The resistance in presence of a grazing flow becomes
dependent on the boundary layer displacement thickness δ∗ as shown in Equation
2.26.

Rgf

ρc
=

M0

σ
(
2 + 1.256 δ∗

d

) (2.26)

The mass end correction term ϵ is also dependent on the mach number and
follows the relation in Equation 2.27 given by Rice (23).

ϵ = 0.85
(1− 0.7

√
σ)

1 + 305M3
(2.27)

Now the mass reactance of equation 2.18 can be written as

Xm

ρc
=

k
(
τ + 0.85(1−0.7

√
σ)

1+305M3 d
)

σ
(2.28)

2.2 Kooi and Sarin

Murray and Astley (24) presented an impedance model based on the equations given
by Kooi and Sarin with the addition of a nonlinear term for the resistance while the
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reactance follows what was presented by Rice (23). The general expression for the
normalized resistance is

R

ρc
=

Rvis

ρc
+

Rgf

ρc
+

Rnl

ρc
(2.29)

where Rvis is the resistance given by the viscous hole losses, Rgf are the liner losses
given by the grazing flow and Rnl are the nonlinear losses. These are presented in
the following

Rvis

ρc
=

k1µτ

ρcσCDd2
(2.30)

Rgf

ρc
=

k2M [5− (τ/d)]

4σ
− k3df

σc
(2.31)

Rnl

ρc
=

k4(1− σ2)

2cC2
Dσ

2
u = S · u (2.32)

The S in this last resistance term is similar to what will be presented by Dahl (25)
in equation 2.47.

The normalized reactance follows what was elaborated by Rice (23) but with a
small correction in the definition of the perforate face-sheet end correction ϵ. The
general form is

X

ρc
=

Xm

ρc
+

Xc

ρc
(2.33)

where
Xm

ρc
=

k(τ + ϵd)

σ
with ϵ =

0.85(1− 0.7σ0.5)

1 + 200M3
(2.34)

Xc

ρc
= − cot(kh) (2.35)

The acoustic velocity is expressed by u that can be calculated using the formu-
lation

u =
P

{[(Rvis +Rgf +Rnl)ρc]2 + [(Xm +Xc)ρc]2}0.5
(2.36)

In the Rnl, the acoustic velocity u is present so an iterative process must be done.
In-situ measurement in the NLR Aerospace Acoustic Laboratory in Holland were

done on a single degree of freedom liner with different Mach numbers. It was noticed
that with a grazing flow the resistance increases particularly at low frequencies. This
is in line with what was found by Zhang and Bodony in their grazing flow modeling
study. They indicated that a stronger vortex shedding is produced when the incident
wave is at lower frequencies. It was also noticed an increase in the resonant frequency.
It was also shown a good agreement with predicted and measured impedance data.

2.3 Dahl

Dahl (25) presented different models for the normalized impedance ζ = Z/ρc. Two
of them, Two-Parameter (TP) and Crandall Full-solution (CF) models, analyzed
this impedance as follows

ζ = θ + iξ = θlin + θnonlin + θgf + i {χfs − cot(kh)} (2.37)
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In Equation 2.37, θ = R/(ρc) represents the normalized resistance and the subscripts
lin, nonlin and gf represent the viscous, nonlinear and grazing flow contribution to
the resistance. The mass reactance of the face-sheet and the cavity reactance are
indicated by χfs and − cot(kh). Also in this case the convention used for the time
is based on eiωt. The acoustic oscillatory flow through the perforate is treated as be
incompressible and quasi-steady thanks to the assumption of lumped element and
that the cell depth is small compared to the wavelength, so it can be considered an
Helmholtz resonator (25).

The Two-Parameters model was early presented in the Motsinger and Kraft sec-
tion and is based on the parameters A and B.

Crandall Full-Solutin model (CF)
This model use, for the oscillatory flow, a pure analytical solution to give a Poiseuille-
type and frequency dependent viscous losses. Bessel functions are used to describe
the resistance and reactance component in the hole and so two function for resistance
and reactance end correction must be calculated. This model give an impedance in
a form similar to the Equation 2.37.

ζ = θ0 + θ0,ω + SRvrms + θgf + i {χm + χme + Smvrms − cot(kh)} (2.38)

If the source has just a single tone an iterative process must be done to compute
both ζ and vrms defined as

vrms =
pref10

SPL/20

ρc|ζ|
(2.39)

where pref = 20µPa. If there is a broadband source, the frequency dependent
components are combined to determine the value of vrms(f). From Equation 2.38
can be collect another impedance defined as

ζ0,ω = (θ0 + θ0,ω) + i(χm + χme) (2.40)

where the subscript ω indicate a dependency on the frequency. χm and χme indicate
the mass reactance and the mass reactance due to the end correction. The impedance
terms can be computed as:

(θ0 + θ0,ω) = Re

{
iω(τ + ϵRed)/(cσ)

F (kµr)

}
(2.41)

(χm + χme) = Im

{
iω(τ + ϵImd)/(cσ)

F (kµr)

}
(2.42)

In these expression r represents the hole radius and ϵRe, ϵIm and F (kµr) can be
expressed as:

ϵRe =
1− 0.7

√
σ

1 + 305M3
(2.43)

ϵIm = 0.85ϵRe (2.44)

F (kµr) = 1− 2J1(kµr)

kµrJ0(kµr)
(2.45)
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In Equation 2.45 J0 and J1 are the zero- and first-order Bessel functions. kµ repre-
sents the viscous Stokes wave wavenumber

k2
µ = −i

ωρ

µ
(2.46)

The resistance due to the grazing flow is that presented in Equation 2.26. Finally
the last two term multiplying vrms in Equation 2.38 are defined as

SR =
133.6541

ρc

(
ρ(1− σ)2

2C2
Dσ

2

)
(2.47)

SM = −0.00207
k

σ2
(2.48)

These indicate the nonlinear resistance slope and the nonlinear mass reactance slope
respectively. In the SR expression the definition of the discharge coefficient depend
on the ratio between the thickness of the plate and the hole diameter.{

CD = 0.80695
√
σ0.1/e−0.5072(τ/d) if τ/d ≤ 1

CD = 0.584854
√

σ0.1/e−1.151(d/τ) if τ/d ≥ 1
(2.49)

2.4 Zorumski and Tester

Zorumski and Tester (20) present an impedance given by the contribution of linear
and nonlinear terms. This can be seen as the ratio between the acoustic pressure
and the acoustic particle velocity and depends on the frequency.

Linear impedance
As in the linear electrical circuit theory this is an useful parameter in acoustic
because the dynamics of the liner is independent on the amplitudes of the variables
and depend only on their ratio. For sheet material the impedance can be defined as
expressed in Equation 2.50.

Z∗
ω =

p∗ω
v∗ω

= R∗
ω − iX∗

ω (2.50)

In this expression the terms p∗ω and v∗ω represent the amplitude of a complex har-
monic motion in the time domain where the time factor is e−iωt. R∗

ω and X∗
ω are

respectively the resistance and the reactance of the liner.

Nonlinear impedance
Since the propagation process is described by linear equation the impedance can
be considered independent of the amplitude of the acoustic motion. Studies demon-
strate that in operational environment, like engine ducts, the behavior of the fluid
motion near liners is nonlinear so the impedance of commercial liners depend on the
amplitude of the incident wave. The steady flow or zero frequency case confirm the
existence of nonlinear effect. Zorumski and Parrott (7) related experimentally the
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Figure 2.3: Pressure drop as a velocity function (7)

pressure drop in a thin sheet, with the instantaneous fluid velocity v(t) as shown in
Figure 2.3 and Equation 2.51.

∆p(t) = Rt[v(t)] +X(t)[v(t)]
∂v

∂t
(2.51)

The term Rt[v] has a dependency on time, as indicated by the subscript, and refers
to the steady flow resistance at velocity v. For high Reynolds number it can be
expressed as Rt[v] = b|v| where b is a constant. Neglecting the Xt[v(t)] term, so
∆p(t) = Rt[v(t)], and assuming that there is just one frequency ω1 the velocity and
the pressure drop are:

v(t) = v1 sin(t)
∆p(t) = bv21 sin(t)| sin(t)|

(2.52)

Considering the Fourier transform is possible to obtain the Fourier component of
the fluctuating pressure differential in the given frequency ω1

∆p1 =
8b

3π
v21 (2.53)

Now is possible to compute the ratio between the pressure drop and the velocity
that represent the impedance (20).

R1 =
∆p1
v1

=
8b|v1|
3π

(2.54)

At low Reynold number, linear effect are present and R[v] is independent to the
velocity v obtaining R1 = a. Usually in possible to find both linear and nonlinear
effect so the final expression is

R1 ≃ a+
8b|v1|
3π

(2.55)

For perforated plates an approximation is presented in equation 2.56.

∆Zω = [a+ bve]− i [g − hve] (2.56)

In Equation 2.56 ve is an estimation of the particle velocity normal to the surface
and the coefficient b and h multiplying it depend on the properties and geometry of
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the material. There are different expression for the value of b and one is presented
in Equation 2.57.

b = 1.14

(
1− σ2

σ2.1

)
exp

[
−0.507

l∗

d∗
− 1.7

(
l∗f

c

)
σ

ve

]
(2.57)

Duct Liners

If the lined surfaces is independent of the local sound field properties, the liner is
said to be point or locally reacting. In certain conditions the liner’s impedance is a
function of the liner parameters. The impedance of this local reacting liner can be
expressed as

Zω = ∆Zω + i
ka
k∗ cot (k

∗d∗) (2.58)

The second right hand term is the impedance of the air cavity. In this term is
possible to see the wave number of the motion in the cavity k∗ and the cavity depth
d∗ while the term ka = ω/ca in the case of plane wave is equal to k∗. Taking
into account the viscous dissipative effect in the cavity the wave number must be
modified adding a small imaginary part as shown in equation 2.59.

k∗ =
ω

ca
+ i

1

r∗eca

(ων
2

)1/2
(2.59)

In this expression r∗e is the effective radius of the honeycomb cell and ν is the cavity
fluid kinetic viscosity. Zorumski and Tester (20) present also an impedance for an
extended reaction liner presented in Equation 2.60

Zc(fj) = [−z∗(fj)/ {ρacak∗
rm}] cot {k∗

rm(fj)d
∗} (2.60)

In the equation k∗
rm is the wavenumber in extended reacting liner.
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Chapter 3

Actran

The main character of the present work is the acoustic software Actran. Actran
is a software developed by Free Field Technologies SA software company, founded
in 1998. The true revolution on this was the idea to use a finite element-based
simulation tool in vibro-acoustic simulation in order to substitute the past used
Boundary Element Method (BEM) with all its limitations. More complex noise
sources can be simulated and multi-million degrees-of-freedom models can be man-
aged. Python and C++ are the main languages in which Actran is written and it
can be subdivided in different modules depending on which kind of study must be
performed. Among others, the modules of our interest are Actran AeroAcoustics,
Actran Turbo-machinery (TM) for the prediction of turbo-machinery noise and Ac-
tran DGM. Turbo-machinery noise is a very important noise source and it is present
in aircraft engines and helicopter turbines. Actran TM is a part of a modeling strat-
egy called Direct Frequency Response (DFR). There are different modeling strategy
in Actran (26):

• Actran DGM uses Linearized Euler Equation (LEE), Pseudo Vortical Lin-
earized Euler Equation (PVLEE) or Acoustic Perturbation Equation (APE)
and can be used in presence of complex mean flow.

• Actran DFR is used to solve most common acoustic field and uses Mohring’s
equation in presence of a flow or Helmholtz’s equation with no flow conditions.

• Actran Ffowcs-Williams Hawkings equation is used to compute the far field
radiation.

3.1 Actran DGM

Actran DGM (Discontinuous Galerkin Method) is designed to predict the prop-
agation of the noise in complex flow conditions, with high temperature gradient,
non-homoentropic fluxes etc. This method is free from the finite element method
and the mesh could be non-homogeneous due to the automatic adaptation of the
element order. In this way is possible to find elements of different dimensions on
the same mesh. (27) Actran DGM is a Discontinuous Galerkin implementation
for solving, among other type of equations mentioned above, the Linearized Euler
Equations (LEE) in the time domain (8).
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3.1.1 Linearized Euler Equations (LEE)

The Linearized Euler Equations are obtained from a series of assumption made
on the Navier-Stokes equation. These last equations fully describe the motion of
viscous fluid substances. Navier-Stokes equation are balance equation that originate
from the application of the Newton’s second law to fluid motion assuming that
the sum of a pressure term and a diffusing viscous term, related to the velocity
gradient, represents the stress in the fluid (28). The balance equation concern the
mass equation, momentum balance equation and energy balance equation. All the
quantities described in these equation can be seen as composed by two different
contribution: the mean component where its derivative respect to the time is zero,
and the fluctuating component marked by the superscript ′. These quantities can
be seen as

• ρ = ρ0 + ρ′

• p = p0 + p′

• v = v0 + v′

• s = s0 + s′

The orders above the 1th are neglected leading to a linear system without non-
linear effects. This is valid until the sound level is not so high. The assumption
made to pass from the Navier-Stokes equation to the Linearized Euler Equation can
be summarized as follow:

• τ ′ = 0, viscous forces fluctuation are neglected

• q′ = 0, thermal conductivity fluctuation is neglected

• the fluid is considered as an ideal gas

The set of Linearized Euler Equation (LEE) is different if the acoustic process is Ho-
mentropic or Isentropic. The homentropic process is characterized by the fluctuating
entropy constant in time and uniform in space.

∂s′

∂t
= ∇s′ = 0 (3.1)

The energy equation is satisfied and the pressure and density fluctuations are directly
related with p′ = c2ρ′ where c is the speed of sound. The pressure fluctuation p′

is not a primary unknown but it can be calculated with this relation in a post-
processing phase. The set of Linearized Euler Equation for an Homentropic process
is composed just by the mass and momentum balance equations and the energy
equation is automatically satisfied as shown in the Equation system 3.2.{

∂ρ′

∂t
+∇ · (ρ′v0 + ρ0v

′) = 0

ρ′v0 · ∇v0 + ρ0
(
∂v′

∂t
+ v′ · ∇v0 + v0 · ∇v′) = −∇(c2ρ′)

(3.2)

The set or Linearized Euler Equation in presence of an isentropic process is composed
by 5 partial differential equation: 1 for the mass balance, 1 momentum balance
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equation for each of the three axes and 1 for the energy balance. This represent the
most general set of LEE and the range of validity is wider. In this case the process
for the acoustic propagation is isentropic and it can be described by the Equation
system 3.3.

∂s′

∂t
+ v0 · ∇s′ = 0 (3.3)

The set of Isentropic Linearized Euler Equations is expressed in Equation 3.4.
∂ρ′

∂t
+∇ · (ρ′v0 + ρ0v

′) = 0

ρ′v0 · ∇v0 + ρ0
(
∂v′

∂t
+ v′ · ∇v0 + v0 · ∇v′) = −∇p′(

D0ρ′

Dt
+ v′ · ∇ρ0

)
c20 =

D0p
Dt

+ v′ · ∇p0

(3.4)

Since the general formulation of the material derivative is

DX

Dt
=

∂X

∂t
+ v · ∇X (3.5)

the energy equation can be expressed as:(
∂ρ′

∂t
+ v0 · ∇ρ′ + v′ · ∇ρ0

)
c20 =

∂p′

∂t
+ v0 · ∇p′ + v′ · ∇p0 (3.6)

3.1.2 Discretization

Spatial scheme

The specific feature of the Discontinuous Galerkin is that neighbor element don’t
share the same degrees of freedom. Non-structured tetrahedral are the main com-
ponents of the acoustic domain and the accuracy depends on the imposition of a
sufficient number of degrees of freedom. To design the mesh accurately the mode
that must be chosen is the mode with the shortest length scale. The candidate
that couples with this condition is the upstream propagating modes. The minimal
wavelength can be computed as shown in Equation 3.7 (10).

λmin =

√
v0i v

0
i − c

f
(3.7)

Since the degree of freedoms are not shared by two consecutive elements, the solution
may differ from one side of an element face to another. In this way the continuity
of the solution inside the mesh is an indicator of the convergence of this solution on
it.
The general form of the equations above described is shown in Equation 3.8.

∂q

∂t
+

∂

∂xj

(Fj · q) = 0 (3.8)

In Equation 3.8 the term q in the vector containing all the unknown, Fj in a vector
containing all the local mean flow information. Now the spatial discretization of the
problem can be expressed as (10):∫

Ω

Nα
∂q

∂t
dV =

∫
Ω

∂Nα

∂xj

Fj · qdV −
∮
∂Ω

NαFj · qnjdS (3.9)
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In the right hand term of Equation 3.9 is possible to see a surface integral on the
element border and this must be computed following the boundary conditions de-
scribed above.
The Galerkin shape functions Nα are multiplied to the mass, momentum and energy
equations and are high order Lagrange polynomial functions. These functions, with
order ranging from 1 to 16, are used to the interpolation on the mesh as shown in
Figure 3.1. As mentioned above ActranDGM adapts automatically the interpola-

Figure 3.1: 4th order element (8)

tion order on each mesh elements and this depends on the frequency, the flow inside
the element and the element size. This automatic definition of the orders allows
to catch also the smallest acoustic wavelength. The ratio between this smallest
wavelength and the maximum element length λmin/Lmax is the basis of this adap-
tation mechanism. Higher Lmax leads to smaller values of this ratio and so Actran
will chose higher orders to represent accurately the small length scales. In smaller
elements with low Lmax values (large λmin/Lmax ratio) the spatial fluctuations are
large if compared to the element size and so a lower order can be used. This is well
represented in Figure 3.2. The best order for efficiency reasons is 6 corresponding
to a λmin/Lmax range equals to [0.667,1]. This means that the preferable maximum
length of the element shall be between λmin and 1.5λmin. To select appropriately the

Figure 3.2: Element order as λmin/Lmax function (9)

order the regularity of the element shape is important. The efficiency is higher when
there are equilateral elements with a proper element order in all directions. If there
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are highly-distorted element in some direction there may be an over-estimation of
the order. An example of good and bad shape of an element is shown in Figure 3.3

Figure 3.3: Example of good and bad element shape (9)

There are two indicators for the numerical quality of the simulation: dissipation
and dispersion error. The dissipation error in an indication based on the acoustic
propagation path and indicates the decrease in amplitude along it. The dispersion
error is an indication of the change in the propagation speed and takes as reference
the expected propagation speed. In these two errors an important role is played by
the element order and, as presented above, this depends on the ratio between the
minimal wavelength and the maximum element length. These errors have a value
for each of the possible orders and so for each element can be computed the order
that leads to a lower errors.

Time scheme

Once the spatial discretization was investigated a small introduction of time dis-
cretization is presented. ActranDGM uses by default a 4th order Runge-Kutta
scheme (RK4) (10). The main properties of this numerical scheme is the low com-
putational cost for high-order derivative to obtain both accuracy and speed. This
technique is of common use for the solution of turbulent gas flow. The set of Navier-
Stokes equation can be reduced, thanks to quadrature techniques, to a set of ordinary
differential equation (ODE) solved by the RK4(? ). In the differential quadrature
method, the function and its derivative are calculated as an approximation given by
the sum of the function in certain grid point weighted with some weighting coeffi-
cients A and B (first and second order coefficients). These coefficients depend on
the particular quadrature scheme used such us Polynomial Differential Quadrature
Method (PDQM), Discrete Singular Convolution Differential Quadrature Method
(DSCDQM) etc (? ). Once a set of ordinary differential equation is obtained the
RK4 scheme can be used. The Runge-Kutta method is expressed numerically in
Equation 3.10.

f(x, y, z, t0 +∆t) = f(x, y, z, t0) +
1

6
[E1 + 2E2 + 2E3 + E4] (3.10)

where

E1 = ∆t
df

dt
(u, v, w, ρ, p, t0) (3.11)
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E2 = ∆t
df

dt

(
u+

E1

2
, v +

E1

2
, w +

E1

2
, ρ+

E1

2
, p+

E1

2
, t0 +

∆t

2

)
(3.12)

E3 = ∆t
df

dt

(
u+

E2

2
, v +

E2

2
, w +

E2

2
, ρ+

E2

2
, p+

E2

2
, t0 +

∆t

2

)
(3.13)

E4 = ∆t
df

dt
(u+ E3, v + E3, w + E3, p+ E3, ρ+ E3, t0 +∆t) (3.14)

Some consideration must be done on the time step ∆t. This is automatically com-
puted by Actran using the Courant-Friedrichs-Lewy (CFL) condition. This is ex-
pressed in 3.15.

∆t ≤ C(p)
r

c
(3.15)

In the above equation the CFL number C(p) ≃ 1
2p+1

is used in Actran and is ex-
pressed in function of the element order p. r represent the radius of the circle
inscribed in the element and c is the speed of sound. The fourth order Runge-Kutta
is an explicit scheme and its stability is ensured by the CFL condition. Since Ac-
tran chose the smallest time step, the good or bad shape of an element impact the
performances. In Figure 3.3 a good shape in all the elements ensure a large time
step because the radius of an inner circle is bigger. If one single element has a bad
shape (smaller radius and consequently small ∆t) the performances of the whole
model are affected.
To well understand the link between the element size and the time step, it is neces-
sary to refer to Figure 3.4.

Figure 3.4: CFL condition (9)

These analyses refer to propagating acoustic waves so the condition is that during
a time step the distance traveled by the acoustic wave must not exceed the element
length.

3.1.3 Boundary condition

In Equation 3.9 in Section 3.1.2 the boundary integral must be computed considering
the boundary conditions. This integral is computed taking in consideration the two
solution in the nearby elements of the border. There are different type of boundary
condition as presented in the following sections.
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Non-reflecting boundary condition

This condition establishes that for the far field propagation the outgoing modes are
free to leave the domain and the incoming modes are set to zero. This condition acts
very well in presence of normal incidence waves but it can produce some reflection
for the traverse propagating waves. Since the non-reflecting boundary condition
generates some numerical reflection and this boundary is positioned as close as
possible to the near field to reduce the computational cost, usually this is connected
with a buffer zone in which there is a damp of the acoustic waves incoming. This
allows a reduction in the reflecting mechanism enhancing the properties of a non
reflecting boundary condition. Another way to ensure the proper functioning of the
condition is to respect some rule in the choosing of the geometry. Sharp angles
must be avoided and the shape of the boundary must be as close as possible to the
shape of the propagating waves in order to reach the border as normal as possible
avoiding the reflections mentioned above. This will be verified in the next section
when a rectangular boundary was chosen for the first analyses. A scheme of the
combination between all these characteristics is shown in Figure 3.5.

Figure 3.5: Non reflecting boundary condition and buffer zone (10)

Buffer Zones

This zone is always linked with the non reflecting boundary condition to avoid
numerical reflections due to waves that are not perfectly normal to the boundary.
This zone damps the waves to reduce the reflection with a progressive dumping while
moving through this zone. The expression for the damping is expressed in Equation
3.16.

σ(x) = σmax|1 +
d(x)− L

L
|β (3.16)

The damping increase progressively until reach its maximum value σmax near the
non-reflecting boundary condition. In the above equation, L is the thickness of the
zone, d(x) is the distance from the bottom of the damping zone and β is a parameter
that controls the damping increase. A representation of the damping ratio is shown
in Figure 3.6. Referring to the vector q in equation 3.9 the damping ratio can be
applied to every time step q̂′n+1 = (1− σ(x))qn+1.
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Figure 3.6: Damping ratio in the near field (10)

Wall condition

The hard wall condition imposes that the velocity normal to the wall is set to zero.
In this way the acoustic waves will be completely reflected. This velocity is just one
of the 3 (if 3D) component of the velocity that can be decomposed as:

v′i = vnni + vtti + vbbi (3.17)

where ni, ti and bi are the three vectors of an orthogonal plane.

Admittance/Impedance

These boundary condition represent the acoustic treatment used in the study. This
is the main boundary condition that will be studied in the present work. Using an
admittance boundary condition means express the velocity as:

vn = v′ini = A(ω)p′ (3.18)

In ActranDGM are available a series of boundary condition that can express the
properties of an acoustic liner. The most used in the present work it will be the
Impedance that is the inverse of the Admittance

I(ω) =
1

A(ω)
(3.19)

The computation of this boundary condition could be done following one of the
impedance model described in Section 2.

3.1.4 Acoustic sources

There are different simple models that could describe the generation of the acoustic
field. The main acoustic source can be collected in spherical sources (point source),
cylindrical source (line source) or plane wave source.

Harmonic spherical source (Point source)

The incident sound field is represented by the pressure pi that could be defined as
in Equation 3.20.

pi = A
e−ikr

r
(3.20)
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This acoustic source can be determined just by its amplitude A and its position in
the point P. In the above equation is possible to notice the wavenumber k that could
be easily computed knowing the frequency f and the speed of sound c

k =
2πf

c
(3.21)

r represents the distance from the acoustic source. This kind of source could be
computed also in the case it is immersed in a uniform mean flow.

Harmonic quadrupole source

This souce is related to the momentum equation and a source of this type can be
seen as a stress source. In free field the solution can be written as expressed in
Equation 3.22.

pi =
e−ikr

4πr2

[(
ik +

1

r

)2
r⃗ ⊗ r⃗

r
+

r⃗ ⊗ r⃗

r3
−
(
ik +

1

r

)(
I+

r⃗ ⊗ r⃗

r2

)]
: ¯̄τ (3.22)

In the above equation it is possible to see the following quantities:

• r: distance between the point of the computed incident pressure and the source

• r⃗: distance vector

• k: wave number

• I: second order identity tensor

• ¯̄τ : amplitude tensor

• ⊗: dyadic product between two vectors

• : is the double tensor contraction

The be sure to obtain a quadrupole source it is possible to define the tensor ¯̄τ as
in Equation 3.23. This allows to compute the canonical quadrupole that can be
depicted as in Figure 3.7.

¯̄τ = a
(
A.C.AT

)
(3.23)

In the above equation is possible to see the transformation matrix A and canonical
tensor C described below and a scalar amplitude a.

A =

 dx1 dx2 dx3
dy1 dy2 dy3
dz1 dz2 dz3


C =

 1 0 0
0 −1 0
0 0 0

 (3.24)
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Figure 3.7: Canonical quadrupole with direction d⃗1, d⃗2 and d⃗3 = d⃗1 × d⃗2 (10)

Harmonic cylindrical source (Line source)

The incident sound field in the case of a line source can be expressed as

pi = −iAH2
0 (kr) (3.25)

Is possible to recognize what was preciously described in Equation 3.20. In this
case there is an orientation of the source and this is along the vector v⃗. Differently
from the point source, r represents the distance between the orientation line and
the point in which it is being computed the field. This is well represented in Figure
3.8. H0 could be computed as follow

H2
0 (kr) = J0(kr)− iY0(kr) (3.26)

and represent the zero-th order Hankel function of second type (10). This function
depends on the zero-th order Bessel function of first kind J0 and the zero-th order
Belles function of second kind.

Figure 3.8: Cylindrical source scheme(10)

Harmonic plane wave source

As previously seen for the line source, also in this case there is a propagation along
a specific vector v⃗. The incident sound field can be calculated as

pi = Ae−ikr (3.27)
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In this case, in the evaluation of the distance r, will be considered the plane per-
pendicular to the propagation direction along v⃗. This quantity is considered as the
distance between the point in which the acoustic field is evaluated and this perpen-
dicular plane. This acoustic field is generated in the plane containing the source
point P so the field can be defined just in the half side containing the vector v⃗ as
shown in Figure 3.9

Figure 3.9: Plane wave scheme(10)

3.1.5 Aeroacoustic sources

Ligthill (29) was the first to present the concept of the noise generated arodinami-
cally by an airflow . This, depending on its properties, can be the basis for different
phenomena. The fluctuations contained in an airflow can produce an eddy pattern,
responsible for the sound generated by a musical instrument, at low Reynolds num-
ber or they can produce a turbulent motion at high Reynolds number, responsible
for the jet airplanes noise. An important properties of the sound generated aerody-
namically, discovered with experiments, is that the frequency of the airflow is the
same of the generated sound.
To have a better understanding of this phenomenon, Lighthill (29) used the follow-
ing approach. This starts considering a large volume of fluid in with just a small
part is occupied by a fluctuating fluid flow and the whole remaining part is at rest.
Then the equations of the acoustic medium at rest and the equation describing the
density fluctuations in the fluid are compared thanks to their difference. This dif-
ference could be interpreted as the effect of the fluctuating external force field. If
the equation are written in the form used by Reynolds, the change of momentum is
obtained thanks the combined action of the flow across the boundary of momentum-
bearing fluid, represented symbolically with ρvivj called ”momentum flux tensor”
or ”fluctuating Reynolds stresses” and the stresses that are acting on the boundary.
These fluctuating Reynolds stresses must be added to the real stresses expressed as
pij. In a uniform acoustic medium at rest the only possible stress form that can be
experienced is under the form of an hydrostatic pressure field.
The sound generated aerodynamically can be seen as the sound produced by a dis-
tribution of quadrupoles. These sources could be expressed thanks to the Lighthill’s

tensor
∂2Tij

∂xi∂xj
where

Tij = ρvivj + δij(p− c2ρ)− τij (3.28)
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The d’Alembert’s operator on the fluctuating density governs the wave propagation
and, in the Reynold’s form, one of the equation of motion of the fluid can be written
as

∂2ρ

∂t2
− a20∇2ρ =

∂2Tij

∂xixj

(3.29)

Using this approach is equivalent to extract the noise source when the flow is com-
puted and so the aerodynamic information are given as a input data. Once the
aeroacoustic sources terms are computed from CFD data these are used in the right
hand side of the Linearized Euler Equation seen above. Then is possible to use the
above described Discontinuous Galerkin Method for the acoustic propagation in the
field. It must be noticed that in the present work there will not be considered a CFD
code but a brief introduction of these sources must be helpful to better understand
the software.

Linearized Euler Equation with source terms

In Section 3.1.1 a general description of the Linearized Euler Equation were made.
The non conservative form of the Linearized Euler Equation (LEE) with the aeroa-
coustic sources are presented in Equation 3.30.

∂ρ′

∂t
+∇ · (ρ′v0 + ρ0v

′) = Rρ

ρ′v0 · ∇v0 + ρ0
(
∂v′

∂t
+ v′ · ∇v0 + v0 · ∇v′)+∇p = Rm(

D0ρ
Dt

+ v′ · ∇ρ0
)
c20 =

D0p′

Dt
+ v′ · ∇p0 = Rs

(3.30)

In the above Equation 3.30 the terms with the superscript ′ indicate the fluctuating
component of the corresponding quantity while the terms marked with the subscript
0 indicate the quantity mean value. The three sources are respectively:

• Rρ: mass source

• Rm: momentum source

• Rs is the energy source

To solve the set of equation 3.30 it is necessary to sole first the zero-th order form
of the Euler Equations that give as output the mean values of the unknown: ρ0,
v0 and p0. Then, using the above questions, is possible to compute the remaining
unknown: ρ′, v′ and p′.

3.1.6 Far Field solution

Once the propagation of the acoustic perturbation is computed in the near field, to
have an estimation of the far field acoustic fluctuation an ActranDGM utility is used.
This utility solves the Ffowcs-Williams and Hawkings equation in the frequency
domain. ActranDGM uses automatically a surface positioned between the buffer
layer and the physical component (10). The solution for the pressure p′ obtained
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solving the FWH equations is presented in Equation 3.31:

4πp′(x) =

∫
St

(
e

−iω
c0

rβ

rβ(1 +Mr)2
(iω − c0(Mr + ||M||2))

rβ(1 +Mr)

(
Un +

Lr

c0

)
+

Lr + Lm

rβ

)
dSt(x̂)

(3.31)
In the above equation the following parameter were introduced:

• x: observer position

• x̂: source position

• R = x− x̂, n = R
||R|| : radiation direction vector, norm

• M0 =
v0

c0
: vector of source local mach number

• β2 = 1−M2

• rβ =
(

R·v0

c0
+
√

(R·v0)2

c20
+ β2||R||

)
/β2

• r = R− rβM0

• v0n = v0 · n

• v̂′n = v̂′ · n

• Un = ρ0v̂
′
n + ρ̂′v0n

• L = p̂′n+ ρ0v0nv
′

• Lm = L ·M0

• Lr =
L·r
rβ

• Mr =
r·M0

rβ

In the above list it is possible to notice the variable p̂′(x̂), v̂′(x̂) and ρ̂′(x̂) are the
corresponding quantities computed on the moving surface St at the source position
x̂.

3.1.7 Wave propagation in a duct

The well understanding of the propagation of an acoustic wave in a duct can be useful
to study the noise generated by ducted fan engines. Inside an engine the noise can
be generated by different sources like rotor wake-stator interaction etc. (30). The
following formulation depends on the flow speed. In the present work the analyses
will be done not considering the flow but this is the most general formulation that
better suit with real engines working operation.
In this study will be considered a circular or annular cross section in which there is
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Figure 3.10: Representation of the combination between the radial and circumfer-
ential modes (11)

a flow with a contained Mach number (M < 1). The equation for the small pressure
perturbation propagation is expressed in Equation 3.32.(

1

c0

∂

∂t
+M

∂

∂x

)2

p′ −∇2p′ = 0 (3.32)

The boundary condition on the pressure on the wall is ∂p′/∂r = 0. The above
equation is expressed in axial coordinates but it can rewritten in cylindrical ones
(r, θ, x). The complex solution for the pressure is in the form

p′ = P(r, θ, x)eiωt (3.33)

In the above solution P represents the acoustic pressure amplitude and the expres-
sion for the acoustic propagation can be written based on this amplitude as

(1−M2)
∂2P

∂x2
+∇2

2P− 2ikM
∂P

∂x
+ k2P = 0 (3.34)

In Equation 3.34 is possible to notice the two-dimensional Laplacian in polar coor-
dinates ∇2

2 and k = ω/c0. The expression for the pressure fluctuation can be written
as:

p′ = AmnJm[kr(m,n)r]ei[ωt−mθ−ka(m,n)x] (3.35)

In the above equation ka is the axial wave number and kr is the radial wave number
and depend on the circumferential order m and the radial order n. A representation
of the circumferential and the radial modes is shown in Figure 3.10. The radial wave
number can be extracted solving the equation

J ′
m[kr(m,n)R] = 0 (3.36)

Where R is the radius of the circular duct. Jm(·) is the first kind Bessel function of
m-th order. Once the radial wave number is computed, is possible to compute the
axial wave number as

ka(m,n) =
k

β2

−M ±

√
1−

[
β
kr(m,n)

k

]2 =
k

β2

[
−M ±

√
1− 1

β2
mn

]
(3.37)
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In the above equation m=0,1,2,... and β2 = 1−M2 as defined above. Is also possible
to define the cut-off ratio

βmn =
k

βkr(m,n)
(3.38)

This cut-off ratio is an important parameter that gives an indication of the behavior
of the wave. The mode, defined as the couple (m,n) propagates in the case of
βmn > 1 but it will decay if the cut-off radio βmn < 1 (30).

3.2 Actran Direct Frequency Response (DFR)

Actran DFR is used to solve easier acoustic configuration respect to ActranDGM.
In this case the equation solved are the Möhring equation when no flow is present
and the Helmholtz equation in presence of a flow. The equation can be extracted re-
arranging the Navier Stokes equation. A scalar equation in time domain is obtained
as expressed in Equation 3.39.

∂

∂t

(
ρo
ρ2T c

2
0

D0b

Dt

)
+∇ ·

(
ρ0v0
ρ2T c

2
0

D0b

Dt
− ρ0

ρ2T
∇b

)
= R (3.39)

In the above equation b is the scaled enthalpy and it can be computed starting from
the stagnation enthalpy B as

Db

Dt
= ρT

DB

Dt
(3.40)

and where D/Dt is the material derivative.
In Equation 3.39 is possible to define the aeroacoustic source R as

R = −∇
(

ρ

ρT
(v × (∇× v))

)
(3.41)

Some assumption are made on the different equations. In the energy equation there
are neglected the heat and power dissipation mechanism deriving from viscous forces.
The acoustic velocity can be seen as v = ρ0

ρT
∇b and in this way there not will be

considered vortical acoustic wave. In in the case of pure acoustic propagation the
aeroacoustic source propagation can be seen equals to zero (R = 0).
To define the equations mentioned above in the frequency domain, a Fourier trans-
form must be applied on the Equation 3.39. The most general equation is the one
that takes in consideration the flow and so the Möhring equation can be written as

−ω2ρ0
ρ2T c

2
0

b+
ω2ρ0
ρ2T c

2
0

v0 · ∇b+∇ ·
(
iωρ0v0
ρ2T c

2
0

b+
iωρ0v0
ρ2T c

2
0

v0 · ∇b− ρ0
ρ2T

∇b

)
= 0 (3.42)

This equation is used in general cases but this could be reduced for particular cases.
When the flow is at rest it is possible to obtain the above mentioned Helmholtz
equation. In this case since the velocity of the flow is zero v0 = 0 the total density
is reduced just to the static component ρT = ρ0. The Helmholtz equation can be
defined as

− ω2

ρ0c20
b−∇ ·

(
1

ρ0
∇b

)
= − ω2

ρ0c20
p−∇ ·

(
1

ρ0
∇p

)
= 0 (3.43)

33



The main advantages of this method is that it performs a stable resolution but it
requires high RAM consumption when the model is complex (31).
The Helmholtz equation can be also computed from the d’Alembert wave equation.
In the time domain the d’Alembert equation can be written as

∆p− 1

c2
∂2p

∂t2
= 0 (3.44)

This equation is expressed in the time domain but applying the Fourier transform

P (ω) =

∫ +∞

−∞
p(t)e−ωtdt (3.45)

is possible to obtain the following Helmholtz equation

∆P +
ω2

c2
P = 0 (3.46)
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Chapter 4

Analysis

The main goal of this work is the optimization of the main parameters of a liner.
A python script was written to automatize the optimization process. Optimize a
variable means find the right value that minimize a certain noise parameter. Two
main parameter were investigated: Overall Sound Pressure Level (OSPL) and Av-
erage Sound Pressure Level (AverageSPL). These parameters are function of the
pressure perceived on some microphones positioned in the far-field. This pressure
is computed after the equations in the near-field are solved and so an acoustic field
is computed. As explained above, there are different method to solve this acoustic
field and, at first, both were used to try to find out what was the best and fastest
way to obtain this pressure field. The pressure, and consequently the Overall Sound
Pressure Level and Average Sound Pressure Level, change depending on the acoustic
treatment used. The acoustic treatment was simulated in Actran as an impedance
boundary condition. As seen above, there are different models that could be used
to compute this impedance starting from the liner parameters and the Motsinger
and Kraft model was used 2.1. Two different kind of liners were investigated: Single
Degree of Freedom (SDoF) liner and Double Degree of Freedom (DDoF) liner and
so two different expression for the impedance were used.
The work can be divided in two macro-areas. The first concern the reduction of the
noise generated by just one frequency and the second is about the reduction of more
than one frequency. The main objective of the second section is to find out a liner,
or a series of liners, that can reduce the noise for a series of frequencies.

4.1 Engine geometry

The analyses were performed on the engine from the DLR project ELTON SST.
This project is about the Estimation of Landing and Take-Off Noise for supersonic
transport (12). To ensure a low noise design for the engine, new and innovative so-
lution for the acoustic treatment must be found. A picture of the rendered geometry
of the supersonic aircraft on which the engin will be installed is shown in Figure
4.1. This aircraft is designed to transport up to 10 passenger and to flight a Mach
1.4. High-pressure compressors and turbines were recycled from an operating engine
called CFM56-7B but new low-pressure compressors and turbines were designed.
Since this study concerns the noise reduction in the take-off and landing phases,
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Figure 4.1: ELTON SST aircraft (12)

Figure 4.2: Representation of the engine subsonic configuration (12)

the subsonic configuration of the engine must be taken and this is shown in Figure
4.2. Starting from this configuration a proper mesh on Actran must be designed to
compute the acoustic field.

4.2 Actran analysis

Figure 4.3: Infinite element (purple), acoustic element (yellow) and duct mode in-
jection (blu)
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Figure 4.4: Direct frequency response components

An example of a general Actran analysis is presented in this section. The first
step is to define the mesh and the domain. The Direct Frequency Response is the
analysis used in most of the present work. In the definition of the DFR the frequency
of the analysis and the axi-symmetric order are specified. Three main components
are used for the DFR: the infinite element, the acoustic element, and the duct-mode
injection. These are all represented in Figure 4.3 and 4.4. The medium in which the
acoustic wave propagates is defined. In this case this medium is air so its principal
characteristic are added like the speed of sound and the density. The component
called ”modal duct 6” is one of the main section of the present work in which are de-
fined the acoustic frequency, the radial mode and the amplitude in Pa. The python
script will act on this section adding the right parameters for the selected frequency.
The mesh can be modified defining the portion where the impedance boundary
condition will be added. The red line in Figure 4.9 represents the mesh portion
dedicated to this boundary condition (or conditions if several liners are used). In
the present work the impedance boundary condition was used, allocating to the de-
termined portion of space a specific value of impedance computed with the models
described below. This is also an important part in the python optimization script.
At each iteration the value of impedance is computed and changed in the Actran
analysis. A study of the best configuration of liner (position, number, type etc.) is
done and the results are discussed below.
It must be defined the post-processing output. These can be grouped in two main
output files, the Function Frequency Response (FTF) text file and an .nff file con-
taining the field maps. The first file is an useful tool to represent the noise directivity.
The second will be mainly used to represent the pressure field map. Both are very
useful tools to better understand how well a liner is working.

4.3 Mesh and Noise sources

Actran is the basis of the present work. Thanks to this software is possible to
compute the acoustic field starting from a specific acoustic mode and frequency.
The nacelle was recreated and a mesh around it must be constructed following the
advice given in the Section 3.1.2. A zoom of the nacelle structure is presented in
Figure 4.5.

Once the nacelle and the mesh are created, two type of Actran analyses were
tried: Direct Frequency Response (DFR) and Discontinuous Galerkin Method (DGM)
time analysis. This was done to try to find out what was the most accurate but at
the same time the fasted method. Some oscillatory results, shown in the following,
lead to the conclusion of also doing some analysis on the domain shape. In the pre-
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Figure 4.5: Nacelle construction

Figure 4.6: Rectangular domain

vious analyses were used a rectangular domain as shown in Figure 4.6 and the idea
is to try a different shape. Following the assumption discussed above to create a
domain as close as possible to the shape of the propagating wave, an elliptic domain
was tried as shown in Figure 4.7.
The pressure is measured on a series of microphones positioned on an arch with

44.5 m of radius and spanning from 0◦ to 120◦ respect to the y-axis. During the
analyses the span of the microphones is reduced to [40◦, 110◦] to avoid the portion
of domain that return instable values. This is done also to simulate more accurately
the portion of space in which a ground observer can be during a take-off or landing
phase. The distribution of microphones is shown in Figure 4.8. As mentioned above,
this work can be divided in two macro-areas with two main objectives. The first is
the reduction of the noise generated by a source with the following characteristic.
The most onerous work is done on the finding the right configuration that work

Frequency [Hz] Amplitude [Pa] m n
3200 30.45185 4 6

Table 4.1: One frequency scenario
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Figure 4.7: Elliptical domain

Figure 4.8: Microphones distribution from 40◦ to 110◦ respect to the y-axis
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well in a series of different frequencies. The following frequencies, with their relative
modes and amplitudes are summarized in Table 4.2.

Frequency [Hz] Amplitude [Pa] m n
3200 30.45 4 6
4800 28.46 11 8
6400 12.43 26 1
8000 4.28 41 7

Table 4.2: Set of frequency to reduce

4.4 Liners and Physical constrains

Two main type of liners are investigated: SDoF and DDoF liners. The main param-
eter investigated are different for the two different type of liners.

SDoF liner

This liner is composed by an honeycomb core enclosed between two plates. The one
at the bottom is a rigid back plate and the one that is in contact with the acoustic
wave is a porous face sheet. The parameters that can be optimized are four:

• cell depth, h

• hole diameter, d

• porosity, σ

• face sheet thickness, τ

DDoF liner

A DDoF liner can be seen as a union of two liner SDoF. It is composed by two
honeycomb cells between tree plates. Even in this case at the bottom is possible to
find a rigid back plate and at the interface with the fluid a porous face sheet. In this
case between the two honeycomb there is another porous plate called ”septum”. In
this way the parameter that can be optimized are:

• total cell dept, h

• face sheet hole diameter, d1

• septum hole diameter, d2

• single cell dept parameter, b

• face sheet porosity, σ1

• septum porosity, σ2
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• face sheet thickness, τ1

• septum thickness, τ2

The approach used in this work for the optimization of the two cell depth of a DDoF
liner is based on the introduction of a ”weight” b (b ∈ [0, 1]) on the total height h.
The two cell depth can be computed as

h1 = bh
h2 = (1− b)h

(4.1)

In this way the total depth is h and is possible to use all the available space.

As mentioned above, the impedance model used to define the impedance bound-
ary condition is the Motsinger and Kraft model. The two equation for the SdoF
liner and DDoF liner are presented in Equation 4.2 and Equation 4.4 respectively.

Zn = Rn + i (Xn − cot(kh)) (4.2)

where {
Rn = aµτ

2ρcσCdd2

Xn = k(τ+ϵd)
σ

(4.3)

For the DDoF:

Zn = Zn1 +

Zn2 cos(kh1) sin(kh2)
sin(kh)

− i cot(kh)

1 + iZn2 sin(kh1) sin(kh2)
sin(kh)

(4.4)

where {
Zn1 = Rn1 + iXn1

Zn2 = Rn2 + iXn2
(4.5)

and where 
Rn1 =

aµτ1
2ρcσ1Cdd

2
1

Xn1 =
k(τ1+ϵ1d1)

σ1

Rn2 =
aµτ2

2ρcσ2Cdd
2
2

Xn2 =
k(τ2+ϵ2d2)

σ2

(4.6)

More information about these equations and their parameters can be found on Sec-
tion 2.1.

Physical constrains are imposed by the nacelle geometry. The position in which
the boundary conditions, which represent an acoustic treatment, are imposed is
shown in red in Figure 4.9. If one single liner, occupying all the available space,
is chosen, it can extend just for a maximum of 3cm due to the space that narrows
towards the tip. To avoid this problem, a configuration with multiple liners must
be chosen. This is the approach mostly used in this study. The constrains for the
liners on the configuration are the presented in Table 4.3.
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Figure 4.9: Liners position on the engine structure

Cavity depth, h 13− 76 mm
Orifice diameter, d 1.0− 2.4 mm
Porosity, σ 5− 13 %
Plate thickness, τ 0.5− 1.0 mm

Table 4.3: Physical constrains

4.5 Noise functions to minimize

Several parameters can describe the perceived noise. The two chosen for the present
work are the Overall Sound Pressure Level (OSPL) and the Average Sound Pressure
Level (AverageSPL). The OSPL is an indication of the total noise over the micro-
phones arch so, if compared to the aircraft take-off or landing phase, is the total
noise that reach the specific portion of the ground. The AverageSPL is the arith-
metic mean value of the Sound Pressure Level (SPL) over the set of microphones.
This two parameter are functions of the pressure captured by these microphones
and are described as follow

OSPL = 20 log10

(
ptot
pref

)
(4.7)

AverageSPL =

∑
Nmic

SPL

Nmic

(4.8)

where

SPL = 20 log10

(
p

pref

)
(4.9)

In the above equations the reference pressure represents the minimum pressure that
can be perceived by an human ear. The reference pressure is pref = 20 µPa and
corresponds to 0 dB (32). The total pressure ptot represents the sum of all the
pressure that are measured on the microphones and can be expressed as

ptot =

√∑
Nmic

p2i (4.10)

where i = 1, ..., Nmic. This is valid when only one frequency is considered. As
mentioned above, the study concerning more than one frequency is about to found
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one liner, or a set of liners, that can reduce the noise generated by each frequency.
To do that a set of pressure value, each corresponding to a microphone, is collected
for each frequency separately. Then the pressure on a single microphone is computed
following the relation

pi =

√∑
Nfreq

p2k (4.11)

where k = 1, ..., Nfreq. Now the i-th pressure can be used to compute the total
pressure and then the OSPL as in Equation 4.7.

4.6 Python script

Useful for an optimization problem is the writing of a python code. One of the
informatics languages used to write Actran was python so a strong connection ex-
ists between them. In this code an optimization algorithm, described above, that
requires the definition of an initial point and upper and lower bounds for the opti-
mization. Once these parameters are set, the most important part is the definition
of the noise function to minimize that can be obtained using a python function. Is
inside this function that the Actran code is launched and the acoustic analysis is
performed. This function receives as input an array containing the parameters to
optimize, for example the cell depth d and the hole diameter d. Using the above
described impedance model, the impedance is computed and is directly changed in
the Actran analysis. This analysis is launched directly by the python script and then
is possible to extract from the results file the set of pressure on the microphones
which can then be used to compute the OSPL and AverageSPL with the equations
described above. Depending on what is the objective noise function of the analysis,
this python function will return its value. This process will be repeated until the
stopping criteria imposed by the user is satisfied.

4.6.1 Optimization algorithms

Depending on what kind of minimum value the user is looking for, different opti-
mization algorithm can be used. Local and global are the two minimum that can
be found inside a function and depending on what is the objective of our search a
local or global optimization algorithm must be used. The optimization algorithm
that used in the present work are part of the NLopt library. This is an open-source
library that is used for nonlinear optimization. The main objective of the library is
to solve the problem

min
x∈Rn

f(x) (4.12)

In the above equation is possible to see the objective function f(x) and the vector
containing the optimization parameters x (33). As mentioned above in the python
script section 4.6, some constrains on these parameter must be defined

lbi ≤ xi ≤ ubi (4.13)

where lbi and ubi are the lower and upper bounds respectively.
A global optimization means finding the global minimum over the entire feasible
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Figure 4.10: Lipschitz lower bound computation (13)

region defined by the bounds. It is very hard to find this value particularly when
the number of optimizing parameter n became to large. Much simpler is the problem
of finding a local minimum. These local algorithms are strongly dependent on the
starting point especially in those functions that present many local minima. The
condition that must be satisfied is that the function in the minimum point must be
lower than the function computed in the nearby feasible point.
Both global and local optimizer are used in this study and in particular the local
optimizer BOBYQA and the global optimizer DIRECT. A look to the COBYLA
local optimizer will be given also.

DIviding RECTangles

Commonly called DIRECT, the DIving RECTangles algorithm is a simplification of
Shubert’s algorithm. This is based on two equations that comes from the Lipschitz
algorithm (13). Lipschitz assumes that exists a positive constant K that satisfies
the relation

|f(x)− f(x′)| ≤ K|x− x′| (4.14)

where f(x) is the objective function to minimize and it is defined in the interval
[l, u]. The two variable x and x′ are inside this interval. Equation 4.14 can be used
to define the lower limit of the function in any interval [a, b] substituting the lower
bound a and the upper bound b of this interval to x′. In this way two inequalities
are obtained {

f(x) ≥ f(a)−K(x− a)
f(x) ≥ f(b) +K(x− b)

(4.15)

This system establishes that the function f(x) must be above the two lines described
by the expressions in the right hand term. This is well represented in Figure 4.10.
The intersection point of the two lines define the lower bound of the function f and
represent the lowest value that the function can assume. This point is described by
the two equations

X(a, b, f,K) = a+b
2

+ f(a)−f(b)
2K

B(a, b, f,K) = f(a)+f(b)
2

−K(b− a)
(4.16)

which are the main characters of the Shubert’s algorithm. X(a, b, f,K) represents
the point where the function reaches its lower bound and it is inside the inter-
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Figure 4.11: Shubert’s algorithm (13)

val [a, b]. B(a, b, f,K) is the lower bound of the function and is the value of the
function in the point X(a, b, f,K). Figure 4.11 may help to well understand the
Shubert’s algorithm. This starts evaluating the two functions shown in Equation
4.16 at the two extremes of the above mentioned interval [l, u]. In this way the point
x1 = X(l, u, f,K) can be computed and two new intervals are created [l, x1] and
[x1, u]. Then evaluating the two equations in the extremes of the two intervals pro-
duce two new values of B and two new values of X. This is shown in the (b) graphic
of the Figure 4.11. Then the lowest value of B is chosen (in the interval [l, x1]) and
this became the new separating point x2 = X(l, x1, f,K). Now, as shown in the (c)
graphic of Figure 4.11, three space are created: [l, x2], [x2, x1] and [x1, u]. Even in
this case the lowest value of B is chosen and this can be found in the interval [x1, u]
and becomes the new separating point. This process known as Shubert’s algorithm
will continue until a certain stopping criteria is reached.

DIRECT algorithm is a simplification of Shubert’s algorithm. In this case the
function is not evaluated in the two endpoints but in the center of the interval.
This simplification comes with some changes in the original algorithm. In this case
the lower bound is computed accordingly to Equation 4.18. If [a, b] is the interval
in which the function is defined and c = (a + b)/2 is the center, substituting c in
Equation 4.14 is possible to obtain the following set of inequalities

f(x) ≥ f(c) +K(x− c), for x ≤ c
f(x) ≥ f(c)−K(x− c), for x ≥ c

(4.17)

As mentioned previously, the right hand term of the inequalities are the two line
represented in Figure 4.12.

lower bounds = f(c)−K
a− b

2
(4.18)
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Another change made for the DIRECT algorithm is to partition the space in several

Figure 4.12: Lower bound in DIRECT algorithm (13)

intervals and evaluate their center point. The interval is divided into three portions
as illustrated in Figure 4.13. The DIRECT algorithm can be divided in some steps

1. If [a1, b1] = [l, u] and c1 = (a1 + b1)/2 the function evaluated in the center
point id f(c1) that becomes the fmin

2. Identify S as a set of intervals

3. select an interval j ∈ S

4. Subdividing the selected interval in three part of length δ = (bj − aj)/3 it
is possible to define cm+1 = cj − δ and cm+2 = cj + δ and its corresponding
function f(cm+1) and f(cm+2). Then is possible to update the value of the
fmin

5. The left and right sub-intervals are
[am+1, bm+1] = [aj, aj + δ] (cm+2)
[am+2, bm+2] = [aj + 2δ, bj] (cm+2)
It is possible to modify the j interval that becomes the center sub-interval
[aj, bj] = [aj + δ, aj + 2δ] and m = m+ 2.

6. Now is possible to remove from S the interval considered before S = S − {j}
and if S ̸= ∅ the process begin again form the selection of another j interval
in step 3

7. The last step is to update the iteration parameter t = t + 1 and if t = T the
algorithm stops otherwise it starts again from step 2.

Figure 4.13: Interval division (13)
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The above discussion works for DIRECT applied in one-dimension problems.
In the present work the problem is defined in more than one dimensions, being
the variables to optimize more than one. If the scale is normalized the space is a n-
dimensional unit hyper-cube that will be portioned in hyper-rectangles. In DIRECT
there is a procedure to divide rectangles shown in the following steps:

1. Identification of I, set of dimensions with the maximum side length. Once the
maximum length is defined is possible to define δ as the one-third of it

2. c± δei whee i ∈ I, c is the center of the rectangle and ei is the unit vector

3. once the rectangle containing c is identified, it must be divided into thirds in
all the dimensions ∈ I. The starting dimension is that with the lowest value of
the parameter wi = min{f(c + δei), f(c− δei)} and then the dimension that
contains the highest value of it.

The above described wi is the best value of the function computed inside the i
dimensions. Similar to the one-dimensional case the algorithm can be summarized
in some steps

1. Once the space is normalized it becomes a unit hyper-cube. Similarly to
the one-dimensional case, the center point c1 is defined and its function is
calculated f(c1) and set as fmin. This step corresponds to m = 1 and t = 0

2. Identification of the set of potentially optimal rectangles S

3. Selection of one rectangle j ∈ S

4. Once decided how to divide the j rectangle, the value of fmin is updated and
m = m+∆m with ∆m =number of points sampled.

5. S = S − {j} and is S is empty the algorithm will return to step

6. The last step is the update of the iteration parameter t = t + 1 and if t = T
the algorithm stops otherwise it starts again from step 2.

A scheme of how DIRECT works is presented in Figure 4.14.

Bound Optimization BY Quadratic Approximation

Commonly called BOBYQA, this is an algorithm whose purpose is to find a local
minimum of a function. The function is F (x) where every element of x ∈ Rn

must be within the bound interval [a, b]. Let k and n be the iteration number and
the number of variables. As expressed by the name, this algorithm is based on
a quadratic approximation of the function that satisfies Q(yj) = F (yj) where yj,
with j = 1, ...,m are the interpolation points chosen automatically and m is the
interpolation number. (34) The interpolation equation, at k-th iteration, is

Qk(yj) = F (y
j
) j = 1, ...,m (4.19)
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Figure 4.14: Example of the first three iteration of the DIRECT optimizer (13)

The number of interpolation conditions m is inside the interval[
n+ 2,

1

2
(n+ 1)(n+ 2)

]
(4.20)

The typical value for this number is m = 2n+ 1 but could be changed by the user.
The point xk can be defined as

F (xk) = min{F (y
j
) : 1, ...,m} (4.21)

Fundamental in this algorithm is the so called ”Trust Region Radius” ∆k. Then
another variable can be introduced. dk is a step from xk that satisfy the condition
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||dk|| ≤ ∆k and x = xk + dk is inside the bounds but not an interpolation point y
j
.

The chose of small value for dk is postponed by BOBYQA because when considering
Qk+1(xk) = F (xk) and Qk+1(xk + dk) = F (xk + dk) the damage on the quadratic
interpolation function Qk+1 tends to increases. Then the value of F (xk + dk) is
computed and xk+dk is substituted to an interpolation point y

t
. The next iteration

point is defined as

xk+1 =

{
xk, F (xk + dk) ≥ F (xk)
xk + dk, F (xk + dk) < F (xk)

(4.22)

For the next iteration k + 1 they are also computed ∆k+1 and Qk+1 where the last
one is computed as

Qk+1(ŷj) = F (ŷ
j
) (4.23)

and the interpolation points are defines as

ŷ
j
=

{
y
j
, j ̸= t

xk + dk, j = t
(4.24)

Qk+1 is updated using minimization of the Frobenius norm of the change to the
second derivative of Q, ||∇2Qk+1 −∇2Qk||F .
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Chapter 5

Results and discussion

5.1 Discontinuous Galerkin Method (DGM) vs

Direct Frequency Response (DFR)

The first analysis was made on two different resolution methods for the acoustic field:
Time analysis (DGM) and Direct Frequency Response (DFR). The first method
takes around 1h:12m to complete its computation while the second just 15s. As is
possible to see in Figure 5.1, despite a more computation time, the curve of the SPL
computed with the Discontinuous Galerkin Method is smoother than the DFR one,
but the value are more or less the same. The data of SPL are collected by a series
of 120 microphones extending from 120◦ respect to the y axis, the jet axis. Later
in the analysis it was found that the source of this sharp shape in the DFR case
was due to the wrong definition of the domain. Initially the domain was chosen to
be rectangular as shown in Figure 4.6. This is not compatible with the ellipsoidal
coordinate system defined for an infinite element (35). The coordinate system is
defined by the center position of this ellipsoid (ac, yc, zc) and the three principal axis
(v1, v2, v3). The equation for the reference ellipsoidal surface is given by

x2

a2
+

y2

b2
+

z2

c2
= 1 (5.1)

where a, b and c are the three semi-axes length.
The domain was changed from rectangular to elliptical and the two analyses were
repeated obtaining what is shown in Figure 5.2. Since the two analyses return
similar curves but the DFR analysis takes just few seconds compared to one hour
of the DGM, the first was chosen for the following study.

5.2 Optimization algorithm

As discussed in the previous chapter, the selection of the right optimization al-
gorithm was part of this study. At first, different tests were done to know how
the different algorithms work and in particular GN DIRECT, LN BOBYA and
LN COBYLA were used. These are derivative-free algorithm so the derivative must

50



Figure 5.1: DFR and DGM analysis with rectangular domain

Figure 5.2: DFR and DGM analysis with elliptical domain
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No liner 1 SDoF 3 SDoF 1 DDoF 3 DDoF
COBYLA 70.26 dB 63.19 dB 62.79 dB 63.18 63.64 dB
BOBYQA 70.26 dB 63.16 dB 60.44 dB 63.19 dB 62.65 dB

Table 5.1: BOBYQA and COBYLA local optimizer with f = 3200 Hz

not be computed. As discussed above, a global optimizer try to find a global min-
ima over the space defined by the bounds, while a local optimizer search for a local
minima around the starting point defined by the user, respecting the bounds. A
single frequency was investigated f = 3200 Hz. This is the frequency described in
Tab. 4.1. At first a comparison between the two local optimizer was done. Four
main configuration where considered:

• 1 SDoF

• 3 SDoF

• 1 DDoF

• 3 DDoF

What was obtained can be represented in Tab. 5.1.
In Tab. 5.1 is possible to notice that the BOBYQA local optimizer returns

slightly lower values of SPL. In these analyses the studied quantity was the Av-
erageSPL. In both cases the local optimizer return values that are lower than the
case with No liner and the best configuration, as expected, is that composed by 3
SDoF liners. As discussed above, if just one liner is chosen, the maximum space
that the liner can occupy is 30mm. The use of 3 SDoF allow to use more space
because the second and third liner can occupy up to 76mm. From these starting
analysis, is already possible to see the tendency to occupy more space. The use of
a Double Degree of Freedom is not useful in this case in which just one frequency
is considered. Since the BOBYQA local optimizer in some cases gave some lower
values, was decided to use it for the remaining analyses.
A global optimizer was also tested. During the analyses, this kind of optimizer
couldn’t reach a convergence. To avoid this problem was decided to use the DI-
RECT global optimizer for a specific iteration number and then continue with the
BOBYQA local optimizer to ”refine” the search. What was obtained is shown in
Figure 5.3. It is possible to notice that the result obtained from the single use of
BOBYQA and the one obtained from the combined use of DIRECT and BOBYQA
is not so different but the second needs more iteration and so more time. Then the
single use of the BOBYQA local optimizer was chosen. In all the above analyses
the starting point for the local optimizer was chosen more or less in the middle of
the bounds. The starting points can be summarized as follow

• 1 SDoF: (h, d) = [0.02, 0.0015]

• 3 SDoF: (h1, d1, h2, d2, h3, d3) = [0.02, 0.0015, 0.04, 0.0015, 0.05, 0.002]

• 1 DDoF: (h, d1, d2, b) = [0.02, 0.0015, 0.0015, 0.5]
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Figure 5.3: DIRECT+BOBYQA with f = 3200 Hz

• 3 DDoF: (h1, d11, d12, b1, h2, d21, d22, b2, h3, d31, d32, b3) = [0.02, 0.0015, 0.0015, 0.5,
0.04, 0.0015, 0.0015, 0.5, 0.04, 0.0015, 0.0015, 0.5]

Two more quantities were defined above, the porosity and the plate thickness. The
value assumed for these two quantities are:

• σ = 5%

• τ = 1e−4 m

Later in the analyses these values will be also analyzed and changed.
It can be represented the SPL over the microphones arch. In Figure 5.4 are rep-
resented three curves: 1) SPL with no liner, 2) SPL with 3 SDoF liners and 3)
SPL with 3 DDoF liners. These two last curves were chose because they give the
best results. What is possible to see is that the curves changes a lot depending on
the acoustic treatment used. Even if the 3 SDoF liners return a lower AverageSPL
value, in some point the SPL curve in this case is higher than the one produced
using 3 DDoF liners. To see the problem to another perspective, another noise
function to analyze was chosen. This function is the Overall Sound Pressure Level,
describe above, that is an indication of the total sound perceived on the ground
(microphones).

5.3 Overall Sound Pressure Level (OPSL) and Av-

erage Sound Pressure Level (AverageSPL)

All the analyses did in the following will be done considering the BOBYQA local
optimizer. In the first section the single frequency will be discussed while in the
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Figure 5.4: SPL curves for 3 SDoF and 3 DDoF liner with f = 3200Hz

Opt. Function: AverageSPL Opt. Function: OSPL
AverageSPL OSPL AverageSPL OSPL

NO liner 70.26 94.18 70.26 94.18
1 SDoF 63.94 95.56 68.00 94.20
3 SDoF 59.69 94.05 55.08 86.21
1 DDoF 64.11 95.52 59.09 88.23
3 DDoF 62.58 95.46 64.31 91.35

Table 5.2: SPL [dB] for different optimized liner set-up with f = 3200 Hz

second one the optimization of a liner that works well in more than one frequency
will be discussed. All the useful data for the sound sources are grouped in Tab. 4.2.
Another noise function was introduced and both will be discussed in the following.
What was noticed during the analyses is that there is not a pure correspondence
between the two functions. Finding a minimum for the OSPL doesn’t mean finding
a minimum in the AverageSPL due to the fact the quantities are in dB.

5.4 Single frequency f = 3200 Hz

The same four configuration will be analyzed trying to find the best one. In this case
the portion of the mesh dedicated to the impedance boundary condition is divided
in three and when the 1 SDoF configuration is taken in analysis, the value of the
impedance in Actran is set equal in the three different liner. The results obtained
for the noise reduction of the single frequency can be grouped in Tab. 5.2.

In this table is possible to see, as expected, that the best value is obtained using
three separated SDoF that better follow the nacelle shape. This is valid both if the
objective function to minimize is the AverageSPL or the OSPL. To have an idea of
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how the optimizer works is it possible to show all the values for h and d that were
obtained for the liners.

Average Sound Pressure Level

• No Liner: SPL=70.26 dB

• 1 SDoF: SPL=63.94 dB

1. h=0.0199 d=0.00186

• 3 SDoF: SPL=59,69 dB

1. h1=0.0196 d1=0.00149

2. h2=0.0558 d2=0.00154

3. h3=0.0474 d3=0.00199

• 1 DDoF: SPL=64,11 dB

1. h=0.0161 d1=0.00144 d2=0.00156 b=0.525

• 3 DDoF: SPL=62,58 dB

1. h1=0.0188 d11=0.00148 d12=0.00148 b1=0.5005

2. h2=0.0399 d21=0.0011 d22=0.00151 b2=0.5008

3. h3=0.0399 d31=0.00149 d32=0.0015 b3=0.501

Overall Sound Pressure Level

• No Liner: OSPL=94.18 dB

• 1 SDoF: OSPL=94.20 dB

1. h=0.03 d=0.0024

• 3 SDoF: 86,21 dB

1. h1=0.0235 d1=0.00179

2. h2=0.0558 d2=0.00159

3. h3=0.0404 d3=0.00203

• 1 DDoF: OSPL=88,23 dB

1. h=0.0237 d1=0.00145 d2=0.00159 b=0.491

• 3 DDoF: OSPL=91,35 dB

1. h1=0.0196 d11=0.00149 d12=0.00149 b1=0.627

2. h2=0.0383 d21=0.00164 d22=0.00148 b2=0.496

3. h3=0.0391 d31=0.00208 d32=0.00149 b3=0.502
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(a) Comparison between 1 SDoF and 3 SDoF with objective function: AverageSPL

(b) Comparison between 1 SDoF and 3 SDoF with objective function: OSPL

Figure 5.5: AverageSPL and OSPL with f = 3200 Hz
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Figure 5.5a shows the comparison between the SPL curves obtained when No liner, 1
SDoF and a set of 3 SDoF are applied. In this case the objective function minimized
is the AverageSPL. The same can be shown in Figure 5.5b where the minimized noise
function is the OSPL. Figure 5.5 in useful to understand how a liner reduce the curve
and the noise in general. The minimizing objective function that seems to return
better values is the Overall Sound Pressure Level. In fact, this curve is ”smoother”
and do not present sharp changes in the SPL value. In this case a reduction in the
OSPL (solid line) of 7.91 dB and a reduction in the mean value (dashed line) of
15.18 dB can be seen.

5.5 Multi-frequency liner

A liner capable to reduce more than one frequency is studied. The main idea is to
find the main parameters of a liner that is supposed to work in a range of frequencies
and modes injected separately. Tab. 4.2 group all the frequencies and modes of the
following analyses. The process is similar to what discussed above whit a code
change due to the fact that the Actran analysis must be done for each frequency.
The results of these single analyses are saved and at the end used to the computation
of the noise functions following the equation discussed in Section 4.5. Even in this
case, the configurations that were compared are:

• 1 SDoF

• 3 SDoF

• 1 DDoF

• 3 DDoF

and the main parameter to optimize are the cell depth h and hole diameter d. What
was obtained could be summarized in Tab. 5.3. As done for the single frequency

Opt. Function: AverageSPL Opt. Function: OSPL
AverageSPL OSPL AverageSPL OSPL

NO liner 74.31 98.94 74.31 98.94
1 SDoF 72.28 99.15 74.49 99.06
3 SDoF 72.43 99.32 74.34 98.13
1 DDoF 71.85 98.71 74.33 98.43
3 DDoF 71.05 98.83 73.39 97.06

Table 5.3: SPL [dB] for different optimized liners set-up used to reduce the set of
frequency [3200 Hz, 4800 Hz, 6400 Hz, 8000 Hz]

case, it is possible to summarize the optimized parameters that minimize the noise
function.
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Average Sound Pressure Level

• No Liner: SPL=74.31 dB

• 1 SDoF: SPL=72.28 dB

1. h=0.0229 d=0.00214

• 3 SDoF: SPL=72.43 dB

1. h1=0.0198 d1=0.00147

2. h2=0.0524 d2=0.00145

3. h3=0.0514 d3=0.00204

• 1 DDoF: SPL=71.85 dB

1. h=0.0247 d1=0.00154 d2=0.00167 b=0.499

• 3 DDoF: SPL=71.05 dB

1. h1=0.0247 d11=0.00152 d12=0.00143 b1=0.507

2. h2=0.0413 d21=0.00145 d22=0.00149 b2=0.582

3. h3=0.0401 d31=0.00149 d32=0.00154 b3=0.481

Overall Sound Pressure Level

• No Liner: OSPL=98.94 dB

• 1 SDoF: OSPL=99.06 dB

1. h=0.0265 d=0.0024

• 3 SDoF: OSPL=98.13 dB

1. h1=0.0205 d1=0.00187

2. h2=0.0408 d2=0.00149

3. h3=0.0512 d3=0.00199

• 1 DDoF:OSPL=98.43 dB

1. h=0.0264 d1=0.00158 d2=0.00169 b=0.443

• 3 DDoF: OSPL=97.06 dB

1. h1=0.0195 d11=0.00154 d12=0.00147 b1=0.508

2. h2=0.0385 d21=0.00148 d22=0.00149 b2=0.486

3. h3=0.0396 d31=0.00185 d32=0.00150 b3=0.5004
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(a) Comparison between 1 SDoF and 3 DDoF with objective function: AverageSPL

(b) Comparison between 1 SDoF and 3 DDoF with objective function: OSPL

Figure 5.6: AverageSPL and OSPL with [3200 Hz, 4800 Hz, 6400 Hz, 8000 Hz]
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In Figure 5.6a and Figure 5.6b is possible to notice the comparison between the
effect of one or tree DDoF liners. As expected, the DDoF is the best solution to
reduce more than one frequency due its double layer. In particular, in this case the
best results is reached when considering a set of three DDoF. It is passible to notice
from Tab. 5.3 that the noise reduction is not so important, 3.26 dB if considering
the AverageSPL as the function to minimize and 1.88 dB if considering the OSPL.

5.6 Multi-frequency liner in single frequency

To better understand in which frequency the set of liner doesn’t work well other
analyses on the specific frequency must be done. The idea is to use the most effective
liner, obtained above, in each single frequency and compute the noise reduction.
Even in this case a distinction between the minimization of the AverageSPL and
the OSPL is done. In each of these analyses is used the impedance computed from
the parameters obtained from the minimization of the corresponding noise function.
For example, if the parameter that has been considering is the OSPL, the h and
d values of the best DDoF liner obtained from the minimization of the OSPL are
used. What was obtained could be summarized in Tab. 5.4.

NO liner
f=3200 HZ f=4800 Hz f=6400 Hz f=8000 Hz

OSPL 94.19 96.98 80.58 79.99
AverageSPL 70.27 67.44 57.63 59.15

3 DDoF - Objective function: OSPL
OSPL 91.38 95.44 80.93 79.31

AverageSPL 66.06 70.17 55.97 58.36
3 DDoF - Objective function: AverageSPL

OSPL 94.88 96.31 82.47 80.12
AverageSPL 64.16 61.80 57.49 58.27

Table 5.4: SPL [dB] for a set of 3 DDoF liner obtained from the multi-frequency
case used in each single frequency

In Tab 5.4 is possible to notice that, for both the minimization function, the
noise produced by higher frequencies is more difficult to reduce. Other strategies
must be considered to overcome this problem.

5.7 Specialized liner for single frequency

The general idea is to change the partition of the initial liner dividing it in a set of
four smaller liners. This number corresponds to the number of frequency part of the
analysis. The idea is to assign one of the four liner, the task to minimize the noise
generated with a specific frequency and mode. Figure 5.7 represents the division
made for this kind of analysis. Is presented a set of 4 liners with the same extension
and their relative numeration. The idea is to optimize one at a time when just one
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Figure 5.7: Liner division

frequency is present. Starting from the tip the optimization of the higher frequency
is assigned so the division is:

• f = 8000 Hz → liner 1

• f = 6400 Hz → liner 2

• f = 4800 Hz → liner 3

• f = 3200 Hz → liner 4

The procedure could be summarized in the following steps. Once the first frequency
to investigate is chosen, initial h and d values and its relative impedance value
(depending on the frequency) are assigned. The remaining liners are ”deleted”
and a non reflecting boundary condition is imposed. Once the noise pressure is
computed on the microphones, the process is repeated for the second frequency. The
corresponding assigned liner is optimized to reduce the noise and once the minimum
in this value is reached, the next frequency is investigated. This process is repeated
for all the remaining frequencies. At the end of this analysis, a set of parameters is
obtained for each single liner. Both the noise functions are investigated and what
was obtained is shown in Tab. 5.5. The types of liners used in the following are
those described above, SDoF and DDoF.

Tab. 5.6 shows a comparison between the 2 type of liners used. In both cases
no reduction is obtained if considering the Overall Sound Pressure Level. This
can be explained investigating the results obtained considering the single frequency
shown in Tab. 5.5. Considering the OSPL as objective function both for a SDoF
and a DDoF the reduction for higher frequency is irrelevant. In particular, the
reduction of the noise generated with f = 4800 Hz is just around 1 dB. Dealing
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NO liner
f=3200 Hz f=4800 Hz f=6400 Hz f=8000 Hz

OSPL 94.19 96.98 80.58 79.99
AverageSPL 70.27 67.44 57.63 59.15

SDOF - Objective function: OSPL
OSPL 92.18 96.21 80.57 78.55

AverageSPL 65.68 68.17 57.53 56.99
SDOF - Objective function: AverageSPL

OSPL 92.73 97.02 80.74 78.82
AverageSPL 64.02 67.10 56.88 57.16

DDOF - Objective function: OSPL
OSPL 92.17 95.83 80.56 78.41

AverageSPL 65.68 69.53 57.44 57.16
DDOF - Objective function: AverageSPL

OSPL 92.73 97.02 83.29 80.33
AverageSPL 64.01 67.10 56.63 59.06

Table 5.5: SPL [dB] from the optimization of specialized liner in the corresponding
frequency

Objective function: OSPL
NO liner 4 SDoF 4 DDoF

OSPL 98.94 98.83 98.28
AverageSPL 74.31 74.39 74.21

Objective function: AverageSPL
NO liner 4 SDoF 4 DDoF

OSPL 98.94 99.24 100.03
AverageSPL 74.31 72.18 73.03

Table 5.6: SPL [dB] given by the union of the 4 specialized liner with the set of
frequency [3200 Hz, 4800 Hz, 6400 Hz, 8000 Hz]
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with dB operations, and giving the highest contribution, this is the most important
frequency to reduce. If considering the mean value of the SPL curve, represented by
the Average Sound Pressure Level, a small reduction (around 2 dB) is shown when
considering all the frequency as shown in Tab. 5.6. In this case the use of a SDoF
returns better results. This better reduction can be justified referring to Tab. 5.5.
Considering the AverageSPL is possible to notice that the reduction for the first
frequency is quite good with a reduction of around 6 dB. This results is worsened
by the small, or almost inexistent, reduction in the higher SPL given by f = 4800
Hz and affect the overall performance.

5.7.1 Optimization of the combined liner

The idea of this analysis is to use what obtained from the local optimization of
each single liner in the assigned frequency, as a starting point for another local
optimization. The configuration to analyze is given by the union of the 4 liner
optimized and its goal is to reduce the usual set of frequencies. The process is
similar to what was done in Section 5.5 with 3 liners. In that case, the starting
point for h and d (or h, d1, d2 and b in case of DDoF) was defined by the user.
Now the starting vector (set of parameters for the 4 liner) is composed by those
parameters that, in the corresponding frequency, return the minimum of the noise
function analyzed.

Objective function: OSPL
NO liner 4 SDOf Opt. 4 SDoF 4 DDOf Opt. 4 DDoF

OSPL 98.94 98.83 97.40 98.28 96.99
AverageSPL 74.31 74.39 73.27 74.21 74.28

Objective function: AverageSPL
NO liner 4 SDOf Opt. 4 SDoF 4 DDOf Opt. 4 DDoF

OSPL 98.94 99.24 99.18 100.03 100.18
AverageSPL 74.31 72.18 71.02 73.03 70.50

Table 5.7: SPL [dB] obtained with the non optimized and optimized combined liners

Slightly better results were obtained with this optimization and are presented
in Tab. 5.7. In this case the best results for both the noise functions is obtained
using three optimized Double Degree of Freedom. In conclusion a comparison can
be done with the results obtained optimizing three liners. The optimal configuration
obtained in Section 5.5 is given by a set of 3 DDoF liners and the minimum SPL
values obtained are shown in Tab. 5.3. Those values are similar to what was
obtained in the present section and shown in Tab. 5.7. So is possible to come to the
conclusion that the use of 4 liner, at first optimized separately and then combined,
doesn’t bring to better results respect to directly optimize 3 liners. This is also
represented in Figure 5.8. This figure shows the SPL curves obtained with No liner,
3 DDoF optimized liners and 4 DDoF optimized liners for both the noise function.

Since the noise reduction is not so important other tests were made to find the
right configuration for the liners. Different position where tried for the single liners
but no important changes where noticed in the SPL. Another test was performed
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(a) Comparison between 3 directly optimized liner and 4 combined liner, Objective func-
tion=AverageSPL

(b) Comparison between 3 directly optimized liner and 4 combined liner, Objective func-
tion=OSPL

Figure 5.8: Comparison between 3 directly optimized liner and 4 combined liner
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changing the extension of the liners trying to give more space to reduction of higher
frequency, more difficult to treat. Even in this case no significant change were reg-
istered in the Sound Pressure Level.

Change in σ and τ
Some analyses where made on the other parameters that can be studied σ and τ . It
was found that they have not a strong influence on the noise reduction if considering
the ranges presented in Tab. 4.3. In the following analyses a change in the quantities
σ and τ will be done to conform with the choice made with the starting point of h
and d. For this last two parameters the starting point for the optimization is a point
around the middle value of the corresponding interval. Also for the first parameters
mentioned a similar approach is followed and in the following analysis those will
became

• σ = 9%

• τ = 0.75 · 10−3 m

5.8 Liner distribution with a quadratic function

The main idea of this analysis is to find quadratic functions that, given a normalized
length along the nacelle, returns the h and d values of a Single Degree of Freedom
liner. The goal of the chosen optimizer is to find the right combination of the three
parameters that characterize a quadratic function. Two function are needed and so
6 parameters must be optimized{

h = ax2 + bx+ c
d = dx2 + ex+ f

(5.2)

The variable x refers to an axis with the center positioned on the tip of the nacelle
and directed towards the core of the engine. The parameter x is a normalized length
so is inside the range [0, 1]. Three main analyses will be done

• 8 liners

• 16 liners

• 44 liners

Depending on this number, some change in the mesh must be done. The space on
the nacelle dedicated to the liner has to be divided in as many space as the number
of liners. This is done in order to allocate the right number of impedance boundary
condition. The 44 value was chosen due to mesh limit and represent the maximum
number in which the portion dedicated to the impedance boundary condition can
be divided. The python script is done to be adaptable to these three analysis and
the user must just define the number of boundary conditions (liners) and the name
of the corresponding Actran Analysis. The optimizer used in these analyses is the
local optimized BOBYQA defined above. The starting point is chosen to give to the
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Objective function: AverageSPL
NO liner 8 SDoF 16 SDoF 44 SDoF 3 SDoF

OSPL 98.94 97.74 98.43 98.54 99.31
AverageSPL 74.31 70.92 71.44 71.59 72.43

NO liner 8 SDoF 16 SDoF 44 SDoF 3 SDoF
OSPL 98.94 97.63 96.38 97.78 98.13

AverageSPL 74.31 72.99 72.18 75.53 74.34

Table 5.8: SPL [dB] depending on number of liners

functions a parabolic behavior that starts from the value of the minimum and reach
the maximum of the corresponding intervals. For the three analyses the starting
point can be defined as follow:

• (a,b,c)=[−0.022, 0.085, 0.013]

• (d,e,f)=[0.8 · 10−3, 0.6 · 10−3, 1 · 10−3]

and the upper and lower bounds given to the optimizer are:

• a, b, c ∈ [−0.1, 0.1]

• d, e, f ∈ [−0.01, 0.01]

Both Average Sound Pressure Level and Overall Sound Pressure Level were ana-
lyzed. Thinking about the h function, the structure will became a ”step function”
as will shown in Figure 5.12. Choosing one of the 8 points (16 or 44) it is possible
to compute the value of h(x0) that remain constant until the next point where it
assumes the value of the function in that point h(x1). An optimization of the 2 func-
tion with different number of liners was done and the results are shown in Figure 5.9.
Two results were obtained considering the AverageSPL or the OSPL as the function
to minimize. Figure 5.9a shows that the best value of the AverageSPL is reached
when 8 liners are used. Figure 5.9b shows that the lowest value for the OSPL is
reached when considering 16 liners. In these figures is possible to do a comparison
with what was obtained considering a direct optimization of just 3 liners, shown in
Section 5.5. It is possible to notice that this new approach returns better values
respect to what was done before. The values obtained are summarized in Tab. 5.8.

Figure 5.10 shows how the optimizer works. The blue function represent the
initial function, defined by the user with the starting vector, while the orange func-
tion represent the optimized one. In both cases is possible to see that the optimizer
reduces the space occupied by the liner. As said above the initial function is defined
as the quadratic function that comes from the lowest point of the interval to the
highest.

Is it also possible to notice that the difference between the value of AverageSPL
considering 8 and 16 liners is not so important as is shown in Figure 5.9a. It was
decided to chose the configuration with 16 liners to have a continuity with the two
noise function. The resulting function from these analyses are
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(a) Minimization function: AverageSPL

(b) Minimization function: OSPL

Figure 5.9: SPL [dB] depending on the number of liners
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(a) ”h” function with 8 liners and minimization function: AverageSPL

(b) ”h” function with 16 liners and minimization function: OSPL

Figure 5.10: ”h” function with 8 and 16 liner
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(a) Comparison between the SPL with 16 and 3 liners, Minimization function: AverageSPL

(b) Comparison between the SPL with 16 and 3 liners, Minimization function: OSPL

Figure 5.11: Comparison between the SPL with 16 and 3 liners
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Figure 5.12: Representation of a ”step function”

AverageSPL

• h function: h = −0.022x2 + 0.085x+ 0.013

• d function: d = 0.0008x2 + 0.0006x+ 0.001

OSPL

• h function: h = 0.0211x2 + 0.0753x+ 0.0139

• d function: d = 0.000577x2 + 0.000812x+ 0.001133

A comparison could be done between the SPL curve obtained considering this
optimization with 16 liners and the SPL curve obtained from the optimization of
just 3 liner. These figures are presented in Figure 5.11.

Pressure map
For some final considerations the configuration composed by 16 liners is used. One
of the Actran’s output is a map containing all the pressure (or SPL) values in the
space of interest. Every value is computed solving the equation for the particular
analysis as described above. These pressure map are shown in Figure 5.13. What is
shown in this figure comes from the analysis with the frequency f = 3200 Hz. The
approach is similar to what done above in which the liner configuration obtained
from the optimization of the given set of frequencies, is used in a single frequency to
better understand how is its reduction. Figure 5.13 is composed by three window.
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Figure 5.13: Pressure delta for f = 3200 Hz with a 16-liner configuration

On the top right is represented the pressure map obtained without any acoustic
treatment and generated with a frequency of f = 3200 Hz. In the bottom right,
the pressure map is given using an acoustic treatment composed by 16 liners and
described above. On the left is possible to see the delta between these two scenarios
and in particular is described with the following expression.

∆p = pNo liner − pliner (5.3)

This is a useful tool to have a better view on the noise reduction and in particular of
the acoustic pressure attenuation. The range was modified to have more reasonable
values but it must be noticed that higher, and not justifiable, values of the delta are
registered in proximity of the interface between the infinite and acoustic element.
This lead to the conclusion that these values could be a product of computational
errors.

5.8.1 Different starting point

Some consideration on the influence of different starting point are done in this
section. Two more analyses are done considering the ”line of minimum” and ”line
of maximum” as starting points for the h function. In the first analysis the starting
point is a horizontal line in h = 0.013 that represents the lower bound of the interval.
In the second the starting point is a ramp going from h = 0.03 (upper bound for the
first liner) to h = 0.076 (upper bound for the remaining liners). Also a function in
the middle of these two was used as a starting point. This is represented in Figure
5.14 and Figure 5.15.

Especially when the line of minimum is used as a starting point, the tendency
is to occupy more space to reduce the sound. In both figures, the optimal function
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Figure 5.14: Optimization with different starting point, Minimizing function: Aver-
ageSPL

Figure 5.15: Optimization with different starting point, Minimizing function: OSPL
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Figure 5.16: Liner integration in the engine structure

seems to be located in the middle due to the fact that both if the space is to much
or to low, the curves during the optimization move to the center.

5.8.2 Final configuration

Figure 5.16 shows the integration of the different liners obtained in the above anal-
yses. This is represented in the real engine measures. Is it possible to notice the
difference between the usual set of 3 optimized liner and the set of 16 liners computed
in these last analyses. The tendency is always the same occupying more space. In
fact is possible to notice that considering 16 liners, being divided in more portions,
the space occupied by the liner is greater. Figure 5.16 represent well the respect of
the physical constrains.
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Chapter 6

Conclusion

A final configuration for the set of liners that seems to reduce the noise generated by
an aircraft is found. The model used to compute the impedance is the Motsinger and
Kraft model. This could be used to compute both the impedance for a SDoF or a
DDoF liners. After some tests, the Actran Analysis that was found to be the fastest
and with enough precision is the Direct Frequency Response. Two main analyses
were done: single frequency and multi-frequency noise reduction. Two noise func-
tion were investigated: Average Sound Pressure Level and Overall Sound Pressure
Level. For the first analysis the noise generated with f = 3200 Hz was analyzed.
If considering the AverageSPL a reduction of 10.57 dB was registered while if the
function to minimize is the OSPL the reduction is of around 7.97 dB. The config-
uration that allow to obtain this result is composed by 3 Single Degree of Freedom
liners. The main goal of the multi-frequency analysis is to find a liner configuration
that reduce the noise for a set of frequencies. The set is composed by the following
frequencies [3200, 4800, 6400, 8000] Hz. In this case the best results were obtained
using a configuration composed by 16 liners. If considering the AverageSPL the
best reduction was of around 3.39 dB while if considering the OSPL the reduction
was of about 2.56 dB. This low reduction was found to be due to the not enough
reduction for the higher frequencies. Future analyses must be done on these fre-
quencies using different configuration or different optimizer. During these analyses
different Global optimizer were tested like the GN DIRECT or the GN ESCH but
in some cases the optimizer never reached a convergence. Further analyses could
be done on global optimizer to be sure that all the feasible space is investigated.
Future investigation could be done investigating other type of liners that works well
with higher frequencies. In the present work, the effect of an external flow was not
considered but future analyses can consider this aspect also.
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Chapter 7

Annex A

1

2 #================ DO NOT SUPRESS OR EDIT THIS LINE AND THE LINES

BELOW ==================

3 #

4 # Actran 2023.1 Session file

5 #

6 # Hostname : DESKTOP -P2BCD1J - Windows 6.2.9200.0.0 (workstation

x64)

7 # Processor : 8x 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

8 # Memory : 8153MB [ 50% of 16183MB available ]

9 #=========================== DO NOT EDIT THE ABOVE LINES

================================

10

11 import numpy as np

12 from numpy import * # c o s importo tutte le funzioni , classi e

oggetti definiti nel modulo numpy

13 from pyfemtown.Command import Optimizer

14 import nlopt

15

16 def impedenza_SDoF(h,d,f):

17

18 sigma=0.09 #valore medio nell'intervallo
19 tau=0.75e-3 #valore medio nell'intervallo
20 Cd=0.76

21 rho=1.225

22 c=340

23 mu=1.8e-5

24 lunghezza_onda=c/f

25 k=2*np.pi/lunghezza_onda

26 a=64

27 epsilon=0.85*(1-0.7*np.sqrt(sigma))

28

29 R_norm_SDoF=a*mu*tau/(2*rho*c*sigma*Cd*d **2)

30 X_norm_SDoF=k*(tau+epsilon*d)/sigma

31

32 Z_norm_SDoF=R_norm_SDoF+1j*(X_norm_SDoF-1/np.tan(k*h))

33

34 return Z_norm_SDoF

35

36 def impedenza_DDoF(h,d1 ,d2 ,b,f):
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37

38 h_1=b*h

39 h_2=(1-b)*h

40 sigma=0.09 #valore medio nell'intervallo
41 tau=0.75e-3 #valore medio nell'intervallo
42 Cd=0.76

43 rho=1.225

44 c=340

45 mu=1.8e-5

46 lunghezza_onda=c/f

47 k=2*np.pi/lunghezza_onda

48 a=64

49 epsilon=0.85*(1-0.7*np.sqrt(sigma))

50

51 R1_norm=a*mu*tau/(2*rho*c*sigma*Cd*d1 ** 2)

52 X1_norm=k*(tau+epsilon*d1)/sigma

53

54 R2_norm=a*mu*tau/(2*rho*c*sigma*Cd*d2 ** 2)

55 X2_norm=k*(tau+epsilon*d2)/sigma

56

57

58 Z1_norm=R1_norm+1j*X1_norm

59 Z2_norm=R2_norm+1j*X2_norm

60

61 Z_norm_DDoF=Z1_norm+(Z2_norm*np.cos(k*h_1)*...

62 *np.sin(k*h_2)/np.sin(k*h)-1j/np.tan(k*h))/...

63 /(1+1j*Z2_norm*np.sin(k*h_1)*np.sin(k*h_2)/np.sin(k*h))

64

65 return Z_norm_DDoF

66

67 def myfunc(x,grad): # x rappresenta l'input dei differenti valori

dei parametri. Grad il

gradiente della fz obiettivo

rispetto ai parametri di input

che non verra' usato nella

seguente trattazione

68

69

70 #possiamo avere un accesso rapido a questi object

71 ge=optimizer.global_environment

72 actran=optimizer.actran

73 actranplt=optimizer.actranplt

74

75 #importiamo l'analisi Actran che abbiamo precedentemente

settato

76 dfr_analysis =actran.read_analysis(file="C:\\ Users\\ Giuseppe \\

77 Desktop \\ Politecnico di Torino \\Tesi\\ AnalisiTesi \\

78 10_incontro13_01_2025_prove \\ test_ell02_fourtyfour_liner.edat",

79 type='ACTRAN ', load_topology=True , force_modal_components=None)

80

81

82 #Parametri h e d: oggetto dell'ottimizzazione
83

84 point_number=17

85 microphone_number=71

86
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87 l=np.linspace(0,1,point_number)

88 h=x[0]*l **2+x[1]*l+x[2]

89 d=x[3]*l **2+x[4]*l+x[5]

90

91 t=point_number-1 #variabile di appoggio

92

93 if h[0]>=0.013 and h[0]<=0.03 and np.all(h[1:t]>=0.013) and np.

all(h[1:t]<=0.076) and np.all(d[0

:t]>=0.001) and np.all(d[0:t]<=0.

0024):

94

95 f1=3200

96 f2=4800

97 f3=6400

98 f4=8000

99

100 rho=1.225

101 c=340

102 Z0=rho*c

103

104 #FREQUENZA 1: 3200

105

106 ge.report_file2.write('SPL '+str(ge.iteration)+' \n') #

scrivo il file report con tutte

le informazioni che mi servono

107 ge.report_file2.write('frequency=3200'+'\n')
108 ge.report_file2.flush()

109

110 #Usiamo il modello di impedenza scelto per il calcolo di

resistenza reattanza che nel

nostro caso quello di

Motsinger and Kraft

111

112 Z_norm_SDoF=impedenza_SDoF(h,d,f1)

113 Z_SDoF=Z_norm_SDoF*Z0

114 A_SDoF=1/Z_SDoF

115

116

117 for i in range(t):

118 actran.set_prop( actran.get_bc( dfr_analysis , type='
Normalized Impedance ', id=i+1 ),

field=Z_norm_SDoF[i])

119

120

121 actran.set_prop( actran.get_frequency( analysis=

dfr_analysis , index=0, subtype="

freq"), freqs_list=[f1] )

122 actran.set_prop( dfr_analysis , axi_order=[[4]])

123 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=0 ),

order1= 6)

124 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis , type

='Modal Duct' ), index=0 ),

format='Amplitude ' )
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125 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=0 ),

value= 34.92)

126 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=1 ),

order1= 6)

127 actran.set_prop( actran.get_output_frf(dfr_analysis),

filename='res.plt')
128

129 actran.run(analysis=dfr_analysis , arguments='--mem=2000')
130

131 set_1=actranplt.import_file(file=r'res.plt', ftype='plt')
132

133

134 SPL_1_amplitude=np.linspace(0,microphone_number-1,

microphone_number)

135

136 for i in range(microphone_number):

137 SPL=set_1["POINT_1", str(i+1), "fp"]

138 SPL_1_amplitude[i]=np.abs(SPL)

139

140 SPL_1_dB=20*np.log10(SPL_1_amplitude/(2e-5))

141

142 ge.report_file2.write(str(SPL_1_dB)+'\n' + 'frequency=4800'
+'\n')

143 ge.report_file2.flush()

144

145

146 #FREQUENZA 2: 4800

147

148

149 Z_norm_SDoF=impedenza_SDoF(h,d,f2)

150 Z_SDoF=Z_norm_SDoF*Z0

151 A_SDoF=1/Z_SDoF

152

153 for i in range(t):

154 actran.set_prop( actran.get_bc( dfr_analysis , type='
Normalized Impedance ', id=i+1 ),

field=Z_norm_SDoF[i])

155

156 actran.set_prop( actran.get_frequency( analysis=

dfr_analysis , index=0, subtype="

freq"), freqs_list=[f2] )

157 actran.set_prop( dfr_analysis , axi_order=[[11]])

158 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=0 ),

order1= 8)

159 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis , type

='Modal Duct' ), index=0 ),

format='Amplitude ' )

160 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,
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type='Modal Duct' ), index=0 ),

value= 28.46)

161 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=1 ),

order1= 8)

162 actran.set_prop( actran.get_output_frf(dfr_analysis),

filename='res.plt')
163

164 actran.run(analysis=dfr_analysis , arguments='--mem=2000')
165

166 set_1=actranplt.import_file(file=r'res.plt', ftype='plt')
167

168

169 SPL_2_amplitude=np.linspace(0,microphone_number-1,

microphone_number)

170

171 for i in range(microphone_number):

172 SPL=set_1["POINT_1", str(i+1), "fp"]

173 SPL_2_amplitude[i]=np.abs(SPL)

174

175 SPL_2_dB=20*np.log10(SPL_2_amplitude/(2e-5))

176

177 ge.report_file2.write(str(SPL_2_dB)+'\n' + 'frequency=6400'
+'\n')

178 ge.report_file2.flush()

179

180 #FREQUENZA 2: 6400

181

182

183 Z_norm_SDoF=impedenza_SDoF(h,d,f3)

184 Z_SDoF=Z_norm_SDoF*Z0

185 A_SDoF=1/Z_SDoF

186

187 for i in range(t):

188 actran.set_prop( actran.get_bc( dfr_analysis , type='
Normalized Impedance ', id=i+1 ),

field=Z_norm_SDoF[i])

189

190 actran.set_prop( actran.get_frequency( analysis=

dfr_analysis , index=0, subtype="

freq"), freqs_list=[f3] )

191 actran.set_prop( dfr_analysis , axi_order=[[26]])

192 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=0 ),

order1= 1)

193 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis , type

='Modal Duct' ), index=0 ),

format='Amplitude ' )

194 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=0 ),

value= 12.43)
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195 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=1 ),

order1= 1)

196 actran.set_prop( actran.get_output_frf(dfr_analysis),

filename='res.plt')
197

198 actran.run(analysis=dfr_analysis , arguments='--mem=2000')
199

200 set_1=actranplt.import_file(file=r'res.plt', ftype='plt')
201

202

203 SPL_3_amplitude=np.linspace(0,microphone_number-1,

microphone_number)

204

205 for i in range(microphone_number):

206 SPL=set_1["POINT_1", str(i+1), "fp"]

207 SPL_3_amplitude[i]=np.abs(SPL)

208

209 SPL_3_dB=20*np.log10(SPL_3_amplitude/(2e-5))

210

211 ge.report_file2.write(str(SPL_3_dB)+'\n' + 'frequency=8000'
+'\n')

212 ge.report_file2.flush()

213

214 #FREQUENZA 2: 8000

215

216

217 Z_norm_SDoF=impedenza_SDoF(h,d,f4)

218 Z_SDoF=Z_norm_SDoF*Z0

219 A_SDoF=1/Z_SDoF

220

221

222 for i in range(t):

223 actran.set_prop( actran.get_bc( dfr_analysis , type='
Normalized Impedance ', id=i+1 ),

field=Z_norm_SDoF[i])

224

225 actran.set_prop( actran.get_frequency( analysis=

dfr_analysis , index=0, subtype="

freq"), freqs_list=[f4] )

226 actran.set_prop( dfr_analysis , axi_order=[[41]])

227 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=0 ),

order1= 7)

228 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis , type

='Modal Duct' ), index=0 ),

format='Amplitude ' )

229 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,

type='Modal Duct' ), index=0 ),

value= 4.27)

230 actran.set_prop( actran.get_propagating_mode( duct=actran.

get_component( dfr_analysis ,
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type='Modal Duct' ), index=1 ),

order1= 7)

231 actran.set_prop( actran.get_output_frf(dfr_analysis),

filename='res.plt')
232

233 actran.run(analysis=dfr_analysis , arguments='--mem=2000')
234

235 set_1=actranplt.import_file(file=r'res.plt', ftype='plt')
236

237

238 SPL_4_amplitude=np.linspace(0,microphone_number-1,

microphone_number)

239

240 for i in range(microphone_number):

241 SPL=set_1["POINT_1", str(i+1), "fp"]

242 SPL_4_amplitude[i]=np.abs(SPL)

243

244 SPL_4_dB=20*np.log10(SPL_4_amplitude/(2e-5))

245

246 ge.report_file2.write(str(SPL_4_dB)+'\n')
247 ge.report_file2.flush()

248

249 # SOMMA DI TUTTE LE PRESSIONI SUI SINGOLI MICROFONI

250

251 SPL_amplitude_tot=np.sqrt(SPL_1_amplitude **2+

SPL_2_amplitude **2+

SPL_3_amplitude **2+

SPL_4_amplitude **2)

252

253 OSPL_pressure=0

254 for i in range(microphone_number):

255 OSPL_pressure=OSPL_pressure+SPL_amplitude_tot[i] **2 #

OSPL visto come la radice

quadrata della somma delle

pressioni al quadrato sull'arco
di microfoni

256

257 OSPL=np.sqrt(OSPL_pressure)

258 OSPL_dB=20*np.log10(OSPL/(2e-5))

259

260 SPL_dB=20*np.log10(SPL_amplitude_tot/(2e-5)) #logaritmo di

un vettore contenente le

pressioni su tutti i microfoni

261 print(SPL_dB)

262

263 ge.report_file2.write('SPL for all the frequency: '+'\n'+
str(SPL_dB)+'\n'+'\n')

264 ge.report_file2.flush()

265

266 print(OSPL_dB)

267

268 ge.report_file2.write('Overall Sound Pressure Level: '+str(
OSPL_dB)+' '+'dB'+'\n'+'\n')

269 ge.report_file2.flush()

270

271 mean_value=np.mean(SPL_dB)
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272 ge.report_file2.write('Average Sound Pressure Level: '+str(
mean_value)+' '+'dB'+'\n'+'\n')

273 ge.report_file2.flush()

274

275

276 obj_func=mean_value

277

278 ge.report_file.write('['+str(ge.iteration)+']'+' '+
279 'h='+str(h[0:point_number-1])+'\n'+
280 'd='+str(d[0:point_number-1])+'\n'+
281 'a_h='+str(x[0])+' ' +'b_h='+str(x[1])+

' '+'c_h='+str(x[2])+' \n'+
282 'a_d='+str(x[3])+' ' +'b_d='+str(x[4])+

' '+'c_d='+str(x[5])+' \n'+
283 'SPL='+' '+str(obj_func)+' \n') #scrivo

il file report con tutte le

informazioni che mi servono

284 ge.report_file.flush() #questo comando permette di

cancellare i dati che sono

momentanemanete memorizzati in un

buffer prima di essere scritti

sul disco.

285

286 ge.report_file4.write('['+str(ge.iteration)+']'+' '+str(
obj_func)+'\n')

287 ge.report_file4.flush()

288

289 optimizer.global_environment.report_file3=optimizer.

openfile('last_val.dat','w')
290 ge.report_file3.write(str(obj_func))

291 ge.report_file3.flush()

292

293 ge.iteration +=1

294 optimizer.clear_all () #Il comando clear permette di pulire

l'analisi Actran in modo tale da

essere preparata per l'iterazione
successiva

295 else:

296 with open('last_val.dat', 'r') as file:

297 val = file.read()

298 obj_func=float(val)

299 ge.report_file.write('['+str(ge.iteration)+']'+' '+str(
obj_func)+' \n')

300 ge.report_file.flush()

301 ge.report_file4.write('['+str(ge.iteration)+']'+' '+str(
obj_func)+'\n')

302 ge.report_file4.flush()

303 ge.iteration +=1

304

305 return obj_func

306

307 def main() :

308 #inizializzazione dell'ottimizzatore
309 opt=optimizer.optimizer(nlopt.LN_BOBYQA ,6) #E-1 SE CON GLOBALE

310

311 optimizer.global_environment.iteration=0
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312 optimizer.global_environment.report_file=optimizer.openfile('
output.dat','w')

313 optimizer.global_environment.report_file2=optimizer.openfile('
output_SPL.dat','w')

314 optimizer.global_environment.report_file4=optimizer.openfile('
SPL_list.dat','w')

315

316 #Otimizer configuration

317 opt.set_min_objective(myfunc)

318 opt.set_lower_bounds([-0.1, -0.1 , -0.1 , -0.01 , -0.01 , -0.01

])

319 opt.set_upper_bounds([0.1 , 0.1, 0.1, 0.01 , 0.01 , 0.01])

320

321

322 opt.set_xtol_rel(1e-2)

323 #opt.set_maxeval(1)

324 #opt.set_ftol_rel(1e-3)

325 #Start optimization loop

326 x=opt.optimize([-0.022 ,0.085 ,0.013 ,0.8e-3,0.6e-3,0.001]) #a,b,

c for h and d,e,f for d

327 ##

328 minf=opt.last_optimum_value () #questo l'ultimo valore di

ottimo

329 optimizer.message("Total number of iteration: %d"%(optimizer.

global_environment.iteration-1))

#numero totale di iterazioni

330 optimizer.message("Optimum at %s" %str(x)) #valore del vettore

x ottimizzato

331 optimizer.message("Minimum value= %g" %minf) #valore di minimo

della funzione da minimizzare

332 optimizer.message("Result code = %g" %opt.last_optimize_result

())

333

334 optimizer=Optimizer ()

335 main()
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