
POLITECNICO DI TORINO

MSc THESIS IN AEROSPACE ENGINEERING
MAJOR: PROPULSION SYSTEMS

Development of a data-driven design
tool for turbomachinery blades:

Exploration of secondary flows in 3D
turbine cascades

Supervisors: Prof. Andrea FERRERO
Prof. Sergio LAVAGNOLI

Advisor: Ph.D. Gustavo LOPES

Candidate: Cosmo SCARIMBOLO

Submitted in collaboration with the
von Karman Institute for Fluid Dynamics

Academic Year 2024/2025
Graduation session April 2025

ii

Abstract

Gas turbines, particularly those in aircraft propulsion, represent a cutting-

edge engineering field. Although advances in cooling technologies and mate-

rials have led to mechanical efficiency above 90 percent, economic and phys-

ical constraints limit future increases. As a result, improving machine per-

formance still relies on minimising aerodynamic losses, assuming engine per-

formance parameters—such as turbine inlet temperature or bypass ratio—are

already established, thereby defining the propulsive efficiency. Among these,

secondary-flow-induced losses — arising from the complex interaction between

the main passage flow and endwall boundary layers — still represent a chal-

lenge in the design phase. Despite several empirical correlations and simpli-

fied models have been proposed over the century of research, a comprehensive

physics-based model that quantifies these losses across design stages, while in-

corporating secondary flows physical principles, has yet to be realised. This

thesis develops a Python-based computational tool that automates the three-

dimensional aerodynamic analysis of turbine cascades through NUMECA Ca-

dence FINETM/Turbo software. The tool integrates key stages of the CFD

(Computational Fluid Dynamics) workflow, including blades CAD (Computer

Aided Desgin) generation through profile extrusion, mesh generation, bound-

ary conditions computation, based on operational Reynolds and Mach numbers,

and the setting of desired inlet boundary layer profiles. Following this, the tool

automates simulation execution, its monitoring, and post-processing data, ex-

tracting key aero-thermodynamic quantities to evaluate aerodynamic losses.

Through data collected from arbitrary blade configurations, this framework al-

lows the preliminary investigation of secondary losses and their sensitivity to

design parameters, drawing from methodologies established in prior research.

The study is structured as followed: a literature review on secondary flows-

induced and endwall losses; a methodology section outlining the tool develop-

ment and key computational processes; a further validation and comparative

analysis of processed blade configurations; and a final discussion of results, lit-

erature comparisons, and future research directions. The long-term objective is

to deliver quality data useful to establish loss correlations with design parame-

ters and develop a breakdown of losses, aiming to evaluate the secondary-flow

induced ones. Thus, advancing current analytical approaches for turbine cas-

cade performance optimisation through machine-learning based models.

Keywords: secondary flows, endwall losses, turbine blade design, automated

design Python tool, data-driven, optimization

Contents

1 Introduction 1

2 Literature survey 3

2.1 Mechanisms of Secondary Flows Formation 5

2.2 History of Research on Endwall Losses . 8

3 Tool development 15

3.1 The role of Computational Fluid Dynamics 15

3.2 RANS: Reynolds-Averaged Navier-Stokes . 17

3.3 NUMECA FINETM/Turbo, IGGTM and Python environment 19

3.4 Overview . 21

3.5 Geometry and CAD . 22

3.6 Mesh . 27

3.7 CFD workflow . 35

3.7.1 Boundary conditions . 36

3.7.2 Turbulence model . 39

3.7.3 Numerical scheme and convergence criteria 41

3.8 Grid convergence analysis . 42

3.8.1 LTHT (Laminar Thick High Turning blade) case 44

3.8.1.1 2D: Blade to Blade . 45

3.8.1.2 3D: Span layers . 50

3.8.2 Effects of inlet conditions . 54

3.8.3 TTLT (Turbulent Thin Low Turning blade) case 55

3.8.3.1 2D: Blade to Blade . 56

3.8.3.2 3D: Span layers . 58

3.8.4 Final mesh configuration: test . 60

3.9 Automated process . 62

i

CONTENTS

4 Validation and Data Analysis 83

4.1 Dataset corner points: input parameters . 83

4.2 Time performance estimation . 86

4.3 Data analysis . 87

5 Conclusions 93

List of Figures 97

List of Tables 99

Nomenclature 101

ii

Chapter 1

Introduction

Gas turbines, especially those in aircraft engines, represent the highest achievements in

precision manufacturing. While these machines have reached mechanical efficiency levels

above 90 percent through advances in materials and cooling systems, physical limits and

cost barriers make further mechanical improvements impractical. As a matter of fact,

minimising aerodynamic losses remains a pivotal priority in enhancing the performance of

the machines.

Aerodynamic losses are driven by the flow boundary layer viscous dissipation when comes

to interacting with walls and blades surfaces. In fact, they have historically been classified

into profile losses - relatively straight-forward to quantify since driven by two dimensional

flow -, endwall losses and secondary-flow induced losses, whose prediction in the machine

design phase still determine a big challenge since they are generated from the interaction

of the main passage flow and the endwall boundary layer, generating complex three di-

mensional vortex structures. With a particular focus on 3D turbine cascades, despite the

availability of empirical correlations and simplified theoretical models, still no comprehen-

sive analytical framework exists to quantify secondary losses accurately whichever design

space is chosen, especially in the field of turbines which is particularly deepened in the

study carried out.

The scope of this thesis is to develop a design Python-based tool that provides a robust

computational framework to perform a three-dimensional CFD (Computational Fluid Dy-

namics) analysis - through the software NUMECA Cadence FINETurbo - starting from

a two-dimensional turbine blade profile that has already been optimised to fulfil certain

aerodynamic duties. Among all its features, it performs geometry extrusion - CAD genera-

tion -, the structured mesh generation from a template validated through grid convergence

1

1. INTRODUCTION

studies; setting of the computational environment by computing boundary conditions with

operational Reynolds and Mach numbers, and a desired inlet boundary layer profile as user

inputs, then launching and monitoring the computation; and ultimately, the evaluation of

the losses generated by the three-dimensional flow field in the cascade from the aero-

thermodynamic quantities extracted. This workflow is subsequently automated to process

arbitrary blade configurations, enabling systematic data collection and analysis, building

upon the methodological framework established by J. Coull, [4]. The long-term research

objective aims to establish correlations between design parameters and aerodynamic losses,

while developing a loss breakdown of their typology and mechanisms of formation. This

future development would extend the analytical approaches proposed until now.

This thesis is structured into four main chapters, beginning with a comprehensive lit-

erature review in Chapter 2, which explores the fundamental physics and mechanisms

governing secondary flows and endwall losses in turbine passages. Chapter 3 portrays

the methodology, describing tool development and its capabilities through the most sig-

nificant steps of the aforementioned pipeline: creation of a blade, creation of a mesh,

boundary condition management, computation and parallelization, extraction of data, and

post-processing. Chapter 4 addresses testing and proving the automated algorithm, com-

paring successive sets of processed blades and changing sets of optimization parameters,

and examination of outputted data. Chapter 5, in conclusion, illustrates acquired results,

comparisons with present literature, and future work potential.

2

Chapter 2

Literature survey

Gas turbines play a critical role in aeronautics and power generation and operate in a

Brayton cycle to efficiently convert fuel energy into work mechanically. This process first

involves a compressor, pressurizing the working fluid before entering a combustion cham-

ber. In the chamber, fuel is combusted, and temperature and level of energy in the fluid

is increased. High-enthalpy flow then expands through a turbine, in which work is ex-

tracted mechanically in an attempt to drive both a compressor and, in case of aircraft

"air-breathing" engine, to accelerate the fluid.

The overall efficiency of a gas turbine is determined by two key factors: mechanical effi-

ciency and thermal efficiency. As advancements in materials technology drive mechanical

efficiency towards its optimum level, thermal efficiency can then be maximized by increasing

cycle temperatures, TIT (turbine inlet temperature), which influences the specific thrust

-the overall output of the thermodynamic cycle. However, this involves sophisticated tech-

niques for cooling and cutting edge temperature-resistant materials, not mentioning also

that high combustion temperatures will result in high emissions of gases like NOx. Al-

ternatively, a propulsive efficiency gain can be reached by increasing the engine Bypass

Ratio (BPR) - the fraction of cold, low speed mass-flow over the total mass flow ingested

by the engine, but this is correlated to an increase of aerodynamic drag and weight, as the

size of the engine tends to grow. Hence, a more sustainable approach can be minimising

losses, in particular limiting the total pressure drops along the gas path within the engine

components.

In an adiabatic turbine, where heat exchange with the surroundings is minimal, efficiency

enhancement is a matter of finding and controlling entropy production sources. One of the

prominent sources of entropy production in turbo-machinery components is aerodynamic

loss due to viscosity dissipation in the flow field. Its control and minimisation is crucial to

3

2. LITERATURE SURVEY

achieve better performance, leading to a considerable rise in overall efficiency. Among the

numerous sources of aerodynamic loss, secondary flows and endwall loss have a critical,

specific role to play. Losses occur out of complex boundary layer, pressure gradient, and

three-dimensional flow structures in blade passage. With a peak focus towards turbines,

an accurate prediction and control of such loss remains a focal point in present-day turbine

design.

Denton investigated the sources of loss in turbomachinery components and scrupulously

classified them in both turbines and compressors, [9]. To what extents turbines, a drop in

efficiency is strictly linked to any irreversible flow process that generates entropy. In fact,

the most accurate means of measuring losses is entropy - as it does not depend on reference

frame -, whereas it is very difficult to measure in experiments, at the same time. Hence, an

acknowledged way of computing a machine efficiency for linear cascades design purposes,

in this case turbines, is the enthalpy loss coefficient. It is defined as the ratio of the

outlet real and isentropic enthalpy difference against the outlet isentropic enthalpy change

from stagnation to static conditions - hence outlet kinetic energy. Through isentropic

relations it can be expressed as function of static and stagnation pressures, as:

ξ =
h2 − h2is
(h02 − h2)is

⇒ ξ = 1−
1−

(
P2

P 0
2

) γ−1
γ

1−
(

P2

P 0
1

) γ−1
γ

(2.1)

The expression is obtained with the adiabatic field assumption: (h02)is = (h01)is.

In addition, Denton classifies the major loss categories in turbines by differentiating them

on entropy-generation sources: boundary layers evolution on walls, due to viscosity shear

stresses dissipating flow energy in near-wall regions; and mixing processes, unsteady phe-

nomena that occur whenever two fluids with different momentum and vorticity encounter

and exchange shear strain in order to balance their static pressure - cinematic constraint.

An example of high shearing rates can be seen in wakes, separation vortices, leakage jets,

and so on. As a consequence, viscous losses have historically been distinguished into three

main families:

• Profile loss ξprofile: generated by the interaction between boundary layers and blade

surfaces, where the flow is bi-dimensional - hence far from endwalls - and typically

account for a third of the total loss.

• Endwall loss ξendwall: often named as secondary loss, is related to the interaction

between boundary layers and endwalls when passing through the blade passage. Since

4

2.1 Mechanisms of Secondary Flows Formation

this interaction also gives birth to the secondary flows, which then evolve from the

passage to downstream - as further better explained -, it is still a challenge isolating

the contribution of secondary flows three-dimensional complex evolution from the

solely viscous effects of the boundary layers on the endwalls.

• Tip leakage loss ξtip: a mixing loss that occurs in unshrouded blades, like rotors,

where flow is driven in opposite direction of main flow due to pressure gradients:

this produces vortices on blade tips, and consequent losses. Whereas, for shrouded

blades, this loss can be accounted when leakages over seals occur. Even this loss

source contributes to a third of the total loss.

A particular emphasis has to be placed on endwall losses, given their importance for this

work objectives. As a consequence, it is essential to first expose the phenomenon of sec-

ondary flows in turbine cascades and the mechanisms that govern their generation, accord-

ing to important findings in literature.

2.1 Mechanisms of Secondary Flows Formation

The research aimed to understand the physics of secondary flows started around the 1950s,

at a time when three-dimensional viscous numerical analysis was not possible to perform.

Therefore, the study of these complex flow phenomena relied exclusively on analytical

approaches. In particular, inviscid and incompressible flow equations were employed to

investigate the physics. Among the earliest models proposed, Hawthorne’s study in 1955,

[14], laid the basis for subsequent investigations in the field. He derived the vortex struc-

tures at the inlet and outlet of a cascade by applying vortex filament analysis to an inlet

boundary layer profile, under the assumption that the flow laid within the bi-dimensional

plane. Fig.2.1 shows that the orthogonal inlet vorticity distribution changes its orientation

to stream-wise, after the flow entrains the curved cascade passage. At this stage, it is

classified as secondary vorticity, and three main structures can be clearly distinguished at

the cascade exit: passage vorticity, generated when the vortex filaments gets distorted

when the flow transits within a curved passage; trailing filament vorticity, generated

by the difference in Suction Side (SS) and Pressure Side (PS) velocities that stretches inlet

vortexes; trailing shed vorticity, generated by the change of blade circulation in radial

direction. As the sketch portrays, the most influencing structure is the Passage Vortex

(PV).

5

2. LITERATURE SURVEY

Figure 2.1: Hawthorne’s cascade vorticity scheme, [14].

As previously stated, this model was recognised as the starting point for any following

research proposed, along with Squire & Winter model. An important breakthrough that

changed the perspective of the research was the observations made by Sieverding, [24]. In

fact, he highlighted that prior approaches relied on balancing flow equation in a control

volume, where flow quantities were evaluated only at the inlet and outlet. Whereas, also

thanks to flow visualizations advances made in those years, it was outlined that a compre-

hensive investigation of secondary flows should have required the analysis of the interaction

between the endwalls and the blades surfaces within the cascade passage. Building upon

this reasoning, subsequent works -particularly from Langston et al. in the 1980s [16], which

is among the most referenced- placed significant emphasis on the role of the Horse Shoe

Vortex (HSV) into the understanding of secondary flows physics. In general, according

to bluff bodies viscous fluid mechanics, the HSV is generated when an unskewed - bi-

dimensional - boundary layer develops on a planar surface and encounters a bluff body,

such as a cylinder, impinging on its front surface. The boundary layer separates just up-

stream the body due to an adverse pressure gradient imposed by the potential flow of

the body. Here, the streamlines are suddenly decelerated, and subsequently deflected to-

wards the endwall because of the strong downward pressure gradient that develops. These

streamlines driven by viscosity then generate a vortical structure that rolls up the body

surface, wrapping it around, resembling the shape of a horseshoe. This phenomenon occurs

also in blade turbine cascades, but acquires a remarkable complexity. A comprehensive

explanation of secondary flows was offered by Sharma & Butler in 1987, [23]. This study

integrated flow visualization results available at that time with various models previously

6

2.1 Mechanisms of Secondary Flows Formation

published in literature, with some additional insights derived from authors’ experiments

and research activities. Therefore, given its comprehensiveness, it is reported in this work.

(a) Secondary flows topology sketch, [23] (b) Endwall separation zones sketch, [23]

Figure 2.2: Secondary flows representation, Sharma & Butler

Fig.2.2a clearly shows the inlet boundary layer that approaches the cascade blades. In

the blades Leading Edge (LE) proximity, it separates forming the HSV. Here the authors

state that the greatest part of the fluid particles are entrained into the vortex, which is

divided into two legs: pressure and suction side leg. Whereas, the remaining particles

very close to the endwall gets transported towards the suction side of the adjacent blade

through convection. During the generation of the HSV, the normal vorticity to the inlet

boundary layer gets transformed into the streamwise component. In addition, the two legs

rotate in opposite directions. The pressure side leg when wrapping the blade surface from

the LE, is decelerated, while the counterpart on SS gets accelerated. As a consequence,

the low momentum fluid at PS results to be more susceptible to the pressure gradient

inside the passage, from the blade PS to the adjacent blade SS. This transit creates a new

boundary layer on the endwall within the passage. Therefore, the pressure side leg entrains

low speed flow particles which take part of this boundary layer, and then it starts to grow

becoming the PV. On the other side, the suction side vortex - counter-rotating - tends to

remain "sticked" on the blade SS surface, accelerating, until it reaches a point of minimum

static pressure. This point is also reached by the PV - which follows the blade-to-blade

pressure gradient -, and eventually both PV and suction side leg vortex interact. Their

interaction follow the path of the particles from the inner part of the inlet boundary layer

that gets convected towards the SS, climbing up the blade surface, as aforementioned,

which creates a separation line visible in Fig.2.2b between the zones S1 and S2. When

7

2. LITERATURE SURVEY

this complex system of vortexes reaches the blade Trailing Edge (TE), it comes to mixing

with the TSV, becoming the so-called Counter Vortex (CV), because of the high velocity

difference in span-wise direction.

Later in time, an additional insight was outlined by Denton & Pullan, [8]. In this numerical

analysis aimed to investigate the losses generated in a turbine stage basing on entropy gen-

eration mechanisms, it was highlighted that secondary flows are an inviscid phenomenon

itself. However, their interaction with endwall and blade surfaces contribute to generate

entropy, hence losses. As a consequence, no single dominant source of endwall loss exists.

The mechanisms that most influence loss are: dissipation of inlet boundary layer on the

rear blade endwall surface and of the "new" boundary layer formed within the passage by

PV; PV and HSV suction side leg interaction on the blade surface that dissipates energy;

downstream mixing loss.

In addition, the secondary vorticity field previously exposed generates an induced secondary

velocity field. The related kinetic energy is called Secondary Kinetic Energy (SKE), and

it is essentially associated with the secondary flows:

SKE =
V 2
norm + V 2

z

V 2
2is

(2.2)

where Vz is the span-wise velocity field, Vnorm is the secondary velocity obtaining projecting

the local velocity in parallel direction to the endwall

Vnorm = Vtan cosβ − Vax sinβ

where β is the angle between the axial and primary flow direction β = tan−1 Vtan
Vax

. As

further explained in [8], SKE is used to evaluate secondary flows shear interaction. As sec-

ondary flows development in the cascade is an inviscid mechanism, its dissipation through

viscosity can be linked to induced loss. Hence, if the SKE coefficient is evaluated by mass

averaging SKE, it is noted that it starts to decrease from TE to downstream. In fact, this

reduction directly corresponds to a raise in the stagnation pressure loss coefficient, hence

accounting for loss. The main challenge remains evaluating how much of this SKE decrease

is strictly due to secondary flows dissipation.

2.2 History of Research on Endwall Losses

What hitherto discussed underlines that a comprehensive understanding of secondary flows

physics has been acquired after almost 70 years of thorough research. However, its crucial

contribution when computing - and mainly predicting - losses has been clear since the

8

2.2 History of Research on Endwall Losses

beginning.

Since the early stages of research, as previously mentioned, the first models based on

secondary flow theory have been proposed. Among those, the one which would be then

revisited is from Hawthorne and his vortex filament analysis, [14], from which computed

the streamwise circulation of the streamwise vortex structures at the outlet of the control

volume- PV, CV and TSV - and presented as vorticity amplification factors (AFs) -

ratios of outlet streamwise against inlet boundary layer vorticities -

AF =

Γsec/

(
V2
Cax

h
2p cosα2

)
ω̄1/(V1/Cax)

where Γsec represents the secondary - streamwise - circulation at cascade outlet. Each

vortex structure contribution is expressed mainly as function of non-dimensional transit

time:

∆T ∗ = T ∗
PS − T ∗

SS =

∫
PS

(
V2

Vfs

)
d

(
S

Cax

)
−
∫
SS

(
V2

Vfs

)
d

(
S

Cax

)
(2.3)

where fs quantities are computed at the edge of the boundary layer. Hawthorne highlights

that the orientation of downstream stream-wise vorticity depends on the difference in PS

and SS velocities, hence considering how much time fluid particles take to "run" over the

blade surfaces. In fact, when PS velocities are low, the analysis predicts high intensity

secondary flows. This is logical since the lower the flow momentum on PS, the more it

is susceptible to blade-to-blade pressure gradient, and therefore the PV would be more

"feeded".

Some years later, in the latest 1970s, Marsh [18] revised Hawthorne amplification factors.

He applied Kelvin’s circulation theory - hence evaluating the effects of simple vortex sin-

gularities on the net velocity field -, but also added corrections by adding compressibility

effects. The expressions of AFs obtained by Marsh, which will be further re-examined, are

reported:

AFPV = M∗
(
V1

V2

)2
[
∆T ∗Cx

p cosα2
+

|V2
V1

sinα1 − sinα2|
cosα2

]
(2.4)

AFCV = −
(
V1

V2

)(
M∗V1

V2

∆T ∗Cx

p cosα2
+

(M∗ − 1)

cosα2

∣∣∣∣V2

V1
sinα2 − sinα2

∣∣∣∣) (2.5)

AFSHED = −
(
V1

V2

)(
M∗

cosα2

∣∣∣∣V1

V2
sinα2 − sinα1

∣∣∣∣ −(M∗ − 1)

cosα2

∣∣∣∣V2

V1
sinα2 − sinα1

∣∣∣∣) (2.6)

where M∗ =

(
1 + γ−1

2 M1

)2

, and therefore

AFMARSH =
∑
i

AFi = AFCV +AFPV +AFTSV (2.7)

9

2. LITERATURE SURVEY

Later in the years, although, theory-based models were gradually replaced by empirical

and semi-empirical approaches based on experimental campaigns. These models were

thought to achieve better agreement with experimental data, while often diverging from

the physics of the problem itself. For example, Dunham & Came [11] or Craig & Cox [7]

models developed in the 1970s, or even the one from Sharma & Butler [23], are among

these, and still today some of them are still used. For example, Sharma & Butler delivered

an empirical correlation to estimate the separation line penetration height ZTE , as in

Fig.2.2b, based on an extended turbine cascade data available at that time - for example

from works of Sieverding, Lanston et al., etc.

It resulted in:
ZTE

Cax
= 0.15

ε√
CR

+ f

(
δ1
h

)
(2.8)

where it is correlated with flow turning angle ε = |α1 − α2|, convergence ratio CR =

(ρU)exit/(ρU)inlet and a function of ratio between inlet boundary layer thickness δ1 and

the blade height h, expressed as

f

(
δ1
h

)
= 1.4

δ1
h

− 2.73

(
δ1
h

)2

+ 1.77

(
δ1
h

)3

According to them, evaluating ZTE was considered a good factor for the estimation of the

magnitude of secondary flow.

Further in the years, shedloads of empirical models exhibited varying performance in design

stages. In particular, the sensitivity of design parameters to predicted losses was yet not

universally established. This inconsistency may be attributed to the sparsity of available

data, which acted as bottleneck in developing a reliable model.

These issues have been highlighted by Coull, 2017 [4] work. In addition, the absence

of coherent data led to lack of consistent trends in the available models, along with the

fact that they were a result of empirical approaches, which often overlooked the underlying

physics of the phenomena.

As a matter of fact, Coull conducts a parametric study across a set of design parameters

-13-, through RANS CFD numerical analysis - see further section 3.1. He argues that

this approach represents the best way to collect data and develop a low-order correlation

model. Moreover, he proposes a breakdown of the measured losses - each evaluated with

the main parameters sensitivity -, and incorporates a theory-based model - specifically that

of Hawthorne and Marsh - to try to predict secondary flow-induced losses. In particular,

when discussing about endwall losses, he remarks that it comes very difficult to isolate

10

2.2 History of Research on Endwall Losses

their partial contribution to the whole loss. Therefore, he adheres to Denton point of view:

evaluating entropy generation rate on the surfaces. Hence, he distinguishes the sources of

endwall loss in: background dissipation loss - which accounts for the boundary layer

interaction with walls and represents losses measured regardless of the presence of the blade

in the passage - and secondary flow-induced loss.

The first component is evaluated with [9] model: from the entropy generation rate per unit

area
dṠsurf

dA
= CD

ρfsV
3
fs

Tfs

he derives the loss coefficient as a function of blade passage parameters:

ξCD ≈ 2CD

(
Aendwall

h · p · cosα2

)∫ (
T2

Tfs

)(
ρfs
ρ2

)(
Vfs

V2

)3

d

(
A

Aendwall

)
(2.9)

where the dissipation coefficient is kept constant as CD ≃ 0.002, and the quantities with

fs refer to free-stream, at the edge of the boundary layer.

Whereas, the secondary flow-induced losses are then calculated by subtracting the back-

ground dissipation loss from the total endwall loss:

ξsec−flow = ξendwall − ξCD

Afterwards, Coull investigates how secondary flows could be correlated through a relation

justified by the physical mechanism of their formation, rather then only an empirical-data

based one. As a matter of fact, he attains to Hawthorne vortex-filament mathematical

analysis, relying on the vorticity amplification factors, strictly linked to flow angles, veloc-

ities, and mainly on non-dimensional transit time, according to Eqs. 2.5 to 2.6, hence 2.7.

He finds out that secondary flow-induced loss correlates almost linearly with the sum of

vorticity amplification factors with compressibility correction by Marsh, with the relation:

ξMARSH−fit ≃ 0.0021 ·AFMARSH (2.10)

Eventually, the predicted global endwall loss results to be:

ξpred.−endwall = ξCD + ξMARSH−fit

performing quite well when compared to the measured endwall loss from numerical simu-

lations - as kinetic energy loss-, as in Fig.2.3.

In last instance, another crucial aspect to analyse when talking about secondary flows is

the sensitivity to inlet conditions, a concept already introduced by Sharma & Butler. In a

further work, Coull & Clark, 2021 [5] assessed the turbine cascade endwall loss sensitivity

11

2. LITERATURE SURVEY

Figure 2.3: Predicted vs. measured endwall loss, model from Coull, 2017 [4].

to inlet conditions. In particular, the properties of the inlet boundary layer ingested by

the cascade influence the topology of secondary flows. A combined influence of boundary

layer thickness δ and the shape factor H12 = δ∗/θ, obtained with the integral boundary

layer parameters:

• Displacement thickness δ∗:

δ∗ =

∫ δ

0

(
1− u(x)

U

)
dx = δ

∫ 1

0

(
1− ξ

1
n

)
dξ

• Momentum thickness θ:

θ =

∫ δ

0

u(x)

U

(
1− u(x)

U

)
dx = δ

∫ 1

0
ξ

1
n

(
1− ξ

1
n

)
dξ

where ξ = x/δ is the normalised wall-normal coordinate. Particularly, H12 has most

influence: higher shape factor boundary layers (laminar-like, H12 ≃ 2.6) produce very

different secondary vorticity distributions if compared to turbulent profiles (H12 ≃ 1.3),

due to the product of inlet vorticity and velocity ω1V1 peaks further from the endwall,

hence the maximum vorticity generated at the outlet results to be further towards midspan

- recalling Sharma & Butler ZTE . Furthermore, it is shown that high shape factors lead to

increase of SKE values by a factor of 2−3 if compared to turbulent profile, maintaining the

same thickness. This translates in up to doubled mixed-out endwall loss measured,

when switching from a turbulent to a laminar-like profile, as in Fig.2.4. This result is

12

2.2 History of Research on Endwall Losses

Figure 2.4: Endwall loss breakdown with different inlet boundary layer shape factors, varying
normalised thickness, [5].

also confirmed by the losses breakdown proposed by de la Rosa Blanco et al., [12]. This

conclusions are delivered through comparison of numerical data and the employment of

Rankine vortex theory, evaluating the effects of a vortex of intensity Γ and diameter D on

the obtained tangential velocity field when it founds to be at a distance d from the wall.

Coull & Clark analysis, eventually, focus on the sensitivity of vorticity distribution due to

secondary velocity, when comes to evaluating the behaviour of SKE with inlet conditions.

Theory imposes that the secondary circulation Γsec, computed with Rankine theory from

the secondary vorticity obtained from Hawthorne:

ωsec =
ω1

cosα2

(
V1

V2

Cax

p
∆T ∗ + | sinα1 −

V1

V2
sinα2|

)
where ω1 is the inlet boundary layer vorticity, p the cascade pitch, Cax the axial chord.

Hence:
Γsec

V2 · p cosαz
= U∗ · ∆T ∗Cax

p cosα2
+ |V1 sinα1

v2 cosα2
− U∗ tanα2|

, where U∗ =
(
1 −

√
1− (V1/V2)2

)
. When evaluating different blade geometries, the

normalised secondary circulation varies since dependent on ∆T ∗: higher turning angles

increase cross-passage pressure gradient, since lower PS velocities, hence SKE increases.

But, it remains constant with inlet conditions. Since real data obtained from numerical

analysis behaves differently from theory, a parameter is introduced in order to evaluate

only secondary vorticity distribution due to SKE:

ΠSKE =
ζSKE

(
h
2p cosα2

)
Γ2
sec/V

2
2

13

2. LITERATURE SURVEY

ζSKE is SKE coefficient, h
p·cosα2

represents the ratio between the channel height and the

effective passage width, Γ2
sec

U2
2

is the square of the normalized secondary circulation. It rep-

resents a non-dimensional parameter that characterises the effects of vorticity distribution

on the SKE field generated. in other words, it quantifies how a certain secondary vorticity

distribution generates SKE: high values of ΠSKE stands for vorticity distributions that

maximise the SKE field, and low values vice-versa. Fig.2.5 shows the relation between

the non-dimensional vorticity distribution and the boundary layer thickness normalised by

the orthogonal cascade passage area δ98/p cosα2, and parametrised with different bound-

ary layer characteristics, H12 or Blasius power law exponents n. It identifies three flow

regimes: Thin Boundary Layer Regime (δ98/p · cosα2 <∼ 0.1): Relatively low ΠSKE

values. Vorticity concentrated near the endwall; strong vorticity cancellation effect due to

“mirror effect” - Rankine theory; minor span-wise penetration of secondary flows. Buffer

Regime (δ98/p · cosα2 ≈ 0.1-0.5): Transition zone with rapid increase in ΠSKE ; opti-

mal balance between vorticity strength and its distribution. Thick Boundary Layer

Regime (δ98/p · cosα2 >∼ 0.5): ΠSKE reaches a maximum and then begins to decrease.

Vorticity more dispersed throughout the passage with larger vortex structures but with

reduced intensity, beneficial for secondary flows development in the passage, hence losses.

Figure 2.5: Non-dimensional vorticity distribution in relation to flow regimes, parametrised
with inlet boundary layer properties, from secondary flow theory, [5].

14

Chapter 3

Tool development

As forementioned, the aim of this tool is to robustly automate the 3D numerical analy-

sis of a selected number of optimised blade profiles and to provide an estimation of the

losses. This could help the designer in estimating principal parameters responsible for

secondary-flow loss of energy, from loading of a blade and proceeding to the impact of an

inlet boundary layer. The tool development phases, which are consistent with the actual

workflow sequence, will be the focus of this chapter.

3.1 The role of Computational Fluid Dynamics

Real phenomena

Mathematical model

Discretisation of the model

Discretisation of the space (mesh) Model equations discretisation

Numerical scheme

Algebraic equations system to solve

Post processing

15

3. TOOL DEVELOPMENT

Computational Fluid Dynamics (CFD) is a powerful means of analysis and prediction of

a fluid flow behaviour in motion, driven by its governing equations. To accomplish this,

their numerical solution is required. The way that each problem is modelled and how this

model is treated numerically gives birth to a certain type of CFD "technique".

The foundation of CFD, whereas, is the Navier-Stokes equations, which analytical solution

is still unknown: here comes the utility of solving them numerically. For a generic fluid,

with no hypothesis involved regarding its thermodynamics or its behaviour in space and

time, they state that every fluid particle, in a confined domain and in a defined time frame,

must obey to three conservation laws:

• Mass:
∂ρ

∂t
+∇ · (ρV) = 0

• Momentum:
∂(ρV)

∂t
+∇ · (ρV ⊗V) = −∇p+∇ · τ + ρg

• Energy:
∂E

∂t
+∇ · [(E + p)V] = ∇ · (k∇T) + Φ

where ρ is the density, V is the velocity vector, p is the pressure, g is the gravitational

acceleration, E is the total energy per unit volume, k is the thermal conductivity, T is

the temperature, and ϕ represents a generic expression of the dissipation function and τ

represents the shear stress tensor: its components are computed following the Boussinesq

approach, adopting the Stokes hypothesis for the bulk viscosity - its components are found

to be: τij = 2µ

[
Sij − 1

3
∂uk
∂xk

δij

]
, following Einstein notation.

Specifically, Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
represents the strain-rate tensor. Even though diving

deeper into their fascinating physical and mathematical background is of great interest,

this lies beyond the scope of this thesis.

The challenge, therefore, lies in selecting an appropriate modelling approach: the sim-

plifying assumptions, their mathematical expression and the numerical methods for the

resolution of the highly non-linear system of Partial Difference Equations (PDE). As a

matter of fact, an inherent error εtot lies between a CFD solution of a certain flow field

and its actual behaviour in real life. Each step that drives towards the numerical solution,

introduces a corresponding fraction of error: the modelling error εmodel; the discretisation

(or truncation) error ε∆x,∆t that depends on how space and time are discretized from

the real continuous "world": its order of magnitude is comparable to the order of Taylor

16

3.2 RANS: Reynolds-Averaged Navier-Stokes

expansion truncation; the grid error εgrid, eventually, represents the source of inaccuracy

introduced by the physical domain discretisation: the mesh.

In addition, the higher complexity regards the turbulence modelling. Turbulence, indeed,

portrays a fundamental characteristic inherent to fluid flows and it manifests through sta-

tistical and chaotic fluctuations of the flow quantities, hence almost impossible to predict

through a mathematical relation. In fact, above a critical Reynolds number, flow state

naturally transitions from laminar to turbulent. Historically, turbulent phenomena are

associated to scales, namely the average dimension of the flow structures involved, such

as vortices and eddies, since only an empirical analysis could be employed. Kolmogorov’s

energy scale, in particular, describes the hierarchical transfer of kinetic energy from larger

to smaller eddies due to energy dissipation effects, ultimately leading to Kolmogorov micro-

scales, where viscous effects are dominant.

Therefore, this multi-scale approach influences the treatment to numerical modelling of

fluids. In particular, the littler the scales to catch, the higher the complexity of the sim-

ulation. According to Kolmogorov’s theory, the ratio between the largest and smallest

turbulent scales is comparable to Re
3
4 . This clearly affects the spatial discretisation: in

order to capture the smallest dissipative scales, the average mesh cell dimension must be

comparable to it, in all the three dimension, hence ≈ Re
9
4 . In addition, when solving the

equations, the temporal resolution must decrease accordingly to spatial one to mantain

numerical stability ensured by the Courant-Friedrichs-Lewy (CFL) condition.

Ergo, different computational approaches are available based on the desired turbulent

scales resolution. Direct Numerical Simulation (DNS) resolves every energetic scale from

the large eddies to the Kolmogorov’s micro-scales requiring no assumptions, hence no mod-

elling, but being the most computationally prohibitive, especially when dealing with high

Re flows. Large Eddy Simulation (LES) resolves every scale larger than a grid depth filter

∆ - that can be a value rather than an adaptive function of the flow field - and modelling

any smaller energy scale, offering a fair trade-off between accuracy and computational cost.

For design-oriented problems, where minimizing computational demand is crucial, mod-

elling every turbulent scale through closure equations, to add at the PDE system, can also

deliver a good trade-off with results obtained.

3.2 RANS: Reynolds-Averaged Navier-Stokes

This is the case of the Reynolds-Averaged Navier-Stokes (RANS) approach: time-averaging

the equations so that any flow quantity fluctuation in time is cut off. Closure equations are

17

3. TOOL DEVELOPMENT

thought to replace those phenomena. The RANS approach theory is based on the arbitrary

decoupling of a quantity as a sum of its averaged value and the fluctuation value. Given

A a flow quantity:

A(x, t) = Ā(x, t) +A′(x, t) (3.1)

where, dealing with statistically stationary problems:

Ā(x, t) =
1

Tf

∫ Tf/2

−Tf/2
A(x, t+ τ)dτ (3.2)

For compressible flows, where also density is decoupled, this way equations get more com-

plicated to treat. Therefore, Favre averaging helps to deal with great variations in density:

Ãi(x) =
1

ρ
lim
T→∞

∫ t+T

t
ρA(x, t)dt (3.3)

When comes to averaging momentum and energy equations, a new term comes out and

needs to be modelled: the so-called Reynolds stress tensor τij = −ρu′iu
′
j = −ρ(uiuj−ūiūj),

which takes into account small scale fluctuations behaviour. It is a symmetric matrix, and

its trace tr(τij) is linked to the fluctuations kinetic energy. A strong approximation in

this approach occurs when modelling it through the linear Boussinesq model [2]. Here, the

approximation stands in the introduction of the turbulent viscosity µt. Since viscous effects

are driven by molecular diffusion, which consequently depends on the average particle

velocity, Boussinesq leveraged this concept in order to link the turbulent energetic scales

with the mean flow field:

τij = 2µtS̃ij −
2

3
µt

∂ũk
∂xk

δij −
2

3
ρ̄kδij (3.4)

written in Einstein notation. The stress tensor is splitted into an isotropic and anisotropic

contribution.

Therefore, the introduction of the closure equation 3.4 adds one more variable when

comes to the solution of the system of PDEs: µt itself. As a consequence, an infinite

literature is available for choosing it, identifying a turbulence model. It is possible to clas-

sify them into: algebraic models (i.e. Baldwin-Lomax), one-equation models (i.e. Spalart-

Allmaras) or two-equation models (i.e. k-ω, k-ε, Menter SST, etc.). It has to be highlighted

that any turbulence model is conceived starting by a strong empirical hypothesis, since their

expressions are often filled with coefficients. That is to say, physical application has its

own suitable model.

That being stated, the resolution of NS equations, most commonly for RANS models,

nowadays is relegated to commercial solvers. In these cases, through optimisation of the

18

3.3 NUMECA FINETM/Turbo, IGGTM and Python environment

computing processes, the setting up of GUIs (Graphical User Interface), the elevated in-

tegration with CAD softwares, these softwares enhance the CFD workflow providing a

streamlined workflow and eliminating codes manipulations.

3.3 NUMECA FINETM/Turbo, IGGTM and Python environ-
ment

The tool has been developed in Python, a high-level programming language known for its

intuitive syntax, but mostly for its extensive library ecosystem that allows to implement

algorithms that perform whatever wanted task, in particular handling data very easily.

Moreover, it is highly integrated in NUMECA Cadence commercial softwares suite: it

allows the user to execute the same tasks that can be made through the GUI, but through

tailor-made scripts. Hence, it is highly arranged to automated processes, where no user

interaction is needed.

Solving a CFD problem requires three fundamental steps: meshing, meaning to discretise

the space of the flow domain into cells; solving numerically the Navier Stokes equations

through a solver, from which depends the nature of the numerical solution of the flow

obtained; post processing the data, which means to extract all the aero-thermodynamic

data of interest to be processed or just visualised.

In order to perform these tasks, NUMECA provides a specialised software for each of

them. The first, IGGTM - Interactive Grid Generator - is "an Interactive Geometry modeler

and Grid generation system for multiblock structured grids" [30] that, among its features,

provides an in-sight CAD modeler which can handle and edit external CAD geometries

and, of course, a powerful meshing tool that creates multi-block structured meshes that

most fit the geometry - with algebraic or elliptic smoothing algorithms. Furthermore, in the

design point of view, it provides an automatic and fast mesh generator, AutoGrid5TM, that

allows the user to create the desired grid by touching the desired parameters, but ensuring

quality control, because a bad-quality mesh can produce inexact results or fatalities during

the computation. In the tool framework, the latter will be used. Then, the the following

is FINETM/Turbo solver, a "state of the art 3D multiblock finite volume flow solver" [29]

capable of solving both inviscid flows, governed by the Euler equations, and viscous flows,

described by the Navier-Stokes equations. It enables the simulation of both internal and

external flow fields, with all relevant settings and characteristics integrated within a single

project. Furthermore, it supports computation in batch mode, allowing simulations to

be executed without user interaction via the graphical interface, thereby enhancing its

19

3. TOOL DEVELOPMENT

compatibility with automated workflows. Lastly, with the purpose of analysing results,

the third in-house software is CFViewTM which particularly embodies the automation

adaptibility. In fact, it makes quantities analysis very manageable thanks to execution of

user-made Python scripts.

In order to gain a more comprehensive understanding of the tool framework development,

it is beneficial to focus on the file formats that these softwares handle.

• IGGTM : The CAD blade extension selected for this project is .IGES, although

many other formats are also supported. Geometry files, which store the coordinates

of curves and surfaces, typically have either a .geom or .dat extension. For geometry

generation, the .geomTurbo file is particularly essential, as it is the only geometry

format recognised by AutoGrid5.

The final mesh consists of several key files:

– .igg – the primary mesh file,

– .bcs – defines boundary conditions for each patch,

– .trb – a template file containing all parameters that define mesh characteristics,

– .qualityReport – provides a detailed assessment of mesh quality indices.

• FINETM/Turbo: the main project file has .iec extension: contains any kind of useful

information of the computation, comprising mesh file, boundary conditions, numer-

ical models, etc. A project file can have many computations related to it, each of

them with their subdirectory. where result files are present. Among them, those

to be highlighted are: .run file, containing all computation parameters readable by

the solver and CFViewTM, but also computation management information for the

machine itself - i.e. sequential or parallelised process, number of processors to be

involved etc. - ; .cgns file, that contains the whole solution - so it is the one that

occupies most memory on the machine -, .res and .std files that keep track of the

solution convergence history; and the .batch file, which is a batch script that launches

the computation in the directory

• CFViewTM: for the interest of the project, in order to visualise the computation,

only the .run file is needed. Apart from this, Python scripts will be essential for data

extraction, so .py extension files, so called MACROs.

20

3.4 Overview

3.4 Overview

In order not to confuse the reader with the development of this tool codes and detailed

approaches, and to maintain all of the steps involved in clarity, this chapter will first discuss

a step-by-step development process - to get an ’horizontal’ vision of the workflow - and

then cover the actual functionalities of the tool: the automation of processes and data

handling. The first part can be arranged in the following key points:

Figure 3.1: Tool structure

• Processing of the 2D blade geometry file, which involves the problem of closing its

Trailing Edge and the creation of the CAD file, through a specific Python script.

• Definition of the computational domain and generation of .geom and .geomTurbo

files in IGGTM for seamless import into AutoGrid5TM: mesh generation, specifying

approaches and methodologies consulting literature.

• The CFD methodologies and workflow are then discussed in detail: from the bound-

ary conditions set by user, to the numerical schemes and turbulence models, ensuring

stability and robustness.

21

3. TOOL DEVELOPMENT

• Exploration of the potential extreme test cases for secondary flows formation, given

their sensitivity to both blade turning and inlet boundary layer: two representatives

are selected for a mesh independance study, and finally leading to the definition

of a suitable mesh, subsequently used as template for the whole dataset of blades

generated. A trade-off between computational time and solution convergence is then

evaluated.

• Demonstrating the entire automated process: the pre-processing of the entire set of

input geometries, the computing of boundary conditions based on user input param-

eters, the mesh generation of the entire dataset, the creation of project files, the

launch of computations, real-time monitoring, error logging, post-processing, and

data handling.

3.5 Geometry and CAD

The first feature of the tool is the 3D blade geometry generation, as forementioned. As

input, an already optimised blade profile (x, y) set of coordinates is given to the code.

This profile is the result of a distinct blade generation tool that is intended to generate

geometries that satisfy user-defined criteria, specifically aerodynamic duty — such as inlet

and outlet flow angles α1,2, Reynolds number Re2is , and outlet Mach number M2 —

under specified operating conditions. Additionally, the tool allows for customisation of the

blade aerodynamic style by defining the loading through a non-dimensional Mach number

distribution on the pressure and suction sides, controlled via four key parameters, as in

Figure 3.2. To achieve this, a deep learning model has been implemented [21].

Figure 3.2: Blade loading - target vs real; blade profiles

22

3.5 Geometry and CAD

The real loading is computed through a 2D CFD simulation through MISES, which

outputs, in particular, the values of α2, M2 and profile loss coefficient ξ computed given

Re1ax and M1. The value of the loss does not include trailing edge loss: in fact, in order to

impose the Kutta condition at the TE, it is left arbitrarily open, as the sketch in Figure

3.3.

Figure 3.3: Optimised blade airfoil sketch

Hence, the first task of tool’s blade_processor.py is to appropriately close the trailing

edge.

Figure 3.4: Trailing edge: NURBS curve with control points

23

3. TOOL DEVELOPMENT

This means to shape it in a way that profile curvature must be kept constant, other-

wise spurious oscillations in the solution flow field would occur in the edges proximity,

hence where the curvature function is discontinuous. Specifically, curvature is defined as

κ(s) = dθ
ds - where s is the curvilinear coordinate along the airfoil and θ(s) is the angle

between the tangent line and the abscissa x. In order to avoid edges, a C2 continuity

condition has to be established [1]: when building the trailing edge closing curve, both

κ(s)|s=sP0,P3
and dκ(s)

ds = d2θ(s)
d2s

∣∣∣
s=sP0,P3

have to be constant.

This is done through a geometric enforcement. Considered P0 and P3 as the opened

airfoil endpoints: the two lines tangent to the profile, intersecting them, are tracked and

kept as construction lines - blue and red dashed lines in Figure 3.4, shaping the so called

wedge angle. Given the conjunction line between P0 and P3, P0P3, it is than translated

parallelwise of a quantity d = k ·P0P3, the displacement parameter, expressed proportion-

ally to the axial chord Cax. The intersection with it and the construction lines yields the

points P1 and P2.

These will become the NURBS - Non-Uniform Rational B-Splines - control points with

the airfoil endpoints. This is implemented through a NURBS curve construction that en-

sures geometric continuity. The key function compute_intersection_point calculates the

control points necessary for a smooth TE closure:

P0 : Starting point of the open airfoil

P3 : Ending point of the open airfoil

vr : Tangent vector at P0

vs : Tangent vector at P3

d : Distance parameter (typically 0.5 · ∥P3 −P0∥ = f(Cax))

(3.5)

The algorithm proceeds as follows:

1. First, Pmid is the midpoint of the segment P0P3:

Pmid =
P0 + P3

2
(3.6)

2. Computing the normalised vector of P0P3:

vnorm =
P3 − P0

∥P3 − P0∥
(3.7)

24

3.5 Geometry and CAD

3. The normal direction n to P0P3:

n =
vnorm × (vnorm × vr)

∥vnorm × (vnorm × vr)∥
(3.8)

4. The control point Pm is located at distance d from Pmid along n:

Pm = Pmid + dn (3.9)

Eventually obtaining P1 and P2 through intersection of them:

P1 = P0 +

(
(Pm − P0) · vr

∥vr∥2

)
vr (3.10)

P2 = P3 +

(
(Pm − P3) · vs

∥vs∥2

)
vs (3.11)

Finally a NURBS curve is built with compute_nurbs_curve, which can be given a vector

of n+ 1 weights that work as "attractors" for the curve. For this simple circular arc case,

a weights=None condition is given. An optional function for curvature computation is

implemented, adhering to the mathematical formulation proposed by Agromayor et al. in

their appendix [1]: κ(s) = |T′(s)×T′′(s)|
|T′(s)|3 . The curvatureis computed using the cross product

of the first and second derivatives of the tangent vector T, normalised by the cube of the

tangent vector magnitude.

Once the airfoil is closed, it is first scaled on both (x, y) ensuring unitary Cax. subse-

quently, after having splitted the blade coordinates into (PS) and (SS) an interpolation

of the points has been done with BSplines - through create_SS_PS. Once the airfoil is

checked and correctly closed, it gets extruded linearly of a quantity h as user input through

create_extruded_spline, which creates the LE and TE conjunction lines and the SS and

PS surfaces through BRepPrimAPI_MakePrism operation. Eventually, an .IGES CAD

file is created with export_blade_to_iges, and saved in the output directory of .IGES

files. In order to accomplish of these tasks, especially the last ones, without interacting

with a CAD software, a Python library has been employed: Open CASCADE, [31].

25

3. TOOL DEVELOPMENT

(a) Output .IGES

visualised in
FreeCAD.

(b) Screenshot of the .IGES

file imported into IGGTM.

Figure 3.5: Blade .IGES file output.

The features explained thus far are executed specifically by blade_convert_IGES_v2.1.py.

The script is loaded inside blade_processor.py, which is a class that implements this file

handling and blade conversion robustly providing detailed error reporting and logging. Ac-

tually, it loads dynamically the aforementioned script after checking directories and using

the blade number that was obtained from an input file. The variables in output are han-

dled through dynamic parameter injection - kwargs.

Once generated the CAD file with the correct extension handled by IGGTM, the following

step consists of creating the domain extension lines, hub and shroud, and it is operated

by igg_processor.py. Their definition is necessary to characterise the blade row, which

is confined by the inlet and outlet planes. For this purpose, this task requires to open the

IGGTM interface and to add the two lines by first creating the hub line, connecting the LE

and TE points and performing line extension both for inlet and outlet, in terms of distance

from LE and TE respectively.

In order to clarify the reader’s comprehension, it is useful to establish a reference system.

Hence, the blade domain is defined in cartesian coordinates as (x, y, z) - since no rotary

component is involved -, referring to span-wise, pitch-wise and stream-wise directions, re-

spectively, conventionally to IGGTM.

Since the software needs the hub and shroud lines to intersect correctly the blade, it is

required them to be shifted slightly span-wisely. Then, the same approach is done for the

26

3.6 Mesh

shroud line, from a distance h with respect to the hub. A macro Python script has been

created to perform this in IGGTM environment: create_domain_extension_lines.py.

Figure 3.6: Blade with domain extension lines

After saving the new CAD file into .igg extension, everything is set up for the mesh

generation in AutoGrid5TM environment. To clarify for the reader, this procedure was

performed during the training phase. However, in the actual implementation of process

automation, it serves as the basis for generating a .geomTurbo file. The details will be

reported in the next sections.

3.6 Mesh

Project Initialisation

Project set up

Blade to blade mesh control

Flow paths control

3D mesh generation

The fundamentals of the mesh generation, especially for turbomachinery components

in this environment, are essentaially five. Additional steps can be added if the designer

27

3. TOOL DEVELOPMENT

is interested in comprising technological effects - i.e. seal leakages, purge flows, cooling

effects, etc., as suggests the user manual [28]. For the purpose of the project, a standard

turbine single-bladed row of a linear cascade configuration is considered.

The meshing phase starts with the project initialisation, namely the geometry definition.

There are two different ways: by importing geometry from .geomTurbo file, the in-house

software own way of reading and recognising the geometry given, or by initialising the

project through an external CAD file. During the initial phase of the project, the latter

approach was handled. Whereas, for the tool implementation, the first was adopted.

Subsequently, the mesh project set up can therefore be organised into three steps:

Geometry & Configuration definition

Global parameters settings

Default topology definition

The geometry & configuration allows the creation of the .geomTurbo file starting from

external CAD through Import and Link CAD functionality. In particular, it entails the

import of the domain file like in Figure 3.6, and the manual assignment to the row features,

such as: hub, shroud, LE, TE lines and the blade surface. Once this task is completed,

the user can choose between generate the mesh between creating it manually by explicitly

specifying all parameters or by appealing to the Row wizard, a feature that simplifies the

process of generating the structured grid by optimising all of its features based on the user

selected parameters. It is also important to consider that in this case optimising means

to obtain a certain grid with desired shape and features and concurrently accelerating

the generation time process - since it mainly consists in solving elliptic partial differential

equations. While creating a new mesh from scratch confers more freedom in choosing nodes

distribution, attributes and optimal shapes, thus resulting in a higher quality grid, it can

also be highly time consuming. This is fundamental in the automation process point of

view.

28

3.6 Mesh

(a) Blade-to-blade view of manually created mesh: gener-
ation time 00:49:58 s

(b) Blade-to-blade Row wizard mesh: generation
time 00:04:14 s

Figure 3.7: Example: SPLEEN C1 High-Speed turbine cascade blade [25]

In first instance, a Geometry check is performed, to ensure that no open curves and

correct intersections are present. Consequently, the user is required to specify the machine

characteristics, whether the blade row is a wind turbine, axial turbine, Francis turbine,

Kaplan turbine, compressor, etc. For the scope of the project, axial turbine has been

selected. In addition, the value of the pitch p - or periodicity - has to be specified: this is

one of the inputs besides blade profiles coordinates, but normalised with axial chord, p/Cax.

There is possibility of adding fillets or gaps to the extremities of the blade. However, this

step was omitted for sake of simplicity. The following stage of the wizard control regards

the choice of the number of flow paths, or span points, and the width of the first cell at

the wall. The first represents the three-dimension resolution of the grid, while the latter

allows the user to superimpose a certain cell size for every surface/wall first layer within

the domain. In most CFD applications, the user must generate a mesh that helps the

solver to provide a solution compatible with reality, which necessitates not just spatial

resolution within the domain but also, peculiarly, wall resolution since the existence of

boundary layers. As explained in the turbulence model section afterwards, in order to

reach a certain value of normalised distance from wall y+ - which normally is linked to the

optimal value for its turbulence closure model -, there is the need of adding and/or shaping

29

3. TOOL DEVELOPMENT

the so-called prism layers in the walls proximities. Whereas, AutoGrid5TM only needs the

user to establish the width of the first wall cell, from which it computes the optimal grid

nodes distribution that satisfy important mesh quality requirements, such as:

• Aspect ratio:

AR =
max(x, y)

min(x, y)
, where x =

a+ b

2
, y =

c+ d

2

(see Fig. 3.8a)

• Expansion ratio:

ER =
max(x, y)

min(x, y)
, where x =

a1 + a2 + a3 + a4
4

, y =
b1 + b2 + b3 + b4

4

(see Fig. 3.8b)

• Orthogonality:

⟨x⃗, N⃗⟩, where x⃗ =
a⃗1 + a⃗2 + a⃗3 + a⃗4

4

and N⃗ is the normal vector to the block boundary face (see Fig. 3.8c)

a

b

c

d

(a)

a1

a2
a3

a4

b1

b2

b3

b4

(b)

a⃗1

a⃗2

a⃗3
a⃗4

N⃗

(c)

Figure 3.8: Mesh quality metrics

In order to guarantee solution convergence in the CFD solver and avoid numerical diffusion,

these quality parameters are essential. Hence, in order to obtained the desired value of y+,

the user manual provides the relation to compute the first cell wall distance ywall through

a truncated series solution of Blasius equation ([29]):

ywall = 6

(
Vref

ν

)− 7
8
(
Lref

2

) 1
8

y+ (3.12)

where Vref , Lref and ν are the reference velocity and length - in this case the inlet free-

stream velocity V1 and the axial chord Cax -, and the local kinematic viscosity, respectively.

30

3.6 Mesh

Once defined these two important aspects, the last step of the "wizard" requires the

Blade-to-blade mesh definition, namely the result of cutting the blade domain with an

(y, z) plane - or (m, θ) in cylindrical coordinates. (see Fig. 3.13a).

(a) Plane cut sketch

(b) Blade-to-blade blocks layout

Figure 3.9: Sketches figuring mesh blocks layouts. From [28]

Structured grids are normally composed of more blocks "glued" together to shape the

blade domain. Each block can be conventionally classified based on its utility. In particular,

among them, it is common to talk about H blocks, characterised by a cartesian distribution

of nodes in a way that faces, and so cells, are orthogonal one another, shaping an H-

like pattern. They are ideal for far-field regions, where flow quantities convection and

gradients do not follow a preferred direction. Therefore, a moderate value of aspect ratio

is recommended. Whether O blocks describe nodes distribution around walls such that

grid lines wrap the body concentrically through a radial distribution. They are conceived

to capture near-wall flows, therefore boundary layers and their features. Hence, since this

type of flow is predominantly axial, O-blocks cells feature relatively high values of aspect

ratios, resulting in elongated rectangular-like shapes.

Since this project deals with axial turbine blades, the default O4H topology is used in

accordance with research conventions in the field, as in Fig. 3.10.

31

3. TOOL DEVELOPMENT

Figure 3.10: Blade-to-blade control layout

Eventually, the last step of the project initialisation on Row wizard concerns establishing

the blade-to-blade mesh. In particular, the software proposes a default grid nodes plane-

wise distribution, that is to say assigning the number of nodes at each block boundary

- i.e. in Fig. 3.10, the number of nodes to discretise the O-block is 37 for both SS and

PS of the blade (1). Successively, the user is allowed to increase or decrease the so-called

grid level, that is the level of refinement desired. By doing this, it automatically computes

the number of points to assign at each block in a way that 3 multigrid levels are ensured

for each grid level. In other words, the distribution and number of grid points is always

set to make sure that when dividing "isotropically" the total number of points in (x, y, z)

directions by 2, 4 or 8 - respectively 2, 1, 0 multigrid level - the same ratio between them

throughout the blocks is always guaranteed, in order to preserve the grid features.

Afterwards, since the initialisation is completed, the user can choose between creating

the 3D mesh or editing the layout proposed by Row wizard - i.e. the distribution of the

span points, the number of points in each block in the blade-to-blade. It needs to be

highlighted that, after defining the desired blade-to-blade layout, the user can choose how

many optimisation steps the software must perform in order to run the smoothing elliptic

algorithm that creates the grid: after some trial and error, a value of 2000 is set - instead

of 200 as default - for any mesh created. A good check for an optimal blade-to-blade mesh

can be the orthogonality plotting integrated in the software, as in Fig. 3.11.

Figure 3.11: Orthogonality cells contour

32

3.6 Mesh

The latter option is normally preferred in order to better customise the grid topology

with a prior knowledge of the flow behaviour, specifically allowing local refinement in

domain zones where particular care is needed, or enhance the span points distribution,

for instance. This approach has been employed during the training phase and the CFD

workflow development of the project. Eventually, when all parameters are set, the user

then has to select Generate 3D mesh. As previously mentioned, the further the parameters

are from those optimally advised by Row wizard, the more time 3D meshing phase lasts. At

the end of the process, AutoGrid5TM creates the .igg, .trb, .qualityReport files associated

to the case. In particular, the latter’s content is also displayed (see Fig.3.12).

Figure 3.12: Grid quality check displayed after 3D meshing.

Recommended values by the software community and experts are roughly:

• Negative cells: 0

• Number of Grid Levels: ≥ 3

• Minimum Skewness (the measure of discrepancy between the element and its ideal

shape: > 15

• Maximum Aspect Ratio: < 15000

• Maximum Expansion Ratio: < 2

• Spanwise Angular Deviation: < 30 At a later stage, it is possible to edit each grid patch

manually. To specify, a patch represent a designated boundary condition that each face

contouring the mesh block must have, so that its physical properties are characterised.

This leads to a well-posed mathematical problem for the governing equations solved. In

turbomachinery applications, the most common patches within CFD solvers are:

33

3. TOOL DEVELOPMENT

• Wall: let the block behave like a solid surface, hence mathematically imposing the

impermeability or tangency conditions, if the flow is viscous or inviscid, respectively.

• Periodic: it establishes a pairing between two boundaries: the flow quantities in

each cell of the first are correspondingly the same for the coupled cell in the second

boundary. For instance, if a variable ϕ is evaluated between x and x + L - where

L is the periodicity length, such conditions are satisfied: ϕ(x) = ϕ(x + L) and
∂ϕ
∂x

∣∣∣∣
x

= ∂ϕ
∂x

∣∣∣∣
x+L

. It is largely adopted in linear cascades.

• Mirror: enforces flow field symmetry. It serves as a plane of reflection for the flow

quantities.

• Inlet: attributed for each block faces that represent the domain inlet. Here, flow

quantities inlet values are addressed by the user.

• Outlet: works as inlet, but represent the domain outlet.

To leverage the three-dimensional symmetry of the domain span-wisely, the numerical

campaign has been conducted by assigning mirroring condition to the block faces that

make up the shroud. As a matter of fact, simulating only half-blade domain guarantees

reduced computational cost while enhance mesh refinement.

34

3.7 CFD workflow

(a) 3D mesh: blocks

(b) 3D mesh: walls

Figure 3.13: 3D mesh example

The patch assignment is performed manually, whereas during the automation this is

addressed to a Python script comprised in mesh_processor.py, the Python class comprised

in the main tool script, which execution covers all the steps hitherto mentioned.

3.7 CFD workflow

Following the mesh generation process detailed herein, the numerical investigation frame-

work can be outlined. In the domain of CFD, distinct methodological approaches share

several common critical components: classifying boundary conditions across designated

domain patches; identifying appropriate numerical schemes that guarantee the stability

and consistency of the equations solution; defining convergence criteria; and, finally, im-

plementing turbulence models, as previously mentioned.

At this stage of process, it was first necessary to gain familiarity with the FINETM/Turbo

solver environment. In particular, preliminary test cases obtained from different input

blade geometries and mesh configurations have been employed in order to obtain results

that ensured both numerical stability and convergence, nonetheless a good quality solution.

The approach was largely based on a combination of trial and error and prior knowledge

35

3. TOOL DEVELOPMENT

gained in academic courses.

In particular, RANS steady-flow calculations have been performed, drawing upon the work

of Coull in 2021, [5], as it explains that, according to Marconcini et al. [20], these calcu-

lations can deliver an endwall loss estimation comparable to the accuracy of LES compu-

tations. In addition, the effects of unsteadiness and of the full stage - so rotor and stator

combined - are not taken into account, even though Denton & Pullan [8] highlight how

steady RANS overestimate losses, such in SKE prediction and entropy generation, and how

evaluating the whole stage could lead to higher loss values.

Always Coull [5], [4] states that it is widely acknowledged that inlet plane position can be

placed at 0.8 Cax upstream LE and outlet at 1.2 ÷ 1.5 Cax downstream TE, since quite

all SKE dissipates within this range, according to Denton & Pullan [8]. For the purpose

of the project, to ensure that the major quantity of the main vortex structures evolve and

dissipate, the outlet plane has been positioned at 2 Cax.

3.7.1 Boundary conditions

(a) Wall patches (b) Periodic patches (c) Inlet and Outlet patches

Figure 3.14: Boundary Conditions setup

A fundamental step in the CFD computation setup is defining appropriate boundary con-

ditions, namely mathematical constraints placed in certain zones of the domain - typically

at the inlet and outlet - that guarantee a solution for PDE equations system and ensure it

to be a well-posed problem. Hence, their nature appears to be mainly mathematical, but

when dealing with flow governing equations, it becomes also physical: adequate values are

needed to describe a realistic scenario. Each problem can require its own types of bound-

ary conditions that change in function of the type of fluid treated and its application - i.e.

internal or external; reacting or non reacting; supersonic or subsonic flows, and so on. A

36

3.7 CFD workflow

detailed treatment on the topic, although, goes beyond the scope of this work.

For what extents the application of this project, mainly Low Speed turbine blades, the

configuration of the flow field at the boundaries follows the standard approach for subsonic

flows, thus for parabolic equations. Specifically, two specific flow variables at the inlet,

while only one is applied at the outlet.

Inlet conditions are specified in terms of total quantities, thus total pressure po1 and total

temperature T o
1 , including flow angles (Vx, Vy, Vz normalized with the module of midspan

free stream velocity |V |). In addition, as previously mentioned, since dealing with RANS

model, further turbulence quantities are to be given. When a two-equation turbulence

model is employed, two values are to be given in addition. While, when dealing with a

single equation model, only one value in input is sufficient. Velocity magnitude is then

extrapolated by those input quantities.

Outlet conditions, as common practice, are specified through a pressure outlet condi-

tion - from a subcategory of conditions known as reflecting. It requires that the outlet

plane is everywhere subsonic, otherwise if locally supersonic, unphysical field reflections

and numerical instabilities could occur. In addition, since the software allows it, a back-

flow control is enabled: the solver automatically adapts total temperature values in order

to avoid local reverse flow, that brings to negative values of pressure and/or density, and

so to numerical divergence. In both inlet and outlet, a first-order values extrapolation is

applied. (See Fig:3.14c).

To complete the setup, periodic boundary conditions are assigned to the patches on the

other two domain boundaries (Fig:3.14b); wall type to the patches representing the cascade

endwall and the blade surface (Fig:3.14a).

The calculation of aero-thermodynamic quantities is performed by a subroutine based on

isentropic flow relations, as common practice. By doing so, a flow field physically coherent

with desired inputs is obtained. This is crucial for the numerical stability and, also, for

the quality of the solution perspectives. This routine has been conceived to match the tool

processing procedure, namely computing the flow quantities given certain inputs.

As previously mentioned, the ensemble of input airfoil geometries is a generated output

of an optimisation tool. Since it realises a desired blade loading, it also needs a compu-

tational means to verify if the predicted matches the measured Mis distribution along the

airfoil. In addition, its validation criteria includes also the outlet flow angle α2 esteem:

the prediction error ∆α2 = α2PRED. − α2MEAS. and its Root-Mean-Square (RMS) error.

The measured flow quantities are obtained numerically by fast-generated simulations run

37

3. TOOL DEVELOPMENT

on MISES, a coupled viscous-inviscid flow solver developed by MIT (Massachusetts Insti-

tute of Technology). It means that couples the inviscid effects of Euler equations and the

viscosity effects through boundary layer integral equations [10]. For that specific design-

case purpose, inlet flow angle α1, inlet Reynolds measured on axial chord Rex1 with total

temperature T o, outlet Mach number M2 and TE Kutta conditions - since open, the flow

must obey V⃗TEPS
= V⃗TESS

, both in modulus and direction. Hence, each blade geometry is

coupled with a report file outlet_XX databladeVALIDATION on which every inlet/outlet

computed flow quantities ratios, also including blade pitch p.

These represent the starting point for boundary conditions subroutine calculate_flow

_quantities. Coherently, it reads values of: p, α1,2, T o, M2 from each MISES output file

and accepts as input the desired value of Re2is . With these quantities prescribed, all aero-

thermodynamic quantities at outlet can be computed: static temperature T2 and velocity

V2 values from Mach and Total Temperature, and then density ρ2 and static pressure p2

with Reynolds. Subsequently, through mass conservation between inlet and outlet planes

constraint, inlet flow quantities can be determined. This methodology needs an iterative

procedure on guessing M1 value, compute the 0D-model mass flow, and compare it to the

outlet one, until their difference is lower than a tolerance value.

By doing so, the tool structure allows the user also to investigate the influence of the

Reynolds number Re2 within the design space already composed of loading parameters

and M2. It is important to emphasise that the expected flow regime in analysis is high-Re

fully turbulent, hence transition effects are not taken into account.

At this point, the solver project file .iec can be filled in with the boundary conditions

values if the user is only interested in an "uniform" inlet condition. In this case, imposing

constant flow values at the inlet plane, the computation allows the numerical development

of the flow, letting the endwall boundary layer evolve towards the blade passage, just before

encountering its potential flow effects. Alternatively, one can be interested in investigating

the effects of an "artificial" boundary layer imposed at inlet plane, as highlighted in the

review section.

Whereas, FINETM/Turbo solver allows the user to input boundary condition quantities

in terms of profiles allowing the reproduction of experimental conditions: angles, total

pressure, total temperature and turbulence closure values are accepted as span-wise distri-

butions.

Since this study aims to investigate the effect of the inlet boundary layer among the

parameters that effect secondary flow and endwall induced losses, a boundary layer at

38

3.7 CFD workflow

inlet is imposed through span-wise velocity ratio profile according to Blasius formulation:

u(x)

U
=

(x
δ

) 1
n
, for x < δ

u(x)

U
= 1, for x ≥ δ

Consequently, the velocity distribution is expressed as total pressure profile through in-

compressible flow relation:

u(x)

U
=

√√√√ 2
ρ(P

0(x)− P)
2
ρ(P

0 − P)
⇒

P 0
1 (x) = P1 +

(
u(x)

U

)2

(P 0
1 − P1)

It is noticed that three-dimensional boundary layer effects, such as skewness due to

incidence, are not investigated, despite their significant contribution to secondary flow

effects in turbine cascades.

Following the approach of [5], choosing parameters that shape boundary layer becomes

important for the data analysis. For this reason, the tool implementation is designed to

receive them as inputs. First, the thickness - normalised to the axial chord, useful for

design purposes - δ98/Cax has to be specified. In addition, two input configurations can be

handled: power-law exponent n, which allows to compute boundary layer parameters δ∗, θ.

Or, it is possible to give parameters ratios δ∗/δ and θ/δ and then a dedicated subroutine

computes the value of the Blasius power-law exponent. In both cases, shape factor is then

computed H12 = δ∗/θ. As Coull defends in his works, both δ and H12 are highly impacting

secondary flow, hence these values will be part of the data acquisition.

It is worth highlighting that the velocity ratio profile is sampled making sure that the

first point out of the wall, hence the second array point, is constrained roughly within the

first cell of the walls. This ensures that the solver performs accurate interpolation, as the

quality of inlet boundary layer profile sampling can influence loss distribution at the outlet,

so affecting their assessment - as Giovannini et al. outline [20].

Every aforementioned step is performed by generate_radial_bc.py, summing up: handles

two types of boundary layer parameters, computes midspan boundary condition values

through isentropic relations and generates inlet total pressure boundary layer profiles.

3.7.2 Turbulence model

The last step of boundary conditions setting is choosing the suited turbulence model. As

specified in the previous sections, the choice can be case-dependent when comes to run

39

3. TOOL DEVELOPMENT

RANS computations. In particular, flow regime, its steadiness or unsteadiness, flow do-

main extension and properties, for instance, can vehicle to one model despite another. As

a matter of fact, literature offers experts points of view for any turbulence model imple-

mented in own-built or commercial solvers, for a wide range of flows and their applications,

supported by experimental campaigns. As a consequence, a conventionally preferred model

can be employed.

To what extents steady RANS computations of turbine linear cascades, two equations

shear-stress-models - as k − ω, [20] or SST [5], [3]- and one equation Spalart-Allmaras

(S-A, [26]) [8], [17] are commonly adopted.

The two equations models, namely, add one transport equation for turbulent kinetic

energy k [m
2

s2
] and one for the turbulent kinetic energy dissipation rate ε [m

2

s3
],

meaning that their expression mimics NS mathematical structure: a time-variation term,

a convective term and a diffusive term - where, in particular, turbulent viscosity µt ex-

pression appears modelled as µt = ρ̄Cµ
k2

ε - combined with empirical coefficients, like Cµ.

Furthermore, as k − ω model name suggests, the energy dissipation rate is replaced with

specific dissipation rate of turbulent kinetic energy ω = ε/k [1s]. Without diving deeply

in the topic, historically k − ε model have been adoperated for external flows, whereas

k − ω for internal ones, each individually better performing in restricted cases. As a mat-

ter of fact, since the latter has been better treating near wall flows - and its behaviours

like transition and separation -, an hybrid model called SST (Shear-Stress-Transport) was

conceived by Menter [19] introducing a blending function that alters coefficients in case of

wall proximity, consequently obtaining turbulent viscosity. Hence, turbulence quantities

to prescribe at inlet plane are conventionally expressed in function of turbulence intensity

(Tu) [−] defined as:

Tu =

√
1
3(u

′2 + v′2 + w′2)

Vref

for internal flows like turbine application, normally accounts for 3-5% . And integral length

scale (ILS) [m]:

ILS = c
k

3
2

ε

from literature typically expressed as a percentage of axial chord, often chosen as 10% Cax,

as recommended by [4, 5]. Then, they are linkable to turbulent quantities:

k = 3
2(VrefTu)

2 ε = C
3
4
µ

k
3
2

ILS

Whereas, to what extents S-A model, a single transport equation in function of an eddy

40

3.7 CFD workflow

viscosity ν̃ [m
2

s] that is linked to turbulent viscosity by multiplying by flow density and

field corrective function fv1 , hence the "eddy" meaning. In this case, the inlet value can

be linked to the former quantities as:

ν̃ =

√
3

2
(Vref Tu ILS)

At this stage, SST model has been chosen and a value of y+ = 1 has been imposed in

order to resolve the viscous sub-layer of the boundary layer, as the Author suggests. First

wall cell width, then, has been computed with 3.12. In addition, an expansion ratio of

≈ 1.2 has been kept for cells on blade wall surfaces.

3.7.3 Numerical scheme and convergence criteria

In order to achieve numerical stability, choosing the best suited spatial and temporal dis-

cretization schemes is crucial. For steady RANS computations, only a spatial numerical

discretisation is needed. For this purpose, the commercial solver proposes two main ap-

proaches: centered and upwind schemes. Given that all test cases in this work pertain

to low speed turbine blades, the flow fields in exam are expected to be subsonic every-

where. Hence, due to their nature described as elliptic equations and since there is no

priviliged direction for wave propagations, both schemes are suitable. Although centered

schemes guarantee numerical stability, ensuring convergence, through "injection" of artifi-

cial dissipation terms, they could pay in solution quality. Whereas, upwind discretisation

schemes deliver high quality solution but are known to be less numerically stable, even

though stability can be controlled through solution slope limiters, as as summed up in [27].

Anyway, the latter is most suitable with transonic and supersonic flow regimes, governed

by hyperbolic equations, which are characterised by a unique direction where waves prop-

agate. In such, compressibility effects become crucial and, hence, the presence of shock

waves and other types of flow discontinuities must be accurately treated because of steep

gradients of aero-thermodynamic quantities can produce numerical spurious oscillations

compromising the solution. For this reason, upwind schemes deliver good solutions and

numerical behaviour by leveraging characteristic theory.

So said, in the first stages of numerical investigation, a trade off between two numerical

schemes proposed by the software is performed: second-order symmetric Total Variation

Diminishing (TVD) upwind scheme, with convective fluxes computed through Roe’s lin-

earised approach, [22], along with entropy fix correction by Harten, [13], and coupled with

Van Albada limiter; and centered scheme, employing the approach by Jameson & Mar-

tinelli, [15], which propose a blended second and fourth-order discretization schemes in

41

3. TOOL DEVELOPMENT

order to introduce numerical viscosity terms which avoid excessive numerical dissipation.

In addition, FINETM/Turbo allows to select CFL number, which scales the time-step sizes

used for time discretisation scheme’s iterations. Its value is crucial when solving unsteady

CFD computation, while in steady ones only indicates how fast the stationary solution

must be reached through numerical iterations, namely a fictitious time-step. For these

particular conditions, the software offers the possibility to run with CPU Booster, an op-

timised numerical algorithm employed to solve implicit equation systems - in other words,

a computational-effective matrix inversion algorithm. Consequently, convergence accelera-

tion is guaranteed. To fulfill this purpose, also Multigrid Initialisation is available: it allows

the solver to run first iteration steps with different coarseness mesh level, from the level

"0" - coarsest, obtained dividing the number of nodes isotropically in (x, y, z) direction by

the total number of levels - to "2" the actual mesh.

Initially, a preliminary numerical campaign has been performed to choose the most suited

discretization scheme, that ensured numerical stability most of all. Furthermore, a CFL

number of 1000 - with booster - has been set, with three levels multigrid initialisation.

To what extents convergence criteria, residuals threshold has been set to 10−7 with a total

number of 1500 iterations permitted, as arrest criteria. These boundaries were determined

a posteriori, given the simulations carried out.

3.8 Grid convergence analysis

Once the computational setup is established, the numerical investigation can be performed.

As outlined in Section 3.1, minimising the source of error generated by the mesh is crucial in

order to obtain a convincing numerical solution. Therefore, performing a grid convergence

analysis is widely acknowledged to be an indispensable practice when numerical results are

proposed in literature. In particular, it assesses whether the solution obtained approaches

the "true" mathematical solution - although itself affected by discretisation error - as the

computational grid is progressively refined. In this case, if a certain measured quantity

gets independent from the mesh density - i.e the number of cells - it can deliver a proper

estimation of numerical uncertainty, hence considered reliable. In addition, this practice

helps to establish a trade-off between the grid error and the mesh refinement level that

balances sufficient accuracy for the desired quantity estimation and, especially, computa-

tional cost.

As for turbomachinery applications, especially turbine cascades, mesh quality and density

are parameters that highly depend on the flow regime, the operational Re and complex

42

3.8 Grid convergence analysis

geometries induced flow topologies, as purge flows, cavity flows etc.; but also the type of

numerical analysis that wants to be performed.

In this work, as hitherto mentioned, steady RANS computations with fully turbulent flow

regime are realised, hence no complex flow phenomena are expected - such as high level

of turbulence and vorticity near transition and/or separation zones - and then a modest

number of grid cells is sufficient to reproduce the mean stationary flow field.

The independence study has been carried out bearing conclusions from Coull [4] and

Coull & Clark [6],[5] works. In the first, among the extended research on design sensitivity

to aerodynamic losses, a strong dependency of turning angle and blade shape against

endwall losses is outlined. In particular, the amplification factors, coming from "classic"

secondary flow theory - and then correlated with predicted endwall losses - strictly depend

on flow angles - hence turning - and velocity ratio across the passage, as for ∆T ∗. It comes

out that, independently from inlet conditions, for higher turning blade designs, AF values

tend to grow significantly with a near-proportional relation with secondary flow-induced

loss. In addition, from the second work, a correlation between AF and inlet boundary layer

thickness δ with SKE production is investigated from a design sensitivity perspective. It

emerges that SKE scales with the square of AF : consequently, high AF designs - hence

mainly high turning blades - are expected to produce higher magnitude of SKE, hence

"bigger" secondary flows. Moreover, these are also keen on being more sensitive to inlet

boundary layer properties, as illustrated in section 2. In fact, Coull [5] highlights that

laminar-like profile show higher peaks of inlet vorticity - and velocity-vorticity products -

far from wall, with respect to turbulent profiles which show this trend in near wall region.

As a consequence, levels of maximum vorticity generation result to be away from endwall,

hence greater span-wise penetration and heading towards the center of main passage flow.

Based on the points discussed thus far, a grid independence study has been carried out

for two contrasting test cases that could represent the extremes of a potential data-set

accounting for blade airfoil optimisation tool, and considering secondary flows behaviour:

• Laminar-like thick boundary layer with high turning blade

• Turbulent thin inlet boundary layer with low turning blade

The choice of boundary layer characteristics has been performed accounting for vorticity

distribution coefficient ΠSKE in function of normalised boundary layer thickness δ98/p cosα2

as in Fig.2.5, [5]. Through secondary flow theory calculations, their relation is parametrised

with power law exponent n and shape factor H12 of inlet boundary layer profile. Here,

43

3. TOOL DEVELOPMENT

three regimes are distinguished by the effects on secondary flows: thin boundary layer,

buffer zone, thick boundary layer regimes. The first involves low ΠSKE , this means that

vorticity is mainly relegated near the endwall, hence low secondary vortices penetration

(δ98/p cosα2 ≲ 0.1); and the latter shows the opposite trend, and therefore deleterious for

secondary losses (δ98/p cosα2 ≳ 0.5). Two values of thickness have been selected from the

figure plot values available. As thick laminar-like profile, de-normalised δ98/Cax = 0.3178

with n = 1.4, yielding a computed H12 = 2.43. Whereas, as turbulent thin, the correspond-

ing value chosen is δ98/Cax = 0.05 with n = 7, resulting in H12 = 1.29. Since dealing with

steady computations, the sensitivity analysis can be performed by evaluating a field quan-

tity useful for the analysis. Therefore, the plane-wise value and radial pitch-wise profiles of

mixed out averaged kinetic energy gross loss coefficient ξ extracted at 0.5 Cax downstream

TE and, in order to guarantee a bi-dimensional flow at midspan, a span-to-chord ratio

h/Cax = 3 has been chosen, [5]. Half-blade calculations have been performed since the

flow structure is expected to be symmetrical, in order to save computational cost. In addi-

tion, a central scheme has been employed for spatial discretisation, and S-A as turbulence

model with computed ν̃ as inlet boundary condition. The remaining numerical parameters

have been set as previously stated.

As commonly argued, the analysis is first conducted for 2D B2B mesh, constituting one

"layer". Once independence is reached, the structured 3D mesh is built up by a systematic

span-wise addition of these mesh layers. In order to capture the complex flow structures

near the endwall, the refinement is performed by adding layers - or flow paths - only rele-

gated in wall proximity. This is allowed by keeping constant Percentage of Mid-flow Cells

value at 23% in AutoGrid5TM environment. This parameter expresses the constant-sized

flow paths designated to occupy the main passage region, in percentage of the total num-

ber of span layers - intended to be towards midspan in this particular case. The value has

been chosen through trial and error in previous "training" computations, observing nu-

merical stability by limiting the span-wise cells expansion ratio that avoided computations

residuals to diverge.

3.8.1 LTHT (Laminar Thick High Turning blade) case

Turning α1 α2 Re2is M2 H12 δ98/(p cosα2) n
105.125◦ 40◦ −65.125◦ 1.1× 106 0.5 2.43 0.76466 1.4

Table 3.1: LTHT blade parameters and flow boundary conditions

44

3.8 Grid convergence analysis

Among the blade shape generation parameters, flow angles and M2 are reported in Table

3.1 along with inlet boundary layer parameters. As in Fig.3.15a, the blade shape suggests

also that it is intended to withstand high loading since its pronounced thickness. Moreover,

this characteristic, in conjunction with the high turning angle, confirm the suitability of this

test case for examining significant expected secondary flows induced loss, since the passage

blockage is increased, pressure side velocities are lower, and therefore higher values of ∆T ∗

are reached.

Fig.3.15b illustrates the span-wise boundary layer profile imposed at inlet. In particular,

it is noteworthy that total pressure distribution presents an inflection point towards the

wall, and this is explained mathematically by the value of the Blasius power law exponent

n = 1.4.

(a) B2B LTHT blade mesh

(b) Inlet boundary layer profiles and parameters

Figure 3.15: LTHT configuration

3.8.1.1 2D: Blade to Blade

As previously mentioned, the sensitivity analysis has been performed by leveraging the

B2B mesh refinement function through Levels offered by Row Wizard tool in AutoGrid5TM.

Therefore, the baseline mesh has been set to Level 4, as lower refinement levels delivered a

45

3. TOOL DEVELOPMENT

very coarse mesh. Subsequently, the increase of Levels mainly focused on suction side and

pressure side discretisation points. It is worth to notice that a higher amount of points

is destined to SS, since blade’s high thickness and high turning lead to higher suction

surface length with respect to PS. Inlet and outlet points exhibited minimal sensitivity

to mesh refinement, and the number of cells shaping the O-type mesh for boundary layer

capturing has been fixed to 29, ensuring a near-wall expansion ratio of ≈ 1.19. In addition,

a mesh cells relaxation has been adopted after the stream-wise position of z = 1.7 Cax,

since the evaluation of the loss is obtained by extracting flow quantities at z = 1.5 Cax,

and therefore saving computational cost. Tab. 3.2 synthesises the mesh properties of the

progressive refinement.

Level SS points PS points No cells

4 251 79 43302
5 289 89 56582
6 305 101 62926
7 313 107 68900
9 329 109 75878
10 366 119 87566
12 379 123 92340
14 409 137 120533

Table 3.2: B2B Mesh properties for LTHT refinement

2D RANS calculations have been carried out employing analogous methodological ap-

proaches with respect to boundary conditions and numerical methods, as previously ex-

posed.

The quantity evaluated for the sensitivity analysis is the profile loss in terms of kinetic

energy loss, as expressed in the Eq. 2.1. The profile loss is obtained by averaging static

and total pressure at the outlet plane and total pressure at the inlet plane along the pitch.

A mixed out constant area flow averaging technique has been employed, with a procedure

provided by SAE (Safran Aircraft Engines) that will not be shared in this thesis. However,

it is founded on an analogous approach outlined by Amecke in 1970s, hence solving four flow

governing equations (conservation of mass, momentum parallel to blade row, momentum

perpendicular to blade row and energy) but using a 1st order Taylor expansion. It is

preferrable to mass-averaging approach because the analysis can take main flow mixing

with uniform flowfield generated loss -mixing- into account.

46

3.8 Grid convergence analysis

As Fig.3.16 outlines, profile loss values apparently plateau around ≈ 3% since the first

refinement levels. Instead, an unexpected "under-shoot" occurs for the last two level of

refinement, accounting for a ≈ 0% of profile loss. Therefore, this mis-behavior has been

investigated looking at mass-flow trend between inlet and outlet for each test case (see Fig.

3.17).

Figure 3.16: ξprofile evaluation for different LTHT configurations

(a) Inlet/outlet mass-flow conservation. (b) Percentage of mass-flow non-uniformities.

Figure 3.17: Mass-flow investigation for 2D LTHT test cases.

In particular, Fig. 3.17a shows inlet and outlet averaged mass-flow values for each test-

case. Levels 4-10 show identical upstream and downstream mass flow values, suggesting

47

3. TOOL DEVELOPMENT

no issue related to convergence status of the computations. Whereas level 12 account for

a severe increase of mass-flow average value (from ≈ 7.5kg/s to nearly 11kg/s) and a

subsequent drop near baseline value for the finest mesh. Despite this behaviour, a marked

discrepancy between upstream and downstream values can be highlighted in the latter two

cases, suggesting for an incomplete convergence.

Moreover, non-uniformity of mass flow values extracted in the two planes can be analysed

(see Fig. 3.17b). As expected, for the first levels of refinement, a remarked heterogeneity

in mass-flow values is seen in the downstream plane - due to the wake. Whereas, an

uniform field is measured at the inlet plane: the discrepancy is recorded with mass-flow

values from ≈ 0.55% at inlet to ≈ 6 − 7% downstream TE. However, from level 12 this

trend is inverted: higher upstream mass-flow non-uniformity is overseen at inlet plane

with respect to downstream. This inversion is non-physical and suggests the presence of

numerical issues. This analysis provides essential evidence to conclude that the two finest

mesh configurations show perplexing flow behaviour because of numerical instabilities that

affect convergence and flow properties. Hence, they are discarded for the sensitivity

analysis.

Fig. 3.18 illustrates the final sensitivity analysis on profile losses: as the mesh gets refined -

number of total cells increases - the coefficient tends to plateau around ≈ 3% as previously

observed. Evaluating the relative error:

εrel =
|ξcurrent − ξfinest|

|ξfinest|

delivers a more tangible metrics for the discrepancy between the current coefficient and the

highest-mesh resolution one, in percentage (Fig. 3.19). Actually, level 7 represents the best

trade-off configuration between accuracy and computational cost. With a relative error of

2.5% with respect to the finest grid configuration, it accounts for 20,000 fewer cells, which

in building up the three-dimensional grid it is not negligible.

48

3.8 Grid convergence analysis

Figure 3.18: LTHT: ξprofile mixed out values against number of cells in different mesh
configurations.

Figure 3.19: LTHT: ξprofile relative error.

Fig.3.20, eventually, shows the mass-averaged pitch-wise distribution of the kinetic en-

ergy loss coefficient representing the wake of the profile.

49

3. TOOL DEVELOPMENT

Figure 3.20: LTHT: wake profile (pitch-wise distribution of ξ)

3.8.1.2 3D: Span layers

Once the B2B mesh configuration has been defined, the independence study can be carried

out on 3D grid by adding layers span-wisely, as aforementioned. 3D RANS computations

were conducted with four-cores parallelisation to enhance computational efficiency. CPU

time values reported, although, are not to be considered as fully reliable due to their inher-

ent dependence on several numerical factors. These comprehend the choice of numerical

schemes as well as the chosen value of CFL or the methodology employed for multigrid

initialisation. Further conditioning factors include the number of cores, the number of

mesh blocks and the scalability of parallel processes handled by the solver. A rigorous

evaluation of these goes beyond the duty of the present work. However, the reported CPU

times can serve as a qualitative indicator of computational cost.

Span points No cells CPU Time [s]

53 1.96M 5698 (-58.00%)
73 2.55M 6568 (-51.57%)
93 3.44M 9658 (-28.78%)
121 4.47M 10778 (-20.55%)
159 5.28M 13564

Table 3.3: 3D Mesh properties for LTHT refinement

The metrics to detect grid independence is analogous to 2D case, through kinetic energy

loss coefficient. However, in the context of 3D domain, the extracted flow quantities are

expressed as distributions along a plane. Consequently, both pitch-wise radial distribution -

as [20], [12]- and a plane-wise averaged values of ξ will be reported. Whereas, a distribution

50

3.8 Grid convergence analysis

of area-averaged exit flow angle α(x)−αis is not reported, despite its widespread adoption

as a metric sensitivity metrics. Likewise, a mixed-out averaging technique is employed to

ensure consistency in the methodology.

The kinetic energy loss measured at the outlet plane represents the overall gross loss,

which includes the inlet boundary layer profile energy loss, the effective loss generated

within the passage, the profile loss - computed in the last section - and, eventually, the

mixing loss, such as the entropy-generating mechanism of the high momentum mixing with

the uniform flow downstream. Hence, by employing a mixed-out averaging approach, the

mixing loss is also included in the evaluation, while this information is lost when mass-

averaging.

Fig. 3.21 illustrates the radial profiles of ξ at 0.5 Cax downstream TE, and the effects

of secondary flows are noticeable. In fact, the "wiggling" behaviour towards higher values

of kinetic energy loss is indicative of the presence of vortexes cores and complex flow

structures. Specifically, this is the effect of the interaction between Trailing Shed Vorticity

(TSV) and PV coming from blade’s upper SS, as well as the CV generated at the endwall.

It is noteworthy that the zones of high vorticity, and high losses, become more distinct

by refining the mesh, and this is noticeable in contour plots in Fig. 3.22. The first two

grid levels are apparently not sufficient to fully capture these features, while the last two,

representing the finest resolutions, plateau towards the definitive profile. In addition, to

highlights the contribution of the three main structures that increase the local vorticity

values, a contour plot of stream-wise vorticity ωx is shown in Fig. 3.24. Near the endwall,

CV clock-wise motion dominates the field. Whereas, climbing up along the suction surface

of the blade, the main kinetic energy loss core are visible, produced by the interaction of

TSV, always moving clock-wisely, with the adjacent PV moving counterclock-wise. Plane-

wise averaged vales of ξ in Fig. 3.23 confirm the trend: coarser grid configurations account

for a relative error of ≈ 2% with 2.5M cells, whereas the most accurate solution is achieved

by doubling the resolution. The best compromise is represented by the mesh configuration

built up with 93 span-wise points - mostly relegated towards endwalls, and with a total of

186 span cells if the entire blade is considered, summing up ≈ 3.44 million cells. It delivers

a relative error of ≈ 0.5% with respect to the finest grid, and therefore is chosen as the

final mesh for this test-case analysis, which eventually registers for a kinetic energy loss

averaged value of ξ = 0.0840.

It is interesting to notice that the main core vortex is located at x = 0.6 Cax and y =

−0.5 ÷ 0.3 Cax approximately towards the center of the passage. Moreover, it is evident

how the vortex cores tend to split into two, as the mesh gets refined. This phenomenon

51

3. TOOL DEVELOPMENT

is supposed to be a numerical induced artifact, potentially linked to the RANS turbulence

model employed - due to the Boussinesq linear approximation. At this point, a different

model, that does not depend on this assumption, can be tested in order to confirm what

stated -i.e. EARSM (Explicit Algebraic Stress k-omega Turbulence Model).

Figure 3.21: LTHT: Pitch-wise radial ξ profile.

Figure 3.22: LTHT: ξ contour plots.

52

3.8 Grid convergence analysis

Figure 3.23: LTHT: Relative error for plane-wise averaged values ξ.

Figure 3.24: LTHT: Stream-wise vorticity ωx contour plot.

To ensure that the inlet boundary layer characteristics remained unchanged in its evo-

lution path between inlet and blade LE, an additional computation of the same case was

performed, maintaining identical numerical methods and boundary conditions but shifting

the inlet position closer to the blade at z = −0.25 Cax upstream LE. Fig. 3.25, hence,

illustrates pitch-wise averaged profiles of Total pressure planar fields extracted at the de-

sired axial coordinate z for the foreseen case and for the "shortened" one, both compared

with the actual total pressure profile from Blasius power law (Fig. 3.15b).

53

3. TOOL DEVELOPMENT

Figure 3.25: LTHT: Total pressure profiles comparison between extracted profiles at two
different axial positions and theoretical Blasius profile.

3.8.2 Effects of inlet conditions

In favour of highlighting the effects of inlet boundary layers, as outlined in literature, the

same test case was subsequently analysed with an uniform total pressure field at inlet.

Midspan value of stagnation pressure is prescribed as input, allowing the uniform distri-

bution to naturally evolve along the endwall as the flow approaches the blade. This time,

three-dimensional CFD calculations are performed considering the entire blade, hence with

two endwalls - hub and shroud. Results confirm that imposing an "artificial" boundary

layer at inlet surely affects kinetic energy losses, since higher values are measured with

respect to an uniform inlet, as in Fig. 3.26b. In addition, also secondary flows result to be

more developed, and this contributes to the higher loss, Fig. 3.26a.

(a) ξMIX−OUT pitch-wise distribution for uni-
form and non-uniform inlet.

(b) ξMIX−OUT plane-wise averaged value for
uniform and non-uniform inlet.

Figure 3.26: Comparison of uniform and non-uniform inlet conditions on ξMIX−OUT.

54

3.8 Grid convergence analysis

3.8.3 TTLT (Turbulent Thin Low Turning blade) case

Turning α1 α2 Re2is M2 H12 δ98/(p cosα2) n
64.11◦ 8◦ −56.11◦ 1.1× 106 0.6 1.29 0.16332 7

Table 3.4: TTLT blade parameters and flow boundary conditions

For this case analysed, the same methodology has been applied. The mesh properties have

been selected to ensure consistency with those of the preceding case.

The blade shape has also been chosen looking at its thickness: due to the reasons explained

in the previous case, low thickness blade is desired -as in Fig. 3.27a. Table 3.4 summarizes

the main features for this test, outlining a lower value of turning angle - ≈ 40o less - and a

turbulent boundary layer characterised by a low values of thickness and shape factor, but

higher value of vorticity near wall, (see Fig. 3.27b), with the objective of evaluating a low

vorticity distribution coefficient.

(a) B2B TTLT blade mesh

(b) TTLT: Inlet boundary layer profiles and parameters

Figure 3.27: TTLT configuration

55

3. TOOL DEVELOPMENT

3.8.3.1 2D: Blade to Blade

As previously stated, the mesh properties have been chosen to be analogous for those of

LTHT case. In order to avoid generating two grids with remarkably different characteris-

tics, particularly concerning the anticipated automated process, the 2D B2B grid shows a

higher refined discretisation of the SS and PS than a low-thickness and low-turning blade

is expected, for the reason exposed previously for LTHT case. Indeed, it is arguably known

that fewer points for a solution-independent mesh are needed (Table 3.5).

Level SS points PS points No cells

3 193 85 40678
5 209 101 46406
6 217 103 55726
7 233 109 61630
9 249 117 70230
10 261 121 78622
14 281 137 96130

Table 3.5: B2B Mesh properties for TTLT refinement

Looking at the ξprofile averaged results, despite the trend seems to be less monotonic

with respect to LTHT case as in Fig. 3.28, the grid error introduced by those configurations

roughly follows its trend in values. As a matter of fact, Fig. 3.29 highlights that levels 3-6

register an error of ≈ 3 − 4%, while the independence is reached for the last two levels,

starting from 70.000 cells mesh.

The adequate trade-off between computational cost and relative grid error is identified

in level 7 configuration, accounting for 61.630 cells, and yields a relative error of around

≈ 2%, consistent with the previous case.

56

3.8 Grid convergence analysis

Figure 3.28: TTLT: ξprofile mixed out values against number of cells in different mesh
configurations.

Figure 3.29: TTLT: ξprofile relative error.

Fig. 3.30, similarly to high turning case, portrays the mass averaged distributions of

ξprofile, hence wake profiles. Although refined meshes do not reach a plateau, they approach

it sufficiently closely.

57

3. TOOL DEVELOPMENT

Figure 3.30: LTHT: wake profile (pitch-wise distribution of ξ)

3.8.3.2 3D: Span layers

The structured three-dimensional grid is then built following analogous criteria, summa-

rized in Table 3.3. It is worth to notice that, on average, despite the number of cells

constituting the configurations are comparable, the computational time requested to reach

numerical convergence is slightly lower, given the same numerical methods.

Span points No cells CPU Time [s]

57 1.92M 3141 (67.47%)
73 2.46M 4616 (52.17%)
93 3.13M 6523 (32.43%)
121 4.08M 7800 (19.23%)
157 5.29M 9655

Table 3.6: 3D Mesh properties for TTLT refinement

A substantial difference for the radial distribution of kinetic energy loss, in the case of

turbulent and thin inlet boundary layer, is observable, as in Fig. 3.31. As a matter of fact,

the presence of vortical structures that affect kinetic energy loss coefficient distribution is

mostly relegated to wall, according to theory. In addition, the observable vortex core is

only one - with the two cores observed in LTHT case - and it is significantly smaller with

respect to the previous case. This is confirmed by plane-wise averaged values of ξ in Fig.

3.33, always expressed in terms of relative errors. Initial refinement levels, in fact, already

deliver an acceptable error value of ≈ 1%, indicating a sufficient mesh density throughout

58

3.8 Grid convergence analysis

the domain, except outside the wall region. Also by analysing contour plots in Fig. 3.22,

it is evident that the mesh refinement has more moderate influence on the flow field.

As a consequence, despite the first two coarsest levels represent a sufficient result, consis-

tency in mesh properties is favoured. Hence, the third configuration is selected as most

suitable candidate since it registers a relative error of 0.5% with respect to the finest grid,

with a span-wise resolution of 93 points, with a total of ≈ 3.14 million cells. In addition,

a value of loss ξ = 0.0323 is obtained.

Figure 3.31: TTLT: Pitch-wise radial ξ profile.

Figure 3.32: TTLT: ξ contour plots.

59

3. TOOL DEVELOPMENT

Figure 3.33: TTLT: Relative error for plane-wise averaged values ξ.

The results obtained are coherent with theory: thin and turbulent inlet boundary layer

on low-thickness and low-turning blades are "beneficial" if secondary flow-induced losses

are analysed. Vortex cores at the outlet plane, in fact, result to be significantly closer

to the endwall at a span height of x = 0.2 Cax and less driven towards the passage at

a y = −0.2 Cax pitch-wisely. Therefore, this confirms that when inlet boundary layer

is thinner, therefore characterised by higher level of normal vorticity than a thicker one,

but relegated closer to the endwall, less fluid with normal vorticity enters the cascade and

then being proccessed. As a consequence, smaller HSV is formed at blade LE, hence lower

momentum PV developing in the passage and "climbing" the blade surface, hence smaller

overall secondary flows developed.

In Fig. 3.34, the total pressure contours extracted in the observed stream-wise plane cuts

are portrayed, through post-processing in-house software CFViewTM.

3.8.4 Final mesh configuration: test

This preliminary numerical investigation primary objective is to choose the most suitable

mesh configuration to serve as mesh template and further to be employed as reference

when comes to mesh a certain dataset of blades. Therefore, it needs to deliver a numerical

solution within a certain range of acceptability for almost every point constituting the

dataset. As this study has outlined, high turning, high-thickness blades with thick laminar-

like inlet boundary layer require higher mesh density due to amplification and wider spatial

distribution of secondary flow structures throughout the domain. Consequently, LTHT

60

3.8 Grid convergence analysis

Figure 3.34: Total pressure contour of inlet plane and z = 1.5 Cax in CFViewTM.

mesh configuration resulted to suit most the final mesh template, as it represents one

extreme of a potential dataset generated through the blade airfoil tool optimizer, whereas

TTLT figures to be its opposite counterpart.

For this reason, to conclude this part of the project, a "cross-test" has been performed in

order to evaluate how the TTLT case geometry behaved on to the template mesh, despite

their parameters has been chosen in order to show a consistent similarity between them.

For this purpose, a Python script that creates a .geomTurbo file has been created, enabling

its integration into the meshing process scripts of the tool. Once obtained a functional

geometry file, the cross-test mesh has been created by leveraging an optimisation-oriented

functionality of IGGTM which favours the generation of a mesh .igg file using the geometry

file of the desired blade and the .trb project file of the mesh used as template, only by

a command line process. This approach will be further detailed and implemented in the

automated workflow.

Fig. 3.35 shows the results of the TTLT original mesh against the low turning blade with

the template mesh. Overall, it performed satisfactorily: kinetic energy loss averaged value

got over-estimated of an ≈ 2.5% if compared to the original configuration (see Fig. 3.36).

In addition, no remarkable differences are detected in terms of ξ profile distribution along

the span, as in Fig. 3.35.

61

3. TOOL DEVELOPMENT

Figure 3.35: Cross-test: ξ (KSI) pitch-
wise averaged profiles

Figure 3.36: Cross-test: ξ (KSI) plane-
wise averaged values

3.9 Automated process

The definition of the final template mesh consisted in the last step before the tool could

effectively be deployed. In fact, as previously discussed, the main objective of the tool

is to conduct RANS three-dimensional simulations and post process them, starting with

just 2D blade airfoil shapes, generated by an optimization tool. It performs this task with

selected design parameters as inputs, that realise the desired blade loading. In particular,

these are classified in terms of aerodynamic "duty" - α1, α2, M2, Re, hence flow quantities

that play a role in determining the machine performance-; and "style", whose values shape

the loading distribution. Among these, Mpeak/M2 - the non-dimensional maximum Mach

number reached on SS-, and Lpeak - the stream-wise position of the velocity peak. In

addition, a coupled inviscid-boundary layer integral resolution simulation on MISES is

performed after the geometry is created. It delivers the real loading distribution, along

with the real outlet flow angle α2, compared with the expected value through angle error

and its RMS value. Their values measure the new blade’s loading prediction accuracy.

Since this blade optimizer is embodied into the main tool, ranges of these parameters are

requested as first user inputs, and will build up the dataset structure. Afterwards, each

blade airfoil coordinates file is generated along with the output results file of the related

MISES calculation, and placed in a dedicated directory.

62

3.9 Automated process

========= GENERATING BLADE DATA =========
Running optimized 2D blade generator...
=======================================
BLADE GENERATOR - PARAMETER CONFIG
=======================================
Enter parameter ranges
Alpha1 [deg] range:

Min: -40 Max: -20
Alpha2 [deg] range:

Min: 50 Max: 60
M2 range:

Min: 0.4 Max: 0.6
Lpeak range:

Min: 0.4 Max: 0.6
Mpeak / M2 range:

Min: 1.1 Max: 1.4

Selected parameter ranges:
Alpha1 [deg]: [-40, -20]
Alpha2 [deg]: [50, 60]
M2: [0.4, 0.6]
Lpeak: [0.4, 0.6]
Mpeak / M2: [1.1, 1.4]

Moreover, a table file resuming all parameters chosen for each blade is produced automati-

cally - blade_data_file.dat - as the example below. This builds up the basis of the final

dataset structure.

BLADE N. Mpeak / M2 Lpeak alpha1 [deg] alpha2 [deg] M2 Angle error [deg] RMS
1 1.100 0.400 20.0 -60.0 0.400 0.178 0.262765
2 1.400 0.400 20.0 -60.0 0.400 0.589 0.275358
3 1.100 0.600 20.0 -60.0 0.400 0.540 0.290181
4 1.400 0.600 20.0 -60.0 0.400 0.197 0.315698
5 1.100 0.400 20.0 -60.0 0.600 0.000 0.259629
.
.
32 1.400 0.600 40.0 -70.0 0.600 0.366 0.274152

This configuration settles the starting point for the actual tool workflow. In particular,

starting from a "raw" airfoil coordinates file, performing a three-dimensional CFD anal-

ysis and post-processing data by evaluating losses and loading parameters proposed by

literature in order to assess secondary-flow-induced losses correlation with the starting

parameters early mentioned. This goal is pursued by the tool ability to automate this

63

3. TOOL DEVELOPMENT

entire process, being able to elaborate a combination of different blades configurations,

and arrange a dataset that could be handled with any data-driven algorithm to fulfil this

objective. The tool implements a modular architecture based on Python processors, each

thought to handle every phase of the process hitherto outlined. This arrangement enables

separation of duties and enhances maintainability.

The main script that orchestrates the entire workflow is blade_generator_main.py, in

particular its function process_blades(). It begins with loading the table containing

blades configurations. Then all modules involved are initialised:

• BladeProcessor

• BCProcessor

• IGGProcessor

• FileProcessor

• MeshProcessor

• ComputationProcessor

• PostProcessor

• ProcessLogger

Each module functionality is resumed in Table 3.7. The preliminary step before the process

begins is capturing user inputs. In fact, the blade height normalised with axial chord

h/Cax is set as input, along with the actual axial chord Cax value in meters - to give

dimensionality to the problem. Moreover, the outlet Reynolds number is also set as external

parameter, as the output example shows.

=== User input values ===
Insert a value for half blade span normalized to Cax (MIRROR!): h/Cax = 1.5

Insert a value for Re2_is: Re2_is = 1200000

Insert a value for axial chord Cax [m]: 1

Afterwards, the user has to specify the desired inlet boundary layer parameters. The

tool is thought to elaborate the profiles from both n - power law exponent - or integral

parameters, expressed as ratios, as in [5], δ∗/δ and θ/δ, along with the thickness δ,. In

64

3.9 Automated process

Table 3.7: Summary of Blade Generator Tool Modules

Module Main Functionalities Key Methods

bc_processor.py Computes boundary con-
ditions, creates boundary
layer profile, creates the
new project file .iec.

handle_bc_selection(): Determines boundary condition type
based on boundary layer input configuration.
process_boundary_conditions(): Executes BC computing dedi-
cated script.

blade_processor.py Processes selected blade
geometries, closes TE, cre-
ates CAD .IGES files in
dedicated directories.

get_valid_blade_file(): Reads each blade geometry file (previ-
ous tool output).
load_script(): Dynamically loads blade .IGES CAD creation
script.

computation_processor.py Creates .run files, sets up
and launches parallel com-
putations, monitors .std
residuals files and handles
errors (logging).

generate_run_file(): Creates simulation .run files for
FINE/TurboTM solver.
set_parallel_computation(): Configures MPI settings for par-
allel execution.
monitor_std_file(): Checks computation progress and detects
convergence status.
retry_computation(): Attempts to recover from failed simula-
tions with proper restart.

file_processor.py Generates .geomTurbo
files, manages directories,
monitors disk space.

generate_geomturbo(): Creates .geomTurbo files from templates
and .dat files.
prepare_geomturbo_files(): Sets up all necessary .geomTurbo
files and directories.
check_disk_space(): Ensures sufficient machine disk space for
operations.

igg_processor.py Modifies IGG scripts, runs
domain creation, manages
blade output files for mesh
creation.

modify_igg_script(): Updates IGG scripts with current geome-
try parameters.
run_igg_processing(): Executes domain creation and geometry
processing operations.

mesh_processor.py Runs mesh generation, sets
boundary patches through
IGG.

generate_mesh(): Creates computational mesh using AutoGrid5
with templates.
set_mir_shroud(): Sets MIRROR boundary conditions on shroud
surfaces.
set_mesh_to_project(): Updates project files with mesh infor-
mation.

post_processor.py Executes post-processing,
computes performance
metrics, performs losses
breakdown.

execute_post_processing(): Coordinates extraction of flow field
data in CFView.
compute_loading_parameters(): Calculates Zweifel coefficient,
diffusion factor, circulation coefficient etc.
compute_loss_analysis(): Determines profile, and gross kinetic
energy loss coefficients.
compute_SKE_analysis(): Analyses secondary kinetic energy dis-
tribution along the passage.

bc_config_utils.py Reads configuration files,
validates parameters, pro-
vides boundary layer set-
tings.

validate_config(): Ensures parameters exist and are within
valid ranges.
get_bl_method_parameters(): Returns appropriate boundary
layer method parameters.
read_bc_config(): Reads configuration for specific blade from
file.

process_logger.py Handles logging of blade
generation process steps,
errors, and warnings with
timestamps and blade
identification.

log_step(): Records process steps with success/failure status and
timestamps.
log_main_error(): Records detailed error information with blade
identifiers.
log_warning(): Documents warning messages during processing.

65

3. TOOL DEVELOPMENT

addition, the value of turbulence intensity is requested as input for the successive project

boundary conditions setup:

=== Boundary Layer Configuration Setup ===
Boundary layer type (1 for laminar, 2 for turbulent): 1
Enter delta thickness (normalized with Cax): 0.2
Express boundary layer using [1] n (power law) or [2] ratios? (1/2): 2
Enter delta*/delta ratio: 0.379
Enter theta/delta ratio: 0.145
Enter Tu value (default 5.0): 5

It is also possible to read all these inputs from a file, in order to reduce the user I/O

interaction.

The following step involves generating boundary conditions inputs for each blade within

the group. More specifically, as detailed further, BCProcessor scripts accept a specific

input list of values to compute boundary conditions and create the computation project.

Therefore, bc_config.py is called to write bc_config.dat file containing inputs to perform

correctly the subsequent steps. Furthermore, each blade is subject to a "quality-check"

in terms of angle error and RMS values produced by the blade optimizer. In order to

accomplish this, a file containing user-predefined threshold values is read and compared

against each blade’s respective values during an initial inspection. If either the angle error

or RMS value exceeds the threshold, a flag ’X’ is assigned, meaning that configuration is

being discarded. Otherwise, the blade is labelled with an ’✓’, meaning that it can be

processed. The blade configuration table is then updated by generating the .DATAinput

file, formatted to include relevant aero-thermodynamic quantities, user-defined inputs, and,

where applicable, the quantities computed during post-processing. This structured dataset

corrisponds to the one thought to be suitable for data-driven analyses and optimization

processes. The specific thresholds are advised by blade optimizer’s tool author basing on

tool reliability limiting errors propagation that can lead to an unfeasible test case:

RMS = 0.5
angle_error = 1.0

The selected configurations are those considered suitable to proceed with the analysis.

Thus, the initial processing phase get started, and it is operated from BladeProcessor. In

an iterative process within the selected blades, it manages the Python scripts realised to

close TEs, perform a linear extrusion of the blade by the user-specified h/Cax, optionally

scale the dimension of Cax and generates the CAD geometry converting it into an .IGES

66

3.9 Automated process

format. Each processed blade is then stored in its respective directory. Moreover, dur-

ing the airfoil handling, the value of the stagger angle γ is computed and stored into the

.DATAinput file, since essential to compute isentropic flow quantities based on the real

chord instead of the axial one.

Afterwards, another cycle is performed within the group in order to establish the feasibil-

ity of the chosen span-to-chord ratio in terms of secondary flows penetration height ZTE

according to the empirical relation formulated by Sharma & Butler in 2.8. Hence, inlet

and outlet flow quantities are computed for every blade, and the expected penetration

at TE is then evaluated taking into account a safety coefficient of 1.5. If at least one

case does not satisfy this constraint, the maximum value of h/Cax = 1.5 · ZTE within the

configurations is kept. Hence, all the process of 3D blade generation hitherto outlined is

then repeated. Otherwise, the workflow proceeds, entraining the geometry and mesh

generation phase.

It is coordinated by MeshProcessor, IGGProcessor and FileProcessor, with the main ob-

jective of generating the mesh file in IGG and AutoGrid5 environment. This process is

anew carried out within an iterative cycle over the set of selected blades. In particular,

it is designed to first check whether the directory containing the mesh files includes a

folder corresponding to each blade number, because in this case it detects that a mesh

file already exists. If the folder is not present, the mesh generation process starts; other-

wise the workflow proceeds skipping meshing process. It is noteworthy that if the mesh

needs to be created from scratch, the procedure followed is analogous to that outlined in

the previous sections. The CAD .IGES file is imported into IGG, domain extension lines

are created and, since the objective is to generate the .geomTurbo geometry file, all CAD

"entities" - curve, lines and surfaces, (i.e. hub and shroud lines, leading edge and trailing

edge lines, suction and pressure side curves, and the relative blade surfaces-, are stored in

a proprietary formatted file marked with .dat extension and saved in a dedicated directory

for these type of files using the save_geometry_entities() software-built function. This

is performed by create_domain_script.py within igg_processor.py, which is run via

command line, thanks to the -script functionality, through the batch subprocess Python

function:

67

3. TOOL DEVELOPMENT

command = igg -niversion 182 -real-batch
-script {create_domain_script.py} -print

process = subprocess.run(
[command],
shell=True,
capture_output=True,
text=True,
executable=’/bin/bash’

)

The file obtained is necessary to create the dedicated .geomTurbo file. Since no built-in

function allowed to fulfil this, a Python script was then realised. After an accurate analysis

of the proprietary file structure, a similarity with the already generated file .dat was iden-

tified. In particular, after a series of header lines identifying the .geomTurbo file and the

specification of the geometry properties - such as the cascade pitch value - the file proceeds

with listing the geometry coordinates of all entities that compose the blade geometry, just

like the .dat file. Leveraging this similarity, the developed code takes a .geomTurbo tem-

plate file as input, replaces the pitch value (which is read from the MISES file located in

the input geometry directory), and substitutes the entities coordinate section with the data

from the previously created .dat file. As a result, a new .geomTurbo file is generated, which

can then be used, together with the template, to generate the final mesh file. Everything

above-mentioned is executed with FileProcessor in file_processor.py, in particular with

the Python functions generate_geomturbo() and prepare_geomturbo_files(). The last

step leverages the software functionality, specifically AutoGrid5, to generate a mesh .igg

file from a template project file .trb - which is the one chosen from the grid convergence

study - , the new geometry contained into the .geomTurbo file and the designated directory

for saving the generated mesh file. In particular, launching via command line:

igg -autogrid5 -real-batch -trb {mesh_templ_trb}
-geomTurbo {geomturbo_file}
-mesh {self.new_mesh} -print

This procedure is performed within the blade configurations in order to obtain mesh files

for each of the group component. The command -print is employed to display the en-

tire process in real-time, allowing the user to monitor progress and identify any potential

failures. Once the mesh file is successfully created, a dedicated Python script checks for

68

3.9 Automated process

the presence of all blade mesh files into its designated directory. To finalise the process, a

macro script on IGG, set_mir_shroud(), is then executed. It serves to apply the "MIR-

ROR" boundary conditions to those domain patches linked with the shroud, ensuring that

only half-blade domain is analysed. When the whole set of configurations is processed, the

meshing phase is considered completed. It is important to specify that it has been per-

formed in a separate iterative cycle in order to optimize time-efficiency. In fact, performing

mesh generation sequentially - one blade at a time, followed by computation - would have

significantly increased the processing time.

The successive step involves boundary conditions calculation, by means of BCProces-

sor in bc_processor.py, and the FINE/TurboTM calculation project setup. In partic-

ular, the cycle re-iterates within the configurations by reading the input values needed

for boundary condition processing from the configuration file initially created. As pre-

viously outlined, it contains: inlet boundary layer type, thickness δ normalised with ax-

ial chord, velocity ratio profile parameters defined as power-law exponent n or integral

boundary layer values, expressed as ratios with thickness, and turbulence intensity value,

for each blade. The tool efficiently manages multiple configurations through the func-

tion handle_bc_selection(). Afterwards, process_boundary_conditions() function is

executed. It recalls the aforementioned Python scripts useful to compute all inlet and

outlet quantities (generate_radial_bc.py), by giving input values: T o, Re2is ,M2, α1, α2.

Furthermore, the integral boundary layer quantities are computed with distinguished ap-

proaches based on inputs, and then the shape factor is computed H12 = δ∗/θ. Additionally,

the user is given the option to define initial conditions either by specifying velocity com-

ponents, pressure, and temperature values or by copying the already computed boundary

condition values. This flexibility is particularly beneficial for unsteady simulations, where

initial conditions strongly influence solution stability, whereas for steady computations,

they primarily affect the rate of convergence. Afterwards, the velocity ratio profile is built,

and subsequently the profile of P o(x) is obtained. It is imposed that the first point outside

the wall corresponds to the first wall cell center, determined by the computed y cell width.

It is then stored as Ptot.p coordinate file, a format readable by the solver. Upon storing all

relevant quantities and profiles, the script input_radial_inlet.py is executed to gener-

ate the computation project file relative to the case considered. It serves to compile a .iec

project template file, which results to be the LTHT computation file. This is achieved by

leveraging a prior analysis that determined the appropriate placement of boundary condi-

tion values, turbulence parameters, and initial conditions within the file. Hence, a dedi-

cated function has been developed for this purpose, modify_file_with_coordinates().

69

3. TOOL DEVELOPMENT

This code snippet helps to understand how this is performed. The computation name is

built by incorporating: blade number, the boundary layer type, the value of bound-

ary layer thickness.

For instance, in the case of blade number 22, with a laminar inlet boundary layer char-

acterised by δ/Cax = 0.2 is labelled as 22_Lam_02000_radial. This unique identifier is

consistently used throughout the analysis to reference this specific case. Subsequently, a

dedicated folder for the case is created inside Project_files directory. Then the template

file RADIAL_INLET_TEMPL.iec is accessed, and all necessary modifications are applied

to generate the new blade computation project.

70

3.9 Automated process

#Prepare and Modify the Template File
lines_to_modify_ptot_bc = {

2368: read_coordinates(coord_files[’pt’])
}
lines_to_modify_bc = {

173: V1,
175: rho1,
1770: P2,
2061: Vx_V,
2091: Vy_V,
2224: Vz_V,
2480: Ttot,
2613: k,
2634: epsilon,
2676: Tu, #Tu for SST

2655: nu_t,
2802: Tu #Tu for S-A

}
lines_to_modify_ic = {

1731: t_init,
1733: v_y_init,
1734: v_z_init

}
delta_formatted = f"{int(delta * 10000):05d}"
computation_name = f"{case}_{bl_type}_{delta_formatted}_radial"
lines_to_modify_name = {3: computation_name, 20: computation_name}
output_file = modify_file_with_coordinates(

TEMPLATE_DIRECTORY, TEMPLATE_FILE_NAME, output_folder_path,
computation_name, lines_to_modify_bc,
lines_to_modify_ptot_bc, lines_to_modify_ic,
lines_to_modify_name

)

Once the .iec file is successfully created, last function of mesh_processor.py, set_mesh_to_project(),

executes a macro Python script that accesses the project file through FINE/TurboTM and

links the project to the relative mesh previously created. This is a key passage for the

correct execution of the analysis. Afterwards, ComputationProcessor is first called to duty

in order to generate the .run file, starting with the project and the mesh of the blade

configuration in exam, via analogous command line feature :

71

3. TOOL DEVELOPMENT

Create computation path with correctly formatted name
self.computation_path = os.path.join(self.project_path,
f"{self.file_name}_computation_1")
command = f"fine -niversion 182 -batch -project
{self.output_path} -print

The .run file is created within the project dedicated directory; however, configured with

standard computational settings, employing a sequential process (e.g., a single-core exe-

cution). Given the three-dimensional analysis and the available computational resources, a

parallelised computation has been preferable. As a consequence, set_parallel_computation()

function executes an additional command line process to ensure that the .run file is con-

figured for parallel execution, leveraging Intel MPI technology.

self.computation_path = os.path.join(self.project_path,
f"{self.file_name}_computation_1")
self.run_file_path = os.path.join(self.computation_path,
f"{self.file_name}_computation_1.run")
Set comp_file before using it
self.comp_file = f"{self.file_name}_computation_1"

Number of processors for parallel computation
nproc = 7
print(f"\nNumber of processors: {nproc}")
command = f"fine -niversion 182 -batch -partition -load_balancing
0.85 -computation {self.run_file_path} -nproc {nproc} -print"

Specifically, the user has the flexibility to select the desired number of processors, but for

the scope of this thesis a fixed configuration of seven processors per computation has been

adopted, with no further scalability analysis conducted.

This iterative process terminates once every blade within the group has been success-

fully assigned its corresponding project. Before entraining the computational phase of the

automated process, particular mention must to be given for ProcessLogger, a processor

thought to provide a detailed error logging throughout every step of the aforementioned

workflow, including the subsequent computational steps. In particular, it generates a

blade_process.log file, which systematically records feedbacks on each process, aiming to

make the user aware and to address any failure. This can be valuable when comes to

handle a large number of cases, where individual monitoring becomes impractical. Hence,

72

3.9 Automated process

within the iterative cycles, every successfully completed or failed process is logged, as the

example below:

[2025-03-04 09:46:03] [Blade 1 - blade_1] Mesh Generation: ✓ SUCCESS
[2025-03-04 09:46:09] [Blade 1 - blade_1] Patch Setting: ✓ SUCCESS
[2025-03-04 09:46:09] [Blade 1 - blade_1] Project Setup: ✓ SUCCESS
[2025-03-04 09:46:21] [Blade 1 - 1_Lam_02000_radial_computation_1]

Computation Setup: ✓ SUCCESS

The core of the automated process lies in the computational analysis, performed by Com-

putationProcessor. With the objective of optimising efficiency, this phase does not follow

an iterative approach; instead, all configurations are divided into groups. The grouping

criteria are determined by the ResourceManager, a class that is designed to monitor the

available disk space in the machine - giving that every computation requires ≈ 5 GBs,

considering LTHT case as reference - and to track the available CPU cores in the machine.

These are compared against the pre-defined parallelisation settings for the project, and

eventually it limits the number of parallel computations expected to run simultaneously.

If no cores are available at a given moment, the script is able to wait for sufficient resources

before launching a group of computations, so preventing system overload. Afterwards, each

group is processed. In particular, launch_computation_with_monitoring() is executed.

Here, it leverages the functionality of the solver to launch CFD computations via command

line thanks to the execution of a .batch file generated along with the .run file previously

mentioned. In fact, the function is thought to identify every group’s blade batch file path,

then it ensures that the .batch file is built up in order to execute the process in paral-

lelised Intel MPI framework, and successively launches the process through command line

subprocess:

batch_file = os.path.join(self.computation_path, f"{self.comp_file}.batch")
self._update_batch_file(batch_file)
command = f"cd {self.computation_path} && ./{self.comp_file}.batch"

Soon after the computation is launched, monitor_std_file() function is invoked. It is

thought to give a real-time feedback on the computation residuals. In fact, when the simu-

lation is launched, the solver automatically generates an .std file, whereto instantaneously

writes the updates of the computation ongoing, showing the residuals. Hence, the function

opens separate terminal emulators consoles per each computation ongoing, that serve to

visualize and monitor the related .std file:

73

3. TOOL DEVELOPMENT

Try using different terminal emulators
terminal_commands = [
f"gnome-terminal -- /bin/bash -c ’tail -f {std_file}; read -p
\"Press enter to close...\"’",
f"xterm -e ’tail -f {std_file}; read -p \"Press enter to close...\"’",
f"konsole -e ’tail -f {std_file}; read -p \"Press enter to close...\"’"
]

Moreover, launch_computation_with_monitoring() performs a tracking on the residuals

for each process by parsing the .std file and printing on the terminal the current iteration

count with the relative residual value providing periodic updates status. In addition, a

convergence detection routine is implemented: when the current iteration reaches 700 -

a threshold determined based on prior experience with computations of similar "nature",

employing the same numerical methods and settings-, the routine checks the last 50 lines

of the file, parses the residual value and calculates their standard deviation. If it remains

lower than 0.1 for three consecutive checks, the computation is considered converged,

forcing its termination. This procedure ensures time-saving efficiency by preventing further

iterations once the stationary solution is reached. Whereas, if the computation fails due to

a numerical divergence - normally driven by negative pressure/density and mass flow values

in the domain - the function retry_computation() is recalled. It specifically deletes the

computation directory, re-executes the aforementioned steps for its creation, and launches

the process for a second time. By the time that the second attempt fails, a warning log is

written in blade_processing.log file. In addition, a macro script in CFView is then executed

to generate and save contour screenshots of Total pressure and velocity vector fields in the

corresponding folder within Results directory. This is thought to provide the user a visual

feedback on the simulation’s failure, aiding in the identification of potential issues such as

flow separation on the blade, incorrect incidence angle, or other flow anomalies that could

contribute to numerical divergence. Since, based on the experience during training, this

Figure 3.37: Example of contour plots saved in computation results folder for debugging.

kind of problem statistically had mesh-related problem sources, hence the log provided:

74

3.9 Automated process

[2025-03-04 18:35:51] [Blade 26 - 26_Lam_02000_radial_computation_1]
2nd attempt: CHECK MESH!!!: X FAILED
[2025-03-04 18:35:54] [Blade 26 - 26_Lam_02000_radial_computation_1]
Contour debug after 2nd attempt failure completed successfully: ✓ SUCCESS
[2025-03-04 19:03:56] [Blade 27 - 27_Lam_02000_radial_computation_1]
Computation reached final_output: ✓ SUCCESS

When groups are processed, each computation gets categorized based on its outcome, either

as successful - success_results() - or failed - failed_blades(). This classification

allows the tool to efficiently track which computations have been successfully completed

and are ready for post-processing.

if result == "FINAL_OUTPUT" or result == "CONVERGENCE":
Successful completion
logger.log_step(logger.main_log_file, f"Computation reached
{result.lower()}{residual_info}", True)
success_results[blade_num] = True

elif result == "ERROR":
Failed computation
failed_blades.append(blade_num)

Once one group has been correctly processed, the last step of the tool begins: post-

processing. For this purpose, PostProcessor Python class has been created. It is specifi-

cally designed to extract key flow quantities by means of a macro script in CFView envi-

ronment. Subsequently, Python scripts elaborate these data by computing blade loading

coefficients and averaged losses, then stored and saved in dataset .DATAinput file, ensuring

a comprehensive and organised record for further analyses.

The flow fields are extracted at various planes within the computational domain. A merid-

ional cut at mid-span is performed to visualise the two-dimensional flow field. Additionally,

multiple span-wise plane cuts are performed:

• Inlet plane: z = −0.8Cax

• Outlet observation plane: z = 1.5Cax

• Blade passage planes: 10 cuts from the leading edge (z = 0Cax) to the trailing

edge (z = 1Cax), with a step of 0.1.

• Downstream planes: 5 additional cuts from z = 1.05Cax to z = 1.5Cax.

75

3. TOOL DEVELOPMENT

At each of these measurement planes, the following flow plane surface contours are ex-

tracted:

• Velocity components (Vx, Vy, Vz)

• Velocity magnitude

• Static pressure

• Total pressure

• Static temperature

• Total temperature

• Density

• Mass flow

• Flow angles (yaw and pitch)

Additionally, on the blade surfaces, the following quantities are extracted:

• Mis and Pwall distributions along PS and SS at mid-span

• Mis and Pwall, and entropy contour fields on the endwall.

Figure 3.38: Plane cuts visualised in CFView.

Every mentioned field data are stored in .dat files, which are saved in the relative compu-

tation folder within Results directory. Analogously to other processes executed in IGG or

FINE/Turbo, the macro script is executed by the function execute_post_processing(),

via terminal command process in CFView :

76

3.9 Automated process

cfview -macro {macro} -batch -niversion 182 -print

Afterwards, a logging feedback is hereto also implemented to provide the user with status

updates regarding the extraction process. Once the extraction is completed, the script

verifies the presence of all expected output files within the folder. If at least one of the

expected files is missing, a warning message is issued to alert the user. Furthermore, in

the event of a failure during macro execution, the error is reported, ensuring that the user

can address any issues effectively.

----------------------------- POST-PROCESSING ----------------------------
Extracting quantities...
CFView macro execution completed.
Checking results in: /data2/nobackup/scarimbolo/4_Codes/output/numeca/
FineTURBO/Results/29_Lam_02000_radial
All required files are present in the results directory.

Subsequently, the performance analysis is then performed. In particular, it starts with the

computation of 2-D blade loading parameters, outlined in [4]:

• Diffusion factor:

DF =
VSSMAX

− VTE

VTE

it accounts for ratio of fluid deceleration along SS and when comes to TE. Higher

values mean stronger decelerations, leading to high adverse pressure gradient, hence

risk of separation;

• Zweifel coefficient:

Zw =

∮
Cp d

(
x

Cax

)
expressed as the integral value of the pressure coefficient along the blade. It is

employed in turbomachinery design to account for blade loading, since it provides a

measure of the tangential force on a blade compared to an ideal case. Though, Coull

observed that it is actually highly dependent on flow angles, varying of ≈ 40% within

the (α1, α2) design space with similar SS Cp distribution but different PS velocities.

• Circulation coefficient:

Co =

∮ √
Cp d

(
S

SSS

)

77

3. TOOL DEVELOPMENT

proposed as an alternative loading coefficient, since the square root establishes more

connection to the velocity field and it appears to give more appropriate weight to SS

aerodynamics, recording a less marked variation with flow angles.

• Non-dimensional transit time: defined in Eq.2.3, Coull [4] highlights, by recall-

ing Hawthorne’s secondary flow theory, that it plays a key role in secondary flows

formation, hence contributing to endwall losses. It accounts for flow particles paths

along PS and SS differences in time. When this difference is large, hence mainly

when pressure velocities are markedly different from suction ones, more significant

flow misalignment occurs when particles merge downstream. In addition, for higher

values, PS velocities are low: the flow is then more susceptible to blade-to-blade

pressure gradient, leading to stronger secondary flows.

For every computation processed within the group, the function compute_loading_parameters()

is called from PostProcessor class. It computes the aforementioned parameters and saves

them into the dictionary loading_params.

Subsequently, kinetic energy loss coefficients are computed. As proposed in the grid con-

vergence study, as widely acknowledged in literature, a valuable way of assessing machine

performances in design phase is the enthalpy (or energy) loss coefficient, which can be

expressed in terms of kinetic energy through isentropic relations, as in 2.1. This way, com-

pressibility effects are taken into account, rather than only evaluating the difference of inlet

and outlet stagnation pressure. Following the approach of [12], the overall gross loss ξgross
is computed at the outlet plane with mixed-out averaging technique, to account for mixing

losses. Since it encompasses the effects of inlet boundary layer flow momentum defection,

the loss generated inside the passage and the profile loss ξprofile at midspan, all these

contributions are then computed in order to isolate the net endwall loss. In particular,

the inlet boundary layer loss ξBL is computed similarly to 2.1, but instead of considering

the isentropic value of the stagnation pressure, the one at the outlet is selected. In this

case, the planar field contours are then mass-averaged - but only the convective quantities,

such as P o, whereas static pressure P is area-averaged. Eventually, the net endwall loss

- comprising with downstream mixing loss - is obtained by subtracting these contributes

from overall gross loss:

ξnet = ξgross − ξBL − ξprofile

Hence, a comprehensive breakdown of the losses is provided. Every aforementioned step is

performed by compute_loss_analysis(). It executes the loss quantities calculation script,

78

3.9 Automated process

which processes flow data contour files of interest by organising them into easily manage-

able DataFrames, structured with field coordinates (x, y, z) alongside the corresponding

quantity values. Subsequently, it performs averaging operations, storing every mentioned

loss coefficient into the dictionary losses. Additionally, the script is thought to provide a

visual representation of the results by creating a dedicated subdirectory within the single

computation Results folder, and saving a pitch-wise averaged radial profile of ξgross and

a contour plot of its field at the outlet plane.

Eventually, the last post-processing step involves the execution of compute_SKE_analysis()

function, which runs a Python script designed to compute SKE coefficients ζSKE, given

Eq.2.2 and mass-averaging velocities. This analysis is applied to each of the previously

mentioned plane sections at different axial positions, in order to quantify the magnitude

and the distribution of SKE throughout the passage and in the downstream region beyond

the TE. This approach follows the methodology proposed by Denton [8], where the local

SKE decay - hence dissipation driven by viscosity - that occurs from the TE plane onward

is thought to be an indicator of the contribution of secondary flows to the overall stagna-

tion pressure loss. Therefore, the values of the coefficients at different planes are stored

into the dictionary ske_results. Specifically, the value of ζSKE

∣∣
z=outlet

is selected for the

dataset filling. Additionally, plot representing the coefficients distribution is generated (see

Fig. 3.39) and saved within the same aforementioned subdirectory, along with the contours

and plots, as the example shown in Fig. 3.40. Subsequently, all quantities computed in

Figure 3.39: Example of ζSKE coefficient distribution plot generated in post-processing.

post-processing, contained in the aforementioned dictionaries, are inserted into the dataset

table within the in .DATAinput file, as the code snippet below shows:

79

3. TOOL DEVELOPMENT

Figure 3.40: Example of post-processing plots and contours saved in computation Results
subdirectory.

if loading_params:
loading_data = {

’Zw’: loading_params.get(’Zw’),
’DT*’: loading_params.get(’DT_star’),
’DF’: loading_params.get(’DF’),
’C_0’: loading_params.get(’C_0’)

}
update_data_input_file(input_file, loading_data, blade_row_index)
print(f"Updated .DATAinput with loading parameters for blade {blade_num}")

if losses:
Update .DATAinput with KSI values
ksi_data = {

’\xi_gross’: losses[’ksi_mass_planewise’],
’\xi_gross_mix’: losses[’ksi_mix_planewise’],
’\xi_bl’: losses[’ksi_bl_mass_planewise’],
’\xi_profile’: losses[’ksi_profile’],
’\xi_net’: losses[’ksi_net’]

}
update_data_input_file(input_file, ksi_data, blade_row_index)
print(f"Updated .DATAinput with KSI losses for blade {blade_num}")

else:
print("Warning: KSI losses computation failed")

Update SKE results if available
if ske_results and ’ske_plane_15’ in ske_results:

ske_data = {
’\zeta_SKE’: ske_results[’ske_plane_15’]

}
update_data_input_file(input_file, ske_data, blade_row_index)
print(f"Updated .DATAinput with SKE value (\zeta_SKE) for blade {blade_num}")

else:
print("Warning: SKE analysis computation failed or plane 15 data not available")

80

3.9 Automated process

Similarly to any other process, the execution of post-processing steps is also equipped with

logging. If any fatal error arises due to traceback exceptions in Python executions, they

are immediately printed in the main terminal and recorded into the raised from traceback

errors in Python executions, they are reported by printing them into the .log file. If no

error arises and if every required file is found into the Results subdirectory, the post-

processing is considered completed. Eventually, the computation directory is cleaned

up by removing the simulation files no longer needed in order to save storage usage. The

tool is then ready to process the following computations group.

In the following page is reported an output example of the post-processing for a single case

and in Table 3.8 is portrayed an example of .DATAinput file dataset structure, divided

into four parameters subsets.

Table 3.8: Example of .DATAinput file: output dataset structure

BLADE Mpeak/M2 Lpeak α1 [deg] α2 [deg] M2 Angle err. RMS h/Cax

1 1.1 0.4 40 -60 0.4 0.7 0.2773 3
2 1.4 0.4 40 -60 0.4 0.862 0.3242 3
3 1.1 0.6 40 -60 0.4 0.234 0.3094 3
4 1.4 0.6 40 -60 0.4 0.438 0.233 3

BLADE Re2is Cax [m] Flag Stagger [deg] M1 T1 P1 ρ1 V1 p/Cax

1 1.2E+06 1 ✓ 25.578 0.2463 236.4 12744 0.1498 84.935 0.8077
2 1.2E+06 1 × — — — — — — —
3 1.2E+06 1 ✓ 24.76 0.2463 236.4 12830 0.1508 84.935 0.8046
4 1.2E+06 1 ✓ 22.433 0.2463 236.4 13060 0.1535 84.395 0.8344

BLADE δ/Cax n H12 δ∗/δ θ/δ

1 0.2 1.7246 2.1597 0.3670 0.1699
2 — — — — —
3 0.2 1.7246 2.1597 0.3670 0.1699
4 0.2 1.7246 2.1597 0.3670 0.1699

BLADE Zw DT ∗ DF C0 ξgross ξbl ξprofile ξnet ζSKE

1 1.0126 1.5763 0.2253 0.3823 0.07251751 0.00506 0.01593 0.05152751 0.0044
2 — — — — — — — — —
3 1.0153 1.6023 0.2276 0.3827 0.07183567 0.00513 0.01391 0.05279857 0.0043
4 1.2635 1.7167 0.5001 0.4641 0.07715826 0.00514 0.02782 0.04419826 0.0058

81

3. TOOL DEVELOPMENT

Starting post-processing for blade 2...

-------------- POST-PROCESSING ----------------

Extracting quantities...
CFView macro execution completed.

Computing loading parameters...
Parsing computation name: 2_Turb_00500_radial

Loading parameters for blade 2:
Zweifel Coefficient (Zw): 1.1710
Circulation Coefficient (C_0): 0.4182
Non dimensional transit time (DT*): 1.6597
Diffusion factor (DF): 0.49585

Loading parameters computed successfully

Computing KSI losses...
Parsing computation name: 2_Turb_00500_radial
Plots saved.

KSI Loss Results:
KSI Mass Planewise: 0.029704
KSI Mixed out Planewise: 0.030418
KSI BL Mass Planewise: 0.000407
KSI Profile: 0.0229545
KSI Net: 0.00634234

Computing Secondary Kinetic Energy (SKE)...
SKE evolution plot saved.

SKE Analysis Results:
SKE at plane 15: 0.000158

Updated .DATAinput with loading parameters for blade 2
Updated .DATAinput with KSI losses for blade 2
Updated .DATAinput with SKE value (\zeta_SKE) for blade 2

Checking results in directory...
All required files are present in the results directory
Cleaned up computation directory.

82

Chapter 4

Validation and Data Analysis

In this final section of the Tool development analysis, the focus shifts to the validation

stage, where all the hitherto mentioned functionalities are tested, to ensure their effective-

ness and bug-less execution. In addition, an evaluation of time performance is conducted

to assess the potential impact of the Tool on design phase.

Eventually, an initial data correlation analysis is performed. In fact, due to constraints in

time and computational resources, a comprehensive parametric study has not been per-

formed, as exploring a sufficiently large and meaningful design space would have required

running thousands of configurations- an impractical endevour. Instead, the preliminary

analysis has focused on the following aspects:

• Evaluating the predicted secondary flow-induced loss from Coull [4] model.

• Identifying potential correlations between blade optimization parameters, flow char-

acteristics, and blade loading coefficients with the measured losses.

• Verifying the findings of de La Rosa Blanco [12] and Coull [5] regarding the influence

of inlet boundary layer characteristics on endwall losses.

4.1 Dataset corner points: input parameters

The validation process has been carried out by analysing a limited number of blade con-

figurations. This approach allows to raise awareness of any potential bug in the codes,

malfunctions or inaccuracies in the results when running different cases, while avoiding an

excessive computational cost and a feedback time delay, unnecessary in the development

process.

83

4. VALIDATION AND DATA ANALYSIS

As a matter of fact, a first validation attempt has been performed by selecting two values

for each parameter defining the blade optimising tool inputs:

• α1 = [20o, 40o];

• α2 = [−60o,−75o];

• Mpeak/M2 = [1.1, 1.4];

• Lpeak = [0.4, 0.6];

• M2 = [0.4, 0.6].

These ranges are advised by the author of the blade optimizer, [21], which deliver feasible

blade shapes and minimise the error in predicting loading distribution - RMS error - and

the outlet flow angle - angle error.

Therefore, the combination of these gives as result a total of

N
Nparameters
values −→ 25 = 32 cases

Additionally, a single boundary layer configuration has been considered, specifically repli-

cating the turbulent velocity profile from [5]. The corresponding integral boundary layer

parameters are given by δ∗/δ98 = 0.143, θ/δ98 = 0.111, hence with a computed shape

factor H12 = 1.29. The boundary layer thickness is set to δ98/Cax = 0.05, similarly to

TTLT case. Other user inputs remained consistent with those employed in the grid con-

vergence study, as well as unmentioned numerical methods and boundary conditions - like

turbulence quantities. Two different spatial discretization schemes are employed in order

to evaluate where better global stability is reached. Table 4.1 resumes the input dataset

parameters.

α1 [deg] α2 [deg] Mpeak/M2 Lpeak M2 Re2is δ98/Cax δ∗/δ98 θ/δ98 H12 Num. Sch. TOT.

[20, 40] [-60, -75] [1.1, 1.4] [0.4, 0.6] [0.4, 0.6] 1200000 0.05 0.143 0.111 1.29 Centered 32
" " " " " " " " " " Upwind/2nd 32

Table 4.1: First dataset parameters for validation

The outcome of the first attempt has already given satisfactory results. On the total

number configurations, only five geometries failed to mesh, due to drastically different

blade geometry obtained compared to template mesh one. Whereas, from the remain valid

geometries, the centered scheme delivered better performances in terms of numerical sta-

bility, if compared to second-order upwind scheme with Van Albada derivative limiter. In

84

4.1 Dataset corner points: input parameters

fact, the first has given 24 cases successively converged, against the 20 of the latter, which

resulted to be more subject to numerical instabilities. As a consequence, centered schemes

has been employed from this point onward.

A second attempt has been conducted using the same configuration, but with multigrid

initialisation deactivated. As a result, no computation has encountered numerical di-

vergence, and therefore a total of 27 blade geometries were successfully analysed. Removing

multigrid initialisation has lead to more stable simulations, and this can be due to several

reasons, both numerical and physical. In fact, initialising with a coarse mesh may cause

initial numerical errors to propagate through the domain too rapidly. Consequently, con-

sidering high turning blades, with high inlet flow angles, for example, the initial solution

may capture non-physical flow separations or mis-predicting complex flow structures, lead-

ing to numerical instabilities and affecting the real physical solution.

Afterwards, a third validation attempt has followed. In particular, in order to minimise

failures in meshing geometries, the corner point values needed to be narrowed. In particu-

lar, it has been decided to change the range of values for the outlet flow angle α2, resulting

in the configuration in Table 4.2.

α1 [deg] α2 [deg] Mpeak/M2 Lpeak M2 Re2is δ98/Cax δ∗/δ98 θ/δ98 H12 Num. Sch. TOT.

[20, 40] [-60, -70] [1.1, 1.4] [0.4, 0.6] [0.4, 0.6] 1200000 0.05 0.143 0.111 1.29 Centered 32

Table 4.2: Second dataset parameters for validation

This has brought to a better outcome: no geometries failed to mesh. Moreover, with

multigrid initialisation kept disabled, neither none of the computations failed to converge.

As a consequence, all 32 blades have been successfully processed, and this dataset con-

figuration has been kept as the definitive one. In fact, the final comprehensive validation

has been carried out with two inlet boundary layer configurations: the turbulent/thin al-

ready tested configuration 1 and the laminar/thick, matching the LTHT test case with

integral boundary layer quantities δ∗/δ98 = 0.379, θ/δ98 = 0.145, hence H12 = 2.6, and a

thickness of δ98/Cax = 0.3 - configuration 2. Adding two parameters, the total number

of combinations raise up to 64.

α1 [deg] α2 [deg] Mpeak/M2 Lpeak M2 Re2is δ98/Cax δ∗/δ98 θ/δ98 H12 Num. Sch. TOT.

[20, 40] [-60, -70] [1.1, 1.4] [0.4, 0.6] [0.4, 0.6] 1200000 [0.05, 0.3] [0.143, 0.379] [0.111, 0.143] [1.29, 2.6] Centered 64

Table 4.3: Final dataset parameters for validation

85

4. VALIDATION AND DATA ANALYSIS

4.2 Time performance estimation

The evaluation of the computational performances serves as a qualitative estimation be

interpreted as a qualitative assessment, providing the reader with an order of magnitude

regarding the time required for the Tool to perform analyses within a design framework.

Indeed, many factors can influence the performance in time, among which the number of

processors employed in the CFD simulations play a significant role. In fact, comparing the

CPU time values from the test cases reported in the grid convergence analysis could be

unfounded if the simulations performed in this circumstance has been boosted up with a

higher number of processor allocated. In spite of this, hereafter the tool performances are

reported for each stage:

• CAD generation: ∼1 second per blade

• Mesh generation: ∼300 seconds (5 minutes) per blade

• Computation setup: ∼5 seconds per blade

• CFD analysis: ∼3,000 seconds (slightly less than an hour) per blade on average

(using 8 processors per process)

• Post processing: 15s per blade.

For this specific purpose, with a dataset comprising 64 cases, the CAD generation time

accounts for approximately a minute, the meshing time takes around ∼ 5 hours in total,

whereas the computations setup lasts about ∼ 6 minutes. The main time load is evidently

registered by the CFD simulations: the total number of blades is divided in groups of five.

Given that each group requires ∼ 3, 100−3, 200 seconds to complete, on average, the total

duration is estimated to reach up to ∼ 11.5 hours. Eventually, the post-processing needs

∼ 16 minutes to conclude data analysis. Therefore, the total time consumption for the

successful processing of the dataset is estimated to last ∼ 17 hours. While this estimation

is not intended to be accurate, it provides an order of magnitude of the time required for

three-dimensional RANS analyses.

86

4.3 Data analysis

4.3 Data analysis

All the data collected in the structured dataset, contained in .DATAinput file at the end of

every execution of the tool, is intended to be analysed with the aim of identifying potential

correlations between design-oriented parameters - previously identified as key factors in

shaping the desired blade loading - and flow quantities against the measured losses. This

can be approached through the implementation of machine-learning based stochastic algo-

rithms, capable of building predictive models, performing any type of regression analysis,

and in general identifying underlying patterns within the dataset. However, due to time

constraints and limited computational resources, conducting a comprehensive study that

needed to involve thousands of configurations was not feasible in this work. In fact, it is

widely acknowledged that any data-driven analysis is highly dependent on the quality and

sparsity of the dataset, in order to enhance its robustness and generalisability. In this par-

ticular context, exploring a wide design parameters space is crucial to prevent overfitting

to specific cases - when the data employed in training is too "clustered" that the predictive

analysis works perfectly with the training points, but its performances drop when using

test data. In addition, this is also important to derive meaningful physical and generalis-

able results.

For the scope of this work. though, the object solely focuses on comparing results obtained

in already existent models, identifying any potential correlation between design parameters

and measured losses, and eventually justifying the trends of loss coefficients sensitivity to

inlet boundary layer profile characteristics.

As outlined in the literature survey section 2, the work of Coull, 2017 [4] offers key

insights on the approach to endwall loss and secondary flow-induced loss prediction. In

fact, he tries to adapt results found in literature and to find any correlation with design

parameters - such as loading coefficients, flow angles, etc.

In light of what hitherto mentioned, in the post-processing phase, the computation of

the estimated value of background dissipation loss ξCD is performed for each blade con-

figuration. This is achieved by extracting the contour fields of isentropic Mach number

Mis and static pressure P at the endwall, subsequently deriving the free-stream fields

Vfs, Tfs, ρfs. These are then integrated over the endwall area and multiplied by an ex-

ternal factor, as in Eq.2.9. Afterwards, for each case processed, the respective value of

Marsh’s vorticity amplification factor is computed, according to Eq.2.7. It is noteworthy

that the configurations considered pertain to configuration 1 of the dataset, hence with

87

4. VALIDATION AND DATA ANALYSIS

laminar/thick inlet boundary layer. Fig. 4.1 highlights the comparison of the Coull pre-

dicted model - Eq.2.10, reported in green line - and the regression line obtained by the

data, classified in terms of parameters Mpeak/M2, Lpeak, (see Fig. 4.1a). It appears to be

ξMARSH−fit ≃ 0.003547 · AFMARSH, very close if compared to Coull’s model. If, there-

fore, the predicted loss - expressed as ξMARSH−fit + ξCD - is compared to the endwall

loss measured from RANS - ξnet, a neat discrepancy is observed when compared to the

reported model, as the data exhibits more dispersion, deviating from a perfect fit to the

reference line. As a result, the deviation in the regression line slope and the sparsity within

the observed data can be due to the limited exploration of the design space. In fact, in the

cited study, a significantly larger design space was employed, including hundreds of point

within the (α1, α2) space, classified with different blade thicknesses expressed in percentage

of Cax. By expanding the dataset with additional points, perhaps the fit to the observed

trends could be enhanced.

(a) ξnet − ξCD vs. AFMARSH. (b) Measured loss vs. predicted loss.

Figure 4.1: Comparison of regression line obtained by data against Coull, 2017 [4] model.

In second instance, another analysis of the obtained data has been performed, with the

aim of highlighting the parameters that most influence the measured losses. This can be

reached by employing a random forest regressor with feature importance analy-

sis. A random forest regressor is an ensemble machine learning method - meaning that it

combines more models to enhance accuracy and reduce the risk of overfitting data. It op-

erates by building multiple decision trees, mathematical hierarchical structures composed

by internal nodes, that describe a decision - hence a mathematical operation like sum or

difference - based on a feature - in this case a parameter given as input-, and leaf nodes,

88

4.3 Data analysis

which contain the final prediction based on the internal nodes interaction. A decision tree

is then trained with data in order to fulfil two types of tasks: regression, so outputting

the mean prediction, or classification, outputting the feature most voted by the majority

of internal nodes. In random forest algorithms, many decision trees are employed, each of

them containing a random subset of features rather than the full set given as input.

What characterises the algorithm is the bootstrap sampling, or "bagging", of the

decision trees. In fact, each of them is trained with a random subset of input data in order

to create a predictive model. The training is based on the implementation of the feature

importance, where the most important contribution of each input feature to the model’s

predictive performance is evaluated. The training is set to minimise of the Mean Square

Error (MSE) at each node:

MSE =
1

n

n∑
i=1

(yi − ȳ)2

where n is the number of samples in the node, yi is the value of the sample i and ȳ is the

mean value of all the samples in the node. There are two approaches for assess a feature

importance analysis:

• Mean Decrease in Impurity (MDI): It evaluates how much each feature reduces

impurity across all trees in the forest. For regression tasks like this case, the impu-

rity is measured as the total reduction of variance (MSE) brought by each feature.

Mathematically, the importance of feature Xj is calculated as:

Importance(Xj) =
1

B

B∑
b=1

∑
n∈Nb

wn∆i(sn, j)

Where B is the total number of trees, Nb is the set of nodes in tree b, wn is the

weighted number of samples reaching node n, and ∆i(sn, j) is the impurity decrease

at node n where feature j is used for splitting.

• Permutation Importance: This method measures feature importance by ran-

domly shuffling the values of each feature and observing how much the model’s per-

formance drops. A feature is considered important if the model prediction error

increases by randomly shuffling the feature values. This highlights how the model

heavily relies on that particular feature for accurate predictions. For each feature

Xj , the permutation importance is calculated as:

I(Xj) = E[L(Y, f(Xperm,j))]− E[L(Y, f(X))]

89

4. VALIDATION AND DATA ANALYSIS

Where E[L(Y, f(X))] is the expected loss of the model on the original data, and

E[L(Y, f(Xperm,j))] is the expected loss when feature Xj is permuted.

MDI methods for feature importance analysis can over-estimate the importance related

to high cardinality features - hence attributing more importance than they actually have.

Moreover, it does not account for feature interactions. Whereas, Permutation Importance

better accounts for feature contributions in the presence of correlations, directly evaluating

model performances - accounts for prediction errors.

For the scope of this work, input design parameters, flow quantities and loading coeffi-

cients are chosen as features, while the measured loss ξnet chosen as target. Through the

RandomForestRegressor function in Python library scikit-learn, a feature importance

analysis has been conducted. The results are shown in Fig. 4.2.

Figure 4.2: Random forest feature importance analysis on ξnet as target.

The parameters that most influence the endwall losses are the pitch-to-chord ratio p/Cax,

the boundary layer thickness δ and shape factor H12 - already highlighted by the pitch-wise

averaged losses in the grid convergence study. Other features that contribute to the losses,

but less remarkedly, are inlet flow angle α1, flow turning ∆α = |α1 − α2|, velocity ratio

V1/V2, ∆T ∗, C0, Zw, etc.

These show some similarities with Marsh amplification factors expressions, which strength-

ens the study previously exposed. If, therefore, the influence of blade optimising design

parameters against loading coefficients - which lead to some influence also on losses - wants

90

4.3 Data analysis

to be evaluated, another analysis can be performed. In fact, this time a permutation im-

portance analysis is conducted, this time considering blade loading coefficients are only

features, as in Fig. 4.3. Results highlight a high influence of Mpeak/M2 and ∆α on loading

- Zw and C0, since have similar definitions. Mpeak/M2 also highly affects diffusion factor.

Whereas, as expected, ∆α and α2 are the only features highly influencing non-dimensional

transit time values, with a minor importance for Lpeak and a negative one for Mpeak/M2.

Both analyses have been run with a number of 100 decision trees (n_estimators), as de-

fault. In addition the test size has been set as 0.2, hence the subdivision of the whole set

of data into 20% test and 80% train subsets.

(a) ∆T ∗ (b) C0

(c) Zw (d) DF

Figure 4.3: Permutation feature importance for blade loading coefficients.

It should be noted that this analysis was performed on a relatively small dataset (ap-

proximately 60 data points), which introduces some limitations. With small sample sizes,

Random Forest models tend to overfit data, and feature importance estimates may be

affected by high variance. This means the confidence intervals in the estimation of im-

portance values would be wide, and repeated runs with slightly different data splits could

produce different rankings. Therefore, this analysis is proposed as preliminary evaluation

of the data.

91

4. VALIDATION AND DATA ANALYSIS

To conclude, the last analysis has been focused to the effects of the inlet boundary

layer profile properties, comparing the results of configuration 1 and configuration 2.

As highlighted by de la Rosa Blanco, [12], breaking down the total kinetic energy loss

coefficient into the contributions of profile, inlet boundary layer and net losses can help to

evaluate how inlet condition can influence secondary flows penetration towards midspan

and the magnitude of endwall loss. From both the inlet configurations processed, profile

loss ξprofile, gross mixed out loss ξgross−mix and net loss ξnet coefficients are extracted

and averaged across the blade geometries examined, as illustrated in Fig. 4.4. The results

clearly indicate that profile loss shows minimal sensitivity to inlet conditions, confirming

what stated in [12]. Moreover, high shape factor and thick inlet boundary layer cases

exhibited higher gross mixed out and net losses - up to double those observed in turbulent

thin cases. Notably, when comparing two same blade geometries under different inlet

boundary layers, endwall loss values increased by a factor of ≈2.6. According to Coull,

2022 [5], indeed, the magnitude of endwall losses for high shape factor profiles could increase

by more than two times the one measured in low shape factor inlet boundary layers.

Figure 4.4: Losses breakdown results.

BLADE N. Mpeak/M2 Lpeak α1 α2 M2 δ n H12 δ∗/δ θ/δ Zw ∆T∗ DF C0 ξgross ξbl ξprofile ξnet ζSKE

1 1.1 0.4 40 -60 0.4 0.7 0.2 1.725 2.62 0.379 0.145 1.011 1.590 0.225 0.382 0.059 0.005 0.016 0.038 0.004
1 1.1 0.4 40 -60 0.4 0.7 0.05 5.885 1.29 0.143 0.111 1.011 1.590 0.225 0.382 0.038 0.001 0.016 0.022 0.001

Table 4.4: Data comparison for blade case 1 between configurations 1 and 2.

92

Chapter 5

Conclusions

In the present work, a Python-based tool designed to develop a computational framework

for 3D CFD analysis of turbine cascade blades has been realised. In particular, the main

objective was to automate the workflow - adopted in a potential design stage-, which be-

gins with blade profiles optimized by a machine-learning model based on ANNs, [21], that

delivers the optimal airfoil that satisfies a certain aerodynamic duty and style -such as

loading-, characterised by a specific set of parameters. The tool processes a user-defined

dataset of geometries, structured according to the number and combination of the men-

tioned parameters. The blade profiles are then processed by closing TEs, performing linear

extrusion of a quantity h/Cax defined as input and generating a CAD file in .IGES for-

mat. Subsequently, each blade is integrated in a structured mesh, whose characteristics

are derived from a template mesh, itself selected based on a grid convergence study encom-

passing two potential extreme cases. This process leverages AutoGrid5TM functionalities in

mesh generation. Afterwards, the CFD computation projects are created by user-specified

boundary conditions, specifically defining an inlet boundary layer in terms of total pres-

sure profile, as it influences secondary flows development in the cascade, [12],[5]. In fact,

the tool is designed to take boundary layer parameters - thickness δ; and one between n

exponent of Blasius velocity profile or δ∗ and θ. Afterwards, once all boundary conditions

are set, the CFD analysis begins. The blades dataset is divided into groups of five, sequen-

tially processed. In fact, each group’s computation is actively monitored -both by the user,

via an emulator terminal console, and by the tool itself, through a convergence detection

loop. When all simulations are successfully completed, post-processing is performed on

each element within the group. Contour fields at different plane sections are extracted

using Python macros executed in CFViewTM in batch mode. Then, aerodynamic loading

coefficients are computed -i.e. Zw, C0, DF , etc.

93

5. CONCLUSIONS

Additionally, the kinetic energy loss coefficients are evaluated and then decomposed into

ξgross mix, ξbl, ξprofile, ultimately isolating the endwall loss contribution ξnet. Further-

more, an evaluation of SKE coefficients distribution in different axial position in the cas-

cade is assessed. At the final stage, the initial dataset is enriched with aero-thermodynamic

quantities, boundary layer properties, 2D loading coefficients and computed losses aver-

aged values. A subsequent tool validation is proposed by testing a very narrow dataset. It

is created by selecting two values per each blade generator parameters -corner points-, and

then the tool correct functionality is assessed by analysing two inlet boundary layers, with

the related time performance analysis of its execution. In fact, for a dataset containing

64 cases, the process successfully takes around 17 hours for a machine with limited core

capacities.

Furthermore, although in a preliminary stage, a data analysis is performed. Specifically,

Coull physics-based model [4] for predicting endwall losses is compared with results ob-

tained. Afterwards, a sensitivity analysis of blade design parameters against net endwall

losses is performed by employing a random forest feature importance approach. Eventually,

the effects of inlet conditions to endwall losses are assessed and compared with observations

from literature.

The structure of the final dataset generated by the tool is designed to facilitate data-

driven machine learning approached analyses. However, due to time constraints and limited

computational resources, a comprehensive analysis has not been conducted in this study.

As a matter of fact, in order to establish a robust correlation model that links relevant

design parameters to endwall losses for predictive use in preliminary design phases —or to

isolate secondary flow-induced losses, for example, as proposed by Coull [4] or to evaluate

the influence of inlet conditions- a significantly broader design space must be explored.

This includes the evaluation of thousands of configurations, obtained by varying both

blade design parameters and inlet boundary layer properties, to capture the full complexity

of endwall loss mechanisms.

As a matter of fact, at this stage, the tool is in its early development phase, laying the

groundwork for a long-term research initiative. The ultimate objective is to integrate it into

the preliminary design process of turbine blades, providing highly accurate loss estimations

and potentially coupling it with optimization algorithms. Such an approach could help to

settle new loss correlations or refine existing empirical and semi-empirical models, which

are still used in design practice. In fact, the tool is thought to let the designer overcome

the limitations of traditional loss models that often rely on experimental data fitting rather

than fundamental physical principles.

94

Furthermore, future advancements could introduce additional complexities, such as mesh

parameterization based on inlet conditions and blade profile variations, as well as incorpo-

rating 3D blade twisting laws. Extending the methodology to full-stage evaluations would

provide a more accurate representation of losses, particularly given that rotor inlet con-

ditions differ significantly from those of stators, as highlighted by Denton and Pullan [8].

This distinction is crucial, as the interaction between stator and rotor flow fields strongly

influences endwall loss generation and evolution.

Ultimately, this tool represents a first step toward a more rigorous and physics-based

approach to 3D turbine cascade design. Its functionalities can practically help designers to

contribute significantly to the next generation of turbomachinery design, reducing reliance

on empirical correlations and enabling more efficient and aerodynamically optimized blade

geometries.

95

List of Figures

2.1 Hawthorne’s cascade vorticity scheme, [14]. 6

2.2 Secondary flows representation, Sharma & Butler 7

2.3 Predicted vs. measured endwall loss, model from Coull, 2017 [4]. 12

2.4 Endwall loss breakdown with different inlet boundary layer shape factors,

varying normalised thickness, [5]. 13

2.5 Non-dimensional vorticity distribution in relation to flow regimes, parametrised

with inlet boundary layer properties, from secondary flow theory, [5]. 14

3.1 Tool structure . 21

3.2 Blade loading - target vs real; blade profiles 22

3.3 Optimised blade airfoil sketch . 23

3.4 Trailing edge: NURBS curve with control points 23

3.5 Blade .IGES file output. 26

3.6 Blade with domain extension lines . 27

3.7 Example: SPLEEN C1 High-Speed turbine cascade blade [25] 29

3.8 Mesh quality metrics . 30

3.9 Sketches figuring mesh blocks layouts. From [28] 31

3.10 Blade-to-blade control layout . 32

3.11 Orthogonality cells contour . 32

3.12 Grid quality check displayed after 3D meshing. 33

3.13 3D mesh example . 35

3.14 Boundary Conditions setup . 36

3.15 LTHT configuration . 45

3.16 ξprofile evaluation for different LTHT configurations 47

3.17 Mass-flow investigation for 2D LTHT test cases. 47

3.18 LTHT: ξprofile mixed out values against number of cells in different mesh

configurations. 49

97

LIST OF FIGURES

3.19 LTHT: ξprofile relative error. 49

3.20 LTHT: wake profile (pitch-wise distribution of ξ) 50

3.21 LTHT: Pitch-wise radial ξ profile. 52

3.22 LTHT: ξ contour plots. 52

3.23 LTHT: Relative error for plane-wise averaged values ξ. 53

3.24 LTHT: Stream-wise vorticity ωx contour plot. 53

3.25 LTHT: Total pressure profiles comparison between extracted profiles at two

different axial positions and theoretical Blasius profile. 54

3.26 Comparison of uniform and non-uniform inlet conditions on ξMIX−OUT. . . 54

3.27 TTLT configuration . 55

3.28 TTLT: ξprofile mixed out values against number of cells in different mesh

configurations. 57

3.29 TTLT: ξprofile relative error. 57

3.30 LTHT: wake profile (pitch-wise distribution of ξ) 58

3.31 TTLT: Pitch-wise radial ξ profile. 59

3.32 TTLT: ξ contour plots. 59

3.33 TTLT: Relative error for plane-wise averaged values ξ. 60

3.34 Total pressure contour of inlet plane and z = 1.5 Cax in CFViewTM. 61

3.35 Cross-test: ξ (KSI) pitch-wise averaged profiles 62

3.36 Cross-test: ξ (KSI) plane-wise averaged values 62

3.37 Example of contour plots saved in computation results folder for debugging. 74

3.38 Plane cuts visualised in CFView. 76

3.39 Example of ζSKE coefficient distribution plot generated in post-processing. . 79

3.40 Example of post-processing plots and contours saved in computation Results

subdirectory. 80

4.1 Comparison of regression line obtained by data against Coull, 2017 [4] model. 88

4.2 Random forest feature importance analysis on ξnet as target. 90

4.3 Permutation feature importance for blade loading coefficients. 91

4.4 Losses breakdown results. 92

98

List of Tables

3.1 LTHT blade parameters and flow boundary conditions 44

3.2 B2B Mesh properties for LTHT refinement 46

3.3 3D Mesh properties for LTHT refinement 50

3.4 TTLT blade parameters and flow boundary conditions 55

3.5 B2B Mesh properties for TTLT refinement 56

3.6 3D Mesh properties for TTLT refinement 58

3.7 Summary of Blade Generator Tool Modules 65

3.8 Example of .DATAinput file: output dataset structure 81

4.1 First dataset parameters for validation . 84

4.2 Second dataset parameters for validation . 85

4.3 Final dataset parameters for validation . 85

4.4 Data comparison for blade case 1 between configurations 1 and 2. 92

99

Nomenclature

Abbreviations

α Flow angle

∆T ∗ Non-dimensional transit time

δ Boundary layer thickness

δ∗ Displacement thickness

γ Stagger angle

κ Curvature

µ Dynamic viscosity

ν Kinematic viscosity

ω Specific dissipation rate / Stream-wise vorticity

ϕ Generic flow variable

Π Vorticity distribution coefficient

ρ Density

τ Shear stress tensor

θ Momentum thickness

ε Error / Turbulent kinetic energy dissipation rate

ξ Loss coefficient

101

LIST OF TABLES

ζ Secondary kinetic energy coefficient

1 Inlet conditions

2 Outlet conditions

bl Boundary layer

fs Free-stream conditions

gross Gross loss

is Isentropic conditions

net Net loss

profile Profile loss

sec−flow Secondary flow-induced loss

t Turbulent quantity

AF Amplification Factor

C0 Circulation coefficient

CD Dissipation coefficient

Cp Pressure coefficient

Cax Axial chord

DF Diffusion factor

E Total energy per unit volume

H12 Shape factor (ratio of displacement to momentum thickness)

ILS Integral length scale

Lpeak Stream-wise position of velocity peak

Lref Reference length

M Mach number

Mpeak Maximum Mach number on suction side

102

LIST OF TABLES

P Pressure

P o Total pressure

Re Reynolds number

Sij Strain-rate tensor

SKE Secondary Kinetic Energy

T Temperature

T o Total temperature

Tu Turbulence intensity

V Velocity vector

Vref Reference velocity

y+ Dimensionless wall distance

ywall First cell wall distance

Zw Zweifel coefficient

ZTE Secondary flows penetration height

.batch Batch script file

.bcs Boundary Conditions file

.cgns CFD General Notation System file

.dat Data file format

.geom Geometry file format

.geomTurbo Turbomachinery geometry format

.iec Integrated Environment Configuration

.iges Initial Graphics Exchange Specification

.igg Interactive Grid Generator file

.py Python script file

103

LIST OF TABLES

.qualityReport Mesh quality report file

.res Results file

.run Runtime configuration file

.std Standard output file

.trb Turbomachinery template file

AR Aspect Ratio

AutoGrid5 Automatic Grid Generator Version 5

CAD Computer-Aided Design

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

CFView Computational Fluid Viewer

CV Counter Vortex

DNS Direct Numerical Simulation

EARSM Explicit Algebraic Stress k-omega Turbulence Model

ER Expansion Ratio

FINETurbo Flow INtegrated Environment Turbo

GUI Graphical User Interface

HSV Horseshoe vortex

IGG Interactive Grid Generator

LE Leading Edge

LES Large Eddy Simulation

LTHT Laminar Thick High Turning blade test case

MDI Mean Decrease in Impurity

MISES MIT’s viscous-inviscid flow solver

104

LIST OF TABLES

MSE Mean Square Error

NURBS Non-Uniform Rational B-Splines

PDE Partial Differential Equations

PS Pressure Side

PV Passage Vortex

RANS Reynolds-Averaged Navier-Stokes

RMS Root Mean Square

S-A Spalart-Allmaras turbulence model

SS Suction Side

SST Shear Stress Transport turbulence model

TE Trailing Edge

TSV Trailing Shed Vorticity

TTLT Turbulent Thin Low Turning blade test case

TVD Total Variation Diminishing

105

References

[1] R. Agromayor et al. “A Unified Geometry Parametrization Method for Turboma-
chinery Blades”. In: CAD Computer Aided Design 133 (2021), p. 102987. doi: 10.
1016/j.cad.2020.102987.

[2] J.V. Boussinesq. “Essai sur la théorie des eaux courantes”. In: Mémoires présentés
par divers savants à l’Académie des Sciences XXIII.1 (1877), pp. 1–680.

[3] D. Burdett and T. Povey. “Analysis of Averaging Methods for Nonuniform Total
Pressure Fields”. In: Journal of Turbomachinery 144.5 (May 2022), p. 051011. doi:
10.1115/1.4053020.

[4] J. D. Coull. “Endwall Loss in Turbine Cascades”. In: Journal of Turbomachinery
139.8 (Aug. 2017).

[5] J. D. Coull and C. J. Clark. “The Effect of Inlet Conditions on Turbine Endwall
Loss”. In: Journal of Turbomachinery 144.10 (Oct. 2021).

[6] Vazquez R. Coull J. D. Clark C. J. “The sensitivity of turbine cascade endwall loss
to inlet boundary layer thickness”. In: Journal of the Global Power and Propulsion
Society 2 (2018), CKB8N6. doi: 10.22261/OEYMDE. url: https://doi.org/10.
22261/OEYMDE.

[7] H. R. M. Craig and H. J. A. Cox. “Performance Estimation of Axial Flow Turbines”.
In: Proceedings of the Institution of Mechanical Engineers 185.1 (1971), pp. 407–424.
doi: 10.1243/PIME_PROC_1970_185_048_02.

[8] J. Denton and G. Pullan. “A Numerical Investigation Into the Sources of Endwall
Loss in Axial Flow Turbines”. In: Proceedings of the ASME Turbo Expo 2012: Turbine
Technical Conference and Exposition. Vol. 8. Turbomachinery, Parts A, B, and C.
Copenhagen, Denmark: ASME, June 2012, pp. 1417–1430. doi: 10.1115/GT2012-
69173.

[9] J. D. Denton. “Loss Mechanisms in Turbomachines”. In: Proceedings of the ASME
International Gas Turbine and Aeroengine Congress and Exposition 2 (May 1993),
V002T14A001. doi: 10.1115/93-GT-435.

107

https://doi.org/10.1016/j.cad.2020.102987
https://doi.org/10.1016/j.cad.2020.102987
https://doi.org/10.1115/1.4053020
https://doi.org/10.22261/OEYMDE
https://doi.org/10.22261/OEYMDE
https://doi.org/10.22261/OEYMDE
https://doi.org/10.1243/PIME_PROC_1970_185_048_02
https://doi.org/10.1115/GT2012-69173
https://doi.org/10.1115/GT2012-69173
https://doi.org/10.1115/93-GT-435

REFERENCES

[10] Mark Drela and Harold Youngren. MISES: Multiple-blade Interacting Streamtube
Euler Solver. https://web.mit.edu/drela/Public/web/mises/. Accessed: 2025-
02-25. 2008.

[11] J. Dunham and P. M. Came. “Improvements to the Ainley-Mathieson Method of
Turbine Performance Prediction”. In: Journal of Engineering for Power 92.3 (July
1970), pp. 252–256. doi: 10.1115/1.3445349.

[12] R. Vazquez E. de la Rosa Blanco H. P. Hodson and D. Torre. “Influence of the State
of the Inlet Endwall Boundary Layer on the Interaction Between Pressure Surface
Separation and Endwall Flows”. In: Proceedings of the Institution of Mechanical En-
gineers, Part A: Journal of Power and Energy 217.4 (June 2003), pp. 433–441. doi:
10.1243/095765003322315496.

[13] A. Harten and J.M. Hyman. “Self adjusting grid methods for one-dimensional hyper-
bolic conservation laws”. In: Journal of Computational Physics 50.2 (1983), pp. 235–
269. issn: 0021-9991. doi: https://doi.org/10.1016/0021-9991(83)90066-9.
url: https://www.sciencedirect.com/science/article/pii/0021999183900669.

[14] W. R. Hawthorne. “Rotational Flow Through Cascades Part I. The Components
Of Vorticity”. In: The Quarterly Journal of Mechanics and Applied Mathematics 8.3
(1955), pp. 266–279.

[15] Martinelli Jameson A., L., and N. Pierce. “Optimum Aerodynamic Design Using
the Navier–Stokes Equations”. In: Theoretical and Computational Fluid Dynamics
10 (Jan. 1998), pp. 213–237. doi: 10.1007/s001620050060.

[16] L. S. Langston, M. L. Nice, and R. M. Hooper. “Three-Dimensional Flow Within a
Turbine Cascade Passage”. In: Journal of Engineering for Power 99.1 (1977), pp. 21–
28.

[17] Errante M. Larocca F. Ferrero A. “RANS Simulation of Secondary Flows in a Low
Pressure Turbine Cascade: Influence of Inlet Boundary Layer Profile”. In: AIP Con-
ference Proceedings 2611.1 (Nov. 2022). doi: 10.1063/5.0120392.

[18] H. Marsh. “Secondary flow in cascades: The effect of compressibility”. In: (1976).
url: https://api.semanticscholar.org/CorpusID:118043716.

[19] NASA Langley Research Center. SST Turbulence Model. Accessed: February 17, 2025.
2025. url: https://turbmodels.larc.nasa.gov/sst.html.

[20] R. Pichler et al. “Large-Eddy Simulation and RANS Analysis of the End-Wall Flow
in a Linear Low-Pressure Turbine Cascade, Part I: Flow and Secondary Vorticity
Fields Under Varying Inlet Condition”. In: Journal of Turbomachinery 141.12 (Dec.
2019), p. 121005. doi: 10.1115/1.4045080.

108

https://web.mit.edu/drela/Public/web/mises/
https://doi.org/10.1115/1.3445349
https://doi.org/10.1243/095765003322315496
https://doi.org/https://doi.org/10.1016/0021-9991(83)90066-9
https://www.sciencedirect.com/science/article/pii/0021999183900669
https://doi.org/10.1007/s001620050060
https://doi.org/10.1063/5.0120392
https://api.semanticscholar.org/CorpusID:118043716
https://turbmodels.larc.nasa.gov/sst.html
https://doi.org/10.1115/1.4045080

REFERENCES

[21] F. Porta. “Development of a Machine-Learning-Based Tool for Turbomachinery Blades”.
MA thesis. Politecnico di Milano, von Karman institute for Fluid Dynamics, 2022-
2023.

[22] P.L. Roe. “Approximate Riemann solvers, parameter vectors, and difference schemes”.
In: Journal of Computational Physics 43.2 (1981), pp. 357–372. issn: 0021-9991.
doi: https://doi.org/10.1016/0021-9991(81)90128-5. url: https://www.
sciencedirect.com/science/article/pii/0021999181901285.

[23] O. P. Sharma and T. L. Butler. “Predictions of Endwall Losses and Secondary Flows
in Axial Flow Turbine Cascades”. In: Journal of Turbomachinery 109.2 (Apr. 1987),
pp. 229–236. doi: 10.1115/1.3262089. url: https://doi.org/10.1115/1.

3262089.

[24] C. H. Sieverding. “Recent Progress in the Understanding of Basic Aspects of Sec-
ondary Flows in Turbine Blade Passages”. In: Journal of Engineering for Gas Tur-
bines and Power 107.2 (1985), pp. 248–257.

[25] L. Simonassi, G. Lopes, and S. Lavagnoli. “Effects of Periodic Incoming Wakes on
the Aerodynamics of a High-Speed Low-Pressure Turbine Cascade”. In: International
Journal of Turbomachinery Propulsion and Power 8 (Sept. 2023), p. 35. doi: 10.
3390/ijtpp8030035.

[26] P. R. Spalart and S. R. Allmaras. “A One-Equation Turbulence Model for Aerody-
namic Flows”. In: (1992). AIAA Paper 92-0439, p. 439.

[27] R. C. Swanson and Eli Turkel. “On Central-Difference and Upwind Schemes”. In:
Journal of Computational Physics 101.2 (1992), pp. 292–306. doi: 10.1016/0021-
9991(92)90007-L.

[28] NUMECA Cadence design systems. NUMECA AutoGrid5 User Manual. Available
at: https://www.numeca.com/. 2024.

[29] NUMECA Cadence design systems. NUMECA FINETurbo 14.1 User Guide. Avail-
able at: https://www.numeca.com/.

[30] NUMECA Cadence design systems. NUMECA IGG User Manual. Available at:
https://www.numeca.com/. 2024.

[31] Open CASCADE Technology. OpenCASCADE Technology Documentation. Available
at: https://dev.opencascade.org/doc/overview/html/. 2025.

109

https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
https://www.sciencedirect.com/science/article/pii/0021999181901285
https://www.sciencedirect.com/science/article/pii/0021999181901285
https://doi.org/10.1115/1.3262089
https://doi.org/10.1115/1.3262089
https://doi.org/10.1115/1.3262089
https://doi.org/10.3390/ijtpp8030035
https://doi.org/10.3390/ijtpp8030035
https://doi.org/10.1016/0021-9991(92)90007-L
https://doi.org/10.1016/0021-9991(92)90007-L
https://www.numeca.com/
https://www.numeca.com/
https://www.numeca.com/
https://dev.opencascade.org/doc/overview/html/

Acknowledgements

I would like to first express my sincere gratitude to prof. Andrea Ferrero for his

unwavering support and for allowing me to undertake this project and experi-

ence. His guidance has significantly deepened my interest in turbomachinery,

and especially in fluid dynamics as applied to propulsion systems. I am partic-

ularly thankful for his extensive knowledge and expertise in the field, as well

as for his constant availability and dedication towards his students.

A special thanks also goes to Prof. Sergio Lavagnoli for welcoming me into

VKI environment and offering me a perspective on work that transcends the

academic realm I was used to. His mentorship has taught me the importance

of dedication and meticulousness to the work, which will continue to influence

my approach to problems in the future.

	1 Introduction
	2 Literature survey
	2.1 Mechanisms of Secondary Flows Formation
	2.2 History of Research on Endwall Losses

	3 Tool development
	3.1 The role of Computational Fluid Dynamics
	3.2 RANS: Reynolds-Averaged Navier-Stokes
	3.3 NUMECA FINETM/Turbo, IGGTM and Python environment
	3.4 Overview
	3.5 Geometry and CAD
	3.6 Mesh
	3.7 CFD workflow
	3.7.1 Boundary conditions
	3.7.2 Turbulence model
	3.7.3 Numerical scheme and convergence criteria

	3.8 Grid convergence analysis
	3.8.1 LTHT (Laminar Thick High Turning blade) case
	3.8.1.1 2D: Blade to Blade
	3.8.1.2 3D: Span layers

	3.8.2 Effects of inlet conditions
	3.8.3 TTLT (Turbulent Thin Low Turning blade) case
	3.8.3.1 2D: Blade to Blade
	3.8.3.2 3D: Span layers

	3.8.4 Final mesh configuration: test

	3.9 Automated process

	4 Validation and Data Analysis
	4.1 Dataset corner points: input parameters
	4.2 Time performance estimation
	4.3 Data analysis

	5 Conclusions
	List of Figures
	List of Tables
	Nomenclature

