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Abstract

The optimization of supersonic turbines is a rapidly evolving field of research whose
main objectives are improving the performance of the turbine and increasing the
life of the machine. Achieving these goals becomes even more challenging when
high-energy working fluids are used, as in the rocket industry.

This project focuses on the aerodynamic design and numerical analysis of
supersonic turbines, encompassing turbine mean-line design, design of vane and
blade profiles, culminating in computational fluid dynamics simulations of the blade
passages. The project aims at investigating the impact of design parameters on
the flow structure of supersonic turbines, as well as on the reliability of isolated
stator calculations -very widespread for stator shape optimization- compared to
coupled stator-rotor calculations. Therefore, particular attention is given to the
fluid-dynamic phenomena occurring at the stator outlet and their interaction with
the rotor leading edge.

To accomplish these objectives, three turbine stages with different expansion
ratios are designed from scratch. The design process is based on non-dimensional
parameters, including the flow coefficient, loading coefficient and degree of reaction,
leveraging an in-house mean line design code. Design maps are then generated for
the three cases to identify the optimal design points.

Subsequently, inverse design methods implemented in in-house codes based on
the method of characteristics are used to compute the shape of vane and blade
passages.

Finally, CFD simulations are performed using the SU2 software. The analysis
begins with isolated stator calculations, followed by coupled stator-rotor calculations,
employing different numerical approaches to examine the flow field within the blade
passages. Attention is paid to the mesh resolution to enable the analysis of the
shock structure and development of the boundary layer. The findings of this study
contribute to a deeper understanding of supersonic turbine fluid dynamics and
offer potential improvements in the design of high-performance turbomachinery,
particularly for aerospace and energy applications.
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Chapter 1

Introduction

Supersonic turbines are the subject of increasing research because of their suitability
for applications involving high-energy fluids, low molecular weight and significant
expansion rates, as well as the ability to deliver large specific work through high
expansion ratios.

Figure 1.1: Supersonic Turbines [1]

A feature of these turbines is the presence of supersonic relative velocities at the
rotor inlet, combined with a small amount of driving fluid and a limited number of
stages, typically not exceeding three. High jet velocities and short blade lengths
generate radial pressure gradients that drive low-energy fluid towards the hub,
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Introduction

resulting in additional losses that contribute to a lower static efficiency.
They are affected by high thermal loads and mechanical stresses for operating

in extreme conditions: they require advanced materials and cooling techniques to
ensure structural integrity and a longer operational life [2][3].

The main applications of these turbines concern the following systems:

1. Rocket turbopump systems

2. Open-cycle auxiliary power systems for space

3. High-temperature organic Rankine cycle power systems

Supersonic turbines are commonly used in rocket turbopumps due to their high
expansion ratios and their compactness and lightness. Because of that, they are
typically of axial configuration, with a single or double stage and the flow in either
the stator and rotor passages is highly supersonic [4].

The turbopump systems play a key role in driving propellants to the combustion
chamber at the required pressure and flow rate. The turbine must provide sufficient
power to pressurise the fuel and oxidizer, with minimal turbine mass flow. The
latter is important to align with the principles of open-cycle configurations, as it
decreases engine thrust [5].

In an open cycle, also known as a gas generator cycle, a portion of the propellant
is combusted separately in a pre-burner to drive the turbine, after which it is
expelled rather than being fully directed to the combustion chamber. This design
simplifies the overall system and improves reliability, although it reduces efficiency
because part of the energy is lost with the exhaust gases. Nevertheless, the open-
cycle configuration offers several advantages, including a simpler layout, lower
operational temperatures and easier maintenance.

The efficiency of the supersonic turbine is usually much lower than that of the
conventional turbine [3]. However, research is growing to try to optimise perfor-
mance and make it increasingly suitable for this type of system. The preliminary
design is indeed crucial in order to improve efficiency and reduce losses.
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Figure 1.2: Open Cycle [6]

1.1 Study Objective
The operation of supersonic turbines deals with difficult aspects due to the complex
flow conditions within the blade passages, caused by the supersonic Mach number at
the vane outlet. In fact, the stator outlet flow introduces significant non-uniformity
due to the interactions between expansion fans and shock waves generated at the
stator trailing edge, along with the reflected shocks originating from the suction
side of the adjacent vanes.

Minimizing the flow non-uniformities and the shock intensities at the stator
oultet is therefore a critical consideration. For example, in figure 1.3, the pitch-wise
distribution of the outlet Mach number and flow angle are compared for a baseline
and an optimised stator blade, as explained in [4].

Figure 1.3: Span-wise Mach and flow angle distribution at the stator outlet [4]
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To study these effects, an isolated stator is often optimised, as this approach is
computationally more efficient.

Figure 1.4: Isolated stator analysis example [4]

However, these questions could arise:

1. Is the pitch-wise distribution of an isolated stator representative of the coupled
stator-rotor flow field?

2. How close are the results to the ones obtained with stator-rotor calculations?

3. Are there any parameters that can determine the reliability of the method?

The purpose of this work is to address these questions, starting from the mean
line design of the turbine and progressing to CFD analyses of the isolated stator
and the coupled stator-rotor system, both in steady and unsteady conditions.

1.2 Research Plan
Several parameters have been identified as potential subjects of investigation, with
the objective of examining their influence on the stator-rotor interaction and their
role in determining the reliability of CFD analyses of the isolated stator:

1. Rotor inlet relative Mach number

2. Stator-Rotor axial gap

5
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3. Rotor LE-to-pitch ratio

4. Stator TE-to-pitch ratio

5. Blade metal angle at rotor inlet

The first parameter is chosen as the fundamental subject of study and on the
basis of this all subsequent design is carried out, keeping the other parameters
constant.

To investigate the rotor inlet relative Mach number, the aim is to design three
turbine stages for different values of this quantity:

1. Mrel,rotor inlet=0.9

2. Mrel,rotor inlet=1.15

3. Mrel,rotor inlet=1.3

Once these three stages are designed, the next step involves the comparison
of the stator outlet flow field. It begins with steady-state analysis of the isolated
stator and then it moves to fully unsteady simulations, including harmonic balance.

6





Chapter 2

Mean Line Design

The mean line analysis is a preliminary design method to determine the main
thermodynamic characteristics of the turbine along the mean line flow path within
the machine. It represents the first fundamental step of the aerodynamic design
process of a turbomachine, following the conceptual phase. This approach con-
siders the flow as a one-dimensional problem, providing a simplified but effective
representation to estimate the initial performance of the turbine.

Three key non-dimensional parameters are linked to the shape of the turbine
velocity triangles and are used to fix the preliminary design of a turbine stage [7]:

1. Design Flow Coefficient

2. Stage Loading Coefficient

3. Stage Reaction

The flow coefficient is defined as the ratio of the meridional flow velocity to the
blade speed, ϕ = Cm/U , but in a purely axial-flow machine it is ϕ = Cx/U [7].

The loading coefficient is expressed as the proportion of the change in stagnation
enthalpy across a stage to the square of the blade velocity, ψ = ∆h/U2. In an
adiabatic turbine, the change in stagnation enthalpy corresponds to the specific
work output, ∆W [7]. The Euler work equation can be applied and can be written
in a general form as in the equation 2.1, or for a purely axial machine it is as in
the equation 2.2.

∆Wx = (h01 − h02) = U1cθ1 − U2cθ2 (2.1)

∆h0 = ∆(Ucθ) = U∆cθ (2.2)
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Consequently, the loading coefficient can be written as in the equation 2.34.

ψ = ∆cθ

U
(2.3)

where ∆cθ is the change in the absolute tangential velocity through the rotor.
In rocket turbopumps applications, a high stage loading coefficient is required
because it allows the turbine to generate the required work output with fewer
stages, thereby meeting the compactness requirement.

The degree of reaction is defined as the ratio between the static enthalpy drop
that occurs in the rotor and the static enthalpy drop throughout the stage as in
the equation 2.4.

R = h2 − h3

h1 − h3
(2.4)

Considering nearly isentropic transformations and ignoring compressibility ef-
fects, the reaction can be approximated as in 2.5.

R ≈ p2 − p3

p1 − p3
(2.5)

2.1 Boundary Conditions Definition
To carry out the mean line design, an in-house code developed by TU Delft, known
as TurboSim, is used. This software requires input boundary conditions to be
specified within its configuration file. Therefore, it is essential to define these
conditions appropriately based on the specific context and application.

In particolar, the required conditions are:

• Working fluid

• Reduced temperature (Tr)

• Reduced pressure (Pr)

• Expansion ratio or volumetric flow ratio

• Rhub/Rtip

In order to define the previous quantities for each of the three turbine stages
and to reach the target Mach numbers, some typical values for supersonic turbines
have been fixed as follows, referring to figures 2.2 and 2.1:

• P01 = 80bar
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• T01 = 1000K

• R = 0.25

• α2 = 72°

Figure 2.1: Turbine stage velocity dia-
grams [7].

Figure 2.2: h-s diagram for a turbine
stage [7].

Isentropic relations are applied by varying the peripheral velocity U and the
static pressure downstream of the rotor P3 in the following ranges:

• P3 = [105,3 ∗ 106]Pa

• U = [200,600]m/s

T3

T01
=
3
P3

P01

4 γ−1
γ

(2.6)

h3 = cpT3 (2.7)

h01 = cpT01 (2.8)

R = h2 − h3

h01 − h3
(2.9)

h2 = h3 +R(h01 − h3) (2.10)
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And, as a consequence, it results:

c2 = 2
ñ
h01 − h2 (2.11)

c2x = c2 cosα2 (2.12)

c2y = c2 sinα2 (2.13)

w2x = c2x − U (2.14)

w2y = c2y (2.15)

w2 =
ñ
w2

2x + w2
2y (2.16)

T2 = h2

cp

(2.17)

a =
ñ
γRT2 (2.18)

Mrel,rotor inlet = w2

a2
(2.19)

For each combination of U and P3, a Mach number value is fixed.
The results of this process are illustrated in the figure 2.3, which shows the

variation of the Mach number with U and P3.
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Figure 2.3: Rotor inlet relative Mach number distribution

The purpose is to choose a thermodynamic condition for each target Mach
number.

The peripheral velocity is fixed in the range, performing an iterative process
after the TurboSim results, to match a proper value and it results in U = 400m/s.

Consequently, the P3 values for each Mach number are determined and the
expansion ratios are equal to:

• Mrel,rotor inlet=0.9 –> β = 5

• Mrel,rotor inlet=1.15 –> β = 16

• Mrel,rotor inlet=1.3 –> β = 30

From this point on, the three turbines are classified as follows.

1. Low Pressure Ratio Turbine Stage

2. Medium Pressure Ratio Turbine Stage

3. High Pressure Ratio Turbine Stage
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2.2 TurboSim
TurboSim is a software tool, developed by Propulsion & Power group at TU Delft,
that calculates the fluid dynamic performance of turbine stages. It uses a set of
dimensionless design variables, such as the flow coefficient, head coefficient, degree
of reaction, expansion ratio, and other fluid-dependent parameters. The software
employs a loss model based on first principles, extended to handle arbitrary flow
regimes and fluids.

It is designed to address the challenges of fluid dynamic design of axial turbines
operating with nonideal compressible flows. The main objective is to close the
existing gap in design guidelines for unconventional turbomachinery, which cannot
be adequately designed using established criteria for steam and gas turbines.

The impact of non-ideal compressible flows on axial turbine design was analysed
by revising and extending the classical similarity equation to include the effects
of non-ideal flow. The analysis using a dimensional stage model incorporating
a fundamentals-based leakage model revealed that the molecular complexity of
the fluid and the volumetric flow ratio of the stage significantly influence turbine
efficiency and optimal stage configuration. In particular, compressibility effects can
lead to variations in stage efficiency of up to 3-4% compared to turbines designed
to operate with dilute gases. These effects can be predicted at the preliminary
design stage by evaluating the pressure-volume isentropic exponent [8].

Design guidelines for conventional turbomachinery are based on efficiency maps
as a function of work and flow coefficients, providing preliminary estimates of size,
shape of speed triangles and fluid dynamic performance. However, for unconven-
tional turbomachinery, such as Organic Rankine Cycle (ORC) turbines, turbines for
the oil and gas industry operating with heavy molecules, supercritical CO2 (sCO2)
compressors and high-speed compressors for refrigeration and air conditioning, such
maps have not yet been established [8].

These machines deal with large gradients in thermophysical properties and non-
ideal flow phenomena along the expansion process, which alters the distribution of
losses. This is due to viscous friction, shocks and mixing phenomena compared to
conventional turbines. Existing design practices are not sufficiently validated for
non-ideal flow applications due to the large differences in flow conditions within
the blade passages.

To address this shortcoming, the theoretical and numerical framework under-
pinning TurboSim incorporates a reduced-order stage model based on classical
similarity parameters, such as work coefficient and dimensionless quantities specific
to unconventional turbomachinery as the volumetric flow ratio and the pressure-
volume isentropic exponent. The loss model employed is based on fundamental
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principles and has been extended to cover arbitrary thermophysical fluid dynamics
models [8].

As a result, TurboSim generates non-dimensional maps representing various
quantities of interest, such as turbine stage efficiency.

2.2.1 Methodology
The Mach numbers of the cascades are evaluated once the velocity triangles and
stage speeds have been calculated, in the typical gas turbine stage design process.
The design is then iteratively adjusted to obtain stage configurations that meet
mechanical and operational constraints. The same procedure can be adopted to
design unconventional turbine stages, but at the expense of neglecting characteristic
Mach numbers [8]. This means that while following a similar design method, the
peculiarities of non-ideal fluids, such as compressibility and molecular complexity,
may not be adequately considered, leading to suboptimal results. In other words,
conventional design may not take into account variations in fluid behaviour, which
affect flow dynamics and, consequently, turbine efficiency and performance.

For example, a turbine stage operating with a complex fluid molecule is charac-
terised by low specific work values, but could exhibit significantly higher volumetric
flow ratios than gas turbine stages. This is mainly due to the low heat capacity
ratio and the high molecular weight of complex fluid. As explained in [8], the
normalised work decreases as the molecular complexity of the fluid increases and it
is slightly influenced by a α = ρt,0/ρ3 variation for highly complex fluid molecules.

This effect is also due to the thermodynamic regime of the fluid and is therefore
present in the case of the supersonic turbine due to the high expansion ratios and
all the phenomena involved.

Based on these considerations, it can be stated that the optimal choice of
conceptual stage design parameters may depend on the fluid molecule considered
and the associated thermodynamic conditions.

Therefore, the authors of the software decided to modify the classical similarity
equation, making it also depend on the volumetric flow ratio (and thus expansion
ratio) and isentropic pressure-volume exponent, in addition to the duty coefficient,
Mach number, Reynolds number and a geometric characteristic [8].

2.2.2 Stage Layout and Numerical Framework
The three-dimensional blade geometry is assumed to consist of a series of two-
dimensional airfoils, as shown in the figure 2.4, characterised by negligible thickness
and a parabolic line of curvature, stacked radially according to a free vortex design.
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Figure 2.4: Exemplary turbine stage geometry: blade-to-blade and meridional
views [8].

Blade pitch and inclination are expressed in terms of the solidity σ = c/s and
axial solidity σax = cax/s, while the annular geometry is characterised by the blade
aspect ratio AR = (Hin + Hout)/2cax and the hub-to-tip radius ratio. The gap
between the rotor tip and the turbine case is expressed as a percentage of the blade
height 2g/(Hin +Hout), while the stator has no gap. All turbine stages are designed
with constant mean radius and constant meridional speed.

The velocity triangles are uniquely determined by the choice of the total-to-static
loading coefficients Kis, the flow coefficient ϕ, the total-to-static degree of reaction
χ∗, the midspan radius variation in the rotor and the stator inlet flow angle [8].
The latter is set at α = 0 because each turbine has one stage.

The numerical model is based on a simplified approach representing the flow
distribution along the blade profile, assuming a simplified velocity profile and flow
evolution along the free aperture according to a free-vortex design.

• Velocity model: the flow along the blade profile is represented using a
simplified velocity profile, while the velocity profile parameters on pressure
and suction surfaces are calculated using the circulation theorem and the
tangential momentum balance.
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Figure 2.5: Simplified velocity distribution in the blade-to-blade plane [8].

• Iterative Method: the tangential moment balance is solved iteratively to
account for compressibility effects and non-linearities introduced by the use of
arbitrary thermodynamic models.

• Designs generation: a set of 400 stage configurations is generated by varying
the total-to-static loading and flow coefficients to construct efficiency maps.
The model is applied by specifying the expantion ratio, reduced inlet conditions
and an initial estimate of the channel size relative to the average radius.

• Simplifying assumptions: the effect of Reynolds number is neglected since
the turbine stages are assumed to operate in a fully turbulent regime. The
geometric characteristics of the stage are calculated according to best practices,
such as Zweifel’s criterion for optimal robustness.

2.2.3 Loss Models
The proposed loss models offer a compromise between accuracy and computational
complexity, making it useful for the preliminary design of axial turbines operating
with non-ideal fluids. The adoption of dimensionless parameters and a formulation
based on physical principles allows reliable prediction of performance, supporting
the definition of optimal design guidelines [8].

• Boundary Layer Loss. These losses result from viscous dissipation in a
two-dimensional boundary. The entropy production can be estimated as

Ṡ =
Ú
Cd
ρeV

3
e

Te

dx (2.20)
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where Cd is the dissipation coefficient, which is calculated based on local flow
conditions.

• Mixing Loss. These losses are generated by the mixing of flows with different
velocities at the blade outlet. They are calculated by analysing the control
volume between the throat and the downstream section, assuming uniform
flow at the outlet. The law of conservation of energy and momentum is applied
to estimate the entropy increase due to mixing:

ṁ = ρaVa(a− δ∗) = ρmixVmix cosαmixs (2.21)

ṁVa − ρaV
2

a θ + Paa+ Pbt cosαa = ṁVmix cos δ + Pmixs cosαa (2.22)

ha + V 2
a

2 = hmix + V 2
mix
2 (2.23)

The boundary layer parameters are set to reference values measured in tran-
sonic cascades, i.e. θ/t = 0.075 and δ/θ = 2, as suggested in [9]. These
parameters have a marginal influence on the final loss estimate. Using this
information, The previous equation can be solved to determine the entropy
increase due to mixing ∆s = smix − sa and the deviation angle δ.

• Shock Loss. When the flow exceeds the speed of sound, shock waves are
formed which generate an increase in entropy and reduce efficiency. Rankine-
Hugoniot relations are used to estimate the changes in thermodynamic prop-
erties through the shock wave.

hB − hA = 1
2(PB − PA)(νA + νB) (2.24)

−PB − PA

νB − νA

= (ρAVA sin ϵ)2 (2.25)

ρA tan ϵ = ρB tan(ϵ− δ) (2.26)

VA cos ϵ = VB cos(ϵ− δ) (2.27)

Here ϵ represents the shock angle, δ is the deviation angle, while A and B
correspond to the pre and post shock states, respectively. The shock angle is
related to the output conditions of the cascade.

• Endwall Loss. They include the viscous dissipation in the boundary layers
along the hub and case, as well as the mixing of secondary flows. Since
secondary flows are complex, semi-empirical correlations are used to estimate
these losses.
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• Tip-Leakage Loss. They occur in unshrouded rotor blades due to flow
escaping through the gap between the blade tip and the turbine case. The
entropy produced is calculated as:

T∆s = 1
ṁ

Ú
V 2

ss

3
1 − Vps

Vss

4
dṁj (2.28)

The discharge coefficient Cc takes on typical values between 0.3 and 0.4 for
rotating blades and the infinitesimal leakage mass flow rate can be estimated
as [8]:

dṁj = Ccug
ñ

2ρps (Pps − Pss) dz (2.29)

2.2.4 Mean Line Analysis
The study cases can be described by the following quantities, included in the
configuration files:

• Working Fluid = Air

• Reduced Pressure Pr = 2.11

• Reduced Temperature Tr = 7.55

• Loss components = active

• Leakage = Unshrouded

• α0 = 0°

• Fixed ϕ along the stage

• 3D blade design methodology = Free Vortex

These quantities are the same for the three turbine stages, while there are two
parameters that differ for each case: the expantion ratio β and the hub to tip
radius ratio Rhub/Rtip.

The expantion ratios are estimated as explained in the paragraph 2.1, while
the Rhub/Rtip parameter requires further analysis and consideration to determine a
correct value, as this quantity influences many other factors, including the final
dimensions.
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Hub-to-Tip Radius Ratio

The hub-to-tip ratio is a crucial design parameter in axial-flow turbines, affecting
several aspects of performance, efficiency and mechanical constraints. TurboSim
recommends a default values of Rhub/Rtip = 0.818181818182 at stator outlet.

The hub-to-tip ratio influences:

• Flow Path Configuration. It defines the cross-sectional shape of the turbine
annulus, affecting the velocity distribution and pressure gradients.

• Blade Loading. A smaller hub-to-shroud ratio leads to higher blade loading at
the hub, potentially causing mechanical stresses and aerodynamic losses.

• Efficiency. The ratio influences the distribution of reaction across the annulus,
which in turn affects total turbine efficiency.

• Structural Considerations. A lower hub-to-shroud ratio can lead to longer,
more slender blades, which are more prone to bending and vibrational issues.

The selection of velocity diagram parameters is influenced by the turbine’s
design-point pressure ratio, primarily because it constrains the hub-to-tip ratio,
which in turn affects the velocity diagram [10].

As stated in Ref. [10], the hub-to-tip radius ratio should be specified within
a range of 0.6 to 0.875, at least for the expansion ratios considered in the study.
The upper limit is primarily set to prevent excessive clearance and other annulus
losses, while the lower limit is maintained to ensure adequate blade mounting and
to address structural stress considerations.

More specifically, in the figure 2.6 the relationship between the hub-to-tip ratio
and the design-point pressure ratio is illustrated. The variation of this parameter is
presented for two boundary conditions: one assuming a constant shroud diameter
and the other a constant hub diameter.
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Figure 2.6: Variation of turbine static density ratio and hub-tip diameter ratio
with pressure ratio [10].

The results indicate that a cylindrical shroud can be used for turbine pressure
ratios up to approximately 3.0. For a constant hub diameter, the limiting pressure
ratio is around 7.0, assuming a minimum allowable hub-to-tip ratio of 0.6. However,
for higher pressure ratios, an increase in hub diameter is generally required, resulting
in an increase in Rhub/Rtip.

Based on these considerations, it is possible to determine appropriate values for
Rhub/Rtip.

The first turbine stage has an expansion ratio of less than 7, allowing the Tur-
boSim default hub-to-tip ratio to be applied. In contrast, the second stage operates
at a higher expansion ratio, requiring the application of the guidelines outlined
in the referenced paper. As recommended, the hub-to-tip ratio is set to 0.875 to
accommodate the increased expansion ratio and ensure optimal performance.

The third turbine has an expansion ratio (β = 30) completely out of the range
considered in the previous paper. Therefore, based on Ref. [11], the hub-to-tip
ratio is set to 0.9, as this value has been shown to reduce losses and improve turbine
efficiency.

Thus, the final choices for each turbine are as follows:

1. Rhub/Rtip = 0.818181818182

2. Rhub/Rtip = 0.875

3. Rhub/Rtip = 0.9
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Dimensional Parameters

Another key consideration is the dimensioning of the parameters, because TurboSim
does not perform as it uses non-dimensional parameters. This is necessary in order
to determine the blade heights, mean diameters and the rotational speeds.

In order to realise a complete mean line design, in many of the most important
sources, such as in Ref. [7] and Ref. [12], it is mentioned that another input
parameter is needed to dimension the parameters. This can be the mass flow
rate, the output power required or the rotational speed. Therefore, in addition to
TurboSim, a next step is needed to complete the preliminary design, which involves
deciding on one of these parameters and subsequent relations.

It is more common to apply a mass flow rate and a typical value is ṁ = 10kg/s,
as recommended by the open cycle, which requires a mass flow rate that is not
excessively high.

Thus, the axial flow area is determined as in 2.30.

Ax = ṁ

ρϕU
≈ 2π ×RmH (2.30)

Given H/Rm, the mean radius is calculated as in 2.31.

Rm =
öõõô Ax

2π · H
Rm

(2.31)

As a consequence, all dimensional quantities, which TurboSim determines in a
non-dimensional form, can be estimated: H0, H1, H2, H3, Rt, Rh, Dm, ω.

Design Guidelines

The software gives the results computing maps as a function of the flow coefficient
ϕ (2.32) and the total-to-static loading coefficient Kis (eq. 2.33).

ϕ = Vm

U2
(2.32)

Kis = ht,0 − his,3

U2
2

(2.33)

Kis differs from the total-to-total loading coefficient ψ (2.34),which is commonly
used in mean-line analysis. The former is considered to account for the non-ideal
effects of the thermodynamic conditions involved in such studies.

ψ = ht,0 − ht,3

U2
2

= U2Vt,2 − U3Vt,3

U2
2

(2.34)
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To select the right combination of ϕ and Kis, a series of design guidelines are
considered.

For single-stage configurations, a higher loading coefficient is generally preferred
to maximise energy extraction in a limited number of components. In the mean-line
design approach, the flow coefficient is selected based on efficiency maps, taking
into account the degree of reaction and the loading coefficient [10].

Furthermore, the choice of efficiency depends on the stage configuration. In the
case of a single stage, the series of total-to-static efficiency curves is generally more
appropriate, as it provides a more accurate representation of actual performance
considering the pressure drop across the stage. Conversely, for multi-stage designs,
total-to-total efficiency is commonly used, which better captures the cumulative
performance of the entire system, taking into account the interactions between
multiple stages [7] [12].

Additionally, a set of recommendations is necessary to identify the best design:

• The axial Mach number should remain subsonic to maintain stable flow
conditions.

• The stator flow angle should be in the range of 65° to 75°, typical of these
kinds of turbines.

• The rotor flow angle should be minimized to reduce the amount of unused
kinetic energy at rotor outlet.

• The rotor outlet absolute Mach number should also be subsonic to reduce
kinetic losses downstream of the rotor and facilitate uniform downstream flow
conditions.

2.2.5 Chosen Designs
Considering the guidelines and the TurboSim output maps, shown in Appendix A,
the following design criteria must be met:

• The loading coefficient Kis should be high.

• The flow coefficient ϕ should be chosen to maximise efficiency.

• The stator outlet flow angle must be within the range of 65°-75°.

• The target Mach numbers should be achieved.

• The peripheral speed must be high enough.
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To facilitate a precise analysis of the Mach number at the rotor inlet, it is
advantageous to select the same pair of design parameters ϕ and Kis while keeping
R = 0.25 fixed. This approach allows for a clearer evaluation of the impact of this
parameter as the expansion ratio varies across the three turbines. Consequently,
the same combination of ϕ and K is adopted as the final parameter set for all
turbines.

To choose the right pair of duty coefficients, the most restrictive turbine stage
is examined: the third one (β = 30).

In particular, the peripheral speed at mid-span is plotted in the figure 2.7. In
this case, it is important that the peripheral speed U is not too low, so Kis should
not be more than 10 or 11. However, at the same time, as shown in figure 2.8
by reducing Kis, the Mach number that is reached at the rotor input decreases a
lot compared to the chosen target of 1.3. Moreover, the parameter ϕ also cannot
increase because otherwise the stator output angle α decreases too much and cannot
be less than 65°.

Figure 2.7: Peripheral speed at
midspan

Figure 2.8: Stator Outlet flow angle

The design that best satisfies the various requirements is for the following pair
of parameters: ϕ = 1.15 and Kis = 10.

The characteristics for each turbine stage are presented in the table 2.1.
The final Machrel,rotor,inlet deviates slightly from the expected value; however,

these results are sufficiently reliable for analysis. Therefore, the study proceeds
from this point to its conclusion.
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β = 5 β = 16 β = 30

Machrel,rotor,inlet 0.90 1.11 1.19

Ψ 3.354 3.163 3.085

ηts 0.67 0.63 0.62

αout,stator [°] 65.17 65.17 65.17

αout,rotor [°] -39.16 -37.71 -37.14

MachAx,stator,outlet 0.56 0.70 0.76

MachAx,rotor,outlet 0.62 0.80 0.88

MachAbs,stator,outlet 1.33 1.67 1.80

MachAbs,rotor,outlet 0.80 1.01 1.10

Umid [m/s] 277.04 338.34 360.93

Utip [m/s] 317.60 380.57 422.11

Table 2.1: Design Characteristics

The final results of the three chosen stages are expressed in the following figures.

Figure 2.9: Mach numbers at rotor inlet Figure 2.10: Stator Outlet Mach num-
bers
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Figure 2.11: Mean diameters Figure 2.12: Heights at Stator Outlet

Figure 2.13: α at stator outlet Figure 2.14: α at rotor outlet

Figure 2.15: Total-to-static efficiency Figure 2.16: Loading Coefficient ψ
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Figure 2.17: Peripheral velocities at
midspan

Figure 2.18: Peripheral velocities at
tip

Consequently, the velocity triangles are as follows:

Figure 2.19: Low β stage, velocity
triangle

Figure 2.20: Medium β stage, ve-
locity triangle

Figure 2.21: High β stage, velocity
triangle
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Once the mean line design is completed, the next step is to develop a method
for constructing the stator and rotor blades. This involves translating the velocity
triangles into a blade geometry that optimally aligns with the flow conditions.
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Chapter 3

Blade Design

3.1 Method of Characteristics
In fluid dynamics, compressible flows play a crucial role, especially in machines
such as turbines. When the velocity of a fluid reaches values comparable to or
greater than the speed of sound, compressibility effects become dominant and the
equations describing fluid motion take on a particular form.

One of the fundamental models for describing these phenomena are the Euler
equations, which express the conservation of mass, momentum and energy by
considering only convective flows, since in CFD convective and diffusive flows are
considered separately. Mathematically, these equations are expressed as a system
of partial differential equations in a conservative form (3.1) [13].



∂ρu
∂x

+ ∂ρv
∂y

= 0

∂
∂x

(ρu2 + p) + ∂
∂y

(ρuv) = 0

∂
∂x

(ρuv) + ∂
∂y

(ρv2 + p) = 0

∂
∂x

[u(p+ ρE)] + ∂
∂y

[v(p+ ρE)] = 0

(3.1)

These equations are 2D, steady and hyperbolic. The latter means that infor-
mation in the flow domain propagates along certain curves, called characteristics,
and that the system can be solved by downstream methods, since each point in
the flow depends only on upstream regions.

In contrast, in subsonic flows the system is elliptical, which implies that infor-
mation propagates in all directions and that the solution at one point is influenced
by the entire domain.

This distinction is particularly important when designing nozzles, turbines or

29



Blade Design

other aerodynamic components that operate at high speeds.
To solve hyperbolic equations in supersonic flows, one of the most accurate

methods is the Method of Characteristics (MOC) [14]. This approach transforms a
system of partial differential equations into a set of ordinary differential equations
along specific curves known as characteristic lines. As the most precise marching-
type technique for solving quasi-linear hyperbolic partial differential equations
(PDE), the MOC reformulates the governing PDE into two fundamental equations:
the characteristic equation and the compatibility equation. The characteristic
equation determines the slope of the lines along which disturbances propagate,
offering a structured framework for analysing and solving hyperbolic systems
efficiently.

To better understand the concept of characteristics, it can be examined from
both a physical and mathematical perspective, as elaborated in [15]:

• Mathematical Interpretation: a characteristic is a curve along which a phys-
ical property remains continuous, while its derivative may or may not be
discontinuous. Along a characteristic curve, the governing partial differential
equation can be transformed into an ordinary differential equation, significantly
simplifying the problem.

• Physical Interpretation: a characteristic line represents the propagation path
of physical disturbances, across which physical properties exhibit gradients
and along which waves and signals travel in a compressible fluid. For instance,
in supersonic flow fields, discontinuities propagate along Mach lines, making
these lines the characteristics of the supersonic flow field.

The 2D Euler equations in their steady and conservative form are:

∂

∂x


ρu

ρu2 + p
ρuv

u(ρE + p)

+ ∂

∂y


ρv
ρuv

ρv2 + p
v(ρE + p)

 = 0 (3.2)

The non-conservative form using primitive-variable is:

A′ ∂

∂x

au
s

+B′ ∂

∂y

au
s

 = 0 (3.3)

with

A′ =

u δa 0
a
δ

u − a2

γR

0 0 u

 , B′ =

v δa 0
a
δ

v − a2

γR

0 0 v


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To study the hyperbolic nature of the Euler equations, the diagonalised system
is:

Λx
∂

∂x

ω1
ω2
ω3

+ Λy
∂

∂y

ω1
ω2
ω3

 = 0 (3.4)


λ

(x)
1 0 0
0 λ

(x)
2 0

0 0 λ
(x)
3

 ∂

∂x

ω1
ω2
ω3

+


λ

(y)
1 0 0
0 λ

(y)
2 0

0 0 λ
(y)
3

 ∂

∂y

ω1
ω2
ω3

 = 0 (3.5)

where wi are the characteristic variables.
The eigenvalues of the Jacobian matrix are found by solving the eigenvalue

problem.

det(A′ − λI) = 0. (3.6)

The eigenvalues are as follows.
In the x-direction:

λ
(x)
1 = u− a, λ

(x)
2 = u, λ

(x)
3 = u+ a

In the y-direction:

λ
(y)
1 = v − a, λ

(y)
2 = v, λ

(y)
3 = v + a

To find the characteristic variables in the 2D steady case, the generalized
equations for the eigenvectors include the components dx and dy:



dω1 =
A
da

δ
− du− a

γR
ds

B
· dx

dω2 = ds · dx

dω3 =
A

−da

δ
+ du− a

γR
ds

B
· dx

and analogously for dy.
In 2D, the characteristic curves lie in the (x, y) plane and are tangential to

the vector field associated with the eigenvalues (oblique characteristics). The
compatibility equation is written in integral form as follows:Ú

characteristici

dωi = 0 for i = 1, 2, 3
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3.2 Supersonic Stator
The stator nozzle consists of three distinct sections: a converging section operating
in the subsonic regime, a diverging section where the flow becomes supersonic and
a straight section along the suction surface. The converging section accelerates
the flow to sonic conditions and can be designed following the MOC. To minimize
losses, this section is specifically shaped to achieve the full turning of the flow. The
diverging section further accelerates the flow to reach the desired free-stream Mach
number at the outlet and its design is based on the MOC, as previously discussed.
Finally, the straight section on the suction surface has a length determined by the
required nozzle angle [2].

The method of characteristics can be applied to the convergent-divergent nozzle
section of the stator. As described in [2], a supersonic nozzle designed to produce
a uniform and parallel flow is specifically shaped to ensure the correct expansion
and subsequent redirection of the flow, as in figure 3.1.

Figure 3.1: Supersonic nozzle [2]

The nozzle wall profile has two main curvatures:

• AD segment. The nozzle wall expands outward, allowing the flow to accelerate
to supersonic speeds.

• DE segment. The wall curves inward again to restore the flow direction to its
original orientation.

Point D represents the location where the wall reaches its maximum inclination.
It is assumed that at the nozzle throat, the flow is sonic (M = 1), uniform and
parallel.

Since the nozzle is symmetrical, its central axis can be treated as a line of
symmetry, which can be replaced by a solid boundary in simulations and design
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analyses. This approach reduces computational effort by focusing only on one half
of the nozzle.

The region ABCDA is defined as expansion zone. The curved wall AD generates
expansion waves that propagate and subsequently reflect off the central axis of the
nozzle.

This process allows for further acceleration of the flow, which makes it supersonic.
The expansion waves originate due to the wall curvature and are necessary to
ensure the proper expansion of the flow, reaching the desired velocity and pressure
downstream.

The region DCED is called straightening section. Here, the wall is curved
in such a way that the incoming expansion waves are cancelled out. The wave
cancellation method follows the principles of elementary flow solutions.

Beyond the CE section, the flow is parallel, uniform and supersonic, making it
ready to exit the nozzle. The outlet Mach number depends on the amount of flow
expansion that occurs in the AD section.

If the pressure difference is high, the expansion will be greater, resulting in a
higher final Mach number. For very high Mach numbers, the nozzle may become
excessively long, making it impractical for applications such as supersonic turbines.
In such cases, an optimized nozzle design is implemented, maintaining the desired
effects while reducing the overall length, but in this project the MOC is still used.

The design process involves two primary steps: first, the divergent section of
the supersonic stator is developed using the MOC and then the blade shape is
generated through a geometric transformation [14].

3.2.1 Nozzle Design
To design the convergent-divergent section, an internally developed tool from TU
Delft is employed. As explained in [14], the MOC is applied to design the divergent
section of the supersonic nozzle under the assumption of steady homentropic flow.
Such a flow is governed by the two-dimensional isentropic Euler equations.

To initialise the calculation, it is necessary to determine the sonic line, i.e., the
line along which the Mach number is exactly M = 1. This is the starting point for
the analysis of expansive waves that accelerate the flow beyond Mach 1.

The divergent section of the diffuser is divided into two regions:

• Kernel region, is the first part after the nozzle throat and is defined by imposing
a circular radius connecting the throat to the point from which the expansion
wave starts. This expansion wave accelerates the flow to the desired Mach
value along the nozzle axis.

• Reflex region, which follows the kernel region and is designed to conserve
mass and ensure uniform outlet conditions. It redirects the flow to reduce
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inhomogeneities.

To calculate the velocity and flow conditions at each point along the expansion,
two equations from the family of characteristic and compatibility equations are
solved:

λ± = tan(ϕ± α) (3.7)

(u2 − c2) du± + (v2 − c2)λ−1
± dv± = 0 (3.8)

Here, the subscripts + and − represent the two families of characteristic lines,
while λ is the characteristic slope, ϕ is the flow angle, α is the Mach angle, c is the
speed of sound and u and v are the velocities in the x and y directions [14].

From the sonic line, the position of the next point in the kernel or reflex region is
determined using the characteristic equation. Specifically, this equation defines the
direction of a pressure wave at a given point, with two waves starting at each point,
with slopes of opposite sign. By intersecting the characteristic waves originating
from two adjacent points, the coordinates (x,y) of a new point are obtained. The
compatibility equation for these intersecting waves is then solved simultaneously
to determine the velocity components (u,v) at the new point. At this point, the
speed of sound, entropy and enthalpy are calculated using an appropriate equation
of state:

c = c(H, s) (3.9)

s = s(Ptot, Ttot) (3.10)

H = H(V,Htot) = Htot(Ptot, Ttot) − V 2

2 (3.11)

The Mach and flow angles are as follows:

α = arcsin
3 1
M

4
(3.12)

ϕ = arctan
3
v

u

4
(3.13)

The result of this process is shown in figure 3.2, where the lines with positive
slope represent positive characteristics and those with negative slope are negative
characteristic lines.
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Figure 3.2: Method of characteristics implemented to design the divergent section
of the supersonic nozzle [14]

To account for non-ideal fluid effects, the multi-parameter equation of state
of Span and Wagner [16] is used to calculate the thermodynamic quantities and
consequently the shape of the divergent part depends on the thermodynamics of
the points where the expansion takes place and on the working fluid. In the case of
air, the nozzle is typically shorter and smaller compared to other more complex
fluid.

The tool used, which is based on this procedure, is the MOC tool from OpenMOC.
This tool requires a number of inputs to function, which are derived from the
previous results of TurboSim. At the same time, however, there is one parameter
that must be paid more attention to, which is the absolute Mach number of the
stator output.

The Mach number at the stator outlet differs from the value provided by
TurboSim because the latter does not consider a stator designed as a convergent-
divergent nozzle; instead, it directly provides the Mach number after post-expansion.
In contrast, OpenMOC requires the Mach number prior to post-expansion.

To ensure compatibility with OpenMOC, the Mach numbers from TurboSim
are adjusted proportionally to account for post-expansion effects.

The issue is to figure out the correct value of this post-expansion and conse-
quently apply it to the stator outlet Mach number. A previous study, conducted
using the same software, analysed the post-expansion ratio and its dependence on
the expansion ratio and on the working fluid, as explained in the reference [17].
Specifically, the authors investigated the optimal value of the post-expansion ratio
by varying the working fluid, keeping the design parameters constant, and then
varying the design parameters for a same working fluid. The interesting results can
be explained by figures 3.3 and 3.4.
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Figure 3.3: Peripheral speed at
midspan [17]

Figure 3.4: Stator Outlet flow angle
[17]

Figure 3.3 shows the variation of the total losses ξ with a post-expansion ratio
(βa1) for vanes operating with an expansion ratio β = 6, a flow angle ϕa = 70°
and solidity σ = 1 and for different working fluids. The dots represent the values
obtained from CFD simulations at discrete intervals of βa1 and the dashed lines
are trend lines obtained by fitting the data points with a cubic functional form.

The black dashed line is representative of air and the value of a post-expansion
that minimizes losses is about βa1=1.1.

Figure 3.3 is also an important reference because it shows the influence of the
expansion ratio on the optimal post-expansion value. A higher expansion ratio
means higher losses, as the Mach number increases in the flow channel. In fact,
for higher values of β, the optimal post-expansion value is a single value due to
the stronger shock wave, which leads to a higher sensitivity of the overall losses.
On the contrary, for lower β values, the minimum losses are reached for a series of
post-expansion values. Consequently, the optimum value rises as the expansion
ratio increases.

The final selected values are:

• In the first case, the post-expansion ratio is 6% of the total expansion ratio.

• In the second case, it is 9%.

• In the third case, it is 10%.

The Mach number is selected proportionally to these values, as stated in the
table 3.1.
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TurboSim Mstator,out OpenMOC Mstator,out Post-Expansion

β = 5 1.33 1.27 6%
β = 16 1.65 1.50 9%
β = 30 1.80 1.62 10%

Table 3.1: Comparison of TurboSim and OpenMOC stator outlet Mach numbers
for different expansion ratios.

The MOC tool computed the results illustrated in figures 3.5, 3.6 and 3.7.

Figure 3.5: Divergent
section of the low expan-
sion ratio vane

Figure 3.6: Divergent
section of the medium ex-
pansion ratio vane

Figure 3.7: Divergent
section of the high expan-
sion ratio vane

3.2.2 Axial Stator Design

The divergent section is integrated into the overall nozzle design. To develop the
supersonic stator, another OpenMOC tool is used. This tool was originally designed
for radial stators, as detailed in [14], and is then modified to accommodate the
axial configuration.

An important challenge is designing the pressure side to ensure that the throat
is positioned correctly. This is then validated through CFD analysis by verifying
that the sonic line is indeed located at the throat. Additionally, it is crucial to
prevent excessive acceleration of the flow before reaching the throat, as this could
lead to premature supersonic conditions. To mitigate this risk, the leading edge
should be thickened using a similar procedure to the one described in reference
[18].

After implementing all the necessary modifications to meet the specified require-
ments, the final results are presented in figures 3.8, 3.9, 3.10 for the vanes at low,
medium and high pressure ratios.
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Figure 3.8: Stator Blade of the low
pressure ratio turbine

Figure 3.9: Stator Blade of the medium
pressure ratio turbine

Figure 3.10: Stator Blade of the high
pressure ratio turbine

3.3 Supersonic rotor
In the supersonic rotor blade design, flow deflection is achieved through a vortex-
type velocity distribution in the concentric circular arc section. This distribution
is realised through transition arcs, the design of which is based on Prandtl-Meyer
angles. However, this method is not flexible in including external effects such as
body forces and is not adequate for the typical operating conditions where dense
gas effects significantly influence the efficiency of the vane geometry [19].

These effects are considered in another tool implemented in OpenMOC. The
authors of this tool aimed to address the previous limitations by eliminating the use
of Prandtl-Meyer angles and instead applying the MOC directly to the compatibility
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equation, as explained in reference [19].

Figure 3.11: Supersonic axial rotor blade sections [19]

The concept focuses on enabling a smooth supersonic flow passage between two
concentric circles, allowing for significant turning of the fluid without generating
local shocks. To accomplish this, the blade design is structured into three key
sections: the inlet transition arc, which gradually converts the uniform supersonic
inflow into a vortex-type flow; the concentric circular arc section, which sustains
the vortex flow while redirecting it; and the outlet transition arc, which transitions
the vortex flow back to uniform conditions at the blade exit, as shown in Figure
3.11.

Given the inlet relative flow angle, inlet and outlet Mach numbers, the code
generates a rotor profile. The input Mach number must be supersonic for the
software to work, so this tool cannot be applied to the first stage of the turbine,
which has a subsonic relative rotor input Mach number. Instead, it is only applied
to the second and third stages.

The blade geometries, together with the boundaries for the CFD simulations,
are shown in figures 3.12 and 3.13.
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Figure 3.12: Rotor blade of the medium
pressure ratio turbine

Figure 3.13: Rotor blade of the high
pressure ratio turbine

The x and y coordinates in figures are in the dimensional form (m). However,
the tool gives results in a dimensionless form, so the dimensions are scaled in order
to obtain the same axial chord and pitch as the TurboSim outputs, with a solidity
of 0.72 for the second rotor and 0.62 for the third one.

As for the domains, they are constructed based on the pitch. For the second
stator, the same pitch as the mean line is used, since its value matches that of
the stator. For the third rotor, the pitch is adjusted to match the pitch of the
corresponding stator, to ensure compatibility with unsteady simulations.
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Chapter 4

Computational Fluid
Dynamics of Supersonic
Turbines

4.1 Flow Field in Supersonic Turbines

Fluid dynamics analysis is a fundamental aspect of turbine design, particularly for
stages operating in supersonic conditions where the presence of shock waves, sepa-
ration phenomena and strong pressure gradients makes predicting flow behaviour
complex. In this context, computational fluid dynamics is an essential tool for
understanding and optimising turbine performance; indeed, many modern design
methods are based on CFD optimisation which allows for losses reduction.

CFD allows the Navier-Stokes equations to be solved numerically, providing a
detailed description of the flow field and enabling accurate prediction of system
performance.

Supersonic turbines are characterised by a complex interaction between the
stator and rotor blades, in which the highly compressible flow generates shock
waves and expansion fans. A key feature of these turbines is the formation of
shock waves at the trailing edge of the stator, which impact the rotor, affecting
its efficiency [18]. Figure 4.1 shows a simulation of the static pressure field in a
supersonic turbine. On the left, the pressure distribution along the rows of blades
can be observed. On the right, the focus is on the characteristic wave system of
the flow through the turbine blades. Oblique shock waves (in blue), which form at
the outlet of the stator vanes and interact with the flow along the rotor, can be
clearly distinguished. In addition, there are detached shock waves, or bow shocks
(in red), which develop due to the interaction between the supersonic flow and the
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blade geometry.

Figure 4.1: Static pressure contours and schematic of shock waves [20]

In the region of stator-rotor interaction, pressure waves can move upstream
through the subsonic flow near the pressure surface of the adjacent rotor, strength-
ening when they reach the supersonic flow [21]. This phenomenon contributes
to significant fluctuations in Mach number, pressure and aerodynamic forces on
the rotor. In addition, the geometry of the rotor leading edge can influence the
non-uniformity of the downstream flow, leading to variations in turbulence and
boundary layer separation [22].

Another critical aspect involves the interaction between shock waves and the
pressure field. At high Mach numbers at the stator vane outlet, the main source of
excitation is the shock system formed at the trailing edge of the vane [23]. This
system generates an increase in forces and torques on the rotor blades, with effects
amplified by the rise in the pressure ratio in the turbine.

Furthermore, the pressure ratio in the stage affects the position and inclination
of the shock wave at the trailing edge of the vane, shifting its impact downstream
and modifying the Mach number in the rear regions. This contributes to the
generation of reflected waves and the creation of boundary layer separation zones
[23].

The main approaches commonly employed to analyse the interaction between
stator and rotor blade rows are steady-state analyses, for example, implementing a
mixing plane, and unsteady simulations.

The mixing plane approach consists of averaging the momentum field between
the stator and rotor, eliminating phase variations and transient instabilities. The
flow field is averaged along the circumferential direction, making the approach
particularly suitable for obtaining time-averaged results at low computational cost
[20]. However, this model shows an increase in pressure due to the influence of
the shock waves detached from the adjacent rotor vane. In addition, an increase
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in the Mach number at the stator inlet is observed, leading to the generation of
oblique shock waves which, reflected on the stator walls, impact the rotor inlet.
As a result, the field of motion between the nozzle outlet and the rotor inlet
becomes highly complex, characterised by reflections and interference between
shock waves. Therefore, the use of the mixing plane in supersonic turbines can lead
to an overestimation of losses due to shock waves and stator-rotor interaction [24].

On the other hand, unsteady simulations allow pressure fluctuations and transient
aerodynamic interactions to be resolved directly. This approach makes it possible
to capture effects such as shock wave propagation, oscillations of aerodynamic
forces on the blades and the variation of the flow field over time.

One of the most interesting aspects of the unsteady simulations is the significant
difference from the steady results for the same flow condition, as shown in the
reference [24]. In fact, the flow non-uniformity along the circumferential direction
at the trailing edge of the vane is much more pronounced in the unsteady simula-
tions than in the steady ones, with variations of more than 40% under the most
unfavourable conditions [21]. A further advantage lies in their ability to highlight
the role of stator vanes wakes. The wakes generate a modulation of the pressure
field that helps to dampen the pressure gradients associated with the reflected
waves, thus reducing flow instability [24].

4.2 Navier-Stokes Equations
Computational fluid dynamics uses numerical techniques and computational meth-
ods to solve fluid flow problems, in particular the Navier-Stokes (NS) equations,
which can be formulated in different ways. The compressible forms of these
equations are shown in 4.1.



∂ρ

∂t
+ ∇ · (ρq⃗) = 0

∂(ρq⃗)
∂t

+ ∇ · (ρq⃗q⃗) = ∇ · [σ] + ρf⃗e

∂ρE

∂t
+ ∇ · (ρq⃗E) = ∇ · ((−pI + [τ ]) q⃗) + ρf⃗e · q⃗ − ∇ · q⃗T

(4.1)

ρ is the density, q⃗ is the velocity vector, E is the total energy, σ = −pI + [τ ]
represents the stress tensor, f⃗e is an external force term (such as Coriolis or
centrifugal force), p is the pressure, I is the identity matrix, [τ ] is the viscous stress
tensor and q⃗T is the heat flux. In compact form, the compressible Navier-Stokes
equations can be written as in 4.2.
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∂

∂t


ρ
ρq⃗
ρE

+ ∇ ·


ρq⃗

ρq⃗q⃗ − pI + [τ ]
(ρE + p)q⃗ − [τ ] q⃗ − k∇T

 =


0
ρf⃗e

ρf⃗e · q⃗

 (4.2)

4.3 Turbulence Modelling
Turbulent flow is an unsteady, three-dimensional phenomenon characterized by a
series of vortical structures that evolve and progressively break down into smaller
vortices. This makes it a multi-scale problem: the largest eddies, which are
approximately the size of the body being studied, tend to break down transferring
energy to progressively smaller scales until reaching the dissipative scales. This
process is known as the turbulent energy cascade. The largest vortices, known as
integral length scales, are strongly influenced by the local geometry and flow system,
whereas the smallest vortices, near the Kolmogorov scale η, exhibit more universal
characteristics. The ratio between the largest and smallest turbulence structures
increases with the Reynolds number, leading to a wide range of interacting scales.
The characteristic time associated with large eddies is approximately t = L/U0,
where L is the characteristic length of the system and U0 is the characteristic
velocity. The Kolmogorov time scale, on the other hand, can be estimated asñ
µ/ρϵ, where ϵ is the viscous dissipation [25].
To handle the complexity of turbulence, most modelling approaches employ some

form of averaging, which can be temporal, spatial or a combination of both. This
allows for a reduction in computational cost while providing a feasible description
of the flow.

There are three main approaches to numerical turbulence simulation [13]:

• Direct Numerical Simulations (DNS): directly solve the Navier-Stokes
equations without turbulence models, integrating with a spatial and temporal
grid fine enough to capture all turbulent determines the spatial resolution
∆x, while the total number of cells depends on the size of the problem
(determined by the largest eddies). The number of grid cells increases with the
Reynolds number because the ratio between the largest and smallest vortices
grows. Additionally, due to the Courant-Friedrichs-Lewy (CFL) condition,
smaller cells require smaller time steps. The computational cost of DNS scales
approximately as O(Re3).

• Large Eddy Simulations (LES): solve the larger turbulent scales directly,
while the smaller scales, which are typically more universal, are modelled using
a sub-grid scale model. The separation between resolved and unresolved scales
is typically determined by a filter, which is often chosen to be proportional to
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the grid resolution. Sub-grid scale models introduce their effects on the larger
(resolved) scales. These models aim to represent how the unresolved turbulence
interacts with the resolved flow structures. It is used until Re ≈ 105.

• Reynolds-Averaged Navier-Stokes (RANS): Averages the equations over
time or space to obtain a mean field, fully modelling the turbulence. It is used
for high Reynolds numbers.

RANS are obtained by decomposing the solution into mean value and fluctuation:

ui = ūi + u′
i (4.3)

This decomposition introduces the Reynolds stress tensor, which represents the
effect of turbulent fluctuations on the mean field:

−ρu′
iu

′
j (4.4)

The mean value can be calculated in different ways, depending on the nature of
the problem [13]:

• Statistically steady problems. Time average:

ūi(x) = lim
T →∞

1
T

Ú t+T

t
ui(x, t) dt

• Homogeneous turbulence problems. Spatial average:

ūi(t) = lim
Ω→∞

1
Ω

Ú
Ω
ui(x, t) dΩ

• Generic Problem. Overall average:

ūi(x, t) = lim
N→∞

1
N

NØ
i=1

ui(x, t)

• Compressible Flow Problems. In this case, the Favre averaging is implemented,
where ρ̄ is the mean density computed using one of the previous approaches,
while ũi(x) is the Favre average, given by:

åui(x) = 1
ρ̄

lim
T →∞

Ú t+T

t
ρui(x, t) dt

Thus, the solution will be:
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ui(x, t) = åui(x) + U ′′
i

where U ′′
i is the fluctuation averaged by Favre.

In compressible RANS (Favre-averaged Navier-Stokes equations), density and
pressure are Reynolds-averaged, while all other variables are Favre-averaged.

It results:

∂ρ̄

∂t
+ ∂

∂xi

(ρ̄åqi) = 0 (4.5)

∂

∂t
(ρ̄åqi) + ∂

∂xj

(ρ̄åqiåqj) = − ∂p̄

∂xi

+ ∂

∂xj

1
τ̄ij − ρ̄çq′′

i q
′′
j

2
(4.6)

In equation 4.6, the term τF
ij = −ρ̄ çq′′

i q
′′
j is the Reynolds stress tensor obtained

by Favre averaging.
The Boussinesq hypothesis assumes that the τF

ij stresses are proportional to the
mean velocity gradient, as in equation 4.7.

τ̄F
ij = 2µt

åSij − 2
3µt

∂ åqk

∂xk

δij − 2
3 ρ̄kδij (4.7)

Where:
• åSij = 1

2

1
∂q̄i

∂xj
+ ∂q̄j

∂xi

2
is the strain rate tensor.

• k is the turbulent kinetic energy.

• µt is the eddy viscosity, which accounts for the fluctuations at the turbulent
scales that describe the velocity gradient of molecules diffusing in both direc-
tions. Therefore, it perceives a gradient in the mean field associated with the
momentum exchange.

To compute the eddy viscosity, various methods are introduced, including:

• Algebraic models (e.g., Baldwin-Lomax): These models determine the eddy
viscosity at a single point. They are limited because they were developed
when powerful computational resources were not yet available.

• One-equation transport models (e.g., Spalart-Allmaras): These models solve a
single transport equation to estimate the eddy viscosity, improving accuracy
over algebraic models.

• Two-equation transport models (e.g., k-ω, k-ε, SST by Menter): These models
solve two transport equations—one for turbulent kinetic energy (k) and another
for the turbulent energy dissipation or specific dissipation (ε or ω), providing
a more detailed representation of turbulence.
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4.3.1 Two-equation transport models
The k − ε model introduces two transport equations for k and ε which, in the
standard method, are equal to [13]:

∂ρ̄k

∂t
+ ∂

∂xi

(ρ̄åqik) = ∂

∂xj

C3
µ+ µt

σk

4
∂k

∂xj

D
+Gk − ρ̄ε+ YM (4.8)

∂ρ̄ε

∂t
+ ∂

∂xi

(ρ̄åqiε) = ∂

∂xj

C3
µ+ µt

σε

4
∂ε

∂xj

D
+ C1ε

ε

k
Gk − C2ε

ρ̄ε2

k
(4.9)

In these equations, σk and σε are empirical coefficients that govern the diffusion
of the turbulent kinetic energy k and the turbulent energy dissipation ε, respectively.

In the k-equation, the term Gk represents the production source term, which
quantifies the amount of energy extracted from the mean flow due to the gradients
in the mean velocity field and transferred to the turbulence. This energy is made
available at the beginning of the inertial cascade in the form of turbulent kinetic
energy. The term −ρ̄ε accounts for the destruction of turbulent kinetic energy
through viscous dissipation.

In the ε-equation, the term C1ε
ε

k
Gk represents the production of dissipation,

while the term C2ε
ρ̄ε2

k
corresponds to its destruction. The constants C1ε and C2ε

are also empirical and are typically calibrated based on experimental or DNS
data. Finally, YM accounts for the compressibility effects, modifying the turbulence
production in compressible flows.

The eddy viscosity is calculated as:

µt = ρ̄Cµ
k2

ε
(4.10)

where Cµ is a constant.
The k − ω model is similar but uses ω = ϵ

k
, the specific dissipation rate.The

equations for k and ω are as follows [13]:

∂ρ̄k

∂t
+ ∂

∂xi

(ρ̄åqik) = ∂

∂xj

C3
µ+ µt

σk

4
∂k

∂xj

D
+Gk − β∗ρ̄ωk (4.11)

∂ρ̄ω

∂t
+ ∂

∂xi

(ρ̄åqiω) = ∂

∂xj

C3
µ+ µt

σω

4
∂ω

∂xj

D
+ γ

ω

k
Gk − βρ̄ω2 + ρ̄σd

1
ω

∂k

∂xj

∂ω

∂xj

(4.12)

In the k-ω model, the transport equations for k and ω include several terms
that represent different physical mechanisms. As in the k-ε model, Gk denotes the
production term, which quantifies the energy transferred from the mean flow into
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turbulence due to velocity gradients. The term −β∗ρ̄ωk represents the destruction
of turbulent kinetic energy, where β∗ is an empirical constant.

In the ω-equation, the term γ
ω

k
Gk is the production term of the specific dissipa-

tion rate, while −βρ̄ω2 accounts for its destruction. Both γ and β are empirical
constants.

An additional term, ρ̄σd
1
ω

∂k

∂xj

∂ω

∂xj

, appears in the equation for ω and represents
a cross-diffusion correction, which accounts for the coupling between the gradients
of k and ω. The coefficients σk, σω, and σd are empirical and control the diffusion
behavior of the model variables.

Overall, the main difference between the k-ε and k-ω models lies in the specific
dissipation formulation and the exact form of the production/destruction terms.

Regarding their applications:

• The k-ε model is typically used for external flows, such as a flat plate.

• The k-ω model is more suitable for internal flows, for example, in turboma-
chinery.

The Menter SST model combines the strengths of both the k-ω and k-ε turbu-
lence models to achieve improved accuracy in different flow regions [13].

The k-ω model performs well near walls, even in the presence of flow separation,
but the results are highly sensitive to the value of ω prescribed at the inlet. This
poses a problem because the boundary conditions for ω at the domain entrance are
not always known with precision. In general, k is easier to determine, while ω is
often found empirically, which can introduce errors into the simulation results.

On the other hand, the k-ε model is less sensitive to inlet values of ε but generally
performs worse near walls, particularly in the presence of strong separations.

The Menter SST model is a hybrid approach, which behaves like k-ω near the
wall and k-ε in the far field. This is achieved by rewriting the transport equation
for ε in terms of ω as:

ω = ε

k
⇒ ε = ωk (4.13)

As a result, the SST model has two equations for ω, which are applied depending
on the flow region. To determine which equation to use, a blending function is
introduced, adjusting the coefficients based on the location within the domain.
This means the model switches between equations depending on whether the flow
is near or far from a wall.

The eddy viscosity (µt) in the SST model is defined as:

µt = ρ̄ a1 k

max(a1ω,ΩF2)
(4.14)
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where:

• Ω is the magnitude of the vorticity.

• F2 is a correction function.

• a1 is a constant.

If the dominant term in the equation is a1ω, the model behaves like k-ω, whereas
if ΩF2 prevails, it behaves like k-ε [13].

4.3.2 One-equation transport model
The Spalart-Allmaras (SA) model is a one-equation turbulence model specifically
developed for high Reynolds number flow simulations [13]. Unlike two-equation
models such as k − ε and k − ω, the SA model directly introduces a transport
equation for a modified eddy viscosity ν̃, which is then used to compute the effective
eddy viscosity µt.

The transportation equation is computed as:

dρṽ

dt
+ dρqiṽ

dxi

= ρ(P −D) + 1
σ

d

dxi

C
ρ(ν + ν̃) dṽ

dxi

D
+ Cb2

σ
ρ
dṽ

dxi

dṽ

dxi

− 1
σ

(ν + ν̃) dρ
dxi

dṽ

dxi

(4.15)
This equation includes the following main terms:

• Production P :
P = Cb1S̃ν̃

It depends on the magnitude of the modified strain rate tensor S̃, this term is
modified to stabilise the model. If S ≥ 0, turbulent viscosity is generated. The
production term is proportional to ν̃, so if the field is initially laminar with
ν̃ = 0, there is no possibility of a transition to turbulence. This is because
the production term is proportional to ν̃, but if ν̃e is not there the term will
never be created. So the flow is considered turbulent from the beginning, as
the Reynolds number is high.

• Destruction D:
D = Cω1fw

3
ñu

d

42

d represents the distance from the wall, meaning that as one approaches the
wall, dissipation tends to infinity.

• Diffusion: a term that accounts for the diffusion of turbulent viscosity transport
through the divergence of the flow.
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• Cross-production: it corrects the equation to ensure stability and influences
diffusion.

The SA model requires specific boundary conditions to ensure the correct
development of turbulence:

• Solid walls:
ν̃ = 0

This is a homogeneous Dirichlet condition, ensuring that the turbulent viscosity
is zero at the wall.

• Inlet:
ν̃

ν
≥ 3

This sets a minimum value to guarantee a fully turbulent flow. If the initial
value of ν̃ is too low, the flow will never transition to turbulence, as production
depends directly on ν̃. This condition is a recommendation from the authors
of the method to prevent underestimation of inlet turbulence.

Spalart-Allmaras is the most stable method, while the others can present stiffer
initial problems and therefore need a very low time step at the beginning (CFL
condition) [13]. This is why it is also the most widely used in industry.

4.3.3 CFL Condition
The CFL condition is linked to the CFL number. It is a fundamental dimensionless
number in the numerical solution of partial derivative equations, particularly for
finite difference and finite volume methods [26]. It defines a stability criterion for
explicit numerical integration methods.

It is defined as:

CFL = λ∆t
∆x (4.16)

where:

• λ is the characteristic velocity of the flow (e.g., the wave propagation speed)

• ∆t is the time step of the simulation

• ∆x is the spatial discretization step
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For two-dimensional or three-dimensional problems, the CFL number can be
generalized by considering the sum of velocity contributions along different direc-
tions:

CFL =
Ø

i

λi∆t
∆xi

(4.17)

For hyperbolic equations:

CFL = max
A
λi∆t
∆xi

B
(4.18)

where λi represents the eigenvalues of the hyperbolic system.
The CFL condition says that the physical dependency domain must be included

in the numerical dependency domain. In fact, it has a clear physical interpretation:
it represents the ratio between the distance travelled by physical information in a
time interval ∆t and the spatial resolution of the numerical grid ∆x. If the CFL
number is too large, the information may "jump" multiple grid cells in a single time
step, leading to unstable or non-physical solutions [26].

This is a very important consideration especially when simulating turbulence
to ensure the stability of the method, often the use of an adaptive CFL number
becomes of interest: the time step is dynamically adjusted to maintain a constant
CFL number throughout the simulation. This helps to ensure stability and accuracy,
especially in simulations with significant speed variations.

4.4 Convective Fluxes
Considering the Euler equations or the convective part of the NS, there are several
numerical methods to calculate the convective fluxes at the edge of the cell, which
are divided into upwind and centred schemes [13].

In particular, upwind methods are divided into flux difference splitting methods,
such as Godunov, Osher-Enquist-Pandolfi and Roe, and flux vector splitting
methods, including the classical FVS and AUSM.

Unlike upwind methods, centred schemes do not explicitly account for the
hyperbolic nature of the equations, meaning they do not directly consider wave
propagation. Instead, they compute the fluxes by averaging the contributions from
the left and right of the cell without explicitly considering wave propagation.

However, a purely centred scheme is unstable, so an explicit numerical viscosity
is added to ensure stability. Examples of such methods include Lax-Friedrichs and
Jameson-Schmidt-Turkel (JST) [13].
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4.4.1 Roe method
The most widely used convective scheme in density-based solvers is the flux-
difference splitting scheme developed by Roe (1981). This first-order method
belongs to Godunov-type schemes and is based on solving a Riemann problem. A
key feature of this approach is that the flux at the control volume face is interpolated
using both upstream and downstream values, and the final flux is obtained as the
average of these interpolations. Furthermore, the amount of numerical dissipation
is controlled by a matrix of eigenvalues, which depends on the difference between
the velocity of the fluid and the speed of sound [25].

The MUSCL scheme (Monotone Upstream-Centred Schemes for Conservation
Laws) extends the Roe scheme to higher orders, as proposed by Van Leer (1979).
This is accomplished by applying higher-order interpolations both upstream and
downstream of the control volume face, improving accuracy while maintaining
numerical stability [25].

4.4.2 JST method
The JST method is a centred scheme widely used in computational fluid dynamics
for structured and unstructured grids.

A key characteristic of the JST scheme is its large stencil: when computing
fluxes at a given cell j, it requires information from neighbouring cells j + 1, j + 2,
j − 1 and j − 2. This large stencil improves accuracy but increases computational
complexity [13].

JST computes the numerical flux at the face between cells as:

Fj+ 1
2

= Fj + Fj+1

2 −Dj+ 1
2

(4.19)

This formulation follows the standard centred approach, where the flux at an
interface is obtained by averaging the fluxes from the left and right neighbouring
cells. However, a purely centred scheme is unstable, so JST introduces a dissipative
term Dj+ 1

2
to enhance numerical stability.

The JST scheme introduces artificial viscosity through a dissipation term that
combines second-order and fourth-order dissipation:

Dj+ 1
2

= ϵ2
j+ 1

2
∆Uj+ 1

2
− ϵ4

j+ 1
2
(∆Uj+ 3

2
− 2∆Uj+ 1

2
+ ∆Uj− 1

2
) (4.20)

The dissipation term consists of two components. The second-order dissipation
term ϵ2 acts as a shock-capturing term, ensuring numerical stability and is typically
associated with Lax-Friedrichs type dissipation. The fourth-order dissipation term
ϵ4 helps preserve accuracy in smooth regions by damping high-frequency oscillations.
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The balance between these two dissipation terms ensures both stability and accuracy
in the numerical solution.

To control the level of dissipation, JST introduces a pressure-based sensor:

Sj+ 1
2

= max(Sj, Sj+1) (4.21)

where:

Sj = |Pj+1 − 2Pj + Pj−1|
|Pj+1 + 2Pj + Pj−1|

(4.22)

This pressure sensor detects shock waves and high-gradient regions, ensuring that
dissipation is applied where needed, without affecting smooth regions unnecessarily.
If the pressure gradient is high (e.g., near a shock), Sj increases, activating stronger
dissipation. Conversely, if the pressure gradient is low (smooth regions), Sj remains
small, minimizing artificial dissipation.

The dissipation coefficients are defined as:

ϵ2
j+ 1

2
= K2Sj+ 1

2
λmax,j+ 1

2
(4.23)

ϵ4
j+ 1

2
= max

1
0, K4λmax,j+ 1

2
− C4ϵ

2
j+ 1

2

2
(4.24)

where K2 = 1, K4 = 1
32 , and C4 = 2. The fourth-order dissipation ϵ4 is indirectly

controlled by ϵ2, which in turn is influenced by the pressure sensor [13].

4.5 Boundary layer resolution requirements
For evaluating the resolution of the first layer of mesh cells near the wall and
selecting the appropriate wall treatment approach it is essential to select a proper
value of y+ [27]. This parameter is a dimensionless quantity used in turbulence
modelling to characterise the distance from the wall in turbulent flows.

It is defined as:

y+ = yuτ

ν
(4.25)

where:

• y = normal distance from the wall to the first computational grid point,

• uτ = friction velocity (uτ =
ñ
τw/ρ, with τw being the wall shear stress),

• ν = kinematic viscosity of the fluid.
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The y+ value indicates which region of the turbulent boundary layer the first grid
point lies in:

1. y+ < 5: Viscous sublayer. Viscosity dominates, and the velocity profile is
nearly linear. Requires a very fine mesh to resolve this layer in CFD.

2. 5 < y+ < 30: Buffer layer Both viscosity and turbulence contribute. This
region is difficult to model accurately.

3. y+ > 30: Log-law region. Flow is dominated by turbulence, and velocity
follows the log-law:

U

uτ

= 1
κ

ln(y+) +B (4.26)

where κ ≈ 0.41 is the von Kármán constant and B ≈ 5.0 is an empirical
constant.

Depending on the chosen approach, the y+ value determines the wall treatment
strategy[27]:

1. Low y+ (y+ < 1) → Wall-Resolved Approach

• The mesh must resolve the viscous sublayer.
• Used with models like k-ω SST, SA and LES.
• High computational cost.
• Application in aerospace propulsion.

2. High y+ (y+ > 30) → Wall-Modelled Approach

• The first grid point is in the log-law region.
• Uses wall functions to avoid excessive grid refinement.
• Applied to models like k-ϵ or k-ω SST with wall functions.

3. Intermediate y+ values (5 < y+ < 30)

• Avoided in CFD because wall functions may not work well, and the mesh
may not be fine enough to resolve the viscous sublayer.

4.6 Stator-Rotor Interaction Methods
The interaction between the stator and rotor rows in a supersonic turbine is a
highly complex phenomenon, characterised by unsteady and turbulent effects that
significantly affect the aerodynamic and thermodynamic performance of the system.
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As the flow passes through the stator row, it generates turbulent wakes and shock
waves, which are then intercepted by the moving rotor. This behaviour introduces
unsteady variability into the flow field, complicating the prediction and optimisation
of performance.

One of the main problems in the interaction between stator and rotor rows is
related to the presence of turbulent wakes that form downstream of the stator,
impact on the rotor blades and affect the ability of the boundary layer to remain
attached to the wall, thus altering its performances and reducing its efficiency. If
the rotor passes through these wakes intermittently, the flow becomes inherently
unsteady, complicating the analytical and numerical modelling of the phenomenon
[13]. In addition, a fundamental role is played by shock waves and expansion fans
generated in inter-row zones. Reflected shock waves can interact with the rotor
blades, creating pressure discontinuities and altering the velocity profile.

Dealing with these phenomena requires careful numerical analysis, often sup-
ported by mediation techniques such as mixing plane or advanced CFD models
that take into account turbulence and unsteady effects.

4.6.1 Mixing Plane
To reduce computational cost, the initial approaches implemented are generally
steady-state. One of the most commonly used methods is the so-called mixing plane
methos, which consists of introducing an averaging plane located approximately
halfway between the trailing edge of the stator and the leading edge of the rotor
[25]. An example of computational results obtained using this technique is shown
in figure 4.2, derived from an analysis performed with SU2 as in reference [28].

Figure 4.2: SU2 analysis example with Mixing Plane [28]
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With this method, the flow is averaged in the circumferential direction, elimi-
nating temporal variations and consequently neglecting the unsteady interaction
between the two blade rows. As a result, the stator and rotor solutions tend to
converge towards a steady-state solution.

The averaging process in the mixing plane approach is conceptually equivalent
to an instantaneous mixing of the non-uniform flow at a specific location, rather
than a gradual mixing occurring throughout the downstream blade row. The
fundamental assumption behind this method is that the mixing losses introduced
at the mixing plane are equivalent to those that would naturally occur as the real
flow mixes within the downstream row [24].

However, as Denton cautioned, this assumption lacks a rigorous theoretical
foundation:

"There is no a priori theory to justify this assumption" [29].
A comparison between this method and unsteady simulations is presented in

[24], where the entropy distributions show the presence of an entropy jump at
the mixing plane. This phenomenon is intrinsic to the mixing plane approach, as
it results from the circumferential averaging process, which in turn reduces the
discrepancies in the overall losses between the steady-state and unsteady modelling
techniques.

In steady-state calculations, the mixing of flow non-uniformities occurs instanta-
neously at the mixing plane, rather than progressively within the rotor passage.
Consequently, in the region downstream of the mixing plane, the rotor is subject
to a lower entropy change than in the unsteady case. However, when consider-
ing the cumulative entropy generation from the mixing plane and the rotor, the
final entropy level remains generally comparable to that obtained in an unsteady
simulation.

Furthermore, the intensity of the entropy discontinuity at the mixing plane is
directly influenced by the non-uniformity of the flow in the pitch direction, with a
more pronounced effect observed under transonic operating conditions.

4.6.2 Harmonic Balance
The harmonic balance method is a mathematical approach that allows one to solve
unsteady effects at discrete sets of frequencies in the frequency domain instead of
the time domain. It is particularly useful in computational fluid dynamics to study
periodic or quasi-periodic phenomena with a more efficient representation than
conventional methods [30].

The significant increase in computational resources has led to an incentive to
extend single-passage and steady-state methods for unsteady simulations, rather
than directly adopting direct solutions in the design environment. This basic
consideration constitutes the general motivation for the development of the Fourier
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modelling approach. The basic requirement is the existence of periodicity, which is
a fundamental characteristic of flows in turbomachinery. These frequency domain
approaches follow the same Fourier modelling principle and share a common basic
characteristic: a non-linear harmonic solution Nf is equivalent to 2Nf +1 steady flow
solutions. A key feature of frequency domain approaches is that a problem involving
the solution of a set of steady-state flow equations is effectively transformed into
the solving of a set of time-independent steady flow equations [31].

A signal can be approximated as a truncated Fourier series and when applied to
the solution vector, it takes the form shown in equation 4.27

U = Ū +
NØ

n=1
An sin(nωt) +Bn cos(nωt) (4.27)

The Blade Passing Frequency (BPF) dominates the flow spectrum, so a single
frequency is often considered, reducing the series to the form given in equation
4.28.

U = Ū + A sin(ωt) +B cos(ωt) (4.28)

Additionally, the Hall’s harmonic balance approach [31] proposes to solve the
non-linear harmonic flow equations considering the Unsteady Reynolds-Averaged
Navier-Stokes (URANS) equations (Eq. 4.29).

∂U

∂t
+R(U) = 0 (4.29)

ωA cos(ωt) − ωB sin(ωt) = −R
1
Ū + A sin(ωt) +B cos(ωt)

2
(4.30)

To solve equation 4.30 for the three unknowns (A,B, Ū), three equations are
required, evaluated at three different time instances.

ωA cos(ωt0) − ωB sin(ωt0) = −R
1
Ū + A sin(ωt0) +B cos(ωt0)

2
(4.31)

ωA cos(ωt1) − ωB sin(ωt1) = −R
1
Ū + A sin(ωt1) +B cos(ωt1)

2
(4.32)

ωA cos(ωt2) − ωB sin(ωt2) = −R
1
Ū + A sin(ωt2) +B cos(ωt2)

2
(4.33)

In general, 2N + 1 time instances are required to solve for the unsteady solution U ,
which is characterized by a single frequency (N being the number of frequencies).
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This approach has some drawbacks. It is less accurate than URANS, less stable
and requires more time to achieve residual convergence. However, it has significant
advantages and one of its main benefits is the lower computational cost compared
to accurate simulations in time, although this depends on the number of frequencies
[31].

One important assumption of the harmonic balance method is the periodicity
of the unsteady signal. While this is a reasonable approximation in many turbo-
machinery applications, such as rotor-stator interactions, blade clocking studies
and tonal noise analysis, it limits the method’s capability to capture broadband
or transient phenomena. As a result, purely stochastic or strongly aperiodic flow
features, such as vortex shedding with variable shedding rates or transient shock
motions, may not be accurately resolved.

Despite these limitations, the harmonic balance method provides an efficient
alternative to time-domain simulations when the dominant frequencies of the un-
steady phenomena are known a priori. Recent developments have also extended
the framework to support multiple frequencies (multi-harmonic approaches), mak-
ing it applicable to more complex blade row interactions and non-synchronous
configurations.

In turbomachinery design environments, where computational efficiency is es-
sential, the harmonic balance method represents a valuable compromise between
time-accurate simulations and steady-state approximations. When combined with
advanced turbulence models its predictive capability can be significantly enhanced
while maintaining manageable computational cost.
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Chapter 5

Computational Fluid
Dynamics Simulations

5.1 Mesh Generation

The geometry of a single blade is generated using UMG2, an in-house meshing
software for unstructured meshes. The computational domain is discretized with
triangular elements and wall-clustered quadrilateral elements near the wall to
ensure a y+ < 1. To achieve an appropriate boundary layer resolution, the
following relation is applied:

∆y = L · y+ ·
√

80 ·Re1/14
x · 1

ReL

(5.1)

This equation is derived from the reference [32] and has been demonstrated to
be highly effective.

Furthermore, different cell dimensions are used as input to generate various
types of meshes: coarse, medium, fine and ultrafine.

An example of stator mesh is shown in the figure 5.1.
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Figure 5.1: First stator coarse mesh

5.2 Mesh Sensitivity

To select the optimal mesh and reduce grid-discretization errors, a mesh sensitivity
analysis is performed for the second stator, specifically for the stator of the turbine
stage with the medium expansion ratio.

In particular, the analysis starts with the coarse mesh, where the average cell
size h is approximately 1/50 of the stator pitch. Once the simulation is run with
this mesh, the total area of the computational domain is considered, ensuring
consistency in the refinement process. To systematically improve resolution, a
refinement factor of r = 1.33 is applied, allowing the determination of the required
cell size for the next finer mesh using the relation hrequired = hactual/r. After
generating and running the second, finer mesh, the actual number of cells is known,
allowing the calculation of the corresponding actual cell size hactual. At this stage,
it is verified that this value remains consistent with the requirement of r > 1.33,
as explained in reference [33]. This iterative process is then repeated, with the
new required cell size continuously updated and refined using the same formula.
The procedure continues until the ultrafine mesh is reached, ensuring a systematic
reduction of discretization errors and progressively improving numerical accuracy.

After generating the meshes, the next step is to verify the entropy generation for
each mesh and evaluate its deviation from the finest mesh. Its value is expressed as
in equation 5.2, where sout and sin are the outlet and inlet entropy values, averaged
over the respective boundaries using the mixed-out procedure [34].
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sgen = sout − sin

sin

(5.2)

The results are illustrated in the figure 5.2.

Figure 5.2: Entropy Generation Figure 5.3: Entropy Generation Varia-
tion

To reduce computational cost, the ultrafine mesh is avoided in favour of one
of the other meshes, provided that the variation in Entropy Generation does not
exceed 2% compared to the ultrafine mesh. The variations among the different
meshes are illustrated in figure 5.3.

The mesh with an Entropy Generation variation below 2% compared to the
ultrafine mesh is the fine mesh. Therefore, the same h is used for all other stator
and rotor geometries.

5.3 Isolated Stators Analysis
After generating the meshes for the stators of the three turbine stages, the next
step is to set up the simulations for the isolated stators. The SU2 software is
utilized, leveraging the computational resources of the DelftBlue cluster [35] to run
the simulations efficiently.

The main parameters are illustrated in table 5.1.
The simulations implement a RANS solver that models turbulence according to

the SA method. Additionally, the "Ideal gas" model is used to simulate air, defined
by the specific heat ratio γ and the gas constant R. A constant viscosity value
is assumed, calculated along an isentropic expansion using the same expansion
ratio, as well as a constant thermal conductivity which employs a constant Prandtl
number approach.
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Table 5.1: Main simulation parameters of the axial stators

Parameter First Stator Second Stator Third Stator Unit

Free-stream Mach number 0.34 0.41 0.44 -
Reduced TemperatureTr 7.55 7.55 7.55 -
Reduced Pressure Pr 2.11 2.11 2.11 -
Free-stream Density 25.64 24.93 24.64 kg/m3

Heat capacity ratio γ 1.342 1.375 1.343 -
Turbulent viscosity ratio 100 100 100 -
Dynamic viscosity 3.38 × 10−5 3.14 × 10−5 2.93 × 10−5 kg/(m·s)
Outlet Static Pressure 2564676.89 1246602.92 877790.90 Pa

The non-reflecting boundary conditions by Giles are considered. The objective of
formulating non-reflecting boundary conditions is to prevent spurious, non-physical
reflections at inflow and outflow boundaries, ensuring that the computed flow field
remains independent of the far-field boundary locations. This enhances accuracy
and computational efficiency, allowing for a smaller computational domain [21].

Meanwhile, the mixed-out approach is implemented for the averaging process.
Unlike simple mass-averaging or area-averaging methods, which primarily weight
properties based on flow distribution, the mixed-out approach accounts for entropy
variations and non-uniformities in the flow. It computes an equivalent uniform flow
state where mass, momentum and total enthalpy are preserved while eliminating
local distortions caused by wakes, shocks, and boundary layers. This results in a
more physically meaningful representation of the flow, particularly in turbomachin-
ery applications where strong variations in thermodynamic properties occur due to
compressibility effects [36].

Two simulations are performed for each stator:

1. A first-order simulation using the Roe solver, which serves as an initialization
step. This helps the solution to converge more efficiently before proceeding to
higher-order accuracy.

2. A second-order simulation using the JST solver, providing improved accuracy.

The time discretization is based on the implicit Euler method, while the turbulent
convective method follows a scalar upwind approach.

An adaptive CFL number is considered, while FGMRES is used as the linear
solver, with LU-SGS as the preconditioner.

FGMRES is an iterative linear solver used to solve large, sparse systems of
linear equations, which arise when solving discretized governing equations (e.g.,
Navier-Stokes equations). It is an extension of the GMRES (Generalized Minimal
Residual) method, but it allows for a flexible choice of preconditioners at each
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iteration. LU-SGS is a preconditioning technique that speeds up the convergence of
iterative solvers like FGMRES. It is based on the Gauss-Seidel method but applied
in a lower-upper factorized form to approximate the inverse of the system matrix
[13].

Furthermore, efficiency is set as the objective function.

5.3.1 First Stator Results
Mach number and pressure distributions of the first stator are illustrated in figures
5.4 and 5.5.

As expected, a wake forms at the trailing edge, which influences the evolution
of the flow. To adapt to the conditions of the wake, the flow expands within the
diverging section of the nozzle and through expansion fans in the post-expansion
phase, eventually leading to the formation of two distinct shock waves, clearly
visible in the pressure contour. The right-running shock propagates towards the
rotor, while the left-running wave impinges on the adjacent vane, generating a
reflection.

Figure 5.4: Mach number distribution
of the first stator

Figure 5.5: Pressure distribution of the
first stator

The flow becomes sonic exactly at the throat, demonstrating an effective initial
design. This is highlighted in the figure 5.6 through the contour lines, where the
red line represents the sonic line.

As shown, the sonic line assumes a curved shape across the throat region. This
curvature is a well-known feature in supersonic nozzle or turbine throat designs,
where the sonic line bends in response to the local pressure and velocity gradients.
Specifically, it tends to follow the streamline curvature and adapts to the pressure
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field generated by upstream and downstream geometrical features, including blade
loading and shock-wave interactions.

The presence of a smooth and continuous sonic line indicates that the acceleration
to Mach 1 is gradual and primarily one-dimensional near the throat, which is
desirable for minimizing losses. However, deviations from a straight line, such as
the curvature observed in the figure, an occur due to span-wise or cross-channel
pressure variations and shock-induced perturbations.

This behaviour is consistent with classical analyses of transonic throat flows in
turbomachinery, as discussed for example in [12] and [37], where the sonic line is
shown to deviate from a straight profile when subject to non-uniformities in the
flow field or blade passage geometry.

In contrast, in idealized geometries such as convergent nozzles with parallel
walls, the flow tends to remain nearly one-dimensional in the throat, and the sonic
line appears as a straight segment perpendicular to the main flow direction. This
is due to the absence of transverse pressure gradients and span-wise variations.

Figure 5.6: Sonic Line Figure 5.7: Shock-Boundary layer in-
teraction

As the shock wave impinges on the vane, there is a thickening of the boundary
layer, visible in the figure 5.7. This occurs because the reduction of the kinetic
energy of the fluid and the adverse pressure gradient near the wall cause the
boundary layer to separate. As shown in the figure 5.8, the separation generates
a recirculation region; however, further downstream, the flow accelerates again,
allowing the boundary layer to reattach to the blade surface, as in figure 5.9.

The image 5.10 illustrates the flow behaviour in the trailing edge region, high-
lighting the presence of the wake and of a recirculation region. In the zoomed-in
section, it can be observed that the flow decelerates, leading to boundary layer
separation. This phenomenon results from the adverse pressure gradient, whose
effect is visible in the velocity profiles: a progressive velocity reduction is observed
up to the separation point, followed by the characteristic behaviour of a separated
flow.
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Figure 5.8: BL separation Figure 5.9: BL reattachment

Figure 5.10: Wake and Boundary Layer

The residuals are presented in the graph 5.11, where it can be observed that the
conservative variables decrease by eight orders of magnitude. Since the y-axis is in
logarithmic scale, this indicates the convergence of the results.

Figure 5.11: Residuals of isolated first stator

67



Computational Fluid Dynamics Simulations

5.3.2 Second Stator Results
The results for the isolated stator of the turbine stage with a medium expansion
ratio are shown in figures 5.12 and 5.13. In this case, a particular phenomenon
occurs: the left-running shock wave does not impact the adjacent blade due to a
significant post-expansion. This discrepancy could be attributed to a potential
error in the divergent section of the nozzle, where a strong post-expansion might
have been considered, or it could result from an inaccurate downstream pressure
value in the TurboSim output.

Figure 5.12: Mach number distribution
of the second stator

Figure 5.13: Pressure distribution of
the second stator

Figure 5.14: Residuals of isolated second stator

The other considerations regarding the sonic line and the wake remain the same
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as in the previous case.
Similarly, in this case, the residuals decrease by eight orders of magnitude, as

shown in figure 5.14.

5.3.3 Third Stator Results
The results for the isolated stator of the turbine stage with a high expansion ratio
are shown in figures 5.15 and 5.16.

Figure 5.15: Mach number distribution
of the third stator

Figure 5.16: Pressure distribution of
the third stator

The other considerations remain the same as in the previous cases.

Figure 5.17: Residuals of isolated third stator

Furthermore, it is possible to observe a thickening of the shocks downstream in
the figure 5.16 compared to the other cases, indicating a greater expansion and
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stronger shocks, which result in a lower downstream pressure.
Similarly, in this case, the residuals decrease by eight orders of magnitude, as

shown in figure 5.17.

5.4 Stator-Rotor Analysis
For the analysis of the entire turbine stage, the same computational setup and
boundary conditions described in the previous section are applied, taking into
account the rotor downstream pressure.

First, steady-state analyses are performed using the mixing plane method with
linear interpolation, followed by unsteady analyses conducted with the harmonic
balance approach.

5.4.1 Mixing Plane Method Results
Figures 5.18 and 5.19 present the results for the second turbine stage.

Figure 5.18: Absolute Mach number
distribution of the second stage

Figure 5.19: Pressure distribution of
the second stage

The left-running shock wave at the stator trailing edge impacts on the adjacent
vane and is reflected, a phenomenon not observed in the isolated stator results.

The pressure at the stator outlet is higher than the value predicted by TurboSim:

• P1 (stator): 1246602.92 Pa

• P1 (stator-rotor): 1706618.0 Pa

There are two possible explanations for this discrepancy.
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The first possibility is that the design of the divergent section of the stator is
not optimal, as previously discussed.

The second possibility is that the rotor is relatively large and causes substantial
blockage. This blockage would increase the upstream pressure at the stator
outlet, effectively reducing the amount of post-expansion observed during unsteady
operation.

A possible improvement could be to perform isolated stator analysis using the
output pressure of the coupled stator-rotor analysis to better capture interaction
effects.

The most interesting result for the purposes of this project is the relative Mach
number and its distribution is shown in the figure 5.20.

Figure 5.20: Relative Mach Distribu-
tion of the second stage

Figure 5.21: Zoomed-in view

A bow shock is formed upstream of the leading edge of the rotor. This shock
wave impinges on the suction side of the adjacent blade, causing the boundary
layer to separate.

The characteristics and position of the bow shock are also strongly influenced
by the rotor leading edge geometry. In this case, the leading edge is sharp, which
contributes to the formation of a stronger and more defined shock upstream of the
rotor blade. A sharper geometry typically promotes earlier shock formation and
can increase flow sensitivity to incidence variations. However, this configuration
represents a conservative approach: the sharper the edge, the more challenging
the flow interaction, particularly regarding shock–boundary layer interaction and
potential separation. This allows the analysis to capture worst-case aerodynamic
phenomena and ensure robustness in the design, as a sharper leading edge promotes
the formation of a bow shock farther upstream compared to a rounded profile. This
is because the abrupt geometry gives the incoming supersonic flow less opportunity
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to gradually adjust its direction. As a result, a stronger and more forward-positioned
shock is needed to deflect the flow appropriately. In contrast, a rounded leading
edge allows for partial expansion and smoother turning, which tends to delay the
formation of the shock and reduce its intensity.

Nevertheless, such sharp profiles at both leading and trailing edges, while useful
in the early design phase, are not realistic for final manufacturing. In practice,
the blades will require a more rounded leading edge for structural integrity and
improved thermal resistance.

The average rotor inlet relative Mach number, represented by the red dot in
figure 5.21, is equal to 1.112, while the Mach number after the bow shock is 0.823.
The mean line design indicates that the Mach target is Mrel,rotor inlet = 1.11, which
is consistent with the CFD analysis.

Regarding the third turbine stage, the results are shown in figures 5.22 and 5.23.

Figure 5.22: Relative Mach number
distribution of the third stage

Figure 5.23: Pressure Distribution of
the third stage

Figure 5.24: Residuals steady stator-rotor analysis.

In this case, the rotor inlet relative Mach number is lower than the value predicted
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by TurboSim. A possible reason could be the adjustment of the rotor pitch to
match the stator value. This modification is performed to ensure compatibility for
running unsteady simulations, but it may have caused a variation in flow conditions.

In figure 5.24, an example of residual convergence is also shown for the steady
stator-rotor analysis.

5.4.2 Harmonic Balance Method Results
To compute harmonic balance simulations, only the BPF is considered. Conse-
quently, the results are obtained for three time instances, corresponding to 2N + 1
solutions.

The main quantities implemented to run the simulations are expressed in the
equation 5.3, while the results for the second stage are presented in table 5.2.

BPF = 1
T
, T = Pitch

u
⇒ ω = 2πBPF (5.3)

Parameter Value
u 338.34 m/s

Pitch 0.0215 m
T 0.0000635455 s

BPF 15736.75555 Hz
ω 98876.95 rad/s

Table 5.2: Second turbine HB parameters

These analyses are conducted only for the second turbine stage and the following
figures show the results for each time instance.

Figure 5.25: Relative Mach number
distribution of the first time instance

Figure 5.26: Density gradient of the
first time instance
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Figure 5.27: Relative Mach number
distribution of the second time instance

Figure 5.28: Density gradient of the
second time instance

Figure 5.29: Relative Mach number
distribution of the third time instance

Figure 5.30: Density gradient of the
third time instance

As the rotor moves, the interaction between the stator and rotor, in particular
between the bow shock and the shock waves exiting the stator, varies. Conse-
quently, the rotor inlet relative Mach number changes at different time instants,
reaching values of 1.11 at the first instant, 1.09 at the second and 1.02 at the
third. Understanding the unsteady nature of the problem and, consequently, the
significance of these analyses becomes crucial.

An effective approach to verifying the unsteadiness of the flow is to analyse the
blade loading by examining the pressure distribution along the stator and rotor
blades, with particular emphasis on the rotor. Variations in the pressure profiles
over time provide insight into the transient aerodynamic forces acting on the blades
and allow for the assessment of unsteady effects such as shock motion, wake-stator
interaction and potential flow separation.
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Figure 5.31: Stator blade
pressure distribution at
time instant t0

Figure 5.32: Stator blade
pressure distribution at
time instant t1

Figure 5.33: Stator blade
pressure distribution at
time instant t2

Figure 5.34: Rotor blade
pressure distribution at
time instant t0

Figure 5.35: Rotor blade
pressure distribution at
time instant t1

Figure 5.36: Rotor blade
pressure distribution at
time instant t2

The stator pressure distribution exhibits slight variations over time, as shown
in figures 5.31, 5.32 and 5.33. These fluctuations are indicative of an unsteady
interaction with the rotor, especially due to the periodic passage of rotor blades
and the associated shock structures.

As expected, the stator displays a more stable pressure profile compared to the
rotor. Nevertheless, in the downstream region of the stator blades (near the trailing
edge), unsteady effects become more evident, with small oscillations and shifts in
the pressure distribution.

In contrast, the rotor blade pressure profiles (Figures 5.34, 5.35, and 5.36) show
significant time-dependent fluctuations, highlighting the presence of strong unsteady
aerodynamic loads induced by shock motion and rotor–stator interactions.

Following the unsteady analyses, the degree of reaction is recalculated using
the time-resolved enthalpy data at different blade sections. The resulting average
value of the degree of reaction is approximately R ≈ 0.0014, which significantly
differs from the initially assumed value of 0.25. This low value of R indicates an
impulse-type behaviour of the stage, with the rotor carrying out almost the entire
enthalpy drop, while the stator primarily serves to direct the flow.
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5.4.3 Results Comparison

To evaluate the flow non-uniformities downstream of the stator and how they
are influenced by the Mach number at the rotor inlet, the tangential pressure
distributions are displayed.

For a proper comparison, the issue of the large post-expansion at the outlet of
the second-stage stator is first addressed: the analyses are repeated, considering an
outlet pressure equal to the average of the pressure distribution from the unsteady
simulations. The resulting Mach number distribution is shown in figure 5.37.

Figure 5.37: Mach number distribution of the second stator with higher down-
stream pressure

In figure 5.38, the tangential pressure distributions are compared.
It can be observed that the mixing plane method closely follows the average of

the harmonic balance solution in the fish-tail region of the stator, the central area
of the figure, but exhibits significant differences in the rest of the domain. The
pressure distribution obtained with the mixing plane method shows fewer peaks
compared to the harmonic balance method, suggesting that the steady approach
does not fully capture unsteady effects, such as the upstream propagation of shock
waves towards the stator.
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Figure 5.38: Tangential pressure distributions

The isolated stator curve deviates significantly from the other two, highlighting
that the absence of the rotor substantially alters the pressure distribution and
that an isolated stator analysis may not be sufficient to accurately predict the
actual behaviour of the turbine at high Mach numbers. The average pressure value
from the isolated stator analysis is closer to that of the HB compared to the MP;
however, it should be noted that the downstream pressure value for the isolated
stator was corrected and set equal to the average obtained from the HB analysis,
whereas the value predicted by TurboSim was significantly lower.

In figure 5.39, the pressure distributions for the three time instances of the
harmonic balance method are compared.

Figure 5.39: Tangential pressure distributions of the unsteady simulations
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The pressure varies significantly over time, with pronounced oscillations along
the pitch-wise direction. These fluctuations are due to the interaction between
the stator and the rotor, particularly the upstream propagation of the bow shock,
which is not captured by steady analysis. The oscillatory behaviour confirms the
unsteady nature of the problem at these high Mach numbers and suggests that an
unsteady approach is necessary for an accurate prediction of the pressure field in
the turbine.
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Chapter 6

Conclusions

6.1 Summary

This study investigates stator-rotor interactions in supersonic turbines through
advanced CFD simulations. The primary objective is to evaluate how representative
an isolated stator analysis is of the pitch-wise distribution at the stator outlet,
compared to coupled stator-rotor analyses. A key focus is to assess the unsteadiness
of the flow and to determine whether steady approaches can still provide reliable
results while reducing computational cost.

The central research question concerns how the relative Mach number at rotor
inlet influences these interactions. To address this, three turbine stages are designed,
each targeting a different rotor inlet Mach number.

The design process is carried out using custom in-house codes, adapted specif-
ically for the problem at hand. Once the 2D profiles are generated, a series of
CFD simulations are performed: steady-state analyses of the isolated stator, steady
coupled stator–rotor simulations using the mixing plane model and fully unsteady
simulations using the harmonic balance method.

From the comparison of the different methods, it can be concluded that under
high Mach number conditions, steady-state approaches, both isolated stator and
coupled stator-rotor, do not provide sufficient accuracy to assess turbine perfor-
mance. This is particularly evident when considering the potential inaccuracies of
mean-line methods in predicting downstream or post-expansion pressure values.

Given these limitations, stator-rotor analysis are always preferable when com-
putational resources are available. Even better, unsteady simulations should be
adopted, as they provide a more accurate representation of the flow phenomena.
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6.2 Future Developments
To fully understand when unsteady simulations become essential, future investiga-
tions should include harmonic balance analyses of both low and high expansion
ratio stages, since this work focused only on the medium expansion case. This
would help determine under which conditions unsteady analysis becomes necessary
and when steady-state stator-rotor simulations remain adequate. At higher Mach
numbers, the bow shock tends to thicken and intensify, potentially causing stronger
unsteady interactions.

A meaningful extension of this study would include a comparison of the stator
outlet tangential pressure distributions for the other two turbine stages. Addi-
tionally, evaluating the tangential distribution of efficiency could provide further
insight into the robustness of the design under varying flow conditions.

It should also be noted that the rotor blade profiles used in this study feature
sharp leading and trailing edges. While this geometry is useful for conservative
aerodynamic predictions, since it tends to amplify shock strength and boundary
layer interaction, it is not realistic for manufacturing purposes. In practice, the
leading edge must be rounded to ensure structural integrity and thermal resistance,
especially in high-temperature environments. This necessary adjustment should be
addressed in the detailed design phase and may slightly modify the shock structure
and flow behaviour observed in the numerical analysis.

This work also has practical applications. The tools and methods used form a
base for future turbine design. They can help improve performance and make the
design process more efficient, even in complex flow conditions.
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Appendix A

Design Maps

First Turbine Stage

The output maps for the first turbine stage (β = 5) are as follows. They are
computed at fixed degree of reaction (R = 0.25) and flaring = 10°.

Firstly, a rotor inlet Mach number of 0.9 should be the target, so to follow the
guidelines it is fundamental to consider the maps that are plotted in figures A.1,
A.2, A.3, A.4. The loading coefficient should be high as well as the peripheral
speed.

At the same time, TurboSim fails to calculate some designs, particularly for
high Kis and low ϕ. This can be explained by the losses becoming too high, in
particular the boundary layer losses do not converge in that area, as in the figure
A.5.

Figure A.1: Rotor inlet Mach number Figure A.2: Rotor outlet Mach number
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Figure A.3: Stator outlet Mach number Figure A.4: Peripheral speed

Figure A.5: Boundary Layer Losses Figure A.6: Total-to-static Efficiency

Figure A.7: Stator outlet and rotor
inlet axial Mach number

Figure A.8: Rotor outlet axial Mach
number
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Total-to-static efficiency (figure A.6) is considered rather than the total-to-total
one, as explained in the previous paragraph. Furthermore, the axial Mach numbers
are plotted as they must be subsonic in figures A.7 and A.8.

Therefore, from this point forward, the regions described by the dotted lines are
not considered for a possible solution, in particular the area where the axial Mach
number exiting the rotor is greater than 1, as this is a more conservative approach.

Before choosing a design for the analysis, it is important to examine other
parameters, particularly those concerning the guidelines explained above, such as
in the figures A.9, A.10, A.11. So, the maps of rotor outlet absolute Mach number,
rotor outlet flow angle and stator outlet flow angle are plotted considering the
delayed zone and the rotor inlet Mach number, as this parameter is the target of
this analysis.

Figure A.9: Rotor outlet absolute
Mach number

Figure A.10: Rotor outlet flow angle
[°]

Figure A.11: Stator outlet flow angle [°]

Moreover, after dimensioning, other maps are computed, as shown in figures
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A.12, A.13 and A.14, to get a clearer idea of the heights and diameter of the turbine
stage.

Figure A.12: Stator Inlet Blade Height
(H0) [m]

Figure A.13: Stator Outlet Blade
Height (H1 = H2) [m]

Figure A.14: Rotor Outlet Blade
Height (H3) [m]

Figure A.15: Mean Diameter [m]

Second Turbine Stage

The resulting maps are also analysed for the second stage of the turbine. They
exhibit similar characteristics to those of the first stage.

In particular, the Mach number and peripheral speed are higher, as expected,
due to the higher expansion ratio (figures A.16, A.17, A.18, A.19).

Furthermore, the efficiency maps is shown in figure A.20.
The maps of rotor outlet absolute Mach number, rotor outlet flow angle and

stator outlet flow angle are plotted considering the delayed zone and the rotor inlet
Mach number (figures A.21, A.22, A.23).
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Figure A.16: Rotor inlet Mach number Figure A.17: Rotor outlet Mach num-
ber

Figure A.18: Stator outlet Mach num-
ber

Figure A.19: Peripheral speed

Figure A.20: Total-to-static Efficiency

Again, some convergence issues are observed for high values of ϕ and low Kis.
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In this case as well, the difficulties are likely related to the losses generated by the
specific combination of duty coefficients within this region.

Figure A.21: Rotor outlet absolute
Mach number

Figure A.22: Rotor outlet flow angle
[°]

Figure A.23: Stator outlet flow angle
[°]

Third Turbine Stage

In the case of the third stage, the pressure ratio is really high and this is clear from
all the maps, where there is always the same area that does not work but is more
extensive.

In particular, the Mach number and peripheral speed are higher, as expected
due to the higher expansion ratio (figures A.24, A.25, A.26, A.27).

Furthermore, the efficiency map is shown in figure A.28.
The maps of rotor outlet absolute Mach number, rotor outlet flow angle and

stator outlet flow angle are plotted considering the delayed zone and the rotor inlet
Mach number (figures A.29, A.30 and A.31).
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Figure A.24: Rotor inlet Mach number Figure A.25: Rotor outlet Mach num-
ber

Figure A.26: Stator outlet Mach num-
ber

Figure A.27: Peripheral speed

Figure A.28: Total-to-static efficiency
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Figure A.29: Rotor outlet absolute
Mach number

Figure A.30: Rotor outlet flow angle
[°]

Figure A.31: Stator outlet flow angle
[°]

It is still possible to notice, and in a more noticeable manner in the third case,
how the zone in which the designs do not converge in the maps also corresponds
with the zone in which the axial Mach becomes greater than 1 and is therefore to
be avoided in any case.

This turbine stage is crucial for choosing a final design for the subsequent
analysis, because it is the most limited case with respect to the guidelines.
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