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Abstract

Ramjet and scramjet engines represent a key technology for high-speed airbreathing
propulsion due to their ability to operate efficiently at supersonic and hypersonic speeds
without requiring rotating parts. A crucial component of these engines is the air intake,
which is responsible for compressing the incoming airflow through shock waves before
combustion. The design of an efficient intake significantly affects the overall performance
of the propulsion system. This thesis focuses on the design, analysis, and optimization
of hypersonic intakes, with particular attention to the Busemann intake, which is known
for its high efficiency in the inviscid flow regime.

The initial phase of this research involves the numerical generation of intake ge-
ometries using a MATLAB-based design algorithm. The intake configuration is defined
by key parameters, including the freestream Mach number M∞, the post-shock Mach
number M3, and the intake exit cross-sectional radius r. To evaluate the aerodynamic
performance of the designed intakes, Computational Fluid Dynamics (CFD) simulations
are performed in Ansys Fluent, solving the Navier-Stokes equations for an initial two-
dimensional model, where geometric variations are analyzed to evaluate their impact on
performance, flow uniformity, and startability.

Given that real-world applications deviate from the ideal inviscid model, additional
viscous corrections are applied to account for boundary layer effects. These corrections
address the increased pressure ratios relative to the ideal case and the reduction in intake
efficiency caused by boundary layer-induced flow distortion. The correction methodology
involves computing the boundary layer displacement thickness using Reynolds-Averaged
Navier-Stokes (RANS) simulations and integrating it into the ideal inviscid design. More-
over, truncated intake designs are explored to mitigate the excessive length of the classical
Busemann intake while maintaining optimal aerodynamic performance.

Following the optimization of the two-dimensional intake contour, a three-dimensional
counterpart is generated using the Wavecatching technique, which traces streamlines to
adapt the intake to an elliptical cross-section. A mesh convergence study is carried out for
both 2D and 3D cases to ensure the reliability of numerical results. Finally, the off-design
performance of the 3D intake is analyzed to evaluate the system’s response to varying
operating conditions. This analysis helps identify configurations that exhibit greater
robustness against unstart phenomena and offer improved efficiency across a wider range
of Mach numbers.

The results confirm the feasibility of the developed design methodology, demonstrating
that the proposed intake geometries maintain high efficiency while addressing real-world
constraints such as viscosity, manufacturability, and operational robustness.
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Chapter 1

Introduction

1.1 General overview

The ambition to achieve hypersonic flight within the atmosphere has been a source of
inspiration for generations of aerodynamicists, scientists, and engineers. By the late
1950s and early 1960s, it became evident that while rocket propulsion could enable space
access and global reach via ballistic trajectories, only an airbreathing propulsion system
had the potential to support sustained and practical hypersonic flight within the Earth’s
atmosphere.

The scramjet (supersonic combustion ramjet) engine represents a significant advance-
ment in hypersonic airbreathing propulsion, offering a more efficient way of achieving
high-speed atmospheric flight compared to traditional rocket propulsion. Unlike turbo-
jets, which rely on mechanical compressors, and rockets, which must carry onboard oxi-
dizers, scramjets use shock wave compression within the intake to decelerate and compress
incoming air before combustion. This eliminates the need for moving parts, enhancing
reliability and efficiency at supersonic and hypersonic speeds.

The fundamental advantage of scramjet propulsion lies in its higher specific impulse
compared to chemical rockets. Since scramjets derive oxygen from the atmosphere in-
stead of carrying it onboard, they achieve superior fuel efficiency, making them ideal
for sustained hypersonic flight. Moreover, scramjets operate effectively within the atmo-
sphere, allowing for greater maneuverability than rockets, which are limited to ballistic
trajectories.

At speeds above Mach 5, conventional ramjets (which rely on subsonic combustion)
are subject to increasing shock losses due to the necessity of decelerating supersonic air-
flow to subsonic speeds prior to combustion. This process gives rise to the generation
of stronger shock waves, resulting in higher pressure losses within the intake, while also
causing extremely high combustor temperatures. These effects lead to significant energy
dissipation and impose structural limitations on the engine. Scramjets, by allowing su-
personic airflow through the combustor, overcome these issues, enabling more efficient
combustion and sustained propulsion at hypersonic speeds. This technology has the po-
tential to revolutionize transcontinental travel, reducing flight times, while also playing
a pivotal role in space access through air-breathing launch vehicles.
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Introduction

The operational flight corridor for scramjet-powered vehicles, for both cruise flight
and ascent to low Earth orbit, is constrained by two primary factors. At higher altitudes,
the limitation arises from the need to maintain sufficient air density to ensure an adequate
mass flow rate for airbreathing propulsion. At lower altitudes, the constraint is dictated by
the structural limits of the vehicle, primarily due to aerodynamic heating and mechanical
stresses.

Figure 1.1: Hypersonic airbreathing flight corridor [1].

As illustrated in Figure 1.1, these operational boundaries are delineated, and a pro-
posed ascent trajectory for an airbreathing access-to-space vehicle is presented. The
trajectory involves the utilisation of turbojet propulsion up to Mach 3-4, followed by
a transition to scramjet operation up to Mach 15-17, and subsequently to rocket-based
propulsion for the final stage. This sequence ensures the requisite acceleration to achieve
a low Earth orbital velocity of approximately 7.9 km/s [1].

A critical component of scramjet operation is the air intake, which must effectively
compress and condition the incoming airflow for optimal combustion. The design and
efficiency of the intake directly impact engine performance, influencing parameters such
as:

• Compression ratio: Ensuring sufficient pressure increase for effective combustion.

• Flow uniformity: Maintaining a stable, predictable airflow distribution.

• Minimization of losses: Reducing total pressure losses to enhance efficiency.

At hypersonic speeds, intake efficiency must be maximized to minimize chemical non-
equilibrium effects in the combustor and nozzle. However, designing a scramjet intake
presents challenges due to the interdependence between the engine and airframe. Un-
like conventional aircraft, scramjet-powered vehicles integrate the engine into the lower
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1.1 – General overview

fuselage, where it contributes significantly to lift, drag, and aerodynamic forces. This
integration makes intake geometry optimization essential for balancing aerodynamic and
propulsion performance.

Despite its advantages, scramjet technology faces several challenges:

1. Startability: Ensuring that the engine can transition smoothly from subsonic to
supersonic combustion without excessive losses or instability.

2. Thermal Management: Hypersonic speeds expose the vehicle to extreme aerody-
namic heating, requiring advanced materials and cooling techniques.

3. Off-Design Performance: Maintaining efficiency across a range of flight conditions
remains difficult due to the fixed-geometry nature of most current scramjet intakes.

4. Integration with Space Launch Vehicles: For scramjets to support reusable space
access, they must work in combination with other propulsion systems, such as
rocket-based combined cycle (RBCC) engines.

Recent flight tests, including NASA’s X-43A and X-51A programs Fig. 1.2, have demon-
strated successful scramjet operation, proving the feasibility of sustained hypersonic
propulsion. Future research is focusing on combined cycle engines, which integrate
scramjets with turbojets and rockets to expand operational ranges, enabling efficient
air-breathing propulsion from take-off to orbital insertion.

Figure 1.2: NASA X-43A [2].
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1.2 Hypersonic intakes

Figure 1.3: Schematic of vehicle-integrated scramjet engine [3].

A scramjet engine, as illustrated in Fig. 1.3, consists of four primary components: an inlet,
an isolator, a combustor, and a nozzle. The inlet plays a fundamental role in the engine’s
performance, as it is responsible for compressing and decelerating the freestream air before
it enters the combustor. This process is achieved through a combination of isentropic
compression and oblique shock waves, ensuring that the airflow attains a sufficiently high
static temperature ratio (typically in the range of 6–8) while maintaining an optimal
thermodynamic cycle efficiency [4]. Additionally, the inlet must generate pressure and
temperature levels adequate to sustain complete and stable combustion at supersonic
speeds.

The isolator serves to separate the supersonic inlet flow from the backpressure fluc-
tuations that arise in the combustor, mitigating disturbances that could otherwise com-
promise stability. Following compression, the airflow enters the combustor, where fuel
is injected, mixed, and ignited while maintaining supersonic conditions. The challenge
of supersonic combustion lies in the extremely short residence time of the airflow within
the combustor. For instance, if the airflow velocity is 999 m/s ( Mach 3), it would tra-
verse a 1-meter-long chamber in just 1 ms. Given these constraints, achieving efficient
fuel injection, mixing, and combustion requires sophisticated design strategies, which are
beyond the scope of this study. The nozzle then expands and accelerates the hot gases,
converting thermal energy into thrust.

For optimal engine performance, the intake must compress the airflow with minimal
losses. The effectiveness of an inlet is evaluated based on both its performance and
efficiency, which can be quantified using the following parameters:

• Compression ratio: The pressure ratio between the inlet and outlet.

• Contraction ratio: The ratio of inlet-to-exit flow areas.

• Mach number reduction: The ratio of inlet and exit Mach numbers.

• Total pressure recovery: A measure of how efficiently the intake preserves total
pressure.

These parameters are strongly influenced by the geometry of the intake and are governed
by the first and second law of thermodynamic.

For high-speed airbreathing engines, such as scramjets, thermodynamic cycle analyses
indicate that intakes must provide contraction ratios between 6 and 20, while ensuring
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1.2 – Hypersonic intakes

minimal total pressure losses [5]. The choice of intake geometry is particularly critical,
as it directly influences not only the shape of the engine but also the overall aircraft
design. The airframe and propulsion system are deeply interconnected, with structural
and thermal loads playing a key role in defining the intake configuration. Consequently,
intake design significantly impacts the shape of the aircraft, requiring an integrated design
approach. Given these interdependencies, the intake design process typically starts with
simple compressive flow models that are analytically predictable and serve as a solid
foundation for optimization. The simple flow models considered in intake design are
primarily supersonic flows exhibiting either planar or axial symmetry. In planar flows,
flow properties remain uniform within parallel geometric planes, whereas in axial flows,
these properties are invariant across planes surrounding a common axis [6]. The presence
of planar or axial symmetry significantly simplifies the flow characterization, reducing the
number of independent spatial variables required for analysis from three to two, thereby
streamlining both design and computational modelling.

Additionally, these flows often exhibit radial symmetry, meaning that in planar con-
figurations, flow properties remain unchanged along flat surfaces, while in conical Taylor-
Maccoll flows, they are consistent along cone surfaces. By incorporating flat plate models
alongside conical symmetry, the number of variables necessary to fully describe the flow
can be further reduced to just one, allowing for an even more simplified intake design
process.

Among the most commonly employed simple planar flow models, oblique shock wave
interactions and Prandtl-Meyer (P-M) expansion flows are frequently utilized due to
their well-defined characteristics and predictable behavior. In contrast, axial flows, such
as those occurring over conical surfaces, often rely on the Busemann flow model, which is
particularly advantageous for hypersonic intakes. Notably, these simple flow models and
their combinations do not generate curved shocks within the intake flow field, ensuring
that the internal flow remains irrotational and uniform, which is essential for maximizing
compression efficiency and minimizing total pressure losses.

To further refine intake performance, wavecatching techniques are employed. This
method involves selecting specific streamlines from analytically known supersonic flows
and using them to construct an optimized intake flow path. The resulting intake geome-
tries enhance shock wave interactions, boundary layer control, and structural constraints,
ultimately leading to maximum compression efficiency with minimal pressure losses.

1.2.1 Planar and axial flows

In an axisymmetric intake, flow convergence, rather than flow turning, serves as the
primary mechanism for compressing the incoming air. Within a supersonic convergent
duct, the flow—assuming it behaves isentropically—undergoes deceleration, leading to a
Mach number reduction and the formation of a weak oblique shock at the intake’s exit.
This process enables high compression efficiency while minimizing shock-induced losses.
The defining characteristic of an axial flow intake is its internal converging flow field,
which plays a crucial role in maintaining efficient compression.

The incorporation of leading-edge truncation and wavecatching techniques offers sig-
nificant advantages in terms of flow starting and minimizing viscous losses. Notably,
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these methods ensure that high adverse pressure gradients are absent from the wall sur-
face boundary layer, instead being confined to the inviscid core flow, thereby improving
overall intake performance. Due to their high efficiency, hypersonic intakes featuring
well-defined entrance and exit geometries have been extensively studied. These designs
typically employ simple axisymmetric compressive flows to achieve optimal aerodynamic
performance [7], [8].

A circular cross-section is often the preferred geometry for ramjet and scramjet com-
bustors due to its structural and thermal advantages. A cylindrical shape is inherently
more resistant to heat and pressure loads, while also minimizing frictional losses since
a cylinder—given the same cross-sectional area—has the smallest surface area. Conse-
quently, a cylindrical and axially symmetric geometry emerges as an optimal configuration
for an intake positioned ahead of the combustor.

Given these considerations, it is particularly relevant to analyze axisymmetric flow
behavior for hypersonic intake design. A streamtube geometry that satisfies the geomet-
ric, structural, and aerodynamic constraints can be effectively derived from axisymmetric
and conical Taylor-Maccoll (T-M) flow, which provides an analytically predictable model
for compressive intake flowfields [9], [10].

1.2.2 Intake flow processes and types of inlets

Figure 1.4: Schematic of three hypersonic intakes [11].
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1.2 – Hypersonic intakes

Various fundamental flow mechanisms contribute to the reduction of Mach number within
hypersonic intakes. These mechanisms can be categorized as follows: compressive flow
turning, area contraction due to a converging passage, and flow deflection through oblique
shock waves. While isentropic processes, such as flow turning and area contraction, result
in no efficiency losses, flow deflection via oblique shocks introduces entropy generation,
thereby reducing intake efficiency.

Since flow deflection through shock waves is often necessary, it is desirable to maintain
shock strength as weak as possible to minimize losses. This can be achieved by ensuring
that shocks occur at lower Mach numbers. In planar Prandtl-Meyer type flows, significant
flow turning is required to achieve an exit flow parallel to the freestream, necessitating
strong oblique shocks. In contrast, in an axial flow configuration, Mach number reduc-
tion is achieved primarily through area contraction, with minimal flow turning. A prime
example of this approach is the Busemann flow, where compression is largely accom-
plished through flow convergence, rather than significant turning, thereby reducing the
necessity for shock deflection. Furthermore, since Mach number reduction is substantial
in Busemann flow, the rear-end oblique shock interacts with a lower Mach number flow,
producing a weak shock and minimizing efficiency losses. This characteristic explains the
high efficiency of Busemann intakes.

In general, intake flow classifications can be described using the concepts of flow
convergence, flow turning, and flow deflection [11]. The Prandtl-Meyer flow is partic-
ularly suitable for planar configurations with variable geometry, as it provides efficient
flow turning despite introducing efficiency losses due to oblique shock interactions. In
contrast, isentropic flow convergence, which does not involve turning, offers an alterna-
tive method for Mach number reduction without introducing additional irreversibilities.
Ideally, shock-induced flow deflection should be used only when necessary, as it repre-
sents a non-isentropic process that inherently introduces losses. The Busemann flow is
an example that integrates all three of these compression mechanisms.

The three primary compression modes—the Prandtl-Meyer intake, the Oswatitsch
intake, and the Busemann intake—are illustrated in Figure 1.4. To compare their per-
formance, three intake designs were developed to achieve a Mach number reduction from
8.33 to 4.8, considering a static pressure ratio of 26.8. Experimental validation was con-
ducted in a gun tunnel at Mach 8.33 [9]. The inviscid total pressure recovery values for
the Busemann, Oswatitsch, and Prandtl-Meyer intakes were found to be 0.983, 0.763,
and 0.763, respectively. However, experimental measurements yielded 0.484, 0.485, and
0.240, respectively. The discrepancy observed in the Prandtl-Meyer intake is attributed
to its larger surface area, which increased viscous losses.

These results clearly demonstrate the superiority of axial flow-based Mach number
reduction over planar flow-based configurations, primarily due to the greater efficiency of
flow convergence. Consequently, this study focuses exclusively on the Busemann intake,
which is based on axial flow compression rather than planar flow mechanisms, ensuring
higher efficiency and reduced total pressure losses.
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Prandtl-Meyer intake

Figure 1.5: Prandtl-Meyer intake mounted on Concorde [12].

The performance characteristics of the Prandtl-Meyer intake are primarily derived from
a combination of isentropic flow turning through a compression fan, followed by flow
deflection via an oblique shock. Notably, this type of intake does not incorporate flow
convergence as a compression mechanism.

A practical example of an aircraft utilizing this intake configuration is the Concorde,
which demonstrated exceptionally high performance, mechanical simplicity, and opera-
tional robustness. Additionally, its control system remained inactive for the majority of
the flight, highlighting the intake’s passive adaptability across various operating condi-
tions. A comprehensive overview of the design methodology can be found in [13], while
detailed geometric specifications are provided in [14].

Oswatitsch intake

Figure 1.6: Oswatitsch intake mounted on a missile [15].
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1.3 – Objective of the thesis

The Oswatitsch intake exemplifies a flow configuration where flow divergence is followed
by deflection through a shock wave. Compression in this intake design is achieved through
either a single external shock or a series of multiple shocks. As demonstrated in [16],
maximum pressure recovery is obtained when the shocks in a multi-shock system are of
equal strength.

The number of ramps and corresponding shock waves directly influences both the de-
gree of flow turning and the level of internal contraction, thereby impacting overall intake
efficiency. A notable historical example of the Oswatitsch intake in practical application
is found in the Trommsdorff projectiles utilized during World War II [17].

Busemann intake

Figure 1.7: Four-module Busemann intake [18].

Regarding the Busemann intake, the flow undergoes both turning and convergence be-
fore being deflected by a shock wave. In his foundational work, Busemann analytically
demonstrated the feasibility of a supersonic, uniform, axial flow that undergoes isentropic
compression, followed by shock-induced deceleration, resulting in a uniform subsonic flow.

The performance characteristics of the Busemann intake have been extensively in-
vestigated, with Mölder and Van Wie [19] proposing its application to flight vehicles.
A notable practical implementation can be found in the JHU/APL missile-type intake
[20], which employed a four-module design based on the streamline tracing approach,
Figure 1.7. This intake was integrated into a scramjet engine and successfully launched
in Barbados in 1972. Further refinement and analysis of the four-module intake were
conducted by Matthews and Jones [21], who explored its aerodynamic performance and
design optimizations.

1.3 Objective of the thesis

The objective of this thesis is to design, analyze, and optimize hypersonic air intakes,
with a particular focus on the Busemann intake, recognized for its high aerodynamic
efficiency. The study begins with the numerical generation of intake geometries using a
MATLAB-based design algorithm, where key parameters define the intake configuration.
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Following this, a two-dimensional analysis is conducted through Computational Fluid
Dynamics (CFD) simulations in Ansys Fluent, investigating various geometric variations
to assess their impact on aerodynamic performance. Given that real-world applications
deviate from ideal inviscid conditions, the study also incorporates viscous corrections
to account for boundary layer effects, ensuring a more accurate representation of intake
behavior.

Once the optimized intake geometry was obtained, a three-dimensional analysis was
conducted to evaluate its performance under on-design boundary conditions. In addition,
the intake was tested under various off-design scenarios using multiple configurations
of the 3D design. This analysis aimed to identify which configurations offer greater
robustness and efficiency across a wider operational envelope.
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Chapter 2

Theoretical background

This chapter presents a theoretical introduction to the underlying physics relevant to
this study. For a more comprehensive treatment of aerodynamics, refer to the relevant
literature [22], [23].

2.1 One-Dimensional Flow

By definition, a one-dimensional flow is one in which the flow field properties vary only
with one coordinate direction. A truly one-dimensional flow is illustrated in the left side
of Fig. 2.1 , where the flowfield variables are a function of x only, and as a consequence
the streamtube area must be constant. On the other hand, there are many flow problems
where the streamtube area varies with x (A(x)), as shown in the left side of Fig. 2.1. For
such a variable area streamtube, nature dictates that the flowfield is three-dimensional
flow, where the flow properties in general are function of x, y and z. However, if the
variation of area A = A(x) is gradual, it is often convenient and sufficiently accurate to
neglect the y and z variations, and to assume that the flow properties are functions of x
only. Such a flow is defines as quasi-one-dimensional flow.

Figure 2.1: Comparison between one-dimensional and quasi-one-dimensional flows [22].
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Theoretical background

One-Dimensional flow equations

Figure 2.2: Rectangular control volume for one-dimensional flow [22].

Consider the flow through one-dimensional region, as represented by the shaded area in
Fig. 2.2. This region may be a normal shock wave, or it may be a region with heat
addition; in either case, the flow properties change as a function of x as the gas flows
through the region. To calculate the changes, apply the integral conservation equations
to the rectangular control volume shown by the dashed lines in Fig. 2.2. Since the flow is
one-dimensional, u1, p1, T1, ρ1 and e1 are uniform over the left-hand side of the control
volume, as well as u2, p2, T2, ρ2, and e2 are uniform over the right-hand side of the
control volume. Assume that the left and right hand sides each have an area equal to A
perpendicular to the flow. Also, assume that the flow is steady, such that all derivatives
with respect to time are zero, and assume that body forces are not present. With this
assumptions, the continuity equation:

∂

∂t

∫︂
Vol

ρ dVol = −
∫︂

S
ρ(V · n̄) dS (2.1)

For steady flow, Eq. (2.1) becomes∫︂
S

ρ(V · n̄) dS = 0 (2.2)

Evaluating the surface integrals on the left-hand side, where V and dS are parallel but in
opposite directions, yields −ρ1u1A; on the right-hand side, where V and dS are parallel
and in the same direction, the result is ρ2u2A. The upper and lower horizontal faces of
the control volume both contribute nothing to the surface integral because V and dS are
perpendicular to each other on these faces. Hence, from Eq. (2.2),

ρ1u1 = ρ2u2 (2.3)

Equation (2.3) is the continuity equation for steady one-dimensional flow.
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The momentum equation:

∂

∂t

∫︂
Vol

ρV̄ dVol +
∫︂

S
ρV̄ (V̄ · n̄) dS = −

∫︂
S
(p · n̄) dS +

∫︂
Vol

ρf̄ dVol (2.4)

The first term is zero because steady flow is considered. Also, because there are no body
forces, the last term is zero. Hence, Eq. (2.4) becomes:∫︂

S
ρV̄ (V̄ · n̄) dS = −

∫︂
S
(p · n̄) dS (2.5)

Equation (2.5) is a vector equation. However, since the analysis is conducted under the
assumption of one-dimensional flow, only the scalar x component of Eq. (2.5) needs to
be considered, which is ∫︂

S
ρV̄ (V̄ · n̄) dS = −

∫︂
S
((p · n̄) dS)x (2.6)

In Eq. (2.6), the expression ((p · n̄) dS)x is the x component of the vector (p · n̄) dS .
Evaluating the surface integrals in Eq, (2.6) over the left and right hand sides of the
dashed control volume in Fig. 2.2, it can be obtained

p1 + ρ1u2
1 = p2 + ρ2u2

2 (2.7)

Equation (2.7) is the momentum equation for steady one-dimensional flow.
The energy equation:

∂

∂t

∫︂
Vol

ρ

(︄
e + V 2

2

)︄
dVol +

∫︂
S

ρ

(︄
e + V 2

2

)︄
(V̄ · n̄) dS

= −
∫︂

S
p(V̄ · n̄) dS +

∫︂
Vol

ρ(f̄ · V̄ ) dVol +
∫︂

Vol
ρq̇ dVol (2.8)

The first and the fourth terms are zero because of steady flow and zero body forces,
respectively. The last term physically represents the total rate of heat added to the gas
inside the control volume. For simplicity, this volume integral is denoted by Q̇. Hence,
Eq. (2.8) becomes ∫︂

S
ρ

(︄
e + V 2

2

)︄
(V̄ · n̄) dS = −

∫︂
S

p(V̄ · n̄) dS + Q̇ (2.9)

Evaluating the surface integrals over the left and right hand faces on the control volume
in Fig. 2.2 , dividing by Eq. (2.3) and recalling the definition of enthalpy, h = e + pv,
Eq. (2.9) becomes

h1 + u2
1

2 + q = h2 + u2
2

2 (2.10)

Equation (2.10) is the energy equation for steady one-dimensional flow.
In summary, Eqs. (2.3), (2.7) and (2.10) are the governing fundamental equations for

steady one-dimensional flow. They are algebraic equations that relate properties at two
different locations, 1 and 2, along a one-dimensional, constant-area flow. The assumption
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of one-dimensionality has afforded a great simplification over the integral equations (2.1)
(2.4) (2.8). However, within the assumption of steady one-dimensional flow, the algebraic
Eqs. (2.3), (2.7) and (2.10) still represent the full authority and power of the integral
equations, i.e. they still say that mass is conserved, force equals time rate of change of
momentum and energy is conserved.

2.2 Isentropic relation and total condition
Consider again Eq. (2.10). Assuming no heat addition, this becomes

h1 + u2
1

2 = h2 + u2
2

2 (2.11)

where points 1 and 2 correspond to the region 1 and 2 identified in Fig. 2.2. Applying
the equations to a calorically perfect gas, where h = cpT , Eq. (2.11) becomes

cpT1 + u2
1

2 = cpT2 + u2
2

2 (2.12)

where
cp = γR

γ − 1 (2.13)

and Eq. (2.11) becomes
γRT1
γ − 1 + u2

1
2 = γRT2

γ − 1 + u2
2

2 (2.14)

Since a =
√

γRT , Eq. (2.14) becomes

a2
1

γ − 1 + u2
1

2 = a2
2

γ − 1 + u2
2

2 (2.15)

By definition of total conditions, consider a fluid element at point A with velocity, tem-
perature and pressure V , T , and p respectively. If this fluid element is isentropically
decelerated to zero velocity, i.e., brought to a stagnation state, the pressure and tem-
perature attained at V = 0 are defined as total pressure p0 and total temperature T0,
respectively. If T and u are the actual values of static temperature and velocity, respec-
tively, at point A, then T1 = T and u1 = u. Also, by definition of total conditions, u2 = 0
and T2 = T0. Hence, Eq. (2.11) becomes

cpT + u2
2 = cpT0 (2.16)

Equation (2.16) provides a formula from which the defined total temperature T0 can be
calculated for the given actual conditions of T and u at any point in a general flowfield.
However, in the derivation of Eq. (2.16), only the energy equation for an adiabatic flow
is used. Isentropic conditions have not been imposed so far. Hence, the definition of T0
such as expressed in Eq. (2.16) is less restrictive than the definition of total condition
given above. Isentropic flow implies reversible and adiabatic conditions. Eq. (2.16) tells
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that, for the definition of T0, only the adiabatic portion of the isentropic definition is
required. Now it can be redefined T0 as that temperature that would exist if the fluid
element were brought to rest adiabatically. However, for the definition of total pressure
p0, and total density ρ0, the imagined isentropic process is still necessary. Several useful
equations for total conditions are obtained below

T0
T

= 1 + u2

2cpT
= 1 + u2

2γRT
(γ−1)

= 1 + u2

2a2

(γ−1)
= 1 + γ − 1

2

(︃
u

a

)︃2
(2.17)

Hence,
T0
T

= 1 + γ − 1
2 M2 (2.18)

Equation (2.18) gives the ratio of total to static temperature at a point in a flow as a
function of the Mach number M at that point. Furthermore, for an isentropic process

p0
p

=
(︃

ρ0
ρ

)︃γ

=
(︃

T0
T

)︃ γ
γ−1

(2.19)

Combining Eqs. (2.18) and (2.19), it can be found

p0
p

=
(︃

1 + γ − 1
2 M2

)︃ γ
γ−1

(2.20)

ρ0
ρ

=
(︃

1 + γ − 1
2 M2

)︃ 1
γ−1

(2.21)

Equations (2.20) and (2.21) give the ratios of total to static pressure and density, re-
spectively, at a point in the flow as a function of Mach number M at that point. The
flowfield itself does not need to be adiabatic or isentropic from one location to another.
Rather, the isentropic process is used conceptually to define the total conditions at a
specific point. If the actual flow between A and B is non adiabatic and irreversible, then
T0A /= T0B , p0A /= p0B , and ρ0A /= ρ0B . On the other hand, if the general flowfield is
isentropic throughout, then T0, p0, and ρ0 are constant values at every point in the flow.
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2.3 Quasi-One-dimensional Flow

Figure 2.3: Quasi-one-dimensional flow[22].

In Sec. 2.1 one-dimensional flow was treated as strictly constant-area flow. In the present
section, this restriction will be relaxed by allowing the streamtube area A to vary with
distance x, as shown in Figs. 2.1 and 2.3. The flow is considered to have uniform
properties across each cross-sectional area, implying that all variables are functions solely
of x and, if the flow is unsteady, also of time t. Such a flow, where A = A(x), p = p(x),
ρ = ρ(x) and V = u = u(x) for steady flow, is defined as quasi-one-dimensional flow.
For this flow, it is the area change that causes the flow properties to vary as a function
of x. However, quasi-one-dimensional flow is an approximation; the flow in the variable-
area streamtube is three-dimensional, but for a wide variety of engineering problems,
quasi-one-dimensional results are frequently sufficient.

2.3.1 Governing Equations

To understand the physical implications of the quasi-one-dimensional flow assumption,
consider the actual three-dimensional flow through a variable-area duct, as illustrated in
Fig. 2.1. In this case, the flow properties exhibit spatial variations in all three coordi-
nate directions: x, y, and z. However, under the quasi-one-dimensional assumption, as
depicted in Fig. 2.3, the flow properties are considered to vary solely as a function of the
streamwise coordinate x, i.e., u = u(x), p = p(x), etc. This implies that the flow proper-
ties are assumed to be uniform across any cross-sectional area A, effectively representing
some averaged value of the actual distribution of flow variables over the cross-section.

It is important to recognize that quasi-one-dimensional flow is an approximation of
the actual physical behavior of the flow. However, despite this simplification, the govern-
ing equations derived for quasi-one-dimensional flow rigorously satisfy the fundamental
conservation principles, including mass conservation, Newton’s second law, and the first
law of thermodynamics. Therefore, while the physical model is an approximation, the
resulting equations remain exact representations of these fundamental conservation laws.

Crucially, the equations formulated in this section strictly enforce the fundamental
conservation principles without any compromise in the overall physical consistency of the
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2.3 – Quasi-One-dimensional Flow

flow. This is achieved by employing the integral forms of the conservation equations and
applying them rigorously to the quasi-one-dimensional flow model shown in Fig. 2.3.
The following sections will detail the derivation and application of these equations in a
mathematically exact manner.

Figure 2.4: Finite control volume for quasi-one-dimensional flow[22].

Algebraic equations for steady quasi-one-dimensional flow can be obtained by apply-
ing the integral form of the conservation equations to the variable-area control volume
sketched in Fig. 2.4.

The continuity equation
∂

∂t

∫︂
Vol

ρ dVol = −
∫︂

S
ρ(V · n̄) dS (2.22)

when integrated over the control volume in Fig. 2.4 leads, for steady flow, directly to
ρ1u1A1 = ρ2u2A2 (2.23)

This is the continuity equation for steady quasi-one-dimensional flow.
The integral form of the momentum equation

∂

∂t

∫︂
Vol

ρV̄ dVol +
∫︂

S
ρV̄ (V̄ · n̄) dS = −

∫︂
S
(p · n̄) dS +

∫︂
Vol

ρf̄ dVol (2.24)

Applied to Fig. 2.4, assuming steady flow and no body forces, it directly becomes

p1A1 + ρ1u2
1A1 +

∫︂ A2

A1
p dA = p2A2 + ρ2u2

2A2 (2.25)

This is the momentum equation for steady quasi-one-dimensional flow.
The integral form of the energy equation
∂

∂t

∫︂
Vol

ρ

(︄
e + V 2

2

)︄
dVol +

∫︂
S

ρ

(︄
e + V 2

2

)︄
(V̄ · n̄) dS

= −
∫︂

S
p(V̄ · n̄) dS +

∫︂
Vol

ρ(f̄ · V̄ ) dVol +
∫︂

Vol
ρq̇ dVol (2.26)
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Applied to Fig. 2.4, and assuming steady adiabatic flow with no body forces, it directly
yields

−(−p1u1A1 + p2u2A2) = ρ1

(︄
e1 + u2

1
2

)︄
(−u1A1) + ρ2

(︄
e2 + u2

2
2

)︄
u2A2

Rearranging,

p1u1A1 + ρ1u1A1

(︄
e1 + u2

1
2

)︄
= p2u2A2 + ρ2u2A2

(︄
e2 + u2

2
2

)︄
(2.27)

Divide Eq. (2.27) by (2.23):

p1
ρ1

+ e1 + u2
1

2 = p2
ρ2

+ e2 + u2
2

2 (2.28)

Noting that h = e + p
ρ , Eq. (2.28) becomes

h1 + u2
1

2 = h2 + u2
2

2 (2.29)

This is the energy equation for steady adiabatic quasi-one-dimensional flow. It states
that the total enthalpy is constant along the flow:

h0 = const (2.30)

Note that Eqs. (2.29) and (2.30) are identical to the adiabatic one-dimensional energy
equation derived in Sec. 2.1. Indeed, this is a general result; in any adiabatic steady flow,
the total enthalpy is constant along a streamline.

Figure 2.5: Incremental volume[22].

The differential forms of the steady, quasi-one-dimensional continuity, momentum,
and energy equations are now expressed as follows. From Eq. (2.23),

ρuA = const

Hence,
d(ρuA) = 0 (2.31)
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2.3 – Quasi-One-dimensional Flow

To obtain a differential form of the momentum equation, Eq. (2.25) is aplied to the
infinitesimal control volume sketched in Fig. 2.5, where the length in the x direction is
dx:

pA + ρu2A + p dA = (p + dp)(A + dA) + (ρ + dρ)(u + du)2(A + dA)
Neglecting all second-order terms involving products of differentials, this becomes

A dp + Au2 dp + ρu2 dA + 2ρuA du = 0 (2.32)

Expanding Eq. (2.31), and multiplying by u,

ρu2 dA + ρuA du + Au2 dρ = 0

Subtracting this equation from Eq. (2.32), yields

dp = −ρudu (2.33)

This equation is called Euler’s equation.
Finally a differential form of the energy equation is obtained from Eq. (2.29) which

states that
h + u2

2 = const

Hence,
dh + udu = 0 (2.34)

2.3.2 Area-velocity relation

A significant amount of physical insight into quasi-one-dimensional flow can be derived
from a specific combination of the differential forms of the conservation equations intro-
duced at the conclusion of Section 2.3.1. From Eq. (2.31),

dρ

ρ
+ du

u
+ dA

A
= 0 (2.35)

To eliminate dρ
ρ from Eq. (2.35), Eq. (2.33) is considered:

dp

p
= dp

dρ

dρ

ρ
= −udu (2.36)

Recall that it is considered adiabatic, inviscid flow, i.e., there are no dissipative mech-
anism such as friction, thermal conduction, or diffusion acting on the flow. Thus, the
flow is isentropic. Hence, any change in pressure, dp, in the flow is accompanied by a
corresponding isentropic change in density, dρ. Therefore, it can be written

dp

dρ
=
(︃

∂p

∂ρ

)︃
s

= a2 (2.37)

Combining Eqs. (2.36) and (2.37),

a2 dρ

ρ
= −udu
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or
dρ

ρ
= −u

du

a2 = −u2

a2
du

u
= −M2 du

u
(2.38)

Substituting Eq. (2.38) into Eq. (2.35),

dA

A
= (M2 − 1)du

u
(2.39)

Figure 2.6: Flow in converging and diverging ducts[22].

Equation (2.39) represents a fundamental result known as the area–velocity relation,
which provides key insights into compressible flow behavior:

1. Incompressible Flow (M → 0): In the limiting case of incompressible flow, Equa-
tion (2.39) simplifies to Au = const, which corresponds to the classical continuity
equation for incompressible fluids.

2. Subsonic Flow (0 < M < 1): In this regime, an increase in velocity (du > 0) corre-
sponds to a decrease in cross-sectional area (dA < 0), and vice versa. Consequently,
the behavior observed in incompressible flow remains valid: velocity increases in a
converging duct and decreases in a diverging duct. This trend is illustrated in the
upper part of Figure 2.6.

3. Supersonic Flow (M > 1): Unlike subsonic flow, an increase in velocity is now
associated with an increase in cross-sectional area, and vice versa. This leads to a
fundamental distinction: for supersonic flow, velocity increases in a diverging duct
and decreases in a converging duct, as depicted in the lower part of Figure 2.6.

4. Sonic Flow (M = 1): At Mach 1, Equation (2.39) yields dA/A = 0, mathemati-
cally indicating a minimum or maximum in the area distribution but the physically
meaningful solution corresponds to a minimum in the cross-sectional area.

These findings clearly demonstrate that for a gas to undergo isentropic expansion
from subsonic to supersonic speeds, it must pass through a convergent–divergent duct
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(or streamtube), as illustrated in the upper part of Figure 2.7. Furthermore, at the
minimum area dividing the convergent and divergent sections, the flow must reach Mach
1, as indicated in item 4. This critical point is referred to as the throat of the duct.

Conversely, for a gas to undergo isentropic compression from supersonic to subsonic
speeds, it must also pass through a convergent–divergent duct. The throat, where the
flow becomes sonic, similarly serves as the transition point between the supersonic and
subsonic regimes, as shown in the lower part of Figure 2.7.

Figure 2.7: Flow in a convergent-divergent duct[22].

2.4 Shock waves

In this section, it will be examined the fundamental characteristics of shock waves, which
are thin regions in a fluid where rapid changes in flow properties occur due to compress-
ibility effects. Given their extremely small thickness, shock waves are often idealized as
surfaces of discontinuity across which pressure, velocity, density, and temperature undergo
abrupt variations. These waves propagate at supersonic speeds and introduce irreversible
effects, such as an increase in entropy. The discussion will cover the governing equations,
physical behavior, and practical implications of shock waves in high-speed flows, providing
a foundation for their role in aerodynamics, propulsion systems, and other applications
in compressible fluid dynamics.
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2.4.1 Normal Shock relations

Figure 2.8: Diagram of a normal shock[22].

In this section, the fundamental principles of compressible flow are applied to the specific
case of a normal shock wave, with the objective of analyzing the physical mechanisms
responsible for variations in flow properties within a one-dimensional, constant-area flow.
Normal shocks are commonly encountered in supersonic flowfields and play a crucial
role in high-speed aerodynamics. By definition, a normal shock wave is a thin, nearly
discontinuous region that is oriented perpendicular to the incoming flow, as depicted in
Fig. 2.8. The shock thickness is typically on the order of a few molecular mean free
paths, approximately 10−5cm for air under standard atmospheric conditions. Across this
thin region, significant changes occur in flow properties: static pressure, temperature,
and density increase, while velocity decreases, transitioning the flow from supersonic to
subsonic conditions.

Figure 2.9: Comparison between subsonic and supersonic streamlines for flow over a flat-faced
cylinder or slab [22].

Shock waves naturally arise in supersonic flows as a response to the fundamental
problem of how disturbances propagate within fluid. To gain an intuitive understanding
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of this phenomenon, a flat-faced cylinder placed in a high-speed flow is considered , as
illustrated in Fig. 2.9. Since the flow consists of individual molecules, those that collide
with the cylinder undergo a change in energy and momentum, which is subsequently
transmitted to the surrounding molecules. In subsonic conditions (V∞ < a∞), these
disturbances propagate upstream via sound waves, allowing the flow to gradually adjust
to the presence of the obstacle, as seen in Fig. 2.9a. However, in supersonic conditions
(V∞ > a∞), disturbances cannot propagate upstream. Instead, they accumulate in a
narrow region ahead of the obstacle, forming a shock wave, as shown in Fig. 2.9b.

Ahead of the shock wave, the flow has no idea of the presence of the body. However,
immediately after passing through the shock, the flow slows to subsonic speeds, allowing
the streamlines to quickly adapt to the body’s presence. While the scenario depicted in
Fig. 2.9b represents one particular case, the fundamental mechanism behind shock wave
formation applies to many high-speed flow situations.

To begin a quantitative analysis of the changes occurring across a normal shock wave,
reference is made to Figure 2.8, in which the shock is modeled as a discontinuity across
which flow properties undergo abrupt variations. For the purpose of this analysis, it is
assumed that all flow conditions upstream of the shock (region 1) are known, with the
objective of determining the corresponding downstream conditions (region 2). Since no
heat is added to or removed from the flow as it passes through the shock, the process is
adiabatic. Consequently, the fundamental equations governing normal shocks are directly
derived from Eqs. (2.3), (2.7), and (2.10), with the heat transfer term set to zero (q = 0).

ρ1u1 = ρ2u2 (continuity)
p1 + ρ1u2

1 = p2 + ρ2u2
2 (momentum)

h1 + u2
1

2 = h2 + u2
2

2 (energy)

By combining the continuity and momentum equations with the definition of the speed of
sound in an adiabatic flow, the Prandtl relation is obtained, a useful intermediate relation
for normal shock:

a∗2 = u1u2 (2.40)

or
M∗2

2 = 1
M∗2

1
(2.41)

where the starred (∗) notation denotes flow properties at the critical condition, where
the Mach number is exactly 1. These properties correspond to the state a fluid element
would reach if it were isentropically accelerated or decelerated to sonic conditions. The
critical condition of the Mach number can be expressed as

M∗2 = (γ + 1)M2

2 + (γ − 1)M2 (2.42)

Based on the preceding physical considerations, the flow upstream of a normal shock
wave must be supersonic, i.e., M1 > 1, which implies M∗

1 > 1. Consequently, according
to Equation (2.41), it follows that M∗

2 < 1, and therefore M2 < 1, confirming that the

29



Theoretical background

downstream flow is subsonic. Hence, the Mach number behind the normal shock is always
subsonic. This is a general result, not just limited to a calorically perfect gas.

Substituting Eq. (2.42) into (2.41) and solving for M2
2 it can be obtained:

M2
2 = 1+ γ−1

2 M2
1

γM2
1 − γ−1

2
(2.43)

Equation (2.43) demonstrates that, for a calorically perfect gas with a constant ratio of
specific heats γ, the downstream Mach M2 number is a function of only the upstream
Mach number M1 . It should be noted that, when M1 = 1, the downstream Mach number
remains M2 = 1, corresponding to an infinitely weak normal shock, also known as a Mach
wave. In contrast, as M1 becomes larger than unity, the shock strength rises, and M2
decreases progressively below 1. In the limiting case where M1 → ∞, M2 approaches a
finite minimum value, given by M2 =

√︂
γ−1
2γ , which for air is approximately 0.378.

The upstream Mach number M1 plays a fundamental role in determining shock wave
characteristics, as evident from Equation (2.43). Additionally, the ratios of other ther-
modynamic properties across the shock can also be expressed as functions of M1, further
emphasizing its significance in shock wave analysis. The expression of density, pressure
and temperature as a function of the upstream Mach number M1 are respectively

ρ2
ρ1

= u1
u2

= (γ+1)M2
1

2+(γ−1)M2
1

(2.44)

p2
p1

= 1 + 2γ
γ+1

(︁
M2

1 − 1
)︁

(2.45)

T2
T1

= h2
h1

=
[︂
1 + 2γ

γ+1
(︁
M2

1 − 1
)︁]︂ [︂2+(γ−1)M2

1
(γ+1)M2

1

]︂
(2.46)

Taking a look on Eqs. (2.43), (2.44), (2.45) and (2.46), for a calorically perfect gas with
a given γ, all this thermodynamic properties across the shock are functions of M1 only,
further emphasize the importance of Mach number in the quantitative governance of
compressible flowfields.

The result presented in this section are reasonable accurately up to approximately
M1 = 5 in air standard conditions. At higher Mach numbers, the temperature behind
the normal shock becomes high enough that γ is no longer constant.

Earlier in this section, it was established that the flow upstream of a normal shock wave
must be supersonic, as previously discussed in the context of shock wave formation. While
this has been easily observed from physical principles, it is noteworthy that Equations
(2.43), (2.44), (2.45) and (2.46) are mathematically valid for both M1 < 1 and M1 >
1. However, to demonstrate that these equations are physically meaningful only when
M1 > 1, it is necessary to invoke the second law of thermodynamics, which governs the
irreversibility and entropy changes of shock waves

s2 − s1 = cp ln T2
T1

− R ln p2
p1

(2.47)
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with Eqs. (2.45) and (2.45), the second law of thermodynamics can be expressed

s2 − s1 = cp ln
{︄[︃

1 + 2γ

γ + 1(M2
1 − 1)

]︃ [︄2 + (γ − 1)M2
1

(γ + 1)M2
1

]︄}︄

− R ln
[︃
1 + 2γ

γ + 1(M2
1 − 1)

]︃ (2.48)

Equation (2.48) establishes that the entropy change across a normal shock wave de-
pends only on the upstream Mach number M1. Specifically, the equation indicates that
if M1 = 1, then s2 − s1 = 0, if M1 < 1, then s2 − s1 < 0 and if M1 > 1 then s2 − s1 > 0.
Since it is necessary that s2 − s1 ≥ 0 from the second law, it follows that the upstream
Mach number must be at least unity M1 ≥ 1.

This result once more shows how the second law determines the direction of physical
processes. If M1 is subsonic, Equation (2.48) would imply a decrease in entropy across
the shock, which is physically impossible. Hence, the only feasible scenario is when
M1 ≥ 1, which, in turn dictates from Equations (2.43), (2.44), (2.45) and (2.46) that
M2 ≤ 1, ρ2

ρ1
≥ 1, p2

p1
≥ 1, and T2

T1
≥ 1. These relationships confirm the fundamental

behaviour illustrated in Figure 2.8, demonstrating that across a normal shock wave,
pressure, density, and temperature increase, while velocity and Mach number decrease to
subsonic values.

Figure 2.10: Properties behind a normal shock wave as a function of upstream Mach number
[22].

Regarding the total conditions T0 and p0 ahead and behind the normal shock wave,
from the Eq. (2.49)

cpT1 + u2
1

2 = cpT2 + u2
2

2 (2.49)
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and from the definition of total temperature of Eq. (2.50)

cpT + u2
2 = cpT0 (2.50)

it yields

T01 = T02 (2.51)

Hence, the total temperature remains constant across a stationary normal shock wave. In
general, this result is a consequence of the conservation of total enthalpy across the shock,
which holds for calorically and thermally perfect gases. Therefore, Eq. (2.47) becomes

s2 − s1 = −R ln p02
p01

(2.52)

or
p02

p01
= e− s2−s1

R (2.53)

In conclusion, from Eqs. (2.48) and (2.53) the ratio of total pressure across the normal
shock depends only on M1. Given that s2 > s1, the total pressure decreases across the
shock, consistent with the increase in entropy. Additionally, to enhance physical intuition,
these variations are visually represented in Figure 2.10.

Through these results obtained for the normal shock wave, since the static pressure
always increases across the shock, the wave itself can also be visualized as a thermody-
namic compression mechanism. Furthermore, the changes across a normal shock wave
can be expressed in terms of purely thermodynamic variables without explicit reference
to a velocity or Mach number.

e2 − e1 = p1 + p2
2

(︃ 1
ρ1

− 1
ρ2

)︃
(2.54)

or

e2 − e1 = p1+p2
2 (ν1 − ν2) (2.55)

Equation (2.55) is called Hugoniot equation. It has certain advantages because it re-
lates only thermodynamic quantities across the shock. Moreover, no assumptions have
been made regarding the specific type of gas; Equation (2.55) remains a general relation
applicable to perfect gases, chemically reacting gases, and real gases. Additionally, it
is noteworthy that Equation (2.55) follows the form ∆e = pave∆ν, indicating that the
change in internal energy is equal to the average pressure across the shock multiplied by
the change in specific volume.
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Figure 2.11: Comparison between Hugoniot curve and isentropic compression [22].

Shock wave compression is a highly effective process, however not necessarily efficient.
To illustrate this, consider the comparison between the isentropic and Hugoniot curves
originating from the same initial state (p1, v1), as depicted in Figure 2.11. At this point,
both curves share the same slope, which can be demonstrated by noting that point 1 on
the Hugoniot curve corresponds to an infinitely weak shock, or a Mach wave. However,
as the specific volume decreases, the Hugoniot curve rises above the isentropic curve,
indicating that for a given reduction in specific volume, a shock wave produces a greater
pressure increase than an isentropic compression. This advantage, however, comes at
the cost of increased entropy and a corresponding loss in total pressure, i.e., the shock
compression is less efficient than the isentropic compression.

Eq. (2.55) can be also written as

p2
p1

=

(︂
γ+1
γ−1

)︂
ν1
ν2

− 1(︂
γ+1
γ−1

)︂
− ν1

ν2

(2.56)
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2.4.2 Oblique Shock

Figure 2.12: Oblique shock wave [22].

An oblique shock wave forms when a supersonic flow encounters a disturbance, such as
a wedge or compression corner, causing a discontinuous change in flow properties at an
angle to the free stream. Unlike normal shocks, where the flow is entirely decelerated
to subsonic speeds, an oblique shock allows the flow to remain supersonic under certain
conditions.

Figure 2.13: Oblique shock wave geometry [22].

The geometric representation of flow through an oblique shock wave is illustrated in
Figure 2.13. Upstream of the shock, the flow velocity V1 is horizontal, with a correspond-
ing Mach number M1. The oblique shock forms a wave angle β relative to V1, and the
flow is deflected by an angle θ in the direction of the shock. Downstream of the shock,
the velocity and Mach number are denoted as V2 and M2, respectively. The velocity
components perpendicular and parallel to the shock wave are given by u1 and w1 for
the upstream flow and u2 and w2 for the downstream flow. Consequently, the normal
and tangential Mach numbers across the shock are represented as Mn1 ,Mt1 upstream and
Mn2 , Mt2 downstream.
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The integral forms of the conservation equations were previously applied in Section 2.1
to a one-dimensional flow control volume, leading to the normal shock relations presented
in Section 2.4.1. A similar approach is adopted for oblique shocks. A control volume
bounded by two streamlines across an oblique shock is considered, as indicated by the
dashed lines in Figure 2.13. Faces a and d are parallel to the shock wave. Applying
the integral form of the continuity equation to this control volume under steady-state
conditions yields:

ρ1u1 = ρ2u2 (2.57)

where A1 = A2 represent the areas of faces a and d. The control volume faces b, c, e,
and f are aligned with the velocity vector, thus their contributions to the surface integral
vanish (V · dS = 0).

The integral form of the momentum equation is a vector equation. By resolving it
into components parallel and perpendicular to the shock, and considering steady flow
without body forces, the tangential momentum equation simplifies to:

(−ρ1u1)w1 + (ρ2u2)w2 = 0 (2.58)

Dividing by the continuity equation it yields:

w1 = w2

This result is significant, indicating that the tangential component of velocity remains
unchanged across an oblique shock wave.

Applying the normal component of the momentum equation it can be obtained

(−ρ1u1)u1 + (ρ2u2)u2 = −(p1 + p2)

or
p1 + ρ1u2

1 = p2 + ρ2u2
2 (2.59)

The integral form of the energy equation applied to the control volume in Figure 2.13 for
a steady adiabatic flow with no body forces, it yields(︄

h1 + V 2
1
2

)︄
ρ1u1 =

(︄
h2 + V 2

2
2

)︄
ρ2u2 (2.60)

Dividing Eq. (2.60) by (2.57) and recall from the geometry of Figure 2.13 that V 2 =
u2 + w2 and w1 = w2

V 2
1 − V 2

2 =
(︂
u2

1 + w2
1

)︂
−
(︂
u2

2 + w2
2

)︂
= u2

1 − u2
2

Eq. (2.60) becomes

h1 + u2
1

2 = h2 + u2
2

2 (2.61)

Careful examination of Equations (2.57), (2.59), and (2.61) reveals that they have the
same mathematical form as the normal shock continuity, momentum, and energy equa-
tions. In both cases, the velocity components normal to the wave determine the flow
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properties across the shock. Consequently, the variations across an oblique shock wave
are dictated by the normal component of the upstream velocity. Moreover, applying
the same algebraic manipulations used for the normal shock equations in Section 2.4.1 to
Equations (2.57), (2.59), and (2.61) results in identical expressions describing the changes
across an oblique shock, expressed in terms of the normal component of the upstream
Mach number. That is, for an oblique shock wave with

Mn1 = M1 sin β (2.62)

For a calorically perfect gas,

M2
n2 =

M2
n1 + 2

γ−1[︂
2γ

(γ−1)

]︂
M2

n1 − 1
(2.63)

Note that the Mach number behind the oblique shock, M2, can be found from Mn2 and
the geometry of Figure 2.13 as

M2 = Mn2

sin (β − θ) (2.64)

In Sec. 2.4.1 it was emphasized that changes across a normal shock were a function of
only the upstream Mach number. Now the changes across an oblique shock are function
of two quantities, both M1 and β. It can also be noted that normal shock are just a
special case of oblique shocks where β = π/2.

Equation (2.64) demonstrates that M2 cannot be found until the flow deflection angle
θ is obtained. However, θ is also a unique function of M1 and β, as follows, from the
geometry of Figure 2.13

tan β = u1
w1

(2.65)

and
tan(β − θ) = u2

w2
(2.66)

Combining Eqs. (2.65) and (2.66) together, and noting that w1 = w2

tan(β − θ)
tan β

= u2
u1

(2.67)

Combining Eq. (2.67) with Eqs. (2.57) and (2.62) and with some trigonometric manip-
ulation, it can be obtained

tan θ = 2 cot β

[︄
M2

1 sin2 β − 1
M2

1 (γ + cos 2β) + 2

]︄
(2.68)

Equation (2.68) is called the θ − β − M relation, and specifies θ as a unique function of
M1 and β.
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Figure 2.14: θ-β-M curves. Oblique shock properties [22].

The relationship between the wave angle β, deflection angle θ, and Mach number M1
is fundamental in the analysis of oblique shocks. The results derived from this relation
are plotted in Figure 2.14 for γ = 1.4. This figure presents a graphical representation of
the wave angle β versus deflection angle θ, with the Mach number M1 as a parameter.
Several key observations can be made:

1. Existence of a Maximum Deflection Angle: For a given upstream Mach num-
ber M1, there exists a maximum deflection angle θmax. If the physical geometry
requires a deflection angle greater than this limit θ > θmax„ then no solution exists
for a straight oblique shock wave . Instead, the shock becomes curved and detached,
as illustrated in Figure 2.15, which compares wedge and corner flows for cases where
θ is below or above θmax.

2. Weak and Strong Shock Solutions: When the deflection angle is below the
maximum limit θ < θmax, the θ-β-M relation predicts two possible wave angles β
for a given Mach number. These correspond to the weak shock and strong shock
solutions, as depicted in Figure 2.16. The strong shock solution corresponds to
the larger β, resulting in more severe changes in flow properties, whereas the weak
shock solution is associated with the smaller β. In most practical scenarios, the weak
shock solution is favored and typically observed in nature. However, the occurrence
of the strong shock solution depends on downstream pressure conditions. If the
downstream pressure increases due to an external mechanism, the strong shock
(dashed line in Figure 2.16) can be forced to occur. In the strong shock case, the
downstream Mach number M2 is subsonic, whereas in the weak shock case, M2
remains supersonic, except for conditions near θmax (see Figure 2.14).
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3. Special Cases: if θ = 0, then β = π
2 corresponding to a normal shock, or β = µ,

corresponding to a Mach wave.

4. Effect of Mach Number on Wave Angle: For a fixed deflection angle θ, de-
creasing the upstream Mach number leads to an increase in the wave angle (for the
weak shock solution). As the Mach number decreases to a critical value, the wave
angle reaches its maximum (θ = θmax), beyond which no oblique shock solutions
exist. For Mach numbers below this limit, the shock wave detaches, as illustrated
in Figure 2.15.

This analysis highlights the critical role of the upstream Mach number in determining
shock behavior, providing insight into when attached oblique shocks, detached shocks, or
strong/weak solutions occur.

Figure 2.15: Attached and detached shocks [22].

Figure 2.16: Weak and strong shocks [22].
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2.5 Boundary Layer

Figure 2.17: Boundary Layer properties [24].

The boundary layer is a thin region of fluid flow adjacent to a solid surface, where the
effects of viscous friction cause a progressive reduction in velocity from the freestream
value to zero at the wall, a condition known as the no-slip condition. Similarly, the fluid
temperature at the wall equals the surface temperature Tw, as shown in Fig. 2.17.

Above the surface, the velocity increases with the normal coordinate y until it ef-
fectively reaches the freestream velocity V∞. The distance from the surface where the
velocity attains 99% of the freestream value is defined as the velocity boundary-layer
thickness δ. In Fig. 2.17, which illustrates the flow over a flat plate, the velocity at the
outer edge of the boundary layer is given by ue = V∞. For bodies with arbitrary shapes,
ue corresponds to the inviscid velocity at the body surface.

At a given streamwise location x, the velocity distribution within the boundary layer,
denoted as u(y), is referred to as the velocity profile. Similarly, the thermal boundary layer
develops due to temperature variations in the normal direction. The thermal boundary-
layer thickness δT is defined as the distance at which the temperature reaches 99% of
the external temperature Te. The variation of temperature within this layer, denoted as
T (y), is referred to as the temperature profile.

The presence of a velocity gradient at the wall generates a shear stress, which is given
by:

τw = µ

(︃
du

dy

)︃
y=0

(2.69)

where µ is the dynamic viscosity and
(︂

du
dy

)︂
y=0

is the velocity gradient evaluated at the
wall. A fundamental boundary-layer property is the displacement thickness (δ∗), defined
as:

δ∗ ≡
∫︂ ye

0

(︃
1 − ρu

ρeUe

)︃
dy (2.70)

This quantity has two significant physical interpretations:

1. The displacement thickness represents the reduction in mass flow caused by the
presence of the boundary layer. It quantifies the extent to which the boundary
layer displaces the inviscid flow, effectively reducing the available flow passage.
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2. In practical applications, the displacement thickness modifies the effective shape of
a body interacting with the freestream. While the physical body geometry is defined
by its physical shape, the presence of the boundary layer alters the perceived shape.
The freestream flow behaves as if it were interacting with an enlarged body, where
the displacement thickness is added to the original geometry.
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2.6 Shock Wave-Boundary-Layer Interactions (SWBLI)
Shock wave–boundary layer interactions (SBLIs) significantly influence the performance
of aerodynamic surfaces and propulsion systems, occurring on both external and internal
surfaces. These interactions introduce complex flow structures, where the boundary layer
encounters an adverse pressure gradient imposed by the shock, while the shock propagates
through a multilayered viscous-inviscid flow.

In turbulent flows, SBLIs enhance turbulence production, increasing viscous dissipa-
tion, which leads to higher drag on wings and reduced engine efficiency due to performance
losses in turbine blades and increased internal flow losses. The distortion of the bound-
ary layer velocity profile due to the adverse pressure gradient amplifies the displacement
thickness, affecting the surrounding inviscid flow. In extreme cases, a strong shock can
induce boundary layer separation, causing significant flowfield modifications, formation
of vortices and complex shock patterns, and large-scale unsteadiness such as intake buzz,
or nozzle side loads, all of which can degrade vehicle performance or induce structural
damage.

Shock-induced separation is essentially a compressible counterpart of classical flow
separation, sharing similar boundary-layer behavior but with additional shock patterns
in the outer inviscid flow, which can drastically alter the global flow structure. SBLIs
occur across a wide range of Mach numbers, from transonic to hypersonic flows, where
their impact becomes particularly severe due to the intensity of the shocks.

Figure 2.18: Basic SBLIs [23].
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In two-dimensional supersonic flows, shock wave–boundary layer interactions (SBLIs)
can be classified into four fundamental types:

1. Oblique-Shock Reflection: When an oblique shock impinges on a flat surface
(Fig. 2.18a), the supersonic upstream flow (M1) is deflected by an angle ∆φ1
across the incident shock. To maintain a parallel downstream flow, a reflected
shock forms, causing a deflection ∆φ2 = −∆φ1. This type of interaction commonly
occurs inside mixed-compression supersonic air intakes or when shocks generated
by obstacles interact with nearby surfaces.

2. Ramp-Induced Shock: A ramp flow occurs when a sudden change in wall in-
clination generates a shock wave (Fig. 2.18b). The flow is deflected by an angle
∆φ1, which corresponds to the wedge angle β. Such shocks are observed in super-
sonic air-intake compression ramps, control surfaces, or sharp changes in surface
direction.

3. Normal Shock: A normal shock can develop when a supersonic flow undergoes a
back-pressure increase that forces a transition to subsonic flow. This occurs in chan-
nel flows with a two-throat system, where a normal shock forms due to downstream
choking, necessitating a stagnation pressure drop to satisfy mass conservation. Un-
like oblique shocks, a normal shock decelerates the flow without changing the ve-
locity direction, resulting in a subsonic Mach number behind the shock. However,
in most practical applications, the shock is not perfectly normal (i.e., the interfer-
ogram in Fig. 2.18c) but rather a strong oblique shock, even in weak transonic
cases. Such shocks are found in turbomachinery cascades, air intakes, supersonic
diffusers, shock tubes, and transonic profiles, where they terminate a supersonic
pocket. When the downstream flow is subsonic, disturbances can propagate up-
stream, leading to unsteady phenomena such as air-intake buzz.

4. Oblique Shock Induced by a Pressure Jump: If a supersonic flow encounters a
pressure discontinuity (e.g., at the exit of an overexpanded nozzle), an oblique shock
forms (Fig. 2.18d). In this scenario, the pressure jump induces the flow deflection,
unlike in the first two cases, where the flow deflection caused the pressure jump.
This represents a mirror case of the deflection–pressure jump duality.

From a macro prospective shock wave–boundary layer interactions (SBLIs) can be
classified as weak or strong, with strong interactions capable of inducing boundary layer
separation near the impingement point. In the following paragraphs only the two most
common interactions will be discussed: shock impingement on a flat-plate boundary layer
and compression ramp interaction.
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2.6.1 Weak interactions

Figure 2.19: A sketch of a turbulent shock
reflection without boundary-layer separation
[23].

Figure 2.20: Pressure distribution in a weak
SBLIs [23].

The interaction between an oblique shock wave and a turbulent boundary layer is sketched
in Figure 2.19. A similar structure appears in a laminar boundary layer, though the in-
teraction region extends further downstream. As the incident shock (C1) penetrates the
inviscid portion of the boundary layer, it bends due to the local Mach number decrease,
weakening until it vanishes at the sonic line. The pressure rise across the incident shock
(C1) is felt upstream of its expected impingement point in the absence of a boundary
layer through the subsonic part of the boundary layer. Consequently, the wall-pressure
distribution spreads over a length scale comparable to the boundary-layer thickness, de-
viating from the prediction of a purely inviscid solution. As illustrated in Figure 2.20,
the pressure begins to increase upstream of the inviscid pressure jump, progressively ris-
ing until it matches the downstream inviscid level. This weak interaction process results
in a pressure distribution that deviates only slightly from the inviscid solution, making
viscous effects a secondary correction. Such behaviour is said to be a weak interaction
process in the sense that the flow is weakly affected by viscous effects. The expansion
of the subsonic layer affects the outer supersonic flow, generating compression waves (η)
that merge to form the reflected shock (C2). A boundary layer with a fuller velocity
profile has a thinner subsonic region, leading to shorter upstream influence.
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Figure 2.21: Ramp-induced shock without boundary-layer separation [23].

A similar mechanism occurs in ramp-induced interactions (Figure 2.21), where the
pressure rise from shock (C1) propagates upstream through the subsonic boundary layer,
inducing compression waves (η) in the supersonic region. These waves coalesce into (C1),
which increases in intensity with distance from the surface until reaching the inviscid
solution. However, at high Mach numbers, the subsonic channel has a minor effect on
the overall interaction structure, and most of the physics can be interpreted in terms of
an inviscid process, as in the incident-shock induced interaction.

2.6.2 Strong interactions

Figure 2.22: A sketch of a turbulent shock
reflection with boundary-layer separation [23].

Figure 2.23: Wall pressure distribution in a
shock-separated flow [23].
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The boundary layer is characterized by a decrease in stagnation pressure towards the wall,
while remaining nearly constant along streamlines over short distances. Neglecting com-
pressibility, the Bernoulli equation relates pressure increases to flow retardation, which
is most pronounced in the inner boundary layer where pst is lowest. Under an adverse
pressure gradient, flow near the wall can stagnate or reverse, leading to separation. This
flow structure is sketched in Fig. 2.22. Downstream of the separation point (S), a recir-
culating bubble forms, enclosed by a dividing streamline (S) that separates the reversed
flow from the main stream. This streamline originates at (S) and ends at the reattach-
ment point (R). Intense mixing in the detached shear layer transfers mechanical energy
from the high-speed outer flow to the separated region, causing the velocity Us along the
dividing streamline to increase until it slows down near reattachment. The transmitted
shock (C4) enters the separated viscous flow and is reflected as an expansion wave due
to the nearly constant pressure inside the separation bubble. This reflection deflects the
shear layer back toward the wall, leading to reattachment at point R, where the bubble
disappears, and the flow along (S) slows down until it stagnates. This process generates
compression waves, which merge to form a reattachment shock in the outer flow. As
shown in Figure 2.23, the wall pressure distribution initially shows a sharp increase at
the separation point, followed by a plateau pressure, characteristic of separated flows.
A second, more progressive pressure rise occurs during reattachment. In this situation,
the flowfield structure is markedly different from what it would be for the purely inviscid
case, and the shock reflection is said to be a strong viscous-inviscid interaction.

Figure 2.24: Ramp-induced shock with
boundary-layer separation [23].

Figure 2.25: Wall pressure distribution in a
shock-separated flow [23].

The case of ramp-induced separation is shown in Figure 2.24. When the flow deflec-
tion caused by the ramp generates a shock wave stronger than the boundary layer can
sustain, separation occurs at point S, located upstream of the ramp apex. Similar to
shock reflection, a separation shock (C1) forms due to the convergence of compression
waves generated by the separation process. Downstream of S, the near-wall fluid in the
boundary layer recirculates, forming a separation bubble similar to previous cases. The
flow reattaches at point R, producing a reattachment shock (C2), which is less inclined
than the separation shock due to the change in flow direction and the lower Mach num-
ber downstream of (C2). The equivalent inviscid representation of this case is shown in
Fig. 2.25. A simpler two-shock system forms with a separation shock emanating from
the inviscid separation point and a reattachment shock from the inviscid reattachment
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point. If the Mach number is high enough, the two converging shocks intersect at a small
distance from the wall.
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Chapter 3

Implementation of theory

The conventional methodology for intake design starts with the implementation of a
simplified compressive flow model, which combines a sequence of isentropic flow regions
and oblique shocks. The resulting geometry is then evaluated for its ability to start, and
if the flow does not start, the design must be revised. An effective air intake design takes
into account the following factors:

• The intake must efficiently meet the specified requirements for contraction, com-
pression, and Mach number reduction.

• It should reliably start and maintain steady operation throughout the vehicle’s flight
envelope, with starting occurring below the cruise Mach number.

• Performance degradation due to off-design Mach numbers or changes in the angle
of attack should be minimized.

• The flow direction at the intake exit should align with the freestream to prevent
losses in the combustion chamber and the nozzle.

• Overboard mass flow spillage should be minimized and, if unavoidable, restricted
to the intake starting phase.

At the downstream end of the intake, critical design challenges typically arise. This is
where the starting process ends, shocks interact with the boundary layer, and conditions
for the combustor are established.

3.1 Busemann flow

One of the most optimal geometries for a combustor, capable of withstand extreme heat
and pressure loads, is the circular cross section. This shape minimizes the ratio of surface
area to volume, effectively reducing friction losses to the lowest possible level. Conse-
quently, the study of asymmetric flow has been conducted extensively. Such geometries,
inspired by Busemann’s research on streamtube designs, are referred to as Busemann flow
and Busemann intakes.
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Figure 3.1: Visualization of Busemann Flow Dynamics [11].

Fig. 3.1 presents a schematic representation of Busemann flow. In region (1), the
uniform freestream flow undergoes isentropic compression from the freestream Mach cone
up to the conical shock cone (2). Upon passing through the conical shock, the flow
transitions into a uniform, parallel flow in region (3). The flow remains axially and
conically symmetric, as well as irrotational throughout. The isentropic contraction and
compression between regions (1) and (2) are followed by a loss of total pressure across
the shock, occurring between regions (2) and (3). The green line marks a cone that
contains the inflection points of all Busemann streamlines. This inflection point cone
plays a critical role in initiating supersonic flow within the intake.

3.2 Axisymmetric Compression Flow Field

The compression flow field is a fundamental aspect of the intake design process. The basic
Busemann intake surface is axisymmetric and features a converging duct aligned with the
freestream along its axis of symmetry. At the leading edge, a conical Mach wave of zero
strength forms, as the geometry does not induce any flow deflection. Downstream, the
flow begins turning towards the axis, resulting in a reduction in flow area, compression
of the flow, and an increase in pressure along the surface.

The inflection point mentioned above represents the location of the minimum turning
angle of the flow. Beyond this point, the flow begins to turn away from the axis, passing
through a conical shock, where it is deflected to become uniform and parallel to the axis
at the intake exit. In particular, the flow within a Busemann intake exhibits both axial
and conical symmetry. This symmetry establishes a focal point along the axis from which
rays can be drawn in any direction. Along each of these rays, the flow conditions remain
constant.

3.2.1 Taylor-Maccoll Equations

To better understand intake flows, it is often advantageous to reduce the number of
physical dimensions considered, simplifying the analysis by focusing on fewer variables.
This reduction is justified when the flow properties remain constant with respect to the
eliminated dimension, which occurs when the flow exhibits some form of symmetry. For
example, planar flow in the (x, y) system is derived by eliminating the z-variable from
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the Cartesian (x, y, z) system. Similarly, in a spherical coordinate system (r, θ, ϕ), axial
flow in the (r, θ) system can be achieved by removing the circumferential angle ϕ.

If the flow properties are also invariant in the radial direction r for an axial flow, the
flow becomes strictly one-dimensional with respect to the angular variable θ. This leads to
the derivation of the Taylor-Maccoll equations, which describe flows that exhibit conical
symmetry. Conical flows, governed by the Taylor-Maccoll equations, include supersonic
flow over an axisymmetric cone at 0◦ angle of attack, as well as Busemann flow and
axisymmetric conical flows.

The Taylor-Maccoll equation itself is a nonlinear, second-order total differential equa-
tion, where the radial velocity U is the dependent variable and the spherical polar angle
θ is the independent variable [11].

γ − 1
2

[︄
1 − U2 −

(︃
dU

dθ

)︃2]︄ [︄
2U + dU

dθ
cot θ + d2U

dθ2

]︄
− dU

dθ

[︄
U

dU

dθ
+ dU

dθ

d2U

dθ2

]︄
= 0 (3.1)

and the streamline equation is

dr

dθ
= r

U

V
(3.2)

The governing equation for steady, axisymmetric, and conical flow of a perfect gas has
not yet yielded an explicit algebraic solution. Furthermore, no numerical schemes exist
for directly solving the second-order form presented earlier. However, the equation can be
reformulated into two first-order equations (3.3) and (3.4), by introducing an additional
dependent variable, V . This reformulation allows the use of standard numerical methods
to solve the system efficiently.

The first-order formulations of Eq. (3.2) correspond to the momentum equations in
polar coordinates, applied in the r and θ directions:

dV

dθ
= −U + a2(U + V cot θ)

V 2 − a2 (3.3)

dU

dθ
= V (3.4)

where a is the speed of sound, and it can be written in terms of total conditions and ve-
locities through the energy equations. The second of these equations is the irrotationality
condition, which implies that conical flows are necessarily irrotational flows.
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3.3 Starting of the intake

Figure 3.2: Started and Unstarted condition [25].

A Busemann intake, or more generally any converging duct in supersonic flow, can sup-
port two distinct flow configurations for the same freestream Mach number. The first
configuration features a bow shock positioned ahead of the intake, which diverts part
of the flow externally, and the resulting internal flow becomes subsonic. This indicates
that the flow is unstarted. In contrast, the second configuration is characterized by the
absence of a bow shock and overboad spillage, allowing the flow to remain supersonic
throughout the intake. Started flow is essential for proper engine operation. Ensuring
that the flow is started is critical for engine efficiency, as unstarted flow leads to significant
total pressure losses and reduced mass flow, which is essential for thrust [4]. In order to
initiate and maintain a stable supersonic flow, it is necessary to displace the normal shock
in front of the intake downstream, thus allowing the converging section of the intake to
establish supersonic conditions. This requirement imposes key constraints on the intake
design. Although an inviscid design may rely on simplified flow assumptions, the actual
starting flow is often three-dimensional. The shock wave and boundary layer interaction
(SWBLI) must be considered, since it plays a crucial role in the intake starting process,
particularly when strong shocks are present. Shock swallowing and intake flow starting
are intrinsically unsteady processes. However, if the shock wave propagates much slower
than the surrounding flow, the flow can be approximated as quasi-steady, allowing the
application of steady-state flow equations. Instead, if the shock moves rapidly, the in-
take is considered to be over-started. This implies that the intake is not operating at
its maximum contraction potential, resulting in performance losses. The application of
steady-state flow principles results in the Kantrowitz criterion [26], which defines the con-
ditions for flow starting in a converging duct through shock swallowing. This criterion
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states that if the exit remains unchoked the shock in front of the duct will be ingested,
and supersonic flow will be established throughout the duct. This occurs when the ratio
of the exit-to-entry area of the duct is greater than the Kantrowitz criterion:

A∗∗

A1
=
(︄

(γ + 1)M2
1

(γ − 1)M2
1 + 2

)︄0.5(︄ (γ + 1)M2
1

2γM2
1 − (γ − 1)

)︄ 1
γ−1

(3.5)

Spontaneous starting occurs above this line; however, the resulting compression is insuf-
ficient. An intake that starts spontaneously must undergo further contraction in order
to operate near the isentropic condition and achieve optimal performance. Obviously,
the closer the intake approaches the isentropic limit, the more challenging the starting
process becomes. The isentropic limit is defined by:

A∗

A1
= 1

M1

[︃ 2
γ + 1

(︃
1 + γ − 1

2 M2
1

)︃]︃ γ+1
2(γ−1)

(3.6)

Figure 3.3: Kantrowitz criterion and isentropic limit.

The adiabatic contraction line represents the theoretically highest attainable compres-
sion, corresponding to a total pressure recovery of 100%. A duct with an exit-to-entry
area ratio, denoted as Ae/A1, that lies between these two limits will operate in a stable
supersonic condition, if it has been started. A value of Ae/A1 close to A∗/A1 is an indi-
cation that the intake is difficult to start, whereas a value near A∗∗/A1 suggests that the
intake is more likely to start.

3.3.1 Startability Index

In order to quantify the difficulty of starting an intake, it is useful to introduce an index
Si. By considering the Kantrowitz and isentropic contraction ratios as the upper and
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lower limits, respectively, this index provides a measure of the intake’s position within
that range.

Si =
Ae
A∗ − 1
A∗∗

A∗ − 1
(3.7)

Referred to as the startability index, it represents the ratio of contractions, based on the
assumption that startability improves as contraction decreases. The index takes a value
of 1 at the Kantrowitz condition, where the intake just starts spontaneously. Conversely,
at a contraction corresponding to the isentropic area ratio, below which the intake can
no longer remain started, it reaches a value of 0.

The startability index can be applied to the entire intake, as well as to specific internal
sections, to evaluate their individual tendencies to start spontaneously.

3.4 Truncation effects
Truncation effects can be categorized into two types: leading-edge truncation effects
and rear-side truncation effects. In general, the shape of a truncated intake deviates
significantly from its original design [27]. As a result, the computed flow field variables
differ from those of the non-truncated counterpart, indicating that the two flow fields are
no longer similar.

3.4.1 Leading edge truncation

Figure 3.4: Leading edge truncation [28].

Busemann intakes exhibit excellent performance characteristics due to their isentropic
compression but they tend to become excessively long, thus increasing skin friction drag
and weight. A closer examination of the leading-edge surface of a Busemman intake
reveals that it does not present deflection or curvature in the direction parallel to the
axis of symmetry, meaning it does not contribute to the compression of the entering
airflow. Consequently, the leading-edge surface’s contribution in the overall compression
process is negligible. Moreover, this surface sustains a boundary layer with high shear,
leading to significant efficiency losses. In order to mitigate these losses, leading-edge
truncation is often introduced as a means of improving efficiency. However, truncation
induces a positive flow deflection at the leading edge, generating a shock. This results
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in a deterioration of efficiency due to the total pressure loss in the inviscid flow. Thus,
intake design requires a trade-off between boundary layer losses and shock-induced losses.
Optimizing the amount of truncation is crucial to minimizing the sum of both losses.
Studies in [29] [30] [31] have investigated truncation effects, showing that reducing the
intake length by truncation angles between 2◦ and 6◦ are usually sufficient. At the
truncated leading edge, an oblique shock forms, which interferes with the isolines of
isentropic compression as it propagates downstream. This interaction leads to a reduction
in compression efficiency, which worsens as the truncation angle increases. Additionally,
truncation disrupts the homogeneity of the outflow, further affecting intake performance.

3.4.2 Rear side truncation

Figure 3.5: Rear side truncation [28].

Further reduction of the Busemann intake length can be achieved by truncating its rear
side. A schematic representation of a truncated Busemann contour is shown in Fig.
3.5. While the impact on length reduction is less pronounced compared to leading-edge
truncation, the rear side truncation introduces an oblique shock at higher Mach number,
hence high shock losses. Therefore, it may be advantageous to limit the leading-edge
truncation to a certain degree and achieve the desired length reduction by a combina-
tion of both. This modification shortens the structure of the isolines, and an expansion
at the beginning of the isolator further disturbs the flow field. Consequently, the flow
through the isolator is no longer homogeneous. In general, truncation reduces the overall
compression compared to the original, non-truncated geometry. Although rear-side trun-
cation complicates an analytical formulation of the flow field, it offers additional benefits.
Specifically, it reduces the internal contraction ratio, defined as the ratio between the
cowl closure cross-sectional area and the combustion chamber area. In general, a lower
internal contraction ratio improves the intake’s starting characteristics.

3.5 Viscous effects
Typically, at the leading edge of the intake a boundary layer naturally forms and evolves
under the influence of the edge properties known from the inviscid flow field. However,
due to the displacement effect of the boundary layer, the compression region is fur-
ther contracted, altering its properties. This interaction affects the development of the
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boundary layer, which in turn influences the core flow. The effect of this phenomenon is
illustrated at the bottom of Fig. 3.6 for a classical Busemann flow field. In general, the
effective contraction of the Busemann contour is known to increase due to the additional
displacement caused by the boundary layer. As a result, both pressure and temperature
are higher than the one predicted by the inviscid analytical models. Moreover, the flow
through the isolator may become non-uniform due to disturbances in the flow field. This
effect is strongly dependent on the Reynolds number, becoming more pronounced as the
Reynolds number decreases. One approach to address this issue involves computing the
displacement thickness of the viscous boundary layer. By incorporating the displacement
thickness into the intake design, the contour can be adjusted accordingly, leading to a
corrected geometry with lower internal and overall contraction ratio. The key objective
is to protect the inviscid core flow from the additional contraction of the boundary layer,
as schematically represented in Fig 3.7. Wie and Mölder [32] implemented this correction
by utilizing the edge pressure distribution from analytical compression flow solutions as
input for a boundary layer code to calculate the displacement thickness. Their numerical
investigations on axisymmetric cases demonstrated that corrected geometries produced
viscous simulations that closely matched analytical predictions. For a classical, non-
truncated contour, they observed an initial expansion near the leading edge due to the
widening of the flow, which further justified the truncation of the leading edge. Smart
[33] utilized a finite difference boundary layer code to incorporate viscous effects under
on-design conditions. In his methodology, the transition from laminar to turbulent flow
was initiated at a predetermined location downstream of the leading edge within the
boundary layer model. Similarly, Matthews and Jones [34] estimated viscous properties
using a turbulent flat plate correlation combined with the reference temperature method
for an axisymmetric spike intake. Their analytical predictions successfully captured in-
take performance, highlighting the necessity of considering isolator skin friction to ensure
agreement between analytical and experimental data.

Figure 3.6: Schematic of classical Busemann flow (top), schematic of viscous effects in uncor-
rected Busemann contour (bottom) [28].
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3.5 – Viscous effects

Figure 3.7: Schematic of classical Busemann flow (top), schematic of viscous effects in corrected
Busemann contour (bottom) [28].
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Chapter 4

Design strategy

4.1 Overview

The objective of this chapter is to present the methodology that has been utilised to
effectively design and analytically predict the performance of a 2D Busemann intake, and
the procedure necessary to obtain a 3D intake, starting from its 2D counterpart.

4.2 Modified Taylor-Maccoll equations

Starting from the Taylor-Maccoll equations introduced in the previous chapter:

dV

dϑ
= −U + a2(U + V cot ϑ)

V 2 − a2 (4.1)

dU

dϑ
= V (4.2)

And the streamline equation:

dr

dϑ
= rU

V
(4.3)

Instead of using velocity components as dependent variables, the equations are reformu-
lated to express the radial and angular Mach number components as dependent variables.
This transformation eliminates the need for explicit reference to the speed of sound and
total conditions. By adopting this approach, boundary conditions—defined in terms of
Mach number components at the upstream and downstream sides of conical shocks—can
be directly applied to the solution of the equations. Additionally, since the total condi-
tions do not influence the Mach number distribution, they do not need to be explicitly
considered. Thus, the Taylor-Maccoll equations have been rewritten in terms of the radial
and angular Mach numbers, denoted as u and v, where u = U

a and v = V
a , with a is the

local speed of sound.
du

dϑ
= v + γ − 1

2 uv
u + v cot ϑ

v2 − 1 (4.4)
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dv

dϑ
= −u +

(︃
1 + γ − 1

2 v2
)︃

u + v cot ϑ

v2 − 1 (4.5)

Equations 4.4 and 4.5 provide valuable physical interpretations when expressed in terms
of the Mach number components u and v. It is important to note that these equations
no longer explicitly include the speed of sound or any total conditions. The streamline
equation becomes:

dr

dθ
= ru

v
(4.6)

The flow Mach number is:
M =

√︁
u2 + v2 (4.7)

The singularity in this form of the Taylor-Maccoll equations arises when v = ±1, where
the term (v2 − 1) in the denominators becomes zero. This singularity occurs when the
angular Mach number component reaches the sonic condition, corresponding to the co-
incidence of a radial and a Mach wave [7]. By formulating the equations without explicit
reference to total conditions or the speed of sound, the application of boundary conditions
becomes more straightforward and computationally efficient.

4.3 Boundary conditions
The computation of Busemann flow and the corresponding streamline geometry is derived
from the Taylor-Maccoll equations (4.4) and (4.5). These equations are numerically
integrated with respect to the radial coordinate r, progressing from the front of the
conical shock toward the freestream. For the integration process, appropriate boundary
conditions must be specified, u2, v2, and θ2. As previously discussed, a fundamental
requirement for the flow entering the combustor is that it remains both parallel to the
freestream and uniform. Consequently, the values of u2, v2, and θ2 must be carefully
selected to satisfy these conditions, ensuring a consistent solution. Given the freestream
Mach number in front of the shock, denoted as M2, and the corresponding aerodynamic
shock angle θ23, the radial and angular Mach number components upstream of the shock
can be expressed as:

u2 = M2 cos θ23 (4.8)
v2 = −M2 sin θ23 (4.9)

From the equation that relates the Mach number, shock angle, and flow deflection across
the shock, the amount of flow deflection can be obtained as:

cot δ23 = tan ϑ23

[︄
(γ + 1) M2

2
2(M2

2 sin2 ϑ23 − 1) − 1
]︄

(4.10)

The angular location of the shock, which is the starting value for the variable of integra-
tions, is:

θ2 = θ23 − δ23 (4.11)
Equations (4.4) (4.5) are then numerically integrated from θ2 to θ1. Since, the value of θ1
is not known a priori, the integration proceeds until the vertical (or cross-stream) Mach
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number, given by (u sin θ +v cos θ) becomes zero, indicating that the freestream has been
reached.

For the numerical integration of the Taylor-Maccoll equations, a MATLAB function
was utilized, specifically ode89, which employs the 8th-9th order Runge-Kutta method.
Although this approach is more computationally expensive, it ensures a highly precise
contour, which is crucial for our design. Even minor errors can significantly impact the
internal flow characteristics, making high accuracy essential.

4.4 Design steps

Figure 4.1: Inviscid performance of Busemann Intake [11].

It is possible to calculate the intake’s efficiency before the integration, using the total
pressure ratio as:

pt3

pt2
=
[︄

(γ + 1)k2

(γ − 1)k2 + 2

]︄ γ
γ−1 [︃ γ + 1

2γk2 − (γ − 1)

]︃ 1
γ−1

(4.12)

And the exit Mach number:

M2
3 = (γ + 1)2M2

2 k2 − 4(k2 − 1)(γk2 + 1)
[2γk2 − (γ − 1)] [(γ − 1)k2 + 2] (4.13)

Where k2 = M2
2 sin2 θ23. By setting a target efficiency, the value of k can be determined

using Eq. (4.12). Subsequently, by specifying the downstream Mach number M3, the
parameter M2 can be computed by inverting Eq. (4.13). Then one obtains:

ϑ23 = sin−1 k

M2
(4.14)

u2 = M2 cos ϑ23 (4.15)
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v2 = −M2 sin ϑ23 (4.16)

Following this, θ23 and δ23 are found using the same approach as before, and the in-
tegration is performed until (u + v cot θ) ≥ 0 . It is important to note that, since the
integration starts from k and M2, it may not yield the exact desired freestream Mach
number, and an iterative adjustment of the input condition pt3

pt2
is required to achieve the

target freestream Mach number.

Figure 4.2: Iteration for achieving the target freestream Mach number value.

4.5 Inflection point

To demonstrate that the Taylor-Maccoll streamline can exhibit points of zero and infinite
curvature, it is essential to derive an equation describing its curvature. The Busemann
streamline contains two points where curvature is zero, one of which plays a crucial role in
the starting of a Busemann-type intake. To determine the flow properties at the inflection
cone, it is necessary to consider the fundamental equation governing the Taylor-Maccoll
streamline:

dr

dθ
= ru

v
(4.17)

Taking another θ-derivative of eq. (4.17) gives:

d2r

dϑ2 = −r
u

v2
dv

dϑ
+ r

v

du

dϑ
+ ru2

v2 (4.18)
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In polar coordinates the curvature of a planar curve is [35]:

D =
(︃

∂δ

∂s

)︃
=

r2 + 2
(︂

dr
dϑ

)︂2
− r d2r

dϑ2

(r2 +
(︂

dr
dϑ

)︂2
)3/2

(4.19)

Eliminating the derivatives of r with (4.17) and (4.18) gives:

D =
r2 + 2( ru

v )2 + r2 u
v2

dv
dϑ − r2du

vdϑ − ( ru
v )2

(r2 + r2u2/v2)3/2 (4.20)

In this expression the derivatives dv/dθ and du/dθ are given by the Taylor-Maccoll Eqs.
(4.1) and (4.2) thus the curvature can be written as:

D = uv(u + v cot ϑ)
r(v2 − 1)(v2 + u2)3/2 (4.21)

The curvature of the Taylor-Maccoll streamline is derived in terms of polar coordinates
(r, θ) and the radial and angular Mach number components (u, v), based on the above
equation. Analysing Eq. (4.21) reveals several significant characteristics regarding the
curvature of the T-M streamline:

• The parameter D is inversely proportional to r, meaning that as r → 0, D → ∞.
This implies that streamlines near the origin of T-M flows exhibit high curvature.
This high curvature is a necessary condition for flow over a cone, as the flow deflec-
tion induced by the conical shock alone is insufficient to align the flow tangentially
to the cone surface. As a result, the flow near the tip, just downstream of the conical
shock, must rapidly adjust to the inclination imposed by the cone. It is important
to note that, in terms of gradients of dependent variables (such as streamline curva-
ture), conical flow is not fully conically symmetric (i.e., independent of r) because
curvature varies inversely proportional to r. This dependence extends to other flow
property gradients as well.

• When v = 0, the Taylor-Maccoll (T-M) streamlines exhibit an asymptotic behaviour
where D = 0. In the case of flow over a cone, the velocity component v is zero at
the cone surface, confirming that the streamlines asymptotically approach the cone
surface. However, a Busemann flow does not exhibit an asymptotic condition where
v = 0 or u = 0.

• When u = 0, the curvature D also becomes zero, indicating the presence of an
inflection point along the streamline, where the radial Mach number vanishes. In
flow over a cone, the condition u = 0 does not occur, meaning the streamlines remain
consistently curved in a monotonically positive manner. However, in Busemann
flow, there exists a specific location, denoted as θ0, where the streamline curvature
transitions from concave (toward the axis) to convex. The numerical integration of
the Taylor-Maccoll equations has shown that this transition point θ0 always falls
within the interval θ2 to θ/2, slightly upstream of the Busemann shock. Each
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Busemann streamline contains an inflection point and these points form a conical
surface. At this angular position, the flow is everywhere normal to the inflected flow
cone surface, allowing a conical normal shock to form at this location since the flow
remains supersonic. The flow immediately downstream of the conical normal shock
is inclined toward the axis. The intake would start spontaneously if the contraction
downstream of the conical normal shock surface does not lead to choking, because
then the shock would move downstream.. This feature has not been appreciated
for Busemann flow [36]. The phenomenon serves as a conical and axisymmetric
realization of the Kantrowitz criterion for one-dimensional flow starting. It follows
the same principle: flow choking downstream of a normal shock, except in this case,
the normal shock adopts a conical shape. The presence of a normal shock at the
inflection point, combined with a choked exit, aligns with the Kantrowitz criterion
for flow starting in the internal contraction downstream of the inflection [11].

• An inflection point also occurs when (u + v cot θ) = 0. This term represents the
Mach number component normal to the flow axis, which becomes zero exclusively
in Busemann flow, precisely where it joins the freestream. Consequently, the lead-
ing edge of Busemann flow exhibits both zero deflection and zero curvature. As
previously discussed, this implies that the leading-edge wave is neither compressive
nor expansive but instead behaves as a simple Mach wave. Since the incoming
freestream flow experiences no deflection or curvature at the Busemann leading
edge, a hypersonic air intake based on Busemann flow is inherently ineffective in
generating compression at its leading edge.

• The case where v → ±1 then D → ∞ is not of interest when dealing with Busemann
flow because it does not exhibit such a limit line.

• In the denominator of eq. (4.21), the quantity (v2 +u2)3/2 is just M3. It is always a
positive quantity for all flow conditions and does not significantly influence D, apart
from causing streamlines to gradually lose their curvature at hypersonic speeds.

The inflection point was identified as a key characteristic of the Busemann flow. Further-
more, it is of significant importance in the context of intake starting, as the ray extending
from the origin to the surface is perpendicular to the surface at this point. Additionally,
a conical normal shock may form at the inflection point.

4.6 Leading edge truncation

In the case of a classical Busemann intake, both weight and friction drag are higher, which,
in a comprehensive analysis, may decrease the advantages of isentropic compression com-
pared to a truncated intake. As a result, Busemann intakes are typically truncated. In
the present study, truncation of the leading edge has been considered as an independent
design parameter. The gradual deflection from the streamwise direction, necessary at the
leading edge to achieve isentropic compression, presents a critical constraint for two main
reasons:
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• The overall geometry becomes excessively long.

• The sharpness of the leading edge or the minimum wall thickness is constrained by
manufacturing limitations.

The angle between the free-stream velocity vector and the local velocity vector is called
the truncation angle, δ. In a classical, fully enclosed Busemann intake, the Taylor-Maccoll
equations must be numerically integrated until the total velocity matches the free-stream
velocity, i.e., δ = 0. For a truncated configuration, however, the integration is carried
out until δ reaches the specified truncation angle. Truncation angles in the range of
approximately δ = 2° to δ = 5° are sufficiently large to accommodate manufacturing
constraints while significantly reducing the intake length. As a result of truncation,
the leading edge is no longer parallel to the freestream, creating a sharp corner that
generates an oblique shock propagating downstream toward the centerline. However, this
oblique shock alters the isentropic compression characteristic of the classical Busemann
flow. Additionally, the bow shock wave undergoes reflection from the symmetry line
at a location beyond the theoretical focal point of the classical Busemann intake. As
the bow shock approaches the symmetry axis, its slope becomes progressively steeper,
ultimately forming a standing normal shock wave near the symmetry axis [37]. Notably,
for typical truncation angles investigated (δ ≤ 6°), the radial extent of this normal shock
remains minimal. The subsequent reflection of the shock from the symmetry line then
propagates through the inlet-throat plane, below the inlet shoulder of the ideal Busemann
intake. The introduction of additional non-ideal effects, such as leading-edge blunting
and viscosity, induces a shift in the bow shock location in the opposite direction to that
caused by truncation. These effects lead to the upstream displacement of the bow shock
within the inlet. The influence of viscosity further contributes to this upstream shift by
increasing the inlet contraction due to displacement thickness. Moreover, the computed
static pressure ratio at the intake exit, and consequently the static temperature ratio, does
not necessarily align with the intended design values. In a numerical study conducted by
Zhao and Song [31], the impact of truncation in inviscid flow was analyzed for truncation
angles of up to δ = 6°. Their findings indicated that a stronger oblique shock is generated
at the leading edge, increasingly distorting the flow field as the truncation angle grows.
Additionally, intake efficiency was observed to decrease with increasing truncation angles.
The Busemann intake truncation consists of neglecting the initial part of the geometry,
that contracts, even if moderately, the flow; thus, the resulting truncated geometry won’t
match the desidered exit pressure, resulting in a flow field having a lower pressure ratio
between the inlet and the outlet. Iteration over the initial values that define the geometry
is made in order to circumvent this inconvenient. This translates into considering the
initial input data:

• Free stream Mach number

• Exit Mach number

• Truncation angle
Is considered a first guess of efficiency value and, from eqs. (4.12) and (4.13) we obtain the
initial values of u2, v2 and θ2. The integration can now proceed until the angle between
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the total velocity and the freestream reaches the specified truncation angle δ. The total
velocity computed at this point corresponds to the flow immediately downstream of the
oblique shock wave. To verify whether it matches the desired freestream velocity, the
oblique shock relations are applied as follows.

Figure 4.3: Supersonic flow over a wedge [28].

As illustrated in Fig. 4.3, given the desired freestream Mach number M∞ an the
truncation angle δ, the shockwave angle θs can be calculated by inverting

cot δ = tan ϑs

[︄
(γ + 1)M2

∞
2(M2

∞ sin2 ϑs − 1) − 1
]︄

(4.22)

Now It is possible to determine the Mach number behind the oblique shock M1

M2
1 sin2(ϑs − δ) = (γ − 1)M2

∞ sin2 ϑs + 2
2γM2

∞ sin2 ϑs − (γ − 1) (4.23)

The total velocity, and consequently the Mach number, can be determined using the
following relation

a =
√︁

γRT (4.24)

with a the speed of sound [m/s], R the universal gas constant [J/kgK] and T the tem-
perature [K], and

M = u

a
(4.25)

obtained from the integration of the Taylor-Maccoll equations is compared with M1 and
an iterative process is conducted on the intake efficiency until convergence is achieved.
Additionally, by applying the oblique shock relations, the static pressure ratio, static
temperature ratio, and total pressure ratio across the shock can be determined.

P1
P∞

= 2γM2
∞ sin2 ϑs − (γ − 1)

γ + 1 (4.26)
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T1
T∞

=
[︁
2γM2

∞ sin2 ϑs − (γ − 1)
]︁ [︁

(γ − 1)M2
∞ sin2 ϑs + 2

]︁
(γ + 1)2M2

∞ sin2 ϑs
(4.27)

Pt1
Pt∞

=
[︄

(γ + 1)M2
∞ sin2 ϑs

(γ − 1)M2
∞ sin2 ϑs + 2

]︄ γ
γ−1 [︃ γ + 1

2γM2
∞ sin2 ϑs − (γ − 1)

]︃ 1
γ−1

(4.28)

4.7 Viscous effects

Figure 4.4: Comparison of inviscid and viscous surface static pressure in the uncorrected inlet
[38].

The higher the efficiency of the intake, the longer and more slender its design tends to
be, which in turn increases the surface area and shear stress near the leading edge. As a
consequence, viscous losses become significantly higher. Moreover, due to the extended
surface length, a thick boundary layer forms at the intake exit, increasing the risk of
boundary layer separation and associated efficiency losses. The boundary layer develop-
ment displaces the flow, causing the conical shock’s focal point to shift upstream. As
the shock propagates downstream, it reflects off the axis of symmetry and subsequently
impinges on the intake surface ahead of the corner. Additionally, the presence of the
boundary layer induces an overcompression of the internal flow, as it effectively reduces
the available flow area by an amount corresponding to the boundary layer displacement
thickness. This reduction leads to a higher pressure peak compared to the ideal case,
further impacting the intake’s performance, as shown in Fig. 4.4. To restore the inviscid
flow topology and maintain the intended pressure distribution, the intake geometry must
be adjusted to account for the boundary layer displacement thickness [38]. Therefore,
accurately determining this thickness is crucial for a reliable assessment of intake perfor-
mance. The complex interactions between shock waves and the boundary layer over the
curved surfaces of Busemann intakes pose significant challenges in precisely identifying
the boundary layer edge [39]. Typically, viscous corrections are applied only once to
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obtain the final intake geometry. However, studies [40] have emphasized the importance
of iterative corrections, where the displacement thickness is continuously updated to en-
hance accuracy. To account for viscous effects, the boundary layer displacement thickness
is added to the inviscid contour, thereby widening the intake geometry and compensating
for the additional contraction caused by the viscous boundary layer, as displayed in Fig
4.5.

Figure 4.5: Comparison of inviscid and corrected internal profiles [38].

4.8 Startability of the Busemann intake

According to the Kantrowitz criterion for intake starting [26], the duct flow starts if the
normal shock, initially positioned ahead of the intake, moves downstream and eventually
exits the duct if the duct itself isn’t chocked. It is important to note that this criterion
must be valid for the normal shock throughout the entire duct length. The intake will
successfully start if the shock at the inflection point continues propagating downstream
and exits through the internal flow section, thereby satisfying the Kantrowitz condition.
The entry area of the internal flow is defined by the conical surface at the inflection
point, where the flow is perpendicular to the surface itself. At this location, a stationary,
conical, and normal shock is consistent with the flow conditions. From a Busemann intake
analysis, it is possible to determine the size of this entry area. To apply the Kantrowitz
starting criterion, the precise value of this area must be computed.

4.8.1 Weak shock configuration

It is important to note that eq. (4.10) gives two solutions for given M2 and δ2: a weak
and a strong shock. This result indicates that two distinct Busemann intakes can be
generated, differing in the velocity of the exit flow. In the weak shock configuration, the
exit flow remains supersonic, whereas in the strong shock configuration, it becomes sub-
sonic. Due to its supersonic exit flow, the weak shock intake is more suitable for scramjet
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applications. However, in such applications, the high level of flow contraction required
makes it challenging for a Busemann intake with a weak shock to start spontaneously. To
determine the startability of a wavecatcher Busemann intake, the following approach is
adopted. First, a Busemann intake designed with a weak shock configuration is analyzed
to evaluate whether it provides an adequate level of compression or not:

• With the weak shock angle specified, the integration of the Taylor-Maccoll equations
begins using the initial values of M3 and r.

• The integration proceeds until the inflection point is reached, where u = 0.

• The conical surface area at the inflection point is then calculated.

• The Kantrowitz criterion is applied at both the intake exit and the inflection point
to determine whether the internal flow passage will start.

• If the intake successfully starts, the integration continues to determine the freestream
Mach number M∞ along with other performance parameters.

Figure 4.6: Busemann intake startability based on weak shock design: green—full Busemann
start; green and yellow—wavecatcher start with spillage; and red—no start [11].

Numerous calculations were conducted, beginning with weak shock waves, and the results
were represented on a graph plotting the area ratio A3/A1 against the entry Mach number,
in Fig. 4.6. Each result is represented as a dot, with its color indicating the intake’s
startability. Green dots mean that the fully internal Busemann intake successfully starts,
while yellow dots indicate that the wavecatcher Busemann intake module starts, (as
determined by the fourth point above), and red dots represent cases where starting does
not occur. Curves representing the "startability index" S = A1−Ai

Ak−Ai
illustrate the position

of each dot on the overall area ratio scale. Here, S = 0 corresponds to the isentropic
limit, while S = 1 aligns with the Kantrowitz criterion, with intermediate fractional
values forming curves between these boundaries. The curve for S = 0.6 appears to
effectively define the startability limit for wavecatcher Busemann intake designs based
on the weak shock condition. As shown in the figure 4.6, the wavecatcher design reduces
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the startable area ratio from approximately 0.6 to 0.4. However, this reduction remains
insufficient for optimal performance. For efficient engine operation, it is preferable for
intakes to function near the S = 0.1 curve in Figure 4.6. Unfortunately, weak shock
Busemann intake designs that are capable of starting do not achieve the necessary level
of contraction.

4.8.2 Strong shock configuration

Figure 4.7: Busemann intake startability based on strong shock design: green—full Busemann
start; green and yellow—wavecatcher start with spillage; and red—no start [11].

By following the previous steps, a strong-shock Busemann intake can be designed through
the integration of the Taylor-Maccoll equations. The results are illustrated in Figure
4.7, where each outcome is represented as a dot: green indicates that the fully internal
Busemann intake starts, yellow if the wavecatcher Busemann intake module starts (as
determined in step fourth), while red denotes cases where the intake does not start. The
strong shock configuration features a high overall contraction ratio but a low internal con-
traction, meaning that while it can start spontaneously at contraction levels suitable for
scramjet applications as a wavecatcher, the presence of a strong shock and subsonic exit
flow makes it unsuitable for a scramjet combustor. In a wavecatcher module, the strong
shock near the start condition can be stabilized by applying appropriate backpressure.
If the backpressure is reduced, the strong shock moves downstream and is replaced by a
weak shock structure. This approach opens new possibilities: a Busemann intake module
with a strong shock can be designed to start spontaneously at a high overall contraction
ratio. Then, by lowering the backpressure, the strong shock can be eliminated, result-
ing in a supersonic exit flow with a weak shock structure, making the flow field suitable
for scramjet operation. Notably, in this transition, the upstream flow—extending from
the freestream to the strong shock location—remains unchanged, allowing the intake to
function under the strong shock design flow up to the corner while ensuring successful
starting. Since the internal contraction remains constant, it is theoretically possible to
start the intake using the weak shock configuration from the outset. Thus, the strong
shock Busemann shape serves as a design tool that enables a modified Busemann in-
take to achieve high compression and efficiency while maintaining a supersonic exit Mach
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number. This intake configuration retains a high overall contraction ratio but features a
low internal contraction that allows for spontaneous starting. The resulting supersonic
exit flow is no longer conical, though it preserves axial symmetry.

Figure 4.8: Comparison of weak and strong shock design [18].

Compared to the weak shock case (Figure 4.6), the strong shock design significantly
improves startability, as reflected in the expanded yellow region, allowing starting con-
ditions closer to the S = 0.1 curve, which is acceptable for scramjet applications. This
improvement arises because, in the strong shock configuration, the angular separation
between the strong shock (located at the corner) and the inflection cone is small Fig. 4.8,
leading to similar values for the areas Af and A3, meaning that internal contraction is
minimal. As a result, the conical normal shock at the inflection location can be more
easily ingested. The goal of the strong shock design is to produce a wavecatcher Buse-
mann intake that features a high overall contraction ratio with low internal contraction
while ensuring spontaneous startability. The calculated intake geometry is compatible
with a normal conical shock positioned at the inflection point, allowing for a selection of
configurations where the internal contraction enables shock ingestion.

4.9 3D intake design methodology

Figure 4.9: Schematic of streamline tracing with elliptical intake contour inside compression
flow field [28].
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Considering an axisymmetric streamtube, the fundamental Busemann flow is confined
within it. However, its axisymmetric shape may not be easily integrated into the overall
aircraft structure. Consequently, modifications to its cross-sectional shape are required.
By tracing the streamlines of the Busemann flow, these modifications can be carried
out while preserving the flow characteristics. This process involves assembling scaled
Busemann streamlines to construct the intake’s module wall surfaces.

The wavecatching technique is based on generating flow path surfaces that deviate
from the classic axisymmetric Busemann flow surface. The procedure begins by selecting
the desired Busemann flow and determining its streamline profile, r = f(θ), as shown
in Figure 4.9. The intake surfaces are then created by assembling adjacent Busemann
streamlines, defined as r̄ = y(ϕ)f(θ), where r is the radial coordinate along the streamline,
y(ϕ) is a scaling factor that varies between streamlines, and f(θ) represents the Busemann
streamline shape [33].

The scaling factor quantifies the distance of a streamline from the axis of symmetry.
The parameter ϕ uniquely identifies each streamline based on its position along the cross-
sectional perimeter relative to the axis of symmetry. The scaling factor y(ϕ) is defined
as the ratio between ϕ and the exit radius r of the original compression flow field. The
angle τ is defined as the angle between the z-axis and the line connecting the symmetry
axis to a given point on the cross-sectional perimeter. The Cartesian coordinates of the
points defining the surface of the streamline-traced Busemann intake are then computed
accordingly:

x = r̄ cos(θ) y = r̄ sin(θ) cos(τ) z = r̄ sin(θ) sin(τ) (4.29)

To simplify all this process, it was automated in MATLAB, where each streamline was
saved as a separate .txt file and organized into a folder. Subsequently, a SolidWorks
macro was developed to import each streamline as a curve. This automation enables the
creation of a lofted surface and the generation of the 3D geometry, as illustrated in the
figures 4.10 below.

Figure 4.10: Streamline traced Busemann Intake designed for M∞ = 5, Mexit = 3, δ = 5◦, with
flate plate.
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4.10 CFD

Once the designed geometries were generated using the MATLAB code, a Computational
Fluid Dynamics (CFD) analysis was conducted to verify their consistency with analyt-
ical predictions and to assess the impact of applied corrections. Additionally, multiple
simulations were performed to gain a deeper understanding of how various design choices
influence flow development.

4.10.1 Mesh

For the numerical simulations, meshes were generated using the Ansys software package,
specifically Workbench for the 2D cases and Fluent Meshing for the 3D cases. Since the
3D design is significantly more complex than the 2D ones, Fluent Meshing was preferred
to ensure a higher-quality mesh. For the 2D cases, after conducting multiple simula-
tions, a structured mesh was adopted for both inviscid and viscous cases. A structured
mesh was chosen because it facilitates more accurate data extraction for calculating the
boundary layer displacement thickness while also reducing computational costs of the
mesh generation as the number of elements increases in the study. An example of the 2D
mesh is shown in Figs. 4.11(a), 4.11(b). For the 3D mesh, refer to Section 5.2.1.

((a)) A uniform Structured Mesh for the inviscid
case.

((b)) A structured mesh for the viscous case, with
a bias factor applied to ensure that the first layer
thickness is approximately 1 × 10−4m, thereby
achieving y+ < 1.

4.10.2 Ansys Fluent

ANSYS Fluent was employed to solve the Reynolds-Averaged Navier-Stokes (RANS)
equations. As a finite volume solver, Fluent was used with implicit time stepping in this
study. The software also allows for domain parallelization across multiple cores, signifi-
cantly improving computational efficiency—especially for the 3D case, which involves a
higher number of elements and, consequently, greater computational cost.
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For the viscous simulations, the Shear Stress Transport (SST) k −ω turbulence model
was utilized, as it has been shown to accurately predict hypersonic intake flow fields [41].

To further reduce computational time, only half of the geometry was analyzed for the
2D case, applying an axisymmetric boundary condition along the x-axis. The remaining
boundary conditions were applied as shown in Fig. 4.12.

Figure 4.12: Boundary Conditions.
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Chapter 5

Results and analysis

5.1 2D Analysis
This chapter presents the implementation of the intake design, as introduced in Chapter
4. The discussion begins with the output from the MATLAB design code (Section 4.4),
and continues with the analysis of two-dimensional simulations. This is followed by a
three-dimensional study conducted under both on-design and off-design conditions for
multiple intake configurations.

5.1.1 Design code

In the MATLAB code presented in Section 4.4, the design parameters chosen for solving
the Taylor-Maccoll equations are the upstream Mach number M1, the downstream Mach
number M2, and the radius at the entrance of the combustion chamber r. Given these
parameters, the code determines the optimal contour for maximum efficiency.

Since the equations solved are inviscid, the pressure and temperature distributions
remain unchanged for different imposed values of r. Consequently, the intake length is
dimensionalized by r to express the length ratio, providing a more generalized represen-
tation of the intake geometry.

Figure 5.1: Busemann Intake for different M3 value, 2.5, 3, 3.5 respectively.

Figure 5.1 illustrates a series of Busemann intake contour designs obtained by varying
the downstream Mach number M3, while keeping the upstream Mach number fixed at
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M1 = 5. The figure shows the resulting intake contours corresponding to different input
parameters, highlighting the position of the conical shock and the inflection point. The
characteristics and implications of the inflection point are discussed in greater detail in
Section 4.5.

As expected, a lower M3 requires a longer compression surface to gradually deceler-
ate the flow through isentropic compression, whereas a higher M3 results in a shorter
compression surface.

This behaviour can be explained by considering that the optimal contour design aims
to achieve maximum efficiency, where the only source of pressure loss is the conical shock
wave. To minimize these losses and maximize efficiency, the intake should be designed
to achieve the lowest possible Mach number ahead of the shock, allowing for maximum
isentropic compression before the shock interaction. Since lower Mach numbers ahead of
the shock, correspond to reduced pressure losses, an intake designed to pre-compress the
flow to a lower Mach number before the shock will experience higher efficiency compared
to a configuration where the flow remains at higher Mach numbers, leading to greater
pressure losses.

Figure 5.2: Intake length, pressure and temperature ratio and efficiency as a function of down-
stream Mach number M3, with a constant upstream Mach number M1 = 5.

M3 Pt3/Pt1 L/h A3/A1 Si

2.5 0.9791 17.9492 0.1077 0.25098
2.75 0.9864 16.5612 0.1354 0.42758
3 0.9916 15.3048 0.1708 0.51832
3.25 0.9952 14.1895 0.2158 0.6191
3.5 0.9975 13.2129 0.2723 0.72973

Table 5.1: Different M3 design properties for the same Mach flight M∞ = 5.

In Fig. 5.2, the intake length, efficiency, pressure ratio, and temperature ratio are
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plotted as functions of the downstream Mach number, M3, for a constant upstream Mach
number, M1 = 5. As previously discussed, evaluating the variation of intake length with
respect to M3 becomes more intuitive in this representation. A lower M3 results in a longer
intake, whereas a higher M3 corresponds to a shorter intake. Additionally, the figure
illustrates how thermodynamic properties, such as pressure ratio, temperature ratio, and
efficiency, are influenced by this parameter. A lower M3 requires the intake to decelerate
the airflow more significantly compared to a higher M3, leading to an increase in pressure
and temperature ratios while reducing efficiency due to the stronger shock interactions
needed to slow down the incoming flow. Furthermore, the intake demonstrates high
compression efficiency due to its specific design, with a minimum efficiency of 0.9791
observed in the most compressed case.

Additionally, Table 5.1 presents numerical values for five different designs. The table
also includes the Startability Index Si, introduced in Section 4.8, which quantifies "how
good is an intake to start". Specifically, values close to 0 indicate a design approaching
the isentropic curve, making it more difficult to start, whereas values close to 1 corre-
spond to a design closer to the Kantrowitz curve, facilitating easier starting. The table
demonstrates that increased fluid compression corresponds to a lower Si value, indicating
that higher compression comes at the cost of a more challenging intake start, whereas a
less compressed design facilitates easier starting.
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5.1.2 Mesh convergence study

To validate the numerical simulation of the designed intake against the MATLAB-based
predictions, a mesh convergence study is conducted for the 2D geometry. This analysis
determines the minimum element size and the corresponding maximum number of ele-
ments beyond which the numerical results remain unaffected by discretization errors. For
the numerical setup, the selected design parameters are M1 = 5, M3 = 2.5 and an exit
radius of r = 0.1m. The ambient conditions correspond to an altitude of 25 km, with an
ambient pressure of 2511 Pa and a temperature of 221.55 K.

A mesh convergence study was conducted using ten different mesh configurations,
varying the element size until the results became independent of the mesh resolution,
as shown in Table 5.2. A comparison of the finest and coarsest mesh configurations is
presented in Figure 5.3. A structured mesh was selected due to its ability to enable
faster mesh generation compared to an unstructured mesh for the same element size.
Additionally, the structured configuration offers reduced computational cost and faster
simulation time. Moreover, as it will be described later in Section 5.1.4, a structured mesh
provides greater reliability in extracting data from the viscous simulation, particularly
for calculating the boundary layer thickness.

Figure 5.3: Comparison of the coarsest and finest mesh configurations, shown on the left and
right, respectively.

Figure 5.4: Mesh convergence study: Plot of pressure, Mach number, and efficiency at the outlet
with different mesh resolutions.
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Mesh Element Size [m] Mesh Elements Pressure Mach Efficiency

Mesh 1 0.002 70547 76070.4 2.50314 0.97672
Mesh 2 0.001 283610 75984.9 2.50375 0.977931
Mesh 3 0.0009 348950 75977.1 2.5038 0.978053
Mesh 4 0.0008 442968 75969.7 2.50385 0.978178
Mesh 5 0.0007 579464 75962.5 2.50391 0.978304
Mesh 6 0.0006 780912 75956.4 2.50395 0.97842
Mesh 7 0.0005 1112900 75951 2.50400 0.978537
Mesh 8 0.0004 1771180 75946.4 2.50404 0.978671
Mesh 9 0.0003 3123914 75944.5 2.50409 0.9788
Mesh 10 0.0002 4487500 75943.4 2.50409 0.978789

Table 5.2: Mesh convergence study: variation of pressure, Mach number, and efficiency at the
outlet with different mesh resolutions.

Analyzing Table 5.2 and Figure 5.4, a clear grid asymptote is observed. In particular,
to optimize computational cost, Mesh 8 appears to be the most suitable choice, providing
a balance between computational efficiency and result accuracy. Furthermore, the simula-
tion results demonstrate strong agreement with the MATLAB-based design calculations.
Specifically, for this intake configuration, the MATLAB code predicted an efficiency of
0.9791, while the asymptotic efficiency obtained from the simulations is approximately
0.9788, corresponding to a percentage variation of only 0.3%. Additionally, the outlet
Mach number obtained from the simulations is consistent with the imposed design value
of 2.5, further confirming the accuracy of the numerical approach. Furthermore, although
the percentage difference, as shown in Fig. 5.4 and Table 5.2, does not differ significantly
between the finest and coarsest meshes, it is evident from Figs. 5.5, 5.6, and 5.7 that
the finest mesh captures the shock wave better, which is more defined at the origin (0,0).
Additionally, as it will be discussed in more details in Section 5.1.3, a sufficiently refined
mesh is crucial for resolving flow phenomena that would otherwise not be captured with
a coarser mesh.

Figure 5.5: Mach Number and Pressure contour for the coarsest and finest mesh configuration.
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Figure 5.6: Mesh convergence study: Plot of mach distribution at the wall, axis and at the
outlet.

Figure 5.7: Mesh convergence study: Plot of pressure distribution at the wall, axis and at the
outlet.

For the simulation in Fig. 5.8, a steady flight condition at Mach 5 and an altitude of
25 km is considered. This simulation will validate the predictions made by the MATLAB
code design regarding variations in the downstream Mach number M3. In particular, it
will highlight the differences in the design with respect to the highly compressed case
with M3, illustrating the differences in length and area ratios.

Figure 5.8: Comparison of different M3 design.
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M3 Pt3/Pt1 P3/P∞
Design Simulation ∆[%] Design Simulation ∆[%] Design Simulation ∆[%]

2.5 2.5018 +0.072 0.9791 0.9741 -0.5107 30.3206 30.3650 +0.1462
3.0 3.0032 +0.107 0.9916 0.9911 -0.0504 14.2828 14.2564 -0.1848
3.5 3.5026 +0.074 0.9975 0.9972 -0.0300 6.9196 6.9103 -0.1344

Table 5.3: Comparison of different M3 design properties obtained from the MATLAB code and
the simulation for a flight Mach number of M∞ = 5.

As shown in Table 5.3, the results obtained from the inviscid simulations are close to
those computed with the design MATLAB code, thereby validating the accuracy of the
design methodology.
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5.1.3 Effect of Contour Truncation on Intake Performance

As discussed in Chapter 3, one of the main challenges associated with this type of intake
is its considerable length, which is required to obtain an initial isentropic compression.
However, excessive length increases viscous losses due to the larger wetted surface area
available for boundary layer development. The Design Methodology employs the Taylor-
Maccoll equation and terminates the integration when the imposed freestream condi-
tions M∞ are reached, ensuring that the final streamline is horizontally tangent to the
freestream. Given this horizontal tangency condition, a significant portion of the leading
edge may be excluded from the initial isentropic compression. This truncation results in
both a reduction in weight—since a portion of the intake is removed—and a decrease in
viscous losses due to the smaller surface area available for boundary layer growth.

Figure 5.9: Influence of the truncation angle on the geometric length of the Busemann-designed
intake.

Figure 5.9 illustrates the effect of terminating the integration process early by impos-
ing a truncation angle δ > 0 on the intake contour.

When a portion of the intake is truncated, a shock wave is generated at the leading
edge and propagates toward the symmetry axis. Through this shock wave, the pressure
increases, partially recovering the compression lost due to the truncation of the lead-
ing edge. As the truncation angle δ increases, the amplitude of the leading-edge shock
wave also increases, distorting the compression flow field. This results in deviations in
the computed pressure, temperature, and Mach number at the outlet compared to the
analytically predicted values.

The internal conical flow causes the leading-edge shock wave to bend, disrupting
the isentropic compression characteristic of the classical Busemann flow and leading to
a nonuniform flow at the intake exit [37]. Ogawa and Mölder [42] analyzed the over-
all performance of shortened Busemann intakes, highlighting the transition in the shock
reflection mode at the symmetry axis. Theoretically, regular shock reflection is not per-
missible at the centerline [43], leading to the formation of a small Mach disk that enables
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shock reflection. This, in turn, generates a triple point where the incident shock wave,
Mach disk, and reflected shock intersect, as it can be seen in Fig. 5.10.

As the truncation angle increases, the oblique shock wave angle also increases, inten-
sifying the shock strength. Consequently, a stronger normal shock forms at the symmetry
axis, exhibiting greater amplitude [37].

Figure 5.10: Flow field and shock structure in a truncated viscous Busemann intake [28].

Figure 5.11: Flow-field solution with truncated geometry, without mesh adaption.

Figure 5.11 shows a converged steady-state solution for a downstream Mach number
of M3 = 3 and a truncation angle of δ = 5◦. As it has been observed from the mesh
convergence study in Section 5.1.2, insufficient mesh refinement can lead to the inability to
capture certain flow phenomena. In particular, in Figure 5.11, where a higher truncation
angle (5◦) had been used, the triple point observed in Figure 5.10 should be visible.
However, in this case, the mesh resolution was not fine enough to accurately resolve this
phenomenon.

To address this limitation, a mesh adaptation criterion was employed to refine the
mesh in regions of shock waves. This refinement was performed using a mesh adaptation
algorithm based on the pressure gradient. Figure 5.12 shows how this adaptation pro-
cess evolved over the most significant iterations, showing both the changes in the mesh

81



Results and analysis

structure and the corresponding improvements in the flow-field solution. As the mesh is
refined using the pressure gradient-based algorithm, the refinement occurs in correspon-
dence with the Mach disk, enhancing the resolution of the oblique shock wave generated
by the truncated geometry, the reflected shock, and the slip layer.

Each mesh refinement step was performed at intervals of 1000 iterations, allowing
sufficient time for the flow-field to adapt to the newly refined mesh and for the solution to
reach convergence. Trial runs with smaller interval values resulted in inaccurate solutions,
as the flow-field did not have enough time to evolve properly. This led to refinements
in incorrect mesh regions and, consequently, a lack of convergence at each adaptation
interval.

The selection of an appropriate mesh adaptation interval must balance computational
cost and solution accuracy. Increasing the intervals allows longer time for the solution
to converge, but is more computationally expensive, whereas decreasing the intervals can
result in non-converged solutions. The optimal interval should thus be carefully chosen
based on the specific requirements of the study.

Figure 5.12: Mesh adaption iterations for capturing triple point.

Figure 5.13 presents different truncation angle designs for the same downstream Mach
number M3 = 3, ranging from δ = 1◦ to δ = 5◦ in the top contours of each plot, compared
to the non-truncated configuration shown in the bottom part.

As observed, increasing the truncation angle results in a shorter intake contour, while
the shock wave generated by the truncated leading edge shifts further downstream with
increasing truncation angles relative to the non-truncated configuration. Additionally, the
Mach disk amplitude increases with higher truncation angles, leading to a more disrupted
and non-uniform flow at the outlet.
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Figure 5.13: Flow field development with increasing truncation angle for M3 = 3 design, com-
pared to the non-truncated configuration. .

Figures 5.14 illustrate the normal shock for different truncation angles. It is clear
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that an increase in the truncation angle results in a greater amplitude of the shock
wave. Specifically, a higher truncation angle leads to an increased oblique shock wave
angle, thereby intensifying the shock and resulting in a stronger normal shock along the
symmetry axis [37].

Figure 5.14: Detailed view of the triple point formation as the truncation angle increases.

Figures 5.15 illustrate the pressure and Mach number distributions along the wall
and outlet sections of the intake for various truncation angles. It can be observed that
the shock wave generated by truncating the leading edge partially compensates for the
loss of initial compression but introduces additional total pressure losses. Furthermore,
as depicted in Figures 5.13, increasing the truncation angle causes the conical shock
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wave to shift downward. Consequently, the shock is no longer directly captured in the
wall distribution plots due to this downward displacement. The absence of direct shock
impingement results in higher Mach numbers and lower pressures in the affected regions
of the outlet. Additionally, the Mach number distribution at the outlet confirms the
presence of a stronger normal shock along the centerline and the associated triple-point
structure.

The original MATLAB design methodology did not account for the effects of trunca-
tion. To address this limitation, the corrected Mach number immediately downstream of
the truncated leading edge is calculated using oblique shock relations, assuming a deflec-
tion angle equal to the truncation angle δ. Subsequently, the Taylor–MacColl equations
are integrated from the desired exit Mach number M3 until this corrected initial condition
is achieved.

Figure 5.15: Mach number and pressure distribution along the wall and the outlet of various
truncated geometries.

It has been shown that truncation reduces the overall length of the intake. However,
truncating the intake’s leading edge generates an oblique shock wave, which partially com-
pensates for the lost compression but simultaneously increases total pressure losses. If the
truncation angle is excessively large, the resulting flow field and performance parameters
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deviate significantly from the intended design, negatively impacting intake operation.
A proposed mitigation strategy involves adding a neutral flat plate at the leading

edge. This flat plate maintains the truncation angle relative to the freestream while
moderating the formation of the oblique shock wave. The aim of the neutral flat plate is
to make the shock wave converge at the focal point in order to preserve the desired flow
characteristics at the outlet. Consequently, this approach preserves intake functionality
and reduces performance losses. The required flat plate length depends on the truncation
angle and freestream conditions, following the oblique shock angle relationship given by
the equation:

cot δ = tan θ

[︄
(γ + 1)M2

∞
2(M2

∞ sin2 θ − 1) − 1
]︄

(5.1)

M2
1 sin2(θ − δ) = (γ − 1)M2

∞ sin2 θ + 2
2γM2

∞ sin2 θ − (γ − 1) (5.2)

Figure 5.16: Truncated Busemann Contour with Flat Plate Design.

Figure 5.16 illustrates the modification introduced to the truncated intake design,
which includes the addition of a flat plate maintaining the same truncation angle relative
to the freestream flow. Figure 5.17 compares the length reductions achieved by truncated
designs both with and without the flat plate. It is evident that the flat plate design
results in a smaller length reduction compared to the purely truncated intake. However,
the introduction of the flat plate is primarily justified by the requirement to achieve a
more uniform flow distribution at the intake outlet. This uniformity is crucial because
the airflow subsequently enters the combustion chamber, where uniform flow conditions
significantly enhance combustion performance. Nonetheless, even with the flat plate mod-
ification at a truncation angle of δ = 5◦, a significant length reduction of approximately
22.5% of the original intake length is still achieved.
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Figure 5.17: Comparison of length reduction relative to the original design for the truncated
intake, with and without a flat plate.

Figures 5.18 present a comparison between the Mach number contour plots of the
truncated geometry modified with a flat plate and the original (non-truncated) geometry
for a downstream Mach number of M3 = 3. The addition of the flat plate effectively pre-
vents the focal point of the reflected shock wave from shifting downstream relative to its
original position. Consequently, the triple-point structure is significantly less pronounced
compared to the purely truncated configuration, resulting in improved flow uniformity
at the outlet. Moreover, the reflected shock wave no longer shifts downward but rather
impinges directly upon the wall slightly upstream of the corner, further contributing to
a more favourable outlet flow field.

Figure 5.19: Efficiency, Standard Deviation and Mean Value of Pressure and Mach number for
truncated design with and without flat plate.

Figures 5.19 show the efficiency, standard deviation and mass-weighted average val-
ues of pressure and Mach number at the intake outlet for different truncation angles,
considering both truncated configurations—with and without a flat plate—for the same
downstream design Mach number M3 = 3. These parameters are crucial indicators
for evaluating the flow uniformity at the outlet; notably, a lower standard deviation
corresponds to a more uniform flow. As illustrated in Figures 5.19, the truncated de-
sign equipped with a flat plate exhibits significantly lower standard deviations for both
pressure and Mach number compared to the configuration without the flat plate. This
confirms that the inclusion of a flat plate effectively enhances outlet flow uniformity. Fur-
thermore, it can be observed that the addition of the flat plate increases the available
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Figure 5.18: Flow field development with increasing truncation angle for M3 = 3 design with
flat plate.
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surface area for flow compression. This explains the observed tendency for higher average
pressure and correspondingly lower average Mach number at the outlet compared to the
purely truncated design.

To further assess the performance differences between these two designs, the intake
efficiency is also plotted in Figure 5.19. Once again, the flat plate configuration demon-
strates improved performance by minimizing total pressure losses relative to the truncated
design without this modification. Consequently, incorporating the flat plate represents a
well-justified design choice for achieving better overall intake performance.

Figure 5.20: Mach number and pressure distribution along the wall and the outlet of various
truncated geometries with Flat Plate Design.

For a complete analysis, Figures 5.20 present the pressure and Mach number distri-
butions along the wall and at the outlet for the modified truncated geometry with the
flat plate. As previously discussed, the flat plate configuration allows the shock wave to
impinge directly on the wall, as clearly illustrated in Figures 5.18. This is in contrast
to the purely truncated design shown in Figures 5.15, where the reflected shock wave
does not directly reach the wall. Moreover, the contribution of the initial flat plate sur-
face in compressing the incoming flow is evident and further confirmed by the higher
mass-weighted average pressure values reported in Figures 5.19.

Additionally, from the Mach number distribution plots at the outlet, it can be ob-
served that the triple-point structure is less pronounced compared to the truncated design

89



Results and analysis

without the flat plate. As a consequence, the triple-point phenomenon has a reduced im-
pact on the outlet conditions. The corresponding outlet pressure distribution also reveals
higher pressure ratios, indicative of the reflected shock wave from the wall toward the
outlet.
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5.1.4 Viscous Correction

The theoretical axisymmetric Busemann intake, under inviscid flow conditions, is widely
regarded as an efficient compression system and is frequently used as a reference model
for hypersonic intake studies. In the previous Section, both fully enclosed and truncated
inviscid Busemann intakes were analyzed to assess the influence of truncation angle and
exit Mach number on intake performance. However, for a more accurate representation
of real-world conditions, it is essential to incorporate a viscous correction methodology
to account for boundary layer growth along the intake walls. The primary impact of vis-
cosity is an increase in the intake contraction ratio, leading to a flow field that deviates
significantly from the inviscid case. As a result, pressure rises within the intake, leading
to higher static pressure and temperature at the exit. To apply viscous corrections, the
geometry is extended normal to the surface by the computed boundary layer displace-
ment thickness. Typically, this correction is applied once to obtain the viscous-corrected
geometry. However, due to the complexity of the compression process at high supersonic
speeds, an iterative correction procedure is required for improved accuracy. To validate
the viscous correction procedure, a truncated Busemann contour with a truncation angle
of δ = 5◦ is considered, corresponding to one of the 3D simulation cases. The intake is
designed to capture a uniform freestream flow at Mach 5, with a static pressure of 2511
Pa and a temperature of 221.55 K. The target exit Mach number is M3 = 2.5, with an
exit radius of 1 m. The viscous simulations are conducted using the Shear Stress Trans-
port (SST) k − ω Reynolds-Averaged Navier-Stokes (RANS) model, assuming adiabatic
wall conditions and employing a wall-resolved approach for boundary layer modelling.
The computational domain consists of a structured mesh, as shown in Fig. 5.21, where
a bias factor is applied to increase resolution near the wall, ensuring a minimum cell
thickness of 1×10−5m, to maintain y+ < 1. This meshing strategy is chosen to provide a
structured grid suitable for extracting near-wall data required for computing the bound-
ary layer thickness. Following the viscous simulations, total enthalpy profiles normal to
the wall are extracted to determine the boundary layer displacement thickness, which is
subsequently used to refine the intake geometry.

Figure 5.21: Detail of the structured 2D mesh using Bias Factor for resolving the boundary
layer.
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Figure 5.22: Comparison of inviscid and viscous simulations for the original (left) and final
corrected (right) intake contours.

As shown in Fig. 5.22, the top contour on the left represents the viscous simulation of
the original intake geometry, without any modifications. It is evident that the boundary
layer growth significantly alters the flow field compared to the inviscid case, leading to
increased flow compression due to the thickening boundary layer. Additionally, a strong
Shock Wave–Boundary Layer Interaction (SWBLI) is observed (see Sec. 2.6.2), where the
shock wave induces boundary layer separation, resulting in the formation of a separation
vortex and increased pressure losses.

In contrast, the right side of Fig. 5.22 presents the final iteration of the corrected
viscous contour, which incorporates modifications to account for the boundary layer dis-
placement thickness. The viscous flow field of the corrected contour matches that of the
inviscid configuration, and, importantly, the shock wave no longer induces strong inter-
actions with the boundary layer, thereby preventing the formation of separation vortices.

Figure 5.23: Boundary layer data extraction from the viscid simulation through 200 lines.

To calculate the displacement thickness induced by the boundary layer growth, an
initial set of 200 lines is generated normal to the contour wall (see Fig. 5.23). Along
these lines, the total enthalpy h0, velocity magnitude u, and density ρ are extracted.

To compute the boundary layer edge—and consequently the displacement thick-
ness—a MATLAB script was developed to extract the boundary layer edge from the
total enthalpy distribution. The assumption of adiabatic wall conditions ensures that
total enthalpy gradients are confined within the boundary layer, making total enthalpy a
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reliable indicator for its extent.
The detection algorithm proceeds from the wall outward and finds the boundary layer

edge when the following two conditions are simultaneously satisfied:

• The total enthalpy reaches within 1% of the freestream value;

• The gradient of total enthalpy with respect to the wall-normal distance approaches
zero.

For the second condition, due to the limitations of machine arithmetic (i.e., the ab-
sence of an absolute zero), the total enthalpy gradient is first computed and then nor-
malized by its maximum value—corresponding to the freestream. A threshold criterion
of 1 × 10−3 is applied to identify points where the normalized gradient is effectively zero,
indicating the location of the boundary layer edge.

Figures 5.24 illustrate the velocity and total enthalpy profiles along a representative
wall-normal line. The red dashed line denotes the boundary layer edge as detected by
the MATLAB algorithm described above.

Figure 5.24: Velocity and Total Enthalpy profile and boundary layer edge indicated in red.

Once the boundary layer edge is identified for each extracted wall-normal line, the
displacement thickness δ∗ is computed using the following integral expression:

δ∗ ≡
∫︂ ye

0

(︃
1 − ρu

ρeUe

)︃
dy (5.3)

in which the index e represents quantities evaluated at the boundary layer edge.
After calculating the boundary layer displacement thickness, it is added in the wall-

normal direction to the original inviscid contour to generate the first iteration of the
corrected geometry. This procedure—comprising the extraction of displacement thick-
ness from the viscous simulation and the application of the corresponding geometric
correction—is repeated iteratively until convergence is achieved.
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Figures 5.25 illustrate the computed boundary layer and displacement thickness pro-
files, as well as the resulting first corrected intake contour.

Figure 5.25: Displacement thickness and boundary layer profile (left), and corrected intake
contour accounting for viscous effects (right).

Figure 5.26 shows the evolution of the boundary layer displacement thickness across
successive correction iterations. A significant difference is observed between the displace-
ment thickness obtained in the first iteration and that of the final one, highlighting the
necessity of the iterative procedure.

This iterative correction has a substantial impact on the resulting flow field. In the
first iteration, the viscous simulation is performed using the original inviscid contour. As
shown in Fig. 5.22, this configuration leads to strong shock-wave/boundary-layer inter-
action, resulting in boundary layer separation. In contrast, the final iteration—based on
the corrected contour—preserves the intended inviscid flow field in the viscous simulation,
with no separation occurring.

Figure 5.26: Displacement thickness and corresponding corrected contours over multiple itera-
tions.

Further insights into the effect of the viscous contour correction can be drawn from
the outlet flow parameters reported in Table 5.4. In particular, iteration 0 corresponds
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to the viscous simulation performed on the uncorrected (inviscid) contour. As previously
discussed, in this configuration, the growth of the boundary layer leads to additional flow
compression, resulting in a higher static pressure and a lower Mach number at the outlet
compared to the ideal inviscid solution.

On the other hand, the final iteration—based on the corrected contour—shows a
restored agreement with the inviscid solution: the outlet Mach number is effectively
preserved, and the static pressure closely matches the ideal inviscid result. This confirms
the effectiveness of the correction in compensating for the viscous displacement effects.

Regarding the total pressure efficiency, it is expected that viscous simulations will
not achieve the ideal values of the inviscid case, as the latter is based on the Euler equa-
tions and does not account for viscous losses. Nevertheless, the efficiency obtained in the
final iteration remains relatively high, indicating minimal additional losses. The com-
parison also emphasizes the importance of the iterative correction: in the first iteration,
where strong shock wave–boundary layer interactions and flow separation are present,
the efficiency is lower than in the final, corrected configuration.

Iterations Mach outlet Pressure outlet [Pa] Efficiency

0 (inviscid) 2.504 70547 0.979
0 2.136 107940 0.825
1 2.449 63986 0.875
2 2.449 69915 0.876
3 2.506 69973 0.877

Table 5.4: Impact of contour correction on outlet flow properties: Mach number, static pressure,
and total pressure efficiency.

95



Results and analysis

5.1.5 Unsteady Analysis of Intake Startability

As described in Section 3.3, this class of hypersonic intakes is prone to operate in an
unstarted condition under certain off-design scenarios—a situation that must be avoided
due to the associated performance degradation, reduced mass flow rate, and potential
instability of the overall propulsion system. In practice, the design of a hypersonic vehicle
powered by air-breathing engines presents several challenges, among which the intake
starting problem is one of the most critical. These engines rely on the ability to ingest
large amounts of air and compress it efficiently to high pressures—often up to 30 times the
freestream value. The compressed air is then mixed with fuel in the combustor to increase
its internal energy before being expanded through a nozzle to generate thrust. However,
the process of starting and unstarting an intake is inherently unsteady and complex, often
characterized by localized flow phenomena such as shock-shock interactions, moving shock
waves, contact surfaces, slip lines, and vortex structures. Time-accurate Computational
Fluid Dynamics (CFD) simulations were conducted for studying these transient processes
in detail. In this section, unsteady inviscid simulations were performed to replicate the
dynamic unstarting behavior of a fixed-geometry intake by imposing high temporal and
spatial gradients at the domain boundaries [44]. The goal of this analysis is to investigate
the mechanisms that govern the transition between started and unstarted conditions
and to identify the critical parameters that trigger flow breakdown. This contributes
to a better understanding of the operational robustness of the intake and supports the
development of design strategies to prevent unstart during off-design or transient flight
conditions.

Figure 5.27: Detail of the isentropic limit and Kantrowitz criterion, illustrating the reduction
in freestream Mach number from the on-design condition to the unstart threshold for an intake
with M3 = 3.5 and an area ratio of A∗/A = 0.27.
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Figure 5.28: Detail of intake flow-field On-Design condition initial time t = 0 s.

Figure 5.27 shows the critical area ratio corresponding to the intake presented in
Figure 5.28, along with the objective of the unsteady simulation: to drive the intake into
an unstarted condition by crossing the isentropic limit curve.

In this analysis, the inlet boundary conditions are made time-dependent, and the
freestream Mach number is gradually reduced from M∞ = 5 to M∞ = 2.80. This
approach allows for the investigation of the dynamic behavior of the intake during decel-
eration and the identification of the precise conditions that lead to unstart.

((a)) Detail of the intake flow-field at time
t = 0.0001 s.

((b)) Detail of the intake flow-field at time
t = 0.0043 s.

Figure 5.29: Mach number contour and Schlieren visualization, along with the time history of
the inlet freestream Mach number.

As shown in Figure 5.29(b), the outlet section begins to respond to the changes in inlet
conditions only after approximately t = 0.0043 s. This is evident from both the Mach
number contour and the Schlieren visualization, which reveal the upstream displacement
of the shock system induced by the evolving boundary conditions.
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((a)) Detail of the intake flow-field at time
t = 0.0077 s.

((b)) Detail of the intake flow-field at time
t = 0.0104 s.

Figure 5.30: Mach number contour and Schlieren visualization, along with the time history of
the inlet freestream Mach number.

As shown in Figure 5.30(a), the plot of the Mach number at the inlet section indicates
that the boundary condition has reached its minimum value of M∞ = 2.80.

((a)) Detail of the intake flow-field at time
t = 0.0165 s.

((b)) Detail of the intake flow-field at time
t = 0.0199 s.

Figure 5.31: Mach number contour and Schlieren visualization, along with the time history of
the inlet freestream Mach number.

From Figures 5.30(b), 5.31(a), and 5.31(b), it can be observed that the intake com-
pression system undergoes significant changes, progressively adapting to the upstream
conditions and shifting the shock waves further upstream.
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((a)) Detail of the intake flow-field at time
t = 0.0203 s.

((b)) Detail of the intake flow-field at time
t = 0.0207 s.

Figure 5.32: Mach number contour and Schlieren visualization, along with the time history of
the inlet freestream Mach number.

In Figure 5.32(a), the formation of a normal shock wave is already evident at time t =
0.0203 s. This is clearly shown in the Mach number contour, where the flow downstream
of the shock reaches subsonic values, a characteristic feature of a normal shock.

((a)) Detail of the intake flow-field at time
t = 0.0317 s.

((b)) Detail of the intake flow-field at time
t = 0.0368 s.

Figure 5.33: Mach number contour and Schlieren visualization, along with the time history of
the inlet freestream Mach number.
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((a)) Detail of the intake flow-field at time
t = 0.0408 s.

((b)) Detail of the intake flow-field at time
t = 0.0437 s.

Figure 5.34: Mach number contour and Schlieren visualization, along with the time history of
the inlet freestream Mach number.

Figures 5.32(b), 5.33(a), 5.33(b), 5.34(a), and 5.34(b) show the upstream propagation
of the normal shock wave, ultimately leading to the complete unstart of the intake.

((a)) Detail of the intake flow-field at time
t = 0.0457 s.

((b)) Detail of the intake flow-field at time
t = 0.0485 s.

Figure 5.35: Mach number contour and Schlieren visualization, along with the time history of
the inlet freestream Mach number.

Finally, Figures 5.35(a) and 5.35(b) show that the normal shock wave exits the intake
and stabilizes upstream of the inlet, marking the complete unstart of the intake system
after a total elapsed time of t = 0.0485 s.

A detailed analysis of these time steps reveals that, as the intake adjusts to lower flight
conditions, the oblique shock system evolves and eventually gives rise to a normal shock.
This phenomenon is primarily due to the reduced mass flow rate entering the intake. As
the inflow becomes insufficient to sustain the designed compression system, the normal
shock travels upstream, leading to a breakdown of the compression mechanism.

Such a condition is highly undesirable during flight operation, not only because it
fundamentally disrupts the designed shock structure, but also because it severely limits
the mass flow rate entering the engine, directly reducing the thrust generated by the
propulsion system.
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It is also observed that, at the outlet section, the Mach number reaches sonic condi-
tions (M3 = 1). This behavior results from the imposition of a supersonic outlet boundary
condition, in which no static pressure is prescribed. In supersonic regimes, characteristic
lines and flow information propagate only downstream, preventing any information from
traveling toward the upstream flow. To satisfy this boundary condition, when a subsonic
region is formed downstream of the normal shock, it re-accelerates to sonic conditions at
the outlet (M3 = 1).
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5.2 3D Analysis
After gaining a comprehensive understanding of the 2D Busemann intake—including
the influence of freestream Mach number, truncation angle, and the viscous contour
correction—the focus is shifted to the three-dimensional modeling of the intake geometry,
as described in Section 4.9.

The previous analyses provided a modified 2D contour, which serves as the basis
for constructing the 3D geometry. This is achieved by revolving the 2D profile and
redefining the exit section as an ellipse, rather than maintaining axisymmetry. The
elliptical cross-section was chosen because it integrates more effectively with conventional
airframe geometries and offers practical advantages over a purely axisymmetric design.

In particular, the elliptical outlet section—tangent to the intake’s axis of symme-
try—leads to a 3D streamline-traced geometry that naturally induces flow spillage, thereby
reducing the risk of intake unstart.

The reference design parameters selected for the 3D model include an inlet Mach
number M1 = 5, a downstream Mach number M3 = 3, a truncation angle δ = 5◦, and
an elliptical exit cross-section with an axis ratio of 1:3. The total exit area was set to
4.57m2, to satisfy the airflow requirements of the combustion chamber for adequate thrust
generation. This configuration results in an intake length of approximately 30.26m.

The atmospheric conditions correspond to a flight altitude of 25 km, with a static
pressure of 2511 Pa and a temperature of 221.55 K. The streamlines generated according
to this design were imported into SolidWorks and are shown in Fig. 5.36.

Figure 5.36: 3D Streamline imported in Solidorks for M1 = 5, M3 = 3, δ = 5◦ design.

Only half of the streamlines are imported, as the geometry is symmetric with respect
to the x − z plane. Additionally, due to software constraints, importing only one half
of the streamline set allows for a denser distribution of curves in that region, resulting
in a more accurate and refined design. This is particularly important in hypersonic
applications, where even minor geometric distortions can lead to the formation of shock
waves, significantly affecting intake performance.

A loft surface is then generated from the imported curves. This surface is mirrored to
reconstruct the full geometry, after which a uniform wall thickness of 11.3 mm is added
to create the solid intake body (see Fig. 5.37).

Furthermore, a 4-meter extension is added to the exit section to represent the begin-
ning of the isolator. This extension allows for analysis of boundary layer development in
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the region immediately upstream of the combustor, where flow uniformity is critical for
combustion stability and performance.

Figure 5.37: 3D Intake for M1 = 5, M3 = 3, δ = 5◦ design.

5.2.1 Mesh convergence study

Due to the complexity of the geometry under investigation, a watertight mesh approach
was adopted using Fluent Meshing, available within the ANSYS software suite. This
meshing technique offers improved element quality compared to traditional meshing tools,
for equivalent settings of element size and inflation layers. In particular, the use of poly-
hexcore elements enables both a reduction in the total number of elements and an overall
increase in mesh quality. These characteristics are especially advantageous in complex
geometries such as the present case, as they enhance numerical stability and improve
computational efficiency.

Several mesh configurations were evaluated, and a mesh convergence study was con-
ducted to determine the minimum mesh resolution beyond which the results become
independent of discretization errors introduced by the computational grid. To accurately
resolve the boundary layer, an inflation layer strategy was adopted for all mesh config-
urations. Specifically, the first layer thickness was set to 1 × 10−5m, with a total of
25 inflation layers. This approach ensured adequate near-wall resolution, maintaining
y+ < 1 across the entire wall surface.

Figure 5.38: Details of finest and coarsest mesh.
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In this study, two Body of Influence (BOI) sizing regions were implemented as part
of the meshing strategy, with the goal of refining the mesh only in areas of particular
interest. The first BOI was placed along the isolator region to ensure proper resolution
of the shock wave, while the second was applied in the compression zone of the intake.

Figure 5.38 illustrates both mesh configurations—coarsest and finest. In the finest
mesh (top and bottom left of the first four subfigures), the effect of the two BOIs is clearly
visible in both the cross-sectional and axial views. In particular, the BOI around the
isolator and shock wave region features a finer element sizing, while a similar refinement
is observed in the area corresponding to the second BOI in the compression region.

Conversely, in the coarsest mesh configuration (also shown in Figure 5.38), the element
sizing within the two BOIs is significantly larger, resulting in a mesh where localized
refinement is no longer distinguishable.

To provide a preliminary qualitative comparison between these two mesh configura-
tions, Figure 5.39 presents selected flow variables. In particular, a contour plot of total
pressure is shown at the outlet section—a key metric for evaluating the intake compres-
sion efficiency and estimating pressure losses due to viscous effects. It is evident that the
finer mesh yields a more accurate and less distorted representation of total pressure at
the outlet compared to the coarser mesh.

In addition, Schlieren plots—based on the density gradient and commonly used to
visualize shock waves—demonstrate that the finer mesh is more effective at capturing the
compression field and shock structures with higher fidelity and detail. These visualizations
already offer a clear qualitative distinction between the two mesh resolutions.

Figure 5.39: Coarsest and Finest Mesh comparison.
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Figure 5.40: 3D mesh convergence analysis. Plots of mass flow rate, compression efficiency, and
mass-weighted average of Mach number and static pressure at the outlet as a function of the total
number of mesh elements.

As shown in Fig. 5.40, key parameters such as mass flow rate, compression efficiency,
and the mass-weighted average values of Mach number and static pressure at the outlet
are plotted as functions of the total number of mesh elements.

Although each trend exhibits a clear asymptotic behavior—indicating mesh indepen-
dence—the variations in mass flow rate, Mach number, and static pressure between the
coarsest and finest mesh configurations remain within a maximum deviation of approxi-
mately 2.5%. These small differences are not significant enough to favor one mesh over
another solely based on these parameters.

However, a different conclusion emerges when evaluating compression efficiency. As
illustrated in Fig. 5.39, efficiency is highly sensitive to how accurately the intake com-
pression is resolved. In this case, the discrepancy between the coarsest and finest meshes
exceeds 12%, highlighting a more pronounced dependence on mesh resolution.

Taking all these parameters into account—along with the computational cost associ-
ated with each mesh (see Fig. 5.41)—the fifth mesh configuration, consisting of approxi-
mately 26 million elements, was selected for the remainder of the simulations. This mesh
achieves a good balance between accuracy and efficiency, requiring less than one hour to
reach convergence using 150 computing cores. Since multiple simulations are required
for off-design condition analyses, this configuration represents an optimal compromise
between solution fidelity and computational expense.
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Figure 5.41: Simulation time and total core-hours required to reach convergence for each mesh
configuration.
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5.2.2 On Design Results

Figure 5.42: Mach number contours under on-design flow conditions, displayed at the outlet
section, on a cross-sectional plane, and along the axial symmetry plane. A wall surface plot of y+

values is included to evaluate near-wall mesh quality and boundary layer resolution.

To analyze the on-design performance of the Busemann intake, Figures 5.42 and 5.43 are
examined in detail.

Figure 5.42a shows the Mach number contour at the intake outlet. A noticeable
boundary layer development can be observed, which is more pronounced along the lower
wall than the upper wall. This asymmetry results from the intake geometry, which
features an elliptical upper contour tangent to the axis, creating a notch designed to
promote mass flow spillage and reduce the risk of unstart.

Figures 5.42b and 5.42c present Mach number contours on a transverse plane and the
axial symmetry plane, respectively. These plots highlight the progressive flow compression
induced by the intake geometry. In particular, these Figures show the 3D shock structure
impingement on the wall corner without any evidence of flow separation, as confirmed by
the streamline pattern. Furthermore, the streamline behaviour near the notch indicates
the presence of slight mass flow spillage even under on-design conditions. The shock-
induced flow deflection, combined with the intake geometry, ensures that the flow enters
the isolator nearly parallel to the intake walls.

Figure 5.42d displays the y+ distribution on the internal wall surface of the intake.
The maximum y+ value is approximately 0.6, occurring near the shock impingement and
reflection points, and remains below the critical threshold of y+ < 1, thereby ensuring
accurate resolution of the boundary layer.

Turning to Figure 5.43, the first three subfigures (a–c) illustrate the static pressure
distribution. Figure 5.43a shows the outlet cross-section, where a higher pressure is
observed along the centerline. This corresponds to the region of shock reflection, as seen
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in the transverse section in Figure 5.43b. Figure 5.43c highlights the flow compression
in the symmetry plane, where the initial isentropic compression is followed by a strong
shock generated from the upper notch, which impinges on the lower wall and then reflects
toward the outlet.

Finally, Figure 5.43d presents the total pressure ratio, which serves as a measure of
the intake’s compression efficiency. The most significant losses due to viscous effects
are concentrated along the lower and side walls, where the boundary layer has a longer
development path. In contrast, the upper wall near the notch exhibits smaller losses
due to the reduced surface area available for boundary layer growth. In the central core
region, the total pressure recovery is relatively uniform, with values around 0.96. This
indicates that the dominant losses in this area are attributable to shock waves, confirming
the effectiveness of the shock-based compression system.

Figure 5.43: Pressure contour plots under on-design flow conditions, shown at the outlet section,
on a transverse plane, and along the axial symmetry plane. The total pressure ratio is computed
at the outlet to assess the intake’s compression efficiency.

By examining the mass-weighted average values reported in Table 5.5, the increased
complexity of the intake in the 3D case becomes evident when compared to the simpler
2D configuration previously analyzed. Notably, the average efficiency at the outlet de-
creases to approximately 0.73 in the 3D case, whereas in the 2D viscous simulation it
reached values as high as 0.87. This reduction highlights both the geometric and physical
complexity of the 3D intake, as well as the compromises introduced by modifying the
intake cross-section. Specifically, the shape is no longer axisymmetric but elliptical, a
change that led to increased total pressure losses and a stronger compression. This is
evidenced by a higher static pressure and a lower Mach number at the outlet, compared
to the ideal design condition with a downstream Mach number of M3 = 3.
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Mach Number Static Pressure Mass-flow rate Efficiency
[-] [Pa] [kg/s] [-]

2.72 36816 1625 0.7307

Table 5.5: Mass-weighted averages of key flow parameters—mass flow rate, static pressure, Mach
number, and intake efficiency—evaluated at the outlet section.

5.2.3 Test Matrix

The previous subsection analyzed the intake performance under on-design conditions,
considering a freestream Mach number of M∞ = 5 and a flow direction aligned with
the intake axis. The present analysis focuses on off-design conditions, introducing varia-
tions in the angle of attack α and the sideslip angle β. Furthermore, different values of
freestream Mach number M∞ are considered to assess intake behavior and to investigate
the onset of the unstart phenomenon under non-ideal operating scenarios.

Figure 5.44: Definition of the 19 off-design test conditions considered for the parametric study,
including variations in angle of attack, sideslip angle, and freestream Mach number.

Additionally, five alternative intake designs are considered to further assess design
robustness and flow uniformity. The first set of variations involves modifying the down-
stream Mach number of the ideal contour, with cases corresponding to M3 = 2.5, 3, 3.5.
The second set explores the effect of varying the ellipse aspect ratio of 1:2, 1:3, and 1:4.

Regarding the simulation setup for the various analyses, due to the high number
of cases to be evaluated, a simulation is considered converged when key output vari-
ables—such as mass flow rate, outlet Mach number, static pressure, and efficiency—reach
a residual threshold of 1×10−4. Specifically, convergence is assumed when these quantities
remain stable within this tolerance over the course of 100 iterations.

To accelerate convergence when varying boundary conditions (e.g., angle of attack
or freestream Mach number), a sequential initialization strategy is adopted. Each new
simulation is initialized using the converged solution from the preceding case. For in-
stance, the simulation at α = 5◦ is initialized using the solution from the converged case
at α = 2.5◦, thereby improving convergence speed.
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To prevent the solver from prematurely identifying a case as converged, the conver-
gence criteria are temporarily disabled for the first 200 iterations. This allows the outlet
region sufficient time to adjust to the new boundary conditions before residual monitoring
resumes.
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5.2.4 Effect of Angle of Attack (α) Variation — M3 = 3 Baseline Design

Figure 5.45: Effect of angle of attack (α) variation on the mass-weighted average values of Mach
number, static pressure, compression efficiency, and mass flow rate at the outlet.

A preliminary assessment of intake performance as a function of angle of attack is shown
in Figure 5.45. It can be observed that, in general, increasing or decreasing the angle
of attack from the on-design condition (α = 0◦) leads to a deterioration in performance.
An exception is found at α = −2.5◦, where a slight increase in compression efficiency is
observed.

The trend in mass flow rate with respect to angle of attack reveals that negative
angles result in an increase in mass flow rate, while positive angles lead to a decrease.
This behavior can be attributed to changes in the effective capture area, given that the
freestream Mach number is held constant. For negative angles of attack, the capture area
increases, whereas for positive angles, it decreases. This is primarily due to the intake
geometry, which features an opening in the upper region. When the intake is inclined
downward (negative α), this upper opening becomes more exposed to the incoming flow,
effectively enlarging the apparent intake area. This geometric effect is illustrated in
Figures 5.46, 5.47 and 5.48.
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Figure 5.46: Effect of negative angle of attack on the intake capture area.

Figure 5.47: Effect of positive angle of attack on the intake capture area.

Figure 5.48: Mach number contours along the intake symmetry plane for α = 10◦ and α = −10◦,
illustrating the velocity streamlines.

Continuing the analysis of performance parameters in Figure 5.45, it can be observed
that, in addition to the variation in mass flow rate with angle of attack, both static
pressure and Mach number exhibit similar trends. Specifically, for negative angles of
attack—where a larger amount of air is captured by the intake—the flow undergoes
greater compression, as evidenced by the increase in outlet static pressure, and experiences
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a stronger deceleration, as shown by the reduction in Mach number. Conversely, at
positive angles of attack—where the effective capture area is reduced—the intake captures
less air, resulting in lower compression and less deceleration of the flow.

A comparison of the flow-field structures for the two extreme cases, α = 10◦ and
α = −10◦, is presented in Figures 5.49. The Schlieren contours reveal that, for positive
angles of attack, the compression system remains largely similar to that of the on-design
case. In contrast, negative angles of attack significantly alter the compression structure.
Due to the increased amount of air captured, the configuration at negative α results in
a forward displacement of the shock system, bypassing the isentropic compression region
at the intake’s entrance. This behavior explains the increase in outlet pressure observed
for such conditions.

Regarding the outlet section, the Mach number contours show that positive angles
of attack maintain a similar flow structure to the on-design case, including the presence
of vortices near the lateral walls. On the other hand, at negative angles, the outlet
flow structure changes considerably, with the formation of vortices along the centerline,
consistent with the altered flow pattern observed in the transverse plane.

Despite the significant flow modifications observed, it is important to highlight that
the intake does not exhibit the unstart phenomenon, even under negative angles of attack.
This result is particularly relevant, as operating at negative α values plays a crucial role
in scenarios where the intake has become unstarted. In such cases, the vehicle must adopt
a negative angle of attack to maximize the captured airflow and promote re-starting of
the intake as quickly as possible. Therefore, the intake’s ability to maintain attached flow
and avoid unstart under these off-design conditions represents a key advantage in terms
of operational stability and recovery strategies.

Figure 5.49: Comparison of flow-field structures for α = 10◦ and α = −10◦ , showing Schlieren
contours on the transverse plane and Mach number contours at the outlet section.
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5.2.5 Effect of Sideslip Angle (β) Variation — M3 = 3 Baseline Design

Figure 5.50: Effect of angle of sideslip (β) variation on the mass-weighted average values of
Mach number, static pressure, compression efficiency, and mass flow rate at the outlet.

The influence of sideslip angle (β) variation on intake performance is presented in Fig-
ure 5.50, where trends of mass flow rate, efficiency, and the mass-weighted average values
of Mach number and static pressure at the outlet are reported.

Only positive values of β are considered, as the intake geometry is symmetric with
respect to the x-z plane. Consequently, negative sideslip angles would produce mirrored,
and thus equivalent, results due to the symmetry of the configuration.

It is immediately evident that, unlike angle of attack variations, the mass flow rate
remains nearly constant with increasing sideslip angle. This suggests that the effective
capture area is not significantly affected by β, in contrast to its strong sensitivity to α
variations.

However, other performance parameters show notable variations. In particular, an
increase in β leads to a degradation of overall performance and an increase in flow com-
pression. This is reflected in the rise of static pressure at the outlet and the decrease in
Mach number, indicating a stronger deceleration of the flow. These observations imply a
modification of the shock structure and compression pattern compared to the on-design
condition.
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Figure 5.51: Comparison of flow-field structures for β = 5◦, including Schlieren contours on the
transverse plane and static pressure distributions at the outlet and along the symmetry plane.

As shown in Figure 5.51, the compression structure changes significantly under sideslip
conditions. In particular, the Schlieren visualization on the transverse plane (top right)
reveals the loss of the isentropic compression pattern observed in the on-design case. In-
stead, an oblique shock forms and impinges on the lower wall. In the zoomed view (bot-
tom right), focusing on the shock impingement region, a strong interaction between the
shock wave and the boundary layer can be observed. This interaction leads to boundary
layer separation and the formation of vortices, as highlighted by the streamlines. These
features contribute to a loss in total pressure and, consequently, efficiency.

In the top-left image, the static pressure contour at the outlet shows a markedly
different structure compared to the on-design configuration. The flow appears more
compressed on the left-hand side of the outlet, and vortical structures are again present,
negatively affecting flow uniformity at the exit.

The bottom-left image, showing the symmetry plane, indicates a sudden pressure rise
near the end of the isolator, likely caused by the reflection of the wall-bounded shock
wave.

Despite these significant changes in the internal flow structure, it is important to note
that the intake does not experience unstart. This suggests that for small sideslip angles,
the intake remains stable and functional. Given the high-speed flight conditions typical
of this engine configuration, where large sideslip maneuvers are uncommon, this result is
particularly relevant. It confirms that the intake design can tolerate small deviations in
β without flow breakdown, maintaining operational robustness.
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5.2.6 Effect of Freestream Mach Number (M∞) Variation — M3 = 3
Baseline Design

Figure 5.52: Effect of flight Mach Number (M∞) variation on the mass-weighted average values
of Mach number, static pressure, compression efficiency, and mass flow rate at the outlet.

Figure 5.52 presents the effects of varying the freestream Mach number on key perfor-
mance parameters, namely the mass flow rate, compression efficiency, and the mass-
weighted average values of Mach number and static pressure at the outlet.

The first notable observation is that, as the flight Mach number decreases to M∞ = 3,
the intake exhibits an unstarted configuration. This behavior is primarily due to the
specific geometry of the intake and the area ratio between the inlet and outlet in the
studied design.

The mass flow rate shows an approximately linear trend with respect to the flight
Mach number: as the Mach number increases, more air is ingested by the intake, and
vice versa. This aligns with physical expectations. Regarding the static pressure, it
is observed that higher flight Mach numbers do not significantly alter the compression
system. According to shock wave theory, as the Mach number increases, the shock angle
becomes more oblique, allowing the shock to extend further downstream, which results in
some of the incoming air entering the intake without being compressed, as it can be seen
in Fig 5.54. Despite this, the increased velocity results in greater compression, which also
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leads to higher total pressure losses, as reflected by a decrease in compression efficiency.
At lower flight Mach numbers, the flow experiences an overboard spillage phenomenon,

wherein the percentage of captured mass is reduced. This is due to the fact that, at lower
Mach numbers and fixed geometry, the shock wave becomes less inclined and deflects
the flow more strongly, thereby reducing the effective capture area. Nevertheless, a
higher efficiency is observed at these lower Mach numbers. This indicates that the total
pressure losses are smaller in this regime, and that the intake—processing a lower mass
flow—compresses it more effectively, which explains the rise in outlet pressure.

The efficiency value at M∞ = 3 should not be considered physically meaningful, as an
efficiency greater than one is not realistic. This artifact results from the fact that, when
the inlet Mach number is reduced from 3.5 to 3, the intake becomes unstarted and the
shock wave moves outside the intake. Consequently, the simulation diverges numerically
due to the increased complexity of the unstarted configuration. In this condition, the
outlet flow does not respond consistently to changes in the inlet conditions. In particular,
assuming a constant outlet total pressure pt3 , a reduction in M∞ leads to a lower inlet total
pressure pt∞ . Since efficiency is defined as the ratio pt3/pt∞ , the result may erroneously
suggest that pt3 > pt∞ , which violates physical principles and confirms the presence of
numerical divergence. This explains the non-physical efficiency value greater than one.

Figure 5.53: Schlieren contours illustrating the evolution of the compression shock structure for
different freestream Mach numbers.

The Schlieren visualizations in Figure 5.53 illustrate how the shock wave structure
evolves with different freestream Mach numbers. Specifically, it can be observed that as
the Mach number decreases (e.g., M∞ = 4.5, 4.0, and 3.5), the shock waves tend to move
upstream and widen, due to the increased amount of spillage occurring at lower speeds.

In contrast, at higher freestream Mach numbers (e.g., M∞ = 6), the shock system
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appears more elongated and shifts downstream along the intake. This behavior is consis-
tent with shock wave theory, which predicts that as the Mach number increases, shock
waves become more oblique and are deflected further downstream.

Figure 5.54: Mach number contours along the symmetry plane for different freestream Mach
numbers. Velocity streamlines are also shown to highlight the overboard spillage phenomenon
occurring at lower Mach numbers.
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5.2.7 Comparison of Intake Designs with Varying Downstream Mach
Number (M3)

After analyzing how the flow field evolves with variations in angle of attack (α), sideslip
angle (β), and freestream Mach number (M∞), attention is now turned to a comparison
between different intake designs. This comparison focuses on the effect of varying the
downstream Mach number (M3), which directly influences the level of flow compression
achieved by the intake.

Figure 5.55: Effect of angle of attack (α) variation on the mass-weighted average values of Mach
number, static pressure, compression efficiency, and mass flow rate at the outlet for M3 = 2.5,3,3.5
design.

Figure 5.55 shows the variation of mass-weighted average Mach number, static pres-
sure, efficiency, and mass flow rate at the outlet as a function of the angle of attack α for
the three intake designs corresponding to M3 = 2.5, 3.0, and 3.5.

It is immediately evident that all curves follow similar trends, and thus the consid-
erations made for the on-design case in Section 5.2.4 remain valid. However, it can be
observed that the intake designed for M3 = 3.5 exhibits higher efficiency compared to the
other two configurations. Since this design is intended to compress the flow less, it expe-
riences lower total pressure losses across the shock system. This is confirmed by the Mach
number plot, where the M3 = 3.5 design shows a higher outlet Mach number, consistent
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with its intended design. Likewise, the static pressure plot is coherent with this behavior:
less flow deceleration leads to lower compression and consequently a lower static pressure
compared to the other two intakes, which are designed for stronger compression.

Particular attention should be given to the mass flow rate plot, where the behavior
differs from the other parameters. As detailed in Section 4.4, when solving the Tay-
lor–Maccoll equations and implementing the design algorithm in MATLAB, the intake
geometry was defined by prescribing the inlet Mach number M1, the target outlet Mach
number M3, and the outlet radius r3. This implies that all three intake designs share the
same outlet area, while the inlet area varies. In particular, the intake with M3 = 2.5,
being designed to compress the flow more, requires a lower area ratio A3/Ai. There-
fore, for a fixed outlet area A3, the corresponding inlet area Ai must be larger. This
explains the observed differences in mass flow rate between the three configurations:
AiM3.5 < AiM3.0 < AiM2.5 . As the inlet area increases—under the same inlet Mach num-
ber—the intake captures a larger mass flow.

Figure 5.56: Effect of angle of sideslip (β) variation on the mass-weighted average values of Mach
number, static pressure, compression efficiency, and mass flow rate at the outlet for M3 = 2.5,3,3.5
design.

Figure 5.56 shows the variation of mass-weighted average Mach number, static pres-
sure, compression efficiency, and mass flow rate at the outlet as a function of the sideslip
angle β for the three intake designs corresponding to M3 = 2.5, 3.0, and 3.5.
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The observed trends are consistent with the results discussed in Section 5.2.5, as well
as with the considerations made previously regarding the influence of α on mass flow rate.
In particular, similar behavior is seen in how the mass flow rate varies with the intake
geometry and design Mach number.

However, a noteworthy distinction arises for the intake designed with M3 = 2.5,
which exhibits significantly different behavior at sideslip angles approaching β = 5◦.
Specifically, this configuration shows a sudden drop in efficiency, a reduction in mass flow
rate, an increase in outlet static pressure, and a stronger deceleration of the flow. These
characteristics suggest that the M3 = 2.5 intake is more sensitive to off-design conditions
involving lateral inflow components compared to the other two designs.

Figure 5.57: Intake Design M3 = 2.5 unstarted at β = 5◦.

Figure 5.57 illustrates that this particular intake design is significantly more sensi-
tive to variations in sideslip angle β compared to the other two configurations. In fact,
even small deviations, such as β = 5◦, are sufficient to induce unstart in this intake.
The corresponding simulation did not reach convergence, as the shock system could not
stabilize within the internal geometry. Instead, the shock propagates outside the intake,
ultimately causing flow separation and complete unstart of the intake.
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Figure 5.58: Effect of flight Mach number (M∞) variation on the mass-weighted average values
of Mach number, static pressure, compression efficiency, and mass flow rate at the outlet for
M3 = 2.5,3,3.5 design.

Also in this case, the same considerations discussed in Section 5.2.6 apply. It is
particularly important to highlight that the intake designed for M3 = 2.5 exhibits an
earlier unstart compared to the M3 = 3 configuration. Specifically, it loses its started
condition already at M∞ = 3.5, as the internal shock system is no longer stable and
moves outside the intake, rendering the configuration highly sensitive not only to the
sideslip angle β but also to variations in freestream Mach number. This sensitivity makes
the M3 = 2.5 intake less suitable for off-design operation.

On the other hand, a noteworthy result is that the intake designed for M3 = 3.5
remains started even at M∞ = 3.0, unlike the other two configurations which experience
unstart under the same condition. As shown in Figure 5.59, this intake maintains all
flow characteristics typical of a stable, started condition. Due to its larger area ratio, the
M3 = 3.5 intake can more effectively handle lower freestream Mach numbers, making it
more robust in off-design conditions.

However, it is important to note that this increased robustness comes at the cost
of reduced compression. The M3 = 3.5 intake compresses the flow significantly less
than the other two designs. Therefore, a trade-off must be considered between achieving
the required level of compression—dictated by combustion chamber requirements—and
ensuring robustness of the intake across a range of flight conditions.
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Figure 5.59: Intake Design M3 = 3.5 remain started at M∞ = 3 condition.
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5.2.8 Comparison of Intake Designs with Different Ellipse Aspect Ra-
tios

After identifying potential criticalities arising from variations in flight conditions, and
having examined in detail several intake designs with different compression characteris-
tics, the next step is to investigate how the shape of the outlet cross-section influences
flow uniformity and the performance parameters previously analyzed. In particular, this
section aims to assess how varying the outlet geometry affects key quantities such as mass
flow rate, static pressure, Mach number, and overall efficiency.

Figure 5.60: Effect of angle of attack (α) variation on the mass-weighted average values of Mach
number, static pressure, compression efficiency, and mass flow rate at the outlet for different ellipse
ratio design.

Figure 5.60 shows the variation of mass-weighted average Mach number, static pres-
sure, efficiency, and mass flow rate at the outlet as a function of the angle of attack α for
three intake designs characterized by ellipse ratios of 2:1, 3:1, and 4:1.

From the plots, it is immediately evident that a lower ellipse ratio—i.e., a geometry
closer to a circular cross-section—results in higher efficiency under on-design conditions,
as observed at α = 0◦. This trend can be attributed to the assumptions made during the
2D design phase, where an axisymmetric intake geometry was considered. Consequently,
the closer the geometry approaches axisymmetry, the more its performance tends to
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align with that of the 2D reference case. Conversely, increasing the ellipse ratio (i.e.,
more flattened cross-sections) leads to a departure from the axisymmetric assumption,
which results in reduced efficiency.

This behavior is further confirmed by the Mach number contours in Figure 5.61(a),
where it is observed that more flattened ellipse shapes develop a thicker boundary layer
along the lower wall. On the other hand, more regular (closer to circular) cross-sections
demonstrate improved total pressure recovery and better flow uniformity, as highlighted
by the outlet efficiency contours.

Interestingly, the trend reverses slightly for negative angles of attack (α < 0): in
this off-design condition, the intake with the more flattened ellipse shows slightly higher
efficiency compared to the circular-like configuration. As shown in Figure 5.61(b), despite
the greater flow non-uniformity and the formation of vortical structures in the upper
region of the intake for higher ellipse ratios, the efficiency of the more circular geometry
is marginally lower in this case.

((a)) Effect of outlet shape variation on Mach
number distribution and efficiency under on-design
conditions (α = 0◦).

((b)) Effect of outlet shape variation on Mach
number distribution and efficiency under off-design
conditions (α = −10◦).

Figure 5.62: Schlieren visualizations showing the influence of outlet geometry on the shock
structure under on-design conditions (α = 0◦).
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Figure 5.63: Effect of angle of sideslip (β) variation on the mass-weighted average values of Mach
number, static pressure, compression efficiency, and mass flow rate at the outlet for different ellipse
ratio design.

Similarly, in Figure 5.63, which shows the variation of performance parameters as a
function of the outlet ellipse shape, the same trend is observed across all three intake de-
signs. The results confirm the earlier considerations: for this off-design condition as well,
the closer the cross-sectional shape is to a circle, the higher the overall efficiency. This
is consistent with the fact that more circular geometries approximate the idealized 2D
axisymmetric conditions more closely, while increasingly flattened ellipse shapes deviate
from this assumption, leading to reduced performance.
In addition to the drop in efficiency, the more flattened configurations exhibit a noticeable
increase in static pressure compared to the more circular ones, indicating stronger com-
pression. This is accompanied by a greater deceleration of the flow, further contributing
to the performance degradation.
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Figure 5.64: Effect of flight Mach number (M∞) variation on the mass-weighted average values
of Mach number, static pressure, compression efficiency, and mass flow rate at the outlet for
different ellipse ratio design.

With respect to the variation of the freestream Mach number, Figure 5.64 shows
that there is no significant difference in the behavior of the three intake designs. The
unstart phenomenon occurs in all cases, as each design was developed for the same target
downstream Mach number (M3 = 3) and with identical outlet areas. Consequently, the
area ratio remains constant across all configurations— a key parameter in determining
whether the intake undergoes unstart.

Therefore, despite differences in outlet cross-sectional shape, the onset of unstart
appears to be largely independent of the ellipse geometry. This suggests that geometric
shape alone is not sufficient to mitigate unstart under off-design conditions governed
primarily by area ratio and shock positioning.

The selection of the outlet cross-sectional shape must thus represent a trade-off be-
tween aerodynamic performance and integration constraints. From a performance per-
spective, a more circular cross-section leads to improved efficiency, as it better approxi-
mates the ideal axisymmetric flow conditions assumed during 2D design. However, more
flattened shapes are often preferred for integration within the vehicle structure, and such
constraints may outweigh the aerodynamic benefits in practical design scenarios.
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Chapter 6

Conclusion

This thesis focused on the development and validation of an analytical tool for the design
of two-dimensional and three-dimensional hypersonic Busemann-type intakes, with the
aim of comparing the performance parameters of different configurations.

The initial part of the work was dedicated to the creation of a MATLAB-based design
tool that, through the solution of the Taylor–Maccoll equations, allows the generation
of a two-dimensional intake contour. Given a set of input parameters—the freestream
Mach number M∞, the target Mach number at the isolator entrance M3, and the outlet
radius—the tool iteratively computes the intake geometry to maximize total pressure
recovery. This is achieved by optimizing the angle of the final conical shock and, conse-
quently, the upstream Mach number, in order to exploit an initial isentropic compression
surface and reduce total pressure losses.

A parametric analysis was then conducted to investigate the influence of M3 on intake
characteristics such as length, flow compression, and efficiency. Due to the elongated
nature of the resulting geometries, a truncation angle δ was introduced to shorten the
intake forebody, eliminating unnecessary length that does not significantly contribute to
the compression process.

Initial inviscid simulations were carried out in Ansys Fluent to validate the analytical
results by comparing them with CFD data. These comparisons confirmed the effective-
ness of the tool and allowed for the evaluation of trade-offs between key performance
parameters—compression ratio and efficiency.

Subsequently, viscous effects were taken into account to identify the deviations from
the ideal inviscid model. A correction method was implemented, based on increasing the
intake wall height by an amount corresponding to the boundary layer displacement thick-
ness calculated from viscous CFD simulations. This adjustment improved the correlation
between the analytical and numerical results under realistic conditions.

Transient simulations were also performed to study the unstart phenomenon in greater
detail—a critical event in hypersonic intake operation that must be avoided during flight.
These simulations helped identify the flow mechanisms responsible for intake unstart and
contributed to the understanding of critical conditions.

The study then transitioned to the design and evaluation of three-dimensional in-
takes. Initially, an on-design case was analyzed for the configuration with M3 = 3 and
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truncation angle δ = 5◦, selected as a trade-off between performance and efficiency. A 3D
geometry was constructed with an elliptical outlet section of 3:1 ratio, which represents
a compromise between circularity—favorable for axisymmetric flow assumptions—and
integration with the vehicle, which typically requires more flattened cross-sections.

The 3D intake was then tested under varying flight conditions, including angle of
attack α, sideslip angle β, and freestream Mach number M∞. A detailed analysis was
conducted to understand how these parameters influence mass flow rate, outlet pres-
sure, outlet Mach number, and overall efficiency. Critical off-design conditions leading to
unstart were identified and discussed.

Following this, six different intake geometries were compared by varying either the
degree of compression (the area ratio) or the shape of the outlet cross-section (ellipse ra-
tio). The objective was to perform a comprehensive trade-off study between performance,
robustness, and flow uniformity. It was shown that higher flow compression generally re-
sults in increased sensitivity to off-design conditions, with a greater risk of unstart. In
contrast, intakes with lower flow compression exhibited greater robustness and reliability.

Regarding the variation of outlet cross-section shape, no significant influence on un-
start behavior was observed as a function of the ellipse ratio. However, intakes with
more circular sections demonstrated improved performance under on-design conditions,
due to better alignment with the axisymmetric assumptions used in the Taylor–Maccoll-
based design. Conversely, more flattened shapes—while beneficial for vehicle integra-
tion—resulted in lower overall intake efficiency.

In conclusion, the work demonstrated a complete design and validation workflow for
hypersonic Busemann-type intakes, from analytical modeling to detailed CFD analysis.
The findings emphasize the importance of balancing compression efficiency with off-design
robustness and geometrical integration requirements, providing a useful framework for
future hypersonic intake design studies.

6.1 Future Developments

Building upon the results obtained in this thesis, several future developments can be
envisioned to further refine the analytical framework and improve the predictive accuracy
of the intake design methodology.

First, the MATLAB tool developed for the analytical design could be enhanced by
integrating empirical corrections to account for viscous effects. This would allow for
more realistic performance estimates during the preliminary design phase and reduce the
reliance on high-fidelity CFD in the early stages.

Regarding off-design analysis, the current study has investigated the variation of in-
dividual flight parameters—such as angle of attack, sideslip angle, and freestream Mach
number—independently. A natural extension would be to explore combined off-design
conditions, such as simultaneous variations of α and M∞, or α and β, to gain a deeper
understanding of how their interaction influences intake behavior. This would allow for a
more comprehensive evaluation of flow distortions, pressure losses, and potential unstart
phenomena under more realistic operational scenarios.

Moreover, future work could aim to develop a complete operational map of the intake
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system by systematically evaluating a broader range of design and flight conditions. Such
a map would serve as a valuable tool for assessing intake robustness and identifying safe
operational envelopes, providing a 360-degree overview of intake performance across the
entire design space.
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