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Abstract 

Rolling bearing elements are critical components in mechanical industries, and their failure 

can result in significant operational downtime and maintenance costs. Ensuring reliability 

through early damage detection is essential to prevent catastrophic failures. This thesis reviews 

and compares various algorithms for damage detection in rolling bearing elements. The study 

covers traditional techniques such as time-domain, frequency-domain, and time-frequency 

domain methods, alongside advanced signal processing techniques. A special emphasis is 

placed on envelope analysis, which excels in extracting fault-related modulations from noisy 

environments, making it particularly effective for detecting early-stage defects in complex or 

non-stationary signals. Key performance metrics, including fault detection accuracy, 

sensitivity, computational efficiency, and robustness under diverse operating conditions, are 

evaluated. The findings offer detailed insights into selecting the most effective diagnostic 

algorithms, contributing to the development of reliable, real-time damage detection systems 

for predictive maintenance in rolling bearing systems. 
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1. Introduction 

Rolling Element Bearings (REBs) are a critical component in rotating machinery, which is 

mainly designed for supporting and guiding the rotation or oscillation of shafts with minimal 

friction. REB’s failure is the most important factor for the machinery breakdowns. Therefore, 

it is very essential to detect and diagnose faults to prevent catastrophic damage to both the 

equipment and personnel before the completion of bearing failure. 

When a localized defect develops on an inner race, outer race, or roller part of a bearing, it 

generates impacts each time the defect passes through the load zone. These impacts excite both 

the bearing and the machine structure, particularly at their resonance frequencies. 

Consequently, the vibration signal produced will contain multiple harmonics, which repeat 

almost periodically based on the bearing's geometry. 

Detecting these vibration patterns and analyzing them for abnormalities can help in 

identifying potential bearing faults at an early stage. Vibration signal analysis is a cornerstone 

in predictive maintenance strategies for rolling element bearings. It enables the early detection 

of bearing faults, such as surface wear, defects in the inner and outer races, cage, and 

degradation of rolling elements. By analyzing vibration signals, maintenance can be performed 

proactively, minimizing downtime, and extending the life of machinery. 

 

 

Fig 1. Typical signals and envelope signals from local faults in rolling element bearings  

from Ref. [2] 
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Fig 1. shows the typical acceleration signals produced by localized faults in the various 

components of a rolling element bearing and the corresponding envelope signals produced by 

amplitude demodulation. The analysis of envelope signals provides more diagnostic 

information than the analysis of the raw signals.  

As explained in [2], the series of broadband bursts excited by the shocks could be modulated 

in amplitude by two factors: 

1.  The strength of the bursts depends on the load borne by the rolling element(s), and this 

is normally modulated by the rate at which the fault is passing through the load zone. 
2. When the fault is moving, the transfer function of the transmission path varies 

concerning the fixed positions of response transducers. 

 

 

 

1.1 REB 

A REB is well-defined in Wikipedia, as it says that a rolling-element bearing is a bearing that 

carries a load by placing rolling elements (such as balls or rollers) between two concentric, 

grooved rings called races. The relative motion of the races causes the rolling elements to roll 

with little rolling resistance and sliding. 

Rolling-element bearings often work well also in non-ideal conditions, but sometimes minor 

problems cause bearings to fail quickly and mysteriously. For example, with a stationary (non-

rotating) load, small vibrations can gradually press out the lubricant between the races and 

rollers or balls (false brinelling). Without lubricant, the bearing fails, even though it is not 

rotating and thus is not being used. For these reasons, much of the bearing design is about 

failure analysis. Vibration-based analysis can be used for fault identification of bearings. 

 

Nomenclature 
 
REB   Rolling Element Bearings 
d Rolling Element Diameter 
D Bearing Pitch Diameter 
BPFI   Ball Pass Frequency Inner race 
BPFO Ball Pass Frequency Outer race 
FTF   Fundamental Train Frequency 
BSF                    Ball Spin Frequency 
DE   Drive-End Acceleration 
FE Fan-End Acceleration 
BA     Base Plate Acceleration 
Y1, Y2             Successful Diagnoses 
P1, P2               Partially Successful Diagnoses 
N1, N2             Unsuccessful Diagnoses 
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1.2 Defect Frequency 

To diagnose faults in rolling-element bearings, fault frequencies are derived from the bearing's 

geometry and the rotational speed. These frequencies help in identifying specific types of 

defects such as outer race, inner race, rolling elements, and the cage. 

The formula for the various frequencies associated with bearing faults (shown in Fig 1.) is 

given below, 

Ball pass frequency, inner race: 

𝐵𝑃𝐹𝐼 =  
𝑛 . 𝑓𝑟

2
 {1 +

𝑑

𝐷
𝑐𝑜𝑠∅} 

Ball pass frequency, outer race: 

𝐵𝑃𝐹𝑂 =  
𝑛 .  𝑓𝑟

2
{1 −

𝑑

𝐷
𝑐𝑜𝑠∅}  

Fundamental train frequency (cage speed): 

𝐹𝑇𝐹 =
𝑓𝑟

2
(1 −  

𝑑

𝐷
cos ∅) 

Ball (roller) spin frequency: 

𝐵𝑆𝐹 =
𝐷

2𝑑
{1 − (

𝑑

𝐷
𝑐𝑜𝑠∅)

2

} . 𝑓𝑟 

where, 

fr - shaft speed, n - number of rolling elements, ∅ - angle of the load from the radial plane 

 
Table 1. Envelope spectrum for various fault types Ref [42] 

Fault type Expected components in envelope spectrum 
Inner race BPFI and harmonics, sidebands spaced at fr. Harmonics of fr. 

Outer race BPFO and harmonics, no sidebands 

Rolling element (ball) BSF and harmonics (even harmonics often dominant), 

sidebands spaced at FTF. Harmonics of FTF 
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1.2.1 Inner Race Damage 

Inner race damage in rolling bearings occurs due to several factors. Firstly, Fatigue spalling is 

one common cause, where overloading, cyclic stresses, poor lubrication, and contamination 

lead to repeated stress cycles that weaken the material, causing surface flaking. Secondly, Wear 

is another major issue, resulting from inadequate lubrication, contamination, and misalignment, 

which cause abrasive wear and material loss over time. Finally, Creep occurs when there is 

insufficient interference fit, thermal expansion, or improper mounting, leading to the relative 

movement between the inner race and the shaft or housing, causing wear and deformation. This 

understanding helps in diagnosing issues earlier and the lifespan of the bearing is extended by 

implementing preventive measures. 

 

Fig 2. Fundamental components of a rolling 

bearing 

Fig 3. Bearing Geometry 
Fi = Inner race force 

Fc = Circumferential force on balls 
Fo = Outer race force 

Fig 4. Load distribution of a bearing under a 

unidirectional vertical load 
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1.2.2 Outer Race Damage 

The outer race plays a critical role in supporting loads, transmitting forces, and ensuring smooth 

operation. It transmits and distributes the applied loads from the shaft to the housing or vice 

versa, depending on the bearing type. Outer races are made from hardened steel alloys, such as 

chrome steel (AISI 52100) or stainless steel, due to their high strength, wear resistance, and 

compatibility with lubricants. The main cause of outer race damage is when the repeated stress 

cycles happen due to overloading, misalignment, inadequate lubrication, or contamination 

leading to surface fatigue and the formation of pits or flakes. Another is when the external 

impacts or shock loads exceeding the bearing's capacity can cause deformation, cracking, or 

denting of the outer race. 

1.2.3 Cage Damage 

Cages or retainers are responsible for maintaining the appropriate relative positions of the 

rolling elements which helps to prevent them from colliding. Inadequate lubrication is the most 

common fault in cages, which causes them to wear and deform. Additionally, using improper 

tools or incorrect mounting can cause severe damage. 

Unlike more massive bearing components, defects in cages are often less visible and can be 

challenging to detect until they significantly impact bearing performance. However, early 

detection can be achieved by monitoring the vibration spectrum, which can help identify 

irregular patterns associated with cage faults. 

1.2.4 Roller Damage 

Rollers are designed for distributing and supporting heavy loads efficiently. Their cylindrical 

shape and rolling action enable them to carry substantial weight while minimizing frictional 

resistance. Rollers operate with lower friction compared to sliding contact mechanisms. The 

rolling action between the roller and its mating surface minimizes wear and energy loss, 

contributing to higher operational efficiency and reduced maintenance requirements. Rollers 

are made from durable materials such as steel, stainless steel, or polymers, depending on the 

application requirements, which offer high strength, wear resistance, and corrosion resistance, 

ensuring long-term reliability and extended service life in demanding environments. 

1.3 Methodology 

The methodology of vibration analysis for rolling element bearings encompasses data 

acquisition, signal processing, and fault diagnosis. The vibration signals are generated by 

mounting accelerometers or velocity sensors on bearing housings. Fast Fourier Transform 

(FFT), Wavelet Transform, and Envelope Analysis are the most efficient Signal processing 

techniques applied to extract characteristic features from noise-dominated signals.  
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1.4 Techniques 

For diagnosing bearing faults advanced signal processing techniques are used to detect and 

classify various types of bearing damage. Among these, the Autogram, Fast Kurtogram, Fast 

Autogram, Spectral Amplitude Modulation, and Spectral Correlation stand out for their 

effectiveness in identifying bearing defects.  

1.5 Other techniques for damage detection  

For detecting damages in rolling bearing elements, apart from vibration analysis, there are 

several other techniques which can be seen below. These methods enhance various symptoms 

and causes of bearing damage, providing a comprehensive approach to maintenance and 

diagnosis. 

1.5.1 Acoustic Emission (AE) 

Acoustic Emission is the non-destructive testing method that detects the transient elastic waves 

generated by the rapid release of energy from localized sources within a material. AE is highly 

sensitive and capable of detecting minute defects & irregularities within REB. AE sensors are 

typically mounted on the bearing housing to detect the high-frequency stress waves produced 

when a material undergoes deformation. These waves are generated by several sources such as 

Crack formation and propagation, Frictional contacts between surfaces, Plastic deformation & 

Material dislocations. 

When a defect or irregularity, such as a crack or spall, develops in the bearing, it emits stress 

waves. The AE sensors can capture these waves and possibly convert them into electrical 

signals, which are then analyzed to determine the presence and severity of defects. 

Ref [40] aimed to detect early seizure in high-speed sliding bearings by measuring the high-

frequency components of Acoustic Emission signals. High-frequency AE sensors were 

deployed to capture signals above 1 MHz. Their ability to detect changes in AE signals before 

catastrophic failure provides valuable time for maintenance and intervention. AE signals 

indicate distinct changes when the lubricating film gets ruptured. This was characterized by an 

increase in the amplitude and specific frequency components of the AE signals. Also, this study 

shows that the progression from lubrication film rupture to wear and seizure could be tracked 

accurately to provide insights into the lifetime assessment of sliding bearings. The experiment 

was carried out in a test rig which is designed to simulate real machine conditions, allowing 

them for the examination of friction and wear in a controlled environment. 

1.5.2 Infrared Thermography 

According to Wikipedia, Infrared thermography is a non-contact & non-destructive technique 

to detect temperature variations on the surface of objects by using infrared imaging. In a 

Thermography system, an infrared camera was used to capture infrared radiation and convert 

it into a thermographic image. For the easy detection of hot spots and abnormal thermal 

patterns, the thermogram shows temperature variations in different colors. In the case of 

Thermographic analysis, the Temperature Gradient was used to measure the rate of temperature 
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change across the material. The major advantage is that the Thermography does not require 

physical contact for the measurement, it measures moving or rotating objects, even if the 

objects have a very high temperature. 

According to Ref [51], a passive thermographic experiment was performed to monitor the fault 

on deep-grooved ball bearing. The temperature characteristics such as excessive friction, 

lubrication failure, or wear of the ball bearing under dynamic loading conditions were analyzed. 

For bearing damage detection, an infrared thermography method was used to identify abnormal 

temperature patterns that indicate potential issues. The thermography detects high friction 

which is mainly due to the inadequate lubrication or misalignment generated by heat. Localized 

hot spots could be identified due to increased friction when the bearing runs without adequate 

lubrication. Due to overheating, the bearing tends to work beyond its optimal temperature 

range, indicating potential problems.  

Ref [52] discusses the use of Prognostics and Health Management (PHM) and State 

Assessment (SA) for classifying the health state of physical asset through signal processing 

from selected sensors. However, there is a noted gap in the literature regarding the use of 

Infrared Thermography (IRT) for the SA of rolling bearings. To address this issue, the study 

explores the potential of indicators obtained via passive thermography to classify the severity 

of failures in the outer race of rolling bearings. Single point defects were introduced in the 

bearing outer-race using electrical discharge machining, followed by the acquisition of thermal 

images during bearing operation. Indicators of both transient and steady-state behavior were 

calculated to classify different health states. Four indicators demonstrated a monotonic trend 

relative to defect size, showing promise for the SA of rolling bearings. The study suggests that, 

given IRT's effectiveness in other areas, this research could promote further investigation into 

the use of IRT in the PHM of rolling bearings. 

1.5.3 Ultrasonic Testing 

Ref [49] states that, ultrasonic testing (UT) is a non-destructive testing (NDT) technique that 

uses high-frequency sound waves to detect internal and surface defects in materials. Ultrasonic 

testing can detect cracks, voids, and other irregularities that could not be detected through other 

methods for rolling element bearings. Ultrasonic testing mainly involves the transmission of 

high-frequency sound waves into the bearing material. These sound waves travel through the 

material and reflect from any discontinuities, such as cracks or inclusions. Reflected waves are 

captured by a transducer and converted into electrical signals, then analyzed to determine the 

presence and defects characteristics. A pulser/receiver is an electronic device that can produce 

high voltage electrical pulse. The transducer driven by the pulser generates high frequency 

ultrasonic energy. The main component of Ultrasonic Testing was a couplant, wherein a 

particular medium a gel or liquid, was applied between the transducer and the bearing surface 

to facilitate the transmission of sound waves.  

According to Ref [48], ultrasonic probes provide a reliable method for monitoring the condition 

of bearings. Early warning signs of incipient problems can be detected, allowing them to be 

dealt with before they lead to failure. The deformation occurs mainly due to the fatigue that 

produce irregular surfaces which will cause an increase in the emission of ultrasonic sound 



8 
 

waves. An incipient bearing failure is indicated by change in amplitude from the original 

reading (when exceeds 12 decibels). 

Ref [50] states that, ultrasonic signal is used for early failure detection in tapered roller 

bearings. The ultrasonic signal analysis is performed using time domain parameters i.e. kurtosis 

and RMS, and in the frequency domain using the power spectral density obtained by the Welch 

periodogram. Among the parameters studied, the RMS parameter demonstrated superior 

performance in fault location extraction and monitoring, allowing for the identification of 

faulty conditions and qualitative evaluation of fault severity. 

1.6 Damage-detection by traditional methods and its challenges  

As discussed in section 1.5, Traditional methods such as vibration analysis often rely on 

amplitude and frequency spectrum analysis to detect changes in vibration patterns that indicate 

faults. However, damage can sometimes be subtle in the raw frequency spectrum, especially 

when the signal is measured at the fan-end while the damage is at the drive-end. 

1. Inner Race Defect 

Traditional Detection: Vibration analysis can detect inner race defects by identifying high-

frequency vibration signals at the Ball Pass Frequency of the Inner race (BPFI) and its 

harmonics. However, the effectiveness depends on the sensor placement and noise levels, as 

inner race damage produces less prominent signals when measured far from the drive-end. 

Challenges: Traditional methods might miss or inaccurately quantify inner race damage 

because sideband frequencies around BPFI are often subtle and can be masked by other 

frequencies in the spectrum. Additionally, if the damage is on the drive-end but measured on 

the fan-end, the signal is weaker. 

Advanced Benefits: Envelope analysis can more effectively identify sidebands, a crucial 

indicator of inner race damage, by demodulating the signal and enhancing these sideband 

frequencies, which indicate fault modulation and confirm damage presence. 

2. Outer Race Defect 

Traditional Detection: Outer race defects can be detected at the Ball Pass Frequency of the 

Outer race (BPFO) and its harmonics in a vibration spectrum. Traditional methods are more 

effective for outer race defects than inner race defects because they generate clearer signals 

that are less sensitive to sensor placement. 

Challenges: Although more detectable, traditional methods may still fail to capture sideband 

frequencies or low-level outer race defects, especially when the damage is on the non-load zone 

of the bearing, making the signal weaker. 

Advanced Benefits: Advanced spectral analysis or demodulation techniques (like envelope 

analysis) amplify these sideband frequencies around BPFO, enabling a more precise detection, 

particularly for early-stage or minor outer race damage. 
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3. Cage Defect (Retainer Damage) 

Traditional Detection: Cage defects are harder to detect using traditional vibration methods 

because the cage typically rotates at a lower frequency (the Fundamental Train Frequency, or 

FTF). This low-frequency signal is often overshadowed by other noise or operational 

vibrations. 

Challenges: Traditional methods may overlook cage defects as they create low-amplitude, low-

frequency vibrations that blend into the general operational noise, particularly in high-speed 

machinery. 

Advanced Benefits: Advanced signal processing, like high-resolution spectral analysis or time-

domain averaging, can enhance FTF detection, highlighting subtle vibrations related to cage 

damage. SAM can also amplify low-frequency signals, making it more effective at detecting 

early cage faults. 

4. Ball Defect 

Traditional Detection: Ball defects often produce vibrations at the Ball Spin Frequency (BSF), 

which can sometimes be detected in a vibration spectrum using traditional analysis. However, 

the signals may appear intermittent or inconsistent because balls rotate and contact races at 

varying points. 

Challenges: Traditional methods may miss or under-detect ball defects due to the irregular and 

modulated nature of the ball vibration signature. Also, these signals may vary in amplitude, 

making detection difficult without more advanced filtering. 

Advanced Benefits: Techniques such as envelope analysis or time-domain demodulation can 

isolate BSF and associated sidebands, effectively capturing the intermittency in ball defect 

signals. Advanced methods can therefore detect even minor pitting or deformation in ball 

bearings by emphasizing these unique vibration patterns. 
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2. Vibration Signal Analysis Techniques 

As discussed in the previous chapter, bearing damage can be detected by analyzing the 

acceleration signals generated by specific components. The vibration signals produced by 

faults have been widely studied and diagnosed through advanced signal processing techniques 

as mentioned in section 1.4. These techniques can generally be classified into time domain, 

frequency domain, time-frequency domain approaches, and envelope analysis. 

Time Domain Approach: This method involves analyzing the raw vibration signals as 

functions of time. Key parameters such as root mean square (RMS), peak value, crest factor, 

and kurtosis are used to identify anomalies. Time domain analysis is straightforward and 

provides initial insights into the condition of the bearings. 

Frequency Domain Approach: In this approach, the vibration signal is transformed from the 

time domain to the frequency domain using techniques like the Fast Fourier Transform (FFT). 

This helps in identifying periodic frequency components related to the fundamental movements 

of machine parts. By examining these frequency components, it is possible to pinpoint the 

sources of undesirable vibrations. This method is particularly effective for identifying specific 

types of bearing faults, such as inner race, outer race, and rolling element defects. 

Time-Frequency Domain Approach: Techniques such as Short-Time Fourier Transform 

(STFT) and Wavelet Transform are used to analyze signals whose frequency characteristics 

change over time. This approach provides a detailed representation of the signal, revealing 

transient features and non-stationary components that might be missed in pure time or 

frequency domain analyses. It is useful for detecting and diagnosing complex and intermittent 

bearing faults. 

Envelope Analysis: This technique involves demodulating the vibration signal to extract the 

envelope of the high-frequency resonance. Envelope analysis is particularly effective for 

detecting early-stage faults in bearings. It enhances the signal-to-noise ratio, making it easier 

to identify the characteristic frequencies of bearing defects. 

When analyzing machine vibrations in the frequency domain, a number of prominent periodic 

frequency components related to the machine's fundamental movements can be discovered. 

Frequency analysis enables trending the source of undesirable vibrations. There are also 

tutorials that cover the separation of bearing signals from discrete frequency noise and the 

enhancement of bearing signals. 

This chapter will list several universal techniques and focus on unique information extraction 

towards the end. The last three methods time-frequency domain approach, frequency domain 

approach, and envelope analysis will be applied to analyze the bearing simulation signal in the 

coming chapters. 
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Nomenclature 
 
RMS 
FFT 
STFT 
IR 
MED 
SK 
AC 
MODWPT 
WPT 
SNR 
MFB 
CSA 
CMS 
LES 
LSES 
FT  
Fast-SC 
ACP 
EES 

Root Mean Square 
Fast Fourier Transform 
Short-Time Fourier Transform 
Impulse Response 
Minimum Entropy Deconvolution 
Spectral Kurtosis 
Unbiased Autocorrelation 
Maximal Overlap Discrete Wavelet Packet Transform 
Wavelet Packet Transform 
Signal-to-Noise Ratio 
Multirate Filter-Bank 
Cyclic Spectral Analysis 
Cyclic Modulation Spectrum 
Log-Envelope Spectrum  
Logarithm-Squared Envelope Signal  
Fourier Transform 
Fast Spectral Correlation 
Averaged Cyclic Periodogram  
Enhanced Envelope Spectrum 

SES 
SC 

Squared Envelope Spectrum 
Spectral Correlation 
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2.1 Enhancement of Bearing Signals 

Ref [1] describes that, when the discrete frequency ‘‘noise’’ is even removed, the bearing signal 

will often be masked in many frequency bands by other noise and if the individual fault pulses 

are modified by passage through a transmission path with a long impulse response (IR) may 

also be rendered less impulsive than at the source. This is the most common case with high-

speed bearings, where the bearing fault frequencies are so high, and corresponding spacings so 

short, that the IR is of the same length as the intervals between them. A method called 

‘minimum entropy deconvolution’ (MED) removes the effect of the transmission path, which 

is first discussed, and then several methods are presented to enhance the bearing signal for 

residual background noise. 

 

 

 

 

 

Fig 5. illustrates the basic idea that the forcing signal e(n) passes through the structural filter h 

whose output is mixed with noise v(n) to give the measured output x(n). The inverse (MED) 

filter f produces output y(n), which has to be as close as possible to the original input e(n). Of 

course, the input e(n) is unknown, but is assumed to be as impulsive as possible. 

2.2 Envelope analysis 

In the year 1974, envelope analysis was originally developed and has been recognized as the 

benchmark method for bearing diagnostics. Robert B. Randall and Jérôme Antoni [1] 

demonstrated the spectrum of the raw signal which typically lacks appropriate diagnostic 

information concerning bearing faults. Envelope analysis involves bandpass filtering the signal 

mainly due to its structural characteristics within a high-frequency range to the fault impulses. 

Subsequently, the envelope signal is generated by the amplitude modulation. When the fault 

passes through the load zone or moves relatively to its reference point the modulation occurs. 

The envelope spectrum contains the diagnostic information with its repetition frequency (such 

as ball pass frequency or ball spin frequency). These frequency components within the 

envelope spectrum were used effectively to analyze its characteristics correlated with bearing 

faults, which facilitates maintenance and accurate machinery conditions. 

Generally, envelope analysis techniques used analogue techniques with inherent limitations. 

The Amplitude demodulation used Hilbert transform techniques particularly to have substantial 

benefits by adopting digital methods, where a one-sided spectrum (positive frequencies only) 

is inversely transformed to the time domain. This yields a complex time signal called ‘analytic 

signal’ whose imaginary part is the Hilbert transform of the real part. This methodology extracts 

the spectrum to be demodulated by an ideal filter which can be separated from adjacent 

components, and it is not always possible with analogue filters and real-time digital filters as 

Fig 5. Inverse filtering (deconvolution) process for MED 
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they suffer from same restrictions on filter characteristic. The application to envelope analysis 

is shown in Fig 6.   

 

 

  

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

D. Ho and R.B. Randall [17], suggest that the squared envelope signal is more advantageous 

than analyzing the envelope itself. The reason behind this was clearly explained in Figure 7 

which compares the spectra of a rectified signal and a squared sinusoid. Likewise, a rectified 

signal is the square root of the squared signal, and it should be noted that the envelope of a 

signal is the square root of the squared envelope mathematically. These issues occur due to the 

square root operation which introduces additional components that are not present in the 

original squared signal. 

Figure 7 demonstrates that a rectified signal exhibits sharp cusps, requiring harmonics to extend 

infinitely to reproduce them accurately. Until now, the operation has been done digitally then 

it is not possible to remove these high harmonics by lowpass filtration (as it leads to an analogue 

Figure 7. Potential aliasing given by squaring and rectifying a 

sinusoidal signal. With just squaring, but not rectification, aliasing 

can be avoided by doubling the sampling frequency before squaring 

 

Fig 6. Procedure for envelope analysis using the ‘‘Hilbert 

transform’’ method 
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rectifier). To avoid loss of high-frequency components the sampling frequency should ideally 

be doubled for managing when digitally squaring or rectifying a signal. This concept aligned 

with the zero-padding illustrated in Figure 6 during the processing of the analytic signal. 

The convolution performs only when the resultant spectrum reveals different frequencies, such 

as sideband spacings, which carry crucial modulation information relevant to diagnostics. 

Contrastingly, for a real-valued signal x(t), the spectrum of its squared value simply convolves 

X(f) (the spectrum of x(t)) within itself. Both difference frequencies and sum frequencies (the 

addition of positive and negative frequencies) are generated by convolution, where the latter 

components do not contribute diagnostic information and instead mask the desired results. 

Interference can be circumvented with a real-valued signal by introducing frequency shifting 

to create zero padding around zero frequency and the Nyquist frequency. It requires doubling 

the sampling frequency for the same demodulation band and imposing larger transform sizes 

for equivalent problem scenarios.  

Ref. [17] showed that despite potential noise masking (random/discrete frequency) up to three 

times the power of the bearing signal within the demodulation band, analyzing the squared 

envelope remained advantageous. Using spectral kurtosis, it is possible to identify a spectrum 

band where the signal-to-noise ratio of the bearing signal is significantly higher.   

2.3 Spectral Kurtosis and Kurtogram 

2.3.1 Spectral Kurtosis 

Ref. [1] states that finding the most suitable band for demodulation is very difficult from the 

earliest days of envelope analysis. But this problem has been solved by using Spectral kurtosis 

(SK) and Kurtogram which helps to identify impulsive or non-Gaussian characteristics (after 

removal of discrete frequency masking). Spectral Kurtosis has proven to be determining the 

frequency bands by containing the maximum impulsivity of signals. Spectral kurtosis (SK) is 

a higher-order statistical measure used to analyze the frequency content of a signal. Unlike 

traditional kurtosis, which measures the peakedness of a signal's time-domain amplitude 

distribution, spectral kurtosis assesses how the shape of a signal's power spectrum varies across 

different frequencies. It evaluates the degree to which a signal's power distribution deviates 

from a Gaussian (normal) distribution. This method specifies frequency bands where signals 

exhibit asserted impulsiveness or non-Gaussian behavior, which often correlates with the 

presence of transient events or machinery faults. Kurtosis had been used for measuring the 

severity of machine faults, proposed by Stewart et al. in the 1970s Ref. [34].  

Kurtosis is computed using Short Time Fourier Transform (STFT) coefficients for different 

window lengths, thus leading to the 3D representation coined Kurtogram. However, the 

original algorithm used for estimating the ‘‘full’’ Kurtogram had a prohibitive computational 

cost and hence offered limited industrial potential. By interpreting higher SK values, could be 

able to identify critical frequency ranges that require closer inspection for fault-related 

vibrations, enhancing the accuracy and efficiency of machinery condition monitoring and 

diagnostic information. The application of SK, along with the Kurtogram helps to visualize 

spectral kurtosis across frequency bands, enabling effectively prioritizing and investigating 



15 
 

potential faults based on the distinctive characteristics of vibration signals in different 

frequency domains.  

 

Kurtosis = 
∑ (𝑥(𝑡𝑖)−𝜇𝑥)4𝑁

𝑖=1

[ ∑ (𝑥(𝑡𝑖)−𝜇𝑥)2]2𝑁
𝑖=1

 

 

 

 

 

 

 

 

 

 

 

 

 

Key points: 

• Fault Detection: SK is highly effective in detecting faults in rolling element bearings, 

gears, and other rotating machinery. 
• Frequency Domain Analysis: By analyzing the kurtosis of the frequency spectrum, it 

helps pinpoint frequencies where transient or impulsive events occur. 
• Non-Gaussian Signal Identification: It excels in identifying non-Gaussian noise or 

irregularities within the signal, which standard spectral analysis might miss. 

2.3.2 Kurtogram 

The Kurtogram is a visual representation of spectral kurtosis across different frequency 

bands and scales. It is used to determine the optimal frequency band for demodulating the 

signal to detect faults more clearly. The Kurtogram helps in identifying the specific band where 

the kurtosis value is maximized, indicating the presence of a fault with greater clarity. 

Key points: 

• Optimal Band Selection: The Kurtogram aids in selecting the optimal frequency band 

for demodulation, enhancing the fault detection process. 

Fig 8. Calculation of SK from the STFT for a simulated bearing 

fault signal: (a) simulated time signal, (b) STFT, and (c) SK as a 

function of frequency 
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• Enhanced Diagnostic Accuracy: Focusing on the most informative frequency bands, 

improves the accuracy and reliability of fault diagnosis. 
• Visual Analysis Tool: Provides a clear, visual method to identify and isolate fault 

frequencies, making it easier to interpret complex signals. 

2.3.3 Fast Computation of the Kurtogram 

Ref. [3] In the realm of signal analysis, the Kurtogram serves as a powerful tool for 

investigating non-stationary signals. However, fully exploring the entire (frequency, scale) 

plane (represented as f and Δf) can be computationally intensive and impractical for real-time 

industrial applications. Therefore, an efficient algorithm is designed to compute the Kurtogram 

swiftly over a dyadic grid in the (frequency, scale) plane, with computational complexity scaled 

to O(N log N). 

The primary objective of this fast algorithm is to provide balanced computational efficiency 

with robust exploratory capabilities. By utilizing a dyadic grid, the algorithm optimizes the 

exploration process, focusing computational efforts where they are most informative for 

identifying signal characteristics associated with bearing faults and other mechanical 

anomalies. 

Algorithm 

The proposed algorithm builds upon an arborescent Multirate filter-bank structure, 

incorporating unique characteristics derived from the application of quasi-analytic filters. 

Initially designed with a binary tree structure, the algorithm has been further developed to 

encompass a more complex 1/3-binary tree configuration, enhancing its analytical capabilities. 

The key principle revolves around utilizing a hierarchical filter-bank approach, where signals 

are processed through multiple stages of filtering and down-sampling. This structure allows for 

efficient decomposition of signals into frequency bands, facilitating detailed analysis across 

different scales. The incorporation of quasi-analytic filters introduces additional sophistication 

by enabling the computation of analytic signals, which are crucial for envelope analysis and 

other diagnostic techniques in signal processing. 
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Fig 9. Paving of the (frequency/frequency resolution) plane in the case of the 1/3-binary 

tree Kurtogram estimator 

The proposed FastKurtogram is a vital alternative to the original ‘‘full’’ Kurtogram of Ref. [35] 

which was estimated using several STFTs. It is also superior to the Discrete wavelet transform 

(DWT) and Discrete wavelet packet transform (DWPT) approaches. WT is much better 

adapted to the detection of transients than the Fourier transform and (DWT) are considered 

particularly for fast decomposition algorithms. The discrete WPT (DWPT) also enjoys a fast 

algorithm with complexity O(N log N) as it  theoretically offers the same detection capabilities 

of WT, but with increased frequency selectivity since it is not restricted to constant-percentage 

bandwidth analysis filters. And, contrary to the continuous wavelet transform (WT) approach, 

the proposed FastKurtogram offers a more comprehensive exploration of the (f and Δf) plane 

whilst still enjoying a fast decomposition algorithm. Finally, it is worth mentioning that 

achieving an orthogonal decomposition is not a property of interest for the Kurtogram - as 

opposed to the DWT and DWPT - for it is essentially an analysis tool. 

2.4 Cyclostationarity 

Cyclostationarity is a fundamental concept in signal processing, characterized by the periodic 

variation of statistical properties of a signal over time. Unlike stationary signals, whose 

statistical measures remain constant, cyclostationary signals exhibit periodicity in their mean, 

variance, and autocorrelation functions. This property is particularly prevalent in signals 

generated by mechanical systems with rotating components like rolling element bearings. 

Randall et al. [36] investigated the bearing signal characteristic in the presence of localized 

faults. The inner race, outer race, and rolling elements defects are the most frequent bearing 

faults. The vibrations produced by the localized faults are a sequence of impulses dominated 

by the high resonance frequencies of the structure. Slippage of rolling elements and cage 

introduces some level of randomness [3,20] in the spacing of the impacts and, although it is 

not larger than a few percent of the rate of burst repetition, the resulting signals cannot be 
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categorized as a periodic process. Ref. [36] pointed out that a bearing localized fault signal may 

be modeled as a 2nd order cyclostationary process. A second-order cyclostationarity determines 

processes with a periodic autocovariance function in time. 

Autocovariance is a function of not only the time lag τ but also the instantaneous time ti and it 

should not be confused with the stationary autocorrelation function calculated as the time 

average.  

A localized fault is not truly cyclostationary and the signals are strictly speaking pseudo-

cyclostationary as they seem to be cyclostationary but are not. However, they can be treated as 

cyclostationary in a first approximation as the departure from cyclostationarity may essentially 

be small. 

2.5 The Autogram and the fast-Autogram 

The Autogram methodology is rooted in the concept of cyclostationarity, particularly in the 

context of signals from damaged bearings that exhibit pseudo-cyclostationary characteristics 

of order 2. This means that their second-order statistics, such as the autocovariance, are 

approximately periodic. This periodicity manifests as a periodic envelope signal, which is a 

key feature used for fault detection. 

To enhance this periodicity and filter out uncorrelated signal components (like noise and 

random impulses unrelated to bearing faults), the Autogram utilizes the unbiased 

autocorrelation (AC) of the squared envelope signal. This approach ensures robustness against 

both Gaussian and non-Gaussian noise types. 

The Autogram methodology can be summarized into three main steps [4]: 

a) Frequency Band Splitting: The signal is decomposed into frequency bands using a 

dyadic tree structure, typically achieved through the Maximal Overlap (undecimated) 

Discrete Wavelet Packet Transform (MODWPT). This method avoids down-sampling 

and preserves frequency resolution. 

b) Unbiased Autocorrelation (AC): For each frequency band obtained from the 

wavelet transform, the unbiased autocorrelation of the squared envelope signal is 

computed. This step enhances the periodicity of the signal and suppresses noise 

components. 

c) Utility Function (Kurtosis of ACs): The kurtosis of the autocorrelations across 

different frequency bands is calculated to generate a colormap. This colormap visually 

highlights frequency bands that exhibit maximum kurtosis, indicating potential bearing 

faults. 

After identifying these informative frequency bands, further analysis involves utilizing the 

Fourier transform of the squared envelope signal (SES).  
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The Fast-Autogram 

To optimize the computational efficiency of the algorithm, replacing the Maximal Overlap 

Discrete Wavelet Packet Transform (MODWPT) with the Multirate Filter-Bank (MFB) 

structure from the Fast-Kurtogram algorithm [3] is proposed. This substitution offers 

significant advantages. Firstly, it reduces the computational complexity of the signal 

decomposition to O(N log N), making it more suitable for processing large datasets and real-

time applications. The MFB structure also enhances the coverage of the (frequency, scale) 

plane, known as (f, Δf), crucial for accurately pinpointing frequency components within the 

signal spectrum related to bearing faults. Unlike the Discrete Wavelet Packet Transform 

(DWPT), which is limited to binary subdivisions, the MFB can implement a more flexible 

binary-ternary paving. This capability improves frequency localization, particularly beneficial 

for identifying specific fault signatures. Moreover, while DWPT's frequency localization 

diminishes with deeper decomposition levels due to spectral aliasing, the MFB maintains 

superior performance throughout, ensuring precise detection of fault-related frequencies. 

Overall, integrating the MFB structure enhances both the efficiency and accuracy of the 

algorithm in analyzing vibration signals for bearing fault diagnostics, advancing its capability 

in complex signal processing tasks.  

Time Signal 

Step 1: Split the signal in frequency bands and central frequencies (nodes) 

Step 2: Calculate the unbiased autocorrelation (AC) of the squared 

envelope for each node 

Step 3: Calculate the kurtosis of the ACs, generate the “Autogram” and find the 

node with the maximum kurtosis 

Step 4: Calculate the Fourier Transform on the squared envelope to extract the 

fault characteristic frequency 

Fig 10. Flowchart of the Autogram 
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The fundamental steps of the improved algorithm using the Multirate Filter-Bank (MFB) 

structure can be summarized as follows: 

a) Signal Splitting: Employ a dyadic-ternary tree structure via the Multirate Filter-

Bank  (MFB) as proposed in [3] to divide the signal into frequency bands. This approach 

enhances computational efficiency with a complexity of  O(N log N) and provides 

better coverage of the (frequency, scale) plane compared to traditional methods. 

b) Compute Unbiased Autocorrelation (AC): Calculate the unbiased autocorrelation 

of the squared envelope for each frequency band obtained from step (a). This step 

improves the periodicity of the signal and removes uncorrelated components such as 

noise, essential for robust bearing fault detection. 

c) Utility Function Calculation: Compute the kurtosis of the autocorrelations across 

all frequency bands to generate a colormap. This colormap visually highlights bands 

with maximum utility, indicating potential bearing faults based on their cyclostationary 

properties. 

Subsequently, analyze the Squared Envelope Spectrum (SES) of the frequency band exhibiting 

the highest kurtosis in the autocorrelation analysis. This step focuses on identifying 

characteristic spectral lines associated with bearing damage.  

2.6  Cyclic Spectral Analysis and Spectral Correlation 

Methods like FastKurtogram and Autogram have been developed to overcome the challenge of 

finding the effective frequency for demodulation. It is done by selecting frequency bands in 

which the filtered time signal, Squared Envelope Spectrum (SES) of the filtered signal, and 

autocorrelation of the filtered time signal’s envelope have the highest kurtosis respectively. The 

main disadvantage of these techniques is selecting a single frequency band for demodulation. 

Especially, the problem arises when multiple defects are present in different frequency bands 

because in this case only one defect is detected, and the others are overlooked. To solve this 

problem combined squared envelope spectrum (CSES) has been proposed [4]. 

Cyclic Spectral Analysis (CSA) [9] is another approach for condition monitoring of rotating 

machinery. This is a powerful method that separates and describes different 2nd-order 

cyclostationary components in terms of the spectral (carrier) frequency and the cyclic 

(modulation) frequency variables.  

Spectral Correlation (SC) is one of the main tools to define the two-dimensional Fourier 

Transform (FT) of the instantaneous autocovariance function of machine signals. To estimate 

the SC, various proposed methods have been discussed by [10]. High computational cost is the 

main drawback of these methods which hindered their application for condition monitoring of 

rotary machinery. [11] includes a new approach called ‘Cyclic Modulation Spectrum (CMS)’,  

it serves as a fast alternative to Spectral Correlation (SC) by providing a cascade of envelope 

spectra across all possible frequency bands. CMS is unified in the form of cyclostationary 

estimators, making it an efficient estimator of SC. A major drawback of the Cyclic Modulation 

Spectrum (CMS) is its inability to detect cyclic frequencies that exceed the frequency 
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resolution of the Short-Time Fourier Transform (STFT). Recently, Spectral Correlation (SC) 

has been computed using a fast algorithm to enhance its computational efficiency. This method 

also overcomes the limitation faced by CMS. The techniques mentioned above are considered 

as the linear transformations. An alternative nonlinear transformation is Cepstral analysis 

which was proposed by Ref. [13] and it has been used for several purposes such as speech 

analysis, modal analysis, and REBs diagnosis [14]. This method becomes more advanced in 

detecting periodicities in the spectrum of a signal by reducing a whole family of harmonics 

into a single cepstral line. Randall and Swahili [15]. By leveraging the features of cepstral 

analysis, Borghesani et al. [16] have proposed two approaches: cepstrum editing and cepstrum 

pre-whitening. These techniques are used to separate periodic and random components and to 

pre-whiten a signal, respectively. 

2.7 Spectral Amplitude Modulation (SAM) 

In this section, a generalized version of Cepstrum Pre-Whitening is developed. CPW is an 

effective approach for achieving the desired results of REB diagnosis [6] but it suffers from 

two major drawbacks. Firstly, the magnitude of a signal in the whole frequency domain is set 

to one, the signal-to-noise ratio (SNR) for the reconstructed signal is decreased hopefully and 

the frequency components of noise have the same magnitude as the frequencies linked to the 

defect signals (carrier frequencies). Secondly, assuming bearing defect signals exhibit 2nd 

order cyclostationarity leads to the conclusion that the peaks related to damages do not have 

considerable amplitude in the real cepstrum [16]. In many cases, this assumption is not precise 

and always acceptable because the random slippage is not high, and the discrete components 

related to defects can be detected in both frequency and quefrency domains.  

In addition, a new envelope spectrum, namely the Log-Envelope Spectrum (LES), has been 

proposed by [18] to investigate 2nd order cyclostationary signals contaminated by highly non-

Gaussian and impulsive background noise. In the presence of sizable and non-periodic 

impulses, LES can be employed as a more robust alternative to SES for the computation of 

modified signals’ envelopes spectra. The only drawback of LES is related to the lower SNR. 

Therefore, it is recommended to use this indicator whenever impulsive noise exists in the 

signals. In this paper, rather than LES, the Fourier transform of the logarithm of the squared 

envelope signal is computed and it is called ‘‘LSES”. 

 
 
  

 

 

 

 

 Fig 11. Flowchart of SAM 
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Moshrefzadeh et. al [54] introduced a new empirical method for bearing fault diagnosis named 

spectral amplitude modulation (SAM). First, the magnitude and phase of a signal are calculated 

using Fourier transform (FT). Subsequently, different weights called magnitude order (MO) 

are given to the magnitude of the original signal and obtain edited amplitude, which is then 

combined with the actual phase to reconstruct a series of modified signals using inverse Fourier 

transform (iFT). Afterwards, the squared envelope spectrum (SES) of each modified signal is 

computed to extract fault characteristics. SAM can be performed without any additional input 

parameters and is proved to be an efficient, convenient and effective method. Moshrefzadeh 

employed SAM in condition monitoring and intelligent diagnosis to extract signal components 

with different energy levels.  

To implement and apply SAM, the last step requires to selection of the limits of MO. Thus, 

there is no theoretical restriction for choosing the upper limit of MO. a and b are two arbitrary 

numbers while a ≤ n ≤ b hereafter, the variable n is referred to as Magnitude Order (MO). 

However, it is reasonable to avoid very high values of b, since in that case only a few large 

peaks, mostly not linked to REB signals, will then dominate the magnitude spectrum and mask 

other components of the signal. On the other hand, new false components will be added to the 

SESs of modified signals for very low and negative values of MOs. In this condition, very low 

amplitude components in the magnitude spectrum of raw signal dominate the magnitude 

spectra of modified signals. In SAM, the magnitude calculated by Fourier transform is a global 

representation of the time process. Moreover, since MSES is constructed by viewing along the 

MO-axis, which deals with the invalid components under different weights.  

For practical reasons and to keep the approach as general as possible for REB diagnosis, the 

values of -0.2 and 1.5 for a and b are suggested and their validity will be examined with 

practical examples in the following section. Additionally, a simple yet effective approach is 

proposed to find the lowest acceptable value of MO which is called critical point since false 

peaks in the SESs of modified signals begin to appear for lower values than this. As all the 

SESs are normalized between 0 and 1, it can be deduced that the mean value of normalized 

SES of a signal related to noise will be very high. The reason is that many components in the 

normalized SES of noise are equal to one or have very high values. In contrast, a few peaks in 

a normalized SES will reduce its mean value. As the value of MO decreases, the effect of noise 

will gradually grow and, at the critical point, the modified signal will be completely noisy and 

therefore with the highest mean. For lower MO than the critical point, false peaks start to 

emerge in the SESs and the mean value of normalized SESs decreases subsequently. This 

characteristic of normalized SESs could be used to find the minimum acceptable value of 

negative MOs. The critical point is revealed as a maximum in a mean-MO plot. 

Ref [53] proposed Time-frequency spectral amplitude modulation (TFSAM) method, its main 

motive is to settle the above drawbacks and improve the SAM method. The proposed method 

is more robust than SAM since more detailed information of the amplitude is obtained in the 

time-frequency domain. In TFSAM, the amplitude and phase in the time-frequency domain are 

computed using short-time Fourier transform (STFT), by which means more accurate results 

can be obtained since the amplitude is not calculated as an average value over the whole-time 
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process. Furthermore, an indicator is proposed to select the optimal value of MO adaptively in 

order to acquire more evident fault characteristic frequencies in rolling bearing fault diagnosis. 

2.8 Cyclic Modulation Spectrum 

The CMS has been proposed by [11] as an estimator of the SC. Although the CMS proves to 

be a valid diagnostic tool in many situations, it has limited performance in general being 

constrained to the uncertainty principle: it cannot detect periodic patterns other than in the form 

of modulations whose frequencies are necessarily lower than the frequency resolution. As 

mentioned below in this paper, the CMS is also not properly calibrated to quantify modulation 

depth. Besides, computationally efficient algorithms for the estimation of the SC have been 

proposed early in the nineteens in Refs. [38,39], of which the FFT Accumulation Method 

(FAM) is the fastest. As far as the authors tell the FAM is still recognized as the most 

computationally efficient algorithm in the specialized literature. Unfortunately, its 

computational advantage comes at the price of a degradation of the statistical performance of 

the estimator. The cyclic frequency resolution and variance are non-uniform, meaning that 

estimation errors can be locally very high. This is probably unacceptable in the kind of 

applications targeted by this paper[11]. 

The CMS takes a different look at cyclostationary signals. It intends to track periodic flows of 

energy in frequency bands by evaluating the Fourier transform of the squared envelope at the 

output of a filter bank [11]. It is thus interpreted as a waterfall of envelope spectra. The CMS 

is efficiently computed as the Discrete Fourier Transform (DFT) of the spectrogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

2.9 Spectral Correlation (SC) 

The SC is defined as the double discrete Fourier transform of the instantaneous autocorrelation 

function (a Fourier series in time t and a Fourier transform in time-lag τ when continuous time 

is considered). In the case of a second-order cyclostationary signal, the SC displays a 

characteristic signature continuous in frequency f and discrete in cyclic frequency α. The SC 

may therefore be understood as a decomposition of the signal for the ‘‘modulation frequency” 

α and the ‘‘carrier frequency” f. A popular estimator of the SC is obtained from the so-called 

‘‘time-smoothed cyclic periodogram” [10,37] or, equivalently, the Averaged Cyclic 

Periodogram (ACP) [9] which is an extension of Welch’s method (also known in spectral 

analysis as the ‘‘Weighted-Overlapped-Segment-Averaging” method) to cyclostationary 

signals. 

Fig 12. (a) Spectral correlation estimated from the Averaged Cyclic Periodogram, 𝑺𝒙
𝑨𝑪𝑷 

(α,f), with Nw = 28 (Δf = 4 Hz; Δα = 0:01 Hz) and (b) its evaluation at f = 250 Hz together 

with the theoretical envelope of the peaks (dotted line) as obtained from a square 

modulation 

Fig 12. (a) displays the estimated SC as a colormap. It is seen that the vertical lines are correctly 

identified at 𝛼0 and its multiples in a frequency band around the resonance at 250 Hz. The SC 

evaluated at the resonance frequency,  𝑆𝑥
𝐴𝐶𝑃(α, 𝑓0), was displayed in Fig 12. (b): it is expected 

to show the Fourier spectrum of the square modulation whose theoretical envelope (the cardinal 

sine function) was indicated by the black dotted line. 

Ref [13] introduces a fast algorithm to estimate the SC, the ‘‘Fast Spectral Correlation” (Fast-

SC), which essentially proceeds from the Short-Time Fourier Transform (STFT). It may be 

seen as a correction of the CMS such as to make it approach the ideal SC. Most of the 

computational effort is required for the calculation of the STFT, which makes many efficient 

implementations now exist in commercial software. This makes the proposed algorithm weakly 
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intrusive and of low complexity. For all these reasons, the approach proposed by Jérôme Antoni 

et. al should participate in making the SC a more widely spread tool in condition monitoring. 

Another contribution is to maintain a simple vision of cyclostationarity. While the CMS is 

simply interpreted as the detection of periodic flows of energy in frequency bands, the Fast-SC 

extends it to the detection of periodic flows across different frequency bands. This should help 

to make cyclostationarity easier to interpret while not sacrificing the usage of its most 

performant tools. 

The central tool for the ‘‘cyclic spectral analysis” of machine signals is the Spectral Correlation 

(SC) which displays at once, in the form of a bi-spectral map shown below, the whole structure 

of modulations and carriers in a signal. 

 

Fig 13. represents the estimation of Spectral Correlation (SC) from a signal involves several 

steps, each leveraging different aspects of the Short-Time Fourier Transform (STFT). The 

process can be described as follows: 

1. Short-Time Fourier Transform (STFT) Calculation: 

The signal is first subjected to a Short-Time Fourier Transform, denoted as 𝑋STFT(𝑖,𝑓), where 𝑖 

represents the time index and 𝑓 the frequency. 

2. Branching into Different Analysis Paths: 

After computing the STFT, the process branches into three distinct paths depending on the 

required resolution and computational efficiency: 

Path 1: Phase Correction with Fine Frequency Resolution (Δf): 

• The STFT undergoes phase correction, resulting in 𝑋𝑤 (𝑖,𝑓). 
• This corrected signal is then used to compute the Averaged Cyclic Periodogram (ACP), 

producing  𝑆𝑥
𝐴𝐶𝑃(𝛼, 𝑓). 

• The ACP method provides an estimate of the Spectral Correlation, denoted as 𝑆𝑥 (𝛼,𝑓). 
 
 
 

Fig 13. Connections between the spectral quantities 
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Path 2: Coarse Frequency Resolution (Δf): 

• Without phase correction, the STFT directly leads to the computation of the Cyclic 

Modulation Spectrum (CMS), resulting in  𝑆𝑥
𝐶𝑀𝑆(𝛼, 𝑓). 

• The CMS method offers another estimate of the Spectral Correlation, 𝑆𝑥 (𝛼,𝑓). 

Path 3: Fine Frequency Resolution (Δf) with Fast-SC Method: 

• A variant of the STFT is applied to quickly compute the Spectral Correlation using the 

Fast-SC method, yielding  𝑆𝑥
𝐹𝑎𝑠𝑡(𝛼, 𝑓). 

• The Fast-SC method provides an efficient estimate of the Spectral Correlation, 𝑆𝑥 (𝛼,𝑓). 
3. Resulting Estimates of Spectral Correlation: 

Each of these methods ACP, CMS, and Fast-SC provides estimates of the Spectral Correlation, 

𝑆𝑥 (𝛼,𝑓), which can be utilized for various signal analysis purposes. These methods differ in 

their computational requirements and the resolution of the resulting SC estimates, offering 

flexibility depending on the specific needs of the analysis. 

 

 

 

 

Fig 14. 3D comparison of estimates of the SC obtained from (a) the ACP, (b) the CMS 

and (c) the Fast-SC 



27 
 

The section describes the application of the Fast-SC (Fast Spectral Correlation) method in 

various experiments, particularly for diagnostics related to bearing signatures in small fans 

(first tested fan, second tested fan) & signature of the outer race in rolling element bearings. It 

notes that some of the signals in these experiments are too long for analysis using ACP within 

a reasonable time frame. This limitation necessitates the use of more efficient techniques, 

specifically CMS (Cyclic Modulation Spectrum) and Fast-SC. 

Methods: 

1. Outer Race Signature: The outer race of a rolling element bearing is a critical 

component in diagnostics. Vibration patterns from defects in this area are of particular 

concern. 
2. Signal Length: Some signals collected during these experiments are too long for 

traditional analysis methods like ACP, as they require excessive computation time. 
3. Use of CMS and Fast-SC: In cases where ACP is impractical, CMS and Fast-SC are 

the preferred techniques. These methods are more efficient and better suited for 

handling long signals, allowing for the timely analysis of bearing diagnostics. 

The magnitude and the number of harmonics linked to the incriminated cyclic frequency may 

serve as an indicator of severity of the fault. As advocated in Ref. [11], the Spectral Coherence 

is computed instead of the SC. The Spectral Coherence is a normalized version of the SC with 

magnitude normalized within 0 and 1. It may be directly interpreted as the ‘‘depth” of a 

modulation with frequency α and carrier f. The Spectral Coherence may also be interpreted as 

the SC of the whitened signal, which tends to equalize regions with very different energy levels 

and thus to magnify weak cyclostationary signals. In the following, the Spectral Coherence will 

serve as a basis to define the Squared Envelope Spectrum (SES) measured in a given frequency 

band [f1;f2] and, a newly proposed spectral quantity, the ‘‘Enhanced Envelope Spectrum” 

(EES). 

 

 

 

 

Fig 15. Connection between the Spectral Correlation and the envelope spectra 
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The process of obtaining the Squared Envelope Spectrum (SES) and Enhanced Envelope 

Spectrum (EES) from a signal involves a series of well-defined steps, beginning with Spectral 

Correlation (SC) and continuing through Spectral Coherence calculations. Each step reveals 

important features of the signal's behavior, particularly in relation to cyclic frequencies and 

envelope characteristics. 

The steps are outlined as follows: 

1. Spectral Correlation (𝑆𝑥 (𝛼,𝑓)): 
▪ The first stage involves calculating the Spectral Correlation (SC) of the signal, denoted 

as 𝑆𝑥(𝛼,𝑓) where: 
• 𝛼 represents the cyclic frequency (related to periodic components). 
• 𝑓 represents the spectral frequency (related to the frequency content of the signal). 

▪ Spectral Correlation quantifies the periodic correlation between different frequency 

components within the signal. It captures how frequency components relate to each 

other over time. 
2. Spectral Coherence ((𝛾𝑥 (𝛼,𝑓)): 

▪ After calculating the Spectral Correlation, the next step is to compute the Spectral 

Coherence 𝛾𝑥 (𝛼,𝑓), which measures the degree of linear relationship between two 

frequency components at specific cyclic and spectral frequencies. 
▪ Spectral Coherence is essentially a normalized measure, allowing us to evaluate how 

strongly the frequency components are related at each cyclic frequency 𝛼. 
3. Derivation of Envelope Spectra: 

Based on the Spectral Coherence, two distinct envelope spectra can be derived: 

a. Squared Envelope Spectrum (SES): 
• The Squared Envelope Spectrum is denoted as  𝑆𝑥

𝑆𝐸𝑆(𝛼). 
• The SES represents the power of the signal's envelope at different cyclic frequencies 

𝛼. 
• It is useful for analyzing how much power is associated with the signal's periodic 

components, making it an essential tool in diagnostics. 
b. Enhanced Envelope Spectrum (EES): 
• The Enhanced Envelope Spectrum is represented as  𝑆𝑥

𝐸𝐸𝑆(𝛼). 
• The EES provides an enhanced view of the signal’s envelope characteristics, offering 

more refined details than the SES. It is typically employed for deeper analysis where 

subtle signal features are critical. 
4. Resulting Envelope Spectra: 

Both the SES and EES offer valuable insights into the signal's envelope behavior: 

• SES focuses primarily on the power aspects of the signal’s envelope. 
• EES emphasizes enhanced details for a more comprehensive analysis. 

These envelope spectra are important tools in signal processing, particularly for diagnosing 

faults in mechanical systems like bearings, where envelope modulation patterns often contain 

critical information. 
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The process and connection between SC, Spectral Coherence, SES, and EES can be visualized 

in the referenced fig. 15, highlighting the relationships among these key signal analysis 

components. 

Therefore, the combination of Spectral Correlation, Spectral Coherence, SES, and EES 

provides a comprehensive framework for understanding and diagnosing the periodic behavior 

and envelope characteristics of signals, particularly in rotating machinery and similar 

applications. 
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The upcoming section shows the development of diagnostic algorithms for the Rolling Bearing 

Elements. Over the years, the Case Western Reserve University (CWRU) bearing data center 

[41] has been recognized as a benchmark dataset for bearing diagnostics. Therefore, the 

performance of the advanced signal processing techniques (which is mentioned in section 1.4) 

is discussed in this chapter. The comparative analysis uses 5 the diagnostic algorithms to 

determine the most effective diagnostic approach among them.  

 

 

 

Nomenclature 
 
CWRU 
DE   

Case Western Reserve University 
Drive-End Acceleration 

FE Fan-End Acceleration 
BA     Base Plate Acceleration 
FK FastKurtogram 
FA FastAutogram 
SAM Spectral Amplitude Modulation 
SC      Spectral Coherence 
M1-3                Methods 1-3 
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3. Experimental Analysis 

3.1 Experimental setup 

The Case Western Research University (CWRU) test rig consists of a 2 hp Reliance Electric 

motor driving a shaft on which a torque transducer and encoder are mounted, as shown in Fig. 

15. Torque is applied to the shaft via a dynamometer and electronic control system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Faults ranging in diameter from 0.007 to 0.028 inches (0.18 to 0.71 mm) were seeded on the 

rolling elements of the inner and outer races of the drive-end and fan-end bearings (described 

in Table 1) of the motor using electro-discharge machining (EDM). Acceleration was always 

measured in the vertical direction on the housing of the drive-end bearing (DE), and sometimes 

also in the vertical direction on the fan-end bearing housing (FE) and on the motor supporting 

base plate (BA). The sample rates used were 12 kHz for some tests and 48 kHz for others. The 

machine was then run at a constant speed for motor loads of 0 to 3 HP (approximate motor 

speeds of 1797 to 1720 rpm).  

Table 1. Bearing Information 

Drive end bearing: 6205-2RS JEM SKF, Deep groove ball bearing 
Defect frequencies: (multiple of running speed in Hz) 

BPFI BPFO FTF BSF 
5.4152 3.5848 0.39828 4.7135 

 

Fan-End 
Bearing 

Torque 
Transducer &  

Encoder 
Dynamometer Drive-End 

Bearing 
Electric 
Motor 

Fig 16. CWRU bearing test rig 
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Fan end bearing: 6203-2RS JEM SKF, Deep groove ball bearing 
Defect frequencies: (multiple of running speed in Hz) 

BPFI BPFO FTF BSF 
4.9469 3.0530 0.3817 3.9874 

3.2 Diagnostic Methods 

These data sets utilize three diagnostic methods. As the final diagnostic tool, all these methods 

use the squared envelope spectrum. However, to obtain the envelope signal different 

preprocessing steps were carried out as an initial step.  

For all data sets, first Method 1 – envelope analysis of the raw signal was applied. When 

Method 1 proved unsuccessful Methods 2 and 3 were applied accordingly. This study primarily 

aims to test the diagnostic algorithms, which is why complex methods were applied to data that 

could not be diagnosed using Method 1. 

3.2.1 Method 1: Envelope Analysis of the raw signal 

The raw vibration signal from a machine is directly analyzed without complex preprocessing 

or filtering steps. This full bandwidth signal retains all the information, including noise and 

other potential disturbances. In envelope analysis, the amplitude modulation of the signal is 

extracted. This is particularly effective when fault-related frequencies are modulated onto 

higher-frequency carrier waves. To obtain the envelope, the raw signal is typically rectified 

(squared) to smooth out the high-frequency components and leave the modulated envelope 

signal. The spectrum of this envelope is then computed to detect bearing fault frequencies. 

3.2.2 Method 2: Cepstrum Pre-whitening 

This method consists of the following steps: 

1. Cepstrum pre-whitening to set all frequency components to the same magnitude 

2. Envelope analysis (squared envelope spectrum) of the full bandwidth signal 

Ref [43] proposed this method and it has been applied to variable speed applications in [16]. 

The basis of its functionality is that since all spectral bands have the same power spectral 

density, those with more impulsivity will tend to dominate the time records and show impulsive 

responses that are typical of bearing faults. Resonances are also removed, but this can mean 

that resonances at frequencies that do not carry bearing fault information are less likely to mask 

those that do. 

3.2.3 Method 3: Benchmark Method 

This method is a streamlined version of the benchmark method proposed in [1], which was 

based on the semi-automated bearing diagnostics procedure suggested in [44], and consisted 

of the following steps: 
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1. Discrete/random separation (DRS) to remove deterministic (discrete frequency) components 

2. Spectral kurtosis to determine the most impulsive band, followed by bandpass filtering 

3. Envelope analysis (squared envelope spectrum) of the bandpass-filtered signal 

The separation of random and deterministic components was achieved using discrete/random 

separation (DRS) [45], based on the transfer function between the signal and a delayed version 

of itself. Ideally, such a function would be unity at the frequencies of discrete components, 

since they remain correlated regardless of time lag. Random components become less 

correlated with increasing delay, so, provided the delay time is well chosen, the transfer 

function would be close to zero for these frequencies. This transfer function, obtained directly 

in the frequency domain (using transform size N), is then applied to the signal as a 

discrete/random separation filter. The DRS settings used in this paper – filter length N and 

delay Δ (in number of samples) – were established by trial and error on a small number of data 

sets, with N = 16384 and Δ = 500 chosen for the 12k data and N = 8192 and Δ = 500 used for 

the 48k data. 

3.3 Comparison of various fault's diameter  

As mentioned in Chapter 1, the four defects (Inner race, Outer race, Cage & Ball) in Rolling 

Bearing Elements are discussed in detail. Among the motor loads ranging from 0 to 3 HP in 

the bearing data center files. The 2 HP case was selected. Fault diameters ranging in 

small(0.007  inches), medium(0.014 inches), and high(0.021 inches) were considered.  

3.3.1 Damage Quantification and Comparative Analysis of Diagnostic Methods: 

This section details a methodical process for assessing and comparing the diagnostic 

techniques' ability to identify and quantify damage in the system. By performing a structured 

frequency analysis and filtering approach, this method isolates damage-related frequencies and 

calculates a standardized metric to evaluate each technique. The steps are as follows: 

1. Identification of Closest Frequency Match 

Each harmonic frequency is matched to the closest frequency f in the signal spectrum that 

corresponds to the target damage frequency fd. This step considers both the central damage 

frequency and any predefined sidebands, ensuring that relevant frequency components 

associated with each harmonic are captured. Identifying the nearest frequency provides a 

reliable foundation for peak analysis, which is crucial for assessing the presence of damage 

indicators in the frequency spectrum. 

2. Peak Spectrum Value Determination 

Around each damage frequency fd, a specific range is defined to locate the maximum peak 

value in the spectrum S. This peak value represents the highest spectral response near the 

damage frequency and is a critical indicator of potential damage severity. Ensuring that the 

peak within this range is accurately captured highlights the primary spectral components linked 

to damage. 
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3. Spectrum Filtering and New Spectrum Creation 

To enhance the analysis, significant peaks identified in S are removed to produce a new 

spectrum S new, that reflects the baseline spectral content. By excluding dominant peaks, S 

new enables a cleaner view of the underlying signal, free from interference from major damage-

related frequencies. This filtered spectrum is critical for establishing a baseline for measuring 

normalized damage and ensuring that comparisons are not biased by dominant peaks. 

4. Calculation of Normalized Damage Metric 

The final damage value for each method is determined by dividing the cumulative damage by 

the root-mean-square (RMS) of S new. This step yields a normalized damage metric, which 

standardizes the damage calculation across different diagnostic techniques, facilitating direct 

comparisons. This metric reflects each method’s sensitivity and precision in detecting and 

representing system damage, providing a consistent measure for determining the most effective 

diagnostic approach. 

This process results in a damage metric that offers insight into each method’s accuracy and 

reliability, guiding the selection of the most suitable diagnostic technique. By standardizing 

damage calculations, this method ensures a robust comparative analysis, accounting for each 

method’s performance based on its peak response and overall effectiveness in analyzing the 

underlying spectrum. This structured framework aids in objectively identifying the optimal 

diagnostic method based on quantitative evaluation criteria. 

3.3.2 Error Analysis method: 

The error analysis method is designed to quantitatively evaluate each diagnostic approach's 

accuracy by measuring how closely detected frequencies align with expected damage 

frequencies. This method provides an objective comparison, grounded in measurable results, 

by defining an acceptable tolerance around expected damage frequencies and classifying error 

on a scale of 0 to 1: 

Tolerance Definition: 

A tolerance band of ±0.3% around the expected damage frequencies, namely the Ball Pass 

Frequency of Inner Race (BPFI) and its harmonic (2×BPFI), along with their sidebands, is 

established. Frequencies detected within this range are considered accurate detections, 

indicating correct frequency identification by the diagnostic method. 

Error Value Scale: 

The error metric ranges from 0 to 1: 

Error = 1: Indicates that damage frequencies are present and accurately detected. 

Error = 0: Indicates failure to identify significant peaks at damage frequencies, suggesting the 

method’s limitations in detection accuracy. 
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This approach enables a quantitative evaluation of each technique’s precision, allowing for fair 

and objective comparison based on how effectively each diagnostic method detects damage 

frequencies within the specified tolerance range. 

3.3.3 Inner race damage: [12K_Drive-End_Bearing_Fault_Data] 

Here, the acceleration signal is measured on the fan-end, while the damage is in the drive-end 

bearing.  

For the Inner race, the figures given below show the results of the raw time signal with the red 

dash-dot line indicating the expected damage frequency of the first two -harmonics (BPFI & 

2*BPFI), and their respective sidebands frequencies. The presence of sidebands is often a 

strong indicator of modulation related to damage, further confirming fault presence.  

IR_007 (107FE) (small fault) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 17. Raw Signal 

Fig 19. Autogram, Normalized SES Fig 18. Autogram 
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Fig 20. FastKurtogram Fig 21. FastKurtogram, Normalized SES 

Fig 22. FastAutogram Fig 23. FastAutogram, Normalized SES 

Fig 24. SAM, Normalized MSES Fig 25. SC, Normalized EES 



37 
 

 

 

 

 

 

 

 

 

 

In the analysis of the 107FE data file, SAM proved to be the most effective diagnostic approach 

for both identifying and quantifying the damage. The quantification method described in 

Section 3.3.1 yielded a damage value of 80.7334, which is marginally higher than those 

obtained from other techniques, suggesting a more sensitive detection. Furthermore, the error 

analysis method outlined in Section 3.3.2 resulted in an error value of 0.9045, reinforcing the 

detection accuracy. This low error value indicates a strong alignment between the detected 

damage frequencies and the anticipated damage patterns, supporting the conclusion that 

damage is indeed present in the system. 

IR_014 (171FE) (medium fault) 

 

 

 

 

 

 

Fig 26. Smoothed SC Fig 27. Damage value for file 107FE 

Fig 28. Raw Signal 
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Fig 29. Autogram Fig 30. Autogram, Normalized SES 

Fig 31. FastKurtogram Fig 32. FastKurtogram, Normalized SES 

Fig 33. FastAutogram Fig 34. FastAutogram, Normalized SES 



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the analysis of the 171FE data file, Autogram proved to be the most effective diagnostic 

approach for both identifying and quantifying the damage. The quantification method 

described in Section 3.3.1 yielded a damage value of 90.1652, which is marginally higher than 

those obtained from other techniques, suggesting a more sensitive detection. Furthermore, the 

error analysis method outlined in Section 3.3.2 resulted in an error value of 0.9502, reinforcing 

the detection accuracy. This low error value indicates a strong alignment between the detected 

damage frequencies and the anticipated damage patterns, supporting the conclusion that 

damage is indeed present in the system. 

 

 

 

 

 

 

 

Fig 35. SAM, Normalized MSES Fig 36. SC, Normalized EES 

Fig 37. Smoothed SC Fig 38. Damage value for file 171FE 
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IR_021 (211FE) (high fault) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 39. Raw Signal 

Fig 40. Autogram Fig 41. Autogram, Normalized SES 

Fig 42. FastKurtogram Fig 43. FastKurtogram, Normalized SES 
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Fig 44. FastAutogram Fig 45. FastAutogram, Normalized SES 

Fig 46. SAM, Normalized MSES Fig 47. SC, Normalized EES 

Fig 48. Smoothed SC Fig 49. Damage value for file 211FE 
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In the analysis of the 211FE data file, FastAutogram proved to be the most effective diagnostic 

approach for both identifying and quantifying the damage. The quantification method 

described in Section 3.3.1 yielded a damage value of 77.7228, which is marginally higher than 

those obtained from other techniques, suggesting a more sensitive detection. Furthermore, the 

error analysis method outlined in Section 3.3.2 resulted in an error value of 0.9692, reinforcing 

the detection accuracy. This low error value indicates a strong alignment between the detected 

damage frequencies and the anticipated damage patterns, supporting the conclusion that 

damage is indeed present in the system. 

3.3.4 Outer race damage: [12K_Drive-End_Bearing_Fault_Data] 

Here, the acceleration signal is measured on the fan-end, while the damage is in the drive-end 

bearing.  

For the Outer race, the figures given below show the results of the raw time signal with the 

green dash-dot line indicating the expected damage frequency of the first two -harmonics 

(BPFO & 2*BPFO), and no sideband frequencies are present (as mentioned in Table 1). The 

significant peaks are identified at the damage frequencies to analyze the frequency spectrum 

for each technique. Finally, a bar plot was shown to find the most effective diagnostic approach. 

The effectiveness is quantified by a damage value, which presumably measures the prominence 

of the damage frequencies. 

OR_007 (132FE) (small fault) 

 

   

 

 

 

 

Fig 50. Raw Signal 
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Fig 51. Autogram Fig 52. Autogram, Normalized SES 

Fig 53. FastKurtogram Fig 54. FastKurtogram, Normalized SES 

Fig 55. FastAutogram 
Fig 56. FastAutogram, Normalized SES 
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In the analysis of the 132FE data file, Autogram proved to be the most effective diagnostic 

approach for both identifying and quantifying the damage. The quantification method 

described in Section 3.3.1 yielded a damage value of 69.3021, which is marginally higher than 

those obtained from other techniques, suggesting a more sensitive detection. Furthermore, the 

error analysis method outlined in Section 3.3.2 resulted in an error value of 0.9878, reinforcing 

the detection accuracy. This low error value indicates a strong alignment between the detected 

damage frequencies and the anticipated damage patterns, supporting the conclusion that 

damage is indeed present in the system. 

 

 

 

 

 

Fig 57. SAM, Normalized MSES Fig 58. SC, Normalized EES 

Fig 59. Smoothed SC Fig 60. Damage value for file 132FE 
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OR_014 (199FE) (medium fault) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 61. Raw Signal 

Fig 62. Autogram Fig 63. Autogram, Normalized SES 

Fig 64. FastKurtogram Fig 65. FastKurtogram, Normalized SES 
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In the analysis of the 199FE data file, it was concluded that no damage is present. Using the 

quantification method outlined in Section 3.3.1, the approach yielded a damage value of 

3.5926, which, although slightly higher than other techniques, suggests this method may have 

greater sensitivity in detecting even minor anomalies. The error analysis in Section 3.3.2 

produced an error value of 0.5523, highlighting the method's accuracy in this case. This 

relatively low error indicates an alignment with expected non-damage frequencies, confirming 

Fig 66. FastAutogram Fig 67. FastAutogram, Normalized SES 

Fig 68. SAM, Normalized MSES Fig 69. SC, Normalized EES 

Fig 70. Smoothed SC 
Fig 71. Damage value for file 199FE 
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that no significant damage patterns were detected, thus supporting the conclusion of no damage 

in the system. 

OR_021 (236FE) (high fault) 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 72. Raw Signal 

Fig 73. Autogram Fig 74. Autogram, Normalized SES 

Fig 75. FastKurtogram Fig 76. FastKurtogram, Normalized SES 
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In the analysis of the 236FE data file, SAM proved to be the most effective diagnostic approach 

for both identifying and quantifying the damage. The quantification method described in 

Section 3.3.1 yielded a damage value of 54.6891, which is marginally higher than those 

obtained from other techniques, suggesting a more sensitive detection. Furthermore, the error 

analysis method outlined in Section 3.3.2 resulted in an error value of 0.9957, reinforcing the 

detection accuracy. This low error value indicates a strong alignment between the detected 

Fig 77. FastAutogram 
Fig 78. FastAutogram, Normalized SES 

Fig 79. SAM, Normalized MSES Fig 80. SC, Normalized EES 

Fig 81. Smoothed SC Fig 82. Damage value for file 236FE 
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damage frequencies and the anticipated damage patterns, supporting the conclusion that 

damage is indeed present in the system. 

3.3.5 Ball damage: [12K_Drive-End_Bearing_Fault_Data] 

Here, the acceleration signal is measured on the fan-end, while the damage is in the drive-end 

bearing.  

For the Ball, the figures given below show the results of the raw time signal with the black 

dash-dot line indicating the expected damage frequency of the first two -harmonics (BPFI & 

2*BPFI), and their respective sidebands frequencies. The presence of sidebands is often a 

strong indicator of modulation related to damage, further confirming fault presence.  

B_007 (120FE) (small fault) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 83. Raw Signal 

Fig 84. Autogram Fig 85. Autogram, Normalized SES 
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Fig 86. FastKurtogram Fig 87. FastKurtogram, Normalized SES 

Fig 88. FastAutogram 
Fig 89. FastAutogram, Normalized SES 

Fig 90. SAM, Normalized MSES Fig 91. SC, Normalized EES 
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In the analysis of the 120FE data file, it was concluded that no damage is present. Using the 

quantification method outlined in Section 3.3.1, the approach yielded a damage value of 

17.7376, which, although slightly higher than other techniques, suggests this method may have 

greater sensitivity in detecting even minor anomalies. The error analysis in Section 3.3.2 

produced an error value of 0.6942, highlighting the method's accuracy in this case. This 

relatively low error indicates an alignment with expected non-damage frequencies, confirming 

that no significant damage patterns were detected, thus supporting the conclusion of no damage 

in the system. 

B_014 (187FE) (medium fault) 

 

 

 

 

 

 

 

Fig 92. Smoothed SC 
Fig 93. Damage value for file 120FE 

Fig 94. Raw Signal 
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Fig 95. Autogram 
Fig 96. Autogram, Normalized SES 

Fig 97. FastKurtogram Fig 98. FastKurtogram, Normalized SES 

Fig 99. FastAutogram Fig 100. FastAutogram, Normalized SES 
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In the analysis of the 187FE data file, it was concluded that no damage is present. Using the 

quantification method outlined in Section 3.3.1, the FastAutogram approach yielded a damage 

value of 11.3045, which, although slightly higher than other techniques, suggests this method 

may have greater sensitivity in detecting even minor anomalies. The error analysis in Section 

3.3.2 produced an error value of 0.2227, highlighting the method's accuracy in this case. This 

relatively low error indicates an alignment with expected non-damage frequencies, confirming 

that no significant damage patterns were detected, thus supporting the conclusion of no damage 

in the system. 

The initial analysis, focused solely on the Ball, detected no significant damage. However, upon 

further investigation using advanced diagnostic techniques, additional peaks were identified, 

specifically in the Cage, highlighted in blue. These findings suggest the presence of potential 

damage in the Cage component, which was not apparent during the initial review. 

 

 

 

Fig 101. SAM, Normalized MSES Fig 102. SC, Normalized EES 

Fig 103. Smoothed SC Fig 104. Damage value for file 187FE 
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Fig. 105 visually confirms the distinction between the damage assessments for the Ball and 

Cage. The advanced techniques revealed a damage value of 53.5390 for the Cage, with an 

associated error value of 0.7291. This reinforces the importance of comprehensive analysis 

involving both components to ensure accurate detection and diagnosis. 

B_021 (224FE) (high fault) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig 106. Raw Signal 

Fig 107. Autogram Fig 108. Autogram, Normalized SES 

Fig 105. Damage value for file 187FE 
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Fig 109. FastKurtogram Fig 110. FastKurtogram, Normalized SES 

Fig 111. FastAutogram Fig 112. FastAutogram, Normalized SES 

Fig 113. SAM, Normalized MSES Fig 114. SC, Normalized EES 
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In the analysis of the 224FE data file, it was concluded that no damage is present. Using the 

quantification method outlined in Section 3.3.1, the approach yielded a damage value of 

10.3737, which, although slightly higher than other techniques, suggests this method may have 

greater sensitivity in detecting even minor anomalies. The error analysis in Section 3.3.2 

produced an error value of 0.2364, highlighting the method's accuracy in this case. This 

relatively low error indicates an alignment with expected non-damage frequencies, confirming 

that no significant damage patterns were detected, thus supporting the conclusion of no damage 

in the system. 

3.4 Summary of Comparison 

In summary, the comparison of varying fault diameters (small: 0.007 inches, medium: 0.014 

inches, and high: 0.021 inches) confirms a direct correlation between defect size and the 

severity of bearing performance issues. The analysis in section 3.3 highlights that as fault 

diameter increases, there is a significant rise in vibration and noise levels, indicating greater 

instability across all defect types (Inner Race, Outer Race, Cage, and Ball) under a 2 HP load. 

This clear relationship between fault size and operational impact emphasizes the need for 

effective monitoring to manage potential degradation in bearing performance. 

Furthermore, the study supports the efficacy of advanced processing techniques described in 

section 1.4 for accurate fault detection. These methods allow for the identification of fault 

presence through maximum peaks in spectral analysis, while low or minimum peak spectra 

indicate an absence of damage, validating the condition of the bearing. This reliable 

differentiation between healthy and damaged states underscores the importance of spectral 

analysis in preventive maintenance. 

In conclusion, the combination of fault diameter analysis and advanced spectral processing 

techniques is crucial for proactive maintenance, enhancing the overall reliability and lifespan 

of bearings. By enabling early detection of faults, these techniques help prevent unexpected 

breakdowns and ensure stable operation across various conditions, contributing to the 

sustainable and efficient performance of rolling element bearings. 

Fig 115. Smoothed SC Fig 116. Damage value for file 224FE 
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Here, there are some special cases to be known, 

Case 1: Electrical noise 

This case highlights a scenario where the signal, recorded from the fan end (FE), is significantly 

corrupted by electrical noise across each diagnostic technique. The presence of this noise 

introduces repetitive transients in the time waveform, which can mimic fault signatures or 

obscure real fault signals. 

In the data file for 187FE, despite the presence of transients, no actual bearing damage is 

present. However, peaks are still visible in the frequency spectrum for the cage component, 

which is highlighted in blue. This suggests that the observed peaks may be an artifact of 

electrical noise rather than a true indication of a bearing fault. When comparing these results 

to the benchmark study discussed in section 3.2.3, the fault diagnosis result for this case falls 

under the categories N1 or N2 (not diagnosable) according to benchmark method 3. This 

categorization reflects the inability to reliably diagnose any bearing fault due to the 

overwhelming influence of noise and the absence of distinct fault-related features in the signal. 

 

 

 

 

 

 

 

 

 

Fig 117. Autogram, Normalized SES Fig 118. FastKurtogram, Normalized SES 

Fig 119. FastAutogram, Normalized SES  
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Case 2: Impulsive noise 

In the case of data File 275DE indicates a damage in inner ring measured in the fan-end, the 

signal exhibits non-stationary characteristics, which means that its statistical properties change 

over time. This non-stationarity often emphasizes impulses in the signal, making it challenging 

to analyze using conventional steady-state diagnostic techniques. However, these impulses can 

sometimes be indicative of underlying faults, especially in rotating machinery like bearings. 

Diagnosability with Benchmark Methods: 

Method 1 & Method 2: The fault in 275DE is partially diagnosable, as indicated by the P1 

category under both methods. This category implies that while some fault-related features (such 

as discrete spectral components) are visible, they may not be prominent or dominant in the 

spectrum, requiring careful interpretation. 

Method 3: In contrast, Method 3 does not identify a fault in this case. This result underscores 

the limitations of Method 3 in handling non-stationary signals where fault indicators might be 

present only intermittently or in weaker forms that this method cannot detect. 

Autogram and Maximum Kurtosis: 

The Autogram analysis (a tool used for enhanced fault detection by emphasizing impulsive 

components) shows the highest kurtosis value of 5.008 at level 4, node 4. Kurtosis is a statistical 

measure of the "peakedness" of the data, with higher values often indicating the presence of 

transient, impulse-like features, which are characteristic of bearing faults. The maximum 

kurtosis achieved in this case confirms that the signal contains impulsive events likely related 

to a defect. 

 

Fig 120. SAM, Normalized MSES  
Fig 121. SC, Normalized EES 
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Fig 122. Raw Signal  

Fig 123. Autogram Fig 124. Autogram, Normalized SES 

Fig 125. FastKurtogram Fig 126.  FastKurtogram, Normalized SES 
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The Autogram technique stands out by yielding a damage value of 49.8796, which is notably 

higher compared to other diagnostic methods. Additionally, the error value of 0.6546 confirms 

the condition is partially diagnosable, aligning with the findings described earlier in Case 2. 

 

 

 

Fig 127. FastAutogram Fig 128. FastAutogram, Normalized SES 

Fig 129. SAM, Normalized SES Fig 130. SC, Normalized EES 

Fig 132. Damage value for file 275DE Fig 131. Smoothed SC 

Fig 129. SAM, Normalized MSES 
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4. Results and Discussions 

4.1 Data records 

From the benchmark dataset of bearing data center for bearing diagnostics, it has the 

information for nearly 161 data sets in a .mat file. The data sets are grouped into four categories 

such as 12K Drive-end fault, 48K Drive-end fault, and 12K fan end fault as mentioned in 

section 3.1 and faulty bearing location. Each group contains the data sets for inner and outer 

race faults and rolling element faults. Meanwhile, outer race faults are classified into three 

categories corresponding to the fault position relative to the load zone: ‘centred’ (fault in the 

6.00 o’clock position), ‘orthogonal’ (3.00 o’clock) and ‘opposite’ (12.00 o’clock).  

4.2 Characterisation of all data sets 

To effectively evaluate the performance of bearing diagnostic algorithms, it is essential to 

classify the available data sets based on their diagnosability and fault characteristics. This 

classification not only ensures a rigorous testing framework but also highlights the strengths 

and limitations of the algorithms under varying diagnostic challenges. The categorization 

scheme described below serves as a guide for interpreting diagnostic results across different 

scenarios, ranging from easily diagnosable faults to cases where identifying faults is highly 

challenging or nearly impossible. 

Categories of Diagnosis Outcomes 

The data sets are divided into three primary categories: Y (Yes), P (Partial), and N (No). Each 

category reflects the level of diagnostic success and the characteristics of the data. These are 

further subdivided to provide more granular insights into the fault diagnostic capabilities. 

1. Y Category: Clearly Diagnosable Data 

Data sets in this category represent cases where faults are identifiable with relative ease, using 

both traditional and advanced diagnostic methods. 

• Y1: Classic Characteristics 

o Diagnosis Success: Yes 

o Description: The data exhibit classic fault signatures, which are evident in both 

the time and frequency domains. Examples include: 

▪ Clear periodic impacts in the time-domain waveform. 

▪ Well-defined fault frequencies in the spectrum (e.g., ball pass 

frequency). 

o Use Case: Useful for benchmarking algorithms under ideal conditions. 
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• Y2: Non-Classic Characteristics 

o Diagnosis Success: Yes 

o Description: The data contain fault characteristics, but they deviate from classic 

patterns. This could include: 

▪ Weak or distorted fault signals in the time domain. 

▪ Frequency components with unusual amplitudes or harmonics. 

o Use Case: Tests the robustness of algorithms in handling variations from ideal 

fault patterns. 

2. P Category: Partially Diagnosable Data 

The P category includes data sets where faults can be partially identified, but with some 

ambiguity or weaker signals. These data sets are more challenging and serve as a critical test 

for the effectiveness of advanced algorithms. 

• P1: Probable Diagnosis 

o Diagnosis Success: Partial 

o Description: The envelope spectrum shows discrete components at expected 

fault frequencies, but these components are not dominant. 

▪ Fault peaks may be overshadowed by noise or other signals. 

o Use Case: Evaluates the algorithm’s ability to distinguish weak fault signals 

from background noise. 

• P2: Potential Diagnosis 

o Diagnosis Success: Partial 

o Description: The envelope spectrum displays smeared or broadened 

components, roughly aligning with the expected fault frequencies. 

▪ Fault patterns are less distinct and may require advanced techniques for 

interpretation. 

o Use Case: Tests the capability of the algorithm to identify subtle fault 

indicators. 
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3. N Category: Non-Diagnosable Data 

Data sets in the N category are either too noisy or contain non-relevant patterns, making fault 

diagnosis extremely difficult or impossible. 

• N1: Non-Diagnosable with Other Identifiable Issues 

o Diagnosis Success: No 

o Description: The data do not reveal any signs of the specified bearing fault, but 

other mechanical issues (e.g., shaft misalignment, looseness) are evident. 

▪ Such conditions may present as sideband frequencies or harmonics. 

o Use Case: Assesses whether algorithms can differentiate between different fault 

types. 

• N2: Non-Diagnosable Resembling Noise 

o Diagnosis Success: No 

o Description: The data appear indistinguishable from noise, with little to no 

discernible fault features. 

▪ The only possible indicators might be weak shaft harmonics. 

o Use Case: Tests the algorithm's limits in extremely adverse conditions. 

Detailed Evaluation Parameters 

To ensure comprehensive testing, algorithms are evaluated using the following performance 

metrics: 

1. Fault Detection Accuracy: Measures the correctness of fault identification across 

different data sets. 

2. Sensitivity: Determines the algorithm's ability to detect even weak fault signals, 

especially in P and N categories. 

3. Computational Efficiency: Assesses how quickly and efficiently the algorithm 

processes data, critical for real-time applications. 

4. Robustness: Evaluates performance consistency under varying conditions, such as 

noise, load variations, and speed changes. 
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Table 1. Categorisation of Diagnosis Outcomes 

Diagnosis 

category 
Diagnosis 

success Explanation 

Y1 Yes Data is clearly diagnosable and shows classic fault characteristics 

in both time and frequency domains. 

Y2 Yes Data is diagnosable but shows non-classic fault characteristics in 

either or both time and frequency domains. 
 

P1 
 

Partial 
Data is probably diagnosable; the envelope spectrum contains 

discrete components at expected fault frequencies, though they are 

not dominant. 
 

P2 
 

Partial 
Data is potentially diagnosable; the envelope spectrum contains 

smeared components that roughly align with expected fault 

frequencies. 

N1 No Data is not diagnosable for the specified bearing fault but indicates 

other issues (e.g., looseness). 

N2 No Data is not diagnosable, resembling noise, with only shaft 

harmonics potentially observable in the envelope spectrum. 
 

This categorization framework provides a structured approach to evaluating the effectiveness 

of diagnostic algorithms, particularly under challenging conditions. By comparing 

performance across Y, P, and N data sets, this study aims to identify algorithms capable of 

delivering reliable and comprehensive fault diagnostics for rolling bearing systems. 

4.3 Summary of Results 

The data sets in these extreme categories are listed in Tables 2 and 3 respectively which exhibits 

a classical symptoms Y1 diagnosis and N1 & N2 diagnosis found to be a undiagnosable 

method. 

Data sets in Table 2, provides the information about clear fault indicators that could assist in 

understanding and quantifying spall (surface wear or chipping) size, which is often an indicator 

of fault severity. These data sets, with their well-defined fault characteristics, could serve as 

valid, high-quality training sets for machine learning models designed for fault diagnosis, 

enhancing model accuracy and reliability. 
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Table 2. Y1 diagnosis  

Fault type 

 IR Ball OR  
centred 

OR  
orthogonal 

OR  
opposite 

 
Drive-end 

12 kHz data 

 
107FE, 171FE, 209DE, 

209DE, 210DE 
211DE, 211FE, 212DE 

 
- 

 
132FE 

236FE 

144DE, 144BA, 145DE,     

145FE, 145BA, 146DE, 

146FE, 146BA, 147DE, 

147FE, 147BA 

 
156DE, 156FE, 
159DE, 160DE 

 
 
Drive-end 

48 kHz data 

 
213, 215FE 

 
- 

135 
136 
137 
138 

 
148, 149, 
150, 151 

 
161DE, 162, 

163DE,163FE,164 

 
 
 
 
 
Fan-end 
12 kHz data 

278DE, 278FE, 
279DE, 280DE, 
280BA, 281DE, 
274FE, 275FE, 
276FE, 276BA, 
277FE,  277BA, 
271DE, 271FE, 
271BA, 272DE, 
272BA, 273DE, 
273FE, 273BA 

 

 
 
 
 
- 

 
 
 

313DE, 

313FE, 

315DE 

 
 

310DE, 310FE, 
309DE, 311DE, 
311FE, 312FE, 
317DE, 317FE, 

317BA 
 

 
 
 
 
- 

 
 

Furthermore, the undiagnosable records listed in Table 3 might provide a robust test for any 

newly proposed diagnostic algorithms. 
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Table 3. N1 or N2 diagnosis  

Fault type 

 IR Ball OR  
centred 

OR  
orthogonal 

OR  
opposite 

 
 
Drive-end 

12 kHz data 

  
 

3001, 3002, 
3003, 3004 

118, 119, 120DE, 

120FE, 120BA, 

121BA, 187FE, 

224DE, 224FE, 

224BA, 225DE, 

225FE 

197FE, 

197BA, 
198FE,  
198BA 
199FE,  

200 

 
- 

 
- 

 
Drive-end 

48 kHz data 
 

174 
122, 123, 124, 125,  
192, 228DE, 229DE 

202FE, 
204FE 

 
- 

 
- 

 
 
 
Fan-end 
12 kHz data 

 
- 
 

 
282FE, 285FE, 
290DE, 290FE, 
292FE, 293DE 

 
 

 
 
- 

 
 

298BA 
 

 
 

302, 305FE, 
306, 307 
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4.4 Verification of Algorithms with Politecnico test rig 

The test was conducted at the DIRG Lab in the Department of Mechanical and Aerospace 

Engineering at Politecnico di Torino [7]. The experiment focused on evaluating high-speed 

aeronautical bearings under varying conditions, including changes in rotational speed, radial 

load, and damage levels. An accelerometer was strategically positioned on the shaft to capture 

precise vibration data. These datasets can serve as benchmarks for comparing and analyzing 

the performance of diagnostic algorithms for rolling bearings. 

 

 

 

 

 

 

 

                                                                                                                                                                                                                   

 

 

 

4.4.1 Description of the tests 

In this paper, two different experimental sessions are seen: 

1. Session 1: Measurements of acceleration were taken for bearings with various damage 

levels, operating under different rotational speeds and radial loads. 

2. Session 2: The behavior of a single damaged bearing was monitored during an extended 

test lasting approximately 330 hours, performed at a constant speed and load. 

Variable speed and load 

The bearing in position B1 (Fig. 1a) was simply designed for easy removal from its support 

allowing for the evaluation of system responses when bearings with various types and degrees 

of damage were installed. 

Localized faults on the bearing components were introduced using a Rockwell tool, creating 

conical indentations either on the inner ring or on a single roller (cases 1A to 6A). The 

Fig 133. The test rig a) general view of the test rig; b) positions of the two 

accelerometers and the reference system; c) the shaft with its three roller bearings 

a) 

 

b) 

 

c) 
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approximate diameters of these circular indentations were measured as 150 mm, 250 mm, and 

450 mm. 

Each bearing, from 0A to 6A, was subjected to the same testing procedure: 

• A brief run at the minimum speed (100 Hz) with no load to ensure correct mounting. 
• Application of static loads, starting at 1000 N, then increasing to 1400 N and finally 

1800 N. 
• Incremental increases in shaft speed from 0 Hz to 500 Hz, in steps of 100 Hz. 
• Measurement of acceleration at each steady shaft speed. 

Table 4. List of the defects of the various bearings mounted in position B1 

Name Defect Dimension (µm) 
0A NO DEFECT - 
1A Diameter of an indentation on the inner ring 450 
2A Diameter of an indentation on the inner ring 250 
3A Diameter of an indentation on the inner ring 150 
4A Diameter of an indentation on a roller 450 
5A Diameter of an indentation on a roller 250 
6A Diameter of an indentation on a roller 150 

 

About filename: 
C: root of the file name, common to all files. 
n: integer value from 0 to 6, indicating the kind of the defect, e.g. 0A, 1A, ...,6A (Table4). 
fff: integer value from 100 to 500, indicating the nominal speed of the shaft (Hz). 
vvv: integer value corresponding to the voltage of the load cell (mV), indicating the applied 

load. 
m: integer value, indicating if the measurement has been repeated (m = 2) or not (m = 1) 
.mat Matlab file extension. 
 
For example, C4A_100_702_1.mat contains the first registration of acceleration signal 

produced by bearing 4A (defect on a roller), at the nominal rotational speed of 100 Hz (i.e. 

6000 rpm), under a load of about 1407 N which corresponds to an output of the load cell of 

702 mV (sensitivity 0.499 mV/N). 

Each file contains a matrix with the same name of the file (apart from the .m extension) with 

512,000 rows (time samples) and 6 columns (one for each channel). 

4.4.2 Experimental results 

The diagnostic algorithms were verified using data from the Politecnico test rig. The analysis 

focused on defects located on the inner ring and roller, evaluated under constant speed (100 

Hz) conditions with varying load scenarios: no load, minimum load, and maximum load. 
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Inner ring: (C1A - Maximum defect) 

According to Table 4, the C1A defect is categorized under the "Maximum Defect" classification 

of Inner ring. In the subsequent sections, we will examine the results obtained under varying 

load conditions and analyze their implications. 

No load (C1A_100_000_2)  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 134. Raw Signal 

Fig 135. Autogram, Normalized SES Fig 136. FastKurtogram, Normalized SES 

Fig 137. FastAutogram, Normalized SES Fig 138. SC, Normalized EES 
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Medium load (C1A_100_502_2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 139. Damage value for C1A_100_000_2 

 Fig 140. Raw Signal 

Fig 141. Autogram, Normalized SES Fig 142. FastKurtogram, Normalized SES 
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Maximum load (C1A_100_898_2)  

 

 

 

 

 

 

 

 

Fig 143. FastAutogram, Normalized SES Fig 144. SAM, Normalized MSES 

Fig 145. SC, Normalized EES Fig 146. Damage value for C1A_100_502_2 

Fig 147. Raw Signal  
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Fig 148. Autogram, Normalized SES Fig 149. FastKurtogram, Normalized SES 

Fig 149. FastAutogram, Normalized SES Fig 150. SAM, Normalized MSES 

Fig 151. SC, Normalized EES Fig 152. Damage value for C1A_100_898_2 
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Inner ring: (C3A - Minimum defect) 

According to Table 4, the C3A defect is categorized under the "Minimum Defect" classification 

of Inner ring. In the subsequent sections, we will examine the results obtained under varying 

load conditions and analyze their implications. 

No load (C3A_100_000_1)  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig 153. Raw Signal  

Fig 154. Autogram, Normalized SES Fig 155. FastKurtogram, Normalized SES 

Fig 156. FastAutogram, Normalized SES Fig 157. SAM, Normalized MSES 
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Medium load (C3A_100_505_1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 158. SC, Normalized EES Fig 159. Damage value for C3A_100_000_1 

Fig 160. Raw Signal  

Fig 161. Autogram, Normalized SES Fig 162. FastKurtogram, Normalized SES 
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Maximum load (C3A_100_906_1)  

 

 

 

 

 

 

 

 

Fig 163. FastAutogram, Normalized SES 
Fig 164. SAM, Normalized MSES 

Fig 165. SC, Normalized EES Fig 166. Damage value for C3A_100_505_1 

Fig 167. Raw Signal  
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Fig 168. Autogram, Normalized SES Fig 169. FastKurtogram, Normalized SES 

Fig 170. FastAutogram, Normalized SES 
Fig 171. SAM, Normalized MSES 

Fig 172. SC, Normalized EES Fig 173. Damage value for C3A_100_906_1 
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Roller: (C4A - Maximum defect) 

According to Table 4, the C4A defect is categorized under the "Maximum Defect" classification 

of Roller. In the subsequent sections, we will examine the results obtained under varying load 

conditions and analyze their implications. 

No load (C4A_100_000_1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 174. Raw Signal  

Fig 175. Autogram, Normalized SES Fig 176. FastKurtogram, Normalized SES 

Fig 177. FastAutogram, Normalized SES Fig 178. SAM, Normalized MSES 
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Medium load (C4A_100_496_1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 179. SC, Normalized EES Fig 180. Damage value for C4A_100_000_1 

Fig 181. Raw Signal  

Fig 182. Autogram, Normalized SES Fig 183. FastKurtogram, Normalized SES 
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Maximum load (C4A_100_895_1)  

 

 

 

 

 

 

Fig 184. FastAutogram, Normalized SES Fig 185. SAM, Normalized MSES 

Fig 186. SC, Normalized EES Fig 187. Damage value for C4A_100_496_1 

Fig 188. Raw Signal  
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Fig 189. Autogram, Normalized SES Fig 190. FastKurtogram, Normalized SES 

Fig 191. FastAutogram, Normalized SES Fig 192. SAM, Normalized MSES 

Fig 193. SC, Normalized EES Fig 194. Damage value for  C4A_100_895_1 



81 
 

4.5 Conclusion 

This thesis research is mainly focused on a comprehensive comparison of damage detection 

applied to rolling bearing elements using algorithms. The various types of defects are inner 

race, outer race, cage, and ball faults under different fault sizes and signal conditions. With the 

diagnostic algorithms, both the strengths and limitations of these methods has been highlighted, 

especially in challenging cases involving noise, non-stationarity, and complex fault patterns. 

The key findings from the comparative analysis indicate that: 

1. Fault Size Matters: The severity of bearing faults increases with fault size, leading to 

more prominent diagnostic features such as higher vibration and distinct spectral peaks. 

Algorithms that rely on amplitude thresholds and frequency domain analysis generally 

performed well in identifying larger faults, while smaller faults were sometimes missed 

or misinterpreted. 

2. Noise and Non-Stationarity: Signals corrupted with noise or showing non-stationary 

characteristics posed significant challenges to conventional diagnostic methods. In 

cases where electrical noise or repetitive transients were present, algorithms struggled 

to distinguish between true fault indicators and noise artifacts. Non-stationary signals, 

in particular, required advanced processing techniques to reveal intermittent fault-

related impulses. 

3. Autogram and Fast Kurtogram: 

o The Autogram analysis, with its high kurtosis values in fault cases, 

demonstrated a strong ability to highlight impulsive characteristics, making it 

particularly useful for detecting transient, non-stationary fault signatures. 

o A significant advantage of the Fast Kurtogram (FK) over Autogram lies in its 

computational efficiency. Unlike Autogram, FK utilizes Multirate filtering, 

which speeds up the analysis process by efficiently managing different 

frequency bands through down-sampling. This approach significantly reduces 

the computational load, as it allows FK to focus only on the essential frequency 

components associated with bearing faults, bypassing unnecessary processing 

of irrelevant bands. 

4. Advanced Signal Processing: Techniques like cepstrum pre-whitening and envelope 

analysis (as used in Method 2) showed promise in mitigating the masking effects of 

noise and non-stationary artifacts. Additionally, kurtosis-based measures provided 

valuable insights in cases with impulsive fault characteristics, proving to be a useful 

complementary tool in diagnosing subtle or transient faults. 
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Overall Implications: 

This comparative study underscores the importance of selecting appropriate algorithms based 

on the nature of the signal and fault type. While traditional methods may work well under 

controlled conditions, real-world applications often involve noise, variable load conditions, and 

non-stationary signals, which require more advanced and adaptive diagnostic tools. 

For future research, it needs to be refined for diagnostic algorithms to handle the complexities 

of real-world bearing conditions more effectively. Specifically, algorithms that integrate signal 

processing techniques to handle noise and non-stationarity, such as cepstrum pre-whitening, 

and that leverage metrics like kurtosis for impulsive signal detection, could significantly 

enhance diagnostic accuracy and reliability. 

In conclusion, while current diagnostic algorithms offer valuable insights into bearing health, 

the challenges observed in non-stationary and noise-corrupted data suggest that further 

advancements are needed. Developing algorithms that can adapt to complex signal 

environments will be crucial for achieving accurate, reliable, and early detection of bearing 

faults, thereby improving maintenance strategies and enhancing the operational life of 

machinery in diverse industrial settings. 
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