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Abstract 
Electric energy transport is receiving a big push in the last years due to the increase of 

consumption worldwide. Relatively to the high voltage overhead lines, completely new 

requirements for the conductors, fittings and damping devices have been defined with the scope 

of boosting the performance of the current net without changing the structures already built for 

the existing lines (i.e. the towers). The challenge is to enhance the existing lines by replacing 

the installed conductors with new ones, especially with new carbon fibre core conductors with 

very low SAG and increased capacity for the same diameter, together with the goal of evolving 

in a green way, fulfilling lower limits of CO2 emission and lower EM noise requirements. For 

the involved companies, this challenge demands the research of new solutions starting from a 

deep review of the status of the art of the products to reach out their optimization. With this 

focus, the new designs need to be investigated from the fundamental equation in order to see if 

an improvement is possible and how to make it. The aim of the present thesis is exactly this: 

under the light of new techniques know in literature, do a review of the modal analysis of single 

and coupled conductors to compute the dynamical response of a vibrating span of the line. What 

above is of crucial importance for the optimisation of the dampers and spacer-dampers, and also 

to make a sensitivity analysis of the modal parameters involved in the phenomena to understand 

the fatigue process of the conductors.  

The thesis is structured as follows. 

Chapter 1 provides a general overview of the dynamic phenomena of the overhead lines. 

In Chapter 2, the analysis starts with the modal analysis of the conductor basic model: the Euler-

Bernoulli beam. The solution technique for a pinned-pinned E-B beam is shown: first, the 

equilibrium equation of the free body diagram of a beam element are written; then, trying a 

solution by separation of space and time variables, independent equations for space and time 

are found. After that, by imposing the boundary conditions, the eigenfunctions are computed 

together with the modal parameters. Finally, the solution of the equation is given by series 

representation.  

Bearing in mind the obtained results, a more representative equation is studied: the taut Euler-

Bernoulli beam. The boundary conditions are the same (pinned-pinned), but the addition of the 

tensioning term modifies the modal parameters. The eigenfunctions previously obtained are 

now used as a comparison function to obtain the modal parameters and solve the equation. The 

solution procedure is the same, and a new formula for the solution by series is found. This 

equation is the base for the coupled configuration.   

Additionally, self-damping is taken in consideration. Based on a wide used model know in 

literature, a hysteretic damping coefficient per unit length is introduced, accounting this way a 

dissipative force into the equation of equilibrium. Using an experimentally determined 

hysteretic constant, the refined model improves the accuracy of cable vibration. 

In Chapter 3, a distributed parameter model of two conductors is presented for the analysis of 

the coupled dynamics. The cables are modelled like taut Euler-Bernoulli beams while the loads 
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applied are modelled like distributed forces. The beams are linked by elastic spacers with 

lumped masses and stiffness equivalent to a real spacer-damper used for these conductors. The 

general solution is sought by the Ritz-Galerkin method, using a set of comparison function 

obtained in Chapter 2 for both the cables. After solving the eigen problem of the system, both 

the modal parameters and a time solution of the beams are derived. 

In Chapter 4, the Matlab script is initially validated. To do so, the natural frequencies of the 

single cable obtained with the script are compared with the analytical ones and with the results 

know in literature for a specific case study. The script is run with different number of modes, in 

order to seek for the convergency of the solution both for the single conductor case and for the 

coupled conductors.  

In Chapter 5, the modal shapes are shown and discussed in order to put in evidence subspan 

behaviour of the coupled motion. The time response of the system is checked at different points 

on the span trough a sensitivity analysis of the main parameters: number of spacer-dampers, 

their stiffness, external force amplitude, cable tensioning and self-damping are investigated for 

different magnitudes to see the effect on system output given the same input and verifying the 

very low sensitivity to cable self-damping. 

Further analysis could be focused on the spacer-dampers damping effect, but they need a 

different representation due the out diagonal terms in the damping matrix. Another interesting 

development would be the study of conductors bundle as triple, quad, hexa etc. those are of 

current use in the overhead lines, together with the real wind excitation coming from lab tests. 

The distribution of the wind (i.e.the force) can be used to determine the real strain field on the 

conductors of the bundle, making possible a prediction of the fatigue behaviour and a life 

estimation of the line. 
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1 Introduction  
 

Overhead power transmission lines are continuously exposed to environmental forces, among 

which wind-induced phenomena play a critical role in their structural behaviour and long-term 

reliability. Wind effects can cause various types of vibrations and oscillations in transmission 

line conductors, leading to mechanical fatigue, material degradation, and potential failures if 

not properly mitigated. The next session gives a brief overview of the most common wind-

induced vibrations those occur on over-head line conductors. 

 

1.1 Excitation phenomena   
 

The main wind-induced problems that can be seen on overhead lines are: 

 Aeolian Vibration 
 Subspan oscillations 
 Galloping 

 

Figure 1:  Analysis of Wind-Induced Vibrations on HVTL Conductors 

Aeolian vibrations is the name associated to Vortex Induced Vibrations (VIV). They are due to 

vortex shedding from the conductors and can produce fatigue failures of the conductors 

themselves. 

Subspan oscillations occur on conductor bundles and originate from wake produced by the 

windward conductor on the leeward one.  
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Galloping is a kind of instability due to the unstable shape assumed by the conductors when 

they are covered with ice. 

As shown in Figure 2, aeolian vibrations occur for low to mean wind speeds – up to about 

10m/s; subspan oscillations are excited by wind speeds in the range 8 ÷ 20 m/s and galloping 

generally occurs for high wind speeds, over 15 m/s. 
 

 

Figure 2: Wind-induced phenomena and frequencies 

 

1.2 Aeolian Vibration 
 

The main factors affecting aeolian vibrations are the span length, the tension and the type of 

terrain: is most severe when the conductor tension is high, the span is long and the terrain is 

smooth with low-to-moderate steady wind [1]. The roughness of the terrain determines the level 

of wind turbulence. Increasing the roughness of terrain, the turbulence level increases.  

The vertical movements are associated to the vortex shedding phenomenon, where air currents 

over a cylindrical surface generate and release vortices. This leads to a periodic force on the 

body itself and if the associated frequency is close to of the body natural frequencies, the body 

starts to oscillate. The vortex shedding frequency is related to the body shape and dimensions, 

through the following formula: 

𝑓𝑠 = 𝑆𝑡
𝑉

𝐷
 

Where V is the speed of the flow, D is diameter and St is the Strouhal number that is related to 

the body shape. For a circular cylinder the Strouhal number St is 0,2. 

𝑆𝑡 =
𝑓𝑠𝐷

𝑉
=
1

𝑉𝑟
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Where 𝑉𝑟  is the reduced velocity. 

Having the body natural frequency 𝑓𝑝  , the critical velocity 𝑉𝑝 at wich the body will vibrate is: 

𝑉𝑝 =
𝑓𝑝𝐷

𝑆𝑡
= 𝑉𝑆𝑡  

Also called Strouhal velocity.  

 

Figure 3: Vortex Shedding 

The first natural frequency of a typical overhead transmission line conductor is of the order or 

0.1 Hz. Therefore, the range of 10-50 Hz, over which aeolian vibration is generally analysed, 

approximately corresponds to the interval from the 100th to 500th eigenfrequencies of the cable. 

This means that almost certainly the vortex shedding frequency matches a natural frequency of 

the cable and transmission lines exposed to low to moderate wind are persistently subjected to 

aeolian vibration. 

 

1.3 Sub-span oscillation 
 

Subspan oscillations refer to localized vibrational modes that occur in structures with 

intermediate connections, such as conductors linked by spacers. These oscillations typically 

arise when the substructures between junction points experience dynamic coupling, leading to 

resonance phenomena at specific frequencies. 

The oscillations are characterized by a frequency around 1 Hz, which corresponds to the mode 

of vibration of a section of conductor between two spacers [1]. 

Depending on the system properties, subspan oscillations can be either beneficial or 

detrimental: they may help dissipate energy in some cases but can become large enough to cause 

sub-conductors to collide. 
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Figure 4: Typical subspan oscillation shape for a quad bundle 

Additionally, these oscillations create strain on the sub-conductors at the spacer clamps and 

exert forces on the spacer arms, which may result in damage to the sub-conductor wires and 

loosening of the spacer clamps. Understanding the conditions that trigger these oscillations, as 

well as the role of damping, stiffness distribution, and coupling effects, is crucial for designing 

structures that remain stable under various loading conditions.  
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2 Dynamical problem of a single conductor 
 

The easiest model to represent the dynamical behaviour of a conductor is to see it as a vibrating 

Euler-Bernoulli beam. The hypothesis of the study case are the usual ones:  

 The static deformation, i.e. the catenary shape, does not enter the dynamic problem, so 

the beam is considered straight. 
 The oscillation around the static position is small compared to the length, so the 

equations are linear, and the superposition principle applies.  
 The beam position at rest is represented by its neutral axis, so all the displacements 

involved in the kinematic are independent from each other.  
 Shear stress is neglected. 
 Internal damping is absent.  
 External excitation is absent.  
 Mass and stiffness parameters are constant along the axis.  

With this very well know model, given the boundary conditions (in our case pinned-pinned) 

one can compute the eigenfunction and estimate the modal parameters. If the initial conditions 

are given too, the dynamical problem can be completely solved in the form of infinite series, as 

explained in Appendix C.  

A more representative model is the taut Euler-Bernoulli beam, that is the same described above 

but with an added term that depends on the tensioning. This term modifies the modal parameters 

and, especially, one can see that the natural frequencies become dominated by the tensioning 

term when it’s large enough.  

Internal damping can be added to the beam model using a hysteretic model for the forces. The 

model obtained with this last addition is the most used in literature (see [2] for reference), and 

the damping coefficient is computed among the other model parameters.  

In the next paragraphs, the above models are developed. The focus is twofold: collecting the 

fundamental results of each model and showing the solution technique of the equations, useful 

to treat the kernel problem of the thesis, i.e., the coupled conductors.  
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2.1 The Euler-Bernoulli beam 
 

The conductor could be represented through the model of a simply supported beam shown in 

Figure 5. In this scheme: 

 Vertical displacement is 𝑤(𝑥, 𝑡). 

 Bending stiffness of the cross-section 𝐸𝐼 is constant. 

 Linear mass 𝜇 is constant. 

The Euler Bernoulli beam theory assumes that: 

 Rotation is negligible compared to translation allowing neglection of rotational inertia 

effects. 

 Angular distortion due to the shear is small in relation to the bending deformation.  

 

Figure 5: scheme of the Euler-Bernoulli beam with pinned-pinned ends 

The equilibrium equation, obtained in Appendix A, is: 

𝜇
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= 0 (1) 

The standard approach is to separate the variables: 

𝑤(𝑥, 𝑡) = Φ(𝑥)𝜂(𝑡) 

where Φ(𝑥) is the eigenfunction which represent the modal shape and is to be computed by 

imposing the boundary conditions, 𝜂(𝑡) is the modal coordinate which represent how the 

amplitude of the shape varies with time. Modal coordinates are of the kind:  

𝜂(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵sin(𝜔𝑡) 

To find out the solution, we specify the boundary condition at the ends. Being pinned ends, the 

deflection and slope of the bending moment are zero, so that the boundary conditions are: 

𝑤(0, 𝑡) = 𝑤(𝐿, 𝑡) = 0𝑎𝑛𝑑
𝜕𝑤2(𝑥, 𝑡)

𝜕𝑥2
|
𝑥=0

=
𝜕𝑤2(𝑥, 𝑡)

𝜕𝑥2
|
𝑥=𝐿

= 0 (2) 

Finally, we get infinite eigenfunctions (see Appendix B) of the kind: 
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𝛷𝑛(𝑥) = 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) (3) 

  And the solution can be expressed in the form of series: 

𝑤(𝑥, 𝑡) = ∑𝛷𝑛(𝑥)𝜂𝑛(𝑡)

∞

𝑛=1

(4) 

This formulation serves as the foundation for further analysis, including modal analysis and 

response to forced excitations. The eigenfunction of the pinned-pinned case will be used as 

comparison function to compute the modal parameters of all the other case treated in this thesis 

and for this reason it can be considered the fundamental expression obtained in this chapter. 
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2.1.1 Modal Parameters 
 

By substituting 𝑤(𝑥, 𝑡), eq. (4), into the governing equation (1), integrating over the spatial 

domain and applying the orthogonality property of the eigenfunctions we obtain infinite modal 

equations (see Appendix C). For each mode 𝑛: 

𝐿

2
𝜇�̈�𝑛 +

𝐿

2
(
𝑛𝜋

𝐿
)
4

𝐸𝐼𝜂𝑛 = 0 (5) 

The modal parameters are defined as: 

{
  
 

  
 𝑚𝑛 =

𝐿

2
𝜇

𝑘𝑛 =
𝐿

2
(
𝑛𝜋

𝐿
)
4

𝐸𝐼

𝜔𝑛
2 =

𝑘𝑛
𝑚𝑛

= (
𝑛𝜋

𝐿
)
4

(
𝐸𝐼

𝜇
)

 

  The first four modal shapes are represented in Figure 6. 

 

Figure 6: Modal shapes of a pinned-pinned Euler-Bernoulli beam 
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2.2 Taut and forced Euler-Bernoulli beam 
 

 

Figure 7: scheme of the taut Euler-Bernoulli beam with pinned-pinned ends 

High voltage conductors are cables suspended between towers, experiencing a high axial tensile 

force due to their weight. To make the model more realistic, we modify the governing equation 

to include the effect of the axial tension: 

𝜇
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
− 𝑆

𝜕2𝑤

𝜕𝑥2
= 𝑓(𝑥, 𝑡)  

where 𝑆
𝜕2𝑤

𝜕𝑥2
 is the additional term accounting for the axial tension 𝑆 which is assumed constant, 

𝑓(𝑥, 𝑡) represents the force per unit length acting on the cable. This model better represents 

high-voltage conductors combining elements of a flexible beam (bending stiffness 𝐸𝐼) and a 

tensioned string (axial tension 𝑆).  The axial tension 𝑆 is assumed to be positive in tension. 

 

2.2.1 Modal Parameters 
 

The addition of the tensioning term modifies the modal parameters. The eigenfunction (3) 

obtained previously is now used as a comparison function to obtain the modal parameters and 

solve the equation. The solution procedure is the same, we get infinite modal equations of the 

kind: 

𝑚𝑛�̈�𝑛 + 𝑘𝑛𝜂𝑛 = 𝑓𝑛  (6) 

where the modal parameters are: 
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{
 
 
 
 

 
 
 
 𝑚𝑛 =

𝐿

2
𝜇

𝑘𝑛 =
𝐿

2
(
𝑛𝜋

𝐿
)
2

((
𝑛𝜋

𝐿
)
2

𝐸𝐼 + 𝑆)

𝜔𝑛
2 =

𝑘𝑛
𝑚𝑛

= (
𝑛𝜋

𝐿
)
2

(
𝑆

𝜇
+ (

𝑛𝜋

𝐿
)
2𝐸𝐼

𝜇
)

𝑓𝑛 = ∫ 𝑓(𝑥, 𝑡)Φ𝑛(𝑥)𝑑𝑥
𝐿

0

 

This result highlights how 𝑆 influences the vibration characteristics of the cable. When tension 

is dominant, the system behaves similarly to a taut string. When bending stiffness is significant, 

higher order modes are affected. 

 

2.2.2 Time response for a generic forced case 
 

The conductor is subjected to the wind action. So, in the second member of eq. (6) there is a 

force generated by the wind. To understand the system’s dynamic, we choose a simplified 

sinusoidal form: 

𝑓(𝑥, 𝑡) = 𝐹𝑐 sin(𝛺𝑡) 

Where 𝛺 represents the angular frequency of the wind and 𝐹𝑐 its amplitude. 

The force is applied as a distributed load along the length of conductor. To reach this solution 

we introduce a Heaviside function 𝐻(𝑥) which has these characteristics: 

𝐻(𝑥) = {
0, 𝑥 < 0𝑎𝑛𝑑𝑥 > 𝐿
1, 0 ≤ 𝑥 ≤ 𝐿

 

This function ensures that the wind force is applied only within the length of the cable. At this 

point, the right-side term of eq. (6) becomes: 

∫ 𝑓(𝑥, 𝑡)Φ𝑛(𝑥)𝑑𝑥
𝐿

0

= ∫ 𝐹𝑐 sin(𝛺𝑡)𝐻(𝑥)Φ𝑛(𝑥)𝑑𝑥
𝐿

0

= ∫ 𝐹𝑐 sin(𝛺𝑡) sin (
𝑛𝜋𝑥

𝐿
)𝑑𝑥

𝐿

0

 

We can develop the full equation for each mode: 

𝐿

2
𝜇�̈�𝑛 +

𝐿

2
(
𝑛𝜋

𝐿
)
2

((
𝑛𝜋

𝐿
)
2

𝐸𝐼 + 𝑇)𝜂𝑛 = ∫ 𝐹𝑐 sin(𝛺𝑡) sin (
𝑛𝜋𝑥

𝐿
)𝑑𝑥

𝐿

0

 

�̈�𝑛(𝑡) + 𝜔𝑛
𝟐𝜂𝑛(𝑡) = 𝑄𝑛(𝑡) 

 

Where 𝑄𝑛(𝑡) is the generalized force for the mode n: 
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𝑄𝑛(𝑡) =
1

𝑚𝑛

∫ 𝐹𝑐sin(𝛺𝑡) sin (
𝑛𝜋𝑥

𝐿
)𝑑𝑥

𝐿

0

 

𝑄𝑛(𝑡) =
𝐹𝑐
𝑚𝑛

𝐿[1 − 𝑐𝑜𝑠(𝑛𝜋)]

𝑛𝜋
𝑠𝑖𝑛(𝛺𝑡) (7) 

Using the convolution integral [3], with zero initial condition we reach the solution: 

𝜂𝑛(𝑡) =
1

𝜔𝑛
∫ 𝑄𝑛(𝜏)𝑠𝑖𝑛(𝜔𝑛(𝑡 − 𝜏))𝑑𝜏 =

𝐹𝑐
𝑚𝑛

𝐿[1 − 𝑐𝑜𝑠(𝑛𝜋)]

𝑛𝜋

1

𝜔𝑛
2 −𝛺2

(𝑠𝑖𝑛𝛺𝑡 −
𝛺

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡)

𝑡

0

(8) 

Finally, the total displacement of the conductor, considering contributions from all the modes, 

is given by: 

𝑤(𝑥, 𝑡) = ∑𝛷𝑛(𝑥)𝜂𝑛(𝑡)

𝑁

𝑛=1

= 𝐹𝑐∑
1

𝑚𝑛
𝑠𝑖𝑛(

𝜋𝑛𝑥

𝐿
)
𝐿(1 − 𝑐𝑜𝑠(𝑛𝜋))

𝑛𝜋

1

𝜔𝑛
2 −𝛺2

(𝑠𝑖𝑛𝛺𝑡 −
𝛺

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡)

𝑁

𝑛=1

(9) 

The displacement of the node at a quarter of the span  𝑤(
𝐿

4
, 𝑡), as shown in Figure 8, shows 

the periodic general behaviour of the system output. At each peak there is a steady-state 

condition where the node oscillates between two values. 

 

Figure 8: Displacement of a node at L/4 
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2.3 Damped taut Euler-Bernoulli beam   
 

The system just analysed has the property of being able to vibrate freely with constant amplitude 

for an indefinite period because no dissipation of energy has been assumed. Studies conducted 

in the past [2] shows that the energy dissipated is directly proportional to the cable length. It is 

possible to assume a hysteretic damping coefficient for unit cable length that depends only on 

the cable structure and the vibration mode. A general damping force of this kind of system is 

given by: 

𝐹 = ℎ
�̇�

Ω
 

Where h is the hysteretic damping coefficient and Ω is the angular frequency excited. In our 

case 𝑤(𝑥, 𝑡) = Φ(𝑥)𝜂(𝑡). Where Φ(𝑥) are the comparison functions sin (
𝑛𝜋𝑥

𝐿
) . 

Assuming that the energy dissipated by the conductor, vibrating in the nth mode, is due to unit 

damping forces distributed along the conductor and expressed by: 

𝑑𝐹𝑛 =
ℎ𝑛
Ω
�̇�𝑛 sin (

𝑛𝜋𝑥

𝐿
)𝑑𝑥 

Where ℎ𝑛 is the dimensionless hysteretic damping coefficient for nth vibration mode. It depends 

linearly on the wavelength of each mode 𝜆𝑛 by this equation: 

ℎ𝑛 = 𝐻𝜆𝑛
−3 

𝜆𝑛 =
2𝐿

𝑛
 

𝐻 represents the hysteretic constant of the cable. For a cable similar to ours (see [2]):   

𝐻 = 1500. 

Table 1 lists different values of hysteretic damping coefficient for different number of modes. 

The total energy 𝐷 dissipated during the motion of the conductor is the sum of the separate 

energies dissipated by each of the modes included in the solution: 

𝐷 =∑
𝐿ℎ𝑛
4𝛺

�̇�𝑛
2(𝑡)

𝑁

𝑛

 

Adding the energy dissipated to the equation of motion (see Appendix D) we obtain: 

𝐿

2
𝜇�̈�𝑛 +

𝐿

2
(
𝑛𝜋

𝐿
)
2

((
𝑛𝜋

𝐿
)
2

𝐸𝐼 + 𝑆)𝜂𝑛 +
𝐿ℎ𝑛
2𝛺

�̇�𝑛 = ∫ 𝑓(𝑥, 𝑡)𝛷𝑛(𝑥)𝑑𝑥
𝐿

0

(10) 
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Table 1: Damping coefficients for different modes 

Mode number 𝒉𝒏 

1 2.9 × 10−6 

2 2.34 × 10−5 

5 3.66 × 10−4 

10 0.0029 

100 2.9 

500 366 

1000 2.9 × 103 

 

2.3.1 Modal parameters   
 

By developing the previous eq. (10), we obtain: 

𝑚𝑛�̈�𝑛 + 𝑐𝑛�̇�𝑛 + 𝑘𝑛𝜂𝑛 = 𝑓𝑛 (11) 

The modal parameters result to be: 

{
 
 
 
 
 

 
 
 
 
 𝑚𝑛 =

𝐿

2
𝜇

𝑘𝑛 =
𝐿

2
(
𝑛𝜋

𝐿
)
2

((
𝑛𝜋

𝐿
)
2

𝐸𝐼 + 𝑆)

𝜔𝑛 =
𝑛𝜋

𝐿
√
𝑆

𝜇
+ (

𝑛𝜋

𝐿
)
2 𝐸𝐼

𝜇


𝑐𝑛 =
𝐿ℎ𝑛
2𝛺

𝑓𝑛 = ∫ 𝑓(𝑥, 𝑡)Φ𝑛(𝑥)𝑑𝑥
𝐿

0

 

Rearranging eq. (11), we get: 

�̈�𝑛(𝑡) + 𝜔𝑛
𝟐𝜂𝑛(𝑡) +

ℎ𝑛
2𝛺𝑚𝑛

𝐿�̇�𝑛 = 𝑄𝑛(𝑡) 

The hysteretic coefficient can be written as an equivalent viscous coefficient as: 

ℎ𝑛
2𝛺𝑚𝑛

𝐿 = 2𝜁𝑛𝜔𝑛 
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𝜁𝑛 =
ℎ𝑛

4𝛺𝑚𝑛𝜔𝑛
𝐿 

where 𝜁𝑛 is the viscous damping ratio.  

It is also possible to introduce the nth frequency of damped vibration, called 𝜔𝑑𝑛 : 

𝜔𝑑𝑛 = 𝜔𝑛√1 − 𝜁𝑛
2 = 𝜔𝑛√1 − (

ℎ𝑛
4𝛺𝑚𝑛𝜔𝑛

𝐿)
2

 

 

2.3.2 Time response in the damped case 
 

The solution is given by the convolution integral: 

𝜂𝑛(𝑡) = ∫
1

𝜔𝑑𝑛
𝑄𝑛(𝜏)𝑒

−𝜁𝑛𝜔𝑛(𝑡−𝜏)𝑠𝑖𝑛𝜔𝑑𝑛(𝑡 − 𝜏)𝑑𝜏
𝑡

0

=
𝐹𝑐
𝑚𝑛

𝐿(1 − 𝑐𝑜𝑠(𝑛𝜋))

𝑛𝜋

1

𝜔𝑑𝑛
2 − 𝛺2

(𝑠𝑖𝑛𝛺𝑡 −
𝛺

𝜔𝑑𝑛
𝑠𝑖𝑛𝜔𝑑𝑛𝑡)𝑒

−𝜁𝑛𝜔𝑛𝑡 

 

In terms of physical displacements this yields: 

𝑤(𝑥, 𝑡) = ∑Φ𝑛(𝑥)𝜂𝑛

𝑁

𝑛

(𝑡) =

𝐹𝑐∑
1

𝑚𝑛
sin(

𝜋𝑛𝑥

𝐿
)
𝐿(1 − cos(𝑛𝜋))

𝑛𝜋

1

𝜔𝑑𝑛
2 − 𝛺2

(sin𝛺𝑡 −
𝛺

𝜔𝑑𝑛
sin𝜔𝑑𝑛𝑡)

𝑁

𝑛=1

𝑒−𝜁𝑛𝜔𝑛𝑡
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3 Dynamical problem of coupled conductors   
 

 

Figure 9: Coupled conductors 

 

The model, shown in Figure 9, represents two parallel non damped pinned-pinned Euler-

Bernoulli beams that are interconnected by a number 𝐻 of elastic spacers with lumped masses 

and stiffness. These spacers introduce additional coupling between the beams, leading to two 

coupled equilibrium equations that govern the dynamic behaviour of the system. 

The interaction between the beams is characterized by the elastic stiffness 𝑘𝐴𝐵 of the spacers 

and the presence of the equivalent mass of the spacer, 𝑚𝐴𝐵. The contribution given by the spacer 

is mathematically described by a Dirac’s delta function working only when 𝑥 equals the position 

of the considered spacer 𝑥ℎ. This above-mentioned method is also adopted by Sorrentino et al. 

[4].  

Let’s label the two cables with the letters 𝐴 and 𝐵.  The two coupled equilibrium equations can 

be written in the form: 

{
  
 

  
 
𝜇𝐴
𝜕2 𝑤𝐴
𝜕𝑡2

+ 𝑘𝐴
𝜕4 𝑤𝐴
𝜕𝑥4

− 𝑆𝐴
𝜕2 𝑤𝐴
𝜕𝑥2

+(𝑚𝐴𝐵

𝜕2 𝑤𝐴
𝜕𝑡2

+ 𝑘𝐴𝐵( 𝑤𝐴 − 𝑤𝐵 ))∑𝛿(𝑥 − 𝑥ℎ)

𝐻

ℎ=1

= 𝑓𝐴(𝑥, 𝑡)

𝜇𝐵
𝜕2 𝑤𝐵
𝜕𝑡2

+ 𝑘𝐵
𝜕4 𝑤𝐵
𝜕𝑥4

− 𝑆𝐵
𝜕2 𝑤𝐵
𝜕𝑥2

+ (𝑚𝐴𝐵

𝜕2 𝑤𝐵
𝜕𝑡2

+ 𝑘𝐴𝐵( 𝑤𝐵 − 𝑤𝐴 ))∑𝛿(𝑥 − 𝑥ℎ)

𝐻

ℎ=1

= 𝑓𝐵(𝑥, 𝑡)

(12) 

Here 𝛿(∗)is the Dirac distribution and 𝑓(𝑥, 𝑡) represent the external force per unit length acting 

on the wire. In our case the two cables are identical so: 

{

𝜇𝐴 = 𝜇𝐵 = 𝜇
𝑘𝐴 = 𝑘𝐵 = 𝑘 = 𝐸𝐼
𝑆𝐴 = 𝑆𝐵 = 𝑆

 



 
Marco Costantini 

Modeling the dynamic behavior of two coupled parallel conductors 
 

26 

The solution is searched by the Ritz-Galerkin method, using the same set of N comparison 

function {Φ(𝑥)} to describe the two cables:    

{
𝑤𝐴 (𝑥, 𝑡) = {𝛷(𝑥)}𝑇{ 𝜂𝐴 (𝑡)}

𝑤𝐵 (𝑥, 𝑡) = {𝛷(𝑥)}𝑇{ 𝜂𝐵 (𝑡)}
(13) 

 

Where : {Φ(𝑥)}𝑁×1 =

{
 
 

 
 sin (

𝜋𝑥

𝐿
)

sin (
2𝜋𝑥

𝐿
)

⋮

sin (
𝑁𝜋𝑥

𝐿
)}
 
 

 
 

    {𝜂(𝑡)}2𝑁×1 = {
{ 𝜂𝐴 }

𝑁×1

{ 𝜂𝐵 }
𝑁×1

} 

After substituting the expression of 𝑤𝐴  and 𝑤𝐵  defined in eq. (13) in the equilibrium equation 

(eq. (12)), the latter are multiplied by {Φ(𝑥)} and integrated over the spatial domain. We get 

(see Appendix E for further details): 

{
 
 
 
 

 
 
 
 𝜇

𝐿

2
[𝐼]{ �̈�𝐴 } + 𝑘

𝐿

2
diag ((

𝑛𝜋

𝐿
)
4

){ 𝜂𝐴 } + 𝑆
𝐿

2
diag ((

𝑛𝜋

𝐿
)
2

){ 𝜂𝐴 } + 𝑚𝐴𝐵[𝛴ℎ]{ �̈�𝐴 } + 𝑘𝐴𝐵[𝛴ℎ]({ 𝜂𝐴 } − { 𝜂𝐵 }) =

∫ {Φ(x)}
𝐿

0

𝑓𝐴 (𝑥, 𝑡)𝑑𝑥

𝜇
𝐿

2
[𝐼]{ �̈�𝐵 } + 𝑘

𝐿

2
diag ((

𝑛𝜋

𝐿
)
4

){ 𝜂𝐵 } + 𝑆
𝐿

2
diag ((

𝑛𝜋

𝐿
)
2

){ 𝜂𝐵 } + 𝑚𝐴𝐵[𝛴ℎ]{ �̈�𝐵 } + 𝑘𝐴𝐵[𝛴ℎ]({ 𝜂𝐵 } − { 𝜂𝐴 }) =

∫ {Φ(x)}
𝐿

0

𝑓𝐵 (𝑥, 𝑡)𝑑𝑥

 

These equations can be written in a matrix formulation by defining the following mass matrix 

𝑀 and stiffness matrix 𝐾: 

[𝑀]2𝑁×2𝑁 =
𝐿

2
𝜇 [
[𝐼] [0]
[0] [𝐼]

] + 𝑚12 [
[𝛴ℎ] [0]

[0] [𝛴ℎ]
] 

[𝐾]2𝑁×2𝑁 =
𝐿

2
[
[𝐷] [0]
[0] [𝐷]

] + 𝑘12 [
[𝛴ℎ] −[𝛴ℎ]

−[𝛴ℎ] [𝛴ℎ]
] 

The inner matrices are: 

[𝐼]𝑁×𝑁 = 𝑑𝑖𝑎𝑔{1} 

[𝛴ℎ]𝑁×𝑁 =∑{Φ(𝑥ℎ)}{Φ(𝑥ℎ)}
𝑇

𝐻

ℎ=1

 

[𝐷]𝑁×𝑁 = diag ((
𝑛𝜋

𝐿
)
2

((
𝑛𝜋

𝐿
)
2

𝐸𝐼 + 𝑇)) 

The systems of equations in terms of the mass and stiffness matrices are therefore: 

[𝑀]{�̈�} + [𝐾]{𝜂} = {𝐹} (14) 
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As usual, we search the sets of eigenvalues and eigenfunctions by solving the undamped 

eigenproblem:  

([𝐾] − 𝜔𝑛
2[𝑀])[𝑍] = 0 

We get the modal matrix [𝑍]: 

[𝑍]2𝑁×2𝑁 = [
[ 𝑍𝐴 ]

[ 𝑍𝐵 ]
] =

[
 
 
 
 
 
 
 
 
 

[
 
 
 
 𝑍1,1𝐴 𝑍1,2𝐴 … 𝑍1,2𝑁𝐴

𝑍2,1𝐴 𝑍2,2𝐴 … 𝑍2,2𝑁𝐴

⋮

𝑍𝑁,1𝐴

⋮

𝑍𝑁,2𝐴

⋱ ⋮

… 𝑍𝑁,2𝑁𝐴 ]
 
 
 
 

[
 
 
 
 𝑍1,1𝐵 𝑍1,2𝐵 … 𝑍1,2𝑁𝐵

𝑍2,1𝐵 𝑍2,2𝐵 … 𝑍2,2𝑁𝐵

⋮
𝑍𝑁,1𝐵

⋮
𝑍𝑁,2𝐵

⋱ ⋮
… 𝑍𝑁,2𝑁𝐵 ]

 
 
 
 

]
 
 
 
 
 
 
 
 
 

 

{𝜔𝑛} = {

𝜔1
𝜔2
⋮

𝜔2𝑁

} 

We can write:{𝜂(𝑡)} = [𝑍]{𝑝(𝑡)},  where {𝑝(𝑡)}  is the vector of modal coordinates of the 

coupled system. 

{𝑝(𝑡)}2𝑁×1 = {

𝑝1
𝑝2
⋮
𝑝2𝑁

} 

Considering the cable A, its displacement field can be obtained by: 

𝑤𝐴 (𝑥, 𝑡) = {Φ(𝑥)}𝑇{ 𝜂𝐴 (𝑡)} = {Φ(𝑥)}𝑇[ 𝑍𝐴 ]{𝑝(𝑡)} = { Ψ𝐴 (𝑥)}
𝑇
{𝑝(𝑡)} 

Where { Ψ𝐴 (𝑥)}  represent the vector of modal shapes of size 1 × 2𝑁. Thus, substituting and 

multiplying by  [𝑍]𝑇 the problem can be written as: 

[𝑍]𝑇[𝑀][𝑍]{�̈�} + [𝑍]𝑇[𝐾][𝑍]{𝑝} = [𝑍]𝑇 {𝐹} 

Giving: 

[𝑚𝑛]{�̈�} + [𝑘𝑛]{𝑝} = [𝑓𝑛] 

All the matrices are diagonal, and we get the following modal parameters: 
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{
 
 
 
 

 
 
 
 [𝑚𝑛] =  [𝑍]

𝑇[𝑀][𝑍] = [
𝑚1 0 0
0 ⋱ 0
0 0 𝑚2𝑁

]

[𝑘𝑛] =  [𝑍]
𝑇[𝐾][𝑍] = [

𝑘1 0 0
0 ⋱ 0
0 0 𝑘2𝑁

]

𝜔𝑛
2 =

𝑘𝑛
𝑚𝑛

[𝑓𝑛] = [𝑍]
𝑇 {𝐹}

 

so, we can write the equation for each mode (considering the force acting only on cable 𝐴): 

�̈�𝑛 +𝜔𝑛
2𝑝𝑛 =

𝐹𝑐
𝑚𝑛

∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1

 

After solving the convolution integral: 

𝑝𝑛(𝑡) =
𝐹𝑐
𝑚𝑛

[∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

]
1

𝜔𝑛2 − 𝛺2
(sin𝛺𝑡 −

𝛺

𝜔𝑛
sin𝜔𝑛𝑡) 

Now we have alle the variables to solve the problem: 

{
 
 

 
 {𝜂(𝑡)} = [

[ 𝑍𝐴 ]

[ 𝑍𝐵 ]
] {𝑝(𝑡)} = {

{ 𝜂𝐴 }

{ 𝜂𝐵 }
}

𝑤𝐴 (𝑥, 𝑡) = {Φ(𝑥)}𝑇{ 𝜂𝐴 (𝑡)}

𝑤𝐵 (𝑥, 𝑡) = {Φ(𝑥)}𝑇{ 𝜂𝐵 (𝑡)}

 

 

Substituting and solving we get the following solutions (detailed in Appendix F), considering 

the force acting only on cable A: 

{
 
 

 
 𝑤𝐴 (𝑥, 𝑡) = ∑𝑠𝑖𝑛 (

𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − 𝑐𝑜𝑠(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛
2 − 𝛺2

(𝑠𝑖𝑛𝛺𝑡 −
𝛺

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡)𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

𝑤𝐵 (𝑥, 𝑡) = ∑𝑠𝑖𝑛 (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − 𝑐𝑜𝑠(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛
2 − 𝛺2

(𝑠𝑖𝑛𝛺𝑡 −
𝛺

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡)𝐵

2𝑁

𝑛=1

]

𝑁

𝑘=1

(15) 

In case of force acting on both cables, the solution becomes: 

{
 
 

 
 𝑤𝐴 (𝑥, 𝑡) =∑𝑠𝑖𝑛 (

𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑( 𝑍𝑟,𝑛𝐴 + 𝑍𝑟,𝑛𝐵 )
𝐿(1 − 𝑐𝑜𝑠(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛
2 − 𝛺2

(𝑠𝑖𝑛𝛺𝑡 −
𝛺

𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡)𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

𝑤𝐵 (𝑥, 𝑡) =∑sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑( 𝑍𝑟,𝑛𝐴 + 𝑍𝑟,𝑛𝐵 )
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛
2 − 𝛺2

(sin𝛺𝑡 −
𝛺

𝜔𝑑𝑛
sin𝜔𝑛𝑡)𝐵

2𝑁

𝑛=1

]

𝑁

𝑘=1

 

 

In case of different forces with different angular frequencies 𝛺𝐴 ≠ 𝛺𝐵 : 
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{
 
 

 
 

𝑤𝐴 (𝑥, 𝑡) = ∑ sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

1

𝑚𝑛

[∑ 𝑍𝑟,𝑛𝐴 𝐹𝐴 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐴 𝑡)

𝑁

𝑟=1

+∑ 𝑍𝑟,𝑛𝐵 𝐹𝐵 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐵 𝑡)

𝑁

𝑟=1

]
1

𝜔𝑛
2 − 𝛺𝐴

2
(sin 𝛺𝐴 𝑡 −

𝛺𝐴

𝜔𝑛
sin𝜔𝑛𝑡)𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

𝑤𝐵 (𝑥, 𝑡) = ∑ sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

1

𝑚𝑛

[∑ 𝑍𝑟,𝑛𝐴 𝐹𝐴 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐴 𝑡)

𝑁

𝑟=1

+∑ 𝑍𝑟,𝑛𝐵 𝐹𝐵 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐵 𝑡)

𝑁

𝑟=1

]
1

𝜔𝑛
2 − 𝛺𝐵

2
(sin 𝛺𝐵 𝑡 −

𝛺𝐵

𝜔𝑛
sin𝜔𝑛𝑡)𝐵

2𝑁

𝑛=1

]

𝑁

𝑘=1

 

 

3.1 Coupled conductors with self-damping   
 

The system is the same of the undamped case (14), with the addition of the self-damping 

matrix[𝐶]: 

[𝑀]{�̈�} + [𝐾]{𝜂} + [𝐶]{�̇�} = {𝐹} 

[𝐶]2𝑁×2𝑁 =
𝐿

2Ω
[
[ℎ] 0
0 [ℎ]

] 

Where [ℎ]𝑁×𝑁 = 𝑑𝑖𝑎𝑔(

ℎ1
ℎ2
⋮
ℎ𝑁

) are the hysteretic self-damping constant of the cable for each 

mode. 

Using the same procedure applied in 2.3.2 for single cable, we get the displacement formula. 

In case of force acting only on cable A: 

{
 
 

 
 𝑤𝐴 (𝑥, 𝑡) =∑𝑠𝑖𝑛 (

𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑑𝑛
2 − 𝛺2

(sin𝛺𝑡 −
𝛺

𝜔𝑑𝑛
sin𝜔𝑑𝑛𝑡)𝑒

−𝜁𝑛𝜔𝑛𝑡
𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

𝑤𝐵 (𝑥, 𝑡) =∑𝑠𝑖𝑛 (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑑𝑛
2 − 𝛺2

(sin𝛺𝑡 −
𝛺

𝜔𝑑𝑛
sin𝜔𝑑𝑛𝑡)𝑒

−𝜁𝑛𝜔𝑛𝑡
𝐵

2𝑁

𝑛=1

]

𝑁

𝑘=1

 

The only difference from undamped solutions (eq.(15)) is given by the multiplication term 

𝑒−𝜁𝑛𝜔𝑛𝑡 and by the substitution of 𝜔𝑛 with 𝜔𝑑𝑛 . 

 

3.2 A real kind of links: spacer-dampers 
 

The basic design of a space-damper consists of a rigid frame on which two or more arms are 

connected by means of a rubber bushing through a shaft. Figure 10 shows the spacer-damper 

produced by Bertolotti: 
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Figure 10: Twin spacer-damper by Bertolotti 

Wind force makes the cables move horizontally. In this way the spacer’s arms rotate relatively 

to the body. The rotation is controlled by a certain stiffness of the hinge. Through some tests 

made by Bertolotti, which calculate the energy dissipated over a cycle, we can reach the value 

of the torsional stiffness.  

Initially, we study the cinematic of the arm, showed in Figure 11. 

{

𝛿𝑤 = 𝑏𝛿𝛽 𝑠𝑖𝑛(𝛽 + 𝛿𝛽)

𝛿𝑢 =
𝛿𝑤

𝑡𝑔(𝛽 + 𝛿𝛽)
= 𝑏𝛿𝛽 𝑐𝑜𝑠(𝛽 + 𝛿𝛽)

(16) 

 

 

 

 
 

Figure 11: spacer-damper, kinematic scheme Figure 12: spacer-damper, dynamic scheme 
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However, our primary interest is in the horizontal component of this force, which is responsible 

for damping the motion. The horizontal force A is given by: 

𝐴 = 𝐹sin(𝛽 + 𝛿𝛽) =
𝑘𝑡𝛿𝛽

𝑏
𝐹sin(𝛽 + 𝛿𝛽) 

Comparing the last expression with the one of eq. (16) we get: 

𝐴 =
𝑘𝑡
𝑏2
𝛿𝑤 = 𝑘𝐴𝐵𝛿𝑤 

Where 𝑘𝐴𝐵 is axial stiffness in the plane of the conductors. 

This stiffness represents the effective stiffness of the spacer damper in resisting horizontal 

motion due to the applied forces and mitigates unwanted vibrations or resonances that could 

occur in the system. 

The damping component 𝑐𝐴𝐵 is assumed to be proportional to 𝑘𝐴𝐵. 

 

3.3 Dynamical problem of coupled conductors with spacer-

dampers 
 

The model, shown in Figure 13, represents two parallel pinned-pinned Euler-Bernoulli beams 

with self-damping that are interconnected by H spacer-dampers with lumped masses.  

 

 

Figure 13: Coupled conductors with damping spacers 
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Considering only first cable (A), the following equation of motion holds: 

𝜇
𝜕2 𝑤𝐴
𝜕𝑡2

+ 𝑘
𝜕4 𝑤𝐴
𝜕𝑥4

− 𝑆
𝜕2 𝑤𝐴
𝜕𝑥2

+ (𝑚𝐴𝐵

𝜕2 𝑤𝐴
𝜕𝑡2

+ 𝑘𝐴𝐵( 𝑤𝐴 − 𝑤𝐵 ) + 𝑐𝐴𝐵( �̇�𝐴 − �̇�𝐵 ))∑𝛿(𝑥 − 𝑥ℎ)

𝐻

ℎ=1

= 𝑓𝐴 (𝑥, 𝑡) 

Following the calculations of undamped case we get: 

𝜇
𝐿

2
[𝐼]{ �̈�𝐴 (𝑡)} + 𝑘

𝐿

2
𝑑𝑖𝑎𝑔 ((

𝑛𝜋

𝐿
)
4

) { 𝜂𝐴 (𝑡)} + 𝑆
𝐿

2
𝑑𝑖𝑎𝑔 ((

𝑛𝜋

𝐿
)
2

) { 𝜂𝐴 (𝑡)} + 𝑚12[𝛴ℎ]{ �̈�𝐴 (𝑡)}

+ 𝑘𝐴𝐵[𝛴ℎ]({ 𝜂𝐴 (𝑡)} − { 𝜂𝐵 (𝑡)}) + 𝑐𝐴𝐵[𝛴ℎ]({ �̇�𝐴 (𝑡)} − { �̇�𝐵 (𝑡)})

= ∫ {𝛷(𝑥)}
𝐿

0

𝑓𝐴 (𝑥, 𝑡)𝑑𝑥 

[𝑀]{�̈�} + [𝐾]{𝜂} + [𝐶]{�̇�} = {𝐹} 

Where [𝐶]: 

[𝐶]2𝑁×2𝑁 =
𝐿

2Ω
[
[ℎ] 0
0 [ℎ]

] + 𝑐𝐴𝐵 [
[𝛴ℎ] −[𝛴ℎ]

−[𝛴ℎ] [𝛴ℎ]
] 

Here, first matrix is related to the self-damping and second one to the damping induced by the 

spacers. 

The system becomes non-diagonal and solving it would require further study using methods 

like Duncan's analysis. The displacement results can be obtained, but a more detailed 

acceptance calculation would be needed to fully quantify the effects, although this is outside 

the scope of this thesis. 
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4 Simulations 
 

All the equations shown in the former paragraphs have been implemented on Matlab to check 

numerical results. 

A first dutiful and rigorous check is done for a single cable in the case of a Euler-Bernoulli 

beam. The results for this simple case are well known in literature and a comparison with the 

analytical formula is easy to do. The focus is on the natural frequencies of the system those 

must turn out to be exact with an arbitrary number of digits. 

Then the convergence of the solution for the coupled case obtained thanks to the Ritz-Galerkin 

method is verified. Since this is an approximated solution, the aim is to find the number N of 

comparison functions that gives a correct (negligible error) representation of the system 

response. 

   

4.1 Script verification  
 

Let us first consider a single undamped conductor. The natural frequencies calculated using 

analytical expressions are compared to results from the eigenvalue problem of eq. (5) 

developed with a Matlab script. The comparison is further extended to a previous study made 

by Gazzola [5]. Results are shown in Table 2.   

 

Table 2: Natural frequencies comparison 

Mode number Analytical (Hz) Script (Hz) Gazzola (Hz) 

1 0.1642 0.1642 0.1642 
2 0.3284 0.3284 0.3284 
3 0.4926 0.4926 0.4926 
10 0.6569 0.6569 0.6569 
50 0.8211 0.8211 0.8211 

200 

 

8.2720 8.2720 8.2720 
500 129.9153 129.9153 129.9153 

 

The modal shapes of the first 5 modes along with mode 50 and mode 100, evaluated by the 

numerical model are shown in Figure 14. These results demonstrate the potential of the 

proposed model in analysing the dynamic behaviour of the system. 
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Figure 14: 1st, 2nd, 3rd, 4th ,5th, 50th and 100th modal shape  
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4.2 Parameters   
 

Conductors are stranded cables. The most widely used form of conductors is that of layers of 

round wires stranded, first, around a so-called core, which can be of the same material or 

different, and then around each other. In our case the conductor is a core of steel surrounded by 

aluminium wires. 

 

Figure 15: Cable structure, core + wires 

 

 

Table 3: Cable parameters 

Cable Property  Measurement unit 

Length L 400 m 

Diameter D 31.5 mm 

Linear density 𝝁 1.953 kg/m 

Young modulus E 68900 MPa 

Flexural stiffness EI 3286 Nm^2 

Load braker RTS 168520 N 

Tension T (20% RTS) 33704 N 
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4.3 Number of modes 
 

Number of modes is an important parameter to choose. More modes improve accuracy but 

increase computational complexity. We need to include modes until the solution converges to a 

satisfactory accuracy. At least, modes included in the solution must describe the dynamical 

behaviour of the system nicely until the frequency of excitation of the wind 𝑓𝑤𝑖𝑛𝑑 . In order to 

get a better accuracy, we decide to set the frequency limit to: 

𝑓lim = 1,2𝑓𝑤𝑖𝑛𝑑  

And the corresponding limit number of modes is 𝑁lim. 

We compute the solution (described as a sum of modes) for increasing values of number 𝑁 and 

see how the displacement 𝑤(𝑥, 𝑡) varies. 

 

 

Figure 16: Displacement comparison changing N 

Figure 16 shows how the displacement 𝑤(𝑥, 𝑡) changes as we increase the number of modes 

𝑁. It shows that the displacement obtained with 𝑁𝑙𝑖𝑚 follows almost exactly the solution 

obtained with five times more modes. So, the previous choice of 𝑓lim is a good truncation 

frequency. Therefore, it is unnecessary to use more modes beyond 𝑁𝑙𝑖𝑚, which gives a good 

balance between computational efficiency and solution accuracy. 
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5 Results  
 

In this study, we perform MATLAB simulations to analyse the behaviour of coupled 

conductors. The numerical simulations allow us to investigate key results such as modal shapes 

and time responses. By varying multiple parameters we get different results, providing valuable 

insights into the stability and vibration characteristics of the system.  

The chapter is divided in 2 parts: first there is an analysis of the undamped coupled conductors 

case; then, the results of damped case.  

 

5.1 Undamped conductors 
 

The configuration selected for this section is shown in Figure 17, and represents two coupled 

conductors with one spacer placed at 52 m. The cable A is undergoing a distributed external 

force, given by a wind of velocity 𝑣 = 1𝑚/𝑠. 

Several cases will be analysed in this section, by varying the most important parameters of the 

system. 

 

Figure 17: System configuration 
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5.1.1 Effect of the number of spacer-dampers  
 

This subsection discussed the effects of the spacer dampers on the mode shapes of the coupled 

system. Cases with different positioning of spacer dampers are analysed.  

 One spacer-damper 

A single rigid spacer is considered. The first three modes are showed below. The second mode 

shows already the subspan behaviour. 

 

Figure 18: one spacer-damper, first three modes 

Increasing the mode number, we can see that the frequencies increase as well, and the subspan 

behaviour becomes more complex.  Figure 19 depicts the 23rd, 24th and 25th modes. Figure 19 

shows the last three modes of the system (considering the modal truncation previously 

discussed). 

As the frequency increase, higher modes develop more nodes, leading to more complex 

oscillation patterns. The presence of subspan oscillation is evident and could lead to localized 

stress concentrations. It’s interesting that only even modes (2nd ,24th and 46th) have a subspan 

behaviour. 
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Figure 19: one spacer-damper, middle modes 

 

 

Figure 20: one spacer-damper, last three modes 
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 Two spacer-dampers 

A second rigid spacer is here added at 148 m from the left end of the conductors. The first three 

modes of the systems are shown in Figure 21. The second mode has a subspan shape only in 

the right span. It already shows a better behaviour than single spacer case because the area 

between spacer remains still. 

 

Figure 21: two spacer-dampers, first three modes 

 

Figure 22: two spacer-dampers, middle modes 
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Figure 23: two spacer-dampers configuration, last three modes 
 

 Real subspan positioning 

In this case we put 7 spacers following the actual use made by Bertolotti. In the first three 

modes, showed in Figure 24, the cables move synchronously.  

 

Figure 24: seven spacer-dampers, first three modes 
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Figure 25: seven space-dampers, subspan modes 

The first subspan mode occurs at 7th mode at around 1 Hz. Then, we can see that in this range 

of frequency modal shapes are the same with the only difference that subspan phenomenon 

presents in a different span.  

 
Figure 26: seven space-dampers, last three modes 

Figure 26 shows that two of the last three modes presents subspan oscillations.  
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5.1.2 Variation of the spacer-damper stiffness kAB 
 

 Rigid connection  

Let us consider again the single spacer case, with a rigid connection at 52 m. In this condition, 

there is no differences between 𝑤𝐴  and 𝑤𝐵 in correspondence of the spacer, as expected (Figure 

27). Interestingly, on the left side of the spacer the cable B moves more than the cable A. While 

on the right side is the opposite.  

In random point inside the span, Figure 28, we can see that the energy is gradually transmitted 

to the second cable (B). 
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Figure 27: Rigid connection, node of joint and closer nodes 
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Figure 28: Rigid connection, random node 

 

 Bertolotti spacer-damper 

The spacer now is still located at 52 m, but the connection is flexible (see Chapter 3.2) . In fact, 

according to Figure 29, the cable A presents a higher displacement w.r.t. B in correspondence 

of the spacer, and cable B receive the information with some delay.  

 

Figure 29: Spacer damper, node of joint 
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Figure 30: Spacer damper, nodes close to join and random node 
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5.1.3 Variation of the conductor pulling force T 
 

In this case, we vary the axial stiffness between three values which are percentages of the load 

breaker 𝑅𝑇𝑆: 

{
𝑆 = 15%𝑅𝑇𝑆
𝑆 = 20%𝑅𝑇𝑆
𝑆 = 25%𝑅𝑇𝑆

 

The stiffness and position of the spacer are kept constant, as well as the force applied to the 

conductors. The results will be discussed considering the connection node and middle span 

node. 

Figure 31 shows the effect of the axial tension in the connection node of the two conductors. 

Increasing the tension results in higher oscillations between higher and lower position. Since 

the tension influences the speed of the flexural waves on the conductors, the oscillatory pattern 

is also different with different values of 𝑆. 
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Figure 31 Node of connection: 15%,20%,25% Tensioned 
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Figure 32: Midspan node: 15%,20%,25% Tensioned 
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5.1.4 Variation of the external force magnitude Fc 
 

In this case, we vary the force module between three values: 

{

𝐹 = 𝐹𝑐
𝐹 = 10𝐹𝑐
𝐹 = 100𝐹𝑐

 

Maintaining constant stiffness and position of the spacer and axial tension. We analyse the 

results of the node of connection. As illustrated in Figure 33, the displacement of the first graph 

is multiplied by 10 and 100 in the second and third graph respectively. Since the model 

considered in this thesis is linear, the displacements 𝑤𝐴  and 𝑤𝐵  are directly proportional to the 

magnitude 𝐹𝑐. 

 

Figure 33: Variation of force module 
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5.1.5 Variation of wind velocity 𝒗 
 

Wind velocity is an important factor also to be analysed. Increasing velocity, increase also the 

frequency of excitation. So, we’ll have more modes to describe the time response. We are 

interested in these ranges of velocity: 

{
𝐴𝑒𝑜𝑙𝑖𝑎𝑛𝑣 = 1 ∶ 8

𝑚

𝑠

𝑆𝑢𝑏𝑠𝑝𝑎𝑛𝑣 = 8 ∶ 20
𝑚

𝑠

 

Taking in consideration the maximum and the minimum value of each of these ranges, we’ll 

take them as study parameters: 

{
 
 

 
 𝑣 = 1

𝑚

𝑠

𝑣 = 8
𝑚

𝑠

𝑣 = 20
𝑚

𝑠

 

As shown in Figure 34 and Figure 35, the maximum and minimum values of 𝑤 increase with 

velocity, indicating that stronger wind excitation leads to larger oscillations. As expected, the 

number of oscillations per unit time grows as velocity increases. 

At higher velocities, the response pattern becomes more distinct, with sharper transitions 

between peaks and troughs. This suggests that more vibration modes are contributing to the 

overall motion.   

 

 

 

 

 



 
Marco Costantini 

Modeling the dynamic behavior of two coupled parallel conductors 
 

52 

 

Figure 34: Variation of wind velocity, node of connection  
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Figure 35: Variation of wind velocity, midspan node  
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5.1.6 Variation of spacer damper mass 𝒎𝑨𝑩 
 

The mass of the Bertolotti spacer damper is: 

𝑚𝐴𝐵 = 5.2𝑘𝑔 

To understand the influence of the mass on the system displacement, we add two other orders 

of magnitude:  

{

𝑚𝐴𝐵 = 0.52𝑘𝑔
𝑚𝐴𝐵 = 5.2𝑘𝑔
𝑚𝐴𝐵 = 52𝑘𝑔

 

 

From the plots, Figure 36 and Figure 37, it is evident that as the mass of the spacer damper 

increase, the displacements appear smoother, with reduced oscillatory behaviour. This suggests 

that the higher mass is effectively absorbing and dissipating vibrational energy. A heavier 

damper resists acceleration more, leading to a more stable response. 
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Figure 36 Variation of spacer’s mass, node of connection 
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Figure 37: Variation of spacer’s mass, midspan node 
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5.2 Damped conductors 
 

Starting from the single conductor, we can add examples of time response with different value 

of the self-damping cable constant 𝐻. For 𝐻 = 1500, damped and undamped solutions match: 

there is no evident dissipation of energy (Figure 38). 

 

Figure 38: Displacement, undamped and with H=1500 

 

We try other 𝐻 of higher orders. 

{ 𝐻 = 15000
𝐻 = 150000

 

In these cases, as we can see in Figure 39, dissipation phenomena start to appear. To observe 

the effectiveness of this model we try to simulate double conductors with self-damping. 

Variation of self-damping coefficient 𝐻is taken into study.  
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Figure 39: Displacement with different values of H 

 

5.2.1 Effect of the self-damping coefficient on coupled cables  
 

Considering the same coupled configuration introduced in Section 5.1, we plot these cases of 

𝐻: 

{

𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑
𝐻 = 1500
𝐻 = 15000
𝐻 = 150000
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In the node of connection, we have the graphs below. As we expected there is no evident 

difference between 𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑 and  𝐻 = 1500. Increasing 𝐻, the oscillation of both cables 

decreases after 10 seconds.  

 

Figure 40: Couple conductor displacement, undamped and H=1500 
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Figure 41: Couple conductor displacement, H=15000 and H=150000 
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6 Conclusion 
 

The present thesis aimed at studying the dynamical behaviour of single and coupled conductors, 

considering a single span of an overhead line.  

After a general overview of the background given in Chapter 1, the modal analysis of the 

conductor basic model (i.e. the Euler-Bernoulli beam) started in Chapter 2. Here the set-up of 

the theoretical problem was done: the solution obtained for pinned-pinned constrains was used 

for the further improvements on the basic model. 

The problem was mad more realistic adopting a taut Euler-Bernoulli beam with self-damping 

and external excitation. With the same boundary conditions, it was shown the effect of the 

tensioning on the modal parameters. This equation was at the base for the coupled 

configuration.   

In Chapter 3, a model of two coupled conductors was introduced. The beams were linked by 

elastic spacers with lumped masses and stiffness equivalent to a real spacer-damper proper for 

the analysed conductors. The general solution was obtained using the Ritz-Galerkin method, 

and both the modal parameters and a time solution of the beams were derived. 

In Chapter 4, the Matlab coded to plot the results was presented. The script was run with 

different number of modes N, in order to adequately define it for describing the solution: the 

convergence of the solution was verified both in the single conductor case and for the coupled 

conductors.  

In Chapter 5, the modal shapes of the coupled conductors were shown and discussed. The time 

response of the system was checked at different points on the span trough a sensitivity analysis 

of the main parameters: number of spacer-dampers, their stiffness, external force amplitude, 

cable tensioning and self-damping are investigated for different magnitudes to see the effect on 

system output given the same input and verifying the very low sensitivity to cable self-damping. 

Further analysis could be focused on the spacer-dampers damping effect, but they need a 

different representation due the out diagonal terms in the damping matrix. Another interesting 

development would be the study of conductors bundle as triple, quad, hexa etc. those are of 

current use in the overhead lines, together with the real wind excitation coming from lab tests. 

The distribution of the wind (i.e. the force) can be used to determine the real strain field on the 

conductors of the bundle, making possible a prediction of the fatigue behaviour and a life 

estimation of the line.  
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APPENDIX 

Appendix A – Euler-Bernoulli beam  

 

Figure 42:  free-body diagram for a beam element 

Figure 42 shows the free-body diagram for a beam element of length dx of the conductor. The 

quantity 𝑤(𝑥, 𝑡) denotes the transverse deflection. 𝑄,𝑀 are the shear force and bending moment 

acting at the left-end side of the conductor element. 𝑄 + 𝑑𝑄,𝑀 + 𝑑𝑀are applied on the right-

end side. The term 𝜇
𝜕2𝑤

𝜕𝑡2
is the inertial force due to the motion of the element itself. This is the 

only inertial force we consider since the rotatory inertia of the cross-section can be neglected 

under the hypothesis of Euler-Bernoulli beam theory of no shear deformation. This is the 

transversal equilibrium: 

(𝑄 +
𝜕𝑄

𝜕𝑥
𝑑𝑥) − 𝑄 = 𝜇

𝜕2𝑤

𝜕𝑡2
𝑑𝑥 

𝜕𝑄

𝜕𝑥
𝑑𝑥 = 𝜇

𝜕2𝑤

𝜕𝑡2
𝑑𝑥 

The shear force 𝑄(𝑥) is related to the bending moment 𝑀(𝑥, 𝑡) by:   𝑄(𝑥) =
𝜕𝑀

𝜕𝑥
 . 

Being:  𝑀(𝑥) = −𝐸𝐼
𝜕2𝑤

𝜕𝑥2
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We can write that 𝑄(𝑥) = −𝐸𝐼
𝜕3𝑤

𝜕𝑥3
 

Substituting in the general equation we obtain: 

−𝐸𝐼
𝜕4𝑤

𝜕𝑥4
𝑑𝑥 = 𝜇

𝜕2𝑤

𝜕𝑡2
𝑑𝑥 

Dividing by 𝑑𝑥 and rearranging: 

𝜇
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= 0 
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Appendix B – Eigenfunctions calculation 
 

We explore the circumstances under which the motion of the beam is synchronous, meaning 

that every point of the beam executes the same motion in time, passing through equilibrium at 

the same time and reaching the maximum excursion at the same time. Follows that during 

synchronous motion the beam exhibits a certain unique profile, or general chape, and the profile 

doesn’t change with time, only the amplitude of the profile does. Such a solution 𝑤(𝑥, 𝑡) is said 

to be separable in the spatial variable 𝑥 and time 𝑡, and can be expressed in the form: 

𝑤(𝑥, 𝑡) = Φ(𝑥)𝜂(𝑡) 

Where Φ represents the shape and 𝜂 represents how the amplitude of the shape varies with time. 

Rewriting the partial equation: 

−𝜂(𝑡)
𝜕2

𝜕𝑥2
(𝐸𝐼(𝑥)

𝜕2Φ(𝑥)

𝜕𝑥2
) = 𝜇(𝑥)Φ(𝑥)

𝜕2𝜂(𝑡)

𝜕𝑡2
 

Dividing by 𝜂(𝑡)𝜇(𝑥)Φ(𝑥): 

−
1

𝜇(𝑥)Φ(𝑥)

𝜕2

𝜕𝑥2
(𝐸𝐼(𝑥)

𝜕2Φ(𝑥)

𝜕𝑥2
) =

1

𝜂(𝑡)

𝜕2𝜂(𝑡)

𝜕𝑡2
= 𝜆 

Observing that the left side depends only on 𝑥 and the right side only on 𝜂, we conclude that 

the solution 𝑦(𝑥, 𝑡)is indeed separable [6]. Both sides must be equal to a constant 𝜆. To see the 

nature of that constant we consider only the right side: 

𝜕2𝜂(𝑡)

𝜕𝑡2
− 𝜆𝜂(𝑡) = 0 

Which solution has an exponential form: 

𝜂(𝑡) = 𝐴𝑒𝑠𝑡 

So, substituting in the previous equation and dividing through by 𝐴𝑒𝑠𝑡: 

𝑠2 − 𝜆 = 0 

With solutions, assuming 𝜆 = −𝜔2 < 0, are: 

{
𝑠1 = √𝜆 = 𝑖𝜔

𝑠2 = −√𝜆 = −𝑖𝜔
 

𝜂(𝑡) = 𝐴1𝑒
𝑖𝜔𝑡 + 𝐴2𝑒

−𝑖𝜔𝑡  

𝜂(𝑡) represents an harmonic oscillation, so we can write: 

𝜂(𝑡) = 𝐶cos(𝜔𝑡 − 𝜙) 
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Where 𝐶 is an amplitude, 𝜙a phase angle and 𝜔 the frequency of oscillation. 

Now, we can find the displacement configuration Φ(𝑥) assumed by the beam.  

𝜕2

𝜕𝑥2
[𝐸𝐼(𝑥)

𝜕2Φ(𝑥)

𝜕𝑥2
] = 𝜔2𝜇(𝑥)Φ(𝑥) 

Considering 𝐼(𝑥) constant along the beam: 

𝜕4Φ(𝑥)

𝜕𝑥4
− 𝛽4Φ(𝑥) = 0𝑤ℎ𝑒𝑟𝑒𝛽4 =

𝜔2𝑚

𝐸𝐼
 

Φ(𝑥) = 𝐴sin(𝛽𝑥) + 𝐵cos(𝛽𝑥) + 𝐶sinh(𝛽𝑥) + 𝐷cosh(𝛽𝑥) 

𝜕2Φ(𝑥)

𝜕𝑥2
= 𝛽2[−𝐴sin(𝛽𝑥) − 𝐵cos(𝛽𝑥) + 𝐶sinh(𝛽𝑥) + 𝐷cosh(𝛽𝑥)] 

𝜕𝑤2(𝑥, 𝑡)

𝜕𝑥2
|
𝑥=0

 

Applying the boundary condition (pinned ends) we obtain: 

{
Φ(0) = 0 → 𝐵 + 𝐷 = 0

𝜕Φ2(𝑥,𝑡)

𝜕𝑥2
|
𝑥=0

= 0 → −𝐵 + 𝐷 = 0
    → 𝐵 = 𝐷 = 0 

{

Φ(𝐿) = 0 → 𝐴sin(𝛽𝐿) + 𝐶sinh(𝛽𝐿) = 0

𝜕Φ2(𝑥, 𝑡)

𝜕𝑥2
|
𝑥=𝐿

= 0 →−𝐴sin(𝛽𝐿) + 𝐶sinh(𝛽𝐿) = 0
 

𝑠𝑢𝑚 → 2𝐶sinh(𝛽𝐿) = 0 → 𝐶 = 0 

At the end we get the characteristic equation: 

sin(𝛽𝐿) = 0 

The solution is given by an infinite set of eigenvalues:  

𝛽𝑟𝐿 = 𝑟𝜋𝑟 = 1,2,… 

Substituting in the eigenfunction: 

Φ𝑟(𝑥) = 𝐴𝑟𝑠𝑖𝑛𝛽𝑟𝑥 = 𝐴𝑟 sin (
𝑟𝜋𝑥

𝐿
) 

Which results in an infinite set of eigenfunctions. These represent the vibrational characteristics 

of the beam under free vibration conditions. Each n corresponds to a different mode of vibration.  
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Appendix C – Modal equation of Euler-Bernoulli beam 
 

𝜇
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= 0 

Assuming that the solution can be written as a series of mode shapes and time functions: 

𝑤(𝑥, 𝑡) = ∑ Φ𝑛(𝑥)𝜂𝑛

∞

𝑛=1

(𝑡) 

Substituting into the equation: 

𝜇∑Φ𝑛(𝑥)�̈�𝑛

∞

𝑛=1

(𝑡) + 𝐸𝐼∑Φ𝑛
𝐼𝑉(𝑥)𝜂𝑛

∞

𝑛=1

(𝑡) = 0 

Using the orthogonality of the mode shapes and multiplying by Φ𝑚(𝑥). Integrating over 𝑥 from 

0 to 𝐿 , we obtain the equation: 

∫ 𝜇�̈�𝑛(𝑡)Φ𝑛(𝑥)Φ𝑚(𝑥)𝑑𝑥
𝐿

0
+ ∫ 𝐸𝐼𝜂𝑛(𝑡)Φ𝑛

𝐼𝑉(𝑥)Φ𝑚(𝑥)𝑑𝑥
𝐿

0
= 0  

Since the mode shapes are orthogonal, we simplify to:  

𝜇�̈�𝑛(𝑡)∫ Φ𝑛
2(𝑥)𝑑𝑥

𝐿

0

+ 𝐸𝐼𝜂𝑛(𝑡)∫ 𝛷𝑛
𝐼𝑉(𝑥)𝛷𝑛(𝑥)𝑑𝑥

𝐿

0

= 0 

Considering that the eigenfuction are (6): 

{
Φ𝑛(𝑥) = sin (

𝑛𝜋𝑥

𝐿
)

Φ𝑛
𝐼𝑉(𝑥) = (

𝑛𝜋

𝐿
)
4

sin (
𝑛𝜋𝑥

𝐿
)
 

And the integral solutions: 

{
 
 

 
 ∫ Φ𝑛

2(𝑥)𝑑𝑥
𝐿

0

= ∫ sin2 (
𝑛𝜋𝑥

𝐿
)𝑑𝑥 =

𝐿

2

𝐿

0

∫ Φ𝑛
𝐼𝑉(𝑥)Φ𝑛(𝑥)𝑑𝑥

𝐿

0

= ∫ (
𝑛𝜋

𝐿
)
4

sin2 (
𝑛𝜋𝑥

𝐿
)𝑑𝑥 =

𝐿

2
(
𝑛𝜋

𝐿
)
4𝐿

0

 

Substitute in the general equation and get: 

𝐿

2
𝜇�̈�𝑛 +

𝐿

2
(
𝑛𝜋

𝐿
)
4

𝐸𝐼𝜂𝑛 = 0 
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Appendix D – Conductor self-damping term 
 

The damping term developed by Diana needs to be studied with the Lagrangian approach. 

Considering a segment of cable [7], the kinetic and potential partial energy are: 

{
 
 

 
 𝑑𝑇 =

1

2
𝜇�̇�2𝑑𝑥

𝑑𝑉 =
1

2
𝐸𝐼 (

𝜕2𝑤

𝜕𝑥2
)

2

𝑑𝑥 +
1

2
𝑆 (
𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥

 

Remembering that        𝑤𝑛(𝑥, 𝑡) = 𝜂𝑛(𝑡)Φ𝑛(𝑥)              Φ𝑛(𝑥) = sin(
𝑛𝜋𝑥

𝐿
) 

𝑤(𝑥, 𝑡) ≈ ∑𝜂𝑛(𝑡)Φ𝑛(𝑥)

𝑁

𝑛=1

 

 

Substituting and integrating over the spatial domain: 

{
 
 

 
 𝑇𝑛 =

1

2
𝜇�̇�𝑛

2 ∫ Φ𝑛
2

𝐿

0

𝑑𝑥

𝑉𝑛 =
1

2
𝐸𝐼𝜂𝑛

2 ∫ (
𝜕2Φ𝑛

𝜕𝑥2
)

2𝐿

0

𝑑𝑥 +
1

2
𝑆𝜂𝑛

2 ∫ (
𝜕Φ𝑛

𝜕𝑥
)
2𝐿

0

𝑑𝑥

 

Where : 

{
 
 

 
 ∫ Φ𝑛

2𝐿

0
𝑑𝑥 =

𝐿

2

∫ (
𝜕2Φ𝑛

𝜕𝑥2
)
2𝐿

0
𝑑𝑥 =

𝑛4𝜋4

2𝐿3

∫ (
𝜕Φ𝑛

𝜕𝑥
)
2𝐿

0
𝑑𝑥 =

𝑛2𝜋2

2𝐿

 

So we can write: 

{
 

 𝑇𝑛 =
𝜇𝐿

4
�̇�𝑛
2

𝑉𝑛 = [
𝑛2𝜋2

4𝐿
(
𝑛2𝜋2

𝐿2
𝐸𝐼 + 𝑆)] 𝜂𝑛

2
 

In matrix form: 

{
𝑇 =

1

2
{�̇�}𝑇[𝑚]{�̇�}

𝑉 =
1

2
{𝜂}𝑇[𝑘]{𝜂}

 

Where [𝑚] is the modal mass matrix: [𝑚] = 𝑑𝑖𝑎𝑔(𝑚𝑛) and 𝑚𝑛 =
𝜇𝐿

2
  is the modal mass equal 

for each node. 
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For the calculation of self-damping component, we consider a hysteretic force acting on the 

cable as: 

𝐹 = ℎ
�̇�

Ω
 

The energy dissipated by each mode of vibration is: 

𝑑𝐷𝑛 =
1

2

ℎ𝑛
Ω
�̇�𝑛
2𝑑𝑥 

Following the same steps kinetic energy and potential component: 

𝐷𝑛 =
𝐿

4

ℎ𝑛
𝛺
�̇�𝑛
2 

Having all terms needed in Lagrange equation: 

𝑑

𝑑𝑡

𝜕𝑇𝑛
𝜕�̇�𝑛

−
𝜕𝑉𝑛
𝜕𝜂𝑛

+
𝜕𝐷𝑛

𝜕�̇�𝑛
= 𝑄𝑛 

We finally can write: 

𝜇𝐿

2
�̈�𝑛 − [

𝑛2𝜋2

2𝐿
(
𝑛2𝜋2

𝐿2
𝐸𝐼 + 𝑆)] 𝜂𝑛 +

𝐿

2

ℎ𝑛
𝛺
�̇�𝑛 = 𝑄𝑛 
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Appendix E – Modal matrix calculation 
 

Considering only first cable: 

𝜇
𝜕2𝑤𝐴
𝜕𝑡2

+ 𝑘
𝜕4𝑤𝐴
𝜕𝑥4

− 𝑆
𝜕2𝑤𝐴
𝜕𝑥2

+ (𝑚𝐴𝐵

𝜕2𝑤𝐴
𝜕𝑡2

+ 𝑘𝐴𝐵(𝑤𝐴 − 𝑤𝐵))∑𝛿(𝑥 − 𝑥ℎ)

𝐻

ℎ=1

= 𝑓(𝑥, 𝑡) 

𝑤𝐴(𝑥, 𝑡) = {Φ(x)}
𝑇{𝜂𝐴(𝑡)} 

{Φ(𝑥)}𝑁𝑥1 =

{
 
 

 
 sin (

𝜋𝑥

𝐿
)

sin (
2𝜋𝑥

𝐿
)

⋮

sin (
𝑁𝜋𝑥

𝐿
)}
 
 

 
 

                           { 𝜂𝐴 (𝑡)}
𝑁×1

 

Substitute 𝑤𝐴(𝑥, 𝑡) in the equation: 

𝜇{Φ}𝑇{ �̈�𝐴 } + 𝑘{ΦIV}𝑇{ 𝜂𝐴 } − 𝑆{Φ𝐼𝐼}𝑇{ 𝜂𝐴 }

+ [𝑚𝐴𝐵{Φ}
𝑇{ �̈�𝐴 } + 𝑘12{Φ}

𝑇({ 𝜂𝐴 } − { 𝜂𝐵 })]∑𝛿(𝑥 − 𝑥ℎ)

𝐻

ℎ=1

= 𝑓𝐴 (𝑥, 𝑡) 

Multiply by {Φ} and integrate over spatial domain: 

𝜇∫ {Φ}{Φ}𝑇{ �̈�𝐴 }𝑑𝑥
𝐿

0

+ 𝑘∫ {Φ}{Φ𝐼𝑉}𝑇{ 𝜂𝐴 }𝑑𝑥
𝐿

0

− 𝑆∫ {Φ}{Φ𝐼𝐼}𝑇{ 𝜂𝐴 }𝑑𝑥
𝐿

0

+𝑚𝐴𝐵∫ {Φ}{Φ}𝑇{ �̈�𝐴 }∑ 𝛿(𝑥 − 𝑥ℎ)

𝐻

ℎ=1

𝑑𝑥
𝐿

0

+ 𝑘𝐴𝐵∫ {Φ}{Φ}𝑇({ 𝜂𝐴 } − { 𝜂𝐵 })∑ 𝛿(𝑥 − 𝑥ℎ)

𝐻

ℎ=1

𝑑𝑥
𝐿

0

= ∫ {Φ}
𝐿

0

𝑓𝐴 (𝑥, 𝑡)𝑑𝑥 

Where:  

{
 
 
 
 

 
 
 
 Φ𝑛 = 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
)

Φ𝑛
𝐼 = (

𝑛𝜋

𝐿
) 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)

Φ𝑛
𝐼𝐼 = −(

𝑛𝜋

𝐿
)
2

𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
)

Φ𝑛
𝐼𝐼𝐼 = −(

𝑛𝜋

𝐿
)
3

𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝐿
)

Φ𝑛
𝐼𝑉 = (

𝑛𝜋

𝐿
)
4

𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
)

 

The integral terms are examined in the following. 
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 First term:   𝜇 ∫ {Φ}{Φ}𝑇𝑑𝑥{ �̈�𝐴 }
𝐿

0
  

{Φ}{Φ}𝑇= 

{
 
 

 
 𝑠𝑖𝑛 (

𝜋𝑥

𝐿
)

sin (
2𝜋𝑥

𝐿
)

…

sin (
𝑁𝜋𝑥

𝐿
)}
 
 

 
 

{sin (
𝜋𝑥

𝐿
) sin (

2𝜋𝑥

𝐿
) … sin (

Nπx

L
)}

=

{
  
 

  
 𝑠in2 (

𝜋𝑥

𝐿
) sin (

𝜋𝑥

𝐿
) sin (

2𝜋𝑥

𝐿
) … …

sin (
𝜋𝑥

𝐿
) sin (

2𝜋𝑥

𝐿
) sin2 (

2𝜋𝑥

𝐿
) … …

⋮
⋮

⋮
⋮

⋱
…

⋮

sin2 (
𝑁𝜋𝑥

𝐿
)}
  
 

  
 

𝑁×𝑁

 

The result of the integral is: 

∫ sin2 (
𝑛𝜋𝑥

𝐿
)

𝐿

0
=

𝐿

2
𝑎𝑛𝑑                         ∫ sin (

𝑘𝜋𝑥

𝐿
) sin (

𝑚𝜋𝑥

𝐿
)

𝐿

0
= 0,𝑘 ≠ 𝑚 

So, we get a diagonal matrix and can write the entire member as: 

𝜇𝐴
𝐿

2
[𝐼]𝑁×𝑁{ �̈�𝐴 } 

Where [𝐼] is the identity matrix. 

 For second and third member we apply the same demonstration and get: 

𝑘∫ {Φ}{Φ𝐼𝑉}𝑇𝑑𝑥
𝐿

0

= 𝑘
𝐿

2
𝑑𝑖𝑎𝑔

(

 
 
 
 
 
(
𝜋

𝐿
)
4

(
2𝜋

𝐿
)
4

⋮

(
𝑁𝜋

𝐿
)
4

)

 
 
 
 
 

𝑁×𝑁

 

−𝑆∫ {Φ}{Φ𝐼𝐼}𝑇𝑑𝑥
𝐿

0

= 𝑆
𝐿

2
𝑑𝑖𝑎𝑔

(

 
 
 
 
 
(
𝜋

𝐿
)
2

(
2𝜋

𝐿
)
2

⋮

(
𝑁𝜋

𝐿
)
2

)

 
 
 
 
 

𝑁×𝑁

 

 Fourth term:     𝑚𝐴𝐵 ∫ {Φ}{Φ}
𝑇 ∑ 𝛿(𝑥 − 𝑥ℎ)

𝐻
ℎ=1 𝑑𝑥

𝐿

0
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For Dirac property: 

∑∫ {Φ}{Φ}𝑇𝛿(𝑥 − 𝑥ℎ)𝑑𝑥 =∑{Φ(𝑥ℎ)}{Φ(𝑥ℎ)}
𝑇

𝐻

ℎ=1

𝐿

0

𝐻

ℎ=1

= [Σℎ]𝑁×𝑁 

We can therefore write the final equation: 

𝜇
𝐿

2
[𝐼]{ �̈�𝐴 (𝑡)} + 𝑘

𝐿

2
𝑑𝑖𝑎𝑔 ((

𝑛𝜋

𝐿
)
4

) { 𝜂𝐴 (𝑡)} + 𝑆
𝐿

2
𝑑𝑖𝑎𝑔 ((

𝑛𝜋

𝐿
)
2

) { 𝜂𝐴 (𝑡)}

+ 𝑚𝐴𝐵[𝛴ℎ]{ �̈�𝐴 (𝑡)} + 𝑘𝐴𝐵[𝛴ℎ]({ 𝜂𝐴 (𝑡)} − { 𝜂𝐵 (𝑡)})

= ∫ {Φ(𝑥)}
𝐿

0

𝑓(𝑥, 𝑡)𝑑𝑥 
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Appendix F – Modal matrix of the coupled system 
 

The initial equation of motion is: 

[𝑀]{�̈�} + [𝐾]{𝜂} = {𝐹} 

Where {𝜂(𝑡)}2𝑁×1 = {
{ 𝜂𝐴 }

{ 𝜂𝐵 }
} 

After the EVP ([𝑀]{�̈�} + [𝐾]{𝜂} = 0) we get the following modal matrix: 

[𝑍]2𝑁×2𝑁 = [
[ 𝑍𝐴 ]

[ 𝑍𝐵 ]
] =

[
 
 
 
 
 
 
 
 
 

[
 
 
 
 𝑍1,1𝐴 𝑍1,2𝐴 … 𝑍1,2𝑁𝐴

𝑍2,1𝐴 𝑍2,2𝐴 … 𝑍2,2𝑁𝐴

⋮

𝑍𝑁,1𝐴

⋮

𝑍𝑁,2𝐴

⋱ ⋮

… 𝑍𝑁,2𝑁𝐴 ]
 
 
 
 

[
 
 
 
 𝑍1,1𝐵 𝑍1,2𝐵 … 𝑍1,2𝑁𝐵

𝑍2,1𝐵 𝑍2,2𝐵 … 𝑍2,2𝑁𝐵

⋮
𝑍𝑁,1𝐵

⋮
𝑍𝑁,2𝐵

⋱ ⋮
… 𝑍𝑁,2𝑁𝐵 ]

 
 
 
 

]
 
 
 
 
 
 
 
 
 

 

The natural frequencies of the coupled system can be stacked into a 2N vector as:   

{𝜔} = {

𝜔1
𝜔2
⋮

𝜔2𝑁

} 

We can write:{𝜂(𝑡)} = [𝑍]{𝑝(𝑡)}  where {𝑝(𝑡)}2𝑁×1 = {

𝑝1
𝑝2
⋮
𝑝2𝑁

}   

After substituting {𝜂(𝑡)} and pre-multiplying by [𝑍]𝑇 we get: 

  
[𝑍]𝑇[𝑀][𝑍]{�̈�} + [𝑍]𝑇[𝐾][𝑍]{𝑝} = [𝑍]𝑇 {𝐹} 

{𝐹}2𝑁×1 = {
{ 𝐹𝐴 }

{ 𝐹𝐵 }
} 

If a distributed force is acting only on the first cable (A), we get: 
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{𝐹}2𝑁×1 = {
{ 𝐹𝐴 }

{0}
} = {

{∫ 𝑓Φ𝑛𝑑𝑥
𝐿

0

}
𝑁×1

{0}

} = {
{𝐹𝑐

𝐿(1 − cos(𝑛𝜋))

𝑛𝜋
sin(𝛺𝑡)}

𝑁×1

{0}

}

=

{
 
 

 
 

{
 
 

 
 𝐹𝐴 1

𝐹𝐴 2

⋮

𝐹𝐴 𝑁}
 
 

 
 

{0} }
 
 

 
 

 

Where 𝐹𝑐  is the lift force of the wind and Ω is the angular frequency of the wind. 

In terms of modal force, it yields: 

[𝑍]𝑇{𝐹} =

[
 
 
 
 𝑍1,1𝐴 𝑍2,1𝐴 … 𝑍𝑁,1𝐴 𝑍1,1𝐵 𝑍2,1𝐵 … 𝑍𝑁,1𝐵

𝑍1,2𝐴 𝑍2,2𝐴 … 𝑍𝑁,2𝐴 𝑍1,2𝐵 𝑍2,2𝐵 … 𝑍𝑁,2𝐵

⋮

𝑍1,2𝑁𝐴

⋮

𝑍2,2𝑁𝐴

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

… 𝑍𝑁,2𝑁𝐴 𝑍1,2𝑁𝐵 𝑍2,2𝑁𝐵 … 𝑍𝑁,2𝑁𝐵 ]
 
 
 
 

{
 
 

 
 

{
 
 

 
 𝐹𝐴 1

𝐹𝐴 2

⋮

𝐹𝐴 𝑁}
 
 

 
 

{0} }
 
 

 
 

=

{
 
 
 
 

 
 
 
 ∑ 𝑍𝑟,1𝐴 𝐹𝐴 𝑟

𝑁

𝑟=1

∑ 𝑍𝑟,2𝐴 𝐹𝐴 𝑟

𝑁

𝑟=1

⋮

∑ 𝑍𝑟,2𝑁𝐴 𝐹𝐴 𝑟

𝑁

𝑟=1 }
 
 
 
 

 
 
 
 

2𝑁×1

=

{
 
 
 
 

 
 
 
 ∑ 𝑍𝑟,1𝐴 𝐹𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1

∑ 𝑍𝑟,2𝐴 𝐹𝑐
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1

⋮

∑ 𝑍𝑟,2𝑁𝐴 𝐹𝑐
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1 }
 
 
 
 

 
 
 
 

 

Thus, the forced problem can be written as: 

    [𝑍]𝑇[𝑀][𝑍]{�̈�} + [𝑍]𝑇[𝐾][𝑍]{𝑝} = [𝑍]𝑇 {𝐹} 

All the matrices are diagonal, so we can write the equation for each mode. As  {𝑚𝑛} =

𝑑𝑖𝑎𝑔([𝑍]𝑇[𝑀][𝑍]): 

�̈�𝑛 + 𝜔𝑛
2𝑝𝑛 =

𝐹𝑐
𝑚𝑛

∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1

 

The solution can be obtained by employing the convolution integral: 

�̈�𝑛 + 𝜔𝑛
2𝑝𝑛 = 𝑄𝑛(𝑡) 

𝑝𝑛(𝑡) = ∫
1

𝜔𝑛
𝑄𝑛(𝜏)sin𝜔𝑛(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

Eventually, we can write: 
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𝑝𝑛(𝑡) =
𝐹𝑐
𝑚𝑛

[∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

]
1

𝜔𝑛
2 − 𝛺2

(sin𝛺𝑡 −
𝛺

𝜔𝑛
sin𝜔𝑛𝑡) 

And: 

{𝜂(𝑡)} = [𝑍]{𝑝(𝑡)} = [
[ 𝑍𝐴 ]

[ 𝑍𝐵 ]
] {𝑝(𝑡)} =

[
 
 
 
 
 
 
 
 
 

[
 
 
 
 𝑍1,1𝐴 𝑍1,2𝐴 … 𝑍1,2𝑁𝐴

𝑍2,1𝐴 𝑍2,2𝐴 … 𝑍2,2𝑁𝐴

⋮

𝑍𝑁,1𝐴

⋮

𝑍𝑁,2𝐴

⋱ ⋮

… 𝑍𝑁,2𝑁𝐴 ]
 
 
 
 

[
 
 
 
 𝑍1,1𝐵 𝑍1,2𝐵 … 𝑍1,2𝑁𝐵

𝑍2,1𝐵 𝑍2,2𝐵 … 𝑍2,2𝑁𝐵

⋮
𝑍𝑁,1𝐵

⋮
𝑍𝑁,2𝐵

⋱ ⋮
… 𝑍𝑁,2𝑁𝐵 ]

 
 
 
 

]
 
 
 
 
 
 
 
 
 

{

𝑝1
𝑝2
⋮
𝑝2𝑁

}

=

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 ∑ 𝑍1,𝑛𝑝𝑛𝐴

2𝑁

𝑛

∑ 𝑍2,𝑛𝑝𝑛𝐴

2𝑁

𝑛

⋮

∑ 𝑍𝑁,𝑛𝑝𝑛𝐴

2𝑁

𝑛 }
 
 
 
 

 
 
 
 

{
 
 
 
 

 
 
 
 ∑ 𝑍1,𝑛𝑝𝑛𝐵

2𝑁

𝑛

∑ 𝑍2,𝑛𝑝𝑛𝐵

2𝑁

𝑛

⋮

∑ 𝑍𝑁,𝑛𝑝𝑛𝐵

2𝑁

𝑛 }
 
 
 
 

 
 
 
 

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

= {
{ 𝜂𝐴 }

{ 𝜂𝐵 }
} 

Remembering that: 𝑤𝐴 (𝑥, 𝑡) = {Φ(𝑥)}𝑇{ 𝜂𝐴 (𝑡)} 

 

{Φ(𝑥)}𝑁𝑥1 =

{
  
 

  
 𝑠𝑖𝑛 (

𝜋𝑥

𝐿
)

𝑠𝑖𝑛 (
2𝜋𝑥

𝐿
)

⋮

𝑠𝑖𝑛 (
𝑁𝜋𝑥

𝐿
)}
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𝑤𝐴 (𝑥, 𝑡) = {sin (
𝜋𝑥

𝐿
) sin (

2𝜋𝑥

𝐿
) … sin (

𝑁𝜋𝑥

𝐿
)}

{
 
 
 
 

 
 
 
 ∑ 𝑍1,𝑛𝑝𝑛𝐴

2𝑁

𝑛=1

∑ 𝑍2,𝑛𝑝𝑛𝐴

2𝑁

𝑛=1

⋮

∑ 𝑍𝑁,𝑛𝑝𝑛𝐴

2𝑁

𝑛=1 }
 
 
 
 

 
 
 
 

 

𝑤𝐴 (𝑥, 𝑡) =∑sin (
𝑘𝜋𝑥

𝐿
)∑ 𝑍𝑘,𝑛𝑝𝑛𝐴

2𝑁

𝑛=1

N

k=1

=∑sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛2 −𝛺2
(sin𝛺𝑡 −

𝛺

𝜔𝑛
sin𝜔𝑛𝑡)𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

 

 

{
 
 

 
 

𝑤𝐴 (𝑥, 𝑡) = ∑sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛2 − 𝛺2
(sin𝛺𝑡 −

𝛺

𝜔𝑛
sin𝜔𝑛𝑡)𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

𝑤𝐵 (𝑥, 𝑡) = ∑sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑ 𝑍𝑟,𝑛𝐴

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛2 − 𝛺2
(sin𝛺𝑡 −

𝛺

𝜔𝑛
sin𝜔𝑛𝑡)𝐵

2𝑁

𝑛=1

]

𝑁

𝑘=1

 

 

Considering the same distributed force acting on both cables: 

{ 𝐹𝐴 } = { 𝐹𝐵 } = {𝐹𝑐
𝐿(1 − cos(𝑛𝜋))

𝑛𝜋
sin(𝛺𝑡)}

𝑁×1

 

{𝐹}2𝑁×1 = {
{ 𝐹𝐴 }

{ 𝐹𝐵 }
} =

{
 
 

 
 {∫ 𝑓𝛷𝑛𝑑𝑥

𝐿

0

}
𝑁×1

{∫ 𝑓𝛷𝑛𝑑𝑥
𝐿

0

}
𝑁×1}

 
 

 
 

=

{
 
 

 
 {𝐹𝑐

𝐿(1 − cos(𝑛𝜋))

𝑛𝜋
sin(𝛺𝑡)}

𝑁×1

{𝐹𝑐
𝐿(1 − cos(𝑛𝜋))

𝑛𝜋
sin(𝛺𝑡)}

𝑁×1}
 
 

 
 

=

{
 
 
 
 

 
 
 
 

{
 
 

 
 𝐹𝐴 1

𝐹𝐴 2

⋮

𝐹𝐴 𝑁}
 
 

 
 

{
 
 

 
 𝐹𝐵 1

𝐹𝐵 2

⋮
𝐹𝐵 𝑁}
 
 

 
 

}
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[𝑍]𝑇{𝐹} =

[
 
 
 
 𝑍1,1𝐴 𝑍2,1𝐴 … 𝑍𝑁,1𝐴 𝑍1,1𝐵 𝑍2,1𝐵 … 𝑍𝑁,1𝐵

𝑍1,2𝐴 𝑍2,2𝐴 … 𝑍𝑁,2𝐴 𝑍1,2𝐵 𝑍2,2𝐵 … 𝑍𝑁,2𝐵

⋮

𝑍1,2𝑁𝐴

⋮

𝑍2,2𝑁𝐴

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

… 𝑍𝑁,2𝑁𝐴 𝑍1,2𝑁𝐵 𝑍2,2𝑁𝐵 … 𝑍𝑁,2𝑁𝐵 ]
 
 
 
 

{
 
 
 
 

 
 
 
 

{
 
 

 
 𝐹𝐴 1

𝐹𝐴 2

⋮

𝐹𝐴 𝑁}
 
 

 
 

{
 
 

 
 𝐹𝐵 1

𝐹𝐵 2

⋮
𝐹𝐵 𝑁}
 
 

 
 

}
 
 
 
 

 
 
 
 

=

{
 
 
 
 

 
 
 
 ∑ 𝑍𝑟,1𝐴 𝐹𝐴 𝑟

𝑁

𝑟=1

+∑ 𝑍𝑟,1𝐵 𝐹𝐵 𝑟

𝑁

𝑟=1

∑ 𝑍𝑟,2𝐴 𝐹𝐴 𝑟

𝑁

𝑟=1

+∑ 𝑍𝑟,2𝐵 𝐹𝐵 𝑟

𝑁

𝑟=1

⋮

∑ 𝑍𝑟,2𝑁𝐴 𝐹𝐴 𝑟

𝑁

𝑟=1

+∑ 𝑍𝑟,2𝑁𝐵 𝐹𝐵 𝑟

𝑁

𝑟=1 }
 
 
 
 

 
 
 
 

2𝑁×1

=

{
 
 
 
 

 
 
 
 ∑( 𝑍𝑟,1𝐴 + 𝑍𝑟,1𝐵 )𝐹𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1

∑( 𝑍𝑟,2𝐴 + 𝑍𝑟,2𝐵 )𝐹𝑐
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1

⋮

∑( 𝑍𝑟,2𝑁𝐴 + 𝑍𝑟,2𝑁𝐵 )𝐹𝑐
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1 }
 
 
 
 

 
 
 
 

 

Returning to:    [𝑍]𝑇[𝑀][𝑍]{�̈�} + [𝑍]𝑇[𝐾][𝑍]{𝑝} = [𝑍]𝑇{𝐹} 

�̈�𝑛 +𝜔𝑛
2𝑝𝑛 =

𝐹𝑐
𝑚𝑛

∑( 𝑍𝑟,𝑛𝐴 + 𝑍𝑟,𝑛𝐵 )
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin(𝛺𝑡)

𝑁

𝑟=1

 

The solution can be obtained by employing the convolution integral: 

�̈�𝑛 + 𝜔𝑛
2𝑝𝑛 = 𝑄𝑛(𝑡) 

𝑝𝑛(𝑡) = ∫
1

𝜔𝑛
𝑄𝑛(𝜏)sin𝜔𝑛(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

I finally write: 

𝑝𝑛(𝑡) =
𝐹𝑐
𝑚𝑛

[∑( 𝑍𝑟,𝑛𝐴 + 𝑍𝑟,𝑛𝐵 )
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

]
1

𝜔𝑛2 − 𝛺2
(sin𝛺𝑡 −

𝛺

𝜔𝑛
sin𝜔𝑛𝑡) 

And: 
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{𝜂(𝑡)} = [𝑍]{𝑝(𝑡)} =

[
 
 
 
 
 
 
 
 
 

[
 
 
 
 𝑍1,1𝐴 𝑍1,2𝐴 … 𝑍1,2𝑁𝐴

𝑍2,1𝐴 𝑍2,2𝐴 … 𝑍2,2𝑁𝐴

⋮

𝑍𝑁,1𝐴

⋮

𝑍𝑁,2𝐴

⋱ ⋮

… 𝑍𝑁,2𝑁𝐴 ]
 
 
 
 

[
 
 
 
 𝑍1,1𝐵 𝑍1,2𝐵 … 𝑍1,2𝑁𝐵

𝑍2,1𝐵 𝑍2,2𝐵 … 𝑍2,2𝑁𝐵

⋮
𝑍𝑁,1𝐵

⋮
𝑍𝑁,2𝐵

⋱ ⋮
… 𝑍𝑁,2𝑁𝐵 ]

 
 
 
 

]
 
 
 
 
 
 
 
 
 

{

𝑝1
𝑝2
⋮
𝑝2𝑁

} =

{
 
 
 
 

 
 
 
 

{
 
 

 
 ∑ 𝑍1,𝑛𝑝𝑛𝐴

2𝑁
𝑛

∑ 𝑍2,𝑛𝑝𝑛𝐴
2𝑁
𝑛

⋮
∑ 𝑍𝑁,𝑛𝑝𝑛𝐴
2𝑁
𝑛 }

 
 

 
 

{
 
 

 
 ∑ 𝑍1,𝑛𝑝𝑛𝐵

2𝑁
𝑛

∑ 𝑍1,𝑛𝑝𝑛𝐵
2𝑁
𝑛

⋮
∑ 𝑍𝑁,𝑛𝑝𝑛𝐵
2𝑁
𝑛 }

 
 

 
 

}
 
 
 
 

 
 
 
 

=

{
{ 𝜂𝐴 }

{ 𝜂𝐵 }
} 

Remembering that: 𝑤𝐴 (𝑥, 𝑡) = {Φ(𝑥)}𝑇{ 𝜂𝐴 (𝑡)} 

{Φ(𝑥)}𝑁𝑥1 =

{
  
 

  
 sin (

𝜋𝑥

𝐿
)

sin (
2𝜋𝑥

𝐿
)

⋮

sin (
𝑁𝜋𝑥

𝐿
)}
  
 

  
 

 

𝑤𝐴 (𝑥, 𝑡) = {sin (
𝜋𝑥

𝐿
) sin (

2𝜋𝑥

𝐿
) … sin (

𝑁𝜋𝑥

𝐿
)}

{
 
 
 
 

 
 
 
 ∑ 𝑍1,𝑛𝑝𝑛𝐴

2𝑁

𝑛=1

∑ 𝑍2,𝑛𝑝𝑛𝐴

2𝑁

𝑛=1

⋮

∑ 𝑍𝑁,𝑛𝑝𝑛𝐴

2𝑁

𝑛=1 }
 
 
 
 

 
 
 
 

 

𝑤𝐴 (𝑥, 𝑡) =∑sin (
𝑘𝜋𝑥

𝐿
)∑ 𝑍𝑘,𝑛𝑝𝑛𝐴

2𝑁

𝑛=1

N

k=1

=∑sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑( 𝑍𝑟,𝑛𝐴 + 𝑍𝑟,𝑛𝐵 )
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛
2 − 𝛺2

(sin𝛺𝑡 −
𝛺

𝜔𝑛
sin𝜔𝑛𝑡)𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

 

 

{
 
 

 
 𝑤𝐴 (𝑥, 𝑡) =∑sin (

𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑( 𝑍𝑟,𝑛𝐴 + 𝑍𝑟,𝑛𝐵 )
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛
2 −𝛺2

(sin𝛺𝑡 −
𝛺

𝜔𝑛
sin𝜔𝑛𝑡)𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

𝑤𝐵 (𝑥, 𝑡) =∑sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

𝐹𝑐
𝑚𝑛

(∑( 𝑍𝑟,𝑛𝐴 + 𝑍𝑟,𝑛𝐵 )
𝐿(1 − cos(𝑟𝜋))

𝑟𝜋

𝑁

𝑟=1

)
1

𝜔𝑛
2 −𝛺2

(sin𝛺𝑡 −
𝛺

𝜔𝑛
sin𝜔𝑛𝑡)𝐵

2𝑁

𝑛=1

]

𝑁

𝑘=1
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If different external forces on the second cable, we’ll have also different angular velocity 

Ω. 

{𝐹}2𝑁×1 = {
{ 𝐹𝐴 }

{ 𝐹𝐵 }
} =

{
 
 

 
 {∫ 𝑓Φ𝑛𝑑𝑥

𝐿

0

}
𝑁×1

{∫ 𝑓Φ𝑛𝑑𝑥
𝐿

0

}
𝑁×1}

 
 

 
 

=

{
 
 

 
 { 𝐹𝐴 𝑐

𝐿(1 − cos(𝑛𝜋))

𝑛𝜋
sin( 𝛺𝐴 𝑡)}

𝑁×1

{ 𝐹𝐵 𝑐

𝐿(1 − cos(𝑛𝜋))

𝑛𝜋
sin( 𝛺𝐵 𝑡)}

𝑁×1}
 
 

 
 

 

 

�̈�𝑛 +𝜔𝑛
2𝑝𝑛 =

1

𝑚𝑛

[∑ 𝑍𝑟,𝑛𝐴 𝐹𝐴 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐴 𝑡)

𝑁

𝑟=1

+∑ 𝑍𝑟,𝑛𝐵 𝐹𝐵 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐵 𝑡)

𝑁

𝑟=1

] 

 

𝑝𝑛(𝑡) =
1

𝑚𝑛

[∑ 𝑍𝑟,𝑛𝐴 𝐹𝐴 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐴 𝑡)

𝑁

𝑟=1

+∑ 𝑍𝑟,𝑛𝐵 𝐹𝐵 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐵 𝑡)

𝑁

𝑟=1

]
1

𝜔𝑑𝑛
2 − 𝛺2

(sin𝛺𝑡

−
𝛺

𝜔𝑛
sin𝜔𝑛𝑡) 

And we reach the final equations: 

{
 
 

 
 𝑤𝐴 (𝑥, 𝑡) =∑sin (

𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

1

𝑚𝑛

[∑ 𝑍𝑟,𝑛𝐴 𝐹𝐴 𝑐

𝐿(1 − co𝑠(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐴 𝑡)

𝑁

𝑟=1

+∑ 𝑍𝑟,𝑛𝐵 𝐹𝐵 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐵 𝑡)

𝑁

𝑟=1

]
1

𝜔𝑛
2 − 𝛺𝐴

2
(sin 𝛺𝐴 𝑡 −

𝛺

𝜔𝑛
sin𝜔𝑛𝑡)𝐴

2𝑁

𝑛=1

]

𝑁

𝑘=1

𝑤𝐵 (𝑥, 𝑡) =∑sin (
𝑘𝜋𝑥

𝐿
) [∑ 𝑍𝑘,𝑛

1

𝑚𝑛

[∑ 𝑍𝑟,𝑛𝐴 𝐹𝐴 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐴 𝑡)

𝑁

𝑟=1

+∑ 𝑍𝑟,𝑛𝐵 𝐹𝐵 𝑐

𝐿(1 − cos(𝑟𝜋))

𝑟𝜋
sin( 𝛺𝐵 𝑡)

𝑁

𝑟=1

]
1

𝜔𝑛
2 − 𝛺𝐵

2
(sin 𝛺𝐵 𝑡 −

𝛺

𝜔𝑛
sin𝜔𝑛𝑡)𝐵

2𝑁

𝑛=1

]

𝑁

𝑘=1

 

 

 

 

 

 

 

 

 

 

 



 
Marco Costantini 

Modeling the dynamic behavior of two coupled parallel conductors 
 

79 

 

Bibliography 
 

[1]  EPRI, Transmission Line Reference Book: Wind-Induced Conductor Motion, 2006.  

[2]  C. Diana, “Mathematical Analysis of Transmission Line Vibration,” 1969.  

[3]  Rao, Vibration of Continuous Systems, 2007.  

[4]  S. Sorrentino, D. Anastasio, A. Fasana and S. Marchesiello, “Distributed parameter and 

finite element models for wave,” 2017.  

[5]  Gazzola, “Modelling and assessment of aeolian vibrationsof overhead transmission line 

conductors,” 2018. 

[6]  L. Meirovitch, Fundamentals of Vibration, New Jersey, 1999.  

[7]  R. Bishop and D. C. Johnson, The Mechanics of Vibration., Cambridge,England: 

Cambridge University Press,, 1960.  

[8]  A. Fasana and S. Marchesiello, Meccanica delle vibrazioni, 2006.  

[9]  T. Timoshenko, Strength of Materials, Part 1: Elementary Theory and Problems, 2002.  

[10]  T. Timoshenko, Strength of Materials, Part 2: Advanced Theory and Problems, 2002.  

[11]  N. Barbieri, . O. . H. de Souza Junior and R. Barbieri, Dynamical analysis of 

transmission line cables., 2002.  

 

 

 

 

 

 

 


	1 Introduction
	1.1 Excitation phenomena
	1.2 Aeolian Vibration
	1.3 Sub-span oscillation

	2 Dynamical problem of a single conductor
	2.1 The Euler-Bernoulli beam
	2.1.1 Modal Parameters

	2.2 Taut and forced Euler-Bernoulli beam
	2.2.1 Modal Parameters
	2.2.2 Time response for a generic forced case

	2.3 Damped taut Euler-Bernoulli beam
	2.3.1 Modal parameters
	2.3.2 Time response in the damped case


	3 Dynamical problem of coupled conductors
	3.1 Coupled conductors with self-damping
	3.2 A real kind of links: spacer-dampers
	3.3 Dynamical problem of coupled conductors with spacer-dampers

	4 Simulations
	4.1 Script verification
	4.2 Parameters
	4.3 Number of modes

	5 Results
	5.1 Undamped conductors
	5.1.1 Effect of the number of spacer-dampers
	5.1.2 Variation of the spacer-damper stiffness kAB
	5.1.3 Variation of the conductor pulling force T
	5.1.4 Variation of the external force magnitude Fc
	5.1.5 Variation of wind velocity 𝒗
	5.1.6 Variation of spacer damper mass ,𝒎-𝑨𝑩.

	5.2 Damped conductors
	5.2.1 Effect of the self-damping coefficient on coupled cables


	6 Conclusion
	APPENDIX
	Appendix A – Euler-Bernoulli beam
	Appendix B – Eigenfunctions calculation
	Appendix C – Modal equation of Euler-Bernoulli beam
	Appendix D – Conductor self-damping term
	Appendix E – Modal matrix calculation
	Appendix F – Modal matrix of the coupled system

	Bibliography

