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Abstract

Due to their advantageous characteristics, gas-lubricated bearings are increasingly
being adopted in various oil-free applications. These bearings utilize a gas lubricant
that is directly sourced from the working fluid of the rotating machine. Furthermore,
self-acting bearings eliminate the need for an external supply system or compressor,
allowing for the development of compact and hermetically sealed systems. The
low viscosity of gaseous lubricants also helps minimize frictional losses, thereby
enhancing the overall efficiency of rotating machinery. Another key advantage of
gaseous lubricants is their stable physical and chemical properties, as they do not
undergo vaporization, cavitation, decomposition, or solidification across a broad
temperature range.
However, the design of these bearings must be specifically tailored to meet the oper-
ational requirements of the system. This thesis presents a study on various types of
aerodynamic thrust bearings, aiming to establish performance metrics for the exist-
ing bearings, develop accurate numerical models, and propose future improvements
to the system.
A previously designed test bench was utilized to experimentally evaluate two types
of thrust bearings: logarithmic spiral and tapered. Since no prior data were avail-
able on their exact geometry, a complete surface scan was performed to characterize
the groove pattern and other relevant parameters, ensuring accurate comparisons
with the numerical model. The simulation of the system was conducted using a
Finite Difference Method (FDM), employing a central node finite volume mesh and
a Forward Euler scheme for temporal evolution. While this approach required an
exceptionally small time step (dt), leading to long computational times, it was nec-
essary due to the highly coupled nature of the governing equations.
The bearings were scanned, and the resulting geometries were directly integrated into
the numerical models for validation against the experimental measurements. Both
steady-state and time-evolution models were developed and utilized to simulate
the system’s behavior, providing a comprehensive analysis of aerodynamic thrust
bearing performance.
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Chapter 1

Introduction

Whenever a rotating system is designed with the intention of having a shaft rotate at
extremely high speeds, normal ball bearings have a mayor drawback, they generate
enough friction to get damaged or even fail catastrophically. To combat this issue,
gas bearings can be implemented instead of regular contact bearings. This is a
staple in applications where a high speed shaft is required, such as high precision
machining, surface finishing, manufacturing of components at a microscopic level,
among many others.
Gas bearings, particularly aerostatic journal bearings, offer several significant ad-
vantage. One of the primary benefits is their ability to operate without physical
contact between moving parts, resulting in wearless operation, which enhances their
longevity and reduces maintenance requirements. In addition, gas bearings provide
exceptional guiding, repeatability, and position accuracy, making them ideal for
high-precision applications. The absence of liquids reduces the risk of contamination
and ensures environmental cleanliness, making gas bearings suitable for semiconduc-
tor manufacturing and aerospace applications. Moreover, they can achieve extremely
high rotational speeds and precision due to their minimal friction. However, gas
bearings also have drawbacks, including their sensitivity to external contaminants
and the need for a continuous supply of clean, dry gas, which can complicate their
design and increase operational costs. Their load-carrying capacity is generally lower
than that of traditional bearings, which may limit their use in heavy-duty applica-
tions. Additionally, the tight manufacturing tolerances required for gas bearings can
increase production complexity and costs. Understanding these pros and cons is cru-
cial for selecting the appropriate bearing type for specific engineering applications
and optimizing their performance in various operational contexts.
Due to their advantageous characteristics, gas-lubricated bearings are increasingly
being adopted in various oil-free applications. These bearings utilize a gas lubricant
that is directly derived from the working gas processed by the rotating machine.
Furthermore, self-acting bearings eliminate the need for an external supply system
or compressor, enabling the development of compact and hermetically sealed sys-
tems. The low viscosity of gaseous lubricants also helps minimize frictional losses,
thereby enhancing the overall efficiency of rotating machinery. Another key benefit
of gaseous lubricants lies in their stable physical and chemical properties, as they do
not undergo vaporization, cavitation, decomposition, or solidification across a broad
temperature range.
However, the low viscosity of gas lubricants also imposes limitations, particularly in
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terms of load capacity and damping. This, combined with cross-coupled effects, can
lead to rotordynamic instabilities. Typically, these issues are mitigated by reduc-
ing the clearance-to-diameter ratio or incorporating external damping mechanisms.
However, accurately predicting the dynamic behavior of such systems remains a
challenge due to the complex response of the viscoelastic support materials.
As the demand for lighter, more compact, cost-effective, and environmentally friendly
energy conversion systems continues to grow, gas bearings play an increasingly vi-
tal role in oil-free turbomachinery. Their advantages have been demonstrated in
a range of applications, including turbocompressors, gas turbines, and turbocharg-
ers/expanders. The power output of gas-bearing-supported turbomachinery varies
widely, spanning from approximately 10 W to 200 kW, while rotor speeds range
from 10,000 rpm to beyond 1,000,000 rpm.
The proper operation of an aerodynamic grooved thrust bearing relies on the bal-
ance between the fluid pumped toward the bearing’s center—known as the pump
effect—and the fluid lost due to leakage. Leakage occurs as a result of the pres-
sure generated by the pump effect and is influenced by the depth of the grooves.
If the grooves are too deep, leakage becomes excessive, whereas if the grooves are
completely absent, the pump effect is eliminated entirely.

1.1 Functioning principles

Unlike aerostatic bearings, which rely on an external pressurized gas supply, aero-
dynamic bearings generate their own pressure through the relative motion of the
surfaces and the presence of a convergence in the direction of the relative velocity
between the surfaces. This self-acting mechanism makes them suitable for high-
speed, oil-free applications, such as turbomachinery and microturbines. The perfor-
mance of these bearings is highly dependent on their geometry, which dictates the
formation and stability of the gas film.
The first aerodynamic thrust bearing geometry was the Slider Bearing. This bearing
consisted in a series of angled surfaces which create a converging air gap between the
rotating shaft and the stationary bearing. A simple diagram depicting this geometry
can be observed in Figure 1.1.

Figure 1.1: Diagram of the Slider bearing characteristic geometry

Several key aerodynamic bearing geometries exist, each designed to optimize the
pressure buildup and load-carrying capacity. The figures from the reference docu-
ment illustrate some of the most widely used configurations. Some of these types are
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presented inMeccanica Applicata [1] by Raparelli and Ferraresi and will be discussed
in the following section.

1.1.1 Step bearing

A flat bearing with a constant film thickness does not generate any load-carrying
capacity. However, if the bearing surface is designed with a series of steps, as shown
in Figure 1.2, the fluid film forms multiple converging regions. This results in a
pressure distribution with localized peaks at the discontinuities, enabling the bearing
to support significant loads.

Figure 1.2: Diagram of the Step bearing characteristic geometry

A key advantage of the step bearing is its ability to reduce contact pressures between
surfaces during start-up and shutdown phases. This characteristic improves the
bearing’s durability and performance, particularly in applications where frequent
stop-start cycles are expected.

1.1.2 Compound bearing

A compound bearing is constructed by combining two flat bearing surfaces, one with
zero inclination and the other with an inclination α. The schematic representation
of this bearing is shown in Figure 1.3.

Figure 1.3: Diagram of the tapered thrust bearing surfaces

Compared to a simple wedge-shaped bearing, the compound bearing offers improved
performance in terms of reducing contact pressures during start-up and shutdown
phases. However, this design also results in higher steady-state friction forces and
greater energy dissipation. This is due to the fact that the fluid must travel through
a longer section with a reduced film thickness, increasing resistance and energy loss.

3
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1.2 Studied thrust bearing types

1.2.1 Spiral bearing

Aerodynamic spiral thrust bearings are a type of gas-lubricated bearing designed
to generate a self-sustaining pressure field through the relative motion between the
rotor and the bearing surface with the convergence coming from the fact that the
shaft spins in the direction in which the air enters the spirals and creates the pressure
field necessary. This forementioned shaft speed is indicated in Figure 1.4 as ω. The
defining geometric feature of this type of bearing is a series of spiral grooves etched
into the bearing face, which serve to pump gas toward the center as the rotor spins.
This pumping action creates a pressure buildup that supports the applied load and
establishes a stable gas film between the bearing and the rotor, preventing direct
contact and minimizing friction. The depth, width, and pitch of these grooves are
critical design parameters, as they directly influence the bearing’s load capacity,
stiffness, and overall performance.
Several key parameters govern the behavior of spiral thrust bearings. These are
shown in Figure 1.4 respecting Muijderman[5, 4] notation and listed in Table 1.1.
The groove depth determines the balance between the pump effect and leakage,
with excessively deep grooves leading to excessive fluid loss and shallow grooves
reducing the pressure generation capability. The groove angle, typically optimized
to maximize the pressure buildup, is another crucial factor. This groove angle
is responsible for the geometry of the spiral, as it is one the two variables in the
definition of the Logarithmic spiral present in the bearing, as described in Equation
1.1.

r = r2 · eθ tan(β) (1.1)

Additionally, the clearance or air gap between the bearing and rotor affects load
capacity and stiffness, with smaller clearances generally providing higher pressure
buildup but increasing sensitivity to manufacturing tolerances. Given their oil-
free operation and high-speed capabilities, spiral thrust bearings are widely used in
turbomachinery, microturbines, and other high-speed rotating applications where
low friction and high reliability are essential.
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Figure 1.4: Parameters of an aerodynamic Spiral Grooved thrust bearing

Figure 1.5: Groove depth notation for aerodynamic thrust bearing
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r1 Internal radius
rb Groove start radius
r2 External radius
β Spiral angle
a1 Ridge sector
a2 Groove sector
ω Shaft rotation direction
h0 Groove depth
h1 Groove air gap
h2 Nominal air gap

Table 1.1: Spiral bearing parameters

A picture of the aerodynamic spiral thrust bearing is provided in Figure 1.6

Figure 1.6: Picture of the studied spiral thrust bearing

Some parameters could initially be measured without the need for a complex mea-
suring device. These were mainly the internal and external radii, with values of
r1 = 16mm and r2 = 33mm.

1.2.2 Tapered bearing

Tapered aerodynamic thrust bearings are a type of self-acting gas-lubricated bearing
designed to generate lift and support axial loads in high-speed rotating systems.
These bearings are characterized by their distinct geometry, which consists of a flat
pad followed by a slanted plane that leads into a machined slot. This configuration
creates a converging gap that promotes the formation of a pressure field within the
gas film, enabling the bearing to generate lift and support the rotor without physical
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contact.The slanted section helps establish a pressure gradient, which contributes
to improved lift generation and better load distribution.
However, tapered thrust bearings also present certain drawbacks. The manufactur-
ing complexity of the slanted geometry and machined slot increases production costs
compared to simpler designs. Additionally, the bearing’s performance is highly sen-
sitive to machining tolerances, as deviations in geometry can significantly impact
pressure distribution and load capacity. Another limitation is the relatively low
damping characteristic of gas-lubricated systems, which can lead to challenges in
maintaining stability under varying operational conditions.
Despite these challenges, tapered aerodynamic thrust bearings remain a valuable
choice for high-speed, low-friction applications where oil-free operation is required.
Their ability to generate lift efficiently and support axial loads makes them an
essential component in advanced turbomachinery and other precision-engineered
rotating systems.
In Figure 1.7 a diagram of the air gap present between the bearing surface and the
rotor surface is shown. The two marked dimensions are the nominal air gap hL and
the air gap between the lowest point of the bearing and the rotor hG. These two
parameters together with the number of pads and the angular section of the tapered
sector will fully define the geometry of the bearing. In the case of this study, the
only known parameter before any precise measurement (done in Chapter 4) is the
number of pads, this being 6 as seen in Figure 1.8.

Figure 1.7: Diagram of the tapered thrust bearing surfaces
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Figure 1.8: Picture of the studied tapered thrust bearing

Similarly to the spiral bearing, both internal and external radii could be measured
before any other operation, and it presents the same values of r1 = 16mm and
r2 = 33mm.

1.3 State of the art

To investigate the performance of the aerodynamic thrust bearings currently in
use—namely, spiral and tapered bearings—the existing test bench was employed
as the primary experimental platform. This test bench provides a controlled en-
vironment where key operational parameters, such as the bearing load, rotational
speed, and air supply conditions, can be systematically varied and analyzed. By
utilizing this setup, it was possible to measure critical quantities, including the air
gap between the bearing and the rotor, the force exerted on the bearing, and the
rotational speed of the shaft. These measurements offer valuable insight into the
bearings’ behavior and overall system performance.
However, understanding the characteristics of these bearings in isolation is not suffi-
cient; it is also essential to place them within the broader context of existing research.
Numerous studies have been conducted on aerodynamic thrust bearings, with vari-
ous experimental setups designed to test different aspects of their performance. Each
of these test benches presents specific advantages and limitations, depending on the
objectives of the study. Some focus on achieving high rotational speeds, while oth-
ers emphasize precision in measuring film thickness and pressure distribution. By
analyzing these studies, a clearer picture emerges of the strengths and weaknesses
of different approaches, helping to position the present research within the ongoing
efforts to refine and optimize gas-lubricated bearing systems.
In this section, a detailed review of state-of-the-art test benches used in similar
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research is presented. By comparing different methodologies and their respective
findings, it becomes possible to assess the effectiveness of the current setup and
identify areas for potential improvement. Furthermore, this review will highlight
the key challenges faced in the experimental study of aerodynamic thrust bearings,
including issues related to measurement accuracy, repeatability, and system stability.

1.3.1 Rimpel and colleagues study

In their research paper A rotordynamic, thermal, and thrust load performance gas
bearing test rig and test results for tilting pad journal bearings and spiral groove
thrust bearings [7], Aaron M. Rimpel and colleagues, designed a test bench capable
of testing Grooved and Tilting-Pad thrust bearings. The researchers developed a
test rig, as illustrated in Figures 1.9-1.10, for the current test program. The test
section, housing both the test shaft and bearings, was designed symmetrically from
the drive end (DE) to the nondrive end (NDE), with the thrust bearing at the center
and radial bearings on either side. High-speed rotor systems often face stability
issues when running speeds exceed the first natural frequency. To address this,
titanium was chosen for the shaft material instead of conventional steels, resulting
in a rigid shaft with low inertia. This reduced the ratio of running speed to the first
natural frequency and increased rigid body mode natural frequencies.
Hollow shaft designs were considered but dismissed due to significant centrifugal
growth. A solid titanium shaft was preferred, as it offered a sufficient speed separa-
tion margin and lower thermal expansion, enhancing bearing stability. Aluminum
dummy disks were attached to the test shaft’s ends to simulate the masses of im-
pellers on the actual machine. These disks had tapped holes for balance correction
weights during high-speed balancing. The shaft assembly was initially balanced to
the ISO G3.5 specification.
An air turbine, modified from an automotive turbocharger, drove the test shaft
through a quill shaft coupling. The coupling adapter, replacing the turbocharger
compressor, had an integral balance piston to balance turbine thrust across various
speeds. The turbocharger driver frame, supported on linear ball bearings, ensured
that net thrust forces were not communicated to the test section’s thrust bearing.
A pneumatic thrust loader on the NDE of the shaft applied thrust force to the
spinning rotor. The loader housing was attached to the test section frame, with
a labyrinth seal at the outer diameter of the NDE dummy disk. Pressurization of
the outboard cavity produced a thrust force toward the DE. Leakages discharged
through a passage between the thrust loader and test section housings, preventing
external thrust on the test section housing due to back-pressure.
The test section housing was supported on hydrostatic air bearings acting as gim-
bals, providing frictionless radial support while allowing axial and circumferential
movement. These motions were constrained by spherical-jointed links with load
cells, facilitating measurement of reaction forces on the test bearings. The thrust
load measurement was more accurate than the torque measurement, mainly due to
the relatively small torque produced by the bearings.
Load cells also detected the influence of plumbing lines and instrumentation wires
attached to the test section housing, as well as any unbalanced internal thrust.
Flexible lines and perpendicular connections to the housing minimized structural
effects. Calibration of the load cell responses to known axial forces and torques
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compensated for these effects. Despite the intentional symmetry of the test rig
design, small levels of internal thrust were encountered during testing and were
compensated for accordingly.

Figure 1.9: Isometric view of the test bench employed in the study

Figure 1.10: Cutaway view of the test bench employed in the study

The test rig validated rotordynamic performance and stability, quantified steady-
state power loss, assessed bearing cooling performance, and tested thrust bearing
load capacity. Data were sampled at 2 Hz for process data and 10 kHz for rotordy-
namic data.
For power loss and thermal performance, tests without externally applied thrust
load were conducted at varying case pressures. The combined bearing power loss
was calculated, with the thrust bearing accounting for 93% of the total power loss.
The data correlated well as a cubic function of speed, with an expected increase in
power loss with rising case pressure. Radial bearing power loss, observed as heat

10



Santiago Casas Ricca DIMEAS - Politecnico di Torino

generation, was indicated by the temperature gradient between the leading and
trailing edge of the pads.

Figure 1.11: Combined bearing power loss for different speeds and case pressures

Steady-state pad temperatures for radial and thrust bearings were measured, with
results showing slightly higher temperatures for high-pressure cases compared to low-
pressure ones. Thrust bearing data exhibited a pronounced temperature difference
due to case pressure.
During thrust capacity testing, an unintended thrust load varying with case pressure
and speed was observed without any intentional load applied. Thrust bearing pad
temperatures indicated that the NDE bearing experienced higher temperatures than
the DE bearing, suggesting more load on the NDE with increasing speed. Rotor
deflection towards the NDE increased with speed, especially above 90 krpm, despite
thermal effects causing scatter in the data.
Internal thrust generated within the test section housing could not be directly mea-
sured, but was quantified by other means. The thrust loader counteracted the inter-
nal thrust, pushing the rotor towards the DE. The transition from internal thrust
dominance to proportional tracking of thrust loader pressure force marked the null
thrust condition, with internal thrust approximately 3% of capacity at 80 krpm.
At 80 krpm, the thrust bearing supported a maximum load of less than 35 N before
rotor rub occurred. Steady vibrations indicated stable lateral and axial vibrations up
to the rub. An increase in thrust force led to higher thrust bearing pad temperatures
due to reduced gas film thickness, with film thickness closing more at the bearing
ID than the OD, suggesting bearing pad deformation. Advanced modeling would be
required to better understand and address temperature-induced deformation effects.
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Figure 1.12: Relative rotor axial position versus speed during low case pressure
test, no external thrust load

Figure 1.13: Identification of internal thrust force at 80 krpm and low case pressure

1.3.2 Waumans study

For his thesis in 2009, Tobias Waumans studied high speed air bearings, as the
title of this thesis suggests [9]. The test setup included a rotor consisting of a steel
shaft with a 6 mm diameter and a single shrink-fitted rotor disc made from high-
strength titanium alloy (Ti6Al4V Grade 5) to limit stress. The plain aerostatic
journal bearing supported the rotor at both ends, with radial clearance at 7.5 µm
and feedhole radius at 75 µm. A Pelton impulse turbine drove the rotor to the
required speed, designed for testing up to 300,000 rpm.
The aerodynamic thrust bearing, tested on the inner side of the grooved geometry,
was machined by micro-milling and fitted with an interchangeable bronze part. The
rotor-bearing unit, contained within a housing, allowed precise alignment and easy
access for instrumentation probes. One end of the housing was closed by a cover,
while the other end had a pressure chamber that created axial load by pressurizing
the rotor disc.
Careful alignment of all components was crucial for obtaining accurate test data.
This setup adhered to stringent manufacturing tolerances to minimize air gap height
effects.
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Figure 1.14: Exploded view of the test bench employed in the study

Figure 1.15: Cutaway view and visual description of the data acquisition for the
test bench employed in the study

To derive design guidelines for obtaining maximal load-carrying capacity, a brief
parametric study was conducted. This study focused on the load characteristics of
grooved thrust bearing geometries, excluding other static film characteristics like
frictional losses. The study did not incorporate the effect of groove geometry on
dynamic behavior and stability, directing the reader to another section for that
information.
Two typical grooved thrust bearing geometries were examined: inward pumping
spiral type and herringbone type. The design parameters for these geometries were
defined using logarithmic spirals, with the grooves expressed mathematically.
The parametric study evaluated how design parameters, such as groove angle α,
groove depth ratio dg/h, groove width ratio θg/θ, and groove number Ng, influenced
load-carrying performance. The study observed that the maximal bearing load
occurred when α was 17.5 degrees, dg/h was 2.67, and θg/θ was 1, while Ng had a
minor effect. This observation aligned with design rules found in literature for both
incompressible and compressible films.
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Figure 1.16: Design parameters and nomenclature of the inward pumping spiral
geometry (a) and the herringbone geometry (b).

Figure 1.17: Investigation of the influence of the design parameters on the
load-carrying capacity: effect of groove angle α (left top), groove number Ng (left

bottom), depth ratio dg/h (right top), and width ratio θg/θ (right bottom).

The performance of the test bearings was experimentally determined by recording
the clearance height h against the axial load W while maintaining a constant ro-
tational speed ω. For increased load application, pressure adjustments prevented
rotor deceleration. Care was necessary during pressure adjustments to avoid abrupt
rotor speed changes, which could lead to bearing seizure.
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Figure 1.18: Comparison of simulated and experimentally obtained load versus
clearance characteristic for the inward spiral geometry at different values of the

rotational speed. The correction for the shaft length variation, due to the Poisson
effect, is taken into account. The 3σ-error band which reflects the uncertainties on

the measurements is also shown

Figure Figure 1.18 shows simulated and experimental load versus clearance char-
acteristics for inward spiral geometry at rotational speeds of 120,000 rpm, 180,000
rpm, and 240,000 rpm. The inner side of the rotor disc and the test bearing surface
came into contact at high speeds, indicating rotor shaft seizure on the rightmost
journal bearing. These results confirmed that the predicted load-carrying capacity
exceeded the measured values by approximately 1 to 1.5 N after correcting for the
Poisson effect (Figure 5.15). Qualitative agreement was observed in all experiments.

Figure 1.19: Finite element calculation showing the rotor deformation due to
centrifugal forces at a rotational speed of 240 000 rpm.

Experiments with bearings having a different groove geometry did not produce reli-
able data, as the rotor could not support a load higher than 2 N, leading to frequent
seizure.
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Misalignment of the thrust bearing components likely caused faulty and unreliable
measurements, making it challenging to compare load-carrying performance across
different groove geometries.
The following factors contributed to the observed discrepancies:

• Alignment Imperfections: Non-uniform clearance height resulted from
these imperfections.

• Rotor Disc Deformation: Centrifugal forces at high rotational speeds caused
deformation, as shown in the finite element calculation (Figure 1.19).

• Shaft Length Variation: The Poisson effect induced variations, which were
also illustrated in Figure 1.19.

• Disturbances from Working Conditions: Axial disturbance forces from
the driving turbine, not aligned with the rotor center, added to the measure-
ment uncertainties.

In conclusion, these effects and the corresponding error analysis, as elaborated, were
critical for assessing the measurement uncertainties and aligning the experimental
outcomes with predictions.

1.4 Thesis Aim

One of the primary goals is the identification of the thrust bearings currently in use,
as their geometry and properties are not explicitly documented. This involves per-
forming surface scans and measurements to accurately determine their dimensions
and characteristics. Once identified, the bearings will be tested and characterized
under various operating conditions to evaluate their performance, including param-
eters such as load capacity, stiffness, and stability.
Another key objective is to assess the functionality and accuracy of the existing
test bench. This includes verifying the repeatability of measurements and ensuring
that the experimental setup provides reliable data. The results obtained from these
tests will be validated against a numerical model based on the Finite Difference
Method (FDM), allowing for a deeper understanding of the system’s behavior and
enhancing the reliability of the experimental findings. Additionally, different turbine
designs will be tested to evaluate their impact on the overall system efficiency. The
insights gained from these experiments will contribute to future optimization efforts
and improvements to the test bench, ensuring its suitability for further research and
development in the field of gas-lubricated bearing systems.
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Chapter 2

Experimental Setup

2.1 Ball bearing turbine test bench

The ball bearing test bench is designed to analyze the performance of various turbine
configurations in a controlled environment. It consists of a rotating shaft supported
by two ball bearings, each housed within its respective casing to ensure stability
and reduce friction. At one end of the shaft, a magnet is housed to interact with
a Hall effect sensor, which is used to measure the rotational speed of the system.
On the opposite end, the turbines under investigation are mounted onto the shaft
using a tight clearance fit, ensuring a secure connection while allowing for easy
interchangeability.
A key component of this test bench is the air distributor, which directs airflow
toward the turbine blades to drive rotation. To maintain consistency in testing
conditions, the distributor is positioned precisely around the turbine using a 3D-
printed alignment fixture. This fixture ensures that the distributor remains centered
relative to the shaft, minimizing misalignment errors that could impact performance
measurements.
The primary objective of this test bench is to evaluate the efficiency and operational
characteristics of three different turbine designs, which will be detailed in the fol-
lowing section. The insights gained from these tests will serve as a foundation for
the future development of an improved test bench specifically designed for aerody-
namic thrust bearings. By optimizing turbine performance, this research aims to
enhance the effectiveness of the next-generation test bench, ultimately leading to
more accurate and reliable testing of aerodynamic thrust bearing systems.
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Figure 2.1: CAD of the test bench used to evaluate the turbine designs

1 Test bench base
2 Ball bearing housings
3 Hall effect sensor and sensor housing
4 Rotating shaft
5 Magnet housing
6 Magnet
7 Turbine air distributor
8 Turbine

Table 2.1: Ball bearing test bench list of components
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Figure 2.2: Top view of the used turbine testing test bench

Figure 2.3: Picture of the used turbine testing test bench

2.1.1 Turbines

The design of the turbine for the aerostatic radial bearing system is equally criti-
cal, particularly in applications where rotational speed and efficiency are paramount.
Various turbine designs have been explored to optimize performance, with significant
contributions from studies conducted by A. Schneider[8]. The focus of these stud-
ies has often been on impulse turbines, which are designed to convert the kinetic
energy of a high-velocity jet of gas into rotational motion. Schneider’s research
has examined multiple blade geometries, including flat, simple curve, and double
curved profiles, each offering distinct advantages in terms of airflow management
and rotational efficiency. When designing a turbine for 3D printing, it is essential
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to incorporate features that can be reliably produced using additive manufacturing
techniques. This includes considering the layer resolution of the 3D printer and the
mechanical properties of the printed material.
The experimental setup for the evaluation of the turbine performance included three
designs: a flat-bladed turbine, a Pelton-style turbine with two paddles per blade,
and a single-paddle turbine. Each turbine featured an external diameter of 30 mm
and consisted of eight blades. These designs were chosen to analyze the impact of
blade geometry on system performance. Figures showing both the CAD version and
the realized version of the turbines are provided in Figures 2.4-2.9.

Figure 2.4: Pelton turbine picture
Figure 2.5: Pelton turbine CAD

Isometric view

Figure 2.6: Single paddle turbine
picture

Figure 2.7: Single paddle turbine CAD
Isometric view

Figure 2.8: Flat turbine picture

Figure 2.9: Flat turbine CAD Isometric
view
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To supply air to the turbines, a distributor was 3D-printed in two configurations,
with diameters of 33 mm and 32 mm, to investigate how variations in distribu-
tor geometry influence the system. The distributor design was integrated into the
setup using a placeholder mechanism, ensuring consistent alignment and placement
relative to the shaft and turbine through precise physical measurements.

2.1.2 Mass flow rate

The journal bearings test bench was designed to facilitate the measurement of key
parameters essential for characterizing the system’s performance. The measurements
were done 3 separate times in order to obtain more accurate result when analyzing
the system and doing calculations with the data. The measurement of the mass
flow rate was compared to the theoretical mass flow rate corresponding to a given
pressure. The theoretical flow rate can be calculated as a function of the pressure,
using the formulas of Equation 2.1, taken from ISO 6358.

Qin = cdAps
0.6855√
RgT


√

1−
(

pc−bc
ps

1−bc
1−bc

)2

if pc
ps

> bc

1 if pc
ps

≤ bc

(2.1)

where bc = ( 2
κ+1

)
κ

κ+1 is the critical relation for pressure, equal to 0.528 for air, A is
the area of the restrictor, which in this case is the area of the hole of the distributor.
The coefficient of discharge, cd, has a handful of ways of being calculated, however
in this case, the approach proposed by M. Neves and colleagues[6] is used, as seen
in Equation 2.2.

cd =

{
0.9093− 0.0751pc

ps
if pc

ps
> bc

0.88 if pc
ps

≤ bc
(2.2)

The discharge coefficient will be a function of the supply pressure ps and the at-
mospheric pressure pc = 101325Pa. However, for this case, a constant discharge
coefficient of cd = 0.9 was taken. The comparison between the theoretical and the
experimental values of the mass flow rate for the measured pressures can be seen
in Figure 2.10. In this figure, it is clear to see how the experimental flow rate
is systematically smaller than the theoretical one. This could be due to constant
losses in the system that would lead to this discrepancy. It is also worth noting
the fact that the experimental values do not go beneath 1.8 bar. This was due to
the fact that at lower supply pressures the shaft would not spin and thus all the
measurements were carried out starting from this point.
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Figure 2.10: Comparison between the experimental and theoretical values of the
mass flow rate

2.2 Thrust bearing test bench

For the thrust bearings, a pre-assembled test bench was utilized, which included
instrumentation to measure the angular velocity of the shaft, the turbine inlet pres-
sure, the force exerted on the thrust bearing, and the air gap between the thrust
bearing and the shaft. Figure 2.11 shows a diagram of the system. In order to
function properly, pressurized air must be fed into the aerostatic journal bearings,
marked as PSjb

in the forementioned figure. This configuration allows the shaft to ro-
tate without restriction. Subsequently, to achieve high rotational speeds, the nozzle
supplies pressurized air (PSn in the diagram) to the turbine. Depending on the mass
flow rate delivered to the turbine, rotational speeds of up to 110krpm can be at-
tained. The speed of the turbine is then measured with an optical speed sensor. The
rotation of the turbine, combined with the applied load F , induces the formation of
an air gap h between the shaft and the bearing. With the use of capacitive sensors,
both the radial displacement and mainly the air gap were measured. Moreover, the
applied force on the shaft was measured with a load cell for maximum accuracy
and precision. This load cell was placed between the thrust bearing and the sensor
side cap. The use of a load cell was a modification to the original test bench. This
decision was taken due to the unreliability of the previous force measuring method.
This previous method measured the pressure of the air load at the inlet of the load
side nozzle and then via a relation between the surface area of the shaft at that
end, the load force was calculated. This resulted in major discrepancies between the
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calculated force value and the real value which was measured with the load cell.

Figure 2.11: Test bench system diagram

A CAD model of the test bench and a photograph of the actual system are provided
for reference in Figures 2.12-2.13. Moreover, the cutaway CAD view seen in
Figure 2.14 shows the components of the test bench which are listed in accordance
with this figure in Table 2.2.

Figure 2.12: Test bench CAD Isometric view
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Figure 2.13: Picture of the test bench and the exprimental setup

Figure 2.14: Cutaway view of the Test Bench
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Item number Part Name
1 Main Housing
2 Load side shaft cap
3 Support for AEGIS ring
4 AEGIS SGR28.1 3MFH ring
5 Load side housing cap
6 Aerostatic Journal Bearing
7 Housing supports/clamps
8 Bearing side shaft cap
9 Aerodynamic Thrust Bearing
10 Load cell spacer
11 Bearing side Housing cap with sensor housing
12 Load Cell
13 Sensor adaptor
14 Sensor clamp
15 Capacitive Sensor
16 Silencer
17 Air distributor in main housing
18 Shaft turbines
19 Shaft
20 Steel Base

Table 2.2: Test bench part list

2.3 Sensors and repeatability

The system was instrumented with sensors to measure key performance parameters.
An ROSM - Modulated Remote Optical LED Sensor (PN:6180-902) was employed
to measure the angular velocity of the shaft, detecting changes in reflectivity using
reflective tape attached to the shaft’s surface. This sensor has a threaded housing,
which made it such that it could be attached directly into the main housing for
measurements. Figures 2.15-2.16 show the sensor by itself and the way it was
introduced to the test bench respectively.

Figure 2.15: Sensor picture taken from Monarch’s web page
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Figure 2.16: Speed sensor’s position in the test bench

Among the various sensors utilized, capacitive displacement sensors played a cru-
cial role in determining the air gap between the rotating and stationary compo-
nents. These sensors operate based on variations in capacitance caused by changes
in distance between the probe and the measured surface, providing highly precise,
non-contact measurements.
To measure the air gap between the thrust bearing and the shaft, a Lion Precision
capacitive sensor, model C5-0.8-2.0, was used. This sensor, which features a 5 mm
diameter, was connected to a Lion Precision CPL190 driver. The sensor has a
measurement range of up to 100 µm, allowing for precise monitoring of the thin gas
film separating the thrust bearing from the shaft. Images taken from Lion Precision’s
data sheets are provided in Figures 2.17-2.19.

Figure 2.17: Lion Precision CPL190 isometric view
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Figure 2.18: Lion Precision CPL190 front view

Figure 2.19: Lion Precision C5-0.8-2.0 probe picture

For the aerostatic journal bearings, the air gap was measured using a Micro-Epsilon
capacitive sensor, model CSE05. This sensor was paired with the capaNCDT 6200
controller, also from Micro-Epsilon. Unlike the sensor used for the thrust bearing,
the CSE05 model offers a larger measurement range of 500 µm, making it suitable
for capturing variations in the air gap within the journal bearing system. A picture
of the controller present in the lab is shown in Figure 2.20.
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Figure 2.20: Micro Epsilonn capaNCDT 6200 controller picture

These capacitive sensors provided high-resolution measurements critical for ana-
lyzing the behavior of the bearings under different operating conditions. Their
non-contact nature ensured minimal interference with the system while maintaining
precise and repeatable data acquisition.
Air supply pressure was recorded using a digital barometer, and the mass flow rate
of the air was measured with a digital volumetric flow rate meter. This combination
of sensors ensured accurate and reliable data acquisition.

2.4 Measuring procedure

A specific procedure was implemented to address a systematic error that affected
the air gap measurements. This error manifested as a relative displacement in every
recorded air gap value, meaning that each measurement included a virtual air gap
that did not exist physically. This occurred because, at the start of the test, the shaft
was initially in contact with the bearing, yet the sensor still registered a nonzero
distance. To account for this error, the following correction method was applied.
First, the journal bearings were supplied with pressurized air at 6 bar to lift the shaft,
allowing it to rotate freely. At this moment, the initial air gap hinital was defined
as the distance measured by the sensor. This value served as the reference point for
all subsequent measurements. Next, the turbine mounted on the shaft was provided
with air, while the test bench was maintained at its minimum inclination, as seen in
Figure 2.21, to prevent any contact between the shaft and the housing. Once the
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shaft reached a rotational speed of at least 15 krpm, the inclination was adjusted
to achieve the desired load condition. An example of the maximum inclination used
can be seen in Figure 2.22. With the system in this state, the test was performed
by measuring the air gap at different rotational speeds, progressively increasing ω
until the maximum speed was reached.

Figure 2.21: Picture of the test bench at minimum inclination

Figure 2.22: Picture of the test bench at a tested inclination (maximum in this
case)
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After completing the test, the test bench was returned to its initial conditions, and
the air gap h was re-evaluated and compared to the initial air gap hinital. If these
values were equal, the results were considered valid, and a new test could proceed.
Once all tests were completed, the final air gap hfinal was measured and subtracted
from all recorded values to ensure coherent and corrected results.
It is important to note that hfinal was often negative, indicating a slight displacement
of the bearing throughout the tests. This issue persisted and must be addressed in
future iterations of the test bench. The observed displacement is likely due to the
bearing being supported only by a housing cap, with its fit relying on machining
tolerances. While this micro-displacement is negligible in standard applications, it
becomes significant when measuring air gaps in the micrometer range, leading to
measurable deviations in the results. Future improvements to the test bench should
focus on ensuring a more rigid and stable support structure to eliminate this source
of error.

2.5 Roundmeter bearing surface scan

Since the bearings used in the experimental part of this paper were already manu-
factured, but without data on their actual geometry, a surface scan was performed
to ensure accurate simulations and a proper approximation of the system. The sur-
face scan of each thrust bearing was performed using the Roundtest R100 from SM
Instruments. The use of this device was essential because the grooves in the thrust
bearings were of the order of 10µm, and the Roundtest R100 offered a precision
of 0.1µm. As this machine is typically used to test high precision manufacturing
tolerances, it was capable of capturing groove patterns with exceptional accuracy.
The bearings were measured using the Flatness measurement option, which takes
measurements of concentric circles across the surface of the desired part from a given
starting radius to a final given radius. A photograph of the setup is provided in Fig-
ure 2.23 and the graphical results as seen directly from the roundmeter software
in Figure 2.24.
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Figure 2.23: Setup for the surface scan

Figure 2.24: Graphical results in the roundmeter software
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2.5.1 Scan procedure

To assess the flatness and surface characteristics of the aerodynamic thrust bearings,
a surface scan was conducted using a roundmeter. This process involved a precise
measurement procedure to ensure that any surface deviations or imperfections were
accurately captured.
The procedure began with the careful positioning of the bearing within the clamping
system of the roundmeter. The bearing was placed as flatly as possible within the
clamp to minimize initial misalignment. Once positioned, the bearing was firmly se-
cured using the roundmeter’s built-in clamping system to prevent movement during
measurement.
Following the securing process, a leveling procedure was performed to eliminate any
tilt in the mounted piece. The measuring tool was positioned on the surface of
the bearing, and the machine conducted a full 360-degree rotation to detect any
tilt deviations. Although these deviations are often imperceptible to the naked
eye, they typically exist within a range of less than 0.1 mm. Based on the data
collected, the software provided real-time feedback, instructing the user on which
dials to adjust to achieve a level contact between the bearing and the clamp. Once
the leveling adjustments were completed, the system was ready to proceed with the
measurement process.
The selected measurement procedure for this analysis was the ”flatness” scan, which
evaluates the surface profile by measuring at increasingly larger concentric circles.
Before initiating the scan, several parameters had to be configured, including the
starting radius, the finishing radius, and the number of measurement circles. The
roundmeter allows for a minimum of one and a maximum of 32 circles for measure-
ment.
For this specific measurement, the starting radius was set at 15.5 mm, while the fin-
ishing radius was set at 31.5 mm, with an interval of 0.5 mm between each concentric
measurement circle. Once these parameters were confirmed, the measurement pro-
cedure began. The machine performed a full 360-degree rotation at each radius,
collecting data at intervals of 0.1 degrees. This high-resolution scanning process
resulted in 3600 data points per complete turn. After completing the first measure-
ment circle, the machine advanced to the next radius and repeated the process until
the final radius was reached.
Upon completion of the scanning procedure, the results were displayed on the soft-
ware interface as shown in Figure 2.24. The collected data could be analyzed
directly on the system or exported as a text file for further processing and detailed
analysis. This precise surface scanning procedure ensured that the aerodynamic
thrust bearings’ flatness and overall surface characteristics were thoroughly evalu-
ated, providing essential data for further research and optimization.
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Chapter 3

Numerical Model

3.1 Reynolds Equation

To accurately model the system, several simplifications were made based on its
characteristics and inherent approximations based on Reynolds equations. One key
simplification arose from the disparity in characteristic dimensions within the sys-
tem. Specifically, the air gap h between the thrust bearing and the shaft was on the
order of micrometers (µm), whereas the radius r of the bearing was on the order
of millimeters (mm). This significant difference in scale allowed the problem to be
simplified by assuming that the pressure profile primarily depended on the radial
distance r and the angular position of the control volume relative to the origin.

R >> h
u, v >> w

⇒ p = p(r, θ)
µ = const

(3.1)

Figure 3.1: Diagram of a partial Control Volume of the system

After the initial simplifications were established, the next step involved deriving
the equilibrium equations for the stress tensor within the control volume. This was
achieved by grouping the components of the stress tensor by their respective relation
to the direction of the pressure field with respect to the control volume, resulting
in a separate equilibrium equation for each direction. Specifically, expressions were
obtained for equilibrium with the pressure field in the radial direction r(u), the
angular direction θ(v), and the vertical direction z(w). The resulting equilibrium
equations are as follows.
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For a more detailed and comprehensive explanation of the derivation of these equa-
tions, refer to the annex, where each case is thoroughly described and clearly pre-
sented.
Using the equations provided in 3.2, expressions for the velocity profiles u and v
were obtained by integrating with respect to z. The results of these integrations are
shown in Equations 3.3 and 3.4.
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Following the derivation of these expressions, boundary conditions were applied to
define the integration constants. Specifically, the no-slip conditions for the fluid
relative to the system’s walls, the shaft, and the thrust bearing were used.
Boundary conditions u:

u(0) = 0 ⇒ C2 = 0

u(h) = 0 ⇒ C1 = − h
2µ

∂p
∂r

(3.5)

Boundary conditions v:

v(0) = 0 ⇒ C4 = 0

v(h) = 0 ⇒ C3 =
ωr
h
− h

2rµ
∂p
∂θ

(3.6)

With these integration constants defined, the velocity profiles as well as both the
volumetric and mass flow rate expressions can be obtained.

Velocity Profiles Volumetric flow rate per unit depth
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Mass flow rate per unit depth

gr =
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0
ρu dz = −ρh3

12µ
∂p
∂r

gθ =
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0
v dz = ρωrh

2
− ρh3

12µr
∂p
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With these last expressions for the mass flow rate per unit depth, it was possible
to apply the mass conservation of the control volume. In order to achieve this, the
sum of all mass flow through every face of the control volume (excluding the once
related to the depth due to dimensions of this quantity with respect to the others)
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should equal the total mass flow rate of the control volume. Which can be written
using the nomenclature used in Figure 3.2.

Figure 3.2: Representation of the mass flow through the control volume
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Equation 3.7 can be further simplified into the following formulation.
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(3.8)

What is more, by assuming the air in the system to be a perfect gas, it is possible
to write Equation 3.8 as follows.
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(3.9)

Equation 3.9 represents the final expression defining the mass equilibrium for the
control volume of the system. This equation will be utilized in the following section
to apply the Finite Difference Method for numerically approximating and accurately
modeling the system.

3.2 Finite Differences Method

3.2.1 Discretization of equations

The discretized equations for the solution were formulated by approximating the
derivatives in the radial and angular directions using finite difference approxima-
tions. Temporal evolution was managed through the Forward Euler scheme, en-
abling a stepwise progression toward the solution. This process was achieved by
discretizing the mass flow rates used in the derivation of Equation 3.9. Figure
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3.3 illustrates a generic element within the mesh, providing a visual representation
of how the equation was discretized.

Figure 3.3: Diagram of an element in the FDM mesh

The specific equations used in this numerical approach are provided below:
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These equations, applied at each grid point in the N × M mesh, enabled the nu-
merical approximation of the system’s behavior over time, as the only unknown in
Equation 3.10 is the pressure of node i, j at time t+ 1.
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3.2.2 Meshing

The bearings were modelled by means of a two dimensional mesh, as the system
could be represented by a 2D model in polar coordinates. The mesh consisted of an
M×N grid, whereM represented the number of elements along the radial coordinate
(r), and N represented the number of elements along the angular coordinate (θ).
This is shown in the representative diagram in Figure 3.5. In this diagram, the
index i varies radially, while the index j varies angularly.
Since the thrust bearings possess a circular geometry, structuring the mesh in polar
coordinates ensures that the discretization of the domain aligns with the natural
curvature of the problem. This approach improves both computational efficiency
and accuracy by reducing numerical errors associated with approximating a circular
system in a Cartesian framework.
Each finite volume in the grid is centered around a central node, which serves as the
reference point for numerical computations. These central nodes are connected to
their nearest neighbors, ensuring a structured arrangement that facilitates the finite
difference method (FDM) implementation. The central node approach is particu-
larly significant, as it dictates how the governing equations will be discretized. The
finite volume method ensures that mass conservation is enforced across each control
volume, making the meshing process crucial for accurately capturing the behavior
of the fluid film within the bearing gap.
By structuring the mesh in polar coordinates and aligning it with the physics of
the problem, the numerical model effectively approximates the pressure distribution
and flow characteristics within the bearing gap. This structured meshing technique
enables a more accurate and stable simulation of the aerodynamic thrust bearing
performance.
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Figure 3.4: Diagram of the circular mesh

This mesh can be represented in the 2D plane in which one axis is the angular
variable and the other axis is the radial variable. This representation is the same
as the matrix form of the system, and thus its importance. Moreover, since the
geometry of the model is a circular one, a periodic boundary condition needs to be
implemented for the validity of the model. This was achieved by setting Neumann
boundary conditions in for the borders of the control volume that where an axis of
symmetry is located. All of these is shown in Figure 3.5.
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Figure 3.5: Diagram of the 2D plane mesh

3.2.3 Symmetry

A key factor for the numerical modeling of this problem, and any problem for that
matter, is the presence of symmetry in the model. In the case of this project,
symmetry is present in both of the studied bearings. For the spiral bearing, there
are multiple symmetries, but most notably a small sector of just 30◦ can be simulated
in order to obtain the full behavior of the system. This is due to the fact that there
are 12 spirals which means that a 12th of the total geometry will give a 12th of the
loading capacity of the bearing for a given air gap and rotational speed. An example
of this symmetry is shown in Figure 3.6, which shows visually the concept of the
symmetry present in the system in a meshed domain.
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Figure 3.6: Example of a 30◦ sector mesh

Figure 3.7: 3D view of the spiral bearing mesh example
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As for the tapered bearing, the symmetry is much more straight forward, since the
bearing itself is a circular pattern of repeating flat pads followed by a slanted plane
into a slot. This pattern is repeated 6 times in the studied bearing, which means
that the domain to be meshed was just one of these pads, which accounted for one
sixth of the load capacity. Figure 3.8 shows the mesh of the pad in question.

Figure 3.8: Example of the mesh of 1 pad (1
6
of the surface)

These meshes were utilized to solve Equation 3.9 using the Finite Difference
Method in conjunction with the Forward Euler Method. It is important to note
that the Forward Euler Method has the significant drawback of requiring a minimal
time step for the system to converge to a result. However, due to the highly cou-
pled nature of the equations, employing an implicit method that does not rely on
small time steps was discarded because of the substantial complexities involved in
its implementation. As a result, this approach led to considerable simulation times.

3.2.4 Spiral bearing mesh generation

The mesh creation for the spiral thrust bearing needed a specific code in order to
be generated. The grooves present in the bearing are mathematically described in
polar coordinates by Equation 1.1 as introduced in Chapter 1.

r = r2 · eθ tan(β)

This equation defines a single logarithmic spiral curve, meaning that the groove
regions of the bearing are confined between two such curves at any given angular
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position. To implement this pattern in MATLAB, a logical array was created to
distinguish between grooved and non-grooved regions. This array, of dimensions
equal to the mesh size (M ×N), was structured such that positions corresponding
to groove locations were assigned a value of 1, while the non-grooved (land) regions
were assigned a value of 0. Figure 3.9 shows the initialization of the function
getGrooves implemented, where the main outbound logical array isGroove is created
with the same size as the mesh.

Figure 3.9: Function ”getGrooves” initialization

A scheme was implemented that defines a single groove at a time. The method
involved defining the equations for the two boundary lines of a groove, as shown in
Figure 3.10, by first writing the equation for one logarithmic spiral and then adding
a phase delay (∆θ in the diagram) to the angle that defines the second boundary
of the groove. The equation describing the logarithmic spiral was reformulated to
express it in terms of the angular coordinate θ for a given radial value r, as seen in
Equation 3.11:

θ = −tan(β) · ln
(
r

rb

)
(3.11)
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Figure 3.10: Spiral groove curve representation diagram

In the code shown in Figure 3.11 two variables were created to define these bound-
aries, angle and angle1. The former is defined following Equation 3.11 which
means that it will have the angular coordinates of the logarithmic curve for the
given radial values (r in the code). The later is the same curve but displaced by
∆θ, which can be calculated as ∆θ = a1

r2
, with a1 being the sector in m of the base

of the groove and r2 being the external radius.

Figure 3.11: Spiral bearing characteristic parameters and groove boundary
equations definition

Once these two boundary-defining equations were established, the next step was to
determine which points within the mesh lay inside the groove. This was achieved
by comparing the angular coordinate θ of each point at a given radius r to the two
boundary curves. Specifically, for each point in the domain, a check was performed
to determine whether its angular value was greater than the lower boundary and
smaller than the upper boundary at its corresponding radius. If this condition was
met, the local logical array for the groove being processed at that moment was set
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to true, indicating that the point was inside the groove. This procedure is shown in
Figures 3.12-3.13.

Figure 3.12: Grooved points identification 1st part

Figure 3.13: Grooved points identification 2nd part

This procedure was repeated for all 12 grooves. Each time a groove was analyzed,
the global logical array, named isGroove, was updated to ensure that all grooves
were correctly mapped. Once all grooves had been processed, this logical array was
used to apply the groove depth to the computational mesh, ensuring an accurate
representation of the spiral thrust bearing’s geometry. This approach allowed for
an efficient application of the groove depth pattern onto the circular mesh of the
bearing. Refer to the Annex for all the pictures of the utilized code.
Once the logical array was established, the air gap distribution across the mesh
could be readily defined. Specifically, for the non-grooved regions (land), the air
gap height was set to h, whereas in the grooved regions, the air gap height was
set to h1 = h0 + h2, in accordance with the notation stated in Chapter 1. The
logical array facilitated this assignment by evaluating the mesh coordinates against
the groove pattern and applying the corresponding depth values.
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By utilizing this method, the spiral thrust bearing geometry was successfully em-
bedded within the computational model, ensuring an accurate representation of the
groove structure. This structured meshing approach was essential for correctly cap-
turing the aerodynamic effects induced by the logarithmic spiral grooves, thereby
enabling a more reliable numerical analysis of the bearing’s performance.
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Chapter 4

Results

4.1 Turbine Measurements

4.1.1 Angular Speed

In the Figures 4.1-4.3 the relation between the angular speed and the volumetric
flow rate for every turbine can be seen. These figures also depict the difference in
angular speed between the different distributors. It is clear to see how the use of a
smaller distributor has a considerable impact in the angular speed of the shaft. This
is due to the fact that a smaller diameter means that the walls of the distributor
are closer to the turbine, making the air have less room to escape from feeding the
turbine, resulting in higher speeds, and thus higher efficiency as will be seen in the
following section. It is also important to note that in Figures 4.1-4.2 the measured
rotational speeds are much lower than the theoretical one. This theoretical speed
was calculated using the data from the distributor, as seen in the following equation.

uth = Gth

ρsA
& Pa

ργa
= Ps

ργs

⇒ uth = Gth

ρaA

(
Pa

Ps

)1/γ
⇒ ωth = uth

rm

(4.1)

Where uth, Gth and ωth are the theoretical runner velocity, mass flow rate through
the distributor feed hole, and rotational speed respectively. Subindex s for the
pressure and the density imply supply (before the feed hole) and a is for ambient.
The theoretical rotational speed is calculated at maximum theoretical efficiency
for the given mass flow rate G. The theoretical mass flow rate was calculated with a
discharge coefficient of cd = 0.9, which means that no other loss of efficiency is taken
into account for the calculation of ωth. This thus means that theoretical efficiencies
will not be shown in Figures 4.5-4.6 since ηh would be of a constant 100%.
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Figure 4.1: Pelton turbine Angular speed vs Experimental Volumetric Flow rate

Figure 4.2: Single turbine Angular speed vs Experimental Volumetric Flow rate
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Figure 4.3: Flat turbine Angular speed vs Experimental Volumetric Flow rate

4.1.2 Velocity Triangles

The velocity triangles for a Pelton turbine are sketched in Figure 4.4. These were
used to calculate the Hydraulic Efficiency ηh of the turbine.

Figure 4.4: Velocity triangles of a generic Pelton turbine

Since the dimensions of the turbine are known, and the angular speed was measured
during the experiment, the vane speed can be easily calculated by u = ω · rmean.
Moreover, the absolute velocity of the inlet jet can also be easily calculated as shown
in Equation 4.2.

V1 = G · A (4.2)

With these two values and the deflection angle of the turbine, it is possible to
calculate the hydraulic efficiency of the system with Equation 4.3. These deflection
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angles are ϕpelton = 30.68◦ and ϕsingle = 60◦

ηh =
2(V1 − u)(1 + cos(ϕ))u

V 2
1

(4.3)

The values for the hydraulic efficiency of the turbine can be seen in Figures 4.5-
4.6. As was the case for the angular speed, the use of a distributor with a smaller
diameter results in overall higher efficiency. What is more, it is clear to see how
with the same volumetric flow rate, the hydraulic efficiency of the Pelton turbine is
considerable higher than the single paddle design.

Figure 4.5: Pelton turbine Hydraulic efficiency
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Figure 4.6: Single turbine Hydraulic efficiency

4.1.3 Optimization

In order to get the highest hydraulic efficiency possible, Equation 4.3 can be dif-
ferentiated with respect to u to find the maximum efficiency point.

∂
∂u
(ηh) = 0

∂
∂u

(
2(V1−u)(1−cos(ϕ))u

V 2
1

)
= 0

(1+cos(ϕ))

V 2
1

∂
∂u
[2(V1 − u)u] = 0

∂
∂u
[2V1u− 2u2] = 0

2V1 − 4u = 0

u = V1

2

This means that when u = V1

2
, the hydraulic efficiency will be maximum, and thus:

ηh,max =
2(V1−V1

2
)(1+cos(ϕ))(

V1
2
)

V 2
1

ηh,max = 1+cos(ϕ)
2

(4.4)

Equation 4.4 shows how the maximum efficiency of the turbine will be determined
by only a geometrical parameter, namely the angle of deflection ϕ. With this fact it
is clear to see how a lower angle will give the turbine a higher hydraulic efficiency,
and more specifically the maximum theoretical hydraulic efficiency is reached when
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ϕ = 0. Moreover, another method of discovering the highest efficiency point can
be used to check this result. For this, the original hydraulic efficiency equation,
Equation 4.3 can be differentiated with respect to ϕ in order to get the highest
efficiency value.

∂
∂ϕ
(ηh) = 0

∂
∂ϕ

(
2(V1−u)(1−cos(ϕ))u

V 2
1

)
= 0

∂
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V 2
1

)
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∂
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(
2u cos(ϕ)(V1−u)

V 2
1

)
= 0

−2u sin(ϕ)(V1−u)

V 2
1

= 0 ⇔ sin(ϕ) = 0

This procedure clearly shows how a lower angle of deflection will result in a higher
efficiency, as the maximum point of efficiency is once again located in ϕ = 0 point.

4.2 Aerodynamic Thrust Bearings

4.2.1 Thrust Bearing Simulations

Two numerical models were developed and implemented in this study: a static model
and a dynamic model. Each serves a distinct purpose in analyzing the behavior of
aerodynamic thrust bearings under different operating conditions.
The static model is designed to simulate the system under steady-state conditions.
A given bearing geometry is provided as input, from which the computational mesh
is generated. The model is then configured with an imposed air gap and rotational
speed to compute the resulting pressure distribution and load capacity. While both
the air gap and rotational speed are key parameters, only one of these can be var-
ied per simulation, ensuring better numerical stability, improved convergence, and
reduced computational time.
In contrast, the dynamic model is time-dependent, allowing for the study of the
system’s transient response until equilibrium is reached. Like the static model, the
bearing geometry is predefined, but instead of setting a fixed air gap, the model
applies a constant external force and a given rotational speed. The air gap is then
iteratively adjusted based on the equilibrium between the external force and the
bearing’s load capacity.
This model was used for speeds ranging from 5 krpm to 100 krpm, with increments
of 5 krpm. The initial conditions included the bearing geometry, the minimum
rotational speed, and an initial air gap. The dynamic model is particularly relevant
since the test bench operates under similar conditions—applying a constant external
force to the shaft, with the air gap adjusting based on the generated bearing force
at a given rotational speed.
To ensure computational efficiency, the maximum feasible time step was first de-
termined by running the dynamic model with a randomly selected initial air gap
that was physically reasonable. This step was crucial because the time step ranged
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from 10−7s to 10−9s , and using a larger time step significantly reduced the overall
simulation time needed to reach convergence. The maximum times steps ∆tmax for
each case for the used mesh are informed in Table 4.1.

Bearing ∆tmax [s] Mesh size [M ×N ]

Tapered 7× 10−8 30× 30
Slider 4× 10−8 30× 30
Step 2× 10−8 30× 30
Spiral 5× 10−9 30× 45

Table 4.1: Maximum time step ∆t for the dynamic model for each geometry

Once the optimal time step was identified, the static model was used to simulate the
load capacity of the bearing at the minimum rotational speed of 5 krpm, as seen in
Figure 4.7. This step was essential because it allowed for an efficient initialization
of the dynamic model. By using the static model to determine the air gap at which
the bearing force equals the external force at the lowest speed, the first step of the
dynamic model could be precomputed. This approach reduced simulation time while
ensuring that the air gap was consistent with the system’s equilibrium conditions.

Figure 4.7: Load capacity W as a function of the air gap h at the minimum
rotational speed ωmin = 5 krpm

The geometric parameters for each bearing used for the simulations present in Fig-
ure 4.7 were the following. The slider bearing used sh = 30µm, the step bearing
used sh = 30µm and a = 15◦, the tapered bearing used sh = 25µm and a = 16.5◦
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and the spiral bearing used the parameters of the real bearing informed in Table
4.3.

4.2.2 Slider

Simulations

A crucial step in each simulation is the verification of the obtained results by inspect-
ing the pressure field at each simulated step. The primary criterion for determining
the validity of the results is whether the pressure distribution aligns with the bearing
geometry and exhibits no inconsistencies or disruptions.
Disruptions in the pressure field refer to sharp peaks or discontinuities that break the
expected smooth distribution. These anomalies are typically caused by numerical
instabilities, often resulting from a time step larger than the minimum required
for accurate computations. Ensuring the correct time step selection is essential to
maintaining the stability and reliability of the simulation.
For each bearing type, a representative pressure field is provided in a corresponding
figure to illustrate the expected distribution, serving as a reference for assessing the
correctness of the results.
Figure 4.27 presents the pressure field for the slider bearing. It is evident from
this figure that the compressive action of the geometry rapidly increases, leading to
a pressure peak at the region of maximum compression. Additionally, after reaching
this peak, the pressure experiences a noticeable drop. This suggests the potential for
an optimized geometry that could further capitalize on this pressure loss, ultimately
enhancing the overall performance of the bearing.Moreover, it can be observed that
a geometry featuring a gradual ramp leading into a flat surface could sustain the
highly compressive region over a significantly longer distance within the bearing
surface. This design characteristic defines the Tapered bearing, which represents
an evolution of the Slider bearing. The transition from the Slider to the Tapered
geometry demonstrates how a refined design enhances performance by extending
the compression effect, thereby improving the overall load-carrying capacity of the
bearing.
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Figure 4.8: Slider bearing simulated pressure field in the static simulation

Optimization

The Slider bearing, being the first type invented and one of the simplest, has only
one parameter that needs optimization, the angle of inclination. This angle α is
however, minuscule, thus using it directly as a parameter can means working with
angles in the order of 10−3 degrees, which does not depict the parameter greatly. The
way in which the inclination was decided to be shown is in the maximum groove
depth sh, measured in µm. This value can be seen in the illustration present in
Figure 4.9.

Figure 4.9: Slider bearing sH depiction

With this said the geometry was analyzed sweeping through the range of values of sh
of 5µm to 30µm. For each value of sh the mesh was updated, and the corresponding
plane going from the selected air gap between the bearing and the shaft h = 5µm
to sh + h. Then for each case the bearing load capacity with the previously stated
parameters, ω = 70 krpm and a total of 6 pads, was calculated and the results are
shown in Figure 4.10. It is important to note that the maximum rotational speed
that could be reached with the test bench was used to optimize the geometry of
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this and al the other geometries since this would be the point with the highest
power input and where the system would be subjected to the highest load.

Figure 4.10: Slider bearing, Slider depth vs load capacity

A clear maximum is located at sh = 20µm. The system was then simulated using
the static model between the speeds of ω = 5 krpm and ω = 70 krpm with 5 air gap
values, these being h = 10µm and h = 20µm with a step of 2µm. The results are
shown in Figure 4.11.
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Figure 4.11: Initial generic geometry vs optimized geometry

It is evident that the optimized geometry exhibits improved performance at lower
air gap values, while showing a slight reduction in performance at higher air gaps.
This can be attributed to the fact that the initial generic geometry already possessed
characteristic values similar to those of the optimized design, particularly in terms of
maximum groove depth, which was sh = 25µm compared to 20µm in the optimized
configuration. Furthermore, the decline in performance near and beyond the point
of maximum load capacity remains minimal, as observed in Figure 4.11, further
emphasizing the similarity in performance between the two geometries.

4.2.3 Step

Simulations

The step bearing presents a pressure field with a rapid increase in pressure as the
air reaches the step itself as seen in Figure 4.12. After the step a slower decrease
in pressure relative to the slider bearing can be observed, suggesting an increase in
load capacity due to a greater area with a high pressure.
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Figure 4.12: Step bearing simulated pressure field in the static simulation

Optimization

The step bearing presents two parameters that can be optimized, other than the
number of pads. These parameters are the distance from the groove start to the step
xstep and the step depth sh. Since the bearings are of circular geometry, distance xstep

can also be expressed as an angular sector of the pad a, which would also eliminate
the need to select a radius for which to determine the measuring reference. The
angular sector was thus the parameter adopted for the optimization of the bearing
geometry. Figures 4.13-4.14 show diagrams that illustrate the parameters present
in the bearing and that were optimized.

Figure 4.13: Bearing side section depicting sH and a
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Figure 4.14: Diagram depicting a from the top view

Since there are two parameters to be optimized, a sweep of both was done with the
use of a double for command and the results are shown in Figures 4.15-4.16.

Figure 4.15: Step bearing, step depth and step sector effects on load capacity,
default view
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Figure 4.16: Step bearing, step depth and step sector effects on load capacity,
X − Y plane view

A geometry with sh = 14µm and an angular step of a = 13◦ demonstrates the
highest load capacity for this bearing type. Figure 4.17 presents a comparison
between the optimized geometry and an initial generic design, which featured sh =
20µmand an angular step of a = 15◦. The results clearly indicate that the optimized
geometry significantly outperforms the generic one, particularly at lower air gap
values. This highlights the sensitivity of this bearing type to geometric parameter
variations, as even a relatively small refinement in design leads to a substantial
increase in load capacity.
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Figure 4.17: Initial generic geometry vs optimized geometry

4.2.4 Tapered

Surface Scan

A similar procedure for the Tapered bearing was carried out. However, this bearing
presented a particular challenge. Since the geometry of the bearing has a slope that
ends in a slot, the roundmeter went into overflow since the tip of the instrument
would descend sharply and cause the error. In order to combat this problem, small
bars that fitted into the slots had to be 3D printed. This made it, so there was a
surface over which the roundmeter could measure, which then had to be cut from
the date to not skew the measurements. A picture of the experimental setup can be
seen in Figure 4.18.
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Figure 4.18: Roundmeter setup for the measurement of the Tapered bearing

The measured raw data was then plotted with the use of Matlab, as shown in Figure
4.19. It can be clearly seen that like the spiral grooved bearing, the Tapered bearing
data presents an inclined profile that had to be corrected in the post-processing of
the data. Following a similar procedure to the spiral grooved bearing, a plane was
fitted into the data in order to achieve a level surface. Once the plane parameters
were found, the data was translated to be level. Once this procedure was done, the
results obtained are shown in Figure 4.20
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Figure 4.19: Tilted Bearing Surface raw data

Figure 4.20: Tapered Bearing Surface flattened
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The main difference in the post-processing between the Tapered bearing and the
spiral grooved bearing is that the former has the 3D printed bars that need to be
taken into account. The start and ending of each of the bars was identified, and
that data was discarded by setting the value of the height of the surface in those
points to NaN . Moreover, the same filtering process that was used for the spiral
grooved bearing was used for the tiled pad bearing. Both of these procedures were
implemented and can be seen in Figure 4.21.

Figure 4.21: Tapered Bearing Surface scan in Matlab

With all of these procedures applied to the data, it was then possible to measure the
tilt of each pad in order to evaluate the FDM model with the same parameters. The
tilt was measured by fitting a plane to the tilted surface, once again using Matlab’s
Curve F ittrer application, and calculating its inclination with relation to the flat
surface of the bearing. These tilt angles are informed in Table 4.2. Moreover, in
order to get accurately calculate the tilt angle of each pad, the pads themselves had
to be identified since the bearing consists of a flat surface that then descends with
these pads. The angular extension of the pads was calculated to be αpad = 16.5◦.
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Pad number Tilt [deg]
Pad 1 4.85
Pad 2 4.07
Pad 3 6.06
Pad 4 3.48
Pad 5 6.16
Pad 6 5.00

Mean Pad Tilt 4.94

Table 4.2: Angular tilt of every pad present in the bearing

Finally, to fully describe the bearing’s geometry, the extent of the descent of the
pads had to be obtained. Meaning that a mean value of maximum depth of the
pads had to be calculated. In order to do this, the height of each pad was plotted
at the inner, middle and outer radius. These measurements are shown in Figures
4.22-4.24. With these graphs it was possible to state that the pads have a slope
that starts level with the flat faces of the bearing and then descends to 30µm

Figure 4.22: Tapered Bearing inner radius pad depth
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Figure 4.23: Tapered Bearing middle radius pad depth

Figure 4.24: Tapered Bearing outer radius pad depth
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Similarly to the spiral bearing, the average pad profile was calculated for the tapered
bearing. This was done by getting the profile height at each point of each pad and
averaging the height value at individual point. The result of this procedure can be
seen in Figures 4.25-4.26.

Figure 4.25: Tapered Bearing average profile

Figure 4.26: Tapered Bearing average profile, top view
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Simulations

As previously discussed in the section on the Slider bearing, the Tapered bearing
generates a high-pressure peak, as seen in Figure 4.27, due to its converging section.
Unlike the Slider bearing, however, the Tapered bearing maintains this elevated
pressure over a larger portion of the geometry. This is achieved through the presence
of a flat ridge, which neither compresses nor decompresses the fluid further, allowing
the bearing to sustain a high load capacity over an extended area.

Figure 4.27: Tapered Bearing simulated pressure field using the FDM method

Dynamic Simulation

Measurements were performed under three loading conditions characterized by the
inclination of the test bench. These were α = 15◦ = 3.5N (in red), α = 30◦ = 6.5N
(in black) and α = 53.3◦ = 10.5N (in blue), as seen in Figure 4.28. As expected,
the values of the air gap for every case are lower than the ones of the simulations.
This could be due to the fact that since the system is real, lower performance is to
be expected, and thus a much lower air gap was needed for the bearing to achieve
the same load capacity than the simulation.
The experimental results for the measured air gap at different load cases showed
a significant deviation from the values predicted by the numerical model. This
discrepancy can be attributed to several real-world factors that were not accounted
for in the simulation.
One of the primary sources of error is surface degradation of the bearing over multiple
test cycles. As the tests progressed, minor wear or damage to the bearing surface
could have altered the actual air gap, introducing variations that were not reflected in
the idealized numerical model. Additionally, misalignment between the bearing and
the shaft may have led to inconsistent air gap measurements, further contributing
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to the observed differences. Another factor influencing the results was the bearing’s
support mechanism, which relied on tolerances in the housing cap. As discussed
previously, this type of support can introduce micro-displacements, affecting the
overall stability and accuracy of the measured air gap.
Even after applying the systematic error correction procedure described in Chapter
2, the translated experimental data remained significantly different from the sim-
ulated results. To compensate for this discrepancy and better compare the trends
between experimental and simulated curves, the simulated results were uniformly
shifted by 9µm. This adjustment allowed for a more meaningful analysis of the
model’s predictive capabilities despite the inherent limitations of the experimental
setup.

Figure 4.28: Tapered Bearing dynamic simulation with measured air gaps

Optimization

Similarly to the step bearing, the paramters to be optimized are the maximum
groove depth sh and the angular ridge sector a, as shown in Figures 4.29-4.30.
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Figure 4.29: Tapered Bearing side section depicting sH and a

Figure 4.30: Diagram depicting a from the top view

A sweeping analysis of the combination of these two was carried out using an angular
speed of ω = 70 krpm and a constant air gap of h2 = 15µm. The results of this
sweep are shown in Figures 4.31-4.32.

Figure 4.31: Tapered bearing, maximum groove depth sh and taper sector a effects
on load capacity
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Figure 4.32: Tapered bearing, maximum groove depth sh and taper sector a effects
on load capacity, top view

The optimal geometry for the tapered bearing, as illustrated in Figure 4.32, cor-
responds to a design with sh = 26µm and a tapered angular sector of a = 17.5◦.
For comparison, a geometry with the same characteristics as the initially studied
tapered bearing was analyzed, featuring sh = 25µm and a = 16◦. This indicates
that the initial geometry was already very close to the optimal configuration, as
shown in Figure 4.33. While a slight improvement in performance is observed at
higher air gap values, the difference is minimal and not highly significant.
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Figure 4.33: Tapered bearing load capacity comparison between initial and
optimized parameters at ωmin = 5 krpm

4.2.5 Spiral

Surface Scan

The measurement data was subsequently imported into Matlab for post-processing,
since the data showed some systematic errors. Firstly, the data exhibited a slight
tilt, as can be seen in Figure 4.34. The surface of the upper part of the bearing
(positive y) has a higher value than the lower part (negative y) for example. Rotating
the view of Figure 4.34, this tilt can be clearly seen, as shown in Figure 4.35.
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Figure 4.34: Spiral Bearing Surface scan raw data

Figure 4.35: Spiral Bearing Surface scan raw data side view
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To solve for this observation, a plane was fitted into the data in order to correct the
data. This plane only used the points from the inner ring without grooves, since
this part was untouched in the manufacturing process, and thus should be flat,
and it also has no grooves that may interfere with these corrections. The Matlab
application ”Curve Fitter” was used in order to verify a correct fit value R2. From
Figure 4.36 it can be seen that the value R2 is acceptable, as it is higher than 0.9,
a usual benchmark for the validity of an approximate fit.

Figure 4.36: Plane fitting using curve fitter

Once the plane was obtained, the next step was to translate the data such that the
bearing surface was flat. In order to perform this translation, the distance from any
point to the fitted plane was calculated and then all the points were translated in
accordance to this distance. Doing it this way ensured that the groove geometry
and depth would remain untouched, and thus no data would be lost. The result of
this process can be seen in Figures 4.37-4.38. The latter (side view) shows clearly
how the data is now flat and not tilted as it was previously, specially when compared
with Figure 4.35
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Figure 4.37: Flattened geometry top view

Figure 4.38: Flattened geometry side view
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The next step that was done was to get rid of the outlier points in the data. Some
of these outliers can be seen in Figure 4.34-4.38. In order to do this, Matlab’s
isoutlier function was used. This function automatically detects the outliers and
informs their position in the given array. Once identified, the selected method of
correction was to take the local average of the points directly connected to the outlier
in question. This means that using polar coordinates, the points located one ∆θ
to each side and one ∆r radially were used to calculate the mean. This value then
replaced the original outlier. 3600 outliers were found using this method and the
resulting data is shown in Figure 4.39.

Figure 4.39: Filtered and Flattened geometry data

Once the data was processed accordingly, the analysis of the groove parameters
and thus the measurement of their depth could be carried out. In order to get the
parameter values, an iterative method using was carried out.After various iterations,
the recorded values for the bearing are the ones informed in Table 4.3 and are seen
graphically represented in Figure 4.40.
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Figure 4.40: Parameters of an aerodynamic Spiral Grooved thrust bearing

h0,mean 22.62mm
a1,f 11.5mm
a2,f 6mm
β 70◦

r1 16mm
rb 20mm
r2 33mm
N 12

Table 4.3: Measured properties of the grooved spiral bearing

Table 4.3 informs the measured values of the spiral bearing. Expanding on the
meaning of some of these values, a2,f and a1,f are the sector length at the outer
radius (r2) of the groove and the land part of the bearing respectively. α refers to
the ratio of a and b such that α = a2/a1. Note that α stays constant regardless of
the radius in which a1 and a2 are measured. However, it is a common practice to
measure both these parameters at the outer radius.
In order to check that these parameters are in accordance to the physical bearing, a
superposition of a theoretical bearing with the parameters from Table 4.3 and the
scanned surface from Figure 4.39 was done, as show in Figure 4.41.
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Figure 4.41: Graphical comparison and verification of the parameters of the
bearing

With the use of Figure 4.41, it was possible to state that the parameters from
Table 4.3 are correct and thus, the mean groove depth can be calculated. To do
this calculation, the data was separated into grooved and non-grooved points as
shown in Figures 4.42-4.43.

77



Santiago Casas Ricca DIMEAS - Politecnico di Torino

Figure 4.42: Isolated data from the grooves

Figure 4.43: Isolated data from the non-grooved part of the bearing
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It is important to know that the grooves present in the spiral bearing are not of
constant depth, as is clear from the figures present in this chapter. Thus, in order
to more accurately simulate the bearing’s performance with the numerical model
specified in Section 3.2, an average radial depth was calculated and then applied
to the FDM model. This radial average was obtained by calculating the mean depth
of the groove in each sampled ratio in the grooved part of the bearing. For this the
data shown in Figure 4.42 was separated by the value of the radial coordinate of
each point. All the groove depths of the points in the same radius were averaged to
get the mean groove depth at that specific radius. After this, a 9th degree polynomial
function (the highest degree polynomial that Matlab’s Curve Fitter allows using)
was calculated in order to recreate as closely as possible the groove depth profile
along the grooves of the mathematical model. The main reason to do this and not
just copy and paste the data of the grooves in the model is that, by using symmetry
the model will only perform the calculation for a 30◦ sector of the bearing, and
since all the grooves present slightly different groove depth profiles, this method was
needed. Figure 4.44 shows how the result of applying this procedure to the mesh.
It is clear by the color gradient how the groove depth varies with the radius, creating
a much an environment for the simulation that is much closer to reality than just
applying the mean groove depth to the grooved part.

Figure 4.44: 30◦ Sector meshed with average radial depth applied to the mesh

Simulations

Static The first simulation aimed to calculate the pressure distribution within the
bearing domain, as described in Chapter 3. This was achieved by imposing a fixed
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air gap and rotational speed, allowing for the evaluation of the aerodynamic thrust
bearing’s performance under different operating conditions. The analyzed air gaps
ranged from 3 to 8 µm, with a step of 1 µm, while the rotational speeds varied from
10krpm to 190krpm, with a step of 20krpm.
To ensure the validity of the results, each simulation iteration was carefully exam-
ined. This validation process involved visually analyzing the generated pressure
field, as depicted in Figures 4.45-4.46. These figures illustrate how the pressure
field aligns with the expected behavior of the bearing type and its geometry. Specif-
ically, a distinct pressure peak appears at the start of the spiral, with the pressure
gradually increasing toward this region. Additionally, a noticeable increase in pres-
sure was observed at locations where a step in the geometry was present—namely, at
the secondary spiral grooves incorporated within the reduced model. This behavior
corresponds well with theoretical expectations, further reinforcing the accuracy of
the simulation.
Moreover, the absence of irregular pressure peaks confirmed the correctness of the
meshing process. In cases where the mesh is poorly structured or contains numerical
inconsistencies, unexpected pressure discontinuities may arise. The smooth and well-
distributed pressure profile obtained in these simulations indicates that the meshing
was successfully implemented.

Figure 4.45: Isometric view of the pressure field of the studied spiral bearing
section
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Figure 4.46: Top view of the pressure field of the studied spiral bearing section

The overall results for all air gap values and rotational speeds are presented in
Figure 4.47. This figure clearly demonstrates how small variations in the air gap
significantly influence the bearing’s load capacity at each rotational speed. Specif-
ically, as the air gap decreases, the pressure distribution intensifies, leading to a
notable increase in the bearing’s load-carrying capability. This trend is consistent
with theoretical predictions, further validating the numerical model’s reliability.
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Figure 4.47: Spiral Thrust bearing theoretical load capacity under static conditions

Dynamic

Using the dynamic model introduced at the begining of this chapter, the theoretical
air gap in different load cases were obtained as seen in Figure 4.48.
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Figure 4.48: Spiral Thrust bearing theoretical load capacity under static conditions

Optimization

Muijderman [5, 4] studied the effect of incompressible air in the Whipple NGT
[10, 11] theory and with some adjustments, such as considering grooves along a
spiral curvature, arrived at a model that would simplify the numerical calculations
of the model and thus could be calculated with a reasonable degree of accuracy. The
main parameters of the system created by Muijderman are mostly dimensionless
parameters. These parameters are, the spiral angle α, the ratio of nominal air gap
to groove depth δ = h2

h0
, the ratio of groove sector to ridge sector γ = a2

a1
and the

ratio of spiral base radius to external radius Γ = rb
r2
.

Using the Muijderman model and the basic geometrical parameters of the studied
spiral thrust bearing, these being the internal radius r1, external radius r2 and the
number of grooves k, more optimal parameters can be obtained. The results of this
optimization can be seen in Figures 4.49-4.52.
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Figure 4.49: Spiral bearing optimization for α and γ

Figure 4.50: Spiral bearing optimization for α and γ, top view
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Figure 4.51: Spiral bearing optimization for δ and Γ

Figure 4.52: Spiral bearing optimization for δ and Γ, top view

By utilizing the parameters that yield the highest load capacity from Figure 4.50
and Figure 4.52, along with the original geometry of the spiral bearing, the result-
ing optimized geometrical parameters are presented in Table 4.4.

85



Santiago Casas Ricca DIMEAS - Politecnico di Torino

h0 15mm
γ 0.64
β 72.61◦

r1 16mm
rb 20.6mm
r2 33mm

Table 4.4: Optimal parameters of the spiral bearing

Figures 4.53-4.54 illustrate the differences between the original and optimized
geometries. The most noticeable distinction is the significantly narrower grooves in
the optimized design, a characteristic commonly observed in this type of bearing.
This narrowing enhances the compression effect within the fluid film, leading to
improved performance and higher load-carrying capacity.

Figure 4.53: Original geometry
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Figure 4.54: Optimized geometry

Using the parameters obtained from the Muijderman system optimization the cal-
culations for the load capacity were done and compared with the original geometry.
These results can be seen in Figure 4.55, and show how the new design of the
spiral bearing is superior in every airgap studied.
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Figure 4.55: Original geometry vs optimized geometry

4.2.6 Comparisons

With all the optimized geometries obtained, a comparison of the different bearing
types was conducted using the static model. For this analysis, rotational speeds
were varied between ωmin = 5 krpm and ωmax = 70 krpm, while the air gap ranged
from h2,min = 10µm to h2,max = 20µm, with a step of ∆h = 2µm. The results
are shown in Figures 4.56-4.61.From these figures, it is evident that, under the
analyzed conditions, the Step and Tapered bearings exhibit the best performance
across all cases. Additionally, as the air gap increases, the speed at which the
Tapered bearing surpasses the Step bearing in performance shifts toward a higher
rotational speed. This suggests that for lower-speed applications, a Step bearing may
be more suitable, whereas at higher rotational speeds, a Tapered bearing would be
the preferred choice.
What is more, the spiral bearing in all the simulated results performs considerable
worse than the other studied geometries even when the optimized paramters were
used. One reason for this as suggested by Malanoski and Pan[3], could be the
number of grooves as they conclude that the best performing spiral thrust bearing
is one that presents 18 grooves.
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Figure 4.56: Bearing type comparison, h2 = 10µm

Figure 4.57: Bearing type comparison, h2 = 12µm
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Figure 4.58: Bearing type comparison, h2 = 14µm

Figure 4.59: Bearing type comparison, h2 = 16µm
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Figure 4.60: Bearing type comparison, h2 = 18µm

Figure 4.61: Bearing type comparison, h2 = 20µm
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Chapter 5

Conclusions

This study focused on the analysis and optimization of aerodynamic thrust bearings,
specifically logarithmic spiral and tapered geometries, through both experimental
characterization and numerical modeling. The main objectives were to identify
and characterize the bearings, validate numerical models using test bench data,
and optimize their geometry to improve performance. A finite difference numerical
model, utilizing a central-node finite volume mesh and a forward Euler scheme for
time evolution, was developed to simulate the pressure distribution and load capacity
of the bearings under varying operating conditions. Moreover, this study aimed to
analyze the present, existing test bench in order to improve its design for future
projects and versions.
The results demonstrated a strong correlation at higher speeds at lower loads, be-
tween experimental measurements and numerical simulations, confirming the valid-
ity of the proposed models when more adequate working conditions are met. The
static model effectively predicted steady-state pressure distributions, while the dy-
namic model successfully captured the transient response of the air gap under an
applied external load. The study found that bearing performance is highly sensi-
tive to geometric parameters, particularly groove width, groove depth, and angular
sector. Among the simulated configurations, the tapered bearing exhibited the best
load-carrying capacity at higher rotational speeds, while the step bearing proved to
be more efficient at lower speeds. Additionally, the optimization process revealed
that narrower grooves for the logarithmic spiral bearing improved the compression
effect, further enhancing bearing performance.
The findings of this study highlight the importance of precise geometric optimization
in aerodynamic bearing design. By refining groove dimensions and distribution, sig-
nificant improvements in load capacity and efficiency can be achieved. These insights
are particularly relevant for high-speed, oil-free turbomachinery applications, where
minimizing friction and maximizing stability are critical design considerations.
Despite the relative success of the numerical models, certain limitations should be
acknowledged. The simulations assumed isothermal conditions, neglecting potential
thermal effects that could influence gas film behavior at high speeds. Additionally,
minor assembly misalignments in the test bench could introduce small uncertainties
in the experimental measurements. Addressing these factors in future studies would
further improve model accuracy and predictive capability.
Future work could explore the inclusion of thermal effects in the numerical model to
account for temperature variations in high-speed applications. Further experimental
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validation using different gas compositions and alternative bearing materials could
also provide deeper insights into optimizing performance under various operating
conditions. Additionally, refining the test bench to enhance measurement accuracy
and reduce setup uncertainties would improve data reliability. Moreover, an overhaul
of the loading mechanism would greatly improve the research possibilities of the test
bench. Such mechanism could be the one used by LaTray et al.[2], which consisted
of a pneumatic actuator that directly applied a load to the shaft.
Overall, this study provides a comprehensive evaluation of aerodynamic thrust bear-
ings, offering valuable insights for their design, optimization, and practical imple-
mentation in high-performance rotating systems. The results serve as a foundation
for further advancements in the field, contributing to the development of more effi-
cient and reliable gas-lubricated bearing technologies.
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