

Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Meccanica A.a. 2024/2025 Sessione di Laurea Marzo/Aprile 2025

Riqualificazione energetica e progettazione termotecnica di un edificio residenziale

Analisi dettagliata delle soluzioni tecniche e dei benefici economici del Superbonus 110%

Relatori:

Candidato:

Alberto Francalanza

Prof.ssa Teresa Maria Berruti Prof. Marco Carlo Masoero

Sommario

INTRODUZIONE	4
1 SUPERBONUS 110%	5
1.1 Destinatari	5
1.2 Requisiti	5
1.3 Adempimenti	6
1.4 Modalità di agevolazione	7
2 STATO DI FATTO	8
2.1 Dati generali	8
2.2 Dati climatici	9
2.2 Componenti involucro	11
2.2.1 Componenti opache	11
2.2.2 Componenti finestrati	17
2.3 Ponti termici	20
2.4 Impianti	25
2.4.1 Riscaldamento	25
2.4.2 Produzione di acqua calda sanitaria	26
2.5 Prestazione energetica globale dell'edificio	27
2.5.1 Attestato di prestazione energetica	27
2.5.2 Metodo di calcolo	27
2.5.3 Fabbisogni di energia dell'edificio	30
2.5.4 Classe energetica ante-operam	33
3 INTERVENTO DI RIQUALIFICAZIONE	34
3.1 Relazione ex Legge 10	34
3.2 Massimali di spesa	36
3.3 Valutazione degli interventi migliorativi	38
3.3.1 Scenario 1	38
3.3.2 Scenario 2	41
3.3.3 Scenario 3	48
3.4 Analisi economica	54
4 PROGETTAZIONE TERMOTECNICA	57
4.1 Stratigrafie dello stato di progetto	57
4.2 Carichi termici	67
4.2.1 Carichi termici invernali	67
4.2.2 Carichi termici estivi	69

4.3 Terminali di emissione	71
4.3.1 Pannelli radianti a pavimento	71
4.3.2 Ventilconvettori e radiatori	84
4.4 Impianto VMC con deumidificazione	85
4.4.1 Scelta delle unità	86
4.4.2 Dimensionamento dei canali	89
4.4.3 Verifica delle perdite di carico	92
4.5 Distribuzione e generazione	97
4.5.1 Dimensionamento delle tubazioni	00
4.5.2 Pompe di circolazione	02
4.5.3 Pompa di calore	10
4.5.4 Accumulatore inerziale	11
4.5.5 Dispositivi di sicurezza	13
4.5.6 Schema funzionale di centrale1	17
CONCLUSIONE	19
BIBLIOGRAFIA	20

INTRODUZIONE

Negli ultimi anni, la crescente consapevolezza della necessità di ridurre le emissioni di CO₂ e migliorare l'efficienza energetica degli edifici ha spinto i governi a introdurre misure incentivanti per stimolare interventi di riqualificazione. Tra queste, il Superbonus 110% rappresenta una delle iniziative più rilevanti e discusse nel panorama italiano.

Il Superbonus 110%, introdotto dal Decreto Rilancio, è stato concepito per incentivare interventi di efficientamento energetico e sismico, offrendo una detrazione fiscale pari al 110% delle spese sostenute. Questa misura ha avuto un impatto significativo su vari settori, favorendo non solo il miglioramento delle prestazioni energetiche degli edifici, ma anche la ripresa economica del comparto edilizio.

Nel primo capitolo, viene analizzato il Superbonus 110% nei suoi vari aspetti, inclusi i destinatari, i requisiti per accedere al bonus, gli adempimenti burocratici e le modalità di agevolazione. Questa sezione fornisce una base solida per comprendere il contesto normativo e operativo in cui si inserisce il progetto di riqualificazione energetica.

Il secondo capitolo offre una panoramica dettagliata dello stato attuale dell'edificio oggetto di intervento. Vengono presentati i dati generali e climatici, analizzate le componenti dell'involucro edilizio e valutati i ponti termici presenti. Inoltre, viene descritta la configurazione degli impianti di riscaldamento e produzione di acqua calda sanitaria, insieme alla prestazione energetica globale dell'edificio, con riferimento all'Attestato di Prestazione Energetica (APE) e ai metodi di calcolo utilizzati.

Nel terzo capitolo, vengono descritti gli interventi di riqualificazione proposti, supportati da una relazione tecnica conforme alla Legge 10. Sono dettagliati i massimali di spesa e valutati vari scenari di intervento, ciascuno con una descrizione delle soluzioni proposte. Questa sezione culmina in un'analisi economica che valuta i costi e i benefici derivanti dagli interventi di riqualificazione.

Il quarto capitolo si concentra sulla progettazione termotecnica dell'edificio. Vengono descritte le stratigrafie progettuali e analizzati i carichi termici invernali ed estivi. Si esaminano le diverse tipologie di terminali di emissione, come pannelli radianti, ventilconvettori e radiatori, e viene descritta la progettazione dell'impianto di ventilazione meccanica controllata (VMC) con deumidificazione. Inoltre, vengono affrontati il dimensionamento delle tubazioni, delle pompe di circolazione, del generatore e di tutti gli altri componenti a corredo dell'impianto.

1 SUPERBONUS 110%

Il **Superbonus 110**% costituisce una misura di incentivazione varata il 19 maggio 2020 durante il mandato del governo Conte II. Comprende una serie di dispositivi di agevolazione, detrazioni e rimborsi per interventi di carattere edilizio, mirati a migliorare l'efficienza egli edifici e delle infrastrutture e allo stesso tempo stimolare e rilanciare il settore edile a seguito della pandemia di COVID-19.

1.1 Destinatari

Secondo la normativa di riferimento, i soggetti che possono avere accesso alla detrazione del 110% sulle spese fiscali, sono i seguenti:

- Persone fisiche che non svolgono attività di impresa, arti e professioni, limitatamente a un massimo di due unità immobiliari. Tuttavia, è importante sottolineare che continueranno a fruire delle detrazioni per gli interventi effettuati sulle parti comuni dell'edificio.
- Condomini;
- Istituti autonomi case popolari (IACP), indipendentemente dalla denominazione, nonché gli enti con scopi sociali analoghi agli IACP, costituiti sotto forma di società e conformi ai requisiti della normativa europea in materia di "in house providing". Questa agevolazione si applica agli interventi realizzati su immobili di proprietà di tali enti o gestiti per conto dei comuni e destinati all'edilizia residenziale pubblica.
- Cooperative di abitazione a proprietà indivisa per gli interventi effettuati su immobili di loro proprietà, assegnati in godimento ai propri soci.
- Organizzazioni non lucrative di utilità sociale (ONLUS), organizzazioni di volontariato, associazioni di promozione sociale e associazioni sportive dilettantistiche (limitatamente alla parte dell'immobile destinata agli spogliatoi).

1.2 Requisiti

Per usufruire del Superbonus 110%, è indispensabile che le spese effettuate riguardino uno dei seguenti interventi prioritari, noti come "**trainanti**":

1. Isolamento termico delle superfici opache:

 Interventi che coinvolgono le superfici inclinate, verticali e orizzontali che delimitano il volume riscaldato, rivolte verso l'esterno, i vani non riscaldati o il terreno. Questi interventi devono incidere su almeno il 25% della superficie disperdente lorda dell'edificio o dell'unità immobiliare situata all'interno di edifici plurifamiliari, purché indipendente e con accesso autonomo all'esterno. La definizione di superficie disperdente lorda comprende anche interventi di coibentazione del tetto.

2. Sostituzione di impianti di climatizzazione invernale:

 Interventi, sia condominiali che su singole unità, finalizzati alla sostituzione di impianti di climatizzazione invernale esistenti con impianti di riscaldamento, raffrescamento (nel caso di pompe di calore reversibili) e la fornitura di acqua calda sanitaria a condensazione, a pompa di calore o di microcogenerazione.

3. Interventi di riduzione del rischio sismico o misure antisismiche:

Lavori che mirano a ridurre il rischio sismico o adottare misure antisismiche.

Inoltre, beneficiano della stessa agevolazione, se effettuati insieme agli interventi trainanti, le spese sostenute per gli interventi secondari o "**trainati**", come previsti dalla normativa ecobonus. Questi possono includere l'installazione di infrastrutture per la ricarica di veicoli elettrici, impianti fotovoltaici con sistemi di accumulo integrati o impianti solari su strutture pertinenziali degli edifici.

1.3 Adempimenti

Il legislatore ha stabilito obiettivi minimi che devono essere raggiunti per poter beneficiare della detrazione fiscale del 110%. Tra i principali requisiti vi sono:

1. Miglioramento delle classi energetiche:

È necessario garantire un miglioramento di almeno due classi energetiche o, qualora ciò non sia possibile, almeno della classe immediatamente superiore. Questo richiede la comunicazione all'Enea, entro 90 giorni dalla conclusione dell'intervento, dell'attestato di prestazione energetica, applicabile solo agli interventi di efficientamento energetico.

2. Rispetto dei requisiti tecnici e di efficienza:

 È fondamentale rispettare i requisiti tecnici e di efficienza minimi delle tecnologie impiegate. Questi sono definiti per ciascun sotto-intervento mediante Decreto Ministeriale e si applicano esclusivamente agli interventi di efficientamento energetico.

3. Criteri ambientali minimi per i materiali isolanti:

 Si deve garantire il rispetto dei criteri ambientali minimi, soprattutto riguardo alla tecnica di fabbricazione dei materiali isolanti e alla percentuale minima di materiale riciclato.

4. Riduzione del rischio sismico:

 Per gli interventi antisismici, è obbligatoria un'apposita analisi strutturale e l'asseverazione del progettista per garantire la riduzione del rischio sismico.

5. Comunicazione di Inizio dei Lavori Asseverata per il Superbonus (CILAS):

 Si impone l'obbligo di depositare la Comunicazione di Inizio dei Lavori Asseverata per il Superbonus, che richiede la nomina di un progettista abilitato e di un direttore dei lavori. È essenziale anche l'attestazione di legittimità edilizia dell'immobile, con l'esclusione esplicita dal beneficio per gli interventi eseguiti su edifici abusivi.

Per poter beneficiare della detrazione del 110%, sono stati introdotti sin dall'inizio adempimenti antifrode aggiuntivi e innovativi rispetto ai bonus edilizi precedenti. È imperativo fornire la dimostrazione che l'intervento realizzato sia conforme alle leggi e alle norme vigenti, che soddisfi i requisiti tecnici richiesti per accedere al beneficio e che la spesa sostenuta sia congrua. La documentazione probante correlata viene raccolta in un'asseverazione tecnica redatta da un professionista abilitato e, successivamente, trasmessa agli enti di controllo. Queste misure mirano a garantire l'integrità del processo e a prevenire eventuali pratiche fraudolente nel contesto delle detrazioni fiscali.

La spesa è ritenuta adeguata quando sono rispettati contemporaneamente tre limiti:

- 1 La spesa deve restare al di sotto di quella stabilita attraverso il computo metrico estimativo degli interventi, redatto facendo riferimento ai listini prezzi individuati da specifico Decreto Ministeriale.
- 2 Per alcune categorie di beni, la spesa non deve superare l'importo stabilito da apposito Decreto del Ministero della Transizione Ecologica.

3 La spesa non deve superare i massimali stabiliti per le specifiche tipologie di intervento in relazione a ogni singola unità immobiliare.

Le spese tecniche per le prestazioni intellettuali, come la progettazione degli interventi e l'asseverazione tecnica, devono anch'esse conformarsi ai limiti stabiliti dai decreti. Inoltre, nel caso in cui il beneficiario desideri usufruire dell'opzione dello sconto in fattura o della cessione del credito d'imposta, si introduce l'obbligo di apporre un visto di conformità che certifichi la presenza di tutti i requisiti per beneficiare delle detrazioni. Quest'ultimo adempimento è compiuto dai soggetti responsabili della trasmissione telematica delle dichiarazioni all'Agenzia delle entrate, come dottori commercialisti, ragionieri, periti commerciali e consulenti del lavoro, nonché dai responsabili dell'assistenza fiscale dei CAF.

Grazie a questi approfonditi livelli di accertamento tecnico e fiscale, il Superbonus si è rivelato la forma di bonus edilizio meno incline alle frodi nell'ambito della cessione dei crediti d'imposta. Nello specifico, rappresenta solo il 3% dell'importo complessivo delle somme indebitamente percepite, come evidenziato in un primo report presentato dall'Agenzia delle Entrate nel febbraio 2022.

1.4 Modalità di agevolazione

Il contribuente che affronta le spese, per le quali viene riconosciuto il Superbonus del 110%, ha la possibilità di scegliere tra tre diverse modalità di agevolazione:

1. Detrazione delle spese in dichiarazione dei redditi:

 Le spese possono essere detratte ripartite in cinque quote annuali di pari importo. Per la parte della spesa sostenuta nell'anno 2022, la detrazione avviene in quattro quote annuali di pari importo.

2. Sconto anticipato praticato dai fornitori:

o Il contribuente può beneficiare di uno sconto anticipato praticato direttamente dai fornitori di beni o servizi, comunemente noto come "sconto in fattura".

3. Cessione del credito a terzi:

Il contribuente ha l'opzione di cedere il credito d'imposta a terzi. Questa cessione può
essere effettuata in favore dei fornitori dei beni e servizi necessari per realizzare gli
interventi, di altri soggetti come persone fisiche, anche esercenti attività di lavoro
autonomo o d'impresa, o ancora società, enti, istituti di credito e intermediari finanziari.

La Legge di Bilancio per il 2024 ha abrogato le opzioni di trasferimento del credito e lo sconto immediato in fattura relativi al Superbonus, con effetto a partire dal 1° gennaio 2024.

2 STATO DI FATTO

2.1 Dati generali

L'edificio oggetto di studio è situato a Beinasco (TO) ed è costituito da tre unità immobiliari, una per ogni piano.

Figura 2.1 Edificio oggetto d'intervento

Per l'individuazione della destinazione d'uso dell'edificio si è fatto riferimento al **DPR del 26 agosto 1993**. Si tratta di un regolamento recante norme per la progettazione, l'installazione, l'esercizio e la manutenzione degli impianti termici degli edifici ai fini del contenimento dei consumi di energia.

Gli edifici sono classificati in base alla loro destinazione d'uso nelle seguenti categorie:

- E.1 Edifici adibiti a residenza e assimilabili:
 - E.1 (1) abitazioni adibite a residenza con carattere continuativo, quali abitazioni civili e rurali, collegi, conventi, case di pena, caserme;
 - E.1 (2) abitazioni adibite a residenza con occupazione saltuaria, quali case per vacanze, fine settimana e simili;
 - E.1 (3) edifici adibiti ad albergo, pensione ed attività similari;
- **E.2** Edifici adibiti a uffici e assimilabili: pubblici o privati, indipendenti o contigui a costruzioni adibite anche ad attività industriali o artigianali, purché siano da tali costruzioni scorporabili agli effetti dell'isolamento termico;
- **E.3** Edifici adibiti a ospedali, cliniche o case di cura e assimilabili ivi compresi quelli adibiti a ricovero o cura di minori o anziani nonché le strutture protette per l'assistenza ed il recupero dei tossico dipendenti e di altri soggetti affidati a servizi sociali pubblici;
- E.4 Edifici adibiti ad attività ricreative, associative o di culto e assimilabili:
 - o **E.4 (1)** quali cinema e teatri, sale di riunione per congressi;
 - o **E.4 (2)** quali mostre, musei e biblioteche, luoghi di culto;
 - o **E.4 (3)** quali bar, ristoranti, sale da ballo;
- **E.5** Edifici adibiti ad attività commerciali e assimilabili: quali negozi, magazzini di vendita all'ingrosso o al minuto, supermercati, esposizioni;
- E.6 Edifici adibiti ad attività sportive:

- o **E.6 (1)** piscine, saune e assimilabili;
- o **E.6 (2)** palestre e assimilabili;
- o **E.6 (3)** servizi di supporto alle attività sportive;
- **E.7** Edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili; E.8 Edifici adibiti ad attività industriali ed artigianali e assimilabili.

L'edificio in questione ricade all'interno della categoria **E.1 (1)** trattandosi di un'abitazione civile adibita a residenza con carattere continuativo.

La classificazione degli edifici in base alla destinazione d'uso è molto importante, perché da essa dipendono, in caso di calcolo regolamentare, parametri quali le temperature interne, gli apporti, ecc.

Ad esempio, per la categoria in questione si ha che durante il periodo in cui è in funzione l'impianto di climatizzazione invernale, la media aritmetica delle temperature dell'aria nei diversi ambienti di ogni singola unità immobiliare, non deve superare i $20\,^{\circ}C\,\pm\,2\,^{\circ}C$ di tolleranza.

2.2 Dati climatici

Secondo il **DPR 412/93**, il territorio nazionale è suddiviso nelle seguenti sei zone climatiche in funzione dei gradi - giorno, indipendentemente dalla ubicazione geografica:

- Zona A: comuni che presentano un numero di gradi giorno non superiore a 600;
- **Zona B**: comuni che presentano un numero di gradi giorno maggiore di 600 e non superiore a 900;
- Zona C: comuni che presentano un numero di gradi giorno maggiore di 900 e non superiore a 1.400;
- **Zona D**: comuni che presentano un numero di gradi giorno maggiore di 1.400 e non superiore a 2.100;
- Zona E: comuni che presentano un numero di gradi giorno maggiore di 2.100 e non superiore a 3.000;
- **Zona F**: comuni che presentano un numero di gradi giorno maggiore di 3.000.

Per "gradi - giorno" di una località, si intende la somma, estesa a tutti i giorni di un periodo annuale convenzionale di riscaldamento, delle sole differenze positive giornaliere tra la temperatura dell'ambiente, convenzionalmente fissata a $20\,^{\circ}C$, e la temperatura media esterna giornaliera; l'unità di misura utilizzata è il grado giorno (GG).

Il comune di Beinasco, con 2591 GG, si colloca in zona climatica "E".

Per la progettazione e la verifica delle prestazioni energetiche e termoigrometriche degli edifici, inclusi gli impianti tecnici per la climatizzazione estiva e invernale ad essi asserviti, sono necessari un insieme di dati climatici ricavabili attraverso la serie delle norme **UNI 10349:2016**. Di seguito sono riportati i più importanti:

Caratteristiche geografiche

Località	Beinasco
Provincia	Torino
Altitudine s.l.m.	265 m
Latitudine nord	45° 1′
Longitudine est	7° 35′
Gradi giorno DPR 412/93	2591
Zona climatica	E

Località di riferimento

Per dati invernali	Torino
Per dati estivi	Torino

Stazioni di rilevazione

Per la temperatura	TO - Bauducchi				
Per l'irradiazione	TO - Bauducchi				
Per il vento	TO - Bauducchi				

Caratteristiche del vento

Regione di vento	А
Direzione prevalente	Nord-Est
Distanza dal mare	> 40 km
Velocità media del vento	1,4 m/s
Velocità massima del vento	2,8 m/s

Dati invernali

Temperatura esterna di progetto	-8,1 °C
Stagione di riscaldamento convenzionale	dal 15 ottobre al 15 aprile

Dati estivi

Temperatura esterna bulbo asciutto	31 °C
Temperatura esterna bulbo umido	22,7 ℃
Umidità relativa	50%
Escursione termica giornaliera	11 ℃

Temperature esterne medie mensili

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	1,1	3	8,2	11,8	17,9	22	23,5	22,5	19	12,2	6,7	2,5

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,7	2,7	3,6	5,1	7,8	9,7	9,6	6,9	4,5	3	1,9	1,4
Nord-Est	MJ/m²	1,8	3,3	5,3	7,9	10,5	12,5	13	10,3	6,9	4	2,1	1,5
Est	MJ/m²	3,7	5,8	8,5	11,1	12,9	14,7	15,6	13,6	10,3	6,7	3,6	3,2
Sud-Est	MJ/m²	6,3	8,5	10,6	11,7	12	12,8	13,9	13,5	11,9	9	5,6	5,8
Sud	MJ/m²	8	10,1	11,2	10,5	9,9	10,1	11	11,5	11,6	10,2	6,9	7,5
Sud-Ovest	MJ/m²	6,3	8,5	10,6	11,7	12	12,8	13,9	13,5	11,9	9	5,6	5,8
Ovest	MJ/m²	3,7	5,8	8,5	11,1	12,9	14,7	15,6	13,6	10,3	6,7	3,6	3,2
Nord-Ovest	MJ/m²	1,8	3,3	5,3	7,9	10,5	12,5	13	10,3	6,9	4	2,1	1,5
Orizz. Diffusa	MJ/m²	2,4	3,8	4,9	6,1	8,3	9,1	8,8	7,6	6	4,3	2,8	2
Orizz. Diretta	MJ/m²	2,2	3,9	6,8	9,9	11,4	13,7	15,2	12,6	8,6	4,7	2	1,9

Irradianza sul piano orizzontale nel mese di massima insolazione: 278 W/m²

2.2 Componenti involucro

A seguito di un rilievo in sito è stato possibile caratterizzare l'involucro dell'edificio allo stato di fatto.

2.2.1 Componenti opache

Per la caratterizzazione delle componenti opache si è utilizzata la norma **UNI EN ISO 6946:2018**, che riporta la procedura per il calcolo della trasmittanza e della resistenza termica degli elementi per l'edilizia, con l'esclusione di porte, finestre (e altre parti vetrate), le facciate continue, i componenti che implicano uno scambio termico con il terreno e i componenti in cui è prevista la circolazione dell'aria.

La trasmittanza termica è la quantità di calore che passa da un ambiente riscaldato ad un ambiente freddo, attraverso una data superficie. Rappresenta un parametro fondamentale, perché permette di capire quanto il materiale che si sta utilizzando sia in grado di isolare realmente l'edificio limitando i fenomeni di dispersione.

Il calcolo consiste nella:

- determinazione della resistenza termica per ognuno degli strati termicamente omogenei che costituiscono il componente;
- somma di queste singole resistenze termiche per determinare la resistenza termica totale del componente, includendo l'effetto delle resistenze superficiali;
- termine di correzione fornito nell'appendice F della norma.

Quindi, per un elemento di costruzione a più strati, si ha che la trasmittanza è pari a:

$$U = \frac{1}{R_{si} + \sum_{i=1}^{n} \frac{s_i}{\lambda_i} + R_{si}}$$

dove:

- $U[W/m^2K]$: trasmittanza termica dell'elemento;
- s_i [m]: spessore dell'i-esimo strato;
- $\lambda_i [W/mK]$: conducibilità termica dell'i-esimo strato;
- R_{si} [m^2K/W]: resistenza termica superficiale interna;

• R_{se} [m^2K/W]: resistenza termica superficiale esterna.

La trasmittanza termica ottenuta viene corretta sommando i seguenti termini:

$$U_c = U + \Delta U_g + \Delta U_f + \Delta U_r$$

dove:

• ΔU_g : correzione per i vuoti d'aria;

• ΔU_f : correzione per i fissaggi meccanici;

• ΔU_r : correzione per i tetti rovesci.

Il software di modellazione permette di ricavare in automatico tali valori una volta specificata la composizione della stratigrafia. Oltre alle caratteristiche termiche, è in grado di fornire anche quelle igrometriche, importanti per la verifica del rischio di condensa superficiale e interstiziale. Di seguito sono riportate in dettaglio alcune delle stratigrafie relative ai componenti opachi utilizzati.

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Descrizione della struttura: Muro perimetrale piano primo

Trasmittanza termica	1,021	W/m ² K
Spessore	450	mm
Temperatura esterna (calcolo potenza invernale)	-8,1	°C
Permeanza	116,95 9	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	162	kg/m²
Massa superficiale (senza intonaci)	120	kg/m²
Trasmittanza periodica	0,639	W/m²K
Fattore attenuazione	0,626	-
Sfasamento onda termica	-6,2	h

Codice: M10

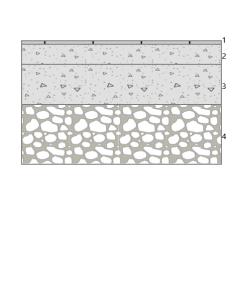
Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	1	1	-
1	Intonaco di calce e gesso	15,00	0,7000	0,021	1400	1,00	10
2	Muratura in laterizio pareti esterne (um. 1.5%)	80,00	0,3600	0,222	600	1,00	7
3	Intercapedine non ventilata Av<500 mm²/m	220,00	1,2222	0,180	-	-	-
4	Muratura in laterizio pareti esterne (um. 1.5%)	120,00	0,3600	0,333	600	1,00	7
5	Intonaco di calce e gesso	15,00	0,7000	0,021	1400	1,00	10
-	Resistenza superficiale esterna	-	-	0,071	-	-	-

Descrizione della struttura: Porta ingresso

Trasmittanza termica	1,931	W/m ² K
Spessore	30	mm
Temperatura esterna (calcolo potenza invernale)	-8,1	°C
Permeanza	15,987	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	9	kg/m²
Massa superficiale (senza intonaci)	9	kg/m²
Trasmittanza periodica	1,926	W/m²K
Fattore attenuazione	0,997	-
Sfasamento onda termica	-0,4	h

Stratigrafia:

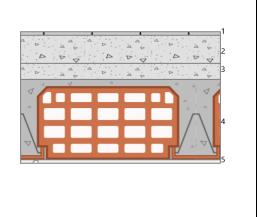

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	1
1	Legno di abete flusso perpend. alle fibre	10,00	0,1200	0,083	450	1,60	625
2	Intercapedine non ventilata Av<500 mm²/m	10,00	0,0667	0,150	-	-	-
3	Legno di abete flusso perpend. alle fibre	10,00	0,1200	0,083	450	1,60	625
-	Resistenza superficiale esterna	-	-	0,071	-	-	-

Codice: M24

Descrizione della struttura: Pavimento piano terra

Codice: P1

Trasmittanza termica	2,248	W/m²K
Trasmittanza controterra	0,468	W/m²K
Spessore	310	mm
Temperatura esterna (calcolo potenza invernale)	-8,1	°C
Permeanza	0,002	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	608	kg/m²
Massa superficiale (senza intonaci)	608	kg/m²
Trasmittanza periodica	0,619	W/m²K
Fattore attenuazione	1,324	-
Sfasamento onda termica	-8,4	h


Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	10,00	1,3000	0,008	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,9000	0,056	1800	0,88	30
3	C.l.s. di sabbia e ghiaia (pareti esterne)	100,00	2,1500	0,047	2400	1,00	96
4	Ghiaia grossa senza argilla (um. 5%)	150,00	1,2000	0,125	1700	1,00	5
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

<u>Descrizione della struttura:</u> Pavimento verso piano terra (solaio interpiano)

Codice: P2

Trasmittanza termica	1,167	W/m²K
Spessore	330	mm
Permeanza	0,002	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	545	kg/m²
Massa superficiale (senza intonaci)	531	kg/m²
Trasmittanza periodica	0,171	W/m²K
Fattore attenuazione	0,146	-

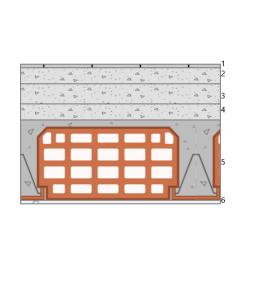
Sfasamento onda termica	-11,7	h	

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	10,00	1,3000	0,008	2300	0,84	9999999
2	Sottofondo di cemento magro	70,00	0,9000	0,078	1800	0,88	30
3	C.l.s. armato (1% acciaio)	40,00	2,3000	0,017	2300	1,00	130
4	Soletta in laterizio	200,00	0,5000	0,400	1450	0,84	7
5	Intonaco di calce e gesso	10,00	0,7000	0,014	1400	1,00	10
-	Resistenza superficiale esterna	-	-	0,170	-	-	-

Descrizione della struttura: Copertura

Trasmittanza termica Spessore Temperatura esterna	1,555	W/m²K mm	
(calcolo potenza invernale)	-8,1	°C	
Permeanza	9,130	10 ⁻¹² kg/sm ² Pa	
Massa superficiale (con intonaci)	56	kg/m²	3
Massa superficiale (senza intonaci)	56	kg/m²	4
Trasmittanza periodica	1,504	W/m ² K	
Fattore attenuazione	0,967	-	
Sfasamento onda termica	-1,5	h	


Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,071	-	-	-
1	Copertura in tegole di argilla	20,00	0,9900	0,020	2000	0,84	1
2	Legno di abete flusso perpend. alle fibre	20,00	0,1200	0,167	450	1,60	625
3	Intercapedine non ventilata Av<500 mm²/m	140,00	0,8750	0,160	-	-	-
4	Legno di abete flusso perpend. alle fibre	15,00	0,1200	0,125	450	1,60	625
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Codice: S3

Descrizione della struttura: Soffitto verso terrazzo

Trasmittanza termica	1,456	W/m²K
Spessore	350	mm
Temperatura esterna (calcolo potenza invernale)	-8,1	°C
Permeanza	1,818	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	612	kg/m²
Massa superficiale (senza intonaci)	598	kg/m²
Trasmittanza periodica	0,317	W/m²K
Fattore attenuazione	0,218	-
Sfasamento onda termica	-11,2	h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,071	-	1	-
1	Piastrelle in granito	10,00	4,1000	0,002	3000	1,00	10000
2	Sottofondo di cemento magro	40,00	0,9000	0,044	1800	0,88	30
3	Massetto ripartitore in calcestruzzo con rete	50,00	1,4900	0,034	2200	0,88	70
4	C.l.s. di sabbia e ghiaia (pareti interne)	40,00	1,9100	0,021	2400	1,00	96
5	Soletta in laterizio	200,00	0,5000	0,400	1450	0,84	7
6	Intonaco di calce e gesso	10,00	0,7000	0,014	1400	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

2.2.2 Componenti finestrati

Per determinare la trasmittanza termica di finestre, porte (costituite da vetrate e/o pannelli opachi) e chiusure oscuranti si ricorre alla **UNI EN ISO 10077-1:2018**.

La trasmittanza termica di un serramento rappresenta la media pesata tra la trasmittanza termica del telaio e quella della vetrata, più un contributo aggiuntivo, la trasmittanza termica lineare Ψ_g , dovuto all'interazione tra i due componenti e alla presenza del distanziatore, applicato lungo il perimetro visibile dalla vetrata.

Le variabili che influenzano il calcolo della trasmittanza termica sono quindi:

- la tipologia di vetro;
- la tipologia di telaio;
- la tipologia di un eventuale distanziatore.

Per il calcolo si procede combinando in parallelo la trasmittanza degli elementi che costituiscono la chiusura, pesandoli rispetto all'area e aggiungendo a questo contributo l'effetto del ponte termico determinato dall'interfaccia vetro-telaio e localizzato in corrispondenza del distanziatore. La formula è la seguente:

$$U_W = \frac{A_g U_g + A_f U_f + L_g \Psi_g}{A_g + A_f}$$

dove:

• $A_g[m^2]$: area del vetro

• $U_q[W/m^2K]$: trasmittanza del vetro

• $A_f[m^2]$: area del telaio

• $U_f [W/m^2 K]$: trasmittanza del telaio

• L_g [m]: lunghezza del perimetro del vetro

• Ψ_{q} [W/mK]: trasmittanza termica lineare del distanziatore

L'eventuale presenza di una chiusura oscurante introduce una resistenza termica aggiuntiva ΔR , derivante sia dallo strato d'aria racchiuso tra essa e la finestra, sia dalla chiusura oscurante stessa. La trasmittanza corretta è data da:

$$U_{WS} = \frac{1}{\frac{1}{U_W} + \Delta R}$$

Allo stato di fatto si è rilevata la presenza di infissi dotati di telaio in legno duro (di circa 60 mm di spessore) e vetro singolo semplice. Inoltre, sono presenti delle chiusure oscuranti esterne avvolgibili in legno, senza riempimento in schiuma e dotate di un elevata permeabilità all'aria. Non sono presenti tendaggi.

Dando in input a Edilclima i dati appena citati, assieme alle dimensioni delle varie finestre, si ottengono i valori di trasmittanza di ogni finestra.

Di seguito qualche esempio:

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: PF piano primo 150x240

Codice:	W7
---------	----

Caratteristiche del serramento							
Tipologia di serramento	Tipologia di serramento Singolo						
Classe di permeabilità	Senza clas	sificazione					
Trasmittanza termica	U _w	4,294	W/m ² K				
Trasmittanza solo vetro	Ug	4,875	W/m ² K				
Dati per il calcolo degli apporti sol	lari e delle s	chermature	<u> </u>				
Emissività	3	0,837	-				
Fattore di trasmittanza solare	g gl,n	0,850	-				
Fattore tendaggi (invernale)	$f_{c inv}$	1,00	-				
Fattore tendaggi (estivo)	$f_{c \text{ est}}$	1,00	-				
Fattore trasmissione solare totale	g gl+sh	0,839	-				
Caratteristiche delle chiusure osci	<u>uranti</u>						
Resistenza termica chiusure		0,12	m²K/W				
f shut		0,6	-				
Trasmittanza serramento *	$U_{\text{w,e}}$	3,418	W/m ² K				
* Valore calcolato considerando l'effetto della chiusura oscurante (UNI EN ISO 10077)							

Dimensioni e caratteristiche del serramento

Larghezza	150,0	cm
Altezza H	240,0	cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U _f	2,00	W/m ² K
K distanziale	K _d	0,000	W/mK
Area totale	A _w	3,600	m ²
Area vetro	Ag	2,873	m ²
Area telaio	Af	0,727	m ²
Fattore di forma	F _f	0,80	-
Perimetro vetro	Lg	11,640	m
Perimetro telaio	L _f	7,800	m

Stratigrafia del pacchetto vetrato

Descrizione strato	s	λ	R
Resistenza superficiale interna	-	=	0,130
Primo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	=	0,071

Descrizione della finestra: F piano primo 100x150

<u>Dimensioni e caratteristiche del serramento</u>

Larghezza	100,0	cm
Altezza H	150,0	cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U _f	2,00	W/m ² K
K distanziale	K_{d}	0,000	W/mK
Area totale	A_{w}	1,500	m ²
Area vetro	Ag	1,049	m ²
Area telaio	A_f	0,451	m²
Fattore di forma	F_f	0,70	-

Codice: W8

Perimetro vetro	Lg	7,040	m
Perimetro telaio	L_f	5,000	m

Stratigrafia del pacchetto vetrato

Descrizione strato	s	λ	R
Resistenza superficiale interna	ı	i.	0,130
Primo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,071

Legenda simboli

S	3	Spessore	mm
λ	1	Conduttività termica	W/mK
F	₹	Resistenza termica	m²K/W

2.3 Ponti termici

Il ponte termico è una zona all'interno di una struttura edilizia in cui si verificano discontinuità nei materiali o variazioni nella forma che producono un impatto diretto sulla trasmissione del calore. Questi fenomeni causano un aumento nei flussi termici e una variazione delle temperature superficiali interne, con conseguente incremento della dispersione di calore attraverso queste specifiche zone. La loro presenza può comportare anche la formazione di condensa.

I ponti termici possono essere suddivisi in due categorie principali:

- Ponte termico di struttura: è legato alla presenza di elementi eterogenei all'interno della struttura dell'edificio, con diverse capacità di conduzione termica. In sostanza, la transizione da un materiale all'altro o la presenza di elementi strutturali eterogenei crea discontinuità nella resistenza termica dell'involucro edilizio.
- Ponte termico di forma (o geometrico): è legato a variazioni nella forma dei materiali utilizzati nell'involucro edilizio. Le variazioni di forma, come spigoli, restrizioni o discontinuità nella struttura dell'edificio, possono causare una concentrazione delle linee di flusso termico, portando a un aumento dei flussi termici attraverso queste zone. Questi tipi di ponti termici di forma sono spesso riscontrati in diverse parti dell'edificio, tra cui gli angoli tra le pareti, le giunzioni tra pareti e solai, le transizioni tra pareti e infissi, e in corrispondenza di interruzioni nello strato di isolamento termico.

La norma **UNI TS 11300-1:2014** fornisce le linee guida per il calcolo dei ponti termici e stabilisce le regole specifiche per garantire risultati affidabili. Sono previste due possibili modalità di calcolo dei ponti termici:

- calcolo numerico (analisi agli elementi finiti) in accordo alla UNI EN ISO 10211:2018;
- calcolo con atlanti di ponti termici conformi alla UNI EN ISO 14683:2018.

Nel seguente elaborato si è effettuata la caratterizzazione dei ponti termici tramite la **UNI EN ISO 14683:2018**. Questo metodo semplificato coinvolge l'uso di schemi predefiniti che rappresentano tipologie e combinazioni comuni di ponti termici. Gli atlanti consentono di determinare la trasmittanza termica lineare in funzione di parametri specifici come lunghezza, spessore e conducibilità termica.

Di seguito sono riportati alcuni esempi di calcolo tramite l'utilizzo di Edilclima.

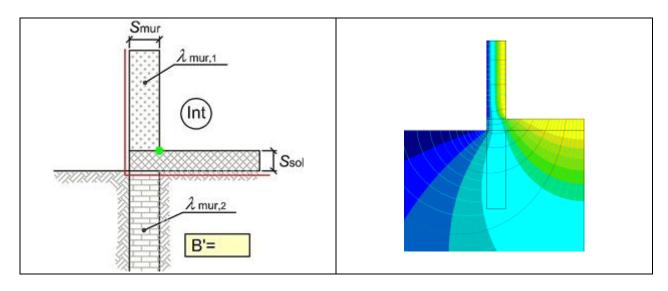
CARATTERISTICHE TERMICHE DEI PONTI TERMICI

<u>Descrizione del ponte termico:</u> W - Parete - Telaio

Tipologia	W - Parete -	W - Parete - Telaio			
Trasmittanza termica lineica di calcolo	0,188	W/mK			
Trasmittanza termica lineica di riferimento	0,188	W/mK			
Fattore di temperature f _{rsi}	0,579	-			
Riferimento	UNI EN ISO 14683 e UNI EN ISO 10211				

Note

W10 - Giunto parete con isolamento ripartito — telaio posto in mezzeria Trasmittanza termica lineica di riferimento (ϕ e) = 0,188 W/mK.

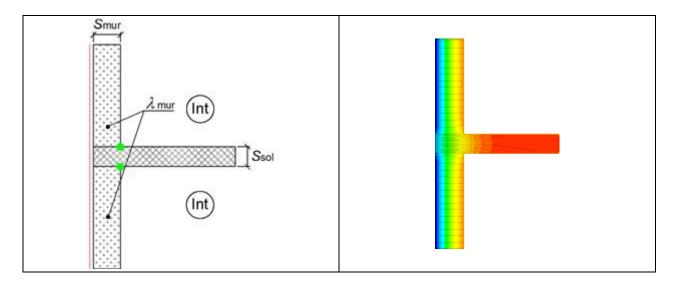

<u>Caratteristiche</u>				
Trasmittanza termica telaio	Uf	2,000	W/m²K	
Spessore muro	Smur	460,0	mm	
Conduttività termica muro	λmur	0,841	W/mK	

<u>Descrizione del ponte termico:</u> GF - Parete - Solaio controterra

Codice: Z2

Codice: Z1

Tipologi	a	GF - Parete - Solaio controterra		
Trasmit	tanza termica lineica di calcolo	0,013 W/mK		
Trasmit riferime	tanza termica lineica di ento	0,026	W/mK	
Fattore	di temperature f _{rsi}	0,592 -		
Riferime	ento	UNI EN ISO 14683 e UNI EN ISO 10211		
Note	GF4b - Giunto parete con isolamento ripartito - solaio controterra non isolato Trasmittanza termica lineica di riferimento (φ e) = 0,026 W/mK.			

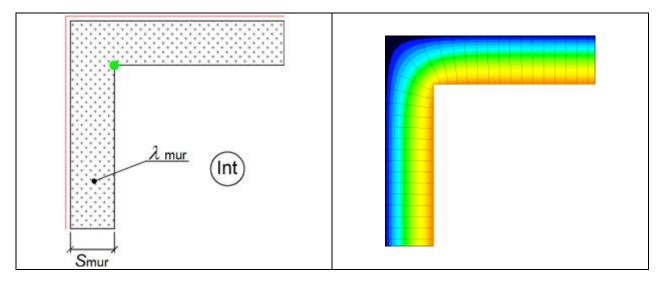


Caratteristiche				
Dimensione caratteristica del pavimento	B'	7,47	m	
Spessore solaio	Ssol	310,0	mm	
Spessore muro	Smur	460,0	mm	
Conduttività termica muro 1	λmur,1	0,841	W/mK	

<u>Descrizione del ponte termico:</u> *IF - Parete - Solaio interpiano*

Codice: Z3

Tipologia	3	IF - Parete - Solaio interpiano		
Trasmitt	anza termica lineica di calcolo	0,086 W/mK		
Trasmitt riferime	anza termica lineica di nto	0,173	W/mK	
Fattore o	di temperature f _{rsi}	0,708 -		
Riferime	nto	UNI EN ISO 14683 e UNI EN ISO 10211		
Note	IF4 - Giunto parete con isolamento ripartito — solaio interpiano Trasmittanza termica lineica di riferimento (φe) = 0,173 W/mK.			

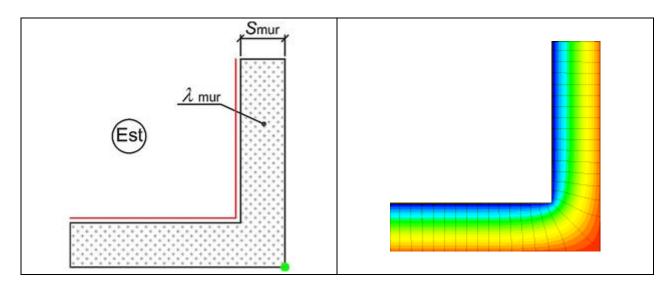


<u>Caratteristiche</u>				
Spessore solaio	Ssol	195,0	mm	
Spessore muro	Smur	460,0	mm	
Conduttività termica muro	λmur	0,841	W/mK	

<u>Descrizione del ponte termico:</u> C - Angolo tra pareti sporgente

Codice: Z7

Tipolog	ia	C - Angolo tra pareti		
Trasmit	tanza termica lineica di calcolo	-0,508	W/mK	
Trasmit riferime	tanza termica lineica di ento	-1,016	W/mK	
Fattore	di temperature f _{rsi}	0,557 -		
Riferim	ento	UNI EN ISO 14683 e UNI EN ISO 10211		
Note	•	due pareti con isolamento ripartito (sporgente) rmica lineica di riferimento (φe) = -1,016 W/mK.		



<u>Caratteristiche</u>			
Spessore muro	Smur	460,0	mm
Conduttività termica muro	λmur	0,841	W/mK

Tipologia	C - Angolo t	C - Angolo tra pareti		
Trasmittanza termica lineica di calcolo	0,193	W/mK		
Trasmittanza termica lineica di riferimento	0,385	W/mK		
Fattore di temperature f _{rsi}	0,712	-		
Riferimento	UNI EN ISO 14683 e UNI EN ISO 10211			

Note

C8 - Giunto tre due pareti con isolamento ripartito (rientrante) Trasmittanza termica lineica di riferimento (φ e) = 0,385 W/mK.

<u>Caratteristiche</u>			
Spessore muro	Smur	460,0	mm
Conduttività termica muro	λmur	0,841	W/mK

Legenda simboli

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

2.4 Impianti

Prima dell'intervento l'edificio presenta esclusivamente impianti adibiti al solo riscaldamento e produzione di acqua calda sanitaria.

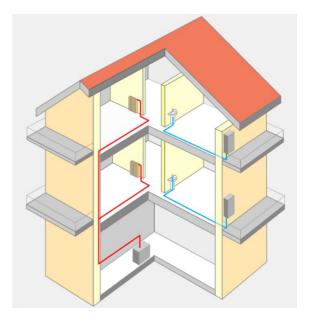


Figura 2.2 Schema impianto ante operam

2.4.1 Riscaldamento

In particolare, l'impianto di riscaldamento è di tipo centralizzato, cioè, è presente un unico generatore a servizio delle tre unità abitative.

Il generatore in questione è una caldaia *Bongioanni BONGAS/M 4*. Si tratta di una caldaia tradizionale alimentata a metano e fornisce una potenza utile nominale $\Phi_{gn,Pn}=29,66~kW$ ed un rendimento utile a potenza nominale pari a $\eta_{gn,Pn}=86,70~\%$.

Figura 2.3 Caldaia Bongioanni BONGAS/M 4

La distribuzione avviene tramite montanti non isolate correnti in traccia nel lato interno delle pareti esterne.

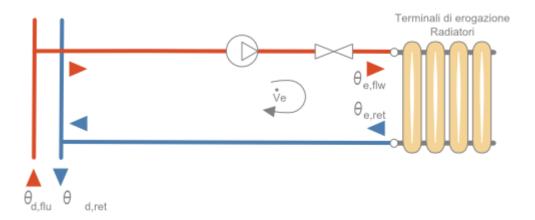


Figura 2.4 Schema distribuzione

I terminali di emissione consistono in dei radiatori su parete esterna non isolata all'interno dei quali l'acqua giunge ad una temperatura di mandata di progetto di $80\,^{\circ}C$ ed un ΔT di progetto lato acqua di $20\,^{\circ}C$.

2.4.2 Produzione di acqua calda sanitaria

La produzione di acqua calda sanitaria avviene per mezzo di impianti separati. Si tratta di impianti autonomi ognuno alimentato da un bollitore elettrico ad accumulo. I bollitori hanno una potenza utile nominale $\Phi_{qn,Pn}=2~kW$ ed erogano acqua ad una temperatura pari a $40~^{\circ}C$.

Figura 2.5 Bollitore elettrico

2.5 Prestazione energetica globale dell'edificio

Prima di effettuare un intervento è fondamentale conoscere il livello di prestazione energetica esistente dell'edificio tramite l'attestato di prestazione energetica.

2.5.1 Attestato di prestazione energetica

L'attestato di prestazione energetica (A.P.E.) è un documento redatto da un tecnico abilitato che consente di avere tutte le informazioni su come è stato costruito un edificio sotto il profilo dell'isolamento termico e del consumo energetico.

L'APE ha un formato standard valido su tutto il territorio nazionale ed è strutturato per fornire informazioni semplici e chiare sull'efficienza, le prestazioni e il fabbisogno energetico dell'edificio e degli impianti termici.

Un Attestato di Prestazione Energetica redatto correttamente riporta le seguenti informazioni:

- La **prestazione energetica globale** sia in termini di energia primaria totale che di energia primaria non rinnovabile, attraverso i rispettivi indici;
- La classe energetica determinata attraverso l'indice di prestazione energetica globale, espresso in energia primaria non rinnovabile;
- La qualità energetica del fabbricato (indici di prestazione termica utile per la climatizzazione invernale ed area solare equivalente e trasmittanza termica periodica);
- I valori di riferimento, quali i requisiti minimi di efficienza energetica;
- Le emissioni di anidride carbonica;
- Gli indici di prestazione energetica rinnovabile e non rinnovabile e l'energia elettrica esportata;
- La quantità annua di energia consumata per vettore energetico;
- L'elenco dei servizi energetici con le relative efficienze;
- Le raccomandazioni per il **miglioramento dell'efficienza energetica** con le proposte degli interventi più significativi ed economicamente convenienti.

Per fare un APE occorre dapprima raccogliere la documentazione richiesta (visura catastale, planimetria, libretto d'impianto, ecc.), dopo di che il tecnico certificatore è tenuto ad effettuare un sopralluogo per raccogliere le informazioni necessarie alla determinazione degli indici di prestazione energetica (stratigrafie, caratteristiche degli elementi costruttivi e degli impianti). Solo a questo punto, il tecnico può avvalersi di uno dei software certificati dal Comitato Termotecnico Italiano (CTI) per effettuare i calcoli necessari alla determinazione dell'indice di prestazione energetica globale e all'individuazione della classe energetica dell'edificio senza trascurare di indicare anche specifici interventi migliorativi.

Per l'elaborazione delle certificazioni energetiche è stato utilizzato il software "Edilclima EC700". Gli APE ante operam e post operam, con le relative classi energetiche, sono presentati rispettivamente al capitolo 2.5.4 e 3.3 di questo elaborato.

2.5.2 Metodo di calcolo

Il **D. Interm. 26-06-15** definisce le linee guida nazionali per l'attestazione della prestazione energetica degli edifici. Inoltre, specifica che nell'ambito delle procedure di calcolo dei parametri, degli indici di prestazione energetica e dei rendimenti si procede secondo i metodi di calcolo contenuti all'interno della serie di norme **UNI/TS 11300**.

In particolare, si ha che la classe energetica (da **A4** a **G**) è determinata sulla base dell'indice di prestazione energetica globale non rinnovabile dell'edificio oggetto dell'attestazione $EP_{gl,nren}$ e dell'indice di prestazione energetica globale non rinnovabile dell'edificio di riferimento $Ep_{gl,nren,Lst(2019/21)}$. Più è bassa la lettera associata all'immobile, maggiore è il suo consumo energetico.

L'edificio di riferimento è un edificio avente la stessa geometria dell'edificio reale oggetto di analisi (sagoma, volumi, superficie calpestabile, superfici degli elementi costruttivi e dei componenti), orientamento, ubicazione territoriale, destinazione d'uso e situazione al contorno, ma con caratteristiche termiche e parametri energetici predeterminati.

	Classe A4	$\leq 0.40 \cdot EP_{gl,nren,rif,standard(2019/21)}$
$0.40 \cdot EP_{gl,nren,rif,standard(2019/21)} <$	Classe A3	$\leq 0.60 \cdot EP_{gl,nren,rif,standard(2019/21)}$
$0.60 \cdot EP_{gl,nren,rif,standard(2019/21)} <$	Classe A2	$\leq 0.80 \cdot EP_{gl,nren,rif,standard(2019/21)}$
$0.80 \cdot EP_{gl,nren,rif,standard(2019/21)} <$	Classe A1	$\leq 1,00 \cdot EP_{gl,nren,rif,standard(2019/21)}$
$1,00 \cdot EP_{gl,nren,rif,standard(2019/21)} <$	Classe B	$\leq 1,20 \cdot EP_{gl,nren,rif,standard(2019/21)}$
$1,20 \cdot EP_{gl,nren,rif,standard(2019/21)} <$	Classe C	$\leq 1,50 \cdot EP_{gl,nren,rif,standard(2019/21)}$
$1,50 \cdot EP_{gl,nren,rif,standard(2019/21)} <$	Classe D	$\leq 2,00 \cdot EP_{gl,nren,rif,standard(2019/21)}$
$2,00 \cdot EP_{gl,nren,rif,standard(2019/21)} <$	Classe E	$\leq 2,60 \cdot EP_{gl,nren,rif,standard(2019/21)}$
$2,60 \cdot EP_{gl,nren,rif,standard(2019/21)} <$	Classe F	$\leq 3,50 \cdot EP_{gl,nren,rif,standard(2019/21)}$
	Classe G	$> 3,50 \cdot EP_{gl,nren,rif,standard(2019/21)}$

L'indice di prestazione energetica globale non rinnovabile dell'edificio $EP_{gl,nren}$ è espresso per unità di superficie, ed è pari a:

$$EP_{ql,nren} = E_{P,ql,nren}/A \quad [kWh/m^2]$$

dove:

- A: area della superficie utile climatizzata dell'edificio;
- $E_{P,al,nren}$: fabbisogno annuale globale di energia primaria non rinnovabile dell'edificio.

A sua volta $E_{P,gl,nren}$ è dato dalla somma dei fabbisogni annuali dei singoli servizi:

$$E_{P,gl,nren} = \sum_{k} (E_{P,k,nren}) = E_{P,H,nren} + E_{P,C,nren} + E_{P,W,nren} + E_{P,V,nren} + E_{P,L,nren} + E_{P,T,nren} [kWh]$$

dove:

- $E_{P.H.nren}$: fabbisogno per la climatizzazione invernale;
- $E_{P.C.nren}$: fabbisogno per la climatizzazione estiva;
- $E_{P,W,nren}$: fabbisogno per la produzione di acqua calda sanitaria;
- $E_{P.V.nren}$: fabbisogno per la ventilazione;
- $E_{P,L,nren}$: fabbisogno per l'illuminazione;
- $E_{P,T,nren}$: fabbisogno per il trasporto di persone.

Il fabbisogno annuale di energia primaria non rinnovabile del servizio k-esimo dell'edificio è dato dalla somma dei fabbisogni mensili:

$$E_{P,k,nren} = \sum_{m} (E_{P,k,nren}) [kWh]$$

Il fabbisogno mensile del servizio k-esimo è dato da:

$$E_{P,k,nren,m} = \sum_{i} (E_{del,k,i} \cdot f_{P,nren,del,i}) - \sum_{i} (E_{exp,k,i} \cdot f_{P,nren,exp,i}) \quad [kWh]$$

dove:

- $f_{P,nren,del,i}$: fattore di conversione in energia primaria non rinnovabile del vettore energetico i-esimo consegnato;
- $f_{P,nren,exp,i}$: fattore di conversione in energia primaria non rinnovabile del vettore energetico iesimo esportato:
- $E_{del,k,i}$: energia mensile del vettore energetico i-esimo consegnato;
- $E_{exp,k,i}$: energia mensile del vettore energetico i-esimo esportato.

Il fattore $f_{P,nren,del}$ è fornito da legislazione nazionale, mentre il fattore $f_{P,nren,exp}$ si calcola tramite la seguente formula:

$$f_{P,nren,exp} = (E \cdot f_{P,nren,del} \cdot a_w)/W$$

dove:

- E: energia consegnata in ingresso al cogeneratore in un anno;
- a_w : fattore di allocazione dell'energia prodotta, definito dalla legislazione nazionale;
- W: energia elettrica prodotta dal cogeneratore in un anno.

Invece, l'energia $E_{del,k,i}$ è data da:

$$E_{del,k,i} = \sum_{j} (Q_{k,gn,out,j}/Q_{gn,out,j}) \cdot E_{gn,in,i,j} [kWh]$$

dove:

- $Q_{k,qn,out,j}$: energia termica mensile utile fornita dal generatore j-esimo per il servizio k-esimo;
- $Q_{an,out,i}$: energia termica utile mensile complessivamente fornita dal generatore j-esimo;
- $E_{qn,in,i,j}$: energia richiesta mensile dal generatore j-esimo al vettore energetico i-esimo.

Infine, l'energia $E_{exp,k,i}$ si ottiene come:

$$E_{exp,k,i} = (E_{del,k,i}/E_{del,i}) \cdot E_{exp,i} [kWh]$$

dove:

- $E_{del,k,i}$: energia mensile del vettore energetico consegnato i-esimo utilizzata dal servizio k;
- $E_{del.i}$: energia mensile del vettore energetico consegnato i-esimo;
- $E_{exp,i}$: energia mensile del vettore energetico esportato i-esimo.

Nel seguente prospetto sono indicati i fabbisogni di energia per servizio energetico e i riferimenti per il calcolo secondo le UNI/TS 11300. Al fabbisogno di energia utile del servizio energetico (colonna 1), si devono aggiungere le perdite di impianto (colonna 2), salvo le perdite di generazione.

Servizio energetico	1 – Fabbisogno di energia	2 – Perdite impianto (al	3 – Fabbisogno di energia	4 – Fabbisogno di energia		
	utile ideale (energy need)	netto dei recuperi)	termica utile in uscita	elettrica		
			della generazione ^{a)}			
Climatizzazione invernale	$Q_{H,nd}$	$Q_{H,Is,ngn}$	$Q_{H,gn,out}$	$W_{H,aux,el,ngn}$		
	da UNI/TS 11300-1	da UNI/TS 11300-2	da UNI/TS 11300-2	da UNI/TS 11300-2		
Climatizzazione estiva	$Q_{C,nd}$	$Q_{c,Is,ngn}^{b)}$	$Q_{C,gn,out}{}^{c)}$	$W_{C,aux,el,ngn}^{(d)}$		
	da UNI/TS 11300-1	da UNI/TS 11300-3	da UNI/TS 11300-3	da UNI/TS 11300-3		
Acqua Calda Sanitaria	$Q_{W,nd}^{$	$Q_{W,Is,ngn}^{f)}$	$Q_{W,gn,out}$	$W_{W,aux,el,ngn}$		
	da UNI/TS 11300-2	da UNI/TS 11300-2	da UNI/TS 11300-2	da UNI/TS 11300-2		
				E_V		
				Fabbisogno elettrico degli		
				apparecchi di		
				movimentazione dell'aria		
Ventilazione	-	-	-	per il rinnovo dell'aria		
				negli ambienti UNI/TS		
				11300-2 Appendice C		
				E_L		
				Fabbisogno elettrico degli		
				apparecchi luminosi per		
				l'illuminazione artificiale		
Illuminazione	-	-	-	degli ambienti UNI/TS		
				11300-2 Appendice D		
				E_T		
				Fabbisogno elettrico degli		
Trasporto di persone	-	-	-	impianti atti a soddisfare		
				tale servizio UNI/TS		
				11300-6		
	rese le perdite dell'eventuale					
b) $Q_{C,Is,ngen}$ si ottiene dalla formula 3 della UNI/TS 11300-3 escludendo il termine $Q_{C,nd,k}$.						

- $Q_{C,gn,out}$ equivale al termine ($Q_{Cr,k,x}+Q_{v,k,x}$) di cui alla formula 1 della UNI/TS 11300-3.
- $\overline{W_{C,aux,el,ngn}}$ equivale alla formula 9 della UNI/TS 11300-3 escludendo gli ausiliari elettrici della generazione.
- $Q_{W,nd}$ equivale al termine $Q_{h,W}$ utilizzato nella UNI/TS 11300-2.
 - Perdite di erogazione, distribuzione e accumulo della UNI/TS 11300-2.

2.5.3 Fabbisogni di energia dell'edificio

Di seguito sono riportati i fabbisogni di energia dell'edificio ottenuti tramite Edilclima. Da notare che gli unici servizi energetici presenti sono quelli legati al riscaldamento e alla produzione di acqua calda sanitaria.

Caratteristiche edificio:

Categoria DPR 412/93	E.1 (1) -	Superficie esterna	687,39	m ²
Superficie utile	275,11 m ²	Volume lordo	1057,22	m^3
Volume netto	769,17 m³	Rapporto S/V	0,65	m^{-1}

FABBISOGNO DI ENERGIA PRIMARIA PER IL SERVIZIO DI RISCALDAMENTO

Mese	gg	Q _{H,gn,in} [kWh]	Q _{H,aux} [kWh]	Q _{H,p,nren} [kWh]	Q _{H,p,tot} [kWh]
gennaio	31	15555	42	16414	16434
febbraio	28	11482	36	12126	12143
marzo	31	6687	33	7086	7102
aprile	15	1787	11	1898	1903

maggio	-	-	-	-	-
giugno	-	-	-	-	-
luglio	-	1	-	-	-
agosto	-	-	-	-	-
settembre	-	-	-	-	-
ottobre	17	2751	15	2918	2925
novembre	30	9848	37	10413	10431
dicembre	31	14474	41	15278	15297
TOTALI	183	62585	216	66135	66236

Legenda simb	<u>Legenda simboli</u>				
gg	Giorni compresi nel periodo di calcolo per riscaldamento				
Q _{H,gn,in}	Energia termica totale in ingresso al sottosistema di generazione per riscaldamento				
Q _{H,aux}	Fabbisogno elettrico totale per riscaldamento				
Q _{H,p,nren}	Fabbisogno di energia primaria non rinnovabile per riscaldamento				
Q _{H,p,tot}	Fabbisogno di energia primaria totale per riscaldamento				

FABBISOGNO DI ENERGIA PRIMARIA PER IL SERVIZIO DI ACQUA CALDA SANITARIA

<u>Unità 1 :</u>

Mese	gg	Q _{w,gn,in} [kWh]	Q _{w,aux} [kWh]	Q _{w,p,nren} [kWh]	Q _{w,p,tot} [kWh]
gennaio	31	141	141	<i>275</i>	341
febbraio	28	127	127	248	308
marzo	31	141	141	275	341
aprile	30	136	136	266	330
maggio	31	141	141	275	341
giugno	30	136	136	266	330
luglio	31	141	141	275	341
agosto	31	141	141	275	341
settembre	30	136	136	266	330
ottobre	31	141	141	275	341
novembre	30	136	136	266	330
dicembre	31	141	141	275	341
TOTALI	365	1659	1659	3236	4016

<u> Unità 2 :</u>

Mese	gg	Q _{w,gn,in} [kWh]	Q _{w,aux} [kWh]	Q _{w,p,nren} [kWh]	Q _{w,p,tot} [kWh]
gennaio	31	226	226	441	547
febbraio	28	204	204	398	494
marzo	31	226	226	441	<i>547</i>
aprile	30	219	219	426	529
maggio	31	226	226	441	547
giugno	30	219	219	426	529
luglio	31	226	226	441	<i>547</i>
agosto	31	226	226	441	<i>547</i>
settembre	30	219	219	426	529
ottobre	31	226	226	441	547
novembre	30	219	219	426	529
dicembre	31	226	226	441	547
TOTALI	365	2661	2661	5189	6440

<u> Unità 3 :</u>

Mese	gg	Q _{W,gn,in} [kWh]	Q _{w,aux} [kWh]	Q _{w,p,nren} [kWh]	Q _{w,p,tot} [kWh]
gennaio	31	208	208	406	503
febbraio	28	188	188	366	455
marzo	31	208	208	406	503
aprile	30	201	201	393	487
maggio	31	208	208	406	503
giugno	30	201	201	393	487
luglio	31	208	208	406	503
agosto	31	208	208	406	503
settembre	30	201	201	393	487
ottobre	31	208	208	406	503
novembre	30	201	201	393	487
dicembre	31	208	208	406	503
TOTALI	365	2449	2449	4776	5927

FABBISOGNI E CONSUMI TOTALI

Edificio intero DPR 412/93 E.1 (1) Superficie utile 275,11 m ²

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	66135	101	66236	240,39	0,37	240,76
Acqua calda sanitaria	13201	3182	16383	47,98	11,57	59,55
TOTALE	79336	3283	82619	288,38	11,93	300,31

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno]	Servizi
Metano	6296	Nm³/anno	13143	Riscaldamento
Energia elettrica	6985	kWhel/an no	3213	Riscaldamento, Acqua calda sanitaria

2.5.4 Classe energetica ante-operam

In base all'indice di prestazione energetica globale non rinnovabile dell'edificio di riferimento $E_{P,gl,nren,Lst(2019/21)}$ si ottengono i seguenti limiti tra le diverse classi energetiche:

	Classe A4	$\leq 34,08 \text{kWh}/m^2$
$34,08 \text{ kWh/}m^2 <$	Classe A3	$\leq 51,12 \text{ kWh}/m^2$
$51,12 \text{ kWh/}m^2 <$	Classe A2	$\leq 68,16 \text{ kWh}/m^2$
$68,16 \text{ kWh/}m^2 <$	Classe A1	$\leq 85,21 \text{ kWh}/m^2$
$85,21 \text{ kWh/}m^2 <$	Classe B	$\leq 102,25 \text{kWh}/m^2$
$102,25 \text{ kWh}/m^2 <$	Classe C	$\leq 127,81 \text{kWh}/m^2$
$127,81 \text{kWh}/m^2 <$	Classe D	$\leq 170,41 \mathrm{kWh}/m^2$
$170,41 \text{kWh}/m^2 <$	Classe E	\leq 221,53 kWh/ m^2
$221,53 \text{ kWh}/m^2 <$	Classe F	\leq 298,22 kWh/ m^2
	Classe G	$> 298,22 \text{ kWh/}m^2$

Dato che l'indice di prestazione energetica globale non rinnovabile dell'edificio oggetto dell'attestazione è pari a $EP_{gl,nren}=288,38~\mathrm{kWh}/m^2$ si ha che la classe energetica ante operam risultante è la "Classe F".

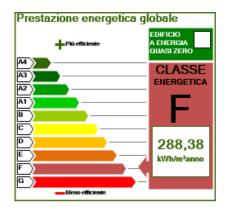


Figura 2.6 Classe energetica ante operam

3 INTERVENTO DI RIQUALIFICAZIONE

Per poter effettuare un intervento di riqualificazione energetica bisogna attenersi a delle normative specifiche. Il **D. Interm. 26-06-15** (o DM requisiti minimi) stabilisce le linee guida e i criteri che devono essere seguiti nel processo di riqualificazione degli edifici. Una delle disposizioni fondamentali è la redazione della relazione energetica, anche conosciuta come "**Relazione ex Legge 10**" per via della sua introduzione in Italia, per l'appunto, con l'ex Legge 10 nel 1991; per poi essere aggiornata nel tempo.

3.1 Relazione ex Legge 10

A differenza dell'APE, che attesta lo stato di fatto circa le condizioni energetiche di un immobile, la relazione ex Legge 10 è un elaborato tecnico-descrittivo di progetto, che fornisce traccia di tutte le verifiche da soddisfare prima di effettuare l'intervento stesso. Infatti, nella redazione occorre rispettare i requisiti minimi prestazionali degli edifici e le prescrizioni specifiche per gli elementi dell'involucro e per gli impianti a servizio.

La sua complessità varia in funzione dell'intervento edilizio cha va a definire, dal grado più articolato di una nuova costruzione fino alla semplice sostituzione del generatore di calore. La relazione è obbligatoria per le seguenti categorie di intervento:

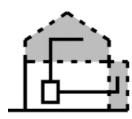
• Nuove costruzioni

Nuova costruzione

Per edificio di nuova costruzione si intende l'edificio il cui titolo abilitativo sia stato richiesto dopo l'entrata in vigore del DM 26/6/15 (ovvero dal 1° ottobre 2015).

Demolizione e ricostruzione

Rientrano in questa categoria gli edifici sottoposti a demolizione e ricostruzione, qualunque sia il titolo abilitativo necessario.

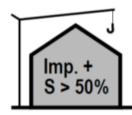


Ampliamento di edifici esistenti con nuovo impianto

Ampliamento di edifici esistenti (dotati di nuovi impianti tecnici) per il quale valga almeno una delle seguenti condizioni:

- o nuovo volume lordo climatizzato > 15% volume lordo climatizzato esistente;
- o nuovo volume lordo climatizzato > 500 m3.

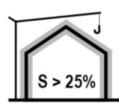
La parte ampliata di fatto è trattata come una porzione di nuova costruzione.

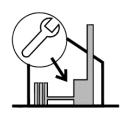


Ampliamento di edifici esistenti con estensione di impianto

Ampliamento di edifici esistenti (collegati all'impianto tecnico esistente) per il quale valga almeno una delle seguenti condizioni:

- o nuovo volume lordo climatizzato > 15% volume lordo climatizzato esistente;
- o nuovo volume lordo climatizzato > 500 m3.


Ristrutturazioni importanti

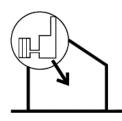


Ristrutturazioni importanti di primo livello

L'intervento prevede contemporaneamente:

- un intervento che interessa l'involucro edilizio con un'incidenza > 50 % della superficie disperdente lorda complessiva dell'edificio;
- o la ristrutturazione dell'impianto termico per il servizio di climatizzazione invernale e/o estiva asservito all'intero edificio.

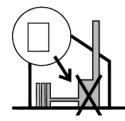
Ristrutturazioni importanti di secondo livello


L'intervento interessa l'involucro edilizio con un'incidenza > 25 % della superficie disperdente lorda complessiva dell'edificio e può interessare l'impianto termico per il servizio di climatizzazione invernale e/o estiva.

• Riqualificazioni energetiche

Riqualificazione energetica dell'involucro

Interventi sull'involucro che coinvolgono una superficie ≤ 25 % della superficie disperdente lorda complessiva dell'edifici.


Nuova installazione di impianto

Gli interventi di nuova installazione di impianto termico asservito all'edificio per i servizi di riscaldamento, di raffrescamento e produzione di ACS.

Ristrutturazione di impianto

Gli interventi di ristrutturazione di impianto termico asservito all'edificio per i servizi di riscaldamento, di raffrescamento e produzione di ACS.

Sostituzione del generatore

Gli interventi di sostituzione del solo generatore e installazione di generatori e/o altri impianti tecnici per il soddisfacimento dei servizi dell'edificio.

3.2 Massimali di spesa

Il Superbonus 110%, presenta dei massimali di spesa assoluti e specifici suddivisi per categorie.

I primi, sono disciplinati dall' **art.119** del **DL 34/2020** "Decreto rilancio" e consistono in importi di spesa lordi, comprensivi di IVA e spese professionali (tecnici e fiscalisti). Di seguito i valori di riferimento:

	Massimale di spesa [€]					
Intervento	Una unità immobiliare Da 2 a 8 unità Da 8 unità in					
	Interventi trair	nanti				
		Massimale	per unità			
Isolamento termico	50000 40000 30000					
Sostituzione dell' impianto						
termico	30000 20000 15000					
Interventi trainati						
Impianto fotovoltaico	2400 per ogni kWp installato fino a 48000					
Sistemi di accumulo	1000 per ogni kWh installato fino a 48000					
Colonnine ricarica	2000 1500 1200					
Sostituzione di finestre e infissi	54545,45					
Installazione	54545,45					
schermature solari						
Installazione collettori	54545,45					
solari	JTJTJ,TJ					
Scaldacqua a pompa di		30000				
calore						

Invece, i massimali specifici sono stati introdotti tramite il **decreto MITE** del **14/02/2022** e sono quei massimali rapportati all'unità di misura al di sotto dei quali la spesa può essere ritenuta congrua. A differenza dei massimali assoluti, vengono considerati al netto di IVA, prestazioni professionali, opere relative alla installazione e manodopera per la messa in opera dei beni.

Tipologia di intervento	Spesa specifica massima ammissibile
Riqualificazione energetica	
Interventi di cui all'articolo 2, comma 1. lettera a), del DM 6 agosto 2020 (C.d. "Requisiti tecnici") - climatiche A, B, C	960 €/m2
Interventi di cui all'articolo 2, comma 1, lettera a), del DM 6 agosto 2020 (C.d. "Requisiti tecnici") - zone climatiche D, E, F	1.200 €/m2
Strutture opache orizzontali: isolamento coperture	
Esterno	276 €/m2
Interno	120 €/m2
Copertura ventilata	300 €/m2

Strutture opache orizzontali: isolamento pavim	enti							
Esterno	144 €/m2							
Interno/terreno	180 €/m2							
Strutture opache verticali: isolamento pareti perin	netrali							
Zone climatiche A, B e C								
- Esterno/diffusa	180 €/m2							
- Interno	96 €/m2							
- Parete ventilata	240 €/m2							
Zone climatiche D, E ed F								
- Esterno/diffusa	195 €/m2							
- Interno	104 €/m2							
- Parete ventilata	260 €/m2							
Sostituzione di chiusure trasparenti, comprensive a	li infissi							
Zone climatiche A, B e C								
- Serramento	660 €/m2							
- Serramento + chiusura oscurante (persiana, tapparelle, scuro)	780 €/m2							
Zone climatiche D, E ed F								
- Serramento	780 €/m2							
- Serramento + chiusura oscurante (persiana, tapparelle, scuro)	900 €/m2							
Installazione di sistemi di schermatura solari e/o ombreggiamenti mobili comprensivi di eventuali meccanismi di automatici di regolazione	276 €/m2							

Tipologia di intervento	Spesa specifica massima ammissibile						
Impianti a colletto							
Scoperti	900 €/m2						
Piani vetrati		1.200 €/m2					
Sottovuoto e a concentrazione		1.500 €/m2					
Impianti di riscaldamento con caldaie	ad acqua a condensa	zione					
e/o generatori di aria calda d	condensazione (*)						
Pnom ≤ 35kWt		240 €/kWt					
<i>Pnom</i> > 35kWt	Pnom > 35kWt						
Impianti con micro-co	generatori						
Motore endotermico / altro		3.720 €/kWe					
Celle a combustibile		30.000 €/kWe					
Impianti con pompe a	li calore (*)						
Tipologia di pompa di calore	Esterno/Interno						
Compressione di vapore elettriche o azionate da	Aria/Aria	720 €/kWt (**)					
motore primo e pompe di calore ad assorbimento	Altro	1.560 €/kWt					
Pompe di calore geotermiche		2.280 €/kWt					
Impianti con sistemi ibridi (*)		1.860 €/kWt					
Impianti con generatori di calore aliment	ati a biomasse combu	ıstibili (*)					
Pnom ≤ 35kWt	420 €/kWt						
Pnom > 35kWt		540 €/kWt					

Impianti di produzione di acqua calda sanitaria con scaldacqua a pompa di calore							
Fino a 150 litri di accumulo	1.200€						
Oltre 150 litri di accumulo	1.500 €						
Installazione di tecnologie di building automation	60 €/m2						

(*) Nel solo caso in cui l'intervento comporti il rifacimento del sistema di emissione esistente, come opportunamente comprovato da opportuna documentazione, al massimale si aggiungono 180 €/m2 per sistemi radianti a pavimento, o 60 €/m2 negli altri casi, ove la superficie si riferisce alla superficie riscaldata.

(**) Nel caso di pompe di calore a gas la spesa specifica massima ammissibile è pari a 1.200 €/kWt.

Per entrambe le verifiche, occorre che i computi metrici siano stilati facendo riferimento ai prezzari regionali o tramite prezzario DEI.

Inoltre, qualora i costi per tipologia di intervento sostenuti siano maggiori di quelli massimi ammissibili definiti, la detrazione è applicata entro i predetti limiti massimi.

3.3 Valutazione degli interventi migliorativi

Si sono ipotizzati tre diversi scenari di progetto. Per ognuno, si è effettuata una valutazione di massima attraverso la stesura di un computo metrico e del relativo quadro economico. Quest'ultimo è molto importante perché ci permette di capire se le spese effettuate rientrano o meno all'interno dei massimali di detrazione.

3.3.1 Scenario 1

Lo scenario 1 fa parte della categoria degli interventi di "riqualificazione energetica", in cui rientra il caso della **sostituzione del solo generatore** e/o di altri impianti tecnici per il soddisfacimento dei servizi dell'edificio.

Nello specifico la caldaia tradizionale, asservita ai servizi di riscaldamento e produzione di ACS, viene sostituita da un sistema ibrido (intervento trainante) in associazione ad un impianto fotovoltaico (intervento trainato). Da notare che l'involucro dell'edificio assieme ai sistemi di distribuzione ed emissione dell'impianto rimangono invariati rispetto allo stato di fatto.

Questo scenario assicura il doppio salto di classe (come richiesto dal Superbonus) passando dalla precedente classe F ad una più efficiente classe D.

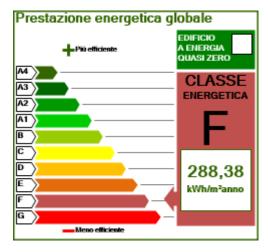


Figura 3.1 Salto di classe Scenario 1

RIASSUNTO VERIFICHE DI LEGGE 10

Inoltre, risultano soddisfatte le verifiche richieste dal DM 26.06.15 necessarie per la redazione della legge 10, in cui per il caso specifico si ha che l'efficienza media stagionale dell'impianto per i servizi di riscaldamento e ACS debba essere al di sopra di un limite imposto.

Tipo di verifica	Esito
Efficienza media stagionale dell'impianto per servizi riscaldamento, acqua calda sanitaria e raffrescamento	Positiva

<u>Dettagli – Efficienza media stagionale dell'impianto per servizi riscaldamento, acqua calda sanitaria e raffrescamento :</u>

Nr.	Servizi	Verifica	ηg amm [%]		ηg [%]
1	Riscaldamento	Positiva	69,1	≤	74,8
2	Acqua calda sanitaria	Positiva	62,1	≤	63,3

VERIFICHE ACCESSO SUPERBONUS 110%

Il tipo di generatore installato è costituito da pompa di calore e caldaia a condensazione, espressamente realizzati e concepiti dal fabbricante per funzionare in abbinamento tra loro. Il sistema ibrido rispetta anche quanto previsto dal Superbonus nell'Allegato A del Decreto 6 agosto 2020 che prevede, per la pompa di calore, la verifica del coefficiente di prestazione (COP/GUE_h) e se nel caso, per le pompe di calore reversibili, EER/GUE_c) almeno pari ai pertinenti valori minimi, fissati nelle tabelle 1 e 2 dell'Allegato F del decreto 6 agosto 2020 e, per la caldaia a condensazione, la verifica del rendimento termico utile riferito al potere calorifico inferiore ad un carico pari al 100% della potenza termica utile nominale.

Pompa di calore (riscaldamento)

Servizi	Pn [kW]	COP/GUE min		COP/GUE	Verifica	
Riscaldamento e acqua calda sanitaria	12,80	3,89	٧I	4,44	Positiva	

Legenda:

Pn= potenza utile nominale [kW]

 $COP/GUE/EER_{min}$ = prestazione della pompa di calore: COP/GUE in riscaldamento, EER in raffrescamento (valore minimo)

COP/GUE/EER = prestazione della pompa di calore: COP/GUE in riscaldamento, EER in raffrescamento (val. dichiarato)

Caldaia a condensazione

Servizi	Pn [kW]	ηu100% _{min} [%]		ղս100% [%]	Verifica
Riscaldamento e acqua calda sanitaria	34,40	96,1	<u><</u>	98,4	Positiva

Legenda:

Pn = potenza utile nominale [kW]

 $\eta u100\%_{min}$ = rendimento termico utile a carico nominale pari al 100% della potenza termica nominale (valore minimo)

 $\eta u100\%$ = rendimento termico utile a carico nominale pari al 100% della potenza termica nominale (valore dichiarato)

Il seguente computo metrico è stato redatto facendo riferimento al prezzario DEI 2° semestre 2023.

			СОМ	PUTO METRICO	- SCENARIO 1	<u> </u>			
TIPOLOGIA DI INTERVENTO	Codice	Qtà	P [Wp]	p.u.mat. [€]	p.mat. [€]	p. u. man. [€]	p. man. [€]	p. u. [€]	p. tot. [€]
Regolazione									
Cronotermostato	A04.5.05.063	3		176,08	528,23	36,06	108,19	212,14	636,42
					528,23		108,19		636,42
Generazione									
Sistema ibrido	A08.5.02.064.b	1		6.916,13	6.916,13	213,90	213,90	7.130,03	7.130,03
Gruppo di riempimento	A02.5.47.250.b	1		83,92	83,92	32,64	32,64	116,56	116,56
Accumulatore inerziale	A03.5.14.165.b	1		645,37	645,37	276,59	276,59	921,95	921,95
Filtro autopulente	A01.5.12.041.c	1		176,09	176,09	183,28	183,28	359,37	359,37
Addolcitore	A01.5.13.058.b	1		1.530,63	1.530,63	208,72	208,72	1.739,35	1.739,35
Bollitore doppio serpentino	A02.5.24.115.b	1		2.989,93	2.989,93	295,71	295,71	3.285,64	3.285,64
Circolatore	A02.5.49.256.f	1		709,88	709,88	70,21	70,21	780,09	780,09
Collettore centrale	A02.5.23.112.a	1		407,94	407,94	260,82	260,82	668,76	668,76
Contabilizzatore	A02.5.35.173.c	1		277,15	277,15	37,79	37,79	314,94	314,94
Defangatore	A02.5.31.157.c	2		125,67	251,34	37,54	75,08	163,21	326,42
Disareatore	A02.5.33.164.c	1		215,85	215,85	64,48	64,48	280,33	280,33
Vaso d'espansione	A02.5.12.062.c	1		193,16	193,16	31,45	31,45	224,61	224,61
Valvola di sicurezza	A02.5.13.064.a	1		109,77	109,77	44,84	44,84	154,61	154,61
					14.507,18		1.795,48		16.302,66
Idrosanitario									
Dosatore di polifosfato	A01.5.13.057.a	1		64,92	64,92	93,43	93,43	158,35	158,35
Vaso d'espansione	A02.5.12.063.f	1		69,04	69,04	99,36	99,36	168,40	168,40
Valvola di sicurezza	A02.5.13.064.a	1		109,77	109,77	44,84	44,84	154,61	154,61
Pompa di ricircolo	A02.5.49.255.a	1		492,40	492,40	67,15	67,15	559,55	559,55
Miscelatore termostatico	A01.5.16.068.c	1		114,99	114,99	106,14	106,14	221,13	221,13
					851,13		410,91		1.262,04
Fotovoltaico									
Moduli fotovoltaici	F10.5.01.003.c		7.000	1,12	7.821,80	0,39	2.748,20	1,51	10.570,00
Inverter	F10.5.01.011.f	1		3.404,16	3.404,16	141,84	141,84	3.546,00	3.546,00
Sistema di accumulo	F10.5.02.023.d	1		8.183,30	8.183,30	167,01	167,01	8.350,31	8.350,31
					19.409,26		3.057,05		22.466,31
TOTALE					35.295,80		5.371,63		40.667,43

Legenda:

p.u.mat. = prezzo unitario materiali p.mat. = prezzo totale materiali

p.u.man. = prezzo unitario manodopera

p.man. = prezzo totale manodopera

p.u. = prezzo unitario
p.tot. = prezzo totale

Dal quadro economico successivo si evince che la spesa destinata al fotovoltaico supera il massimale, e quindi una sua quota non sarà ammessa alla detrazione. Questa quota non verrà rimborsata in alcun modo al beneficiario e quindi dovrà essere recuperata attraverso il risparmio annuale dovuto all'intervento e non tramite la quota annuale di detrazione, che non ne terrà conto.

	VERIFICA MASSIMALI ASSOLUTI – SCENARIO 1											
TIPOLOGIA DI INTERVENTO	MASSIMALE SPESA IVA SPESE PROFESSIONALI (+ cassa + IVA)		SPESA LORDA	SPESA DETRAIBILE (110%)	SPESA NON DETRAIBILE							
Sostituzione dell'impianto termico	60.000	16.939,08	1.693,91	4.298,46	22.931,45	25.224,59	-					
Impianto fotovoltaico	16.800	14.116,00	1.411,60	3.582,08	19.109,68	18.480,00	2.309,68					
Sistema di accumulo per fotovoltaico	15.000	8.350,31	835,03	2.118,97	11.304,32	12.434,75	-					
TOTALE	91.800	39.405,39	3.940,54	9.999,51	53.345,44	56.139,34	2.309,68					

	VERIFICA MASSIMALI SPECIFICI - SCENARIO 1											
TIPOLOGIA DI INTERVENTO	MASSIMALE SPECIFICO	U.M.	PARAMETRO DI RIFERIMENTO	U.M.	SPESA NETTA MASSIMA	SPESA NETTA	SPESA NETTA NON DETRAIBILE	IVA (10%)	SPESE PROFESSIONALI (+ cassa + IVA)	SPESA NON DETRAIBILE		
Impianto con sistema ibrido	1.860	€/kWt	12,80	kWt	23.808,00	15.035,41	-	-	-	-		

SCENARIO 1					
SPESA TOTALE EFFETTUATA	55.655,12				
SPESA TOTALE DETRAIBILE	56.139,34				
QUOTA ANNUALE DETRAIBILE	11.227,87				

Da notare, che le spese professionali (tecniche e fiscali), sono state considerate per semplicità pari al 20% dell'imponibile. A queste vanno aggiunti gli importi previsti per la cassa professionale (4%) e l'IVA (22%).

Inoltre, il Superbonus 110% permette di usufruire della detrazione fiscale in 5 anni ma solo se il contribuente ha una sufficiente capacità fiscale per assorbire l'intera detrazione nel periodo citato. Per semplificare la valutazione si è considerato possibile ripartire la detrazione nei suddetti anni.

3.3.2 Scenario 2

Si tratta di una **ristrutturazione importante di secondo livello**, in quanto si è ipotizzato un intervento sull'involucro edilizio con un'incidenza maggiore del 25% della superficie lorda complessiva. In particolare, l'impianto termico non è stato alterato in alcun modo rispetto allo stato di fatto.

L'unico intervento trainante previsto è quello di isolamento termico delle superfici opache verticali, orizzontali e inclinate. Invece, come interventi trainati sono stati previsti l'installazione di finestre e infissi con relative schermature solari e chiusure oscuranti.

A seguito di un'analisi preliminare si è ritenuto più conveniente eseguire un isolamento per mezzo di insufflaggio di lana di roccia all'interno dell'intercapedine esistente nei muri perimetrali. Infatti, rispetto al cappotto esterno, i limiti di trasmittanza imposti dall'allegato E del decreto 6 agosto 2020, sono ugualmente rispettati a fronte di una spesa minore.

	INSUFFLAGGIO										
	Codice	Area [mq]	Volume [mc]	p.u.mat. [€]	p.mat. [€]	p. u. man. [€]	p. man. [€]	p. u. [€]	p. tot. [€]		
Isolamento eseguito mediante insufflaggio di lana di vetro	DB1.5.10.122.b	1	52,32	230,03	12.035,23	96,13	5.029,65	343,33	17.963,03		

	CAPPOTTO ESTERNO								
Codice Area [mq] Volume [mc] p.u.mat. [€] p.mat. [€] p. u. man. [€] p. man. [€] p. u. [€] p. u. [€]								p. tot. [€]	
Isolamento eseguito con pannelli in EPS (120 mm)	DB1.5.08.090.c	334	-	55,93	18.680,09	42,19	14.091,99	98,12	32.772,08

Per quanto riguarda l'isolamento dei solai e delle coperture si è optato per pannelli in poliuretano espanso. Invece, i nuovi serramenti sono realizzati in PVC e sono caratterizzati da profili idonei alla zona climatica E.

Con questo scenario si ottiene il passaggio in classe C.

Figura 3.2 Salto di classe Scenario 2

RIASSUNTO VERIFICHE DI LEGGE 10

Tipo di verifica	Esito
Verifica termoigrometrica	Positiva
Trasmittanza media strutture opache	Positiva
Trasmittanza media strutture trasparenti	Positiva
Coefficiente medio globale di scambio termico per trasmissione (H't)	Positiva
Fattore di trasmissione solare totale	Positiva

<u>Dettagli – Verifica termoigrometrica :</u>

Cod.	Tipo	Descrizione	Condensa superficiale	Condensa interstiziale
M4	Т	Muro perimetrale piano terra sp.47 cm [+ insufflaggio]	Positiva	Positiva
M5	Т	Muro perimetrale piano terra sp.44 cm [+ insufflaggio]	Positiva	Positiva
М6	Т	Muro perimetrale piano primo sp.48 cm [+ insufflaggio]	Positiva	Positiva
M7	Т	Muro perimetrale piano primo sp.42 cm [+ insufflaggio]	Positiva	Positiva
M8	Т	Muro perimetrale piano primo sp.52 cm [+ insufflaggio]	Positiva	Positiva
М9	Т	Muro perimetrale piano primo sp.47 cm [+ insufflaggio]	Positiva	Positiva
M10	Т	Muro perimetrale piano primo sp.46 cm [+ insufflaggio]	Positiva	Positiva

M11	Т	Muro perimetrale piano primo sp.52 cm [+ insufflaggio]	Positiva	Positiva
M12	Т	Muro perimetrale piano primo sp.65 cm [+ insufflaggio]	Positiva	Positiva
M13	Т	Muro perimetrale piano primo/sottotetto sp.37 cm [+ insufflaggio]	Positiva	Positiva
M14	Т	Muro perimetrale piano primo sp.37 cm [+ insufflaggio]	Positiva	Positiva
M25	Т	Muro cassonetto coibentato	Positiva	Positiva
P1	G	Pavimento piano terra [+ vespaio + poliuretano]	Positiva	Positiva
Р6	U	Pavimento verso centrale termica [+ pannelli radianti + policem]	Positiva	Positiva
P7	U	Pavimento verso autorimessa [+ pannelli radianti + policem]	Positiva	Positiva
<i>S3</i>	Т	Copertura [+ poliuretano]	Positiva	Positiva
<i>S4</i>	Т	Soffitto verso terrazzo [+ poliuretano]	Positiva	Positiva

<u> Dettagli – Trasmittanza media strutture opache :</u>

Cod.	Tipo	Descrizione	Verifica	U amm. [W/m²K]		U media [W/m²K]	U [W/m²K]
M4	Т	Muro perimetrale piano terra sp.47 cm [+ insufflaggio]	Positiva	0,280	≥	0,200	0,138
M5	Т	Muro perimetrale piano terra sp.44 cm [+ insufflaggio]	Positiva	0,280	≥	0,205	0,156
М6	Т	Muro perimetrale piano primo sp.48 cm [+ insufflaggio]	Positiva	0,280	≥	0,172	0,133
M7	Т	Muro perimetrale piano primo sp.42 cm [+ insufflaggio]	Positiva	0,280	2	0,269	0,171
М8	Т	Muro perimetrale piano primo sp.52 cm [+ insufflaggio]	Positiva	0,280	≥	0,235	0,116
М9	Т	Muro perimetrale piano primo sp.47 cm [+ insufflaggio]	Positiva	0,280	≥	0,210	0,138
M10	Т	Muro perimetrale piano primo sp.46 cm [+ insufflaggio]	Positiva	0,280	≥	0,198	0,143
M11	Т	Muro perimetrale piano primo sp.52 cm [+ insufflaggio]	Positiva	0,280	≥	0,273	0,179
M12	Т	Muro perimetrale piano primo sp.65 cm [+ insufflaggio]	Positiva	0,280	≥	0,125	0,082
M13	Т	Muro perimetrale piano primo/sottotetto sp.37 cm [+ insufflaggio]	Positiva	0,280	≥	0,274	0,224
M14	Т	Muro perimetrale piano primo sp.37 cm [+ insufflaggio]	Positiva	0,280	≥	0,264	0,224
P1	G	Pavimento piano terra [+ vespaio + poliuretano]	Positiva	0,290	≥	0,191	0,191
Р6	U	Pavimento verso centrale termica [+ pannelli radianti + policem]	Positiva	0,779	2	0,381	0,340
P7	U	Pavimento verso autorimessa [+ pannelli radianti + policem]	Positiva	0,523	<u>≥</u>	0,349	0,340
<i>S3</i>	Т	Copertura [+ poliuretano]	Positiva	0,240	≥	0,185	0,182
54	Т	Soffitto verso terrazzo [+ poliuretano]	Positiva	0,240	≥	0,217	0,191

<u> Dettagli – Trasmittanza media strutture trasparenti :</u>

Cod.	Tipo	Descrizione	Verifica	Uw amm. [W/m²K]		Uw [W/m²K]
M24	Т	Porta ingresso [Uw < 1.3]	Positiva	1,400	≥	1,200
M25	Т	Muro cassonetto coibentato	Positiva	1,400	≥	1,088
W2	Т	F piano terra 100x100 [UW<1.3]	Positiva	1,400	2	1,300

W3	Т	PF piano terra 100x210 [UW<1.3]	Positiva	1,400	≥	1,300
W4	Т	F piano terra 150x100 [UW<1.3]	Positiva	1,400	≥	1,300
W6	Т	F piano terra 80x100 [UW<1.3]	Positiva	1,400	2	1,300
W7	Т	PF piano primo 150x240 [UW<1.3]	Positiva	1,400	2	1,300
W8	Т	F piano primo 100x150 [UW<1.3]	Positiva	1,400	2	1,300
W9	Т	PF piano primo 150x240 [UW<1.3]	Positiva	1,400	≥	1,300
W10	Т	F piano primo 150x130 [UW<1.3]	Positiva	1,400	≥	1,300
W11	Т	F piano primo 250x130 [UW<1.3]	Positiva	1,400	≥	1,300
W12	Т	PF piano primo 250x240 [UW<1.3]	Positiva	1,400	≥	1,300
W13	Т	F piano primo 250x130 [UW<1.3]	Positiva	1,400	≥	1,300
W14	Т	F piano primo 80x130 [UW<1.3]	Positiva	1,400	2	1,300
W15	Т	PF piano primo 150x200 [UW<1.3]	Positiva	1,400	ΔΙ	1,300
W16	Т	F sottotetto 150x130 [UW<1.3]	Positiva	1,400	2	1,300
W17	Т	F sottotetto 120x130 [UW<1.3]	Positiva	1,400	2	1,300
W18	Τ	Lucernario 70x130 [UW<1.3]	Positiva	1,400	≥	1,300

<u>Dettagli – Coefficiente medio globale di scambio termico per trasmissione (H't) :</u>

Nr.	Descrizione	Cat. DPR. 412	H't amm. [W/m²K]		H't [W/m²K]
1	Villa unica	E.1 (1)	0,65	≥	0,30

<u>Dettagli – Fattore di trasmissione solare totale :</u>

Cod.	Tipo	Descrizione	Verifica	Ggl,sh amm. [W/m²K]		Ggl,sh max [W/m²K]
W2	Т	F piano terra 100x100 [UW<1.3]	Positiva	0,350	≥	0,164
W3	Т	PF piano terra 100x210 [UW<1.3]	Positiva	0,350	≥	0,164
W4	Т	F piano terra 150x100 [UW<1.3]	Positiva	0,350	≥	0,164
W7	Т	PF piano primo 150x240 [UW<1.3]	Positiva	0,350	≥	0,164
W8	Т	F piano primo 100x150 [UW<1.3]	Positiva	0,350	≥	0,164
W9	Т	PF piano primo 150x240 [UW<1.3]	Positiva	0,350	≥	0,164
W10	Т	F piano primo 150x130 [UW<1.3]	Positiva	0,350	≥	0,164
W11	Т	F piano primo 250x130 [UW<1.3]	Positiva	0,350	≥	0,164
W12	Т	PF piano primo 250x240 [UW<1.3]	Positiva	0,350	≥	0,164
W13	Т	F piano primo 250x130 [UW<1.3]	Positiva	0,350	≥	0,164
W15	Т	PF piano primo 150x200 [UW<1.3]	Positiva	0,350	≥	0,164
W16	Т	F sottotetto 150x130 [UW<1.3]	Positiva	0,350	≥	0,164
W17	Т	F sottotetto 120x130 [UW<1.3]	Positiva	0,350	≥	0,164

VERIFICHE ACCESSO SUPERBONUS 110%

Ai sensi dell'articolo 2, comma 1 del Decreto 6 agosto 2020, l'intervento di isolamento termico riguarda le superfici opache verticali, orizzontali e inclinate con un'incidenza superiore al 25% della superficie disperdente lorda dell'edificio medesimo e pari al **74,96**%.

Per le strutture oggetto di intervento viene verificato che i valori delle trasmittanze delle strutture su cui si interviene nella situazione ante e post-intervento risultano rispettivamente maggiori e minori o uguali ai valori riportati nella tabella 1 dell'allegato E del decreto 6 agosto 2020 Requisiti tecnici.

Le strutture oggetto di intervento sono di seguito riportate.

PV. Pareti verticali

Cod.	Descrizione	Trasmittanza Upre [W/m²K]	Trasmittanza Upost [W/m²K]	Trasmittanza Umax [W/m²K]	Verifica Upre	Verifica Upost
M4	Muro perimetrale piano terra sp.47 cm [+ insufflaggio]	1,021	0,138	0,230	Positiva	Positiva
M5	Muro perimetrale piano terra sp.44 cm [+ insufflaggio]	1,021	0,156	0,230	Positiva	Positiva
М6	Muro perimetrale piano primo sp.48 cm [+ insufflaggio]	1,021	0,133	0,230	Positiva	Positiva
M7	Muro perimetrale piano primo sp.42 cm [+ insufflaggio]	1,021	0,171	0,230	Positiva	Positiva
M8	Muro perimetrale piano primo sp.52 cm [+ insufflaggio]	1,021	0,116	0,230	Positiva	Positiva
М9	Muro perimetrale piano primo sp.47 cm [+ insufflaggio]	1,021	0,138	0,230	Positiva	Positiva
M10	Muro perimetrale piano primo sp.46 cm [+ insufflaggio]	1,021	0,143	0,230	Positiva	Positiva
M11	Muro perimetrale piano primo sp.52 cm [+ insufflaggio]	1,021	0,179	0,230	Positiva	Positiva
M12	Muro perimetrale piano primo sp.65 cm [+ insufflaggio]	1,021	0,082	0,230	Positiva	Positiva
M13	Muro perimetrale piano primo/sottotetto sp.37 cm [+ insufflaggio]	1,021	0,224	0,230	Positiva	Positiva
M14	Muro perimetrale piano primo sp.37 cm [+ insufflaggio]	1,251	0,224	0,230	Positiva	Positiva

PO. Strutture orizzontali o inclinate (Coperture)

Cod.	Descrizione	Trasmittanza Upre [W/m²K]	Trasmittanza Upost [W/m²K]	Trasmittanza Umax [W/m²K]	Verifica Upre	Verifica Upost
S3	Copertura [+ poliuretano]	1,555	0,182	0,200	Positiva	Positiva
<i>S4</i>	Soffitto verso terrazzo [+ poliuretano]	1,456	0,191	0,200	Positiva	Positiva

PS. Pavimenti

Cod.	Descrizione	Trasmittanza Upre [W/m²K]	Trasmittanza Upost [W/m²K]	Trasmittanza Umax [W/m²K]	Verifica Upre	Verifica Upost
P1	Pavimento piano terra [+ vespaio + poliuretano]	0,468	0,191	0,250	Positiva	Positiva

In riferimento all'articolo 2, comma 1 (lettera b) del Decreto 6 agosto 2020, la prestazione di schermatura solare installata ha un valore del fattore di trasmissione solare totale g_{tot} (serramento più schermatura) minore o uguale a 0,35, è installata all'interno, all'esterno o integrata alla superficie finestrata e, limitatamente alle sole schermature solari, queste sono installate esclusivamente sulle esposizioni da Est (E) a Ovest (O) passando per il Sud (S).

Cod.	Descrizione	Esposizione	Ggl,sh		G gl,sh,amm	Verifica
W2	F piano terra 100x100 [UW<1.3]	Ε	0,164	<u><</u>	0,350	Positiva
W3	PF piano terra 100x210 [UW<1.3]	Ε	0,164	<u><</u>	0,350	Positiva
W4	F piano terra 150x100 [UW<1.3]	S	0,164	<u><</u>	0,350	Positiva
W7	PF piano primo 150x240 [UW<1.3]	Ε	0,164	<u><</u>	0,350	Positiva
W8	F piano primo 100x150 [UW<1.3]	Е	0,164	<u><</u>	0,350	Positiva

W9	PF piano primo 150x240 [UW<1.3]	Ε	0,164	<u><</u>	0,350	Positiva
W10	F piano primo 150x130 [UW<1.3]	S	0,164	<u><</u>	0,350	Positiva
W11	F piano primo 250x130 [UW<1.3]	S	0,164	<u><</u>	0,350	Positiva
W12	PF piano primo 250x240 [UW<1.3]	0	0,164	<u><</u>	0,350	Positiva
W13	F piano primo 250x130 [UW<1.3]	0	0,164	<u><</u>	0,350	Positiva
W15	PF piano primo 150x200 [UW<1.3]	Ε	0,164	<u><</u>	0,350	Positiva
W16	F sottotetto 150x130 [UW<1.3]	0	0,164	<u><</u>	0,350	Positiva
W17	F sottotetto 120x130 [UW<1.3]	E	0,164	<u><</u>	0,350	Positiva

Legenda:

 $G_{gl,sh}$ = fattore di trasmissione solare del componente (valore calcolato)

 $G_{gl,sh,amm}$ = fattore di trasmissione solare del componente (valore ammissibile)

In riferimento all'articolo 2, comma 1 (lettera b) del Decreto 6 agosto 2020, la chiusura oscurante è installata all'interno, all'esterno o integrata alla superficie finestrata. Al fine della valutazione della prestazione delle chiusure oscuranti installate, è indicato il valore della resistenza termica supplementare ΔR che, nel caso di sola sostituzione, deve risultare superiore rispetto alla chiusura oscurante precedentemente installata.

Cod.	Descrizione	Esp.	Nuova installazione	ΔR _{pre} [m²K/W]		ΔR _{post} [m²K/W]	Verifica
W2	F piano terra 100x100 [UW<1.3]	Ε	Si	-	<	0,19	-
W3	PF piano terra 100x210 [UW<1.3]	Ε	Si	-	<	0,19	-
W4	F piano terra 150x100 [UW<1.3]	S	Si	-	<	0,19	-
W6	F piano terra 80x100 [UW<1.3]	N	Si	-	<	0,19	-
W7	PF piano primo 150x240 [UW<1.3]	Ε	Si	-	<	0,19	-
W8	F piano primo 100x150 [UW<1.3]	Ε	Si	-	<	0,19	-
W9	PF piano primo 150x240 [UW<1.3]	Ε	Si	-	<	0,19	-
W10	F piano primo 150x130 [UW<1.3]	S	Si	-	<	0,19	-
W11	F piano primo 250x130 [UW<1.3]	S	Si	-	<	0,19	-
W12	PF piano primo 250x240 [UW<1.3]	0	Si	-	<	0,19	-
W13	F piano primo 250x130 [UW<1.3]	0	Si	-	<	0,19	-
W14	F piano primo 80x130 [UW<1.3]	N	Si	-	<	0,19	-
W15	PF piano primo 150x200 [UW<1.3]	Е	Si	-	<	0,19	-
W16	F sottotetto 150x130 [UW<1.3]	0	Si	-	<	0,19	-
W17	F sottotetto 120x130 [UW<1.3]	Ε	Si	-	<	0,19	-

Legenda:

 ΔR_{pre} = resistenza termica supplementare (valore pre-intervento)

 ΔR_{post} = resistenza termica supplementare (valore post-intervento)

Di seguito il computo metrico dello scenario 2.

			COMPUT	O METRIC	O - SCENARI	02				
TIPOLOGIA DI INTERVENTO	Codice	Qtà	Area [mq]	Volume [mc]	p.u.mat. [€]	p.mat. [€]	p. u. man. [€]	p. man. [€]	p. u. [€]	p. tot. [€]
Isolamento muri	DD4 5 40 400 b			50.00	000.00	40.005.00	00.10	E 000 0E	0.40.00	47.000.00
Insufflaggio lana di vetro	DB1.5.10.122.b			52,32	230,03	12.035,23	96,13	5.029,65	343,33	17.963,03
Lastre in cartongesso accoppiate con barriera al vapore	DB1.3.12.079.b		306,58		2,87	879,09	1,99	610,89	4,86	1.489,98
						12.914,31		5.640,54		19.453,00
Isolamento superfici orizzontali										
Isolamento copertura con pannello in poliuretano da 120 mm	DB1.5.03.303		131,66		48,12	6.335,28	8,49	1.117,99	56,61	7.453,27
Isolamento terrazzo con pannello in poliuretano da 100 mm	DB1.5.02.012.b		18,21		323,66	5.893,85	10,01	182,28	333,67	6.076,13
Isolamento pavimento controterra con vespaio areato	DA6.5.17.110.a		69,75		32,31	2.253,46	8,50	593,01	42,51	2.965,07
Isolamento pavimento controterra con pannello in poliuretano da 60 mm	DB1.5.06.308		69,75		66,35	4.627,94	71,88	5.013,60	138,23	9.641,54
						19.110,52		6.906,89		26.136,02
Sostituzione serramenti										
Porta 108x220 (M24)	DC2.5.05.050.a	1			1.282,64	1.282,64	142,52	142,52	1.425,16	1.425,16
Portafinestra 100x210 (W3)	DC2.5.10.077.e	1	2,10		460,92	967,93	145,55	305,66	606,47	1.273,59
Portafinestra 150x240 (W7, W9)	DC2.5.10.077.e	2	3,60		460,92	3.318,60	145,55	1.047,98	606,47	4.366,58
Portafinestra 250x240 (W12)	DC2.5.10.077.e	1	6,00		460,92	2.765,50	145,55	873,32	606,47	3.638,82
Portafinestra 150x200 (W20)	DC2.5.10.077.e	1	3,00		460,92	1.382,75	145,55	436,66	606,47	1.819,41
Finestra 100x100 (W2)	DC2.5.10.077.c	1	1,00		475,06	475,06	118,76	118,76	593,82	593,82
Finestra 150x100 (W4)	DC2.5.10.077.c	1	1,50		475,06	712,58	118,76	178,15	593,82	890,73
Finestra 80x100 (W6)	DC2.5.10.077.c	1	0,80		475,06	380,04	118,76	95,01	593,82	475,06
Finestra 100x150 (W8)	DC2.5.10.077.c	1	1,50		475,06	712,58	118,76	178,15	593,82	890,73
Finestra 150x130 (W10, W17)	DC2.5.10.077.c	3	1,95		475,06	2.779,08	118,76	694,77	593,82	3.473,85
Finestra 250x130 (W11, W13)	DC2.5.10.077.c	2	3,25		475,06	3.087,86	118,76	771,97	593,82	3.859,83
Finestra 80x130 (W14)	DC2.5.10.077.c	1	1,04		475,06	494,06	118,76	123,51	593,82	617,57
Finestra 120x130 (W15)	DC2.5.10.077.c	1	1,56		475,06	741,09	118,76	185,27	593,82	926,36
Lucernario 70x130 (W18)	DC2.5.15.115.d	5			550,16	2.750,79	164,33	821,66	714,49	3.572,45
						21.850,57		5.973,38		27.823,96
Installazione chiusure oscuranti	500 5 4 4 000		0.10			4=4.0=		24.22		
Portafinestra 100x210 (W3)	DC2.5.14.089.a	1	2,10		82,98	174,27	29,16	61,23	112,14	235,49
Portafinestra 150x240 (W7, W9)	DC2.5.14.089.a	2	3,60		82,98	597,48	29,16	209,93	112,14	807,41
Portafinestra 250x240 (W12) Portafinestra 150x200 (W20)	DC2.5.14.089.a DC2.5.14.089.a	1	6,00 3,00		82,98 82,98	497,90 248,95	29,16 29,16	174,94 87,47	112,14 112,14	672,84 336,42
Finestra 100x100 (W20)	DC2.5.14.089.a	1	1,00		82,98	82,98	29,16	29,16	112,14	112,14
Finestra 150x100 (W2)	DC2.5.14.089.a	1	1,50	-	82,98	124,48	29,16	43,73	112,14	168,21
Finestra 80x100 (W4)	DC2.5.14.089.a	1	0,80	1	82,98	66,39	29,16	23,33	112,14	89,71
Finestra 100x150 (W8)	DC2.5.14.089.a	1	1,50		82,98	124,48	29,16	43,73	112,14	168,21
Finestra 150x130 (W10, W17)	DC2.5.14.089.a	3	1,95		82,98	485,45	29,16	170,56	112,14	656,02
Finestra 250x130 (W11, W13)	DC2.5.14.089.a	2	3,25		82,98	539,39	29,16	189,52	112,14	728,91
Finestra 80x130 (W14)	DC2.5.14.089.a	1	1,04		82,98	86,30	29,16	30,32	112,14	116,63
Finestra 120x130 (W15)	DC2.5.14.089.a	1	1,56		82,98	129,45	29,16	45,48	112,14	174,94
						3.157,53		1.109,40		4.266,93
Installazione schermature solari							-			
Portafinestra 100x210 (W3)	DC5.5.06.064.a	1	2,10		245,61	515,78	90,84	190,77	336,45	706,55
Portafinestra 150x240 (W7, W9)	DC5.5.06.064.a	2	3,60		245,61	1.768,38	90,84	654,06	336,45	2.422,44
Portafinestra 250x240 (W12)	DC5.5.06.064.a	1	6,00		245,61	1.473,65	90,84	545,05	336,45	2.018,70
Portafinestra 150x200 (W20)	DC5.5.06.064.a	1	3,00		245,61	736,83	90,84	272,52	336,45	1.009,35
Finestra 100x100 (W2)	DC5.5.06.064.a	1	1,00		245,61	245,61	90,84	90,84	336,45	336,45
Finestra 150x100 (W4)	DC5.5.06.064.a	1	1,50		245,61	368,41	90,84	136,26	336,45	504,68
Finestra 80x100 (W6)	DC5.5.06.064.a	1	0,80	1	245,61	196,49	90,84	72,67	336,45	269,16
Finestra 100x150 (W8)	DC5.5.06.064.a	1	1,50		245,61	368,41	90,84	136,26	336,45	504,68
Finestra 150x130 (W10, W17)	DC5.5.06.064.a	3	1,95		245,61	1.436,81	90,84	531,42	336,45	1.968,23

Finestra 250x130 (W11, W13)	DC5.5.06.064.a	2	3,25	245,61	1.596,46	90,84	590,47	336,45	2.186,93
Finestra 80x130 (W14)	DC5.5.06.064.a	1	1,04	245,61	255,43	90,84	94,48	336,45	349,91
Finestra 120x130 (W15)	DC5.5.06.064.a	1	1,56	245,61	383,15	90,84	141,71	336,45	524,86
					9.345,40		3.456,52		12.801,92
TOTALE					66.378,34		17.446,20		90.481,83

Ne consegue un quadro economico privo di eccedenze dovuto al superamento dei massimali. È possibile affermare che questo scenario è sicuramente migliore rispetto allo scenario 1.

	VERIFICA MASSIMALI ASSOLUTI - SCENARIO 2													
TIPOLOGIA DI INTERVENTO	MASSIMALE	SPESA NETTA	IVA (10%)	SPESE PROFESSIONALI (+ cassa + IVA)	SPESA LORDA	SPESA DETRAIBILE (110%)	SPESA NON DETRAIBILE							
Isolamento termico	120.000	45.589,02	4.558,90	11.568,67	61.716,60	67.888,25	-							
Sostituzione di finestre e infissi	54.545	32.090,88	3.209,09	8.143,38	43.443,35	47.787,69	-							
Installazione schermature solari	54.545	12.801,92	1.280,19	3.248,62	17.330,73	19.063,80	-							
TOTALE	229.090	90.481,83	9.048,18	22.960,67	122.490,68	134.739,75	-							

			,	VERIFIC	CA MASSIMA	LI SPECIFICI	- SCENARIO 2			
TIPOLOGIA DI INTERVENTO	MASSIMALE SPECIFICO	U.M.	PARAMETRO DI RIFERIMENTO	U.M.	SPESA NETTA MASSIMA	SPESA NETTA	SPESA NETTA NON DETRAIBILE	IVA (10%)	SPESE PROFESSIONALI (+ cassa + IVA)	SPESA NON DETRAIBILE
Isolamento coperture	276	€/mq	149,87	mq	41.364,12	12.229,13	-	-	-	-
Isolamento pavimenti	180	€/mq	69,75	mq	12.555,00	6.881,40	-	-	-	-
Isolamento pareti perimetrali	195	€/mq	306,58	mq	59.783,10	12.914,31	-	-	-	-
Sostituzione di finestre e infissi	900	€/mq	44,98	mq	40.478,40	25.008,10	-	-	-	-
Installazione schermature solari	276	€/mq	38,05	mq	10.501,80	9.345,40	-	-	-	-

SCENARIO 2	
SPESA TOTALE EFFETTUATA	122.490,68
SPESA TOTALE DETRAIBILE	134.739,75
QUOTA ANNUALE	
DETRAIBILE	26.947,95

3.3.3 Scenario 3

L'ultimo scenario consiste nell'evoluzione del secondo. Infatti, partendo dallo scenario 2 si è ipotizzato un intervento anche all'impianto termico oltre che dell'involucro.

Lo scenario 3 si configura quindi come una **ristrutturazione importante di primo livello**, in cui avviene un intervento sull'involucro con un'incidenza > 50 % della superficie disperdente lorda complessiva e allo stesso tempo la ristrutturazione dell'impianto termico per il servizio di climatizzazione invernale e/o estiva asservito all'intero edificio.

In questo caso, gli interventi trainanti sono due:

- isolamento termico delle superfici opache verticali, orizzontali e inclinate che interessano l'involucro con un'incidenza superiore al 25% della superficie disperdente lorda
- interventi per la sostituzione degli impianti di climatizzazione invernale esistenti con impianti per il riscaldamento, il raffrescamento o la fornitura di ACS

Invece, i trainati sono:

- sostituzione dei serramenti e degli infissi
- sostituzione/installazione di schermature solari e di chiusure oscuranti
- sostituzione dell'impianto di produzione di ACS con installazione di scaldacqua a pompa di calore
- installazione di impianto solare fotovoltaico
- installazione di sistema di accumulo fotovoltaico

A differenza dello scenario 1, in questo è prevista l'installazione di un generatore esclusivamente a pompa di calore. Questo è possibile grazie all'abbassamento dei carichi termici determinato dal concomitante intervento su involucro, distribuzione ed emissione. Infatti, i radiatori esistenti sono sostituiti con ventilconvettori (piano terra) e con pannelli radianti annegati a pavimento (piano primo e sottotetto).

A seguito di questo intervento di riqualificazione si ottiene la massima classe energetica, cioè la classe A4.

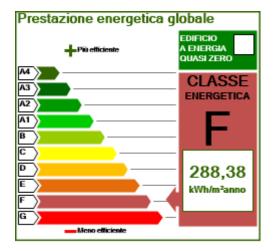


Figura 3.3 Salto di classe Scenario 3

RIASSUNTO VERIFICHE DI LEGGE 10

Tipo di verifica	Esito
Verifica termoigrometrica	Positiva
Trasmittanza media divisori e strutture locali non climatizzati	Positiva
Area solare equivalente estiva per unità di superficie utile	Positiva
Coefficiente medio globale di scambio termico per trasmissione (H't)	Positiva
Indice di prestazione termica utile per riscaldamento	Positiva
Indice di prestazione termica utile per raffrescamento	Positiva
Indice di prestazione energetica globale	Positiva
Efficienza media stagionale dell'impianto per servizi riscaldamento, acqua calda sanitaria e raffrescamento	Positiva

Rispetto allo scenario 2 (ristrutturazione importante di secondo livello) si hanno in comune la verifica termoigrometrica e la verifica del coefficiente medio globale di scambio termico per trasmissione, che quindi non verranno riportate nuovamente.

<u>Dettagli – Trasmittanza media divisori e strutture locali non climatizzati :</u>

Cod.	Tipo	Descrizione	Verifica	U amm. [W/m²K]		U media [W/m²K]	U [W/m²K]
M1	Ε	Muro perimetrale locale non climatizzato sp.41 cm [+ insufflaggio]	Positiva	0,800	AI.	0,172	0,172
M2	Ε	Muro perimetrale locale non climatizzato sp.45 cm [+ insufflaggio]	Positiva	0,800	2	0,145	0,145
МЗ	Ε	Muro perimetrale locale non climatizzato sp.49 cm [+ insufflaggio]	Positiva	0,800	2	0,125	0,125

<u>Dettagli – Area solare equivalente estiva per unità di superficie utile :</u>

Nr.	Descrizione	Verifica	Asol,eq,amm [-]		Asol,eq [-]	Asol [m²]	Su [m²]
1	Villa unica	Positiva	0,030	≥	0,014	3,78	275,11

<u>Dettagli – Indice di prestazione termica utile per riscaldamento :</u>

Tipo verifica	Esito Valore ammissibile			Valore calcolato	u.m.
Indice di prestazione termica utile per riscaldamento	Positiva	53,03	>	51,03	kWh/m²

Riferimento: D.M. 26.06.15, allegato 1, paragrafo 3.3, punto 2 - lettera b

Su	Qh,nd amm.	Qh,nd	
[m²]	[kWh]	[kWh]	
275,11	14589,76	14040,10	

<u>Dettagli – Indice di prestazione termica utile per il raffrescamento :</u>

Tipo verifica	Esito	Valore ammissibile		Valore calcolato	u.m.
Indice di prestazione termica utile per il raffrescamento	Positiva	14,62	>	9,33	kWh/m²

Riferimento: D.M. 26.06.15, allegato 1, paragrafo 3.3, punto 2 - lettera b

Su	Qc,nd amm.	Qc,nd		
[m²]	[kWh]	[kWh]		
275,11	4021,04	2566,93		

<u>Dettagli – Indice di prestazione energetica globale :</u>

Tipo verifica	Esito	Valore ammissibile		Valore calcolato	u.m.
Indice di prestazione energetica globale	Positiva	132,09	>	82,24	kWh/m²

Riferimento: D.M. 26.06.15, allegato 1, paragrafo 3.3, punto 2 - lettera b

Servizio	EP ed. riferimento	EP		
SCIVILIO	[kWh/m²]	[kWh/m²]		
Riscaldamento	82,38	55,37		
Acqua calda sanitaria	19,38	16,87		
Raffrescamento	12,85	4,03		
Ventilazione	17,48	5,97		
Illuminazione	0,00	0,00		
TOTALE	132,09	82,24		

<u>Dettagli – Efficienza media stagionale dell'impianto per servizi riscaldamento, acqua calda sanitaria e</u> raffrescamento :

Nr.	Servizi	Verifica	ηg amm [%]		ηg [%]
1	Riscaldamento	Positiva	58,4	Y	81,1
2	Acqua calda sanitaria	Positiva	54,6	≤	62,8
3	Raffrescamento	Positiva	135,6	Y	284,3

VERIFICHE ACCESSO SUPERBONUS 110%

Anche in questo caso non verranno riportate le medesime verifiche in comune con lo scenario 2, come quelle riferite all'involucro (trainante) e a infissi, schermature solari e chiusure oscuranti (trainati).

L'altro intervento trainante riguarda la sostituzione dell'impianto di climatizzazione. Le caratteristiche dei nuovi generatori sono di seguito riportate.

Pompa di calore a compressione di vapore elettriche ad alta efficienza

Il tipo di generatore ipotizzato rispetta quanto previsto all'Allegato A del Decreto 6 agosto 2020 che prevede la verifica del coefficiente di prestazione (COP e se del caso, per le pompe di calore reversibili, EER) almeno pari ai pertinenti valori minimi, fissati nella tabella 3 e 4 dell'allegato F del decreto 6 agosto 2020.

Descrizione impianto	Villa unica		
Marca/Serie/Modello	UNICAL\OWER ON	IE 140 RT	
Potenza utile nominale		14,10	k۷
Potenza elettrica assorbita	2,91		
Sup. utile riscaldata dalla PDC		275,11	
Prestazione COP (riscaldamento)		4,85	
Prestazione EER (raffrescam	ento)	5,40	

Scaldacqua a pompa di calore

Il tipo di generatore installato rispetta quanto previsto all'articolo 2, comma 1, lettere e) del Decreto 6 agosto 2020, che prevede la verifica della condizione prevista al punto 3, lettera c) dell'allegato 2 del D.Lgs 3 Marzo, n. 28 (COP > 2,6).

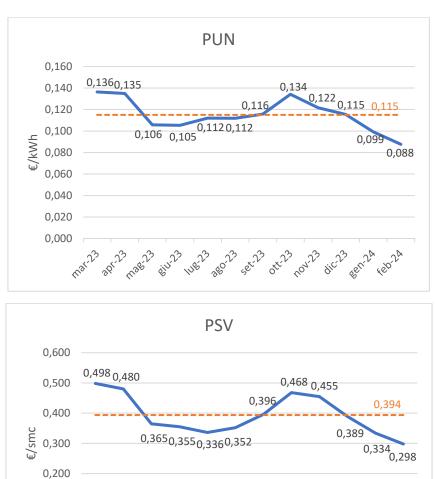
Descrizione impianto	Villa unica				
Marca/Serie/Modello	UNICAL\ HP 300S				
Potenza utile nominale	_	2,06	kW		
COP del nuovo scaldacqua	_	2,85	-		

Di seguito il computo metrico dello scenario 3.

	COMPUTO METRICO - SCENARIO 3											
TIPOLOGIA DI INTERVENTO	Codice	Qtà	L [m]	A [mq]	P [Wp]	p.u.mat. [€]	p.mat. [€]	p. u. man. [€]	p. man. [€]	p. u. [€]	p. tot. [€]	
TOTALE INVOLUCRO (SCENARIO 2)							66.378,34		23.086,73		90.481,83	
Distribuzione												
Tubazione multistrato 16x2	A02.5.19.094.a		10 0			1,25	124,80	11,23	1.123,20	12,48	1.248,00	
Tubazione multistrato 26x3	A02.5.19.094.e		10			3,53	35,33	11,19	111,87	14,72	147,20	
Tubazione multistrato 32x3	A02.5.19.094.f		80			5,29	422,91	11,23	898,69	16,52	1.321,60	
Isolamento tubazioni 16x2	A02.5.21.099.a		10 0			21,98	2.197,60	5,49	549,40	27,47	2.747,00	
Isolamento tubazioni 26x3	A02.5.21.099. b		10			25,18	251,82	5,53	55,28	30,71	307,10	
Isolamento tubazioni 32x3	A02.5.21.099.c	·	80			30,86	2.469,08	5,45	435,72	36,31	2.904,80	
Collettore ventilconvettori	A02.5.23.110. b	1				394,85	394,85	69,68	69,68	464,53	464,53	

						5.896,39		3.243,84		9.140,23
Emissione						,				
Ventilconvettori piano terra	A03.5.09.105. b	3			760,78	2.282,33	134,25	402,76	895,03	2.685,09
Impianto a pavimento piano primo	A02.5.44.241. b		114,30		38,77	4.431,31	12,24	1.399,36	51,01	5.830,67
Impianto a pavimento sottotetto	A02.5.44.241. b		102,47		38,77	3.972,67	12,24	1.254,53	51,01	5.227,20
						10.686,31		3.056,65		13.742,96
VMC + Deumidificazione										
Unità piano rialzato	A03.5.04.316. d	1			3.638,68	3.638,68	1.086,88	1.086,88	4.725,56	4.725,56
Unità piano sottotetto	A03.5.04.316. d	1			3.638,68	3.638,68	1.086,88	1.086,88	4.725,56	4.725,56
						7.277,36		2.173,76		9.451,12
Regolazione					.=.	#ac		105 :-		
Cronotermostato	A04.5.05.063	3			176,08	528,23	36,06	108,19	212,14	636,42
Umidostati	A04.3.07.106	2			88,89	177,79	18,21	36,41	107,10	214,20
						706,01		144,61		850,62
Generazione										
Pompa di calore	A03.5.05.035.f	1			7.582,99	7.582,99	234,53	234,53	7.817,52	7.817,52
Gruppo di riempimento	A02.5.47.250. b	1			83,92	83,92	32,64	32,64	116,56	116,56
Accumulatore inerziale	A03.5.14.165. b	1			645,37	645,37	276,59	276,59	921,95	921,95
Filtro autopulente	A01.5.12.041.c	1			176,09	176,09	183,28	183,28	359,37	359,37
Addolcitore	A01.5.13.058. b	1			1.530,63	1.530,63	208,72	208,72	1.739,35	1.739,35
Circolatore	A02.5.49.256.f	3			709,88	2.129,65	70,21	210,62	780,09	2.340,27
Collettore centrale	A02.5.23.112.a	1			407,94	407,94	260,82	260,82	668,76	668,76
Contabilizzatore	A02.5.35.173.c	3			277,15	831,44	37,79	113,38	314,94	944,82
Defangatore	A02.5.31.157.c	2			125,67	251,34	37,54	75,08	163,21	326,42
Disareatore	A02.5.33.164.c	1			215,85	215,85	64,48	64,48	280,33	280,33
Vaso d'espansione	A02.5.12.062.c	1			193,16	193,16	31,45	31,45	224,61	224,61
Valvola di sicurezza	A02.5.13.064.a	1			109,77	109,77 14.158,17	44,84	44,84 1.736,40	154,61	154,61 15.894,57
Idrosanitario						14.130,17		1.750,40		13.034,37
Pompa di calore ACS con accumulo	A01.5.20.091.	1			3.018,24	3.018,24	411,58	411,58	3.429,82	3.429,82
Dosatore di polifosfato	A01.5.13.057.a	1			64,92	64,92	93,43	93,43	158,35	158,35
Vaso d'espansione	A02.5.12.063.f	1			69,04	69,04	99,36	99,36	168,40	168,40
Valvola di sicurezza	A02.5.13.064.a	1			109,77	109,77	44,84	44,84	154,61	154,61
Pompa di ricircolo	A02.5.49.255.a	1			492,40	492,40	67,15	67,15	559,55	559,55
Miscelatore termostatico	A01.5.16.068.c	1			114,99	114,99	106,14	106,14	221,13	221,13
						3.869,37		822,49		4.691,86
Fotovoltaico						- ,-		<u> </u>		
Moduli fotovoltaici	F10.5.01.003.c			700 0	1,12	7.821,80	0,39	2.748,20	1,51	10.570,00
Inverter	F10.5.01.011.f	1			3.404,16	3.404,16	141,84	141,84	3.546,00	3.546,00
Sistema di accumulo	F10.5.02.023.d	1			8.183,30	8.183,30	167,01	167,01	8.350,31	8.350,31
					-,	19.409,26	,-	3.057,05		22.466,31
TOTALE IMPIANTI						62.002,88		14.234,79		76.237,67
TOTALE						128.381,22		37.321,52		166.719,50

Per quanto riguarda il quadro economico di questo scenario, si può notare il superamento dei massimali legati alla sostituzione dell'impianto termico, dell'impianto fotovoltaico e quello specifico per l'impianto ACS a pompa di calore. Quindi, non è possibile dire a priori se questo scenario sia il migliore nonostante la massima classe energetica raggiunta.

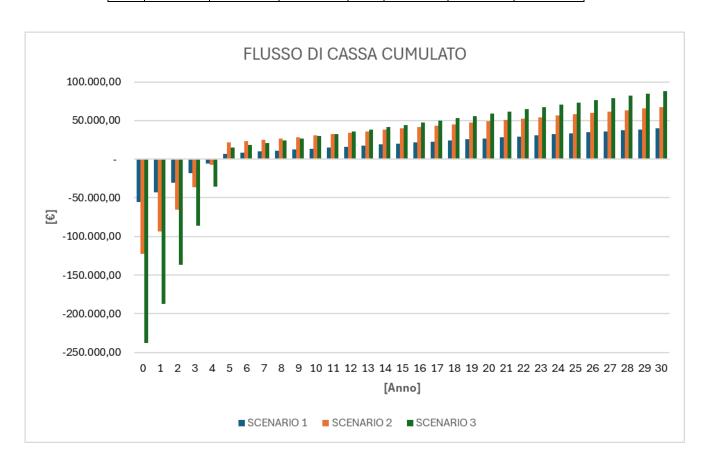

		١	/ERIFICA MAS	SSIMALI ASSOLUTI - SCENAI	RIO 3		
TIPOLOGIA DI INTERVENTO	MASSIMALE	SPESA IVA NETTA (10%)		SPESE PROFESSIONALI (+ cassa + IVA)	SPESA LORDA	SPESA DETRAIBILE (110%)	SPESA NON DETRAIBILE
Isolamento termico	120.000	45.589,02	4.558,90	11.568,67	61.716,60	67.888,25	-
Sostituzione dell'impianto termico	60.000	49.079,50	4.907,95	12.454,41	66.441,87	66.000,00	6.441,87
Impianto fotovoltaico	16.800	14.116,00	1.411,60	3.582,08	19.109,68	18.480,00	2.309,68
Sistema di accumulo per fotovoltaico	15.000	8.350,31	835,03	2.118,97	11.304,32	12.434,75	-
Sostituzione di finestre e infissi	54.545	32.090,88	3.209,09	8.143,38	43.443,35	47.787,69	-
Installazione schermature solari	54.545	12.801,92	1.280,19	3.248,62	17.330,73	19.063,80	-
Impianto ACS a pompa di calore	30.000	4.691,86	469,19	1.190,61	6.351,65	6.986,82	-
TOTALE	350.890,00	166.719,50	16.671,95	42.306,74	225.698,19	238.641,31	8.751,54

			VERIFIC	CA MAS	SIMALI SPEC	IFICI - SCEN	ARIO 3			
TIPOLOGIA DI INTERVENTO			PARAMETRO DI RIFERIMENTO	U.M.	SPESA NETTA MASSIMA	SPESA NETTA	SPESA NETTA NON DETRAIBILE	IVA (10%)	SPESE PROFESSIONALI (+ cassa + IVA)	SPESA NON DETRAIBILE
Isolamento coperture	276	€/mq	149,87	mq	41.364,12	12.229,13	-	-	-	-
Isolamento pavimenti	180	€/mq	69,75	mq	12.555,00	6.881,40	-	-	-	-
Isolamento pareti perimetrali	195	€/mq	306,58	mq	59.783,10	12.914,31	-	-	-	-
Sostituzione di finestre e infissi	900	€/mq	44,98	mq	40.478,40	25.008,10	-	-	-	-
Installazione schermature solari	276	€/mq	38,05	mq	10.501,80	9.345,40	-	-	-	-
Impianto con	1.560	€/kWt	17,60	kWt						
pompa di	180	€/mq	58,34	mq						
calore + sistema radiante a pavimento + ventilconvettori	60	€/mq	216,77	mq	50.963,40	38.724,25	-	-	-	-
Impianto ACS a pompa di calore	1.500	€	-	-	1500	3.869,37	2.369,37	236,94	601,25	3.207,56

SCENARIO 3	
SPESA TOTALE EFFETTUATA	237.657,29
SPESA TOTALE DETRAIBILE	238.641,31
QUOTA ANNUALE	
DETRAIBILE	47.728,26

3.4 Analisi economica

Per questa analisi economica si è fatto riferimento ai fabbisogni di metano ed energia elettrica calcolati in automatico dal software Edilclima EC700. Inoltre, è stato stimato il prezzo unitario dei due vettori energetici effettuando la media dei valori medi mensili dell'ultimo anno forniti dal sito del **Gestore dei Mercati Energetici**.


Di seguito sono riassunti i risultati ottenuti dal confronto tra i differenti scenari.

0,100

0,000

SCENARI	SPESA TOTALE EFFETTUATA	QUOTA ANNUALE DETRAIBILE	CLASSE ENERGETICA	EPgl,nren	Fabbisogno metano	Fabbisogno energia elettrica	Prezzo metano	Prezzo energia elettrica	Stima costo annuale	Stima risparmio annuale	
	€	€/anno	-	kWh/m²anno	smc/anno	kWhel/anno	€/smc	€/kWhel	€/anno	€/anno	
STATO DI FATTO	-	-	F	288,38	6296	6985	0,394	0,394		3.283,90	-
SCENARIO 1	55.655,12	11.227,87	D	163,22	3600	4780			0,394	0,115	1.968,06
SCENARIO 2	122.490,68	26.947,95	С	117,87	2421	4354			1.454,74	1.829,15	
SCENARIO 3	237.657,29	47.728,26	A4	24,38	0	3440			395,60	2.888,30	

			FLUSSO DI CAS	SA CUM	ULATO		
ANNO	SCENARIO 1	SCENARIO 2	SCENARIO 3	ANNO	SCENARIO 1	SCENARIO 2	SCENARIO 3
0	- 55.655,12	- 122.490,68	- 237.657,29	16	21.537,61	41.515,54	47.196,80
1	- 43.111,41	- 93.713,58	- 187.040,73	17	22.853,45	43.344,69	50.085,10
2	- 30.567,71	- 64.936,47	- 136.424,17	18	24.169,29	45.173,84	52.973,40
3	- 18.024,00	- 36.159,37	- 85.807,61	19	25.485,12	47.003,00	55.861,70
4	- 5.480,30	- 7.382,26	- 35.191,05	20	26.800,96	48.832,15	58.750,00
5	7.063,41	21.394,84	15.425,51	21	28.116,80	50.661,31	61.638,30
6	8.379,25	23.223,99	18.313,81	22	29.432,63	52.490,46	64.526,60
7	9.695,08	25.053,15	21.202,11	23	30.748,47	54.319,62	67.414,89
8	11.010,92	26.882,30	24.090,41	24	32.064,31	56.148,77	70.303,19
9	12.326,76	28.711,46	26.978,71	25	33.380,14	57.977,92	73.191,49
10	13.642,59	30.540,61	29.867,01	26	34.695,98	59.807,08	76.079,79
11	14.958,43	32.369,76	32.755,31	27	36.011,82	61.636,23	78.968,09
12	16.274,27	34.198,92	35.643,61	28	37.327,66	63.465,39	81.856,39
13	17.590,10	36.028,07	38.531,90	29	38.643,49	65.294,54	84.744,69
14	18.905,94	37.857,23	41.420,20	30	39.959,33	67.123,70	87.632,99
15	20.221,78	39.686,38	44.308,50				

	SCENARIO 1	SCENARIO 2	SCENARIO 3	
COSTO TOTALE INIZIALE	€	55.655,12	122.490,68	237.657,29
TEMPO DI RITORNO	anni	5	5	5
RISPARMIO TOTALE	€	39.959,33	67.123,70	87.632,99
INDICE DI PROFITTABILITA'	-	0,72	0,55	0,37

Considerando un orizzonte temporale di 30 anni si è ottenuto per tutti e tre gli scenari il medesimo tempo di ritorno pari a 5 anni ma differenti indici di risparmio totale. Alla fine del periodo considerato, lo scenario 3 assicura il risparmio totale più elevato ma a fronte di un investimento inziale maggiore rispetto agli altri

due. Invece, rapportando i risparmi totali con i rispettivi costi iniziali, si nota che lo scenario 1 rappresenta l'investimento con l'indice di profittabilità più elevato.

Tuttavia, è importante sottolineare che lo scenario 3 è l'unico che rende l'edificio completamente indipendente dal metano e garantisce un fabbisogno annuale di energia elettrica più basso. Questo fattore è fondamentale considerando l'impossibilità nel prevedere il prezzo dei vettori energetici nel lungo periodo. Inoltre, lo scenario 3 assicura un maggior comfort agli occupanti, grazie all'installazione dei pannelli radianti a pavimento, che oltre ad assicurare una migliore distribuzione del calore permettono anche la climatizzazione durante la stagione estiva.

Alla luce di queste considerazioni il committente ha ritenuto più conveniente lo scenario 3.

4 PROGETTAZIONE TERMOTECNICA

Una volta individuato lo scenario più conveniente, è possibile procedere con la progettazione dei vari impianti in modo da poter rendere esecutivo l'intervento di riqualificazione dell'edificio.

4.1 Stratigrafie dello stato di progetto

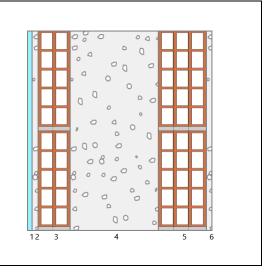
Allo stato di progetto l'edificio risulterà meno disperdente grazie all'isolamento delle strutture opache, alla sostituzione degli infissi e alla correzione di alcuni ponti termici. Di seguito l'elenco completo delle componenti coinvolte nel calcolo dei carichi termici.

ELENCO COMPONENTI

Muri:

			Sp	Ms	Y _{IE}	Sfasamento	C _T	ε	α	θ	Ue
Cod	Tipo	Descrizione	[mm]	[kg/m²]	[W/m²K]	[h]	[kJ/m²K]	[-]	[-]	[°C]	[W/m²K]
M1	Ε	Muro perimetrale locale non climatizzato sp.41 cm [+ insufflaggio]	410	125	0,078	-9,304	50,489	0,9	0,6	-8,1	0,172
M2	Ε	Muro perimetrale locale non climatizzato sp.45 cm [+ insufflaggio]	450	127	0,062	-9,978	50,414	0,9	0,6	-8,1	0,145
МЗ	Ε	Muro perimetrale locale non climatizzato sp.49 cm [+ insufflaggio]	490	128	0,051	-10,725	50,293	0,9	0,6	-8,1	0,125
M4	Т	Muro perimetrale piano terra sp.47 cm [+ insufflaggio]	472,5	137	0,049	-10,962	47,662	0,9	0,6	-8,1	0,138
M5	Т	Muro perimetrale piano terra sp.44 cm [+ insufflaggio]	442,5	136	0,058	-10,435	47,752	0,9	0,6	-8,1	0,156
М6	Т	Muro perimetrale piano primo sp.48 cm [+ insufflaggio]	482,5	137	0,046	-11,147	47,63	0,9	0,6	-8,1	0,133
M7	Т	Muro perimetrale piano primo sp.42 cm [+ insufflaggio]	422,5	135	0,065	-10,107	47,802	0,9	0,6	-8,1	0,171
М8	Т	Muro perimetrale piano primo sp.52 cm [+ insufflaggio]	522,5	138	0,038	-11,923	47,49	0,9	0,6	-8,1	0,116
М9	Т	Muro perimetrale piano primo sp.47 cm [+ insufflaggio]	472,5	137	0,049	-10,962	47,662	0,9	0,6	-8,1	0,138
M10	Т	Muro perimetrale piano primo sp.46 cm [+ insufflaggio]	462,5	137	0,052	-10,782	47,694	0,9	0,6	-8,1	0,143
M11	Т	Muro perimetrale piano primo sp.52 cm [+ insufflaggio]	412,5	135	0,069	-9,951	47,825	0,9	0,6	-8,1	0,179
M12	Т	Muro perimetrale piano primo sp.65 cm [+ insufflaggio]	652,5	142	0,019	-14,671	47,096	0,9	0,6	-8,1	0,082
M13	Т	Muro perimetrale piano primo/sottotetto sp.37 cm [+ insufflaggio]	372,5	134	0,089	-9,375	47,896	0,9	0,6	-8,1	0,224
M14	Т	Muro perimetrale piano primo sp.37 cm [+ insufflaggio]	372,5	134	0,089	-9,375	47,896	0,9	0,6	-8,1	0,224
M15	Т	Muro cassonetto	395	81	0,971	-3,947	28,659	0,9	0,6	-8,1	2,109
M16	D	Divisorio interno sp.12 cm	120	72	1,57	-3,35	47,419	0,9	0,6	-	1,914
M17	D	Divisorio interno sp.54 cm	540	408	0,047	-16,904	49,316	0,9	0,6	-	0,647
M18	D	Divisorio interno sp.21 cm	210	144	0,755	-6,267	56,038	0,9	0,6	-	1,348
M19	D	Divisorio interno sp.14 cm	140	88	1,34	-3,986	50,865	0,9	0,6	-	1,751
M20	U	Divisorio verso centrale termica sp.12 cm	120	72	1,57	-3,35	47,419	0,9	0,6	9,5	1,914
M21	U	Divisorio verso centrale termica sp.8 cm	80	40	2,145	-2,146	37,519	0,9	0,6	9,5	2,354
M22	U	Divisorio verso autorimessa sp.12 cm	120	72	1,57	-3,35	47,419	0,9	0,6	4,4	1,914
M23	Ε	Ingresso autorimessa [Uw < 1.3]	48	18	1,36	-1,058	13,064	0,9	0,6	-8,1	1,382
M24	Т	Porta ingresso [Uw < 1.3]	53	18	1,179	-1,112	13,209	0,9	0,6	-8,1	1,2
M25	Т	Muro cassonetto coibentato	395	81	0,582	-4,529	21,967	0,9	0,6	-8,1	1,088

Legenda simboli


Sp	Spessore struttura				
Ms	Massa superficiale della struttura senza intonaci				
Y _{IE}	rasmittanza termica periodica della struttura				
Sfasamento	Sfasamento dell'onda termica				
Ст	Capacità termica areica				
ε	Emissività				
α	Fattore di assorbimento				
θ	Temperatura esterna o temperatura locale adiacente				
Ue	Trasmittanza di energia della struttura				

Sul lato interno dei muri perimetrali è stata prevista una lastra in cartongesso accoppiata con una barriera al vapore in lamina di alluminio. Infatti, tra le verifiche di legge da soddisfare vi è quella riguardante il rischio di formazione di condensa interstiziale. Ad esempio, facendo riferimento al muro M10, in assenza di tale strato si avrebbe una quantità massima di condensa prodotta durante l'anno pari a $870 \ g/m^2$; una produzione ben al di sopra rispetto alla quantità ammissibile calcolata secondo il DM 26.06.15 pari a $100 \ g/m^2$.

<u>Descrizione della struttura:</u> Muro perimetrale piano primo sp.46 cm [+ insufflaggio]

Codice: M10

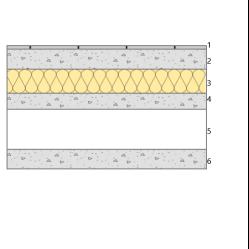
Trasmittanza termica	0,143	W/m²K
Spessore	463	mm
Temperatura esterna (calcolo potenza invernale)	-8,1	°C
Permeanza	1,987	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	179	kg/m²
Massa superficiale (senza intonaci)	137	kg/m²
Trasmittanza periodica	0,052	W/m²K
Fattore attenuazione	0,360	-
Sfasamento onda termica	-10,8	h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	1	-	0,130	-	1	-
1	Lastra in cartongesso accoppiata con barriera al vapore in lamina di alluminio		0,2000	0,063	800	1,00	7900
2	Intonaco di calce e gesso	15,00	0,7000	0,021	1400	1,00	10
3	Muratura in laterizio pareti esterne (um. 1.5%)	80,00	0,3600	0,222	600	1,00	7
4	Lana di vetro Insulsafe da insufflare in intercapedine	220,00	0,0360	6,111	30	1,03	1
5	Muratura in laterizio pareti esterne (um. 1.5%)	120,00	0,3600	0,333	600	1,00	7
6	Intonaco di calce e gesso	15,00	0,7000	0,021	1400	1,00	10
-	Resistenza superficiale esterna	1	1	0,071	1	1	1

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

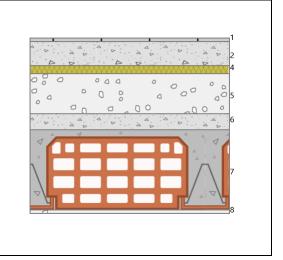

Pavimenti:

01	- '	B	Sp	Ms	Y _{IE}	Sfasamento	Ст	ε	α	θ	Ue
Cod	Tipo	Descrizione	[mm]	[kg/m ²]	[W/m²K]	[h]	[kJ/m²K]	[-]	[-]	[°C]	[W/m ² K]
P1	G	Pavimento piano terra [+ vespaio + poliuretano]	310	281	0,077	-9,53	55,762	0,9	0,6	-8,1	0,191
P2	D	Pavimento verso piano terra [+ pannelli radianti + policem]	440	539	0,013	-18,326	59,173	0,9	0,6	-	0,34
P3	D	Pavimento verso piano primo [+ pannelli radianti + policem]	440	539	0,013	-18,326	59,173	0,9	0,6	-	0,34
P4	R	Pavimento centrale termica	310	645	0,639	-8,361	62,953	0,9	0,6	-8,1	0,762
P5	R	Pavimento centrale autorimessa	310	645	0,639	-8,361	62,953	0,9	0,6	-8,1	0,579
Р6	U	Pavimento verso centrale termica [+ pannelli radianti + policem]	440	539	0,013	-18,326	59,173	0,9	0,6	9,5	0,34
P7	U	Pavimento verso autorimessa [+ pannelli radianti + policem]	440	539	0,013	-18,326	59,173	0,9	0,6	4,4	0,34

<u>Descrizione della struttura:</u> Pavimento piano terra [+ vespaio + poliuretano]

Codice: P1

Trasmittanza termica	0,301	W/m²K	
Trasmittanza controterra	0,191	W/m²K	
Spessore	310	mm	
Temperatura esterna (calcolo potenza invernale)	-8,1	°C	
Permeanza	0,002	10 ⁻¹² kg/sm ² Pa	XXXXXXX
Massa superficiale (con intonaci)	281	kg/m²	1 . T
Massa superficiale (senza intonaci)	281	kg/m²	Δ Δ Δ D
Trasmittanza periodica	0,077	W/m²K	
Fattore attenuazione	0,406	-	
Sfasamento onda termica	-9,5	h	



Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	-	-
1	Piastrelle in ceramica (piastrelle)	10,00	1,3000	0,008	2300	0,84	9999999
2	Sottofondo di cemento magro	50,00	0,7000	0,071	1600	0,88	20
3	Poliuretano espanso rigido imperm. ai gas	60,00	0,0220	2,727	35	1,40	60
4	C.l.s. armato (2% acciaio)	40,00	2,5000	0,016	2400	1,00	130
5	Intercapedine non ventilata Av<500 mm²/m	100,00	0,4545	0,220	-	-	-
6	Sottofondo di cemento magro	50,00	0,7000	0,071	1600	0,88	20
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

<u>Descrizione della struttura:</u> Pavimento verso piano terra [+ pannelli radianti + policem]

Trasmittanza termica	0,340	W/m²K
Spessore	440	mm
Permeanza	0,002	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	553	kg/m²
Massa superficiale (senza intonaci)	539	kg/m²
Trasmittanza periodica	0,013	W/m²K
Fattore attenuazione	0,038	-
Sfasamento onda termica	-18,3	h

Codice: P2

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170	-	1	-
1	Piastrelle in ceramica (piastrelle)	10,00	1,3000	0,008	2300	0,84	9999999
2	Caldana additivata per pannelli	60,00	1,0000	0,060	1800	0,88	30
3	Tubo del pannello - KILMA SUPER STRONG	0,00	-	-	-	-	-
4	Polistirene per KILMA SUPER STRONG	20,00	0,0330	0,606	30	1,30	70
5	POLICEM - Massetto cementizio leggero con perle di polistirene densità 250	100,00	0,0670	1,493	250	1,40	12
6	C.l.s. armato (1% acciaio)	40,00	2,3000	0,017	2300	1,00	130
7	Soletta in laterizio	200,00	0,5000	0,400	1450	0,84	7
8	Intonaco di calce e gesso	10,00	0,7000	0,014	1400	1,00	10
-	Resistenza superficiale esterna	-	-	0,170	-	-	-

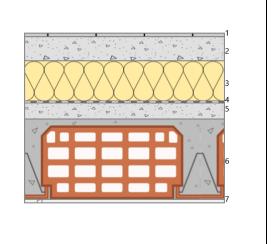
Soffitti:

Cod	Tipo	Descrizione	Sp	Ms	Y _{IE}	Sfasamento	Ст	ε	α	θ	Ue
Cod	Про	Descrizione	[mm]	[kg/m ²]	[W/m ² K]	[h]	[kJ/m²K]	[-]	[-]	[°C]	[W/m²K]
<i>S</i> 1	D	Soffitto verso piano primo [+ pannelli radianti + policem]	440	539	0,022	-17,116	60,617	0,9	0,6	-	0,357
<i>S2</i>	D	Soffitto verso sottotetto [+ pannelli radianti + policem]	440	539	0,022	-17,116	60,617	0,9	0,6	ı	0,357
<i>S3</i>	Т	Copertura [+ poliuretano]	175	60	0,168	-3,175	14,095	0,9	0,6	-8,1	0,182
<i>S4</i>	Т	Soffitto verso terrazzo [+ poliuretano]	424	528	0,015	-14,375	60,741	0,9	0,6	-8,1	0,191

<u>Descrizione della struttura:</u> Copertura [+ poliuretano]

Codice: S3

Trasmittanza termica	0,182	W/m²K	
Spessore	175	mm	
Temperatura esterna (calcolo potenza invernale)	-8,1	°C	
Permeanza	2,541	10 ⁻¹² kg/sm ² Pa	
Massa superficiale (con intonaci)	60	kg/m²	3
Massa superficiale (senza intonaci)	60	kg/m²	
Trasmittanza periodica	0,168	W/m²K	
Fattore attenuazione	0,923	-	
Sfasamento onda termica	-3,2	h	


Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,071	-	-	
1	Copertura in tegole di argilla	20,00	0,9900	0,020	2000	0,84	1
2	Legno di abete flusso perpend. alle fibre	20,00	0,1200	0,167	450	1,60	625
3	Poliuretano espanso in fabbrica fra lamiere sigillate	120,00	0,0240	5,000	30	1,30	140
4	Barriera vapore in fogli di polietilene	0,40	0,3300	0,001	920	2,20	100000
5	Legno di abete flusso perpend. alle fibre	15,00	0,1200	0,125	450	1,60	625
-	Resistenza superficiale interna	-	-	0,100	-	-	-

<u>Descrizione della struttura:</u> Soffitto verso terrazzo [+ poliuretano]

Codice: S4

Trasmittanza termica	0,191	W/m²K
Trasmittanza termica	0,131	VV/III K
Spessore	424	mm
Temperatura esterna (calcolo potenza invernale)	-8,1	°C
Permeanza	0,231	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	542	kg/m²
Massa superficiale (senza intonaci)	528	kg/m²
Trasmittanza periodica	0,015	W/m²K
Fattore attenuazione	0,080	-
Sfasamento onda termica	-14,4	h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,071	-	1	-
1	Piastrelle in granito	10,00	4,1000	0,002	3000	1,00	10000
2	Sottofondo di cemento magro	60,00	0,9000	0,067	1800	0,88	30
3	Poliuretano espanso rigido imperm. ai gas	100,00	0,0220	4,545	35	1,40	60
4	Impermeabilizzazione con bitume	4,00	0,1700	0,024	1200	1,00	188000
5	C.l.s. armato (1% acciaio)	40,00	2,3000	0,017	2300	1,00	130
6	Soletta in laterizio	200,00	0,5000	0,400	1450	0,84	7
7	Intonaco di calce e gesso	10,00	0,7000	0,014	1400	1,00	10
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Componenti finestrati:

01	T '	B				fc	fc	g _{tot}	Н	L	Ug	Uw	И	Agf	Lgf
Cod	Tipo	Descrizione	vetro	е	ggl,n	inv	est	[-]	[cm]	[cm]	[W/m ² K]	[W/m ² K]	[°C]	[m²]	[m]
W1	Ε	PF piano terra 80x210	Singolo	0,837	0,85	1	1	1	210	80	4,875	4,304	- 8,1	1,346	5,32
W2	Т	F piano terra 100x100 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	100	100	1	1,3	- 8,1	0,669	5,04
W3	Т	PF piano terra 100x210 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	210	100	1	1,3	- 8,1	1,505	9,44
W4	Т	F piano terra 150x100 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	100	150	1	1,3	- 8,1	1,109	6,04
W5	Ε	F piano terra 250x100	Singolo	0,837	0,85	1	1	-	100	250	4,875	4,287	- 8,1	1,989	8,04
W6	Т	F piano terra 80x100 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	100	80	1	1,3	- 8,1	0,493	4,64
W7	Т	PF piano primo 150x240 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	240	150	1	1,3	8,1	2,873	11,64
W8	Т	F piano primo	Doppio	0,837	0,67	1	0,25	-	150	100	1	1,3	- 8,1	1,049	7,04

		100x150 [UW<1.3]													
W9	Т	PF piano primo 150x240 [UW<1.3]	Doppio	0,837	0,67	1	0,25	1	240	150	1	1,3	8,1	2,873	11,64
W10	Т	F piano primo 150x130 [UW<1.3]	Doppio	0,837	0,67	1	0,25	1	130	150	1	1,3	- 8,1	1,487	7,24
W11	Т	F piano primo 250x130 [UW<1.3]	Doppio	0,837	0,67	1	0,25	1	130	250	1	1,3	8,1	2,667	9,24
W12	Т	PF piano primo 250x240 [UW<1.3]	Doppio	0,837	0,67	1	0,25	1	240	250	1	1,3	- 8,1	5,153	13,64
W13	Т	F piano primo 250x130 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	130	250	1	1,3	- 8,1	2,667	9,24
W14	Т	F piano primo 80x130 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	130	80	1	1,3	- 8,1	0,661	5,84
W15	Т	PF piano primo 150x200 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	200	150	1	1,3	- 8,1	2,369	10,04
W16	Т	F sottotetto 150x130 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	130	150	1	1,3	- 8,1	1,487	7,24
W17	Т	F sottotetto 120x130 [UW<1.3]	Doppio	0,837	0,67	1	0,25	'	130	120	1	1,3	- 8,1	1,133	6,64
W18	Т	Lucernario 70x130 [UW<1.3]	Doppio	0,837	0,67	1	0,25	-	130	70	1	1,3	- 8,1	0,684	3,52

Legenda simboli

е	Emissività
ggl,n	Fattore di trasmittanza solare
fc inv	Fattore tendaggi (energia invernale)
fc est	Fattore tendaggi (energia estiva)
g _{tot}	Fattore di trasmissione solare totale
Н	Altezza
L	Larghezza
Ug	Trasmittanza vetro
Uw	Trasmittanza serramento
И	Temperatura esterna o temperatura locale adiacente
Agf	Area del vetro
Lgf	Perimetro del vetro

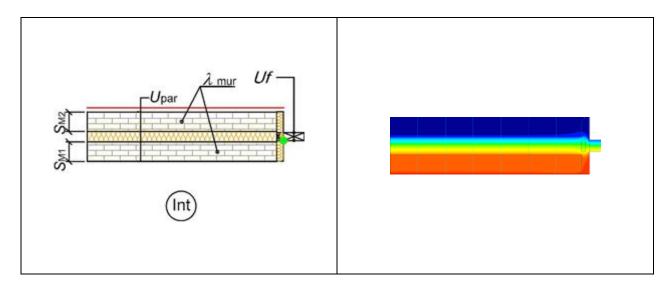
Ponti termici:

CI	Descriptions	Assenza di rischio formazione	Ψ
Cod	Descrizione	muffe	[W/mK]
<i>Z</i> 1	W - Parete - Telaio	X	0,016
<i>Z2</i>	GF - Parete - Solaio controterra	X	0,003
<i>Z</i> 3	IF - Parete - Solaio interpiano	X	0,162
Z4	GF - Parete - Solaio rialzato	X	-0,039
<i>Z</i> 5	B - Parete - Balcone	X	0,167
<i>Z</i> 6	R - Parete - Copertura	X	0,059
<i>Z7</i>	C - Angolo tra pareti sporgente	Х	-0,042
<i>Z8</i>	C - Angolo tra pareti rientrante	X	0,022

Legenda simboli

Ψ	Trasmittanza lineica di calcolo

<u>Descrizione del ponte termico:</u> W - Parete - Telaio


Codice: Z1

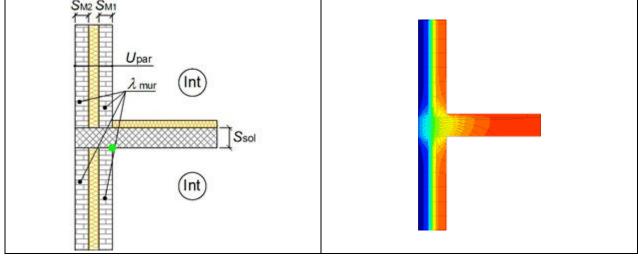
Tipologia	W - Parete - Telaio		
Trasmittanza termica lineica di calcolo	0,016	W/mK	
Trasmittanza termica lineica di riferimento	0,016	W/mK	
Fattore di temperature f _{rsi}	0,917	-	
Riferimento	UNI EN ISO 14683 e UNI EN ISO 10211		

Note

 ${\it W23-Giunto\ parete\ con\ isolamento\ in\ intercape dine\ continuo\ -telaio\ posto\ in\ mezzeria\ con\ protezione\ isolante}$

Trasmittanza termica lineica di riferimento (ϕe) = 0,016 W/mK.

<u>Caratteristiche</u>							
Trasmittanza termica telaio	Uf	1,300	W/m²K				
Spessore muro M1	Sm1	80,0	mm				

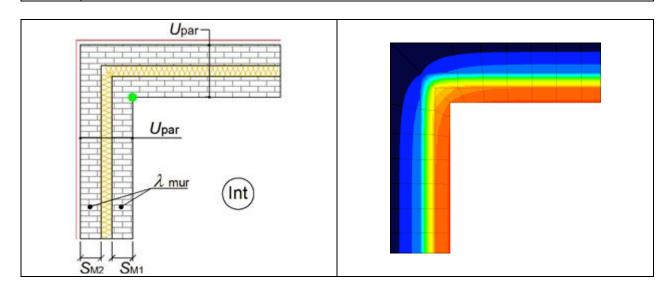

Spessore muro M2	Sm2	120,0	mm
Trasmittanza termica parete	Upar	0,138	W/m²K
Conduttività termica muro	λmur	0,394	W/mK

<u>Descrizione del ponte termico:</u> *IF - Parete - Solaio interpiano*

Codice: Z3

Tipologi	a	IF - Parete - Solaio interpiano			
Trasmit	anza termica lineica di calcolo	0,162	W/mK		
Trasmiti riferime	anza termica lineica di nto	0,324	W/mK		
Fattore	di temperature f _{rsi}	0,793 -			
Riferime	ento	UNI EN ISO 14683 e UNI EN ISO 10211			
Note	IF14 - Giunto parete con isolam superiore		pedine - solaio interpiano con isolamento		

Note | Superiore | Trasmittanza termica lineica di riferimento (φe) = 0,324 W/mK.

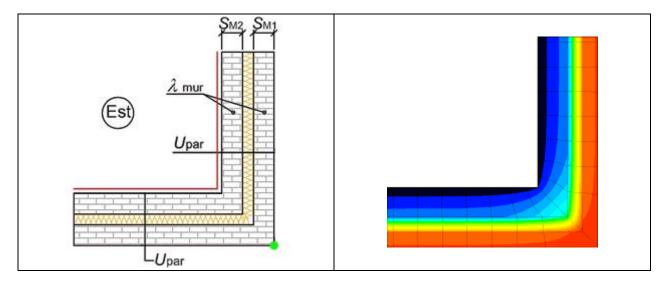

<u>Caratteristiche</u>							
Spessore solaio	Ssol	240,0	mm				
Spessore muro M1	Sm1	80,0	mm				
Spessore muro M2	Sm2	120,0	mm				
Trasmittanza termica parete	Upar	0,138	W/m²K				
Conduttività termica muro	λmur	0,394	W/mK				

<u>Descrizione del ponte termico:</u> C - Angolo tra pareti sporgente

Codice: 27

Tipologia	C - Angolo t	ra pareti
Trasmittanza termica lineica di calcolo	-0,042	W/mK
Trasmittanza termica lineica di riferimento	-0,085	W/mK

Fattore o	Fattore di temperature f _{rsi}		-	
Riferimento		UNI EN ISO 14683 e UNI EN ISO 10211		
Nata	C2 - Giunto tre due pareti con isc		tercapedine (sporgente)	
Note	Trasmittanza termica lineica di r	iferimento (φ	e) = -0,085 W/mK.	



Caratteristiche							
Spessore muro M1	Sm1	80,0	mm				
Spessore muro M2	Sm2	120,0	mm				
Trasmittanza termica parete	Upar	0,138	W/m²K				
Conduttività termica muro	λmur	0,394	W/mK				

<u>Descrizione del ponte termico:</u> C - Angolo tra pareti rientrante

Codice: Z8

Tipologia	1	C - Angolo tra pareti			
Trasmitta	anza termica lineica di calcolo	0,022	W/mK		
Trasmitta riferimer	anza termica lineica di nto	0,044	W/mK		
Fattore o	li temperature f _{rsi}	0,966 -			
Riferime	nto	UNI EN ISO 14683 e UNI EN ISO 10211			
Note	•	ti con isolamento in intercapedine (rientrante) eica di riferimento (φe) = 0,044 W/mK.			

<u>Caratteristiche</u>							
Spessore muro M1	Sm1	80,0	mm				
Spessore muro M2	Sm2	120,0	mm				
Trasmittanza termica parete	Upar	0,138	W/m²K				
Conduttività termica muro	λmur	0,394	W/mK				

4.2 Carichi termici

Il carico termico di un ambiente è definito come la potenza termica che deve essere fornita (in inverno) o sottratta (in estate) al fine di mantenere l'ambiente in condizioni prefissate di temperatura e di umidità. Il calcolo dei carichi termici rappresenta un passo fondamentale per poter dimensionare correttamente gli impianti termici e i relativi sottosistemi di generazione, distribuzione ed emissione dell'edificio.

Il carico termico si suddivide in:

- sensibile (Q_S) : associato ad una differenza di temperatura tra ambiente esterno ed interno;
- latente (Q_L) : associato ad una differenza di umidità tra ambiente esterno ed interno.

Il carico termico sensibile è indotto dalle interazioni energetiche con l'ambiente esterno che a loro volta dipendono dalla trasmissione del calore attraverso l'involucro e dall'infiltrazione di aria, così come anche dalla radiazione solare, dalla presenza di persone e da fonti di calore endogene.

Il carico termico latente, invece, è indotto dalla presenza di persone e dall'umidità associata ad aria che si infiltra attraverso l'involucro e/o in ingresso/uscita dagli ambienti a causa dell'apertura saltuaria di porte e finestre. Bisogna tener presente che per il regime invernale non si considera il carico latente (entrante) nell'ambiente a differenza di quello sensibile che è uscente.

In estate, invece viene considerato il carico termico latente.

4.2.1 Carichi termici invernali

Il carico termico invernale viene valutato in condizioni di progetto lasciando al sistema di regolazione il compito di adeguare la fornitura energetica alla variabilità della richiesta. Il suo calcolo si fonda su due ipotesi semplificative:

• Condizioni di regime permanente (temperatura esterna costante);

- Assenza di apporti termici positivi, ovvero quelli dovuti a radiazione solare e termini endogeni (persone, luci e apparecchiature);
- Temperatura esterna pari a -8,1 °C (secondo D.P.R. 1052/1977 per la città di Torino);
- Temperatura interna fissata convenzionalmente a 20 °C.

Le suddette ipotesi sono cautelative, in quanto si riferiscono alla situazione più gravosa per l'impianto di riscaldamento.

La norma **UNI EN 12831-1:2018** presenta un metodo semplificato secondo il quale, il carico termico dell'iesimo ambiente è determinato dalla seguente formula:

$$Q_{HL,i} = Q_{T,i} + Q_{V,i}$$

Dove:

- $Q_{T,i}$ [W]: potenza termica dispersa per trasmissione;
- $Q_{V,i}[W]$: potenza termica dispersa per ventilazione.

A sua volta la potenza termica dispersa per trasmissione $Q_{T,i}$ si ottiene nel modo seguente:

$$Q_{T,i} = \sum_{k} Q_{T,k} = \sum_{k} (A_k \cdot (U_k + \Delta U_{TB}) \cdot f_{x,k}) \cdot (\theta_{int,i} - \theta_e)$$

Dove:

- $Q_{T,k}$ [W]: potenza termica dispersa per trasmissione dal k-esimo elemento dell'ambiente considerato;
- A_k [m^2]: superficie del k-esimo elemento dell'ambiente considerato;
- U_k [W/(m²K)]: trasmittanza del k-esimo elemento dell'ambiente considerato;
- ΔU_{TB} [W/(m²K)]: trasmittanza termica aggiuntiva dovuta ai ponti termici;
- $f_{x,k}$ [-]: fattore di correzione della temperatura;
- $\theta_{int,i}$ [°C]: temperatura interna di progetto dell'i-esimo ambiente;
- θ_e [°C]: temperatura esterna di progetto.

Invece, la potenza termica dispersa per ventilazione $Q_{V,i}$, è determinata dalla seguente formula:

$$Q_{V,i} = V_i \cdot n_i \cdot \rho_a \cdot c_{n,a} \cdot (\theta_{int,i} - \theta_e)$$

Dove:

- V_i [m^3]: volume interno dell'i-esimo ambiente;
- n_i [h^{-1}]: tasso di ricambio d'aria dell'i-esimo ambiente;
- $\rho_a [kg/m^3]$: densità dell'aria;
- $c_{p,a}[J/(kg \cdot K)]$: calore specifico dell'aria;
- $\theta_{int.i}$ [°C]: temperatura interna di progetto dell'i-esimo ambiente;
- θ_e [°C]: temperatura esterna di progetto.

Per ragioni d'igiene è richiesto un tasso di ricambio d'aria minimo da rispettare. In generale, per gli ambienti abitabili questo tasso è pari a $0,5 \ h^{-1}$, invece per cucine e bagni (con finestra) è pari a $1,5 \ h^{-1}$.

Di seguito i carichi termici invernali ottenuti a seguito della modellazione tramite EC700 di Edilclima:

	CARICHI TERMICI INVERNALI								
Lacala	7000	Doggriniana	θi	٧	S	Фtr	Фvе	Фhl	Φhl(+10%)
Locale	Zona	Descrizione	[°C]	[m³]	[m²]	[W]	[W]	[W]	[W]
1	1	PT - Monolocale	20	92,7	38,61	1465	868	2333	2567
2	1	PT - Dispensa	20	12,9	5,36	339	60	400	440
3	1	PT - Bagno	20	30	12,49	633	421	1055	1160
4	2	P1 - Camera 1	20	48,4	16,52	520	68	588	647
5	2	P1 - Disimpegno	20	9,5	3,24	0	13	13	15
6	2	P1 - Cucina Soggiorno	20	175,7	59,9	1569	494	2063	2269
7	2	P1 - Camera 2	20	47,7	16,27	356	67	423	465
8	2	P1 - Dispensa	20	9,6	3,29	27	14	40	44
9	2	P1 - Cabina armadio	20	10,8	3,69	0	15	15	17
10	2	P1 - Bagno	20	18,8	6,4	140	79	219	241
11	3	P2 - Ingresso/Dis.	20	34,7	5,42	224	49	273	179
12	3	P2 - Cucina Soggiorno	20	48,6	18,3	451	137	588	647
13	3	P2 - Camera 1	20	66,3	23,76	601	93	694	764
14	3	P2 - Studio	20	19	8,42	192	27	219	241
15	3	P2 - Camera 2	20	67,5	24	606	95	701	771
16	3	P2 - Bagno 1	20	20,7	7,98	140	87	227	250
17	3	P2 - Bagno 2	20	37,7	10,92	272	159	431	474
	TOT	ALE EDIFICIO	20	750,6	268,24	7535	2746	10282	11312

In via cautelativa è stato considerato un coefficiente di sicurezza pari a 1,1. Questo coefficiente rappresenta una correzione legata al riscaldamento intermittente dato da una possibile attenuazione notturna del riscaldamento.

4.2.2 Carichi termici estivi

Il calcolo del carico termico estivo si fonda su ipotesi opposte rispetto al caso invernale, ovvero:

- Condizioni di regime dinamico (temperatura e radiazione solare variabili nel tempo);
- Presenza di tutti gli apporti del bilancio termico dell'ambiente: trasmissione attraverso l'involucro, apporto di radiazione solare e termini endogeni (persone, luci e apparecchiature).

Ne consegue che bisogna calcolare il carico termico in ore diverse della giornata ed individuare:

- le **condizioni di picco** per ogni ambiente, valore che serve per determinare il fabbisogno massimo dei singoli ambienti;
- il massimo contemporaneo a tutti gli ambienti, valore che serve per dimensionare il generatore.

A tal proposito si è ricorso al **metodo Carrier-Pizzetti**, il quale consente di valutare i carichi termici per **trasmissione**, **irraggiamento**, **ventilazione** ed **endogeni**.

I carichi termici per irraggiamento attraverso le superfici finestrate, corretti in funzione del tipo di ombreggiamento fisso e mobile presente, tengono conto dell'energia entrante nel fabbricato, accumulata e rilasciata successivamente dalle superfici irraggiate, attraverso l'utilizzo dei "fattori di accumulo". Il **fattore di accumulo** è un dato complesso e particolarmente rilevante che cerca di calcolare il corretto sfasamento e smorzamento tra l'assorbimento della radiazione solare e la sua immissione nell'ambiente interno. I fattori di accumulo, riportati in maniera tabellare nel metodo di calcolo, sono in funzione dell'ora del giorno, del

numero di ore di funzionamento dell'impianto, delle schermature esterne, dell'orientamento e della massa areica di accumulo del pavimento. Il carico termico entrante dovuto all'irraggiamento solare attraverso i componenti vetrati deve prima essere assorbito dagli elementi interni (pavimenti, pareti, mobilio ecc) per poi venire riemesso in ambiente, per convezione ed irraggiamento, una volta che gli elementi interni abbiano superato la temperatura interna dell'aria.

Il metodo considera in aggiunta una **differenza di temperatura equivalente** (ΔT_{equiv}) ai fini del calcolo dei carichi per trasmissione dei componenti opachi. La ΔT_{equiv} tiene in considerazione non solo l'escursione della temperatura esterna dell'aria, ma anche dell'irraggiamento solare sulla parete o copertura, dell'assorbimento solare, dell'inerzia e dell'orientamento di questi ultimi, della latitudine del luogo e dell'ora della giornata. Il concetto di ΔT_{eauiv} è quindi alla base della semplificazione applicata da questo modello di calcolo e permette l'utilizzo della trasmittanza termica, calcolata in regime stazionario, ai fini della determinazione degli scambi per trasmissione nel periodo estivo dei componenti opachi. La radiazione solare assorbita da pareti e coperture produce un aumento della temperatura da considerare ai fini di un corretto calcolo termico. I valori della differenza di temperatura equivalente si possono determinare analiticamente con il metodo Carrier anche se risulta particolarmente oneroso. Per minimizzare gli oneri di calcolo vengono realizzate delle tabelle di ΔT_{equiv} calcolate con cadenza oraria nel periodo dalle 8 alle 18, per le varie esposizioni, colorazioni e per differente peso delle strutture. Il flusso di calore per trasmissione tra l'esterno e l'interno è legato alla trasmittanza del componente ed al salto termico "equivalente" tra l'aria esterna e quella interna. Con una costante di tempo del componente infinita, la temperatura esterna dell'aria può essere considerata pari a quella media giornaliera, mentre nel caso di costante di tempo nulla la temperatura esterna non subisce alterazioni. Con l'utilizzo della differenza di temperatura equivalente ΔT_{equiv} , che tiene conto delle capacità inerziali delle strutture, il metodo di calcolo considera lo sfasamento e l'attenuazione dell'onda termica esterna in maniera semplificata.

Per il calcolo si è fatto riferimento ai seguenti dati di progetto:

Temperatura bulbo secco	26,0	°C	Potenza elettrica per m²	10	W/m²
Temperatura bulbo umido	18,6	°C	Q sensibile per persona	64	W/pers
Umidità relativa interna	50,0	%	Q latente per persona	46	W/pers

Di seguito i risultati ottenuti tramite software:

	CARICHI TERMICI ESTIVI NELL'ORA DI MASSIMO CARICO DI CIASCUN LOCALE									
Locale	Zona	a Descrizione	Ora	Qlrr	QTr	Qv	Qc	Qgl,sen	Qgl,lat	Qgl
				[W]	[W]	[W]	[W]	[W]	[W]	[W]
1	1	PT - Monolocale	14	203	336	339	826	1226	477	1704
2	1	PT - Dispensa	16	0	122	47	54	182	41	223
4	2	P1 - Camera 1	18	648	119	161	385	1080	234	1314
5	2	P1 - Disimpegno	14	0	0	35	32	37	30	67
6	2	P1 - Cucina Soggiorno	16	1629	394	643	1149	3029	786	3814
7	2	P1 - Camera 2	10	239	34	145	383	565	235	801
8	2	P1 - Dispensa	12	0	6	35	33	42	32	74
9	2	P1 - Cabina armadio	14	0	0	40	37	42	34	76
11	3	P2 - Ingresso/Dis.	16	0	89	127	91	198	110	307
12	3	P2 - Cucina Soggiorno	10	270	32	148	513	679	284	964
13	3	P2 - Camera 1	12	678	82	239	458	1144	313	1457
14	3	P2 - Studio	16	0	88	70	194	246	106	352

15	3	P2 - Camera 2	16	680	181	247	460	1262	306	1567
TOTALE EDIFICIO		4347	1483	2276	4615	9732	2988	12720		

	CARICHI TERMICI ESTIVI NELL'ORA DI MASSIMO CARICO DELL'EDIFICIO										
Locale	Zona	Descrizione	Or	Qlrr	QTr	Qv	Qc	Qgl,s en	Qgl,l at	Qgl	
			а	[W]	[W]	[W]	[W]	[W]	[W]	[W]	
1	1	PT - Monolocale	16	123	356	339	826	1167	477	1644	
2	1	PT - Dispensa	16	0	122	47	54	182	41	223	
4	2	P1 - Camera 1	16	600	117	177	385	1034	245	1280	
5	2	P1 - Disimpegno	16	0	0	35	32	37	30	67	
6	2	P1 - Cucina Soggiorno	16	1629	394	643	1149	3029	786	3814	
7	2	P1 - Camera 2	16	30	57	174	383	401	243	644	
8	2	P1 - Dispensa	16	0	4	35	33	41	30	72	
9	2	P1 - Cabina armadio	16	0	0	40	37	42	34	76	
11	3	P2 - Ingresso/Dis.	16	0	89	127	91	198	110	307	
12	3	P2 - Cucina Soggiorno	16	34	149	178	513	582	292	874	
13	3	P2 - Camera 1	16	434	140	243	458	972	302	1274	
14	3	P2 - Studio	16	0	88	70	194	246	106	352	
15	3	P2 - Camera 2	16	680	181	247	460	1262	306	1567	
TOTALE EDIFICIO			16	3530	1697	2355	4615	9193	3002	12194	

4.3 Terminali di emissione

4.3.1 Pannelli radianti a pavimento

Per il dimensionamento dei pannelli radianti a pavimento del piano piano primo e secondo si è fatto riferimento alla serie di norme **UNI EN 1264:2021**.

Prima di procedere con il dimensionamento, bisogna tener conto di alcuni limiti di funzionamento:

• Limite di temperatura superficiale per pavimenti radianti secondo norma:

Riscaldamento: 29 °CRaffrescamento: 19 °C

Questo andrà poi a determinare la resa limite dell'impianto.

Limite di perdita di carico massima di un circuito: 2500 DaPa
 Questo limite è dettato dal fatto di poter servire l'impianto con circolatori standard. Per rispettarlo, è possibile considerare che il limite di lunghezza della tubazione per circuito sia di 80 m.

Il dimensionamento dei sistemi radianti avviene partendo dal locale sfavorito, il quale andrà a determinare la resa necessaria che dovrà avere l'impianto radiante e di conseguenza la temperatura di mandata.

Tra i locali sfavoriti non si tengono in considerazione i locali bagno, wc o similari per due motivi: le potenze in gioco sono sempre molto elevate dovute ai volumi di ricambio ora, generalmente vengono anche dimensionati per una temperatura ambiente superiore (22 °C); il secondo motivo è che la presenza di piatti doccia, vasche o sanitari impongono una riduzione sensibile dell'area di posa del sistema. In questo caso l'impianto radiante potrà quindi essere integrato ad altri sistemi di riscaldamento quali termoarredi etc.

Inoltre, per il funzionamento estivo generalmente questi locali sono esclusi a priori sia dal calcolo che dall'attivazione dell'impianto. Infatti, si tratta di ambienti ad alta umidità per cui vi è il rischio che la

differenza di temperatura tra il pavimento freddo e l'aria calda e umida del bagno sia talmente elevata da causare la condensazione dell'umidità sull'interfaccia tra il pavimento e l'aria. Questo nel tempo può portare al danneggiamento della struttura del pavimento e alla formazione di muffa, dannosa per la salute.

Il locale sfavorito è quello con la richiesta di potenza per unità di superficie più elevata. In particolare, essendo il pavimento la nostra superficie radiante, si ha che la potenza va considerata al netto delle dispersioni attraverso lo stesso. In questo caso però, tutti i locali analizzati presentano al di sotto altre zone climatizzate e quindi la componente verso il basso è nulla.

Il locale sfavorito risulta essere la "Camera 1" presente al piano primo.

CARICHI TERMICI INVERNALI SPECIFICI									
Locale	Zono	Zona Descrizione -	S	Φhl(+10%)	q	Φ_corr.	q_corr.	Note	
Locate	ZUIIa		[m ²]	[W]	[W/m ²]	[W]	[W/m ²]	Note	
4	2	P1 - Camera 1	16,50	647	39,2	-	-		
5	2	P1 - Disimpegno	3,24	15	4,6	86	26,6	integra locale 10	
6	2	P1 - Cucina Soggiorno	59,90	2269	37,9	2193	36,6		
7	2	P1 - Camera 2	16,30	465	28,6	393	24,1		
8	2	P1 - Dispensa	3,29	44	13,4	120	36,6	integra locale 6	
9	2	P1 - Cabina armadio	3,69	17	4,6	89	24,1	integra locale 7	
10	2	P1 - Bagno	6,40	241	47,1	170	26,6	locale bagno	
11	3	P2 - Ingresso/Dis.	9,09	300	33	-	-		
12	3	P2 - Cucina Soggiorno	18,30	647	35,4	-	-		
13	3	P2 - Camera 1	23,80	764	32,2	-	-		
14	3	P2 - Studio	8,42	241	28,6	-	-		
15	3	P2 - Camera 2	24,00	771	32,1	-	-		
16	3	P2 - Bagno 1	7,98	250	39,2	-	-	locale bagno	
17	3	P2 - Bagno 2	10,92	474	54,3	-	-	locale bagno	

I locali "P1 – Disimpegno", "P1 – Dispensa", "P1 – Cabina armadio" presentano dei carichi molto bassi. Per questo motivo si è deciso di dimensionarli in modo da fornire un'integrazione ai locali adiacenti dotati di fabbisogni più elevati. La potenza "corretta" è stata calcolata rapportando la potenza totale alla superficie del singolo locale.

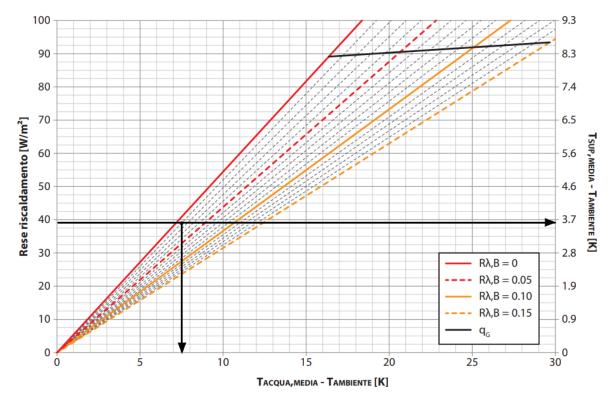
Il dimensionamento ha inizio con la valutazione del numero di circuiti necessari per ogni locale. Il sistema radiante DRY della casa RDZ presenta un passo di posa di 14 cm e un'incidenza di 7,14 m^{-1} . Questo ci indica che per ogni m^2 di superficie radiante si hanno 7,14 m di tubazione, il che permette di calcolare immediatamente quanti circuiti si debbano prevedere nel locale.

$$L_{tubazioni} = S \cdot incidenza = 16,5 \cdot 7,14 = 118 m$$
 $n^{\circ}_{circuiti} = \frac{L_{tubazioni}}{L_{max,circuito}} = \frac{118}{80} = 1,47 = 2$
 $L_{tub,circ} = \frac{L_{tubazioni}}{n^{\circ}_{circuiti}} = \frac{118}{2} = 59,0 m$

Calcoliamo ora la temperatura media del fluido per avere la resa necessaria a soddisfare il nostro locale, partendo dalla formula presente in norma $q=K_H\cdot\Delta\theta_H$, dove K_H è il coefficiente di trasmissione in riscaldamento e $\Delta\theta_H$ è la differenza tra la temperatura media dell'acqua e la temperatura ambiente.

	Heating data Dati riscaldamento															
Rλ,B	0.00	0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15														
K,	5.445	5.197	4.968	4.756	4.560	4.380	4.213	4.060	3.917	3.786	3.663	3.549	3.441	3.339	3.242	3.148

Essendo che il pavimento ha un rivestimento di piastrelle in ceramica, caratterizzato da una resistenza termica pari a $R_{\lambda,B}=0.01\frac{m^2\cdot K}{W}$, allora si ottiene $K_H=5.197\frac{W}{m^2\cdot K}$.


Per cui:

$$\Delta\theta_H = \frac{q}{K_H} = \frac{39,2}{5,197} = 7,5 K$$

Da questo valore si ricava la temperatura media del fluido con la formula:

$$T_{acqua,med} = \theta_i + \Delta\theta_H = 20 + 7.5 = 27.5$$
 °C

Dal seguente grafico fornito dalla RDZ si ricava, in funzione di q e $R_{\lambda,B}$,la differenza di temperatura tra la superficie del pavimento e l'ambiente.

Per cui:

$$T_{superficie,med} - \theta_i = 3.6 K$$

$$T_{superficie,med} = 20 + 3.6 = 23.6 \,^{\circ}C < 29 \,^{\circ}C$$

La norma detta poi le condizioni per il salto termico che dovrà avere il fluido vettore nel locale sfavorito e dovrà essere $0 < \Delta T_{acqua} \le 5 \ K$. Consideriamo pure il valore massimo, ovvero $\Delta T_{acqua} = 5 \ K$.

Da qui si ricava la temperatura di mandata dell'impianto:

$$T_{man,acqua} = T_{acqua,med} + \frac{\Delta T_{acqua}}{2} = 27.5 + \frac{5}{2} = 30.0 \, ^{\circ}C$$

Adesso è possibile calcolare la portata necessaria per soddisfare il locale. Partendo dalla formula per il calcolo del calore emesso $Q = G_{tot} \cdot c \cdot \Delta T_{acqua} \cdot 1,16$, dove c è il calore specifico del fluido espresso in $\frac{kcal}{ka\cdot c}$ mentre 1,16 è un fattore di conversione da $\frac{kcal}{h}$ a W.

Allora:

$$G_{tot} = \frac{q \cdot S}{c \cdot \Delta T_{acaya} \cdot 1,16} = \frac{39,2 \cdot 16,5}{1 \cdot 5 \cdot 1,16} = 111,6 \frac{kg}{h}$$

Quindi, la portata per singolo circuito:

$$G_{circuito} = \frac{G_{tot}}{n_{circuiti}^{\circ}} = \frac{111.6}{2} = 55.8 \frac{kg}{h}$$

La RDZ fornisce, per ogni tipologia di tubo, la formula per la perdita del carico. Per il tubo da $\emptyset14~mm$ si ha:

$$\Delta p_{lineare} = 0.0087 \cdot G^{1.75}$$

La perdita di carico lineare del singolo circuito è:

$$\Delta p_{lin.circ} = 0.0087 \cdot 55.8^{1.75} = 9.9 \, DaPa/m$$

Quindi, la perdita di carico totale del singolo circuito è:

$$\Delta p_{circ} = \Delta p_{lin.circ} \cdot L_{tub.circ} = 9.9 \cdot 59.0 = 584.1 \ DaPa < 2500 \ DaPa$$

Da notare che sono esclusi dal conteggio la tubazione di mandata e di ritorno che servono a collegare il collettore ai circuiti e le perdite relative ai collettori.

A questo punto il calcolo è concluso, il locale sfavorito è soddisfatto a pieno con 2 circuiti e una temperatura di mandata pari a 30 °C. Di seguito una tabella riassuntiva dei risultati ottenuti:

	P1 - Camera	1 (local	le sfavorito)
q	W/m^2	39,2	
S	m^2	16,5	
incidenza	m^-1	7,14	caratteristica pannello
L_tub	m	118,0	
L_max,circ	m	80	
nº circuiti	-	1,47	
nº circuiti (arrotondato)	-	2	
L_tub,circ	m	59,0	
R_λ,b	m^2*K/W	0,01	piastrelle in ceramica
K_H	Wm^2*K	5,197	da tabella in base a R_λ,b
Δθ_Η	K	7,5	
θ_i	°C	20	temperatura obiettivo
θ_i_massima	°C	25,4	massima per il limite della T_sup,media
θ_i_progetto	°C	20	
T_acqua,med	°C	27,5	
T_sup,media - θ_i_progetto	K	3,6	da grafico in base a q e R_λ,b
T_sup,media	°C	23,6	< 29 °C
ΔT_acqua	K	5,00	0<ΔT<5 K
T_man,acqua	°C	30,0	
С	kcal/kg*°C	1	calore specifico dell'acqua
1,16	-	1,16	fattore di conversione da kcal/h a W
G_tot	kg/h	111,6	
G_circuito	kg/h	55,8	
Δp_lin,circ	DaPa/m	9,9	
Δp_circ	DaPa	584,1	< 2500 DaPa
T_acqua,med_max	°C	32,9	massima per il limite della T_sup,media
T_man,acqua_max	°C	35,4	massima per il limite della T_sup,media

Tra i calcoli si è valutata pure la massima temperatura di mandata dell'acqua ammissibile affinché non venga superato il limite della temperatura superficiale media di $29\,^{\circ}C$.

Si procede adesso con il calcolo di tutti gli altri locali ponendo come punto di partenza la temperatura di mandata calcolata per il locale sfavorito e imponendo a tutti i circuiti un ΔT_{acqua} pari a 5 K. Per fare questo è necessario un calcolo iterativo alla ricerca di un valore di portata adeguato a soddisfare sia il carico termico che tale caratteristica.

LOCALI PIANO PRII	мо	P1 - Disimpegno	P1 - Cucina Soggiorno	P1 - Camera 2	P1 - Dispensa	P1 - Cabina armadio	note
q	W/m^2	26,6	36,6	24,1	36,6	24,1	
S	m^2	3,2	59,9	16,3	3,3	3,7	
incidenza	m^-1	7,14	7,14	7,14	7,14	7,14	caratteristica pannello
L_tub	m	23,1	427,7	116,2	23,5	26,3	
L_max,circ	m	80	80	80	80	80	
nº circuiti	-	0,29	5,35	1,45	0,29	0,33	
n° circuiti_eff	-	1	6	2	1	1	n° effettivo arrotondato per eccesso
L_tub,circ	m	23,1	71,3	58,1	23,5	26,3	
T_man,acqua	°C	30,0	30,0	30,0	30,0	30,0	uguale a locale sfavorito
ΔT_acqua	K	5,00	5,00	5,00	5,00	5,00	imposto uguale per tutti i circuiti
С	kcal/kg*°C	1	1	1	1	1	calore specifico dell'acqua
1,16	-	1,16	1,16	1,16	1,16	1,16	fattore di conversione da kcal/h a W
G_tot	kg/h	14,8	378,0	67,7	20,8	15,4	ricerca obiettivo imponendo ΔT_acqua
G_circuito	kg/h	14,8	63,0	33,9	20,8	15,4	
Δp_lin,circ	DaPa/m	1,0	12,3	4,1	1,8	1,0	
Δp_circ	DaPa	22,6	873,8	240,3	41,3	27,3	< 2500 DaPa
T_acqua,med	°C	27,5	27,5	27,5	27,5	27,5	
R_λ,b	m^2*K/W	0,01	0,01	0,01	0,01	0,01	piastrelle in ceramica
K_H	Wm^2*K	5,197	5,197	5,197	5,197	5,197	da tabella in base a R_λ,b
Δθ_Η	K	5,1	7,0	4,6	7,0	4,6	
θ_i	°C	20	20	20	20	20	temperatura obiettivo
θ_i_raggiungibile	°C	22,4	20,5	22,9	20,5	22,9	raggiungibile senza termostato
θ_i_massima	°C	26,5	25,6	26,8	25,6	26,8	massima per il limite della T_sup,media
θ_i_progetto	°C	20	20	20	20	20	
T_sup,media - θ_i_progetto	K	2,5	3,4	2,2	3,4	2,2	da grafico in base a q e R_λ,b
T_sup,media	°C	22,5	23,4	22,2	23,4	22,2	<= 29 °C

LOCALI PIANO SEC	ONDO	P2 - Ingresso/Dis.	P2 - Cucina Soggiorno	P2 - Camera 1	P2 - Studio	P2 - Camera 2	note
q	W/m^2	33,0	35,4	32,2	28,6	32,1	
S	m^2	9,1	18,3	23,8	8,4	24,0	
incidenza	m^-1	7,14	7,14	7,14	7,14	7,14	caratteristica pannello
L_tub	m	64,9	130,7	169,6	60,1	171,4	
L_max,circ	m	80	80	80	80	80	
nº circuiti	-	0,81	1,63	2,12	0,75	2,14	
n° circuiti_eff	-	1	2	3	1	3	n° effettivo arrotondato per eccesso
L_tub,circ	m	64,9	65,3	56,5	60,1	57,1	
T_man,acqua	°C	30,0	30,0	30,0	30,0	30,0	uguale a locale sfavorito
ΔT_acqua	K	5,00	5,00	5,00	5,00	5,00	imposto uguale per tutti i circuiti
С	kcal/kg*°C	1	1	1	1	1	calore specifico dell'acqua
1,16	-	1,16	1,16	1,16	1,16	1,16	fattore di conversione da kcal/h a W
G_tot	kg/h	51,7	111,6	131,7	41,6	132,9	ricerca obiettivo imponendo ΔT_acqua
G_circuito	kg/h	51,7	55,8	43,9	41,6	44,3	
Δp_lin,circ	DaPa/m	8,7	9,9	6,5	5,9	6,6	
Δp_circ	DaPa	563,3	647,0	368,4	355,7	378,1	< 2500 DaPa
T_acqua,med	°C	27,5	27,5	27,5	27,5	27,5	
R_λ,b	m^2*K/W	0,01	0,01	0,01	0,01	0,01	piastrelle in ceramica
K_H	Wm^2*K	5,197	5,197	5,197	5,197	5,197	da tabella in base a R_λ,b
Δθ_Η	K	6,4	6,8	6,2	5,5	6,2	
θ_i	°C	20	20	20	20	20	temperatura obiettivo

θ_i_raggiungibile	°C	21,2	20,7	21,3	22,0	21,4	raggiungibile senza termostato
θ_i_massima	°C	25,9	25,7	26,0	26,3	26,0	massima per il limite della T_sup,media
θ_i_progetto	°C	20	20	20	20	20	
T_sup,media - θ_i_progetto	K	3,1	3,3	3,0	2,7	3,0	da grafico in base a q e R_λ,b
T_sup,media	°C	23,1	23,3	23,0	22,7	23,0	<= 29 °C

Dato che la temperatura di mandata è fissa a $30^{\circ}C$ è necessaria una regolazione per mezzo di un termostato collegato alle testine elettrotermiche dei vari circuiti. Quest'ultime riducendo la portata all'interno del circuito permettono una diminuzione della potenza scambiata evitando il superamento della temperatura ambiente di $20^{\circ}C$.

Per quanto riguarda il limite dato dalla massima temperatura superficiale, non si riscontra alcun problema. Infatti, per tutti i locali la temperatura ambiente raggiungibile (ipotizzando di non effettuare alcuna regolazione tramite termostato) per via della temperatura di mandata pari a $30^{\circ}C$, è sempre minore rispetto alla temperatura ambiente che si avrebbe se quel limite venisse raggiunto.

Il prossimo passo riguarda il calcolo dei locali bagno. Questi sono caratterizzati da un'area di posa ridotta, che per semplicità è stata valutata pari all'80% della superficie totale.

	CARICHI TERMICI INVERNALI SPECIFICI (BAGNI)												
Locale Zone	Dogoriziono	S	S_eff(-20%)	Φhl(+10%)	q								
Locale	le Zona	Descrizione	[m ²]	[m²]	[W]	[W/m ²]							
10	2	P1 - Bagno	6,40	5,12	170	33,2							
16	3	P2 - Bagno 1	7,98	6,38	250	39,2							
17	3	P2 - Bagno 2	10,92	8,74	474	54,3							

Di seguito i risultati ottenuti:

LOCALI		P1 - Bagno	P2 - Bagno 1	P2 - Bagno 2	note
q	W/m^2	33,2	39,160	54,3	
S	m^2	5,1	6,4	8,7	area di posa ridotta
incidenza	m^-1	7,14	7,14	7,14	caratteristica pannello
L_tub	m	36,6	45,6	62,4	
L_max,circ	m	80	80	80	
n° circuiti	-	0,46	0,57	0,78	
n° circuiti_eff	-	1	1	1	
L_tub,circ	m	36,6	45,6	62,4	
T_man,acqua	°C	30,0	30,0	30,0	uguale a locale sfavorito
ΔT_acqua	K	5,00	5,00	5,00	imposto uguale per tutti i circuiti
С	kcal/kg*°C	1	1	1	calore specifico dell'acqua
1,16	-	1,16	1,16	1,16	fattore di conversione da kcal/h a W
G_tot	kg/h	29,3	43,1	81,7	ricerca obiettivo imponendo ΔT_acqua
G_circuito	kg/h	29,3	43,1	81,7	
Δp_lin,circ	DaPa/m	3,2	6,3	19,3	
Δp_circ	DaPa	117,4	287,5	1205,4	< 2500 DaPa
T_acqua,med	°C	27,5	27,5	27,5	
R_λ,b	m^2*K/W	0,01	0,01	0,01	piastrelle in ceramica
K_H	Wm^2*K	5,197	5,197	5,197	da tabella in base a R_λ,b
Δθ_Η	K	6,4	7,5	10,4	
θ_i	°C	20	20	20	temperatura obiettivo
θ_i_raggiungibile	°C	21,1	20,0	17,1	raggiungibile senza termostato
θ_i_massima	°C	25,9	25,4	24,0	massima per il limite della T_sup,media
θ_i_progetto	°C	20,0	20,0	17,1	
T_sup,media - θ_i_progetto	K	3,1	3,6	5,0	da grafico in base a q e R_λ,b
T_sup,media	°C	23,1	23,6	22,1	< 29 °C

q_max	W/m^2	39,165	39,165	39,165	per ottenere θ_i_progetto = 20 °C
Δq	W/m^2	-5,97	-0,004	15,09	
Q_mancante	W	0,0	0,0	131,9	

Il locale "P2 – bagno 2" non è soddisfatto. È però stata valutata la potenza mancante integrabile tramite l'installazione di altri terminali, come ad esempio uno scaldasalviette elettrico.

Infine, occorre eseguire la verifica del funzionamento dei pannelli nel caso estivo.

La condizione estiva non viene presa come riferimento per il dimensionamento dei circuiti, nonostante sia più stringente rispetto a quella invernale. Infatti, il limite imposto dalla temperatura superficiale minima $(19^{\circ}C)$ è più facilmente raggiungibile. Questa volta il limite non è riconducibile al comfort degli occupanti, bensì al rischio di formazione della condensa, che va evitata il più possibile.

		CARICHI	SENSIBIL	I SPECIFIC	I (CASO E	STIVO)			
Locale	Zona	Descrizione	S	Qgl,sen	q	Φ_corr.	q_corr.	Note	
Locate	ZUIId	Descrizione	[m ²]	[W]	[W/m ²]	[W]	[W/m ²]	Note	
4	2	P1 - Camera 1	16,52	1080	65,4	ı	ı		
5	2	P1 - Disimpegno	3,24	37	11,4	ı	ı		
6	2	P1 - Cucina Soggiorno	59,90	3029	50,6	2911	48,6		
7	2	P1 - Camera 2	16,27	565	34,7	495	30,4		
8	2	P1 - Dispensa	3,29	42	12,8	160	48,6	Integra locale 6	
9	2	P1 - Cabina armadio	3,69	42	11,4	112	30,4	Integra locale 7	
11	3	P2 - Ingresso/Dis.	9,09	198	21,8	ı	ı		
12	3	P2 - Cucina Soggiorno	18,30	679	37,1	ı	ı		
13	3	P2 - Camera 1	23,76	1144	48,1	ı	ı		
14	3	P2 - Studio	8,42	246	29,2	-	-		
15	3	P2 - Camera 2	24,00	1262	52,6	-	-		

Anche in questo caso il locale sfavorito è il medesimo del regime invernale.

Per la verifica estiva non si effettua il dimensionamento dei circuiti ma si calcola direttamente la temperatura di mandata necessaria al locale sfavorito, fissandola poi uguale a quella dei circuiti degli altri locali.

Per il calcolo si inizia con la valutazione della differenza tra la temperatura ambiente e la temperatura media dell'acqua tramite la formula $\Delta\theta_C=\frac{q}{K_C}$, dove K_C è il coefficiente di trasmissione in raffrescamento

Da questo valore si ricava la temperatura media del fluido con la formula:

$$T_{acqua,med} = \theta_i - \Delta\theta_H$$

Dopo di che grazie ai dati forniti dalla RDZ si ricava, in funzione di q e $R_{\lambda,B}$, la temperatura superficiale del pavimento, che però risulta essere $T_{superficie,med}=16<19\,^{\circ}C$. A questo punto occorre trovare tramite un calcolo iterativo la temperatura ambiente tale per cui la $T_{superficie,med}$ non scenda al di sotto dei $19\,^{\circ}C$. In questo locale, questa temperatura ambiente si attesta sui $29,0\,^{\circ}C$.

Considerando anche nel caso estivo un salto termico $\Delta T_{acqua}=5~K$ si ricava la temperatura di mandata dell'impianto come segue:

$$T_{man,acqua} = T_{acqua,med} - \frac{\Delta T_{acqua}}{2}$$

Adesso è possibile calcolare la portata e le perdite di carico come effettuato nel caso invernale.

A questo punto il calcolo è concluso, il locale sfavorito può raggiungere al minimo la temperatura di 29,0 °C, maggiore rispetto ai 26 °C prefissati come obiettivo, attraverso una temperatura di mandata pari a 10,4 °C

Di seguito una tabella riassuntiva dei risultati ottenuti:

i	P1 - Camera 1	(locale s	favorito)
q	W/m^2	65,4	
S	m^2	16,5	
n° circuiti_eff	-	2	n° effettivo arrotondato per eccesso
L_tub,circ	m	59,0	
R_λ,b	m^2*K/W	0,01	piastrelle in ceramica
K_C	Wm^2*K	4,045	da tabella in base a R_λ,b
Δθ_C	K	16,2	
θ_i	°C	26,0	temperatura obiettivo
θ i minima	°C	29.0	minima per il limite della
0_1_111111111	_	.,-	T_sup,media
θ_i_progetto	°C	29,0	
T_acqua,med	°C	12,9	
θ_iprogetto - T_sup,media	K	10,0	da grafico in base a q e R_λ,b
T_sup,media	°C	19,0	imposta al limite
ΔT_acqua	K	5,00	0<ΔT<5 K
T_man,acqua	°C	10,4	
С	kcal/kg*°C	1	calore specifico dell'acqua
1,16	-	1,16	fattore di conversione da kcal/h a W
G_tot	kg/h	186,2	
G_circuito	kg/h	93,1	
Δp_lin,circ	DaPa/m	24,3	
Δp_circ	DaPa	1431,8	< 2500 DaPa

Infine, anche nel caso estivo si procede con il calcolo di tutti gli altri locali ponendo come punto di partenza la temperatura di mandata calcolata per il locale sfavorito e imponendo a tutti i circuiti un ΔT_{acqua} pari a 5 K.

LOCALI PIANO PRIN	10	P1 - Disimpegno	P1 - Cucina Soggiorno	P1 - Camera 2	P1 - Dispensa	P1 - Cabina armadio	note
q	W/m^2	11,4	48,6	30,4	48,6	30,4	
S	m^2	3,2	59,9	16,3	3,3	3,7	
n° circuiti_eff	-	1	6	2	1	1	
L_tub,circ	m	23,1	71,3	58,1	23,5	26,3	
							_
T_man,acqua	°C	10,4	10,4	10,4	10,4	10,4	uguale a locale sfavorito
ΔT_acqua	K	5,00	5,00	5,00	5,00	5,00	imposto uguale per tutti i circuiti
С	kcal/kg*°C	1	1	1	1	1	calore specifico dell'acqua
1,16	-	1,16	1,16	1,16	1,16	1,16	fattore di conversione da kcal/h a W
G_tot	kg/h	6,4	501,9	85,3	27,6	19,3	ricerca obiettivo imponendo ΔT_acqua
G_circuito	kg/h	6,4	83,7	42,7	27,6	19,3	
Δp_lin,circ	DaPa/m	0,2	20,1	6,2	2,9	1,6	
Δp_circ	DaPa	5,2	1435,0	359,8	67,8	40,9	< 2500 DaPa
T_acqua,med	°C	12,9	12,9	12,9	12,9	12,9	
R_λ,b	m^2*K/W	0,01	0,01	0,01	0,01	0,01	piastrelle in ceramica
K_C	Wm^2*K	4,045	4,045	4,045	4,045	4,045	da tabella in base a R_λ,b
Δθ_C	K	2,8	12,0	7,5	12,0	7,5	
θ_i	°C	26	26	26	26	26	temperatura obiettivo
θ_i_raggiungibile	°C	15,7	24,9	20,4	24,9	20,4	raggiungibile senza termostato
θ_i_minima	°C	20,8	26,5	23,7	26,5	23,7	minima per il limite della T_sup,media
θ_i_progetto	°C	26	26,5	26	26,5	26	
θ_i_progetto - T_sup,media	K	1,8	7,5	4,7	7,5	4,7	da grafico in base a q e R_λ,b
T_sup,media	°C	24,2	19,0	21,3	19,0	21,3	>= 19 °C

LOCALI PIANO SECO	NDO	P2 - Ingresso/Dis.	P2 - Cucina Soggiorno	P2 - Camera 1	P2 - Studio	P2 - Camera 2	note
q	W/m^2	21,8	37,1	48,1	29,2	52,6	
S	m^2	9,1	18,3	23,8	8,4	24,0	
n° circuiti_eff	-	1	2	3	1	3	
L_tub,circ	m	64,9	65,3	56,5	60,1	57,1	
T_man,acqua	°C	10,4	10,4	10,4	10,4	10,4	uguale a locale sfavorito
ΔT_acqua	K	5,00	5,00	5,00	5,00	5,00	imposto uguale per tutti i circuiti
С	kcal/kg*°C	1	1	1	1	1	calore specifico dell'acqua
1,16	-	1,16	1,16	1,16	1,16	1,16	fattore di conversione da kcal/h a W
G_tot	kg/h	34,1	117,1	197,2	42,4	217,6	ricerca obiettivo imponendo ΔT_acqua
G_circuito	kg/h	34,1	58,5	65,7	42,4	72,5	
Δp_lin,circ	DaPa/m	4,2	10,8	13,2	6,1	15,7	
Δp_circ	DaPa	272,2	704,0	746,7	368,7	895,8	< 2500 DaPa
T_acqua,med	°C	12,9	12,9	12,9	12,9	12,9	
R_λ,b	m^2*K/W	0,01	0,01	0,01	0,01	0,01	piastrelle in ceramica
K_C	Wm^2*K	4,045	4,045	4,045	4,045	4,045	da tabella in base a R_λ,b
Δθ_C	K	5,4	9,2	11,9	7,2	13,0	
θ_i	°C	26	26	26	26	26	temperatura obiettivo
θ_i_raggiungibile	°C	18,2	22,0	24,8	20,1	25,9	raggiungibile senza termostato
θ_i_minima	°C	22,3	24,7	26,4	23,5	27,1	minima per il limite della T_sup,media
θ_i_progetto	°C	26	26	26,4	26	27,1	
θ_i_progetto - T_sup,media	K	3,3	5,7	7,4	4,5	8,1	da grafico in base a q e R_λ,b
T_sup,media	°C	22,7	20,3	19,0	21,5	19,0	>= 19 °C

Da notare che le portate in gioco non sono le stesse per entrambi i regimi di funzionamento. Per cui, ai fini del dimensionamento delle tubazioni e della scelta dei circolatori dell'impianto (cap. 4.5.1 - 4.5.2) occorre distinguere i due diversi casi, per individuare il più gravoso dal punto di vista delle perdite di carico.

CIRCUI	TI PIANO PRI	MO (Collet	tore C.1	L)	
REG. INVERNALE	G_circuito	n° circuiti	G_tot	Δp_circ	Δp_circ
	l/h	ı	l/h	DaPa	kPa
P1 - Camera 1	55,8	2	111,6	584,1	5,84
P1 - Disimpegno	14,8	1	14,8	22,6	0,23
P1 - Cucina Soggiorno	63	6	378	873,8	8,74
P1 - Camera 2	33,9	2	67,8	240,3	2,40
P1 - Dispensa	20,8	1	20,8	41,3	0,41
P1 - Cabina armadio	15,4	1	15,4	27,3	0,27
P1 - Bagno	29,3	1	29,3	117,4	1,17
TOTALE REG. INVE	RNALE	14	637,7	873,8	8,74
		•			
REG. ESTIVO	G_circuito	n° circuiti	G_tot	Δp_circ	Δp_circ
REG. ESTIVO	G_circuito		G_tot l/h	Δp_circ DaPa	Δp_circ kPa
REG. ESTIVO P1 - Camera 1			_	_	_
	l/h	circuiti -	l/h	DaPa	kPa
P1 - Camera 1	l/h 93,1	circuiti - 2	l/h 186,2	DaPa 1431,8	kPa 14,32
P1 - Camera 1 P1 - Disimpegno	l/h 93,1 6,4	circuiti - 2 1	l/h 186,2 6,4	DaPa 1431,8 5,2	kPa 14,32 0,05
P1 - Camera 1 P1 - Disimpegno P1 - Cucina Soggiorno	l/h 93,1 6,4 83,7	circuiti	l/h 186,2 6,4 502,2	DaPa 1431,8 5,2 1435	kPa 14,32 0,05 14,35
P1 - Camera 1 P1 - Disimpegno P1 - Cucina Soggiorno P1 - Camera 2	l/h 93,1 6,4 83,7 42,7	circuiti - 2 1 6 2	l/h 186,2 6,4 502,2 85,4	DaPa 1431,8 5,2 1435 359,8	kPa 14,32 0,05 14,35 3,60
P1 - Camera 1 P1 - Disimpegno P1 - Cucina Soggiorno P1 - Camera 2 P1 - Dispensa	l/h 93,1 6,4 83,7 42,7 27,6	circuiti - 2 1 6 2	l/h 186,2 6,4 502,2 85,4 27,6	DaPa 1431,8 5,2 1435 359,8 67,8	kPa 14,32 0,05 14,35 3,60 0,68

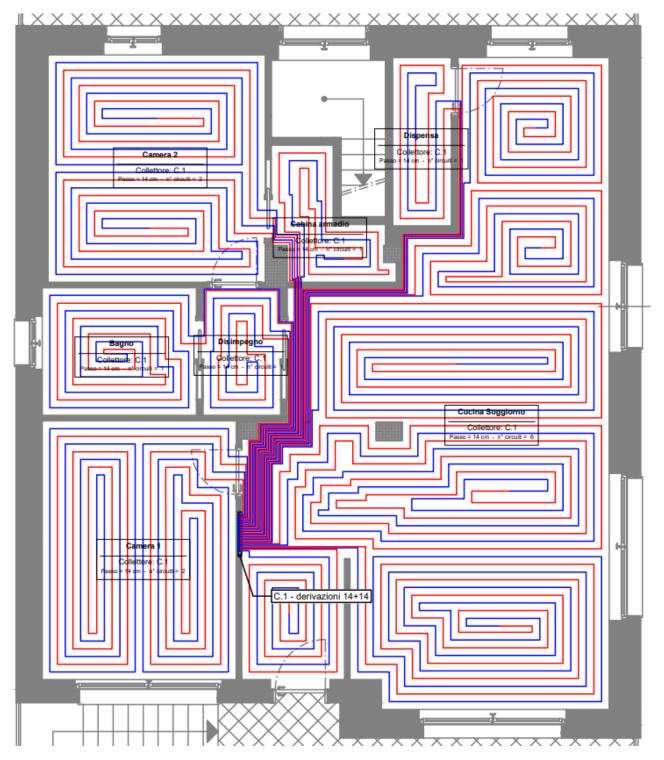


Figura 4.1 Schema planimetrico pannelli radianti piano primo

Allo stesso modo, per il piano secondo:

CIRCUITI PIANO SECONDO (Collettore C.2)								
REG. INVERNALE	G_circuito	nº circuiti	G_tot	Δp_circ	Δp_circ			
REG. INVERNALE	l/h	-	l/h	DaPa	kPa			
P2 - Ingresso/Dis.	51,7	1	51,7	563,3	5,63			
P2 - Cucina Soggiorno	55,8	2	111,6	647	6,47			
P2 - Camera 1	43,9	3	131,7	368,4	3,68			
P2 - Studio	41,6	1	41,6	355,7	3,56			
P2 - Camera 2	44,3	3	132,9	378,1	3,78			
P2 - Bagno 1	43,1	1	43,1	287,5	2,88			
P2 - Bagno 2	81,7	1	81,7	1205,4	12,05			
TOTALE REG. INVER	RNALE	12	594,3	1205,4	12,05			
REG. ESTIVO	G_circuito	nº circuiti	G_{tot}	∆p_circ	Δp_circ			
NEO. ESTIVO	l/h	_	l/h	DaPa	kPa			
			0/11	Dara	KPa			
P2 - Ingresso/Dis.	34,1	1	34,1	272,2	2,72			
P2 - Ingresso/Dis. P2 - Cucina Soggiorno	34,1 58,5	1 2						
	•	_	34,1	272,2	2,72			
P2 - Cucina Soggiorno	58,5	2	34,1 117	272,2 704	2,72 7,04			
P2 - Cucina Soggiorno P2 - Camera 1	58,5 65,7	2	34,1 117 197,1	272,2 704 746,7	2,72 7,04 7,47			
P2 - Cucina Soggiorno P2 - Camera 1 P2 - Studio	58,5 65,7 42,4	2 3 1	34,1 117 197,1 42,4	272,2 704 746,7 368,7	2,72 7,04 7,47 3,69			
P2 - Cucina Soggiorno P2 - Camera 1 P2 - Studio P2 - Camera 2	58,5 65,7 42,4 72,5	2 3 1 3	34,1 117 197,1 42,4 217,5	272,2 704 746,7 368,7	2,72 7,04 7,47 3,69			

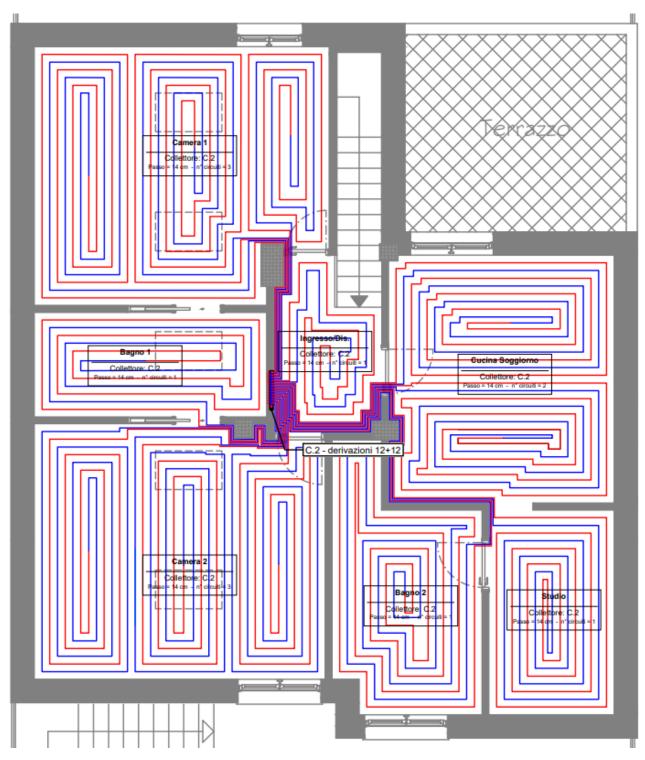


Figura 4.2 Schema planimetrico pannelli radianti piano secondo

4.3.2 Ventilconvettori e radiatori

Al piano terra sono stati previsti tre ventilconvettori e un radiatore (destinato al solo riscaldamento del locale bagno).

	CARICHI TERMICI PIANO TERRA										
Locala	le Zona Descrizione		Фhl(+10%)	Qgl	n° terminali	Tipo terminale					
Locate	ZUIId	Descrizione	[°C]	[m ³]	[m ²]	[W]	[W]	[-]	[-]		
1	1	PT - Monolocale	20	93	38,6	2567	1704	2	ventilconvettore		
2	1	PT - Dispensa	20	13	5,36	440	223	1	ventilconvettore		
3	1	PT - Bagno	20	30	12,5	1160	-	1	radiatore		

Per il dimensionamento dei ventilconvettori ci si è affidati alla scheda tecnica dell'**AERMEC FCZ**, che fornisce, in base alla velocità del ventilatore presa come riferimento, la potenza termica e frigorifera con le relative portate. Nelle condizioni invernali i terminali sono alimentati ad una temperatura di mandata e ritorno pari a M/R = 45/40 °C. Invece, in estate le temperature in gioco sono M/R = 7/12 °C.

DATI PRESTAZIONALI

2 tubi													
			CZ10	0		FCZ150			CZ20	0	FCZ250		0
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Prestazioni in riscaldamento 70 °C	/ 60 ℃	(1)											
Potenza termica	kW	1,45	2,00	2,40	1,55	2,19	2,65	2,02	2,95	3,70	2,20	3,18	4,05
Portata acqua utenza	l/h	125	172	206	136	192	232	177	258	324	193	278	355
Perdita di carico lato utenza	kPa	4	7	9	5	9	12	6	12	18	7	15	23
Prestazioni in riscaldamento 45 °C	/ 40 °C	(2)											
Potenza termica	kW	0,72	0,99	1,19	0,77	1,09	1,31	1,00	1,46	1,84	1,09	1,58	2,01
Portata acqua utenza	l/h	126	173	207	134	189	229	174	254	319	190	274	350
Perdita di carico lato utenza	kPa	4	7	10	5	9	12	6	12	18	8	15	22
Prestazioni in raffreddamento 7 °C	/ 12 °C												
Potenza frigorifera	kW	0,65	0,84	1,00	0,80	1,06	1,27	0,89	1,28	1,60	1,06	1,55	1,94
Potenza frigorifera sensibile	kW	0,51	0,69	0,83	0,57	0,80	0,97	0,71	1,05	1,33	0,79	1,20	1,52
Portata acqua utenza	l/h	112	144	172	138	182	219	153	221	275	182	267	334
Perdita di carico lato utenza	kPa	4	6	8	6	12	13	6	12	18	8	17	25

	VENTILCONVETTORI										
Locale	Torminala	Madalla	Volonità	P_risc	P_raff	G_risc	G_raff				
Locate	Terminate	Modello	ello Velocità	[W]	[W]	[l/h]	[l/h]				
1	V1	FCZ200	media	1460	1280	254	221				
1	V2	FCZ150	media	1090	1060	189	182				
2	V3	FCZ100	bassa	720	650	126	112				

Per quanto riguarda il radiatore del bagno è stato scelto un **RT 5 1000** della **IRSAP**. Per il dimensionamento, occorre determinare il numero di elementi tale da soddisfare il fabbisogno del locale. Per fare ciò va diviso il carico termico per la resa del singolo elemento del radiatore. Prima però è necessario adattare il valore di resa al ΔT desiderato.

Con ΔT si intende la differenza tra la temperatura media dell'acqua all'interno del radiatore e la temperatura dell'aria del locale. Nel nostro caso, volendo scegliere come temperature di mandata e di ritorno le stesse usate dai ventilconvettori, si ha che:

$$\Delta T = \frac{45 \,^{\circ} C + 40 \,^{\circ} C}{2} - 20 \,^{\circ} C = 22,5 \,^{\circ} C$$

Essendo che la scheda tecnica fornisce la resa riferita a $\Delta T = 50$ °C, bisogna applicare la seguente formula servendosi dell'esponente n caratteristico del modello scelto.

$$q_{\Delta T_{22,5}} = q_{\Delta T_{50}} \cdot \left(\frac{\Delta T_{22,5}}{\Delta T_{50}}\right)^n = 152,4 \cdot \left(\frac{22,5}{50}\right)^{1,364} = 51,3 \frac{W}{ele}.$$

									Potenza	Termica		
Modello	Codice	Profondità	Altezza	Interasse	Peso	Capacità	∆t=	50°C	∆t=40°C	∆t=30°C	Δ t=20°C	Esp.
		mm	H mm	H' mm	Kg	lt	kcal/h	Watt	Watt	Watt (*)	Watt	n.
200	RT 5 0200 YY 01 IR NO N	177	200	127	0,81	0,73	27,2	31,7	23,4	15,9	9,2	1,350
300	RT 5 0300 YY 01 IR NO N	177	300	235	1,13	0,95	44,2	51,4	38,7	26,8	16,0	1,276
400	RT 5 0400 YY 01 IR NO N	177	400	335	1,43	1,16	57,2	66,5	49,9	34,4	20,4	1,291
500	RT 5 0500 YY 01 IR NO N	177	500	435	1,72	1,36	70,0	81,3	60,8	41,7	24,6	1,307
565	RT 5 0565 YY 01 IR NO N	177	565	500	1,92	1,50	78,1	90,8	67,7	46,4	27,2	1,317
600	RT 5 0600 YY 01 IR NO N	177	600	535	2,02	1,57	82,5	95,9	71,4	48,8	28,5	1,322
665	RT 5 0665 YY 01 IR NO N	177	665	600	2,21	1,71	90,5	105,2	78,2	53,3	31,0	1,333
685	RT 5 0685 YY 01 IR NO N	177	685	620	2,27	1,75	93,0	108,1	80,2	54,6	31,8	1,336
750	RT 5 0750 YY 01 IR NO N	177	750	685	2,46	1,88	100,9	117,3	86,9	59,0	34,2	1,346
765	RT 5 0765 YY 01 IR NO N	177	765	700	2,51	1,92	102,8	119,5	88,4	60,0	34,7	1,348
865	RT 5 0865 YY 01 IR NO N	177	865	800	2,80	2,12	114,9	133,6	98,5	66,5	38,3	1,364
885	RT 5 0885 YY 01 IR NO N	177	885	820	2,86	2,16	117,3	136,4	100,5	67,8	39,0	1,367
900	RT 5 0900 YY 01 IR NO N	177	900	835	2,91	2,20	119,1	138,5	102,0	68,8	39,5	1,369
1000	RT 5 1000 YY 01 IR NO N	177	1000	935	3,20	2,40	131,1	152,4	112,4	75,9	43,7	1,364
1200	RT 5 1200 YY 01 IR NO N	177	1200	1135	4,08	2,78	154,8	180,0	133,1	90,2	52,1	1,353
1500	RT 5 1500 YY 01 IR NO N	177	1500	1435	5,05	3,40	189,9	220,8	163,9	111,6	64,9	1,337
1800	RT 5 1800 YY 01 IR NO N	177	1800	1735	6,02	4,01	224,7	261,2	194,3	132,6	77,4	1,327
2000	RT 5 2000 YY 01 IR NO N	177	2000	1935	6,67	4,42	247,7	288,0	214,4	146,5	85,7	1,323
2200	RT 5 2200 YY 01 IR NO N	177	2200	2135	7,32	4,82	270,6	314,6	234,4	160,4	93,9	1,320
2500	RT 5 2500 YY 01 IR NO N	177	2500	2435	8,29	5,44	304,9	354,5	264,4	181,2	106,4	1,314

	RADIATORI									
Locala	acala Tarminala Ma		Resa ΔT 50	n	Resa ΔT 22,5	n° elementi	Р	dt	G	
Locale	Terminale	Modello	[W/ele.]	[-]	[W/ele.]	[-]	[W]	[K]	[l/h]	
3	R1	RT 5 1000	152,4	1,364	51,3	23	1179,5	5	202,9	

4.4 Impianto VMC con deumidificazione

Nei piani in cui è presente l'impianto radiante a pavimento (piano primo e secondo) è necessaria l'installazione di un sistema di deumidificazione che venga azionato durante il raffrescamento. Infatti, durante il regime estivo è molto importante tenere sotto controllo l'umidità dell'aria per il comfort interno e per preservare la salute dell'edificio. Questo avviene grazie a una macchina che sfruttando la disponibilità di acqua refrigerata abbassa la temperatura dell'aria togliendo carico sensibile alla batteria evaporante, mentre la batteria di post-trattamento riporta la temperatura dell'aria a una condizione di neutralità prima della reimmissione in ambiente. Tale trattamento permette di ottenere aria deumidificata alla stessa temperatura dell'ambiente controllandone il carico latente.

Nel caso in questione, è stata prevista l'installazione di un sistema integrato di ventilazione meccanica controllata con **recupero di calore** e deumidificazione estiva. Si tratta di un'unità che garantisce un corretto apporto di aria primaria unitamente al suo trattamento termo-igrometrico, e permette l'ottenimento delle migliori condizioni di temperatura e di umidità in ambiente. Il rinnovo dell'aria con recupero di calore abbatte fortemente il dispendio di energia necessaria al comfort garantendo il contenimento dei consumi grazie ad uno scambiatore interno all'unità che permette lo scambio tra aria in ingresso e in uscita dall'edificio. Inoltre, la presenza del **ricircolo** permette di reimmettere nell'ambiente parte dell'aria interna migliorando ulteriormente l'efficienza del sistema.

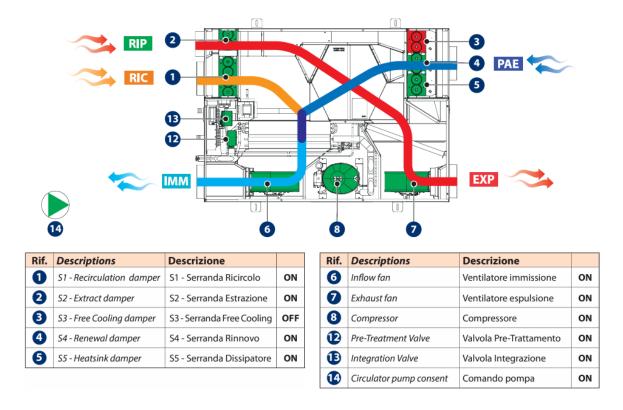


Figura 4.3 Schema grafico della modalità deumidificazione/integrazione estiva con rinnovo

4.4.1 Scelta delle unità

In ambito civile i tassi di ricambio per le unità di sola VMC si attestano intorno agli $0.5 \ vol/h$. Invece, gli impianti che effettuano deumidificazione devono essere dimensionati in base a quanto calore latente è necessario asportare, generalmente si utilizzano tassi di almeno $1 \ vol/h$.

Per il piano primo è stata scelta una macchina per installazione a controsoffitto, in grado di garantire tale tasso di ricambio.

PIANO PRIMO								
Locale	Locale	Tipologia	V					
Locale	Locale	locale	[m³]					
4	P1 - Camera 1	Mandata	48,4					
5	P1 - Disimpegno	Estrazione	9,5					
6	P1 - Cucina	Mandata	175,7					
O	Soggiorno	ivialidata	173,7					
7	P1 - Camera 2	Mandata	47,7					
8	P1 - Dispensa	Estrazione	9,6					
9	P1 - Cabina armadio	Ricircolo	10,8					
10	P1 - Bagno	Estrazione	18,8					
1	rimo	320,5						

PIANO PRIMO								
Tasso di ricambio	1	[vol/h]						
Portata totale di mandata	320,5	[m³/h]						
Tasso di ricircolo	50%	[-]						
Portata di ricircolo	160,25	[m³/h]						
Portata di estrazione	160,25	[m³/h]						

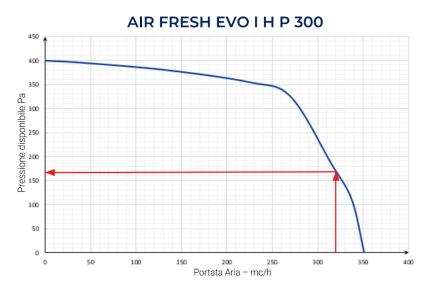


Figura 4.4 Curva caratteristica unità piano primo

Allo stesso modo si procede per il piano secondo, dove però è stata prevista una macchina per installazione a pavimento. Infatti, si riscontra l'impossibilità della creazione di un controsoffitto per via del tetto inclinato, per cui le canalizzazioni saranno incassate nel massetto.

	PIANO SECONDO								
Locale	Locale	Tipologia	٧						
Locale	Locale	locale	[m³]						
11	P2 - Ingresso/Dis.	Ricircolo	34,7						
12	P2 - Cucina	Mandata	48,6						
12	Soggiorno	ivialiuata	40,0						
13	P2 - Camera 1	Mandata	66,3						
14	P2 - Studio	Estrazione	19						
15	P2 - Camera 2	Mandata	67,5						
16	P2 - Bagno 1	Estrazione	20,7						
17	P2 - Bagno 2	Estrazione	37,7						
1	/olume totale piano p	rimo	294,5						

PIANO SECONDO								
Tasso di ricambio	1	[vol/h]						
Portata totale di mandata	294,5	[m³/h]						
Tasso di ricircolo	50%	[-]						
Portata di ricircolo	147,25	[m³/h]						
Portata di estrazione	147,25	[m³/h]						

AIR FRESH I P 500 VERTICALE

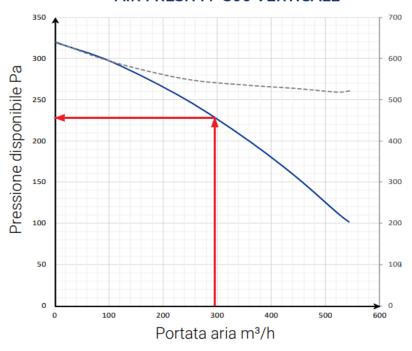


Figura 4.5 Curva caratteristica unità piano secondo

Infine, viene fatta una verifica, sulla reale capacità di deumidificazione delle macchine in relazione al carico latente da abbattere.

Avendo noto il carico latente di ciascuna unità abitativa è facile ottenere la portata di vapore da smaltire dividendolo per il calore latente di vaporizzazione dell'acqua, che assumiamo pari $2500 \, kJ/kg$. Il valore di portata calcolato è quindi comparato con quello fornito dalla scheda tecnica del produttore.

PIANO PRIMO					
Qgl,lat	[W]	1351			
calore latente di vaporizzazione	[kJ/kgv]	2500			
	[kgv/s]	0,000540			
portata da condensare	[kgv/24h]	46,7			
max portata che l'unità condensa	[kgv/24h]	56			
max carico latente rimovibile	[W]	3240,7			

PIANO SECONDO					
Qgl,lat	[W]	1119			
calore latente di vaporizzazione	[kJ/kgv]	2500			
noutate de condenseus	[kgv/s]	0,000448			
portata da condensare	[kgv/24h]	38,7			
max portata che l'unità condensa	[kgv/24h]	89			
max carico latente rimovibile	[W]	2575,2			

Le suddette caratteristiche delle unità sono riferite alle condizioni di temperatura aria esterna 30° , umidità relativa 60%, temperatura ambiente $25^\circ C$, umidità relativa 50% e portata aria nominale.

4.4.2 Dimensionamento dei canali

Prima del dimensionamento si effettua un riproporzionamento delle portate di mandata e di estrazione in modo tale che vengano distribuite più uniformemente tra i vari locali. Questa operazione viene effettuata calcolando le percentuali di ripartizione ($R_{\%}$) in funzione dei volumi.

PIANO PRIMO								
PORTATE DI MANDATA								
Locale	V R%		G	Ricambio				
Locale	[m³]	[-]	[m³/h]	[vol/h]				
P1 - Camera 1	48,4	17,8%	57,1	1,18				
P1 - Cucina Soggiorno	175,7	64,6%	207,2	1,18				
P1 - Camera 2	47,7	17,5%	56,2	1,18				
TOTALE	271,8	100%	320,5	1,18				
PORT	ATE DI E	STRAZIO	NE					
Locale	V	R%	G	Ricambio				
Locale	[m³]	[-]	[m³/h]	[vol/h]				
P1 - Disimpegno	9,5	25,1%	40,2	4,23				
P1 - Dispensa	9,6	25,3%	40,6	4,23				
P1 - Bagno	18,8	49,6%	79,5	4,23				
TOTALE	37,9	100%	160,3	4,23				

PIANO SECONDO								
PORTATE DI MANDATA								
Locale	V	R%	G	Ricambio				
Locale	[m³]	[-]	[m³/h]	[vol/h]				
P2 - Cucina Soggiorno	48,6	26,6%	78,5	1,61				
P2 - Camera 1	66,3	36,3%	107,0	1,61				
P2 - Camera 2	67,5	37,0%	109,0	1,61				
TOTALE	182,4	100%	294,5	1,61				
PORT	ATE DI E	STRAZIO	NE					
Locale	V	R%	G	Ricambio				
Locale	[m³]	[-]	[m³/h]	[vol/h]				
P2 - Studio	19	24,5%	36,1	1,90				
P2 - Bagno 1	20,7	26,7%	39,4	1,90				
P2 - Bagno 2	37,7	48,7%	71,7	1,90				
TOTALE	77,4	100%	147,3	1,90				

In entrambi i piani la distribuzione avviene a plenum. Questa tipologia di distribuzione prevede che mandata, estrazione e ricircolo vengano realizzate tramite delle cassette di distribuzione (plenum) alle quali sono collegate le canalizzazioni che servono le varie bocchette.

Il dimensionamento di questo tipo di distribuzione consiste, una volta deciso il diametro esterno in base agli ingombri disponibili, nel ripartire la portata riferita al singolo locale in un numero di canali tale da non superare la velocità limite dettata dalle perdite di carico e dalla rumorosità.

I canali utilizzati hanno un diametro esterno pari a 90~mm e sono caratterizzati da una velocità massima consigliata dal costruttore pari a 3~m/s.

	PIANO PRIMO									
Locala	Locale	V	G	Canale	Diametro int.	n° canali	velocità (singolo canale)			
Locale	Locale	[m³]	[m³/h]	[mm]	[mm]	[-]	[m/s]			
4	P1 - Camera 1	48,4	57,1	90	76	1	3,49			
6	P1 - Cucina Soggiorno	175,7	207,2	90	76	4	3,17			
7	P1 - Camera 2	47,7	56,2	90	76	1	3,44			
5	P1 - Disimpegno	9,5	40,2	90	76	1	2,46			
8	P1 - Dispensa	9,6	40,6	90	76	1	2,49			
10	P1 - Bagno	18,8	79,5	90	76	2	2,43			
9	P1 - Cabina armadio	10,8	160,25	90	76	3	3,27			

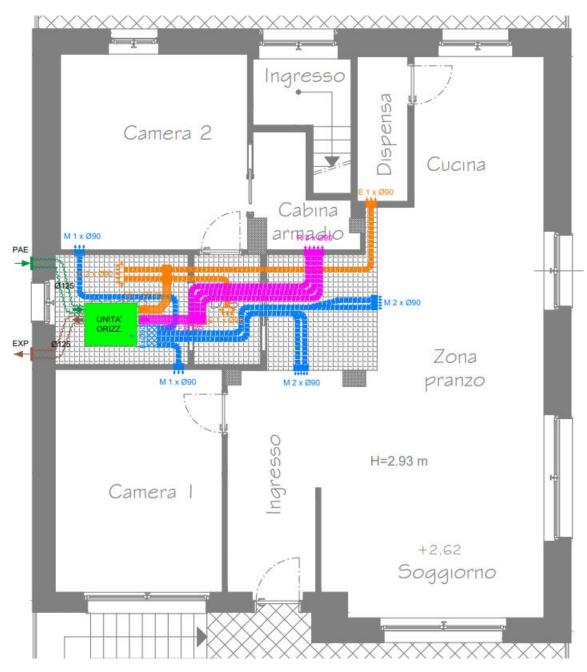


Figura 4.6 Schema planimetrico VMC + deum. piano primo

	PIANO SECONDO									
Locala	Locale	V	G	Canale	Diametro int.	n° canali	velocità (singolo canale)			
Locale	Locale	[m³]	[m³/h]	[mm]	[mm]	[-]	[m/s]			
12	P2 - Cucina Soggiorno	49	78,5	90	76	2	2,40			
13	P2 - Camera 1	66	107,0	90	76	2	3,28			
15	P2 - Camera 2	68	109,0	90	76	2	3,34			
14	P2 - Studio	19	36,1	90	76	1	2,21			
16	P2 - Bagno 1	21	39,4	90	76	1	2,41			
17	P2 - Bagno 2	38	71,7	90	76	2	2,20			
11	P2 - Ingresso/Dis.	35	147,25	90	76	3	3,01			

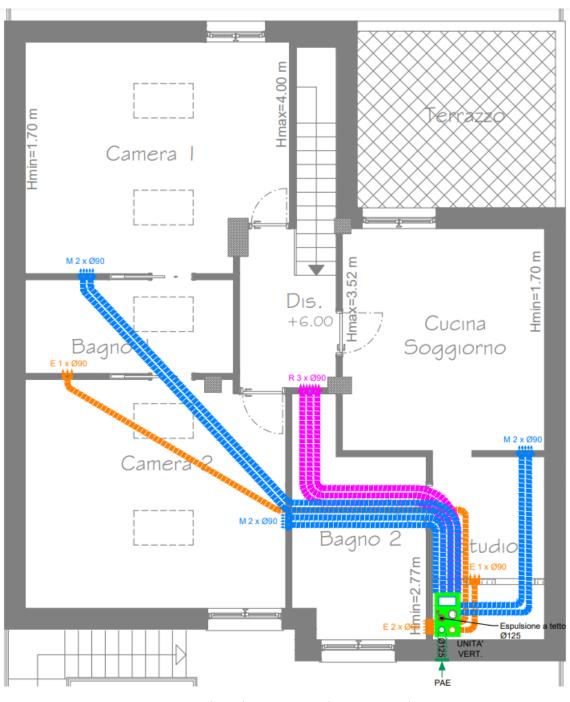


Figura 4.7 Schema planimetrico VMC + deum. piano secondo

Per quanto riguarda la scelta ed il posizionamento delle bocchette interne si è tenuto conto dei seguenti accorgimenti:

- garantire una buona distribuzione dell'aria per evitare zone non interessate dal flusso (dette anche zone di ristagno);
- evitare correnti di aria fredda che investono direttamente gli occupanti;
- evitare correnti con velocità eccessive;
- garantire il corretto lavaggio dei locali.

Invece per le bocchette esterne si è fatta attenzione soprattutto alla posizione reciproca, per evitare fenomeni di ricircolo dell'aria espulsa, e all'installazione di apposite protezioni per la pioggia e dall'eventuale ingresso di piccoli animali (es. uccelli, roditori, insetti).

4.4.3 Verifica delle perdite di carico

Le perdite di carico continue vengono determinate con la formula di Darcy:

$$r = \frac{F_a \cdot \rho \cdot v^2}{2 \cdot D}$$

Dove:

• r[Pa/m]: perdita di carico continua unitaria

• F_a [-]: fattore di attrito

• $\rho [kg/m^3]$: densità

• v[m/s]: velocità

• D[m]: diametro interno

Nel moto laminare F_a dipende unicamente dal numero di Reynolds e può essere determinato con la formula:

$$F_a = \frac{64}{Re}$$

Nel moto turbolento F_a dipende, invece, da diversi fattori e può essere determinato con l'equazione di Colebrook, la quale però non è risolvibile in modo esplicito. Per l'aria si può utilizzare una formula semplificata, sviluppata da Altshul e modificata da Tsal:

$$\begin{cases} F_a = F_a^* & se \ F_a^* \ge 0.018 \\ F_a = 0.85 \cdot F_a^* + 0.0028 & se \ F_a^* < 0.018 \end{cases}$$

Con:

$$F_a^* = 0.11 \cdot \left(\frac{\varepsilon}{D} + \frac{68}{Re}\right)^{0.25}$$

Dove:

• F_a^* [–]: fattore di attrito convenzionale

• $\varepsilon[m]$: rugosità

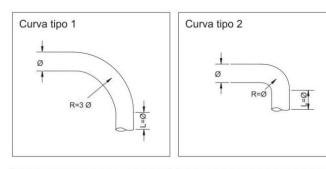
• Re [-]: numero di Reynolds

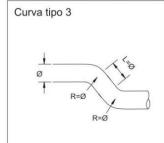
Si ricorda che:

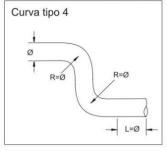
$$Re = \frac{vD}{\mu}$$

Dove:

• $\mu [m^2/s]$: viscosità cinematica dell'aria


• Re < 2000: moto laminare


• $2000 \le Re < 2500$: moto transitorio


• $Re \ge 2500$: moto turbolento

Per il calcolo delle perdite di carico, il regime transitorio che ha un campo di validità alquanto limitato e assai incerto, viene assimilato a quello turbolento.

Le perdite di carico localizzate sono state valutate direttamente tramite scheda tecnica del singolo componente oppure, tramite il criterio delle lunghezze equivalenti. Questo metodo semplificato permette di trasformare ogni perdita concentrata in una lunghezza equivalente di un tratto di canale lineare che genererebbe la stessa perdita di carico del componente stesso. Ogni tipo di componente ha un coefficiente di perdita caratteristico, ad esempio, per le curve si hanno i seguenti valori:

Curva tipo	Coefficiente
1	12
2	21
3	32
4	42

Figura 4.8 Coefficienti di perdita caratteristici delle varie tipologie di curve

La lunghezza lineare equivalente si calcola con la seguente formula:

$$L_{eq} = \xi \cdot D_i$$

Quindi:

$$z = L_{ea} \cdot r$$

Dove:

• L_{eq} [m]: lunghezza lineare equivalente

• ξ [-]: coefficiente di perdita localizzata

• D_i [m]: diametro interno del canale

• z [Pa]: perdita di carico localizzata

• r[Pa/m]: perdita di carico continua unitaria

Per tutte le curve a 90° è stato considerato il coefficiente $\xi=12$, cioè quello corrispondente alla curva di tipo 2, così da effettuare un calcolo più conservativo.

Le perdite di carico localizzate ricavate da scheda tecnica sono quelle legate alla presenza delle bocchette e dei plenum. Questi componenti sono soggetti a perdite maggiori all'aumentare della portata. In tutti i casi si è fatto riferimento al ramo con maggiore portata.

Di seguito i risultati ottenuti per l'unità al piano primo:

PARAMETRI FISICI DELL'ARIA							
Temperatura °C 20							
Altitudine	m	265					
Pressione	mbar	981,7					
Densità	kg/m³	1,17					
Viscosità cinematica	m²/s	1,52E-05					

TRATTO	١	Camera 1 - Ventilatore (M)	Cucina/Sogg. - Ventilatore (M)	Cucina/Sogg. - Ventilatore (M)	Cucina/Sogg. - Ventilatore (M)	Cucina/Sogg. - Ventilatore (M)	Camera 2 - Ventilatore (M)
Id. canal	е	1	1	2	3	4	1
G	[m³/h]	57,1	51,8	51,8	51,8	51,8	56,2
Di	[mm]	76	76	76	76	76	76
V	[m/s]	3,49	3,17	3,17	3,17	3,17	3,44
Re	[-]	17497,27	15879,50	15879,50	15879,50	15879,50	17244,21
moto	[-]	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento
ε_pvc	[mm]	0,03	0,03	0,03	0,03	0,03	0,03
Fa	[-]	0,0281	0,0288	0,0288	0,0288	0,0288	0,0282
r	[Pa/m]	2,64	2,22	2,22	2,22	2,22	2,57
Lunghezza	[m]	0,8	4,5	4,5	4,9	4,9	3,7
Δpd	[Pa]	2,11	10,00	10,00	10,89	10,89	9,52
n°curve	[-]	1	3	3	2	2	3
L_eq	[m]	1,60	4,79	4,79	3,19	3,19	4,79
z_curve	[Pa]	4,21	10,64	10,64	7,09	7,09	12,32
Δpc_bocchetta	[Pa]	0,8	0,8	0,8	0,8	0,8	0,8
Δpc_plenum	[Pa]	25,0	25,0	25,0	25,0	25,0	25,0
Δрс	[Pa]	30,01	36,44	36,44	32,89	32,89	38,12
Δp_ramo,sfav.	[Pa]	-	-	-	-	-	-
Δр	[Pa]	32,12	46,44	46,44	43,78	43,78	47,63

TRATTO		Cab. Armadio - Plenum (R)	Cab. Armadio - Plenum (R)	Cab. Armadio - Plenum (R)	Plenum (R) - Ventilatore (M)	Immissione esterna - Ventilatore (M)
Id. canale	·	1	2	3	1	1
G	[m³/h]	53,4	53,4	53,4	160,3	160,3
Di	[mm]	76	76	76	108	108
v	[m/s]	3,27	3,27	3,27	4,86	4,86
Re	[-]	16376,58	16376,58	16376,58	34572,78	34572,78
moto	[-]	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento
ε_pvc	[mm]	0,03	0,03	0,03	0,03	0,03
Fa	[-]	0,0286	0,0286	0,0286	0,0239	0,0239
r	[Pa/m]	2,35	2,35	2,35	3,06	3,06
Lunghezza	[m]	3,6	3,6	3,6	1,0	1,8
Δpd	[Pa]	8,45	8,45	8,45	3,06	5,50
n°curve	[-]	2	2	2	-	2
L_eq	[m]	3,19	3,19	3,19	-	4,54
z_curve	[Pa]	7,49	7,49	7,49	-	13,86
Δpc_bocchetta	[Pa]	0,8	0,8	0,8	-	20,0
Δpc_plenum	[Pa]	10,0	10,0	10,0	-	-
Δрс	[Pa]	18,29	18,29	18,29	-	33,86
Δp_ramo, sfav.	[Pa]	-	-	-	26,74	-
Δр	[Pa]	26,74	26,74	26,74	29,80	39,36

VENTILATORE (M)						
Portata [m³/h] 320,5						
Prevalenza utile	[Pa]	167,5				
Perdite di carico	86,99					

TRATTO		Disimpegno - Plenum (E)	Dispensa - Plenum (E)	Bagno - Plenum (E)	Bagno - Plenum (E)	Plenum (E) - Ventilatore (E)	Estrazione esterna - Ventilatore (E)
Id. canale	•	1	1	1	2	1	1
G	[m³/h]	40,2	40,6	39,7	39,7	160,3	160,3
Di	[mm]	76	76	76	76	108	108
V	[m/s]	2,46	2,49	2,43	2,43	4,86	4,86
Re	[-]	12314,84	12444,47	12185,21	12185,21	34572,78	34572,78
moto	[-]	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento
ε_ρνς	[mm]	0,03	0,03	0,03	0,03	0,03	0,03
Fa	[-]	0,0305	0,0304	0,0306	0,0306	0,0239	0,0239
r	[Pa/m]	1,42	1,44	1,39	1,39	3,06	3,06
Lunghezza	[m]	1,7	5,5	0,8	0,8	1,0	1,8
Δpd	[Pa]	2,41	7,94	1,11	1,11	3,06	5,50
n°curve	[-]	2	1	1	1	1	2
L_eq	[m]	3,19	1,60	1,60	1,60	2,27	4,54
z_curve	[Pa]	4,52	2,30	2,22	2,22	6,93	13,86
Δpc_bocchetta	[Pa]	0,8	0,8	0,8	0,8	-	20,0
Δpc_plenum	[Pa]	10,0	10,0	10,0	10,0	-	-
Δрс	[Pa]	15,32	13,10	13,02	13,02	6,93	33,86
Δp_ramo, sfav.	[Pa]	-	-	-	-	21,05	-
Δр	[Pa]	17,73	21,05	14,13	14,13	31,03	39,36

VENTILATORE (E)						
Portata	[m³/h]	160,3				
Prevalenza utile	[Pa]	370				
Perdite di carico	[Pa]	70,39				

I due ventilatori sono collegati in parallelo tramite un unico compressore, per cui la prevalenza che dovrà sviluppare in condizioni di progetto è quella legata al ventilatore che impone la maggiore perdita di carico, cioè il ventilatore di mandata (e/o di ricircolo).

Allo stesso modo si procede per il piano secondo.

TRATTO		Cucina/Sogg. - Ventilatore (M)	Cucina/Sogg. - Ventilatore (M)	Camera 1 - Ventilatore (M)	Camera 1 - Ventilatore (M)	Camera 2 - Ventilatore (M)	Camera 2 - Ventilatore (M)
Id. canale	2	1	2	1	2	1	2
G	[m³/h]	39,2	39,2	53,5	53,5	54,5	54,5
Di	[mm]	76	76	76	76	76	76
v	[m/s]	2,40	2,40	3,28	3,28	3,34	3,34
Re	[-]	12028,55	12028,55	16409,31	16409,31	16706,32	16706,32
moto	[-]	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento
ε_ρνς	[mm]	0,03	0,03	0,03	0,03	0,03	0,03
Fa	[-]	0,0307	0,0307	0,0286	0,0286	0,0284	0,0284
r	[Pa/m]	1,36	1,36	2,36	2,36	2,43	2,43
Lunghezza	[m]	9,3	7,3	13,9	13,9	7,0	7,0
Δpd	[Pa]	12,65	9,93	32,74	32,74	17,02	17,02
n°curve	[-]	4	4	6	6	4	4
L_eq	[m]	6,38	6,38	9,58	9,58	6,38	6,38

z_curve	[Pa]	8,68	8,68	22,56	22,56	15,52	15,52
Δpc_bocchetta	[Pa]	0,8	0,8	0,8	0,8	0,8	0,8
Δpc_plenum	[Pa]	25,0	25,0	25,0	25,0	25,0	25,0
Δрс	[Pa]	34,48	34,48	48,36	48,36	41,32	41,32
Δp_ramo, sfav.	[Pa]	-	-	-	-	-	-
Δр	[Pa]	47,13	44,41	81,10	81,10	58,34	58,34

		Disimpegno	Disimpegno	Disimpegno	Plenum (R)	Immissione esterna
TRATTO		-	-	-	-	-
		Plenum (R)	Plenum (R)	Plenum (R)	Ventilatore (M)	Ventilatore (M)
Id. canale	<u> </u>	1	2	3	1	1
G	[m³/h]	49,1	49,1	49,1	147,3	147,3
Di	[mm]	76	76	76	108	108
v	[m/s]	3,01	3,01	3,01	4,46	4,46
Re	[-]	15048,06	15048,06	15048,06	31768,12	31768,12
moto	[-]	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento
ε_pvc	[mm]	0,03	0,03	0,03	0,03	0,03
Fa	[-]	0,0291	0,0291	0,0291	0,0244	0,0244
r	[Pa/m]	2,02	2,02	2,02	2,63	2,63
Lunghezza	[m]	9,2	9,2	9,2	1,0	2,8
Δpd	[Pa]	18,59	18,59	18,59	2,63	7,36
n°curve	[-]	5	5	5	-	1
L_eq	[m]	7,98	7,98	7,98	-	2,27
z_curve	[Pa]	16,12	16,12	16,12	-	5,96
Δpc_bocchetta	[Pa]	0,8	0,8	0,8	-	20,0
Δpc_plenum	[Pa]	10,0	10,0	10,0	-	-
Δрс	[Pa]	26,92	26,92	26,92	-	25,96
Δp_ramo, sfav.	[Pa]	-	-	-	45,51	-
Δр	[Pa]	45,51	45,51	45,51	48,14	33,32

VENTILATORE (M)						
Portata [m³/h] 294,5						
Prevalenza utile	[Pa]	228				
Perdite di carico	[Pa]	129,24				

		Studio	Bagno 1	Bagno 2	Bagno 2	Plenum (E)	Estrazione esterna
TRATTO		-	-	-	-	-	_
			Plenum (E)	Plenum (E)	Plenum (E)	Ventilatore (E)	Ventilatore (E)
Id. canale		1	1	1	2	1	1
G	[m³/h]	36,1	39,4	35,9	35,9	147,3	147,3
Di	[mm]	76	76	76	76	108	108
V	[m/s]	2,21	2,41	2,20	2,20	4,46	4,46
Re	[-]	11081,90	12073,44	10994,41	10994,41	31768,12	31768,12
moto	[-]	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento	Turbolento
ε_ρνς	[mm]	0,03	0,03	0,03	0,03	0,03	0,03
Fa	[-]	0,0313	0,0306	0,0313	0,0313	0,0244	0,0244
r	[Pa/m]	1,18	1,37	1,16	1,16	2,63	2,63
Lunghezza	[m]	3,9	13,9	1,6	1,6	1,0	3,2
Δpd	[Pa]	4,59	19,03	1,86	1,86	2,63	8,41
n°curve	[-]	2	6	1	1	ı	-
L_eq	[m]	3,19	9,58	1,60	1,60	1	-
z_curve	[Pa]	3,76	13,11	1,85	1,85	ı	-
Δpc_bocchetta	[Pa]	0,8	0,8	0,8	0,8	-	20,0
Δpc_plenum	[Pa]	10,0	10,0	10,0	10,0	-	-
Δрс	[Pa]	14,56	23,91	12,65	12,65	-	20,00
Δp_ramo, sfav.	[Pa]	-	-	1	-	42,94	-
Δр	[Pa]	19,14	42,94	14,51	14,51	45,56	28,41

VENTILATORE (E)					
Portata	[m³/h]	147,3			
Prevalenza utile	[Pa]	280			
Perdite di carico	[Pa]	73,98			

4.5 Distribuzione e generazione

La distribuzione dell'impianto idronico asservito alla climatizzazione avviene per mezzo di collettori, uno per ogni piano. In particolare, dal collettore presente in centrale termica si dipartono tre montanti. La prima è destinata al collettore C.0 del piano terra che alimenta 3 ventilconvettori ed un radiatore, mentre la seconda e la terza, dotate di valvola miscelatrice, giungono rispettivamente al collettore C.1 del piano primo e al collettore C.2 del piano secondo, alimentando ognuna sia l'unità di ventilazione/deumidificazione che i pannelli radianti a pavimento.

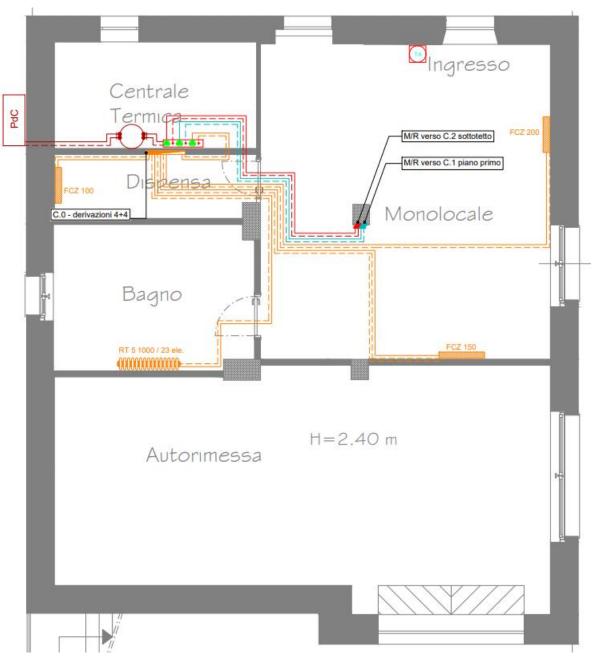


Figura 4.9 Schema planimetrico impianto di climatizzazione piano terra

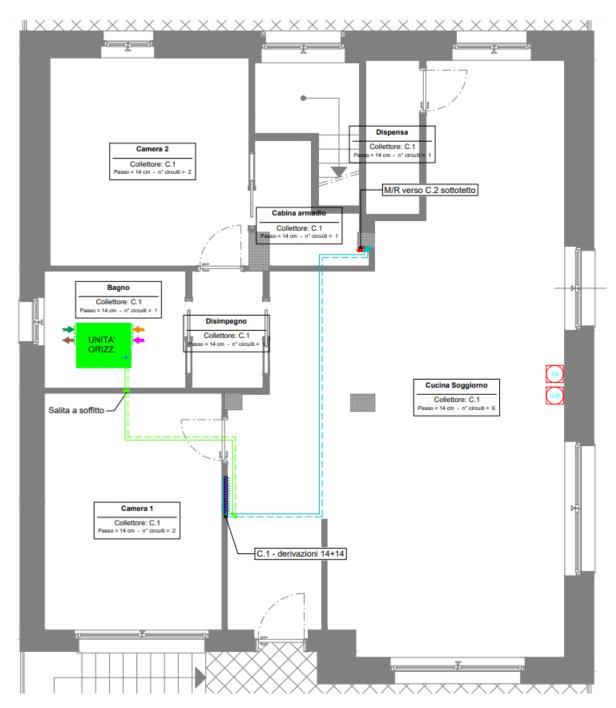


Figura 4.10 Schema planimetrico impianto di climatizzazione piano primo

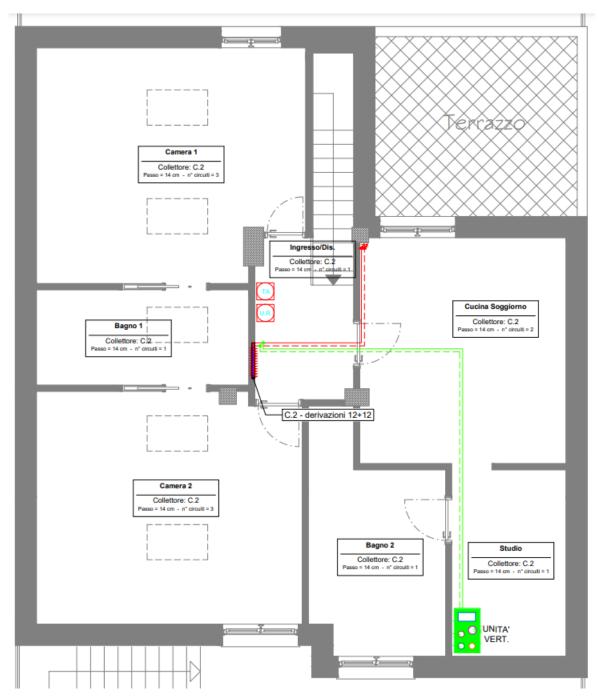


Figura 4.11 Schema planimetrico impianto di climatizzazione piano secondo

4.5.1 Dimensionamento delle tubazioni

Per il dimensionamento dei vari rami si procede selezionando il diametro tale per cui la velocità dell'acqua si mantiene all'interno del range consigliato per quella tipologia di tratto. Infatti, dalla velocità dipendono quattro fenomeni che devono essere contenuti il più possibile: le perdite di carico; la rumorosità; la corrosione-erosione e il trascinamento dell'aria.

TAB. 1 - Velocità (m/s) consigliate per reti ad acqua calda e refrigerata								
	tubazioni tubazioni derivazioni a principali secondarie corpi scaldani							
tubi in acciaio	$1,5 \div 2,5$	$0.5 \div 1.5$	$0.2 \div 0.7$					
tubi in rame	$0.9 \div 1.2$	$0.5 \div 0.9$	$0.2 \div 0.5$					
tubi in mat. plastico	$1,5 \div 2,5$	$0.5 \div 1.5$	$0.2 \div 0.7$					

Di seguito i risultati ottenuti per il regime invernale:

		F	PIANO SECONDO)		PIANO PRIMO			
Ramo)	VMC vert.	Radianti C.2	diram. C.2	VMC orizz.	Radianti C.1	diram. C.1		
		- diram. C.2	- diram. C.2	- C.centrale	- diram. C.1	- diram. C.1	- C.centrale		
G	[l/h]	180	594,3	774,3	120	637,7	757,7		
dt	[K]	5	5	5	5	5	5		
Р	[W]	1046,5	3455,2	4501,7	697,7	3707,5	4405,2		
Materiale tubo	[-]	MULTISTRATO	-	MULTISTRATO	MULTISTRATO	-	MULTISTRATO		
DN	[-]	16X2	-	26X3	16X2	-	26X3		
Di	[mm]	12	-	20	12	-	20		
Tipo tratto tub.	[-]	Derivazione	-	Secondaria	Derivazione	-	Secondaria		
v_min	[m/s]	0,2	-	0,5	0,2	-	0,5		
v_max	[m/s]	0,7	-	1,5	0,7	-	1,5		
T_med	[°C]	27,5	-	27,5	27,5	-	27,5		
ρ	[kg/m3]	996,36	-	996,36	996,36	-	996,36		
V	[m/s]	0,44	-	0,69	0,30	-	0,67		
		PIANO TERRA CENTRA							
Ramo)	FCZ200	FCZ150	FCZ100	Radiatore	C.0	C.centrale	PdC	
		-	-	-	-		-	-	
	1	C.0	C.0	C.0	C.0	C.centrale	acc. inerz.	acc. inerz.	
G	[l/h]	254	189	173	202,9	818,9	2350,9	2029,6	
dt	[K]	5	5	5	5	5	5	5	
Р	[W]	1476,7	1098,8	1005,8	1179,6	4761,0	13667,9	11800,0	
Materiale tubo	[-]	MULTISTRATO	MULTISTRATO	MULTISTRATO	MULTISTRATO	MULTISTRATO	ACCIAIO	ACCIAIO	
DN	[-]	20X2	16X2	16X2	16X2	26X3	1" 1/4	1" 1/4	
Di	[mm]	16	12	12	12	20	36,6	36,6	
Tipo tratto tub.	[-]	Derivazione	Derivazione	Derivazione	Derivazione	Secondaria	Secondaria	Secondaria	
v_min	[m/s]	0,2	0,2	0,2	0,2	0,5	0,5	0,5	
v_max	[m/s]	0,7	0,7	0,7	0,7	1,5	1,5	1,5	
T_med	[°C]	42,5	42,5	42,5	42,5	42,5	42,5	42,5	
ρ	[kg/m3]	991,29	991,29	991,29	991,29	991,29	991,29	991,29	
V	[m/s]	0,35	0,47	0,43	0,50	0,73	0,62	0,54	

Successivamente si è verificato che i diametri scelti vadano bene pure in regime estivo:

		F	PIANO SECONDO)		PIANO PRIMO		
Ramo		VMC vert.	Radianti C.2	diram. C.2	VMC orizz.	Radianti C.1	diram. C.1	
		diram. C.2	diram. C.2	C.centrale	diram. C.1	diram. C.1	C.centrale	
G	[l/h]	180	608,1	788,1	120	827,1	947,1	
dt	[K]	5	5	5	5	5	5	
Р	[W]	1046,5	3535,4	4581,9	697,7	4808,7	5506,3	
Materiale tubo	[-]	MULTISTRATO	-	MULTISTRATO	MULTISTRATO	-	MULTISTRATO	
DN	[-]	16X2	-	26X3	16X2	-	26X3	
Di	[mm]	12	-	20	12	-	20	
Tipo tratto tub.	[-]	Derivazione	-	Secondaria	Derivazione	-	Secondaria	
v_min	[m/s]	0,2	-	0,5	0,2	-	0,5	
v_max	[m/s]	0,7	-	1,5	0,7	-	1,5	
T_med	[°C]	12,9	-	12,9	12,9	-	12,9	
ρ	[kg/m3]	999,36	-	999,36	999,36	-	999,36	
V	[m/s]	0,44	-	0,70	0,29	ı	0,84	
		PIANO TERRA CENTR						
Ramo		FCZ200	FCZ150	FCZ100	Radiatore	C.0	C.centrale	PdC
name		- C.0	- C.0	- C.0	- C.0	- C.centrale	- acc. inerz.	- acc. inerz.
G	[l/h]	254	189	173	0	616	2351,2	2132,8
dt	[K]	5	5	5	-	5	5	5
Р	[W]	1476,7	1098,8	1005,8	0	3581,4	13669,6	12400,0
Materiale tubo	[-]	MULTISTRATO	MULTISTRATO	MULTISTRATO	MULTISTRATO	MULTISTRATO	ACCIAIO	ACCIAIO
DN	[-]	20X2	16X2	16X2	16X2	26X3	1" 1/4	1" 1/4
Di	[mm]	16	12	12	12	20	36,6	36,6
Tipo tratto tub.	[-]	Derivazione	Derivazione	Derivazione	Derivazione	Secondaria	Secondaria	Secondaria
v_min	[m/s]	0,2	0,2	0,2	-	0,5	0,5	0,5
v_max	[m/s]	0,7	0,7	0,7	-	1,5	1,5	1,5
T_med	[°C]	9,5	9,5	9,5	-	9,5	9,5	9,5
ρ	[kg/m3]	999,75	999,75	999,75	-	999,75	999,75	999,75
V	[m/s]	0.35	0.46	0.43		0.55	0.62	0.56

Una volta dimensionate le colonne montanti verso i tre collettori di zona è possibile effettuare la scelta del collettore di centrale. Quest'ultimo, secondo le disposizioni indicate nel **Quaderno 1 - Caleffi**, può essere dimensionato con la formula:

$$S_C \ge 1.6 \cdot (S_1 + S_2 + \dots + S_n)$$

Dove:

- $S_C [mm^2]$: sezione interna del collettore;
- S_1 , S_2 , S_n [mm^2]: sezioni interne dei circuiti derivati.

Nel nostro caso si ha:

$$S_C \ge 1.6 \cdot (314.16 + 314.16 + 314.16) = 1507.97 \, mm^2$$

Il che si traduce nella scelta di un collettore, il cui diametro interno è pari a 1 1/2".

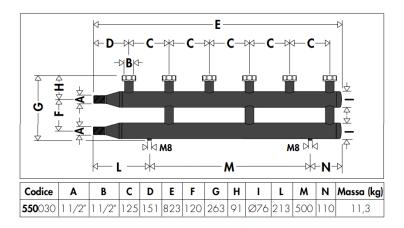


Figura 4.12 Collettore da centrale Caleffi serie 550 (3 derivazioni)

4.5.2 Pompe di circolazione

In totale sono previste tre pompe di circolazione, una per ogni unità abitativa. Per la scelta della taglia adeguata occorre dapprima calcolare le perdite di carico dei singoli rami.

I procedimenti sono simili a quelli seguiti per il calcolo dei canali d'aria. Infatti, anche in questo caso si utilizza la formula di Darcy per la valutazione delle perdite di carico continue. L'unica differenza risiede nel calcolo del fattore di attrito in regime turbolento, dove vanno distinti due casi.

Per tubi a bassa rugosità (es. multistrato):

$$F_a = 0.316 \cdot R_e^{-0.25}$$

Per tubi a media rugosità (es. acciaio):

$$F_a = 0.07 \cdot R_e^{-0.13} \cdot D^{-0.14}$$

Le perdite di carico localizzate sono state determinate per alcuni componenti tramite scheda tecnica dei produttori, per altri attraverso un metodo analitico utilizzando la formula:

$$z = \xi \cdot \rho \cdot \frac{v^2}{2}$$

Dove:

• z [Pa]: perdita di carico localizzata

• ξ [-]: coefficiente di perdita localizzata

• $\rho [kg/m^3]$: densità

v [m/s]: velocità

Il fattore ξ dipende dalla forma della perdita localizzata e può essere ricavato con apposite formule o diagrammi sperimentali.

Diametro interno tubi in acciaio inox, r	8 ÷ 16 mm	18 + 28 mm	30 + 54 mm	> 54 mm		
	Diametro tubi in acciaio	3/8" + 1/2"	3/4" ÷ 1"	1 1/4" + 2"	> 2"	
Tipo di resistenza localizzata	Simbolo					
Curva stretta a 90° r/d = 1,5		2,0	1,5	1,0	0,8	
Curva normale a 90° r/d = 2,5		1,5	1,0	0,5	0,4	
Curva larga a 90° r/d > 3,5		1,0	0,5	0,3	0,3	
Curva stretta a U r/d = 1,5		2,5	2,0	1,5	1,0	
Curva normale a U r/d = 2,5		2,0	1,5	0,8	0,5	
Curva larga a U r/d > 3,5		1,5	0,8	0,4	0,4	
Allargamento			1,	.0		
Restringimento			О,	.5		
Diramazione semplice con T a squadra			1,	.0		
Confluenza semplice con T a squadra			1,	.0		
Diramazione doppia con T a squadra			3,	.0		
Confluenza doppia con T a squadra			3,	.0		
Diramazione semplice con angolo inclinato (45° - 60°)		0,5				
Confluenza semplice con angolo inclinato (45° - 60°)		0,5				
Diramazione con curve d'invito		2,0				
Confluenza con curve d'invito			2,	,0		

Figura 4.13 Valori del coefficiente di perdita localizzata ξ (reti di distribuzione)

Diametro interno tubi in acciaio inox, ra	ame e materiale plastico	8 + 16 mm	18 ÷ 28 mm	30 ÷ 54 mm	> 54 mm
Diametr	ro esterno tubi in acciaio	3/8" + 1/2"	3/4" ÷ 1"	1 1/4" ÷ 2"	> 2"
Tipo di resistenza localizzata	Simbolo				
Valvola di intercettazione diritta	- ┴-	10,0	8,0	7,0	6,0
Valvola di intercettazione inclinata	- X - - X -	5,0	4,0	3,0	3,0
Saracinesca a passaggio ridotto		1,2	1,0	0,8	0,6
Saracinesca a passaggio totale	-1221-	0,2	0,2	0,1	0,1
Valvola a sfera a passaggio ridotto	->=	1,6	1,0	0,8	0,6
Valvola a sfera a passaggio totale	-1001-	0,2	0,2	0,1	0,1
Valvola a farfalla	→ ×⊢	3,5	2,0	1,5	1,0
Valvola a ritegno	- \ -	3,0	2,0	1,0	1,0
Valvola per corpo scaldante tipo diritto	− Ğ −	8,5	7,0	6,0	-
Valvola per corpo scaldante tipo a squadra	− ₹	4,0	4,0	3,0	-
Detentore diritto	- ₫–	1,5	1,5	1,0	-
Detentore a squadra	− ₹	1,0	1,0	0,5	_
Valvola a quattro vie		6,0 4,0		0	
Valvola a tre vie	-	10,0 8,0			0
Passaggio attraverso radiatore		3,0			
Passaggio attraverso caldaia a terra			3	,0	

Figura 4.13 Valori del coefficiente di perdita localizzata ξ (componenti d'impianto)

Le perdite di carico localizzate ricavate da scheda tecnica variano al variare della portata in gioco e spesso sono parametrizzate rispetto alla costante $K_{V_{0,01}}$, cioè la portata in 1/h per una perdita di carico di $1 \, kPa$. Nota questa caratteristica idraulica è facile calcolare la perdita rispetto a quel componente come:

$$\Delta P = \frac{G^2}{K_{V_{0,01}}^2}$$

Ad esempio, per il calcolo delle perdite riferite al collettore dei pannelli radianti, si è proceduto calcolando la somma delle perdite di carico parziali relative ad ogni specifico componente del sistema, come indicato nella relazione:

$$\Delta P_{Tot.} = \Delta P_{VR} + \Delta P_{Anello} + \Delta P_{VI} + \Delta P_{Coll.\ M} + \Delta P_{Coll.\ R} + \Delta P_{VS} \cdot 2$$

Dove:

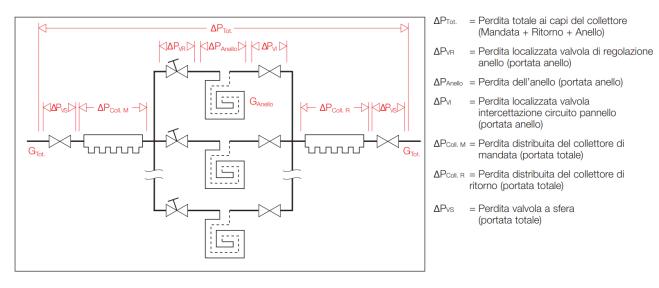


Figura 4.14 Schema perdite di carico collettore pannelli radianti

Di seguito i risultati ottenuti riferiti al regime invernale:

		F	PIANO SECONDO)	PIANO PRIMO			
Ramo		VMC vert.	Radianti C.2	diram. C.2	VMC orizz.	Radianti C.1	diram. C.1	
Tianio .								
		diram. C.2	diram. C.2	C.centrale	diram. C.1	diram. C.1	C.centrale	
G	[l/h]	180	594,3	774,3	120	637,7	757,7	
Materiale tubo	[-]	MULTISTRATO	-	MULTISTRATO	MULTISTRATO	-	MULTISTRATO	
Di	[mm]	12	-	20	12	-	20	
T_med	[°C]	27,5	-	27,5	27,5	-	27,5	
ρ	[kg/m3]	996,36	-	996,36	996,36	-	996,36	
V	[m/s]	0,44	-	0,69	0,30	-	0,67	
μ	[m2/s]	8,48E-07	-	8,48E-07	8,48E-07	-	8,48E-07	
Re	[-]	6276	-	16199	4184	-	15852	
moto	[-]	Turbolento	-	Turbolento	Turbolento	-	Turbolento	
Fa	[mm]	0,0355	-	0,0280	0,0393	-	0,0282	
r	[Pa/m]	290,18	-	329,42	142,73	-	317,16	
Lunghezza (A+R)	[m]	22,0	-	36,0	33,0	-	38,0	
Δpd	[Pa]	6383,98	12054,00	11859,16	4710,02	8738,00	12052,14	
n°curve (A+R)	[-]	6	ı	22	12	-	26	
z_curve	[Pa]	882,73	0	7762,12	784,65	0	8784,29	
n°diramazioni (A+R)	[-]	0	0	2	0	0	2	
z_diramazioni	[Pa]	0	0	470,43	0	0	450,48	
n°allargamenti	[-]	0	0	0	0	0	0	
z_allargamenti	[Pa]	0	0	0	0	0	0	
n°restringimenti	[-]	0	0	0	0	0	0	
z_restringimenti	[Pa]	0	0	0	0	0	0	
n°valvole_a_sfera	[-]	2	0	2	2	0	2	
z_valvole_a_sfera	[Pa]	39,23	0	94,09	17,44	0	90,10	
n°valv. corpo scald.	[-]	0	0	0	0	0	0	
z_valv. corpo scald.	[Pa]	0	0	0	0	0	0	
n°detentori	[-]	0	0	0	0	0	0	
z_detentori	[Pa]	0	0	0	0	0	0	
n°radiatori	[-]	0	0	0	0	0	0	
z_radiatori	[Pa]	0	0	0	0	0	0	
Δpc_defangatore	[Pa]	0	0	0	0	0	0	
Δpc_vmc	[Pa]	7000,00	0	0	9000,00	0	0	
Δpc_collettore_zona	[Pa]	0	1489,76	0	0	1279,13	0	
Δpc_collettore_centrale	[Pa]	0	0	140	0	0	140	
Δpc_contabilizzatore	[Pa]	0	0	5008,02	0	0	4795,59	

Δpc_fancoil	[Pa]	0	0	0	0	0	0	1
Δpc_valv. miscelatrice	[Pa]	0	0	1510,56	0	0	1446,48	
Δpc_regolatore_portata	[Pa]	0	0	1043,47	0	0	999,21	
Δρς	[Pa]	7921,97	1489,76	16028,68	9802,09	1279,13	16706,15	
Δpc ramo sfavorito	[Pa]	-	-	14305,94	-	-	14512,11	
Δp	[Pa]	14305,94	13543,76	42193,79	14512,11	10017,13	43270,40	
·	PIANO TERRA					CENTRALE		
Dome		FCZ200	FCZ150	FCZ100	Radiatore	C.0	C.centrale	PdC
Ramo		-	-	-	-	-	-	-
		C.0	C.0	C.0	C.0	C.centrale	acc. inerz.	acc. inerz.
G	[l/h]	254	189	173	202,9	818,9	2350,9	2029,6
Materiale tubo	[-]	MULTISTRATO	MULTISTRATO	MULTISTRATO	MULTISTRATO	MULTISTRATO	ACCIAIO	ACCIAIO
Di	[mm]	16	12	12	12	20	36,6	36,6
T_med	[°C]	42,5	42,5	42,5	42,5	42,5	42,5	42,5
ρ	[kg/m3]	991,29	991,29	991,29	991,29	991,29	991,29	991,29
V	[m/s]	0,35	0,47	0,43	0,50	0,73	0,62	0,54
μ	[m2/s]	6,18E-07						
Re	[-]	6642	6590	6032	7075	17132	26876	23203
moto	[-]	Turbolento						
Fa	[mm]	0,0350	0,0351	0,0359	0,0345	0,0276	0,0112	0,0114
r	[Pa/m]	135,19	316,05	270,72	357,84	363,34	59,32	45,07
Lunghezza (A+R)	[m]	25,0	22,0	6,0	19,0	8,0	4,0	6,0
Δpd	[Pa]	3379,73	6953,01	1624,33	6798,90	2906,73	237,29	270,42
n°curve (A+R)	[-]	14	16	10	16	12	4	6
z_curve	[Pa]	1291,09	2582,02	1352,10	2975,78	4711,55	1154,10	1290,32
n°diramazioni (A+R)	[-]	0	0	0	0	0	0	0
z_diramazioni	[Pa]	0	0	0	0	0	0	0
n°allargamenti	[-]	0	0	0	0	0	1	1
z_allargamenti	[Pa]	0	0	0	0	0	192,35	143,37
n°restringimenti	[-]	0	0	0	0	0	1	1
z_restringimenti	[Pa]	0	0	0	0	0	96,18	71,68
n°valvole_a_sfera	[-]	0	0	0	0	2	2	5
z_valvole_a_sfera	[Pa]	0	0	0	0	104,70	76,94	143,37
n°valv. corpo scald.	[-]	1	1	1	1	0	0	0
z_valv. corpo scald.	[Pa]	245,92	430,34	360,56	495,96	0	0	0
n°detentori	[-]	1	1	1	1	0	0	0
z_detentori	[Pa]	61,48	107,58	90,14	123,99	0	0	0
n°radiatori	[-]	0	0	0	1	0	0	0
z_radiatori	[Pa]	0	0	0	371,97	0	0	0
Δpc_defangatore	[Pa]	0	0	0	0	0	250,00	250,00
Δpc_vmc	[Pa]	0	0	0	0	0	0	0
Δpc_collettore_zona	[Pa]	0	0	0	0	119,51	0	0
Δpc_collettore_centrale	[Pa]	0	0	0	0	140	1000,00	0
Δpc_contabilizzatore	[Pa]	0	0	0	0	5601,57	0	0
Δpc_fancoil	[Pa]	12000,00	9000,00	4000,00	0	0	0	0
Δpc_valv. miscelatrice	[Pa]	0	0	0	0	0	0	0
Δpc_regolatore_portata	[Pa]	0	0	0	0	1167,14	0 0700 57	0
Δρς	[Pa]	13598,49	12119,94	5802,80	3967,70	11844,47	2769,57	1898,75
Δpc_ramo_sfavorito	[Pa]	-	10070.05	- 7407.40	- 10700 01	19072,95	- 2000 00	- 0400 40
Δр	[Pa]	16978,22	19072,95	7427,13	10766,61	33824,15	3006,86	2169,16

Mentre, per il regime estivo si è ottenuto:

Ramo [I/h]	VMC vert diram. C.2 180 MULTISTRATO 12 12,9 999,36	Radianti C.2 - diram. C.2 608,1	diram. C.2 - C.centrale 788,1	VMC orizz. - diram. C.1	Radianti C.1 - diram. C.1	diram. C.1 - C.centrale	
G [I/h] Materiale tubo [-] Di [mm] T_med [°C]	180 MULTISTRATO 12 12,9	608,1	788,1		- diram. C.1	- C.centrale	
Materiale tubo	180 MULTISTRATO 12 12,9	608,1	788,1		diram. C.1	C.centrale	
Materiale tubo	MULTISTRATO 12 12,9	-		100			
Di [mm] T_med [°C]	12 12,9			120	827,1	947,1	
T_med [°C]	12,9		MULTISTRATO	MULTISTRATO	-	MULTISTRATO	
		-	20	12	-	20	
ρ [kg/m3	000.36	-	12,9	12,9	-	12,9	
. 1.3	999,30	-	999,36	999,36	-	999,36	
v [m/s]	0,44	-	0,70	0,29	-	0,84	
μ [m2/s]	1,21E-06	i	1,21E-06	1,21E-06	-	1,21E-06	
Re [-]	4380	ī	11507	2920	ı	13828	
moto [-]	Turbolento	ī	Turbolento	Turbolento	ı	Turbolento	
Fa [mm]	0,0388	ī	0,0305	0,0430	ı	0,0291	
r [Pa/m]	316,53	i	370,62	155,69	-	511,21	
Lunghezza (A+R) [m]	22,0	ī	36,0	33,0	ı	38,0	
Δpd [Pa]	6963,67	8958,00	13342,18	5137,71	14350,00	19425,99	
n°curve [-]	6	-	22	12	-	26	
z_curve [Pa]	880,09	0	8017,17	782,30	0	13683,61	
n°diramazioni (A+R) [-]	0	0	2	0	0	2	
z_diramazioni [Pa]	0	0	485,89	0	0	701,72	
n°allargamenti [-]	0	0	0	0	0	0	
z_allargamenti [Pa]	0	0	0	0	0	0	
n°restringimenti [-]	0	0	0	0	0	0	
z_restringimenti [Pa]	0	0	0	0	0	0	
n°valvole_a_sfera [-]	2	0	2	2	0	2	
z_valvole_a_sfera [Pa]	39,12	0	97,18	17,38	0	140,34	
n°valv. corpo scald. [-]	0	0	0	0	0	0	
z_valv. corpo scald. [Pa]	0	0	0	0	0	0	
n°detentori [-]	0	0	0	0	0	0	
z_detentori [Pa]	0	0	0	0	0	0	
n°radiatori [-]	0	0	0	0	0	0	
z_radiatori [Pa]	0	0	0	0	0	0	
Δpc_defangatore [Pa]	0	0	0	0	0	0	
Δpc_vmc [Pa]	7000,00	0	0	9000,00	0	0	
Δpc_collettore_zona [Pa]	0	1356,45	0	0	2190,38	0	
Δpc_collettore_centrale [Pa]	0	0	140	0	0	140	
Δpc_contabilizzatore [Pa]	0	0	5188,13	0	0	7492,72	
Δpc_fancoil [Pa]	0	0	0	0	0	0	
Δpc_valv. miscelatrice [Pa]	0	0	1564,88	0	0	2260,01	
Δpc_regolatore_portata [Pa]	0	0	1081,00	0	0	1561,18	
Δрс [Ра]	7919,20	1356,45	16574,24	9799,69	2190,38	25979,58	
Δpc_ramo_sfavorito [Pa]	-	-	14882,87	-	-	16540,38	
Δp [Pa]	14882,87	10314,45	44799,28	14937,40	16540,38	61945,96	
			PIANO TERRA			CENTR	ALE
Ramo	FCZ200	FCZ150	FCZ100	Radiatore	C.0	C.centrale	PdC
Hamo	-	-	-	-	-	-	-
	C.0	C.0	C.0	C.0	C.centrale	acc. inerz.	acc. inerz.
G [l/h]	254	189	173	0	616	2351,2	2132,8
Materiale tubo [-]	MULTISTRATO	MULTISTRATO	MULTISTRATO	MULTISTRATO	MULTISTRATO	ACCIAIO	ACCIAIO
Di [mm]	16	12	12	12	20	36,6	36,6
T_med [°C]	9,5	9,5	9,5	-	9,5	9,5	9,5
ρ [kg/m3		999,75	999,75	-	999,75	999,75	999,75
v [m/s]	0,35	0,46	0,43	-	0,55	0,62	0,56
μ [m2/s]		1,32E-06	1,32E-06	-	1,32E-06	1,32E-06	1,32E-06
Re [-]	4636	4599	4210	-	8994	18759	17017
moto [-]	Turbolento	Turbolento	Turbolento	-	Turbolento	Turbolento	Turbolento
Fa [mm]	0,0383	0,0384	0,0392	-	0,0324	0,0118	0,0119
r [Pa/m]	147,46	344,74	295,30	-	240,81	61,99	51,66
Lunghezza (A+R) [m]	25,0	22,0	6,0	19,0	8,0	4,0	6,0

Δpd	[Pa]	3686,62	7584,37	1771,82	-	1926,47	247,97	309,97
n°curve	[-]	14	16	10	16	12	4	6
z_curve	[Pa]	1294,32	2588,48	1355,48	-	2672,69	1157,29	1428,44
n°diramazioni (A+R)	[-]	0	0	0	-	0	0	0
z_diramazioni	[Pa]	0	0	0	-	0	0	0
n°allargamenti	[-]	0	0	0	-	0	1	1
z_allargamenti	[Pa]	0	0	0	-	0	192,88	158,72
n°restringimenti	[-]	0	0	0	-	0	1	1
z_restringimenti	[Pa]	0	0	0	-	0	96,44	79,36
n°valvole_a_sfera	[-]	0	0	0	-	2	2	5
z_valvole_a_sfera	[Pa]	0	0	0	-	59,39	77,15	158,72
n°valv. corpo scald.	[-]	1	1	1	-	0	0	0
z_valv. corpo scald.	[Pa]	246,54	431,41	361,46	-	0	0	0
n°detentori	[-]	1	1	1	-	0	0	0
z_detentori	[Pa]	61,63	107,85	90,37	-	0	0	0
n°radiatori	[-]	0	0	0	-	0	0	0
z_radiatori	[Pa]	0	0	0	-	0	0	0
Δpc_defangatore	[Pa]	0	0	0	-	0	250,00	250,00
Δpc_vmc	[Pa]	0	0	0	-	0	0	0
Δpc_collettore_zona	[Pa]	0	0	0	-	67,62	0	0
$\Delta pc_collettore_centrale$	[Pa]	0	0	0	-	140	1000,00	0
Δpc_contabilizzatore	[Pa]	0	0	0	-	3169,63	0	0
Δpc_fancoil	[Pa]	12000,00	12000,00	4000,00	-	0	0	0
Δpc_valv. miscelatrice	[Pa]	0	0	0	-	0	0	0
Δpc_regolatore_portata	[Pa]	0	0	0	-	660,42	0	0
Δрс	[Pa]	13602,49	15127,74	5807,31	-	6769,77	2773,76	2075,23
Δpc_ramo_sfavorito	[Pa]	-	-	-	-	22712,11	-	-
Δр	[Pa]	17289,11	22712,11	7579,13	-	31408,35	3021,73	2385,20

Adesso è possibile ricavare le portate e le prevalenze massime richieste dalle varie pompe di circolazione e quindi effettuare la scelta della corrispettiva taglia.

REGIME INVERNALE								
		C.0	diram. C.1	diram. C.2				
Ramo		-	-	-				
		acc. inerz.	acc. inerz.	acc. inerz.				
Portata richiesta	[l/h]	819	758	774				
Prevalenza richiesta	Prevalenza richiesta [kPa]		46,3	45,2				
		REGIME ESTIVO	REGIME ESTIVO					
		C.0	diram. C.1	diram. C.2				
Ramo				-				
		acc. inerz.	acc. inerz.	acc. inerz.				
Portata richiesta [l/h]		616	947	788				
Prevalenza richiesta [kPa]		34,4	65,0	47,8				
POMPE DI CIRCOLAZIONE								
		POMPA P.0	POMPA P.1	POMPA P.2				
Portata richiesta	[l/h]	819	947	788				
Prevalenza richiesta [kPa]		36,8	65,0	47,8				
Marca	[-]	Grundfos	Grundfos	Grundfos				
Modello	[-]	MAGNA3 25-40	MAGNA3 25-80	MAGNA3 25-60				
Potenza max assorbita	[W]	50	116	84				

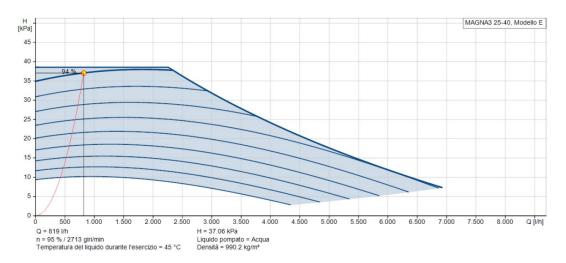


Figura 4.15 Curva caratteristica circolatore piano terra

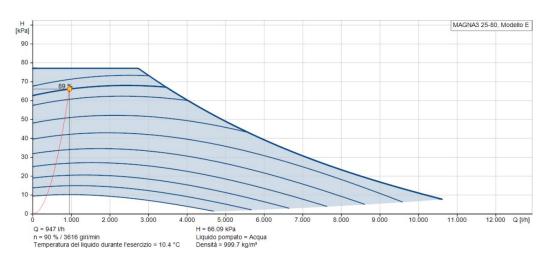


Figura 4.16 Curva caratteristica circolatore piano primo

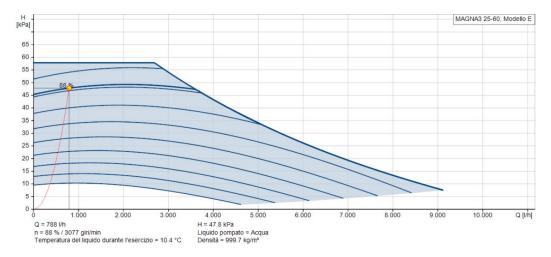


Figura 4.17 Curva caratteristica circolatore piano secondo

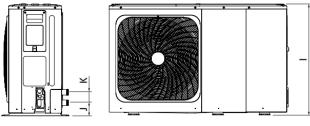
Figura 4.18 Pompa di circolazione Grundfos serie Magna3

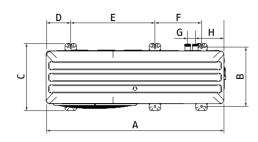
4.5.3 Pompa di calore

A differenza dei terminali di emissione, la pompa di calore è dimensionata sulla base del carico termico dell'intero edificio. Quindi se nel caso invernale la potenza totale sarà data semplicemente dalla somma delle potenze dei singoli terminali, invece, nel caso estivo, si fa riferimento all'ora di massimo carico dell'edificio (ore 16:00).

Carico termico invernale		
Carico termico estivo	[kW]	12,19

Il dimensionamento della macchina viene effettuato sulla base delle condizioni di funzionamento di progetto, che sono:


DATI INVERNALI								
Temperatura esterna dell'aria	[°C]	-8,1						
Temperatura dell'acqua in uscita	[°C]	45						


DATI ESTIVI		
Temperatura esterna dell'aria	[°C]	31
Temperatura dell'acqua in uscita	[°C]	7

La scelta è ricaduta su una pompa di calore aria-acqua monoblocco con refrigerante R32, marca Riello, modello **NXHM 014**, caratterizzata dai seguenti dati prestazionali e dimensionali:

		Prestazioni a pieno carico										
Temperatura di mandata	35°C	:	45°C		55°C	:						
Temperatura esterna	Capacità nominale (kW)	СОР	Capacità nominale (kW)	СОР	Capacità nominale (kW)	СОР						
-7	12,00	2,85	11,80	2,35	11,00	2,05						
2	11,00	3,60	11,50	2,85	12,40	2,45						
7	14,50	4,60	14,10	3,60	13,80	2,95						
2	11,51	5,46	11,69	4,12	10,28	3,32						
5	11,60	5,67	11,90	4,25	9,84	3,41						
20	11,10	6,27	11,50	4,87	9,53	3,74						
35	11,80	8,63	12,00	6,10	10,10	4,93						

	А	В	С	D	Е	F	G	Н	- 1	J	K
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
NXHM 004÷006	1295	375	426	120	644	379	105	225	718	87	
NXHM 008÷016	1385	458	523	192	656	363	60	221	865	101	81

Figura 4.19 Dati tecnici pompa di calore

4.5.4 Accumulatore inerziale

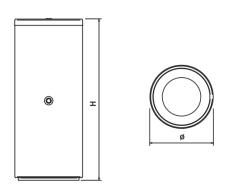
L'accumulatore inerziale, noto anche come volano termico (o puffer), è un dispositivo utilizzato nei sistemi di riscaldamento/condizionamento per immagazzinare energia termica e rilasciarla gradualmente secondo necessità. Ad esempio, quando la pompa di calore produce più calore di quanto richiesto, il surplus viene immagazzinato nel serbatoio. Successivamente, quando la domanda di calore supera la produzione, il calore immagazzinato viene rilasciato per soddisfare la richiesta. Questo sistema riduce i cicli di accensione e spegnimento del generatore di calore, migliorandone l'efficienza e la durata.

Inoltre, l'accumulatore inerziale funge anche da separatore idraulico, disaccoppiando il circuito primario (di generazione) dal circuito secondario (di distribuzione). La separazione idraulica consente di operare in modo indipendente, garantendo una regolazione più precisa delle temperature e delle portate.

La capacità del volano termico, cioè il suo volume, deve essere scelta in funzione della potenza del generatore. Considerando che la pompa di calore deve rimanere in funzione almeno 15 minuti e che alla potenza minima di funzionamento continuo la pompa di calore eroga 4 kW si ha che l'energia da accumulare è pari a:

$$En_{acc} = 0.25 h \cdot 4 kW = 1 kWh$$

Una volta determinato questo parametro, si deve decidere la differenza di temperatura ammissibile (isteresi), cioè il delta di temperatura tra il punto massimo e minimo all'interno del serbatoio. In genere, viene fissata un'isteresi di 5 °C. Quindi il volume idealmente richiesto è facilmente ricavabile come:


$$V_{richiesto} = \frac{En_{acc}}{C \cdot \Delta T} = \frac{1 \ kWh}{1,16 \ \frac{kWh}{m^3 \cdot K} \cdot 5K} = 0,172 \ m^3 = 172 \ litri$$

Alla luce di questo risultato è stato scelto un volano da **203 litri** Marca **Riello** modello **7000 Aci Plus 200**, caratterizzato dai seguenti dati:

DATI TECNICI MODELLI CALDO/FREDDO

			120	200	200	1.00			4000	4500	2000
MODELLI RIELLO 7000 ACI PLUS		60	120	200	300	400	500	800	1000	1500	2000
Tipo accumulo						non ve	trificato				
Disposizione accumulo						vert	ticale				
Numero attacchi idraulici		4	4	4	4	4	6	6	6	6	6
Capacità di accumulo	1	57	123	203	277	390	473	732	855	1420	2013
Diametro esterno completo di isolamento	mm	400	500	550	600	700	700	990	990	1200	1300
Altezza completa di isolamento	mm	935	1095	1395	1560	1540	1840	1800	2050	2165	2480
Spessore isolamento	mm	50	50	50	50	50	50	100	100	100	100
Pressione massima di esercizio accumulo	bar	6	6	6	6	6	6	6	6	6	6
Temperatura massima di esercizio accumulo	°C	99	99	99	99	99	99	99	99	99	99
Dispersioni secondo EN 12897:2006 (AT 45°C, ambiente	W	34	50	68	82	105	114	131	139	168	190
20°C e accumulo a 65°C)	kWh/24h	0,816	1,200	1,632	1,968	2,520	2,740	3,140	3,340	4,030	4,030
Dispersione termiche UNI TS 11300	W/K	0,75	1,11	1,51	1,82	2,33	2,54	2,91	3,10	3,73	3,73
Classe di efficienza energetica		В	В	C	C	C	C	C	С	С	С
Peso netto con isolamento	kg	25	35	45	55	95	100	115	170	185	305

DIMENSIONI DI INGOMBRO

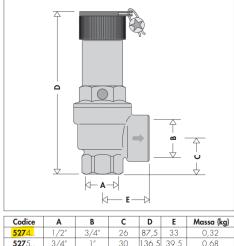
MODELLI RIELLO 7000 ACI PLUS CALDO/ FREDDO		60	120	200	300
Diametro del bollitore con isolamento	mm	400	500	550	600
Altezza del bollitore con isolamento	mm	935	1095	1395	1560

Figura 4.20 Dati tecnici volano termico

4.5.5 Dispositivi di sicurezza

Per garantire la sicurezza dell'impianto è opportuno prevedere l'installazione di dispositivi di sicurezza come la valvola di sicurezza ed il vaso d'espansione.

La valvola di sicurezza è un dispositivo che permette di tenere sotto controllo la pressione dell'impianto. Al raggiungimento della pressione di taratura, la valvola si apre e, mediante lo scarico in atmosfera, impedisce alla pressione di raggiungere limiti pericolosi per il generatore e per i componenti dell'impianto stesso.


Per questo impianto si è scelta una valvola di sicurezza CALEFFI serie 527 certificata e tarata a banco INAIL (ex ISPESL). Poiché la pressione di scarico della valvola non può superare la pressione massima ammissibile del generatore (3 bar) e considerato che devono sussistere le seguenti condizioni:

$$\begin{cases} \Delta p_{sovrappressione} < \max(0.2 \cdot p_{taratura}; \ 0.1 \ \text{bar}) \\ \Delta p_{chiusura} < \max(0.2 \cdot p_{taratura}; \ 0.5 \ \text{bar}) \end{cases}$$

Dove:

- $\Delta p_{sovrappressione} = p_{scarico} p_{taratura};$
- $\Delta p_{chiusura} = p_{taratura} p_{chiusura};$

Quindi, si è optato per una valvola tarata a 2,70 bar.

Codice	Α	В	С	D	Е	Massa (kg)
527 4.	1/2"	3/4"	26	87,5	33	0,32
527 5	3/4"	1"	30	136,5	39,5	0,68
527 6	1"	1 1/4"	39	168	48	1,30
527 7	1 1/4"	1 1/2"	44	186	57,5	1,95

D	ATI	TEC	NIC	I SE	RIE	52	7
Misura	Ø Orifizio mm	Sezione netta cm²	Press. di taratura (bar)		Press. di chiusura (bar)		Portata di scarico (W) kg/h
1/2"	15	1,767	1	1,10	0,80	0,79	140,38
1/2"	15	1,767	1,50	1,65	1,20	0,79	175,73
1/2"	15	1,767	2	2,20	1,60	0,79	211,17
1/2"	15	1,767	2,25	2,475	1,80	0,79	226,39
1/2"	15	1,767	2,50	2,75	2,00	0,79	246,36
1/2"	15	1,767	2,70	2,97	2,16	0,79	261,76
1/2"	15	1,767	3	3,30	2,40	0,79	282,35

Figura 4.20 Dati tecnici valvola di sicurezza

Secondo le disposizioni della Raccolta R Ed. 2009, la valvola di sicurezza è dimensionata sulla base della seguente formula:

$$A = \frac{0,005 \cdot Q \cdot F}{0,9 \cdot K} = \frac{0,005 \cdot \left(\frac{P}{0,58}\right) \cdot F}{0,9 \cdot K}$$

Dove:

- A: area della minima sezione trasversale netta dell'orifizio della valvola, in cm^2 ;
- Q: capacità di scarico della valvola di sicurezza, espressa in kg/h di vapore;
- P: potenza nominale del generatore espressa in kW;
- F: fattore di pressione desunto dalla tabella seguente in funzione della pressione di scarico;

• *K*: coefficiente di efflusso, desunto dal certificato di accettazione.

		Valo	ri di F	per p	ressio	oni di	scario	co da	0,5 a	12,5 k	oar		
Pscarico	0,50	0,60	0,70	0,80	0,90	1,00	1,10	1,20	1,30	1,40	1,50	1,60	1,70
F	2,47	2,32	2,19	2,07	1,97	1,87	1,79	1,71	1,63	1,57	1,51	1,45	1,40
Pscarico	1,80	1,90	2,00	2,10	2,20	2,30	2,40	2,50	2,60	2,70	2,80	2,90	3,00
F	1,35	1,31	1,26	1,22	1,19	1,15	1,12	1,09	1,06	1,03	1,01	0,98	0,96
Pscarico	3,10	3,20	3,30	3,40	3,50	3,60	3,70	3,80	3,90	4,00	4,20	4,40	4,60
F	0,93	0,91	0,89	0,87	0,85	0,84	0,82	0,80	0,79	0,77	0,74	0,71	0,69
Pscarico	4,80	5,00	5,20	5,40	5,60	5,80	6,00	6,20	6,40	6,60	6,80	7,10	7,20
F	0,67	0,65	0,62	0,61	0,59	0,57	0,56	0,54	0,53	0,51	0,50	0,49	0,48
Pscarico	7,40	7,60	7,80	8,00	8,20	8,40	8,60	8,80	9,00	9,50	10,00	10,50	11,00
F	0,46	0,45	0,44	0,43	0,43	0,42	0,41	0,40	0,39	0,37	0,36	0,34	0,32
Pscarico	11,50	12,00	12,50		•				•				
F	0,32	0,30	0,29										

Avendo noti tutti i dati è possibile invertire la precedente formula verificando quale sia la P massima gestibile dalla valvola selezionata, comparandola con la potenza nominale della pompa di calore installata $(14,50\ kW)$.

Di seguito i risultati ottenuti:

pressione massima ammissibile del generatore	bar	3,00	· da scheda tecnica generatore
pressione di scarico	bar	2,97	· da scheda tecnica valvola · <pmax,amm< td=""></pmax,amm<>
sovrapressione della valvola	bar	0,27	Δpsovrapressione=pscarico-ptaratura< max(0,2*ptaratura; 0,1 bar)
pressione di taratura	bar	2,70	· da scheda tecnica valvola
pressione di chiusura	bar	2,16	· da scheda tecnica valvola
scarto di chiusura della valvola	bar	0,54	Δpchiusura=ptaratura-pchiusura< max(0,2*ptaratura; 0,5 bar)
fattore di pressione	1	0,96	· da tabella in funzione della pscarico
coefficiente di efflusso	-	0,79	· da scheda tecnica valvola
diametro sezione trasversale netta dell'orifizio della valvola	mm	15	· da scheda tecnica valvola · >= 15 mm
area della sezione trasversale netta dell'orifizio della valvola	cm^2	1,767	
capacità di scarico della valvola di sicurezza	kg/h	261,76	· Q=A*0,9*K/(0,005*F)
potenza nominale massima del generatore	kW	151,82	· P=Q*0,58
potenza nominale del generatore	kW	14,50	· da scheda tecnica PdC · <p<sub>max</p<sub>
	ammissibile del generatore pressione di scarico sovrapressione della valvola pressione di taratura pressione di chiusura scarto di chiusura della valvola fattore di pressione coefficiente di efflusso diametro sezione trasversale netta dell'orifizio della valvola area della sezione trasversale netta dell'orifizio della valvola capacità di scarico della valvola di sicurezza potenza nominale massima del generatore potenza nominale del	ammissibile del generatore pressione di scarico bar sovrapressione della valvola pressione di taratura pressione di chiusura bar scarto di chiusura della valvola fattore di pressione coefficiente di efflusso diametro sezione trasversale netta dell'orifizio della valvola area della sezione trasversale netta dell'orifizio della valvola capacità di scarico della valvola di sicurezza potenza nominale massima del generatore potenza nominale del	pressione di scarico bar 2,97 sovrapressione della valvola bar 0,27 pressione di taratura bar 2,70 pressione di chiusura bar 2,16 scarto di chiusura della valvola bar 0,54 fattore di pressione - 0,96 coefficiente di efflusso - 0,79 diametro sezione trasversale netta dell'orifizio della valvola area della sezione trasversale netta dell'orifizio della valvola capacità di scarico della valvola di sicurezza potenza nominale massima del generatore potenza nominale del

Un altro dispositivo molto importante per la sicurezza dell'impianto è il vaso d'espansione. In questo caso si è optato per un vaso chiuso con diaframma, si tratta di un serbatoio sigillato che contiene l'acqua e l'aria separati da una membrana flessibile che si sposta comprimendo il gas nel momento in cui il fluido si espande; viceversa, quando l'acqua si raffredda la membrana ritorna alla posizione originale. Questo sistema consente di mantenere una pressione costante, prevenendo danni ai componenti dell'impianto causati dalle variazioni di pressione e contribuendo all'efficienza operativa dello stesso.

Il vaso d'espansione va scelto in modo tale che:

- la pressione massima di esercizio del vaso sia non inferiore alla pressione di taratura della valvola di sicurezza aumentata della sovrappressione caratteristica della valvola stessa, e tenuto conto dell'eventuale dislivello tra vaso e valvola;
- la capacità del vaso possa consentire la completa dilatazione dell'acqua senza che la pressione del vaso stesso superi la pressione di progetto. Detta capacità viene valutata in base alla capacità complessiva dell'impianto quale risulta dal progetto.

La Raccolta R Ed. 2009, fornisce una formula per il calcolo del volume del vaso d'espansione:

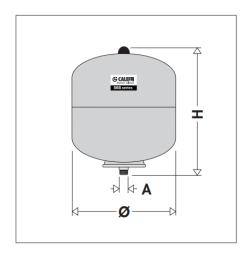
$$V_{min} \ge \frac{V_E}{1 - \frac{P_1}{P_2}}$$

Dove:

- V_{min} [litri]: volume minimo del vaso;
- P₁ [bar]: pressione assoluta a cui è precaricato il cuscino di gas, pressione che non potrà risultare inferiore a 1,5 bar e alla pressione idrostatica nel punto in cui viene installato il vaso (o alla pressione di reintegro del gruppo di riempimento);
- P₂ [bar]: pressione assoluta di taratura della valvola di sicurezza diminuita di una quantità
 corrispondente al dislivello di quota esistente tra vaso di espansione e valvola di sicurezza, se
 quest'ultima è posta più in basso ovvero aumentata se posta più in alto;
- $V_E = V_A \cdot \frac{n}{100} \; [litri]$: volume di espansione, dove:
 - \circ V_A [litri]: volume totale dell'impianto;
 - o $n = 0.31 + 3.9 \cdot 10^{-4} \cdot tm^2$, con:
 - tm [°C]: temperatura massima ammissibile riferita all'intervento dei dispositivi di sicurezza.

Per il calcolo del volume totale dell'impianto bisogna tenere conto oltre che della quantità d'acqua contenuta nelle tubazioni pure di quella all'interno dei vari componenti.

		TUBAZIONI IMPIA	NTO			
	Ramo	Materiale tubo	DN	Di	Lunghezza (A+R)	Volume tubazioni
	Naillo	[-]	[-]	[mm]	[m]	[litri]
	VMC vert diram. C.2	MULTISTRATO	16X2	12	22,0	2,49
PIANO SECONDO	Radianti C.2 - diram. C.2	PE-Xc	14	10	704,6	55,34
	diram. C.2 - C.centrale	MULTISTRATO	26X3	20	36,0	11,31
PIANO PRIMO	VMC orizz diram. C.1	MULTISTRATO	16X2	12	33,0	3,73
	Radianti C.1 - diram. C.1	PE-Xc	14	10	771,3	60,58
	diram. C.1 - C.centrale	MULTISTRATO	26X3	20	38,0	11,94
	FCZ200 - C.0	MULTISTRATO	20X2	16	25,0	5,03
	FCZ150 - C.0	MULTISTRATO	16X2	12	22,0	2,49
PIANO TERRA	FCZ100 - C.0	MULTISTRATO	16X2	12	6,0	0,68
	Radiatore - C.0	MULTISTRATO	16X2	12	19,0	2,15
	C.0 - C.centrale	MULTISTRATO	26X3	20	8,0	2,51
CENTRALE	C.centrale - acc. inerz.	ACCIAIO	1" 1/4	36,6	4,0	4,21
	VOLUME TOTA	ALE TUBAZIONI				162,46


COMPONENTI IMPIANTO					
Volume VMC vert.	[litri]	6,00			
Volume VMC orizz.	[litri]	5,00			
Volume C.centrale	[litri]	6,00			
Volume FCZ200	[litri]	0,63			
Volume FCZ150	[litri]	0,52			
Volume FCZ100	[litri]	0,49			
Volume radiatore	[litri]	2,40			
Volume volano term.	[litri]	203,00			
VOLUME COMPONENTI	[litri]	213,04			

In totale, il volume di acqua contenuto al secondario è pari a 375,49 *litri*. Da notare che al circuito primario è già presente un vaso d'espansione integrato alla pompa di calore stessa.

Quindi, è possibile procedere con i calcoli:

VA	volume totale dell'impianto		375,49
tm	temperatura massima generatore		65
n	0,31+3,9*10^(-4)*tm^2		1,958
VE	volume di espansione		7,35
h	altezza colonna d'acqua		9,0
Pidrostatica	ρ*g*h*10^5		0,88
p precarica	precarica max(pidrostatica; 1,5 bar)		1,50
p1	pprecarica+1atm		2,51
hvaso	nvaso rispetto a terra		0,50
hvalvola	rispetto a terra		1,50
Δh	h hvalvola-hvaso		-1,00
Δр	Δp ρ*g*(hvalvola-hvaso)*10^5		-0,10
P taratura	Otaratura dato valvola di sicurezza		2,70
p2	p2 (ptaratura-Δp)+1atm		3,8
Vmin	/min volume minimo del vaso		21,57
Vn	volume nominale del vaso		25,00

Considerando che la temperatura massima ammissibile è data da quella riferita al generatore, pari a $65\,^{\circ}C$, e che tra la valvola di sicurezza (tarata a $2,70\,bar$) ed il vaso di espansione vi è una differenza di quota di $1\,m$, si ottiene che il volume nominale del vaso d'espansione è di $25\,$ litri.

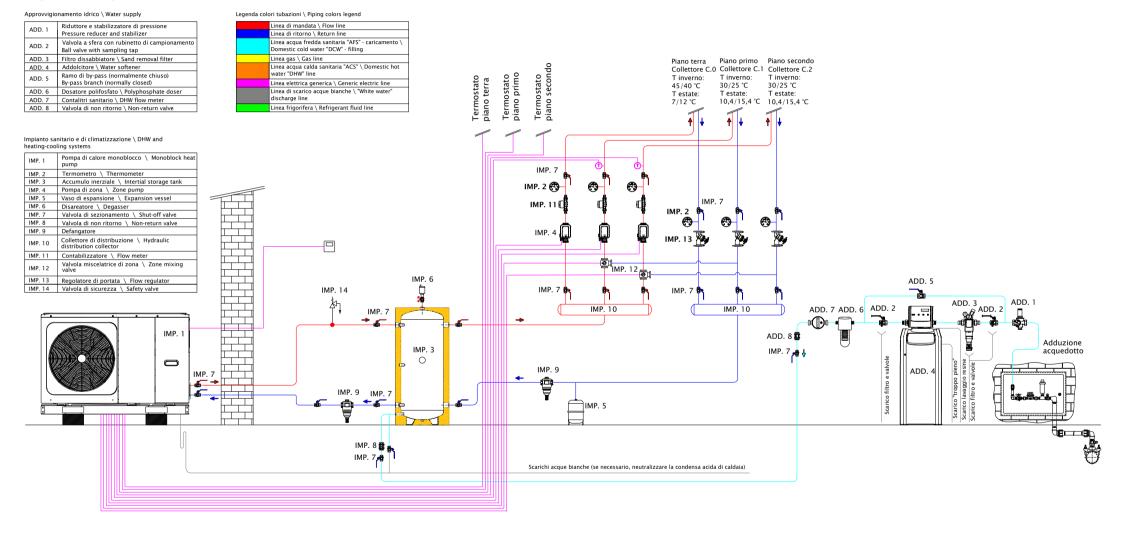
Codice	Litri	Α	Ø	Н	Massa (kg)
568 008	8	3/4"	206	335	1,8
568 012	12	3/4"	280	307	2,4
568 018	18	3/4"	280	410	2,8
568 025	25	3/4"	280	520	3,7

Figura 4.20 Dati tecnici vaso d'espansione Caleffi serie 556

4.5.6 Schema funzionale di centrale

Ricapitolando, l'impianto realizzato è un impianto monovalente di riscaldamento e raffrescamento alimentato da una pompa di calore monoblocco.

La pompa di calore lavora su un accumulo inerziale, il quale garantisce il contenuto d'acqua minimo dell'impianto e assolve anche alla funzione di separatore idraulico. Le pompe di zona lavorano in spillamento dall'accumulo inerziale.


La zona verso il piano terra è diretta e lavora alle seguenti temperature:

Funzionamento invernale: 45/40 °C
Funzionamento estivo: 7/12 °C

Le zone verso il piano primo e il piano secondo sono miscelate e operano alle seguenti temperature:

Funzionamento invernale: 30/25 °C
Funzionamento estivo: 10,4/15,4 °C

Legenda \ Legend

CONCLUSIONE

Il presente studio ha esaminato in dettaglio l'efficacia del Superbonus 110% nel contesto di un progetto di riqualificazione energetica di un edificio, passato dalla classe energetica F alla classe A4. Gli interventi implementati hanno non solo migliorato significativamente le prestazioni energetiche dell'edificio, ma hanno anche prodotto un risparmio annuale di 2888,30 € con un tempo di ritorno dell'investimento di soli 5 anni.

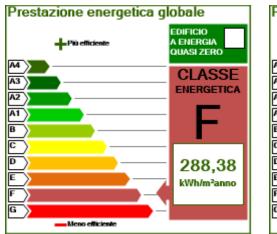


Figura 5.1 Salto di classe Scenario 3

Questi risultati confermano l'importanza di politiche di incentivazione come il Superbonus nel catalizzare interventi che altrimenti potrebbero non essere economicamente sostenibili per i proprietari degli edifici.

Il Superbonus 110%, introdotto come risposta alla necessità di ridurre le emissioni di CO₂ e migliorare l'efficienza energetica del patrimonio edilizio, ha avuto un impatto significativo sull'industria delle costruzioni e sull'economia in generale. Tuttavia, come evidenziato nel corso di questo studio, la misura ha anche presentato alcuni svantaggi e criticità. In particolare, si è osservata una distorsione dei costi nel settore delle costruzioni e una modesta riduzione delle emissioni di CO₂ rispetto all'investimento totale effettuato.

L'analisi economica condotta ha rivelato che, a maggio 2023, il costo del Superbonus per le casse dello Stato ha raggiunto gli 86 miliardi di euro. Questo dato, sebbene rappresenti un impegno significativo per il bilancio pubblico, solleva anche la necessità di valutare attentamente l'efficacia delle future politiche energetiche e di incentivazione. È essenziale che tali strumenti siano progettati in modo da massimizzare non solo l'efficienza energetica degli edifici, ma anche l'impatto economico e ambientale complessivo.

Alla luce di queste considerazioni, si suggerisce che le future iniziative di politica energetica dovrebbero mirare a un equilibrio più accurato tra il raggiungimento degli obiettivi climatici e la sostenibilità economica. Ciò potrebbe includere l'introduzione di meccanismi di incentivo più mirati, che premiano non solo il miglioramento delle prestazioni energetiche degli edifici, ma anche l'innovazione tecnologica e la riduzione dei costi per i cittadini e le imprese.

In conclusione, nonostante le sfide e le complessità associate al Superbonus 110%, questo strumento ha dimostrato di essere efficace nel promuovere la transizione verso un'economia a basse emissioni di carbonio e nell'incrementare la competitività del settore edilizio. Tuttavia, il suo successo futuro dipenderà dalla capacità di adattare e raffinare le politiche esistenti per affrontare efficacemente le sfide emergenti nel panorama energetico globale.

BIBLIOGRAFIA

[1] Superbonus 110%

https://it.wikipedia.org/wiki/Superbonus 110%

[2] Guida al Superbonus 110%

<u>https://www.agenziaentrate.gov.it/portale/documents/20143/233439/Guida Superbonus 110 20</u> 22.pdf/21e9100a-9d7e-f582-4f76-2edcf1797e99

[3] D.P.R. 26-8-1993 n. 412

https://www.gazzettaufficiale.it/eli/id/1993/10/14/093G0451/sq

- [4] UNI 10349:2016 Riscaldamento e raffrescamento degli edifici Dati climatici
- [5] **UNI EN ISO 6946:2018** Componenti ed elementi per edilizia Resistenza termica e trasmittanza termica Metodi di calcolo
- [6] **UNI EN ISO 10077-1:2018** Prestazione termica di finestre, porte e chiusure oscuranti Calcolo della trasmittanza termica Parte 1: Generalità
- [7] Ponte termico, cos'è e come correggerlo

https://biblus.acca.it/ponte-termico-cose-come-

<u>correggerlo/#:~:text=L%E2%80%99obiettivo%20principale%20della%20correzione%20dei%20ponti</u> <u>%20termici%20%C3%A8,delle%20perdite%20di%20calore%20attraverso%20queste%20aree%20pro</u> blematiche.

[8] Certificazione energetica degli edifici: cos'è l'APE, come si fa, esempi e software.

https://www.acca.it/certificazione-energetica

- [9] UNI/TS 11300 Prestazioni energetiche degli edifici
- [10] Art. 8 D.Lgs. 192/05 la relazione legge 10

https://biblus.acca.it/art-8-dlgs-192-05-la-relazione-legge-10/

- [11] MINI GUIDA ANIT: Efficienza energetica e acustica degli edifici
- [12] Carico termico: cos'è e come si calcola

https://biblus.acca.it/carico-termico/

- [13] **neo-Eubios 76 -** *Il calcolo dei carichi termici estivi con metodo Carrier-Pizzetti* https://issuu.com/neoeubios/docs/neoeubios_76/s/12783759
- [14] **UNI EN 1264:2021** Sistemi radianti alimentati ad acqua per il riscaldamento e il raffrescamento integrati nelle strutture
- [15] **RDZ** Manuale tecnico sistemi radianti a pavimento DRY

https://www.rdz.it/sites/default/files/file/A-TEC/FAG0AZ000AB.00_ManualeTecnico_Dry.pdf

[16] Quaderni Caleffi - Mario Doninelli

https://www.caleffi.com/it-it/formazione/quaderni-e-tabelle

[17] Caleffi - La distribuzione dell'aria

https://idraulica.caleffi.com/articolo/la-distribuzione-dellaria

[18] Caleffi - Raccolta R Ed. 2009 commentata

https://raccoltar.caleffi.it/pdf/raccolta r commentata caleffi.pdf