
I

POLITECNICO DI TORINO
Master’s Degree in Mechanical Engineering

Master’s Degree Thesis

Development and Improvement of Cooperative
Adaptive Cruise Control Strategies based on

Reinforcement Learning

Supervisor:

Prof. Daniela Anna Misul

Co-supervisors:

Dr. Federico Miretti

Dr. Angelo Borneo

Candidate:

Navid Mehr Alizadeh

July 2024

II

III

Abstract

The recent rise of Advanced Driver Assistance Systems (ADAS) and connectivity in the

automotive field applied to Connected and Autonomous Vehicles (CAVs) has led the research

efforts to investigate new control strategies for improving Mobility solutions.

An alternative approach that gained recent interest and that can be applied to complex control

problems is Reinforcement Learning (RL). RL is a branch of Machine Learning that consists of

training an Agent to behave in a desired manner, and that has been recently proven to reach

comparable or enhanced performance concerning more common optimal control strategies such

as Model Predictive Control, especially in terms of computational costs and in presence of high

dimensional and uncertain environments.

This thesis is proposed as a prosecution of previous works about Cooperative Adaptive Cruise

Control (CACC) based on Reinforcement Learning. In particular, it aims at possible improvements

and developments concerning performance, safety, comfort, and energy-saving features for

heavyweight and/or lightweight CAVs. Moreover, the RL based controller is validated by

considering various speed profiles of the leader vehicle, including a real drive cycle. Results show

that the proposed control strategy is capable of quickly responding to unexpected maneuvers and

of avoiding collisions between the platooning vehicles, still ensuring a minimum safety distance

in the considered driving scenarios.

IV

Acknowledgments

V

Table of Contents

List of Tables ... VII

List of Figures .. VIII

Acronyms ... X

Chapter 1: .. 1

1.1 Introduction ... 1

1.2 Advanced Techniques for Adaptive Cruise Control ... 3

1.2.1 Model Predictive Control ... 3

1.2.2 Proportional–integral–derivative .. 5

1.3 Problem Statement and Research Objectives .. 8

Chapter 2: .. 10

2.1 Introduction to Reinforcement Learning ... 10

2.1.1 Overview of Reinforcement Learning .. 10

2.1.2 Basics of Reinforcement Learning ... 11

2.1.3 Value-based reinforcement learning ... 13

2.1.4 Policy-based reinforcement learning .. 15

2.1.5 Deep Q-Network ... 16

2.1.6 Deep deterministic policy gradient ... 17

2.2 Reinforcement Learning in Adaptive Cruise Control ... 19

2.2.1 Advancements in Driver-Assistance Systems .. 19

2.2.2 Case Studies of Reinforcement Learning in ACC Systems ... 22

Chapter 3: .. 24

3.1 Reinforcement Learning Applied in This Study ... 24

VI

3.1.1 DDPG Agent Architecture .. 24

3.1.2 Environment Configuration .. 28

3.1.3 DDPG Agent with Constraint Enforcement ... 33

3.1.4 Implementation of Spacing Policy ... 38

3.1.5 Formulation of the Reward Function.. 39

Chapter 4: .. 42

4.1 Training the DDPG Agent... 42

4.2 Validating the DDPG Agent ... 45

4.2.1 WLTP Cycle Evaluation ... 45

4.2.2 WLTP Cycle Evaluation with Delay .. 48

4.3 Simulation of Multi-Vehicle Platoon .. 51

4.3.1 Three-Vehicle Platoon .. 51

4.3.2 Four-Vehicle Platoon .. 59

Chapter 5: .. 62

5.1 Conclusion ... 62

5.2 Future Work .. 63

References ... 64

VII

List of Tables

Table 1. DDPG agent hyperparameters .. 43

Table 2. RMSE of spacing error with different delay values ... 50

Table 3. RMSE and percentage reduction of spacing error between lead and ego cars 61

VIII

List of Figures

Figure 1. Model Predictive Control Design .. 3

Figure 2. PID Controller Design ... 6

Figure 3. Block diagram of reinforcement learning [15] .. 11

Figure 4. Adaptive cruise control vehicles [25] .. 20

Figure 5. Architecture of the actor and critic networks [3]. .. 25

Figure 6. DDPG agent Simulink block ... 27

Figure 7. Environment block .. 30

Figure 8. Lead Car block .. 31

Figure 9. Lead Car subsystem ... 32

Figure 10. Ego Car block .. 32

Figure 11. Signal Processing for ACC block .. 33

Figure 12. Learn Constraint Simulink Model ... 34

Figure 13. Constraint observation ... 35

Figure 14.RL Model with Constraints .. 36

Figure 15. Constraint subsystem ... 36

Figure 16. Agent observations .. 37

Figure 17. isDone subsystem .. 37

Figure 18. Spacing policy subsystem.. 38

Figure 19. Time headway-based spacing policy [25] ... 38

Figure 20. Safe distance subsystem .. 39

Figure 21. Reward function block .. 40

Figure 22. Reward function subsystem ... 41

Figure 23. DDPG agent training progression ... 44

Figure 24. WLTP class 1 cycle ... 45

Figure 25. Leading and ego velocity on WLTP .. 46

Figure 26. Zoomed-In view of lead and ego velocities during WLTP ... 46

Figure 27. Rleative and safe distance on WLTP... 47

Figure 28. Zoomed-In view of relative and safe distance during WLTP 47

IX

Figure 29. Lead and ego signal delay simulation ... 49

Figure 30. Zoom on lead and ego signal delay simulation ... 49

Figure 31. RMSE of spacing error with different delay values .. 50

Figure 32. Three-Vehicle Platoon velocity control first scenario ... 52

Figure 33. Zoom on Three-Vehicle Platoon velocity control first scenario 53

Figure 34. Three-Vehicle Platoon velocity control second scenario .. 54

Figure 35. Zoom on Three-Vehicle Platoon velocity control second scenario 54

Figure 36. Three-Vehicle Platoon velocity control third scenario .. 55

Figure 37. Zoom on velocity control Three-Vehicle Platoon velocity control third scenario 56

Figure 38. Three-Vehicle Platoon velocity control fourth scenario ... 57

Figure 39. Zoom on Three-Vehicle Platoon velocity control fourth scenario 57

Figure 40. Spacing error of Three-Vehicle Platoon fourth scenario ... 58

Figure 41. Acceleration of Three-Vehicle Platoon fourth scenario .. 58

Figure 42. Four-Vehicle Platoon velocity control with 0.1 second delay 59

Figure 43. Zoomed on Four-Vehicle Platoon velocity control with 0.1 second delay 60

Figure 44. Spacing error of Four-Vehicle Platoon with 0.1 second delay 60

X

Acronyms

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance Systems

CACC Cooperative Adaptive Cruise Control

CWS Collision Warning Systems

DAS Driver-Assistance System

DDPG Deep Deterministic Policy Gradient

DQN Deep Q Networks

DSRC Dedicated Short-Range Communication

MDP Markov Decision Processes

MPC Model Predictive Control

PID Proportional–integral–derivative

RL Reinforcement Learning

RMSE Root Mean Square Error

R2V Roadside-to-Vehicle

SARSA State–Action–Reward–State–Action

V2V Vehicle-to-Vehicle

WLTP Worldwide Harmonised Light Vehicles Test Procedure

XI

1

Chapter 1:

1.1 Introduction

The increased number of vehicles on the road causes an increase in traffic accidents, environmental

pollution, and a variety of other issues. To address these issues, advanced driver assistance systems

(ADAS) are a valuable tool. Indeed, by incorporating this advanced technology, vehicles can

improve driving safety, convenience, and environmental friendliness.

ADAS, in this perspective, plays a major role in improving drive safety and comfort. Therefore,

they are applied in a multitude of situations to assist the driver in avoiding forward collisions,

keeping the lane, braking automatically, and guaranteeing pedestrian safety. The first generation

of safety applications was designed using local sensors such as cameras and radars. Then, other

sources of information are employed to provide more accurate information. Among them

particularly relevant is vehicle-to-vehicle (V2V) communication, which allows one to send

information about the state of the vehicle to other vehicles without considering a specific

topological position. Indeed, its omnidirectional connectivity capabilities permit to adoption of

different topological communication structures to improve performance. This technology plays a

main role in the development of new features such as Cooperative Adaptive Cruise Control

(CACC).

Cooperative Adaptive Cruise Control is the evolution of Adaptive Cruise Control that takes

advantage of V2V communication to acquire information from the surrounding vehicles and drive

the vehicle simultaneously avoiding collisions and maximizing traffic throughput. With CACC,

the ego vehicle receives data about the speed, position, and acceleration of nearby vehicles,

enabling it to define control actions that safely follow the preceding vehicle and form a platoon.

To achieve the optimization for multiple objectives of the CACC system, a proper control

algorithm is needed. There are many control algorithms for solving multi-objective optimization,

for example, dynamic programming, genetic algorithm, and Model Predictive Control (MPC),

however, Reinforcement learning is another effective method, because it is used to enhance vehicle

coordination, optimize traffic flow, improve safety, and increase fuel efficiency by enabling

vehicles to learn optimal driving strategies through experience and interaction with other vehicles.

2

Therefore, the purpose of this work is to develop a controller to equip vehicles with CACC,

enhancing their safety, drivability, and comfort. To achieve this goal, several phases were

undertaken: first, a bibliographical analysis was conducted to gather information about different

types of Reinforcement Learning (RL) methods and agents and to select the most appropriate one

for the case study. Then, the model of the vehicles was developed in MATLAB/Simulink.

Afterward, the design of the controller was defined with the aid of the Reinforcement Learning

(RL) Toolbox of MATLAB/Simulink. The resulting controller was validated through various drive

cycles, demonstrating its effectiveness in enhancing safety and comfort. In the end, to test the

reactiveness of the controller, an application involving a four-vehicle platoon was simulated.

3

1.2 Advanced Techniques for Adaptive Cruise Control

Advanced techniques for Adaptive Cruise Control (ACC) involve several methodologies and

technologies that improve the usefulness, safety, and efficiency of the systems.

1.2.1 Model Predictive Control

Model Predictive Control (MPC) is widely adopted in industry as an effective means to deal with

multivariable constrained control problems. MPC in a receding horizon fashion performs an

optimization in every time-step, yielding state or situation dependent control [1]. Model Predictive

Control (MPC) is used in Adaptive Cruise Control (ACC) systems to maximize vehicle speed and

trajectory while maintaining safety and comfort. In MPC, the manipulated inputs are computed in

real time by solving a mathematical programming problem, most frequently a Quadratic Program.

The quadratic program is based on a model of the system's dynamics, which is typically learned

from experimental data. To use MPC in embedded control systems with fast sampling and limited

CPU and memory resources, you must be able to solve quadratic programs with high throughput,

use simple code, perform arithmetic operations with limited machine precision, and provide tight

execution time estimates. The MPC uses a model of the plant for making predictions on the future

plant output behavior. It also employs an optimizer to ensure that the anticipated future plant

outputs track the desired reference (Figure 1).

Figure 1. Model Predictive Control Design

4

Model Predictive Control (MPC) is the most commonly used control method for developing ACC

algorithms. MPC control involves solving a finite-horizon optimization problem at each time step

to get a sequence of control inputs. Only the first element in the sequence is then applied [2]. The

process is repeated at the next time step, with new measurements. MPC excels at managing limits

on control inputs (e.g., vehicle acceleration) and system states (e.g., following distance) [3].

By employing a linear and continuous model of car-following dynamics, Luo et al. [4] developed

a Model Predictive Control (MPC) controller specifically designed for real-world car-following

scenarios. Their approach leverages the principles of MPC to anticipate the future states of both

the controlled vehicle and the preceding vehicle, enabling precise adjustments in speed and

acceleration to maintain optimal following distances. This controller continuously updates its

predictions and control actions, ensuring smooth and safe car-following behavior under varying

traffic conditions. The effectiveness of their MPC-based solution highlights its potential for

enhancing the performance of Adaptive Cruise Control (ACC) systems in practical driving

environments. The MPC aims to regulate the acceleration of the following vehicle to ensure that

the relative distance between the two vehicles remains within a safe range. Simulation results

indicated that the MPC controller exhibited significantly safer behavior compared to real drivers,

effectively maintaining optimal spacing and reducing the risk of collisions. This enhanced safety

performance underscores the potential of MPC in improving the reliability and security of car-

following systems in dynamic traffic conditions.

Takahama and Akasaka [5] developed a practical Model Predictive Control (MPC)-based

Adaptive Cruise Control (ACC) algorithm optimized for low computational cost, making it

suitable for implementation on embedded microprocessors. They employed a low-order prediction

model to minimize computational demands, ensuring efficient real-time performance. The results

demonstrated that their algorithm not only maintained high responsiveness but also significantly

reduced driver discomfort, showcasing its effectiveness in enhancing the driving experience while

ensuring safety and comfort.

Li et al. [6] introduced an MPC-based Adaptive Cruise Control (ACC) system designed to enhance

tracking capability, fuel economy, and alignment with driver preferences. Their approach utilized

a quadratic cost function to quantify tracking errors, fuel consumption, and conformity with driver

characteristics. Simulation results demonstrated that this ACC system offered significant

5

improvements in fuel efficiency, precise tracking, and meeting the desired car-following behavior

of drivers, highlighting its potential benefits for real-world driving applications.

Lefevre et al. [7] proposed a learning-based approach for autonomous car-following velocity

control. Initially, they developed a driver model to replicate human car-following behavior

accurately. The outputs of this driver model, specifically vehicle acceleration values, were used as

reference points for the MPC controller. By addressing a constrained optimization problem, the

MPC controller ensured that the vehicle adhered to the modeled behavior while also meeting

essential safety criteria. This approach effectively blended learned driver behavior with formal

control techniques to achieve safe and realistic autonomous car-following.

With the preceding studies demonstrating the effectiveness of MPC, this study chose RL for

autonomous velocity control for two reasons: (1) RL is considerably faster than MPC during

testing [8]. This is because MPC must solve a limited finite-time optimum control problem at each

time step, whereas RL only requires states as input and output actions; and (2) RL may outperform

MPC, as proved by Lin et al [9].

1.2.2 Proportional–integral–derivative

A proportional–integral–derivative controller (PID controller or three-term controller) is a

feedback control loop mechanism extensively utilized in industrial control systems and various

other applications requiring continuous control modulation. A PID controller (Figure 2)

continuously computes an error value as the difference between a desired set point and a measured

process variable. It then applies corrections based on proportional, integral, and derivative terms

(denoted P, I, and D, respectively), which is how it gets its name.

PID systems automatically provide precise and responsive adjustments to control functions. A

common example is the cruise control system in a vehicle. When the vehicle ascends a hill,

maintaining constant engine power would reduce the vehicle's speed. The PID controller's

algorithm increases the engine's power output in a controlled manner to restore the vehicle's speed

to the desired level with minimal delay and overshoot [10].

6

Figure 2. PID Controller Design

By adjusting the gains (𝐾𝑃, 𝐾𝐼, 𝐾𝐷) assigned to each term, a PID controller can be tuned to adapt

to different application requirements. Each term and its corresponding gain play a crucial role in

the control process. The proportional term (𝐾𝑃) produces an output that is directly proportional to

the current error 𝑒(𝑡), which is the difference between the desired set point and the measured

process variable. This term helps to reduce the overall error by adjusting the control signal in

proportion to the error. A higher proportional gain (𝐾𝑃) increases the response speed but can lead

to overshoot and instability if set too high.

The integral term (𝐾𝐼) accounts for the sum of past errors by integrating the error over time,

effectively accumulating the total error. This term helps to eliminate steady-state error, which is

the residual error that remains after the proportional response. By considering the accumulation of

past errors, it ensures that the control signal is adjusted to bring the system back to the desired set

point over time.

The derivative term (𝐾𝐷) predicts future error based on the rate of change of the error, calculating

the slope of the error curve and responding to how quickly the error is changing. This term provides

a damping effect, improving the stability and response time of the system. It helps to reduce

overshoot and settle the system more quickly by counteracting the proportional and integral actions

if the error changes rapidly.

The control signal 𝑢(𝑡) is generated by summing the contributions of the proportional, integral,

and derivative terms, each multiplied by their respective gains (𝐾𝑃, 𝐾𝐼, 𝐾𝐷). This combined signal

is then used to adjust the control variable to achieve the desired outcome.

7

In some cases, only specific terms of the PID controller are utilized, resulting in variations such as

P controllers, PI controllers, PD controllers, or I controllers. Among these, PI controllers are most

commonly used because the D term is highly sensitive to noise, while a controller lacking the I

term cannot eliminate steady-state error. Typically, a PI controller is employed to remove steady-

state error, and a PD controller is used to enhance the system's transient response. A P controller

is simple and provides a basic level of control but cannot eliminate steady-state error, and an I

controller, which uses only the integral term, can eliminate steady-state error but generally results

in a slower response.

Application-specific tuning of a PID controller involves balancing the effects of each term. The

derivative term can amplify noise in the control signal, making the system less stable, so it is often

used with caution. The integral term is crucial for systems where eliminating steady-state error is

important. The proportional and derivative terms are key to improving the system's transient

response and accuracy. By adjusting 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷, a PID controller can be finely tuned to meet

the specific needs of a control application, offering a flexible and robust control strategy capable

of addressing a wide range of system dynamics and performance criteria [11].

8

1.3 Problem Statement and Research Objectives

The increasing deployment of Adaptive Cruise Control (ACC) systems in modern vehicles

underscores the critical need for robust and reliable methods to manage vehicle spacing and

velocity control. Traditional control strategies such as Model Predictive Control (MPC) and

Proportional–Integral–Derivative (PID) controllers have been extensively used in ACC systems,

each demonstrating varying degrees of success. However, these methods often face significant

challenges in ensuring string stability, a crucial aspect of ACC systems. String stability refers to

the system's ability to prevent the amplification of errors as they propagate through a platoon of

vehicles. When string stability is compromised, minor errors in the leading vehicle's speed or

position can escalate as they travel down the line of following vehicles, potentially leading to

passenger discomfort and even causing collisions.

Reinforcement Learning (RL) presents a promising alternative to traditional ACC methods. RL

offers the potential to adaptively learn and optimize control strategies based on dynamic

environmental feedback, potentially outperforming traditional methods in complex scenarios. The

central question this research aims to address is whether RL can be effectively employed to control

vehicle velocity and maintain safe distances between vehicles in a longitudinal manner while

ensuring string stability. This study seeks to explore the capabilities of RL in enhancing the safety

and comfort of passengers within a platoon of self-driving vehicles, addressing the critical issue

of error propagation in ACC systems.

The first objective is to conduct an exhaustive review of existing ACC methodologies, including

MPC, PID, and RL. This review aims to identify the strengths and limitations of each approach.

Based on the insights gained, RL has been selected as the focus for this study due to its adaptive

learning capabilities and potential to handle complex, dynamic environments more effectively than

traditional methods.

Following the literature review, the next objective is to develop an RL-based ACC model using

the Deep Deterministic Policy Gradient (DDPG) algorithm. The DDPG algorithm is particularly

suitable for continuous action spaces and offers robust learning capabilities. The RL model will be

designed to control vehicle velocity and maintain safe longitudinal distances between the lead

9

vehicle and the following vehicles. This involves training RL agents to learn optimal control

strategies through interactions with the environment, thereby enabling the system to adapt and

respond to various driving conditions dynamically.

A critical objective is to investigate whether the RL-based ACC model can ensure string stability

within a vehicle platoon. This involves assessing the model's ability to prevent error propagation

that could lead to increased spacing errors and potential collisions. Ensuring string stability is vital

for maintaining smooth and safe traffic flow in a platoon of autonomous vehicles. The analysis

will include various scenarios to test the robustness of the RL model in maintaining string stability

under different conditions.

Another key objective is to evaluate the safety and comfort provided by the RL-based ACC system.

This will involve analyzing the system's performance under various scenarios, including different

communication delay values. The evaluation will focus on the system's ability to maintain safe

distances and control velocities effectively, ensuring a comfortable ride for passengers. By

simulating real-world driving conditions, the study aims to validate the practical applicability of

the RL-based ACC system.

The RL-based ACC model will be implemented in a simulated environment, followed by extensive

validation of its performance. The validation process will involve testing the model across multiple

driving scenarios to ensure it meets the desired criteria for safe distance maintenance, velocity

control, string stability, and reduction of spacing errors among vehicles in the platoon. The

implementation will leverage advanced simulation tools to create realistic driving conditions and

evaluate the RL model's effectiveness comprehensively.

By addressing these objectives, this research aims to provide a thorough investigation into the

feasibility and effectiveness of using RL for ACC systems. The study will demonstrate whether

RL can enhance the performance of ACC systems in ensuring safe, comfortable, and string-stable

car-following behavior in autonomous vehicle platoons. Additionally, the research will contribute

to the broader understanding of RL's potential in automotive applications, paving the way for

future advancements in autonomous driving technology.

10

Chapter 2:

2.1 Introduction to Reinforcement Learning

Reinforcement learning (RL) is a subset of machine learning that enables an AI-powered system

(also known as an agent) to learn through trial and error based on feedback from previous actions.

This input is either negative or positive, communicated as punishment or reward, with the goal of

maximizing the reward function. RL learns from its mistakes and provides artificial intelligence

that closely like natural intelligence as is currently achievable [12].

2.1.1 Overview of Reinforcement Learning

Reinforcement Learning (RL) shares a similarity with supervised learning in that both involve

mapping between inputs and outputs. However, this is where their similarities end. In supervised

learning, the feedback includes the correct set of actions for the agent to follow. In contrast, RL

does not provide such an answer key; the agent must determine its actions independently to

accomplish the task correctly. Compared to unsupervised learning, RL has fundamentally different

objectives. The goal of unsupervised learning is to identify patterns or similarities within the data.

In contrast, the objective of RL is to discover the optimal action model that maximizes the agent's

total cumulative reward. Without a pre-defined training dataset, RL relies on the agent's

interactions with the environment to solve problems [13].

RL techniques such as Monte Carlo methods, State–Action–Reward–State–Action (SARSA), and

Q-learning offer a more adaptive and dynamic approach than traditional machine learning

methods, paving the way for advancements in the field.

There are three main types of RL implementations:

1- Policy-based RL: Utilizes a policy or deterministic strategy that aims to maximize cumulative

rewards.

11

2- Value-based RL: Focuses on maximizing a value function to determine the best course of action.

3- Model-based RL: Develops a virtual model of the environment, allowing the agent to learn and

perform tasks within these constraints.

2.1.2 Basics of Reinforcement Learning

In RL literature, the learner or decision-maker is referred to as the agent, whereas the environment

is where the agent lives and interacts. The agent can interact with its surroundings by taking certain

actions, but these actions have no effect on the environment's laws or dynamics. In RL, agents act

based on the current state of the environment and reward signals.

Rewards and penalties are used to train real-life agents. We reward our agent for good decisions

and penalize negative ones. RL algorithms adjust the agent policy based on Prior prizes were

gained by doing all feasible acts in various states. RL aims to provide a decision-making approach

that maximizes total rewards or returns. In most RL issues, the return is often a user-defined

reinforcement signal accumulated through immediate rewards. The agent uses a reward signal

created by interaction with the environment to evaluate the optimal policy [14]. Figure 3 illustrates

the framework presented in this section.

Figure 3. Block diagram of reinforcement learning [15]

12

If the agent performs any action 𝑢 in a specific state x, the anticipated immediate reward can be

represented as:

𝑟𝑘+1(𝑥, 𝑢) = 𝐸[𝑟𝑘+1|𝑥𝑘 = 𝑥, 𝑢𝑘 = 𝑢] (1)

If the sequence of immediate rewards received after time step k is {𝑟𝑘+1, 𝑟𝑘+2, 𝑟𝑘+3 … , 𝑟𝑘} for an

episodic task, then the return 𝐺𝑘 for this episodic task can be expressed as:

𝐺𝑘 = 𝑟𝑘+1 + 𝑟𝑘+2 + 𝑟𝑘+3 + ⋯ + 𝑟𝑘 (2)

In this context, 𝑘 denotes the final time step. At each time step, the agent receives a description of

the current state of the environment and chooses an action based on this state as well as previously

observed rewards for the same or similar states. The final state signal provided to the RL agent is

typically a preprocessed version of the original sensor data. Although the state can include

information about past observations, it should not encompass all information about the

environment [14].

An optimal state signal that encapsulates only the present state information of the environment in

a compact form is known as Markov. The conditional probability distribution of future states in a

stochastic process exhibits the Markov property if it relies solely on the current state. Markov

Decision Processes (MDPs) are effective for modeling sequential decision-making problems [16].

Reinforcement Learning (RL) utilizes the formal framework of MDPs to represent the interaction

between an agent and the environment in terms of states, actions, and rewards. A finite MDP is

entirely defined by the sets of all possible states and actions, along with the one-step model

dynamics of the environment. For a finite MDP, the one-step model dynamics are characterized

by the state transition probability and the expected reward for a given state-action pair (𝑥, 𝑢) [17],

𝑝(𝑥 ,, 𝑟|𝑥, 𝑢) = 𝑃{𝑥𝑘 = 𝑥 , , 𝑟𝑘 = 𝑟|𝑥𝑘−1 = 𝑥, 𝑢𝑘−1 = 𝑢} (3)

Nearly all reinforcement learning (RL) algorithms employ an estimated state value function 𝑉𝜋(𝑥)

and a state-action value function 𝑄𝜋(𝑥, 𝑢) to evaluate how beneficial it is for the agent to be in a

specific state or to take a particular action within that state. These value functions are crucial in

RL for approximating optimal policies. They are predominantly based on expected future rewards

or returns. The expected return for a given policy π is 𝑉𝜋(𝑥) if the agent starts from state x and

then follows the policy π. For a given policy, the state value function 𝑉𝜋(𝑥) can be expressed as

[17]:

13

𝑉𝜋(𝑥) = 𝐸𝜋[𝐺𝑘|𝑥𝑘 = 𝑥] = 𝐸𝜋 {∑ 𝛾𝑛𝑅𝑘+𝑛+1|𝑥𝑘 = 𝑥

𝑛=0

} , ∀ 𝑥 𝜖 𝑋 (4)

Here, γ represents a constant, with values between 0 and 1 inclusive, referred to as the discount

factor. This factor determines the weight given by an RL agent to future rewards in comparison to

the current reward. When γ is set to 0, the agent behaves in a purely myopic manner, focusing

solely on actions that yield the highest immediate reward. If an agent begins at state x, executes

action u, and subsequently adheres to policy π, the anticipated outcome is termed the state-action

value function 𝑄𝜋(𝑥, 𝑢) and is represented as [17]:

𝑄𝜋(𝑥, 𝑢) = 𝐸𝜋[𝐺𝑘|𝑥𝑘 = 𝑥 , 𝑢𝑘 = 𝑢] = 𝐸𝜋 {∑ 𝛾𝑛𝑅𝑘+𝑛+1|𝑥𝑘 = 𝑥

𝑛=0

, 𝑢𝑘 = 𝑢} , ∀ 𝑥𝜖𝑋 𝑎𝑛𝑑 𝑢𝜖𝑈 (5)

The state value 𝑉𝜋(𝑥) of a state theoretically represents the average reward an agent would receive

from visiting that state numerous times. In a similar manner, the average reward an agent would

obtain by consistently performing a specific action u in a given state x is the state's action value

𝑄𝜋(𝑥, 𝑢). These value functions can be mathematically calculated using the following equations

[17]:

𝑉𝜋(𝑥) = ∑ 𝜋(𝑢|𝑥)

𝑢

∑ 𝑝(𝑥 ,, 𝑟|𝑥, 𝑢)[𝑟 + 𝛾𝑉𝜋(𝑥 ,)]

𝑥,,𝑟

(6)

𝑄𝜋(𝑥, 𝑢) = ∑ 𝑝(𝑥 ,, 𝑟|𝑥, 𝑢)

𝑥 ,,𝑟

[𝑟 + 𝛾 ∑ 𝜋(𝑢,|𝑥 ,)

𝑢

𝑄𝜋(𝑥 ,, 𝑢,)] (7)

𝑉𝜋(𝑥) and 𝑄𝜋(𝑥, 𝑢) can be efficiently estimated using the agent’s interaction data. The value

functions expressed in equations (6) and (7) are known as Bellman equations, which represent a

recursive relationship between the value functions of current and successor states.

2.1.3 Value-based reinforcement learning

A value function is a fundamental concept in reinforcement learning (RL) that evaluates the utility

or quality of being in a specific state or performing a particular action in a given state. The action

14

value function, denoted as 𝑄(𝑠, 𝑎), is defined as 𝑄(𝑠, 𝑎) = 𝐸[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], where 𝐸

represents the expected value. This function captures the expected cumulative reward that an agent

will receive if it takes action 𝑎 in state 𝑠 and then continues to follow a policy 𝜋. Essentially, it

represents the long-term value of taking a specific action from a given state.

Value-based reinforcement learning methods focus on learning this action value function from the

agent's past interactions with the environment. By leveraging historical experience, these methods

aim to determine which actions are most beneficial in various states to maximize the agent's total

rewards. One of the most prominent value-based RL algorithms is Q-learning. Q-learning is

designed to find the optimal action value function, which guides the agent in making decisions that

maximize expected returns over time.

The Q-learning algorithm initializes the Q-function arbitrarily, meaning that it starts with random

estimates of the Q-values for each state-action pair. As the agent explores the environment and

gathers more data, it updates these Q-values using the Bellman equation, which provides a

recursive relationship for the expected rewards. The update rule in Q-learning is given by:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎,𝑄(𝑠 ,, 𝑎,) − 𝑄(𝑠, 𝑎)] (8)

Breaking down this equation:

- 𝛼 is the learning rate, which determines how much new information overrides the old

information. A higher learning rate means that the agent learns more quickly, but it might also

result in more fluctuation in learning.

- 𝑟 is the immediate reward received after taking action 𝑎 in state 𝑠. This reward provides

immediate feedback on the action's short-term effectiveness.

- 𝛾 is the discount factor, which ranges between 0 and 1. It dictates the importance of future rewards

compared to immediate rewards. A higher discount factor means the agent values future rewards

more, leading to long-term planning.

- 𝑠 , is the next state resulting from taking action 𝑎.

- 𝑚𝑎𝑥𝑎,𝑄(𝑠 ,, 𝑎,) represents the maximum expected future reward for the next state 𝑠 , considering

all possible actions 𝑎,.

15

This iterative process allows the Q-learning algorithm to estimate the optimal action value

function. Once the Q-values converge, the agent can derive the optimal policy. The optimal policy

is to select the action with the highest Q-value in each state, thereby maximizing the expected

cumulative future rewards.

Value-based methods like Q-learning are particularly advantageous for problems with discrete and

manageable state and action spaces. They provide a straightforward approach to learning optimal

policies by directly estimating the value of actions. However, when the state or action space is

large or continuous, value-based methods can become computationally expensive and may require

function approximation techniques to generalize across states and actions [17].

In summary, value functions in reinforcement learning provide a measure of the expected return

for being in a particular state or taking a specific action. Q-learning, a key value-based RL method,

uses the Bellman equation to iteratively update Q-values, guiding the agent to learn optimal

policies that maximize long-term rewards. This approach is foundational in RL, offering a clear

and effective way to tackle sequential decision-making problems.

2.1.4 Policy-based reinforcement learning

Unlike value-based methods, which focus on estimating the value of states or state-action pairs to

derive the best action, policy-based methods aim to directly optimize the policy 𝜋(𝑠: 𝜃). These

methods adjust the policy parameters 𝜃 by using gradient ascent to maximize the expected return

𝐸[𝑅𝑡].This approach involves updating the policy parameters to improve the likelihood of

selecting actions that yield higher rewards.

One prominent policy-based method is REINFORCE. It operates by adjusting the policy

parameters 𝜃 in the direction that increases the expected return. The key idea is to compute the

gradient of the expected return concerning the policy parameters and then update the parameters

accordingly. The update rule for REINFORCE is given by [18]:

𝜃 ← 𝜃 + 𝛼∇𝜃 log 𝜋 (𝑎𝑡|𝑠𝑡; 𝜃)𝑅𝑡 (9)

16

Here, 𝛼 is the learning rate, 𝜋(𝑎𝑡|𝑠𝑡; 𝜃) is the probability of taking action 𝑎𝑡 given state 𝑠𝑡 under

the policy parameterized by 𝜃, and 𝑅𝑡 is the cumulative reward obtained after taking action 𝑎𝑡 in

state 𝑠𝑡.

The gradient ∇𝜃 log 𝜋 (𝑎𝑡|𝑠𝑡; 𝜃) represents how sensitive the log-probability of the action taken is

to changes in the policy parameters. By multiplying this gradient by the reward 𝑅𝑡, the method

ensures that actions leading to higher rewards are more likely to be taken in the future. This process

is repeated for each step in the episode, allowing the policy to learn and improve over time.

REINFORCE and other policy-based methods are particularly useful in environments with high-

dimensional action spaces or when dealing with stochastic policies. They are advantageous in

scenarios where it is challenging to compute the value functions required by value-based methods.

By directly optimizing the policy, these methods can handle complex tasks with continuous or

discrete action spaces and are capable of learning intricate strategies that value-based methods

might struggle [19].

Overall, policy-based methods, such as REINFORCE, provide a powerful framework for directly

optimizing the policy in reinforcement learning, enabling agents to effectively learn and adapt in

dynamic and uncertain environments.

2.1.5 Deep Q-Network

Instead of calculating 𝑄(𝑠, 𝑎) for each state-action pair individually, deep Q-learning employs

neural networks as function approximators to estimate the action-value function [20]. This

approach involves training a neural network to predict the value 𝑄(𝑠, 𝑎) for given state-action

pairs, and the agent selects actions based on the maximum 𝑄(𝑠, 𝑎) value output by the network.

While Deep Q Networks (DQN) are effective in environments with discrete action spaces, they

struggle with continuous action spaces, which are common in many real-world applications. To

overcome this limitation, Lillicrap et al. [21] proposed an advanced algorithm known as Deep

Deterministic Policy Gradient (DDPG).

17

DDPG extends the DQN framework by incorporating an actor-critic mechanism, making it suitable

for continuous control problems. In this approach, there are two main components: the actor and

the critic. The actor is responsible for selecting actions given the current state, while the critic

evaluates the action chosen by the actor by estimating the corresponding 𝑄(𝑠, 𝑎) value.

The actor network directly outputs the continuous actions, rather than selecting from a discrete set.

The critic network, on the other hand, learns to approximate the action-value function, guiding the

actor's updates by providing feedback on the quality of actions taken. This combination allows

DDPG to handle the complexities of continuous action spaces effectively.

DDPG operates by using two neural networks for both the actor and the critic, with an additional

set of target networks to stabilize training. The algorithm updates the actor network by following

the gradient of the expected return, as estimated by the critic, and simultaneously updates the critic

network by minimizing the temporal difference error. This actor-critic architecture enables DDPG

to learn robust policies in continuous action environments, such as robotic control or autonomous

driving.

By leveraging the strengths of deep learning and reinforcement learning, DDPG provides a

powerful method for addressing continuous control problems, demonstrating the versatility and

capability of neural network-based approaches in complex, high-dimensional tasks.

2.1.6 Deep deterministic policy gradient

DDPG employs two distinct neural networks to approximate the actor and critic functions [21].

The critic network, parameterized by 𝜃𝑄, estimates the action-value function 𝑄(𝑠, 𝑎|𝜃𝑄).

Meanwhile, the actor network, parameterized by 𝜃𝜇, explicitly represents the agent’s

policy 𝜇(𝑠, 𝜃𝜇). To ensure stable and robust learning, DDPG incorporates experience replay and

target networks, as originally proposed in DQN.

Experience replay is used to break the correlation between sequentially generated experience

samples, which can negatively impact learning. It involves a replay buffer, a finite-sized cache 𝐷

that stores transitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) sampled from the environment. This buffer is continuously

18

updated, replacing old samples with new ones. During training, the actor and critic networks are

updated using random mini-batches of transitions drawn from this buffer. This technique ensures

that the learning algorithm trains on a more diverse set of experiences, promoting better

generalization and stability.

Target networks are introduced to stabilize the learning process and prevent the divergence of the

algorithm. Two target networks, 𝑄′(𝑠, 𝑎|𝜃𝑄′
) and 𝜇′(𝑠, 𝜃𝜇′

), mirror the main critic and actor

networks, respectively. While these target networks share the same architecture as their main

counterparts, they have different parameters. The parameters of the target networks are updated to

slowly track the parameters of the main networks using a soft update rule:

𝜃′ ← 𝜃 + 𝛼∇𝜃 log 𝜋 (𝑎𝑡|𝑠𝑡; 𝜃)𝑅𝑡 (10)

where 𝜏 is a small value, typically close to 0. This gradual update ensures that the target values

evolve slowly, which greatly enhances the stability of the learning process by reducing the variance

of target estimates and preventing abrupt changes in network parameters.

By employing these mechanisms, DDPG effectively balances exploration and exploitation,

leveraging past experiences and stable target estimates to learn robust policies for continuous

control problems. This approach has proven particularly useful in domains such as robotic

manipulation and autonomous driving, where the ability to handle high-dimensional state and

action spaces is crucial [20].

19

2.2 Reinforcement Learning in Adaptive Cruise Control

2.2.1 Advancements in Driver-Assistance Systems

Recent advancements in sensing, communication, and computing technologies have resulted in the

creation of driver-assistance systems (DASs). These systems are designed to help drivers by either

providing warnings to prevent collisions or taking over certain control tasks to alleviate the burden

of repetitive and monotonous tasks. Consequently, a DAS can assume some of the driver's

decision-making and actions in routine scenarios, minimizing the risk of human error that could

lead to accidents, while also achieving more consistent and smoother vehicle control [22].

This approach offers three main advantages: increased driver comfort, enhanced traffic capacity,

and energy and environmental benefits. According to Piao and McDonald [22], driver-assistance

systems (DASs) cover three key areas: adaptive cruise control (ACC) and collision warning and

avoidance (CWA); legal considerations; and implementation aspects. ACC is designed to alleviate

the driver from manual control adjustments to maintain safe cruising, while CWA focuses on

reducing rear-end collisions by issuing appropriate warnings. The legal aspects involve studying

the regulatory framework and market introduction of DASs by evaluating their various functions.

Lastly, implementing a DAS is a complex task that involves a wide range of technologies, user

preferences, and government policies.

Both ACC and CWA can be classified into two types: autonomous systems and cooperative

systems. In an autonomous system, the vehicle's control mechanism relies solely on information

gathered by its own sensors. In contrast, cooperative systems require communication with nearby

vehicles or transportation infrastructure. This communication can occur from vehicle to vehicle

(V2V) or from the road to a vehicle (R2V). V2V communication enables a group of equipped

vehicles to form a "virtual" network connected by wireless ad hoc communication. R2V

communication can be achieved through various technical methods, such as visible light, optical

beacons, or the 5.9-GHz Dedicated Short-Range Communications (DSRC) standard. Analytical

solutions to control problems such as ACC or cooperative adaptive cruise control (CACC) are

often difficult to obtain due to the nonlinear dynamics and high-dimensional state spaces involved.

20

Linearization generally provides limited assistance in these scenarios, making it more beneficial

to explore alternative approaches, particularly reinforcement learning (RL), which does not require

knowledge of the underlying Markov decision process (MDP). [23].

New technologies that actively intervene in and control car driving can significantly enhance

comfort, safety, and traffic flow. Adaptive Cruise Control (ACC) and Collision Warning Systems

(CWA) are examples of such technologies. ACC, in particular, is increasingly being integrated

into passenger cars. The primary goal of ACC is to automatically ensure safe cruising, thus

alleviating the driver from the monotonous and repetitive task of manual speed adjustment. In free-

flowing traffic, the ACC system maintains a preset speed, similar to conventional cruise control

systems. However, when following another vehicle, the ACC system automatically adjusts to

maintain a desired time gap from the vehicle ahead [24].

An Adaptive Cruise Control (ACC) system can be designed using either an autonomous approach,

which employs ranging sensors, or a cooperative approach, which utilizes vehicle-to-vehicle

(V2V) and/or roadside-to-vehicle (R2V) communication. Ranging sensors, such as radars or

lasers, are typically used to measure the distance and the rate of change of this distance from the

preceding vehicle. Generally, ACC systems deactivate at speeds below 30 km/h, as they are

primarily designed for highway traffic. Autonomous ACC systems relying on ranging sensors have

limited predictive capabilities because they cannot respond to events occurring beyond the

immediate preceding vehicle [23].

Figure 4. Adaptive cruise control vehicles [25]

In the development of Cooperative Adaptive Cruise Control (CACC) systems, de Bruin et al. [26]

provided a detailed overview of the design and implementation of such systems. They identified

four critical components necessary for effective CACC functionality:

21

Positioning System: This component is essential for accurately determining the location of each

vehicle within the platoon. By knowing the precise positions, vehicles can maintain optimal

spacing and alignment, which is crucial for coordinated movement and safety.

World Model: The world model serves as a comprehensive representation of the driving

environment. It includes information about the road layout, traffic conditions, and the positions of

surrounding vehicles. This model helps each vehicle to make informed decisions based on a

holistic view of the environment.

Controller System: The controller system is responsible for managing the vehicle's speed and

acceleration. It processes input from the positioning system and the world model to ensure that the

vehicle maintains a safe following distance, adjusts speed appropriately, and executes smooth

acceleration and deceleration.

Inter-Vehicle Communication System: This system facilitates the exchange of information

between vehicles, particularly preview information from vehicles further ahead. By sharing data

about speed, position, and upcoming traffic conditions, vehicles can anticipate changes and react

more efficiently. This results in smoother braking and acceleration, reducing the severity of

braking actions and enhancing overall traffic flow.

Their initial test results highlighted the effectiveness of this approach. Specifically, they found that

the anticipatory braking enabled by the inter-vehicle communication system allowed upstream

vehicles to brake more gently when a downstream vehicle decelerated. This contrasts sharply with

scenarios where such communication was absent, leading to abrupt braking and potential safety

hazards.

In a parallel study, Naus et al. [27] concentrated on a practical implementation of CACC, with a

strong emphasis on feasibility and real-world application. They proposed a streamlined

communication strategy that focused on interactions with the directly preceding vehicle, rather

than attempting to communicate with multiple vehicles or a central platoon leader. This approach

simplifies the system, reducing the complexity and potential points of failure.

Additionally, Naus et al. [27] implemented the communication as a feedforward signal. This means

that the information from the preceding vehicle is used to inform the actions of the following

vehicle in real-time. Importantly, this design includes a fallback mechanism: if the communication

22

link is interrupted or unavailable, the vehicle defaults to standard Adaptive Cruise Control (ACC)

functionality. This ensures that the vehicle can continue to operate safely, even in the absence of

cooperative communication, thus maintaining safety and reliability under varying conditions.

Together, these studies underscore the potential of CACC systems to significantly enhance vehicle

safety, comfort, and traffic efficiency by leveraging advanced communication and control

technologies.

2.2.2 Case Studies of Reinforcement Learning in ACC Systems

Most projects on CACC have traditionally relied on classical control theory to develop

autonomous controllers. However, recent research from the machine learning community has

shown promising theoretical and practical results in addressing control problems in uncertain and

partially observable environments. It would be beneficial to test these machine learning approaches

on CACC systems. One of the pioneering research efforts to utilize machine learning for

autonomous vehicle control was Pomerleau’s autonomous land vehicle. This project involved a

neural network-based computer vision system that learned to correlate road observations with the

appropriate actions. Remarkably, this autonomous controller successfully drove a real vehicle for

over 30 miles independently [28].

Yu [29] was the pioneer in proposing the use of reinforcement learning (RL) for steering control.

According to Yu, RL enables control designers to dispense with the need for external supervision

while providing continuous learning capabilities. RL is a machine learning approach framed as the

adaptive optimal control of a process P, where the controller, known as the agent, interacts with P

and learns how to control it. Through trial-and-error interactions, the agent learns to behave

optimally. It perceives the state of P and acts to maximize the cumulative return, which is based

on a real-valued reward signal received after each action from P. Consequently, RL modifies the

control policy, which links an action A to a state S, based on feedback from the environment. This

approach is closely related to adaptive control, a well-regarded set of techniques within the control

systems community [30].

23

Se-Young et al. [31] explored road following using reinforcement learning (RL) in conjunction

with vision. With RL, the control system acquires knowledge of the dynamics of vehicle-road

interaction indirectly, a critical aspect for effectively maintaining course on high-speed roadways.

Moriarti et al. [32] introduced an approach that combines supervised learning with RL to develop

lane-selection strategies through trial-and-error interactions with the traffic environment. Through

simulations, the authors assessed their method and observed that, in comparison to both a selfish

strategy and the conventional "yield to the right" strategy, their intelligent vehicles maintained

speeds closely aligned with their drivers' preferences while minimizing the frequency of lane

changes.

Forbes's research [33]focused on developing a vehicle controller using instance-based

reinforcement learning (RL). The study utilized stored instances of previous observations as value

estimates for controlling autonomous vehicles, which were then extended to handle automobile

control tasks. An adaptable simulation environment and a hierarchical control architecture for

autonomous vehicles were established. Controllers derived from this architecture underwent

evaluation and refinement within the simulator, with a focus on addressing challenging traffic

scenarios across various simulated highway networks. However, this approach is constrained by

memory length, which can quickly escalate when dealing with real-world applications.

Ng et al. [34] introduced an adaptive control system utilizing gain scheduling acquired through

reinforcement learning (RL). This approach aims to preserve the nonlinear characteristics of

vehicle dynamics, contrasting with a simplistic linearization of the longitudinal model, which may

lack suitability across the vehicle's entire operational range. Evaluations of the proposed controller

at specific operating points demonstrated precise tracking of both velocity and position in most

instances. However, when deployed within a convoy or platoon, the tracking performance

exhibited slight oscillations, particularly as the second vehicle endeavored to follow the lead

vehicle. While these oscillations were transmitted to subsequent vehicles in the platoon, they

diminished as the distance from the lead vehicle increased, indicating stability. Consequently, this

approach appears more favorable for platooning control compared to Cooperative Adaptive Cruise

Control (CACC), as the latter may induce minor oscillations.

24

Chapter 3:

3.1 Reinforcement Learning Applied in This Study

Reinforcement learning (RL) tackles sequential decision-making problems by enabling an RL

agent to interact with an environment. At each time step, the agent observes a state 𝑠𝑡 and selects

an action 𝑎𝑡 from an action space A according to a policy that maps states to actions. The system

then provides a reward 𝑟𝑡 to the agent and transitions to the next state 𝑠𝑡+1. This process repeats

until a terminal state is reached, after which the agent starts over. The objective of the agent is to

maximize the discounted accumulated reward 𝑅𝑡 = ∑ 𝛾𝑘𝑡𝑡=𝑘𝑘=0 , where 𝛾 is the discount factor

in the range (0, 1] [17].

3.1.1 DDPG Agent Architecture

The deep deterministic policy gradient (DDPG) algorithm is a model-free, online, off-policy

reinforcement learning method that has proven effective for continuous control tasks. In this study,

the focus is on developing a robust DDPG agent, which operates as an actor-critic reinforcement

learning agent. The DDPG agent is designed to explore and refine an optimal policy that

maximizes the expected cumulative long-term reward. By leveraging the actor-critic framework,

the DDPG agent simultaneously learns a policy (actor) and a value function (critic), enabling

efficient and stable learning in complex environments. This dual-network approach allows the

agent to make precise decisions and adjustments, facilitating the achievement of superior

performance in dynamic and uncertain settings.

During training, the DDPG agent:

1- Continuously updates the actor and critic parameters at each time step.

2- Utilizes a circular experience buffer to store past experiences, from which it randomly samples

a mini-batch of experiences to update the actor and critic.

25

3- Applies stochastic noise to the action selected by the policy at each training step to ensure

exploration.

The comprehensive DDPG algorithm implemented in this study is outlined in Algorithm 1. The

process begins with initializing the replay buffer, actor and critic networks, and their corresponding

target networks. At each time step, an action 𝑎 is selected based on the current exploratory policy,

incorporating stochastic noise for exploration. The environment then provides a reward 𝑟𝑡 and

transitions to a new state 𝑠𝑡+1. This transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is stored in the replay buffer 𝐷,

which is continuously updated to maintain a diverse set of experiences.

Training involves sampling mini-batches of transitions from the replay buffer. These mini-batches

are used to train the critic network by minimizing the loss between the predicted Q-values and the

target Q-values, which are computed using the target critic network. The actor network is then

updated by performing a gradient ascent step to maximize the expected return, utilizing the

sampled policy gradient from the critic's feedback.

To ensure stability in training, the target networks for both the actor and critic are updated slowly

to track the parameters of the main networks. This is achieved by a soft update mechanism where

the parameters of the target networks are incrementally adjusted towards the parameters of the

main networks. This algorithm effectively combines the strengths of experience replay and target

networks to address the challenges of training in high-dimensional continuous action spaces,

ensuring robust and stable learning outcomes.

Figure 5. Architecture of the actor and critic networks [3].

26

Algorithm 1. DDPG: Deep deterministic policy gradient for car-following velocity control

1: Randomly initialize critic 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠, 𝜃𝜇) networks with weights 𝜃𝑄 and 𝜃𝜇

2: Initialize target network 𝑄′(𝑠, 𝑎|𝜃𝑄′
) and 𝜇′(𝑠, 𝜃𝜇′

) with weights 𝜃𝑄′
← 𝜃𝑄 and 𝜃𝜇′

← 𝜃𝜇

3: Set up empty replay buffer D

4: for episode = 1 to M do

5: Begin with a random process N for action exploration

6: Observe initial car-following state: initial gap, follower speed, and relative speed

7: for t = 1 to T do

8: Calculate reward 𝑟𝑡

9: Choose follower acceleration 𝑎𝑡 = 𝜇(𝑠𝑡, 𝜃𝜇) + 𝑁𝑡 based on current actor network and exploration noise 𝑁𝑡

10: Implement acceleration at and transfer to new state 𝑠𝑡+1 based on kinematic point-mass model

11: Save transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into replay buffer D

12: Sample random minibatch of N transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from D

13: Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

)

14: Update critic through minimizing loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))2
𝑖

15: Update actor policy using sampled policy gradient: ∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ∇𝑎𝑖 𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠𝑖

16: Update target networks: 𝜃𝑄′
= 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

 𝜃𝜇′
= 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

17: end for

18: end for

27

To implement this agent in MATLAB and Simulink, MathWorks [35] Reinforcement Learning

Toolbox was utilized. This toolbox provides the necessary tools and functions to create, train, and

simulate reinforcement learning agents. In this study, the DDPG agent was designed and integrated

using this toolbox. Figure 6 illustrates the agent block utilized in the Simulink model. This block

includes the configuration of the actor and critic networks, the replay buffer, and the target

networks, all of which are essential components for the DDPG algorithm. The integration with

Simulink allows for seamless simulation and testing of the agent within a dynamic system

environment, facilitating the development and evaluation of the reinforcement learning strategy.

The flexibility and powerful features of the Reinforcement Learning Toolbox enable efficient

implementation and experimentation with advanced RL algorithms like DDPG.

Figure 6. DDPG agent Simulink block

The inputs for this DDPG agent consist of the observation data, which includes the velocity error

and the ego vehicle's velocity. Additionally, the agent receives the reward value generated by the

reward function at each step. These inputs are crucial for the agent to understand the current state

of the environment and the effectiveness of its previous actions. The observation data helps the

28

agent to assess the difference between the desired and actual velocities, while the reward value

provides feedback on the performance of the agent's actions.

The output of the DDPG agent is the controlled action, which is a decision made by the agent on

how to adjust the vehicle's control variables to optimize performance. This action is aimed at

minimizing the velocity error and maximizing the cumulative reward over time, ensuring that the

vehicle operates smoothly and efficiently according to the defined objectives. By continuously

adjusting its actions based on the observations and rewards, the agent learns to improve its control

strategy and achieve better results in managing the vehicle's behavior.

3.1.2 Environment Configuration

The reinforcement learning environment designed for this study simulates the longitudinal

dynamics of an ego car and a lead car. The primary training objective for the agent is to ensure

that the ego car maintains a set velocity while keeping a safe distance from the lead car. This is

achieved by controlling the longitudinal acceleration and braking of the ego car.

After creating the DDPG agent, it is crucial to establish an environment where the agent can be

trained. This environment is designed to simulate the conditions under which the agent will operate

and interact. Figure 7 illustrates the environment block, which accepts an acceleration command

input from the agent and consists of several key subsystems.

The Lead Car Subsystem simulates the lead car's behavior. It takes inputs such as initial velocity,

position, and acceleration and outputs the actual position and velocity of the lead car. This allows

the ego car to respond dynamically to the lead car's movements.

The Ego Car Subsystem represents the ego car, which is controlled by the DDPG agent. The agent's

goal is to make the ego car travel at a desired velocity while maintaining a safe distance from the

lead car. The ego car's actions are determined by the agent based on the observations and rewards

it receives.

29

The Signal Processing for ACC block processes signals necessary for adaptive cruise control

(ACC). It integrates various observations and computes the required signals to assist the agent in

making informed decisions.

The environment block produces several outputs:

1- RL Observations: These include the velocity error (the difference between the desired and actual

velocities) and the ego car's velocity. These observations are fed into the agent, enabling it to

evaluate the current state and decide on the next action.

2- Constraint Observations: These observations include:

 - Relative Distance: The distance between the ego and lead cars.

 - Lead Car Velocity: The current speed of the lead car.

 - Ego Car Velocity: The current speed of the ego car.

 - Ego Car Acceleration: The current acceleration of the ego car.

These constraint observations are critical for ensuring the agent operates within safe and realistic

bounds, preventing collisions and unsafe driving behaviors.

3- Reward Value: The reward value is calculated at each time step based on the reward function,

which incentivizes desirable behaviors, such as maintaining a safe distance and achieving the

desired velocity. The reward guides the agent's learning process, encouraging actions that

maximize long-term benefits.

4- isDone Signal: This output is a signal that indicates whether a training episode should be

terminated. If certain conditions are not met (e.g., if the ego car violates safety constraints), the

isDone signal triggers the end of the current training step. This ensures that the agent only learns

from valid and safe experiences.

5- New Acceleration Value: This output represents the updated acceleration command given to the

agent. It completes the feedback loop, allowing the agent to continuously interact with the

environment and learn from its actions.

30

Overall, this environment setup is designed to provide a realistic and controlled training ground

for the DDPG agent. By simulating the dynamics of both the ego and lead cars and processing

relevant signals, the environment enables the agent to learn effective strategies for longitudinal

control, ensuring safe and efficient driving behavior.

Figure 7. Environment block

Initially, the velocities of both the lead car and the ego car can vary between 1 and 25 m/s. The

initial relative distance between the two cars is set to any value greater than 5 meters. The

acceleration limits for the ego car range between 2 m/s² and -3 m/s², allowing for both acceleration

and braking.

Figure 8 illustrates the lead car block, where the inputs include the initial velocity, initial position,

and acceleration. The output from this block consists of the actual position and actual velocity of

the lead car, which are calculated based on the provided inputs. These outputs are essential for the

ego car to adjust its speed and maintain the desired safe distance, ensuring a smooth and controlled

driving experience.

31

Figure 8. Lead Car block

Figure 9 depicts the subsystem model of the lead car, which processes the car's acceleration to

determine its velocity and position. The subsystem starts with receiving the acceleration input,

which is then passed through an integrator block. This integrator calculates the integral of the

acceleration, effectively converting it into a change in velocity over time. By doing so, it simulates

how the car's speed increases or decreases based on the acceleration.

Following the integrator block, the output is processed through a transfer function, specifically

1/(0.5s+1). This transfer function models the dynamic response of the lead car, smoothing the

acceleration input to better replicate real-world conditions. The use of the transfer function is

crucial as it accounts for the physical properties of the car, ensuring that the acceleration changes

are applied in a realistic manner.

The smoothed output from the transfer function is then added to the initial velocity of the lead car.

This summation incorporates both the initial speed and the acceleration-induced change in speed,

yielding the actual velocity of the lead car. The resultant value is provided as the actual velocity

output, which reflects the current speed of the car as it moves.

To determine the distance covered by the lead car, the actual velocity is integrated once more. This

integration calculates the displacement or distance traveled over time, converting the velocity data

into positional data. The calculated distance is then added to the initial position of the lead car.

This summation includes the starting point of the car and the distance it has traveled, resulting in

the actual position output.

In summary, the subsystem for the lead car takes the acceleration input and processes it through

integration and a transfer function to determine the velocity. It then integrates the velocity to

32

calculate the position. By adding the initial velocity and position at respective stages, the model

provides accurate real-time outputs for both the velocity and position of the lead car. This detailed

modeling ensures that the dynamics of the lead car are realistically represented, which is crucial

for training and evaluating the DDPG agent in a simulated environment.

Figure 9. Lead Car subsystem

Figure 10 illustrates the subsystem model for the ego car. The inputs to this block include the initial

velocity, initial position, and the acceleration command provided by the agent. This subsystem

processes these inputs to produce the actual position, actual velocity, and actual acceleration of the

ego car. The calculations within this block are performed similarly to those in the lead car

subsystem. The acceleration command from the agent is integrated and processed through a

transfer function to determine the current velocity. This velocity is then integrated to calculate the

distance traveled by the ego car. By adding the initial velocity and position at the respective stages,

the model generates real-time outputs for the car's actual velocity and position, along with the

current acceleration, accurately reflecting the car's dynamic state.

Figure 10. Ego Car block

33

The Signal Processing for ACC block processes multiple inputs, including the ego car's velocity,

the lead car's velocity, the relative distance between the two vehicles, the ego car's acceleration,

and the acceleration command from the agent. Using these inputs, it computes several outputs: the

RL observation, the reward value, the isDone function, and the constraint observation.

Figure 11. Signal Processing for ACC block

3.1.3 DDPG Agent with Constraint Enforcement

In the ACC application, the safety signals monitored are the ego car's velocity (v) and the relative

distance (d) between the ego car and the lead car. The constraints for these signals are set as

10 ≤ v ≤ 30.5 for the velocity and d ≥ 5 for the distance. These constraints are determined by the

following state variables in x: the ego car's actual acceleration, the ego car's velocity, the relative

distance, and the lead car's velocity.

The action (u) represents the acceleration command for the ego car. The relationship between the

safety signals and the action, along with the state variables, is described by the following equation:

[
𝑣𝑘+1

𝑑𝑘+1
] = [

𝑓1(𝑥𝑘)
𝑓2(𝑥𝑘)

] + [
𝑔1(𝑥𝑘)
𝑔2(𝑥𝑘)

] 𝑢𝑘 (11)

34

The form's constraints are accepted by the Constraint Enforcement block 𝑓𝑥 + 𝑔𝑥𝑢 ≤ 𝑐. the

coefficients of this constraint function are as follows:

𝑓𝑥 = [

−𝑓1(𝑥𝑘)
−𝑓2(𝑥𝑘)
𝑓1(𝑥𝑘)

] , 𝑔𝑥 = [

−𝑔1(𝑥𝑘)
−𝑔2(𝑥𝑘)
𝑔1(𝑥𝑘)

] , 𝑐 = [
−10
−5

30.5
] (12)

To learn the unknown functions 𝑓𝑖 and 𝑔𝑖, training data was collected from the environment.

Figure 12. Learn Constraint Simulink Model

In this particular model configuration, the RL Agent block assumes a unique role by abstaining

from the generation of actions. Instead, it operates in a manner where it facilitates the transmission

of random external actions into the environment. This deliberate design choice serves a crucial

purpose: to maintain consistency between the data collection phase and subsequent agent training

sessions. By ensuring that the environment model, action and observation signal configurations,

and model reset function employed during data collection align precisely with those utilized during

agent training, the integrity of the training process is preserved.

The random external action injected into the environment adheres to a uniform distribution range

spanning from -10 to 6 m/s. This range essentially dictates the behavior of the ego car within the

simulated environment. Specifically, it signifies that the ego car is capable of exerting a maximum

braking power of -10 m/s² or a maximum acceleration power of 6 m/s², depending on the specific

action sampled from this distribution.

35

As for the training regimen, the environment furnishes the RL agent with four fundamental

observations. These include the relative distance between vehicles, the velocities of both the

leading and ego cars, and the acceleration of the ego car itself. Each of these observations plays a

pivotal role in shaping the agent's understanding of the environment's dynamics. To delineate a

continuous observation space for these values, we can establish distinct variables for each: the

relative distance, the lead car velocity, the ego car velocity, and the ego car acceleration.

Figure 13. Constraint observation

By encompassing these four observations within a continuous space, the RL agent gains a

comprehensive understanding of the environment's state. This holistic view enables the agent to

make informed decisions and effectively learn optimal strategies during the training process.

With this model (figure 14), the acceleration command from the agent is constrained before

applying it to the environment.

36

Figure 14.RL Model with Constraints

In the Constraint subsystem, the model generates the values of 𝑓𝑖 and 𝑔𝑖 from the linear constraint

relations. The model sends these values along with the constraint bounds to the Constraint

Enforcement block.

Figure 15. Constraint subsystem

37

In the RL environment using this model, for training, the environment produces three observations:

the integral of the velocity error, the velocity error, and the ego-car velocity.

Figure 16. Agent observations

The isDone signal, serves as a trigger indicating when certain critical constraints are breached.

These constraints primarily revolve around two key scenarios: firstly, if the ego car experiences

negative velocity, effectively moving backward; and secondly, if the relative distance between the

ego car and the lead car falls below zero, indicating a collision between them.

Figure 17. isDone subsystem

The RL Agent block relies on this isDone signal as a vital cue during training. It serves as a

mechanism to prematurely terminate training episodes when these critical constraints are violated.

By halting the training process early in such scenarios, the RL Agent can avoid potentially

detrimental situations, allowing for more efficient learning and preventing the reinforcement

learning algorithm from continuing in states where undesirable outcomes have already occurred.

This termination signal acts as a safeguard, ensuring that the agent doesn't persist in exploring

actions that lead to violations of safety or performance criteria, ultimately contributing to more

effective and safer training.

38

3.1.4 Implementation of Spacing Policy

The reference velocity for the ego car, denoted as 𝑉𝑟𝑒𝑓, is determined by specific conditions related

to the relative distance between the ego car and the lead car. This reference velocity guides how

the ego car adjusts its speed in relation to the lead car, ensuring safe and efficient navigation.

If the relative distance between the ego car and the lead car falls below a predefined safe distance

threshold, the ego car's velocity is adjusted to track the minimum of two factors: the lead car's

velocity and a driver-set velocity. This adjustment ensures that the ego car maintains a safe distance

from the lead car, thereby reducing the risk of collisions.

Conversely, if the relative distance exceeds the safe distance threshold, the ego car's velocity is set

to track the driver-set velocity independently. In this scenario, where the distance to the lead car is

considered safe, the ego car can operate at its intended speed without constraint by the lead car's

velocity. Figure 18 represents the spacing policy in the Simulink model.

Figure 18. Spacing policy subsystem

In this specific setup, the safe distance or desired distance threshold is calculated as a linear

function of the ego car's longitudinal velocity, expressed as:

𝑑𝑑𝑒𝑠 = 𝑡ℎ × 𝑣ℎ + 𝑑𝑚𝑖𝑛 (13)

Figure 19. Time headway-based spacing policy [25]

39

Here, 𝑡ℎ represents a time gap factor, 𝑑𝑚𝑖𝑛 denotes a default distance offset, and 𝑣ℎ signifies the

lead car's current longitudinal velocity. This computation ensures that the safe distance

dynamically adjusts based on the ego car's speed, providing a more nuanced approach to

maintaining safe spacing between vehicles.

Figure 20. Safe distance subsystem

In summary, the reference velocity for the ego car is intricately tied to the relative distance between

it and the lead car. By dynamically adjusting its velocity based on predefined conditions and the

safe distance threshold, the ego car can navigate the environment safely and efficiently, mitigating

the risk of collisions while maintaining optimal speeds.

3.1.5 Formulation of the Reward Function

A strategically designed reward function was created to guide the agent towards human-like

driving behavior, particularly in terms of recognizing and mitigating collision risks. This reward

system provides partial supervision, enabling the agent to develop an understanding of how to

perceive potential dangers and take appropriate actions to avoid them.

To promote smooth driving, the reward function incorporates several key components. Firstly, the

error in acceleration is squared. This squared acceleration error penalizes rapid changes in

acceleration, encouraging the agent to opt for smoother, more gradual adjustments in speed.

Secondly, the velocity error is also squared and included in the reward calculation. This term aims

to improve the agent's ability to follow the desired velocity accurately, ensuring that the ego car

maintains a speed that is consistent with either the driver-set velocity or the conditions dictated by

the relative distance to the lead car.

40

Additionally, the reward function features a term for the distance error. This component is crucial

as it incentivizes the agent to maintain a safe distance from the lead car. By penalizing deviations

from the safe distance, the agent is encouraged to avoid getting too close to the lead car, thereby

reducing the risk of collisions.

The equation below is the reward function.

𝑟(𝑠, 𝑎) = −𝑤1𝑟𝑎−𝑤2𝑟𝑣−𝑤3𝑟𝑑 + 𝑀 (14)

- 𝑟𝑎 is the punishment for any nonzero acceleration and is equal to 𝑎𝑡
2.

- 𝑟𝑣 is the squared difference between reference velocity and ego velocity: (𝑣𝑟𝑒𝑓 − 𝑣𝑒𝑔𝑜)2

- 𝑟𝑑 is the punishment for any deviation from the desired distance: |𝑑𝑟𝑒𝑙

𝑑𝑑𝑒𝑠
− 1|

- M is the positive reward for desired action and is calculated as:

𝑀 = {
1 𝑖𝑓 0 < 𝑟𝑑 ≤ 0.1
1 𝑖𝑓 0 < 𝑟𝑣 ≤ 0.1

- 𝑤1, 𝑤2 and 𝑤3 are weights that determine the tradeoff between smoothness and safety.

Figure 21 represents the Reward function block utilized within a Simulink model.

Figure 21. Reward function block

41

Figure 22 represents the Reward function subsystem utilized within a Simulink model with weights

values of:

{
𝑤1 = 1

𝑤2 = 0.1
𝑤3 = 1

Figure 22. Reward function subsystem

Overall, the reward function is designed to balance multiple aspects of driving behavior. By

squaring the errors in both acceleration and velocity, it promotes smoother driving and better

adherence to target speeds. The inclusion of the distance error term further ensures that the agent

consistently maintains a safe following distance, fostering a driving style that is both safe and

efficient. This comprehensive approach helps the agent to develop driving skills that closely

resemble those of a cautious and skilled human driver.

42

Chapter 4:

4.1 Training the DDPG Agent

The training process for the agent was designed to simulate a realistic driving scenario, focusing

on interactions between a lead car and an ego car. The initial velocities for both vehicles were

randomly set within a range of 1 to 25 m/s, providing a diverse set of starting conditions for the

agent to learn from. To ensure safety and adherence to realistic driving limits, the ego car's set

velocity was capped at 30 m/s, preventing it from exceeding this speed during training.

Several critical parameters were used to model the driving environment and ensure that the agent's

training reflected real-world conditions. These parameters include:

- Default Spacing (𝑑𝑚𝑖𝑛): Set to 5 meter, this value represents the minimum distance that should

be maintained between the ego car and the lead car, serving as a basic safety measure.

- Time Gap (𝑡ℎ): Set to 1.4 seconds, this parameter dictates the safe following distance based on

the ego car's speed, ensuring that the ego car has adequate time to react to the lead car's movements.

- Driver-Set Velocity (𝑣𝑠𝑒𝑡): Set at 30 m/s, this value serves as the maximum speed limit for the

ego car, ensuring it does not drive too fast and remains within safe operating conditions.

- Minimum and Maximum Acceleration (𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥): These values, set at -3 m/s² and 2 m/s²

respectively, define the range of acceleration for the ego car, promoting smooth and comfortable

driving by preventing sudden, jerky movements.

- Sample Time (𝑇𝑠): Set at 0.1 seconds, this parameter determines the frequency at which the

system updates, providing a balance between computational efficiency and the granularity of the

agent's actions.

To add a layer of realism to the training environment, the acceleration of the lead car was simulated

using a sine wave with an amplitude of 0.6 and a frequency of 0.2 rad/s. This introduced variability

in the lead car's speed, challenging the ego car to adapt to changing conditions and improving the

robustness of the agent's learning process.

43

The hyperparameters for the DDPG (Deep Deterministic Policy Gradient) agent, detailed in

Table 1, were meticulously chosen to optimize the training process. The agent underwent training

for a maximum of 5000 episodes, with the objective of reaching an episode reward of 500.

Achieving this reward threshold indicated that the agent had successfully learned the desired

driving behaviors, such as maintaining safe distances, following the set velocity, and reacting

smoothly to the lead car's movements.

Hyperparameter Value

Time step 𝑇𝑠 0.1

Discount Factor 𝛾 0.99

Experience Buffer Length 2 × 105

Mini-Batch Size 128

Maximum Training Episode 5000

Target Update Frequency 10

Target Smooth Factor 𝜏 0.005

Critic Learning Rate 𝛼𝑐 10−3

Actor Learning Rate 𝛼𝑎 10−4

Exploration Noise 𝜀 0.1

Exploration Model Ornstein-Uhlenbeck

Optimizer Adam
Table 1. DDPG agent hyperparameters

Figure 16 presents the training progression, illustrating how the agent's performance improved

over time as it learned from its experiences. The graph shows a steady increase in the episode

rewards, indicating the agent's growing proficiency in navigating the simulated driving

environment.

44

Figure 23. DDPG agent training progression

Overall, the structured training environment and well-defined parameters were crucial in

developing an agent capable of human-like driving behavior. By ensuring the training process

reflected real-world conditions, the agent was able to learn effective strategies for safe and efficient

driving, preparing it for deployment in more complex and dynamic scenarios.

45

4.2 Validating the DDPG Agent

4.2.1 WLTP Cycle Evaluation

Following the completion of the training phase, the agent's performance was rigorously validated

using the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) cycle. The WLTP cycle

provides a comprehensive testing framework that simulates a wide range of driving scenarios,

including different speeds, acceleration patterns, and stop-and-go conditions typically encountered

in everyday driving. By subjecting the agent to this standardized test cycle, we aimed to evaluate

its ability to maintain safe distances, adhere to speed limits, and execute smooth acceleration and

deceleration maneuvers in varied and unpredictable traffic conditions.

During the validation process, the agent's actions were closely monitored to determine how

effectively it could replicate human-like driving behavior. Key performance metrics, such as speed

adherence, following distance, and smoothness of driving, were analyzed to gauge the agent's

proficiency.

Figure 24. WLTP class 1 cycle

The simulation was conducted with initial velocities set at 25 m/s for the lead car and 20 m/s for

the ego car.

46

Figure 25. Leading and ego velocity on WLTP

Figure 26. Zoomed-In view of lead and ego velocities during WLTP

19

21

23

25

27

29

31

0 200 400 600 800 1000

V
el

o
ci

ty
 [

m
/s

]

Time step
v_ego1 v_lead v_set

24

25

26

27

28

29

30

31

600 620 640 660 680 700 720 740 760 780 800

V
el

o
ci

ty
 [

m
/s

]

Time step
v_ego1 v_lead v_set

47

Figure 27. Rleative and safe distance on WLTP

Figure 28. Zoomed-In view of relative and safe distance during WLTP

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400

D
is

ta
n

ce
 [

m
]

Time step

safe_distance d_rel

34

35

36

37

38

39

40

41

42

43

600 620 640 660 680 700 720 740 760 780 800

D
is

ta
n

ce
 [

m
]

Time step

safe_distance d_rel

48

Through this comprehensive validation process using the WLTP cycle, we were able to identify

any potential weaknesses in the agent's behavior and make necessary adjustments. This ensured

that the agent not only performed well in the controlled training environment but also demonstrated

reliable and safe driving behavior in real-world scenarios. The insights gained from this validation

step were critical in refining the agent's algorithms and enhancing its overall performance, paving

the way for its deployment in practical applications.

4.2.2 WLTP Cycle Evaluation with Delay

To accurately reflect real-world conditions where there are inherent delays in the signals sent to

vehicles, different delay values were incorporated into the simulation. This approach helps in

understanding how such delays impact vehicle performance and interaction. In the subsequent

figures, the results of the simulation with delay values of 0, 0.1, and 0.2 seconds are presented.

These delays were specifically added to the acceleration signals transmitted between the cars,

mimicking the latency that can occur in real driving scenarios. By varying the delay values, we

can analyze how the ego car's response to the lead car's movements is affected, providing valuable

insights into the robustness and reliability of the trained agent in handling real-world

communication delays.

49

Figure 29. Lead and ego signal delay simulation

Figure 30. Zoom on lead and ego signal delay simulation

0

5

10

15

20

25

30

0 200 400 600 800 1000

V
el

o
ci

ty
 [

m
/s

]

Time step

v_lead v_ego_0 v_ego_0.1 v_ego_0.2

10

10.05

10.1

10.15

10.2

10.25

10.3

10.35

10.4

600 600.1 600.2 600.3 600.4 600.5 600.6 600.7 600.8 600.9 601

V
el

o
ci

ty
 [

m
/s

]

Time step

v_lead v_ego_0 v_ego_0.1 v_ego_0.2

50

The Root Mean Square Error (RMSE) for the spacing error, which quantifies the difference

between the relative distance and the safe distance, was calculated. The analysis revealed that as

more delay is introduced into the system, the RMSE value increases. This indicates that larger

delays in signal transmission negatively affect the ability to maintain the desired safe distance

between vehicles, leading to greater deviations from the optimal spacing.

Delay RMSE

0 5.53571

0.1 5.53599

0.2 5.53873

Table 2. RMSE of spacing error with different delay values

Figure 31. RMSE of spacing error with different delay values

5.534

5.5345

5.535

5.5355

5.536

5.5365

5.537

5.5375

5.538

5.5385

5.539

0 0.1 0.2

R
M

SE
 o

f
sp

ac
in

g
er

ro
r

[m
]

Delay time [s]

51

4.3 Simulation of Multi-Vehicle Platoon

To thoroughly evaluate the performance of the cooperative cruise control model, simulations were

conducted involving multiple ego cars, rather than a single ego car. This setup allows for a more

comprehensive assessment of the model's effectiveness in a more complex and realistic driving

environment.

By including multiple ego cars in the simulations, the interactions between different vehicles can

be observed and analyzed. This approach helps in understanding how well the cooperative cruise

control model manages spacing, speed adjustments, and overall traffic flow when multiple cars are

involved. It also provides insights into the model's scalability and robustness in handling scenarios

with several vehicles operating under the same control strategy.

The results from these simulations are crucial for determining the model's capability to maintain

safe distances between all vehicles, ensure smooth acceleration and deceleration, and optimize

overall traffic efficiency. This evaluation is a critical step in validating the practical applicability

of the cooperative cruise control model in real-world driving conditions, where multiple vehicles

must operate in harmony to ensure safety and efficiency.

4.3.1 Three-Vehicle Platoon

In this phase, the cooperative cruise control model was analyzed by introducing one lead car and

two ego cars into the simulation. This setup was chosen to evaluate the model's performance in a

more dynamic and complex environment. To ensure the robustness and adaptability of the model,

various initial velocities for both the lead car and the ego cars were tested.

Testing with different initial velocities allows us to examine how well the model handles a range

of starting conditions. It helps in verifying that the model can efficiently synchronize the

movements of the lead and ego cars, regardless of their initial speeds. This is crucial for real-world

applications, where vehicles often start from different speeds and need to adjust accordingly to

maintain safe distances and optimal flow.

52

By analyzing the model under these conditions, we can assess its ability to manage the relative

distances between multiple vehicles, ensure smooth acceleration and deceleration patterns, and

adapt to varying traffic scenarios. The insights gained from these tests are essential for confirming

that the cooperative cruise control model is effective in diverse driving situations, enhancing its

reliability and practical usability in real-world deployments.

In the first scenario, the lead car begins with an initial velocity of 25 m/s, while the two ego cars

start at 20 m/s and 15 m/s, respectively. The initial relative distance between each car is set to 50

meters.

Figure 32. Three-Vehicle Platoon velocity control first scenario

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0 200 400 600 800 1000

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_set

53

Figure 33. Zoom on Three-Vehicle Platoon velocity control first scenario

In the second scenario, contrasting and reduced initial velocity values have been selected in

comparison to the initial scenario.

25

25.5

26

26.5

27

27.5

28

28.5

29

600 620 640 660 680 700 720 740 760 780 800

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_set

54

Figure 34. Three-Vehicle Platoon velocity control second scenario

Figure 35. Zoom on Three-Vehicle Platoon velocity control second scenario

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0 200 400 600 800 1000

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_set

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

600 620 640 660 680 700 720 740 760 780 800

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_set

55

In the third scenario, the lead car's initial velocity (10 m/s) is lower than that of the ego cars (15

and 20 m/s). This simulation is conducted to ensure that the model remains effective even when

the ego cars have higher initial velocities than the lead car. By testing this scenario, we aim to

verify that the model's performance is not biased towards situations where the lead car maintains

a higher speed. This helps in assessing the model's ability to handle diverse traffic conditions and

confirms its reliability in scenarios where the ego cars may surpass the lead car's velocity.

Figure 36. Three-Vehicle Platoon velocity control third scenario

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0 200 400 600 800 1000

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_set

56

Figure 37. Zoom on velocity control Three-Vehicle Platoon velocity control third scenario

In the fourth and final scenario, all vehicles—the lead car and the two ego cars—start with identical

velocities. Additionally, the initial relative distances between each pair of vehicles are set to 50

meters. This scenario serves to evaluate the model's performance in a uniform velocity setup,

where all cars begin at the same speed. By maintaining equal velocities, we can observe how the

model manages spacing and synchronization when no vehicle has a speed advantage. This test is

crucial for verifying that the model can maintain consistent and safe distances, ensuring smooth

operation even when starting conditions are completely uniform.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

600 620 640 660 680 700 720 740 760 780 800

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_set

57

Figure 38. Three-Vehicle Platoon velocity control fourth scenario

Figure 39. Zoom on Three-Vehicle Platoon velocity control fourth scenario

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0 200 400 600 800 1000

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_set

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

600 620 640 660 680 700 720 740 760 780 800

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_set

58

Figure 40. Spacing error of Three-Vehicle Platoon fourth scenario

Figure 41. Acceleration of Three-Vehicle Platoon fourth scenario

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10
Sp

ac
in

g
Er

ro
r

[m
]

Time step

Lead-Ego1 Ego1-Ego2

-3

-2

-1

0

1

0 200 400 600 800 1000

A
cc

el
er

at
io

n
 [

m
/s

^2
]

Time step

Lead_Accel Ego1_Accel Ego2_Accel

59

4.3.2 Four-Vehicle Platoon

In this phase, a simulation involving four vehicles was conducted, incorporating a 0.1-second delay

in the acceleration signal transmission between the cars. This delay was introduced to mimic real-

world conditions where signal transmission is not instantaneous. The results of this simulation

indicate that, despite the delay, the model effectively reduces the spacing error between the

vehicles. This means that the distances between the cars become more consistent and closer to the

desired safe distances, demonstrating the model's robustness and ability to maintain proper vehicle

spacing even with communication delays.

Figure 42. Four-Vehicle Platoon velocity control with 0.1 second delay

0

5

10

15

20

25

30

0 200 400 600 800 1000

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_ego3 v_set

60

Figure 43. Zoomed on Four-Vehicle Platoon velocity control with 0.1 second delay

Figure 44. Spacing error of Four-Vehicle Platoon with 0.1 second delay

10

12

14

16

18

20

22

24

26

28

600 620 640 660 680 700 720 740 760 780 800

V
el

o
ci

ty
 [

m
/s

]

Time step

v_ego1 v_lead v_ego2 v_ego3 v_set

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

Sp
ac

in
g

er
ro

r
[m

]

Time step
d_err1 d_err2 d_err3

61

Table 3 presents the Root Mean Square Error (RMSE) values for spacing errors between

consecutive cars, with a consistent signal delay of 0.1 seconds. The RMSE values indicate the

deviation from the desired spacing between the vehicles, with specific pairs of cars being

evaluated. Notably, there is a percentage reduction in RMSE from 5.04% between the lead car and

Ego Car 1 to Ego Car 1 and Ego Car 2, and a further 0.4% reduction between Ego Car 1 and Ego

Car 2 to Ego Car 2 and Ego Car 3. These reductions demonstrate that the model effectively

decreases the spacing error between the vehicles as they follow each other, improving overall

synchronization and maintaining safer distances.

Signal Delay (s) 0.1

RMSE: Lead Car to Ego Car 1 (m) 5.53

RMSE: Ego Car 1 to Ego Car 2 (m) 5.25

RMSE: Ego Car 2 to Ego Car 3 (m) 5.23

Percentage Reduction: Lead-Ego 1 to Ego 1-2 (%) 5.04

Percentage Reduction: Ego 1-2 to Ego 2-3 (%) 0.4
Table 3. RMSE and percentage reduction of spacing error between lead and ego cars

62

Chapter 5:

5.1 Conclusion

In this thesis, a sophisticated Reinforcement Learning (RL) approach was applied to enhance

Cooperative Adaptive Cruise Control (CACC) strategies. The controller was designed using the

MATLAB/Simulink Reinforcement Learning toolbox, with a particular focus on deploying a Deep

Deterministic Policy Gradient (DDPG) agent. Within this framework, a comprehensive

environment was established, incorporating tailored policies for both spacing and speed control.

The training of the model was carried out using a crafted reward function, designed to ensure

optimal tracking performance while maintaining a safe distance from surrounding vehicles. The

results were promising, demonstrating that the controller not only achieved precise speed and

spacing adherence but also maintained robust safety standards across diverse driving scenarios.

An element in the model's effectiveness was the integration of Vehicle-to-Vehicle (V2V)

communication. To evaluate the model's resilience, different delay values in the communication

signals were tested, simulating real-world conditions and challenges.

To further substantiate the safety and responsiveness of the controller, simulations were conducted.

These included scenarios with varying initial velocities for the vehicles, as well as configurations

involving a platoon of three and four vehicles. These simulations adhered to real drive cycles,

providing a rigorous test of the model's capabilities. The RL controller consistently demonstrated

its ability to adapt to changing conditions, maintain safe distances, and prevent collisions. The

controller's performance in managing spacing errors and relative distances was exceptional,

ensuring both safety and high levels of speed tracking accuracy.

In conclusion, this work underscores the significant potential of RL-based controllers in

revolutionizing CACC systems. The developed model not only ensures safe and efficient vehicle

operation but also exhibits robustness in handling varying traffic conditions and communication

delays. These findings represent a substantial contribution to the field of autonomous driving,

highlighting the critical role of adaptive and intelligent control strategies in modern vehicular

63

networks. This research paves the way for future advancements, offering a promising outlook for

the integration of RL in autonomous driving systems, ultimately enhancing the safety, efficiency,

and reliability of vehicular operations.

5.2 Future Work

There are several avenues for future research and development to further enhance the model

presented in this thesis. One key area for improvement is the enhancement of passenger comfort

through refined acceleration control. By optimizing the model to achieve smoother acceleration

and deceleration, the system can provide a more comfortable and pleasant driving experience. This

could involve incorporating more advanced control strategies or adjusting the reward function to

prioritize passenger comfort alongside safety and efficiency.

Another significant area for potential improvement is the further reduction of spacing errors. While

the current model demonstrates effective management of vehicle spacing, optimizing the model to

minimize these errors even further could enhance overall traffic flow and safety. This could be

achieved through advanced machine learning techniques, such as fine-tuning hyperparameters,

employing more sophisticated algorithms, or leveraging larger and more diverse training datasets

to improve the model's accuracy and robustness.

In summary, while the current model offers significant advancements in Cooperative Adaptive

Cruise Control, there is substantial potential for further research and development. By focusing on

improving passenger comfort, reducing spacing errors, integrating additional information sources,

and expanding the model's applicability to more complex scenarios, future work can continue to

push the boundaries of autonomous driving technology.

64

References

[1] D. M. P. a. M. M. C. E. Garcia, "Model predictive control: theory and practice - a survey,"
Automatica, pp. 335-348, 1989.

[2] E. B. C. Camacho, Constrained Model Predictive Control, London: Springer, 2007.

[3] Y. W. Z. P. J. H. X. W. R. K. Meixin Zhu, "Safe, efficient, and comfortable velocity
control based on reinforcement learning for autonomous driving," Transportation Research
Part C: Emerging Technologies, vol. 117, 2020.

[4] L. L. H. L. P. e. a. Luo, "Model predictive control for adaptive cruise control with multi-
objectives: comfort, fuel-economy, safety and car-following," Journal of Zhejiang
University SCIENCE A, vol. 11, 2010.

[5] D. A. Taku Takahama, "Model Predictive Control Approach to Design Practical Adaptive
Cruise Control for Traffic Jam," International Journal of Automotive Engineering, vol. 9,
no. 3, pp. 99-104, 2018.

[6] K. L. R. R. J. W. Shengbo Li, "Model Predictive Multi-Objective Vehicular Adaptive
Cruise Control," IEEE, vol. 19, no. 3, pp. 556-566, 2011.

[7] A. C. a. F. B. S. Lefevre, "Autonomous car following: A learning-based approach," IEEE
Intelligent Vehicles Symposium (IV), Seoul, Korea (South), pp. 920-926, 2015.

[8] M. G. F. C. a. L. W. D. Ernst, "Reinforcement Learning Versus Model Predictive Control:
A Comparison on a Power System Problem," IEEE Transactions on Systems, Man, and
Cybernetics, vol. 39, no. 2, pp. 517-529, 2009.

[9] J. M. a. N. L. A. Y. Lin, "Comparison of Deep Reinforcement Learning and Model
Predictive Control for Adaptive Cruise Control," IEEE Transactions on Intelligent
Vehicles, vol. 6, no. 2, pp. 221-231, 2021.

[10] Wikipedia, "Proportional–integral–derivative controller," 31 May 2024. [Online].
[Accessed 1 June 2024].

[11] S. VM, "https://medium.com/@svm161265," When and why to use P, PI, PD and PID
Controller?, October 2021. [Online]. [Accessed 1 June 2024].

[12] U. o. York, "What is reinforcement learning?," University of York, York, 2023.

[13] D. S. L. V. N. P. Todd Mummert, "What is reinforcement learning?," IBM, 14 September
2022. [Online]. [Accessed 1 June 2024].

65

[14] G. P. S. C. Ashish Kumar Shakya, "Reinforcement learning algorithms: A brief survey,"
Expert Systems with Applications, vol. 231, 2023.

[15] MathWorks, "What Is Reinforcement Learning?," 20224. [Online]. Available:
https://www.mathworks.com. [Accessed June 2 2024].

[16] R. A. Howard, Dynamic programming and Markov processes, Cambridge, MA, USA: MIT
Press, 1960.

[17] R. S. &. B. A. G. Sutton, Reinforcement Learning An Introduction, Cambridge, MA, USA:
MIT Press, 2018.

[18] Y. Li, "Deep reinforcement learning: An overview," arXiv preprint arXiv:1701.07274.,
2017.

[19] I. B. L. L. G. B. R. Grondman, "A survey of actor-critic reinforcement learning: Standard
and natural policy gradients," IEEE Trans. Syst. Man, Cybernet., vol. 6, p. 1291–1307,
2012.

[20] V. K. K. S. D. R. A. V. J. B. M. G. A. R. M. F. A. O. G. e. a. Mnih, "Human level control
through deep reinforcement learning," Nature, 2015.

[21] T. H. J. P. A. H. N. E. T. T. Y. S. D. W. D. Lillicrap, "Continuous Control with Deep
Reinforcement Learning," arXiv:1509.02971, 2015.

[22] J. P. a. M. McDonald, "Advanced driver assistance systems from autonomous to
cooperative approach," Transp. Rev, vol. 28, no. 5, p. 659–684, 2008.

[23] C. D. a. B. Chaib-draa, "Cooperative Adaptive Cruise Control: A Reinforcement Learning
Approach," IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp.
1248-1260, 2011.

[24] Z. B. a. R. E. P. Fancher, "Human-centered design of an ACC with braking and forward-
crash-warning system," Vehicle Syst. Dyn, vol. 36, no. 2, p. 203–223, 2001.

[25] Z. X. Y. L. CUNXUE WU, "Spacing Policies for Adaptive Cruise Control: A Survey,"
IEEE, vol. 8, pp. 50149-50162, 2020.

[26] J. K. R. V. K. a. M. N. D. De Bruin, "esign and test of a cooperative adaptive cruise control
system," IEEE Intell Vehicles Symp, p. 392–396, 2004.

[27] R. V. J. P. M. V. d. M. a. M. S. G. Naus, "Towards on-the-road implementation of
cooperative adaptive cruise control," in in Proc. 16th World Congr. Exhib. Intell. Transp.
Syst. Serv., Stockholm, Sweden, 2009.

[28] D. Pomerleau, Neural network vision for robot driving, Cambridge, MA: MIT Press, 1995.

66

[29] G. Y. a. I. Sethi, "Road following with continuous learning," in Proc. Intell. Vehicles
Symp., pp. 412-417, 1995.

[30] F. L. a. D. Vrabie, "einforcement learning and adaptive dynamic programming for
feedback control," IEEE Circuits Syst, vol. 9, no. 3, p. 32–50, 2009.

[31] J. L. a. D. C. S. Oh, "A new reinforcement learning vehicle control architecture for vision-
based road following," IEEE Trans. Veh. Technol., vol. 49, no. 3, p. 997–1005, 2000.

[32] D. M. a. P. Langley, Distributed learning of lane-selection strategies for traffic
management, Palo Alto, CA: Tech. Rep. 98-2, 1998.

[33] J. R. Forbes, "Reinforcement learning for autonomous vehicles," Univ. California,
Berkeley, 2002.

[34] C. C. a. J. H. L. Ng, "Reinforcement learning of dynamic collaborative driving—Part I:
Longitudinal adaptive control," Int. J. Vehicle Inf. Commun. Syst., vol. 1, no. 0, p. 208–228,
2008.

[35] MathWorks, "Train RL Agent for Adaptive Cruise Control with Constraint Enforcement,"
[Online]. Available: https://www.mathworks.com/.

