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Abstract

Safety is a fundamental aspect of the nuclear industry, especially in the period
after Chernobyl and Fukushima accidents. One of the most critical phenomena af-
fecting reactor safety is the Critical Heat Flux (CHF), which marks the transition
to a deteriorated heat transfer regime in nuclear reactor cores, potentially leading
to severe damage. Accurate CHF prediction is therefore essential for enhancing
nuclear safety and optimizing reactor performance.
Since 2006, CHF prediction has primarily relied on the Look-Up Table (LUTs)
method, a well-established empirical approach. However, with advancements in
computational techniques, machine learning (ML) has seen as a promising tool to
improve prediction accuracy. In this context, the Task Force on Artificial Intel-
ligence and Machine Learning for Scientific Computing in Nuclear Engineering,
under the supervision of the Expert Group on Reactor Systems Multi-Physics
(EGMUP), has been actively developing ML-based models for CHF prediction.
This study follows a similar approach by first providing a theoretical framework
on CHF, analysing its governing physical mechanisms and the key parameters in-
fluencing CHF in Pressurized Water Reactor (PWR) operations. An extensive
data set is analysed to identify the most relevant input variables through corre-
lation analysis performed in MATLAB. An initial neural network model is then
developed and subsequently refined through a series of improvements aimed at
enhancing prediction accuracy. The different versions of the model are evaluated
and compared against empirical methods to assess their reliability and potential
advantages.
The results highlight the benefits of ML-based approaches, demonstrating their
capability to enhance safety margins and optimize reactor operation. Given the
increasing complexity of nuclear systems and the growing demand for safe and
efficient energy production, the development of advanced predictive models will
play a strategic role in the future of nuclear engineering, enabling more reliable
safety assessments and improved reactor design.



”There must be no barriers to freedom of inquiry. There is no place
for dogma in science. The scientist is free, and must be free to ask
any question, to doubt any statement, to seek any proof, to correct

any error.”

– Julius Robert Oppenheimer
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Chapter 1. The importance of Safety in Nuclear Energy

Chapter 1

The importance of Safety in
Nuclear Energy

Geopolitical events and the ecological transition support government to sign sus-
tainable politics towards to clean sources of energy. In this case, nuclear energy
plays a fundamental role, as it is the real competitor to oil, gas and coal, and
gives a great deal of support to renewable energy sources. But public concern
about nuclear risk is an important issue, especially after the Three Miles Island,
Chernobyl and Fukushima accidents and the war in Ukraine, although statistical
data show that it is extremely low compared to human activities. Safety is a key
driver in the design and operation of any nuclear plant, with its excellent records
in recent years, result of the attention given by industry and authorities (such as
the Nuclear Regulatory Commission, NRC, and the International Atomic Energy
Agency, IAEA) to it, protecting people and environment from the release of ra-
dioactive and fission products [9]. One of the aspects of nuclear safety depends
on the effective management of heat generated by fission reactions. When inef-
ficiencies happen, we can have significant operational issues. For this reason, it
is important to describe the concept of Critical Heat Flux, CHF. It defines
the maximum heat flux at which the coolant can remove heat from the
core without boiling, preventing overheating and potential damage. En-
suring that reactor operates within this thermal design limit is so important for
prevention and mitigation.

1.1 The Contribution of this work

The aim of this Thesis is to make a significant contribution to reactor safety, in
particular on the core design. As said previously, the CHF can cause deterioration
of the heat transfer in the core of nuclear reactors, potentially leading to damage,

1



Chapter 1. The importance of Safety in Nuclear Energy

with a consequent releasing of fission products into the environment. So its ac-
curate prediction, although is tricky, is a crucial issue for safety of nuclear plant.
Lots of prediction models have been conducted during past years, depending on
the study and comprehension of the heat transfer mechanism inside the reactor.
With the development of first prototypes of artificial intelligence (AI) the research
approach changes, enhancing the works of technicians. In this case study, after ex-
ploring artificial intelligence and understanding the features of each methodology,
a new model, based on neural networks, has been conducted and its performance
is compared to the preexistent ones. Furthermore, two possible evolution of the
model has been developed in way to emphasize the pros and cons of each evolution
of the net. The final result must demonstrate how the use of artificial intelligence
is a fundamental instrument that can improve the predictive safety not only for
mitigate the risks, but also to improve reactor efficiency.

1.2 Organization of the Thesis

In Chapter 2 we have a theoretical description of the CHF with its mechanisms
inside a Pressurised Water Reactor (PWR), focusing on the different models that
predict it. In Chapter 3 there is a brief description review about the artificial
intelligence, focusing on the feed-forward neural network, model adopted for this
work and the description of the Task Force that gives support to this work. Chapter
4 is the central part, since it describes the steps methodology how the net is built
and the performance. Chapter 5 and 6 present two possible scenarios for improving
the neural network: the first is an adaptation of the network to the points of the
database where the performance is poor. The second shows a small change in the
construction of the net. An overall comparison was then made. In the last chapter
we have a summary of the whole work, with some suggestions for future activities.

2



Chapter 2. CHF Predictive Model Development

Chapter 2

CHF Predictive Model
Development

2.1 CHF mechanisms

The concept of CHF is used to describe the conditions under which the heat
transfer coefficient of the two-phase flow deteriorates significantly. In a system
where the heat flux is independently controlled, the consequences of the CHF are
a rapid rise in the wall temperature. For systems in which the wall temperature
is independently controlled, the occurrence of CHF implies a rapid decrease in the
heat flux. [1]. Dynamic changes in the boiling regime associated with the exceeding
of the critical heat flux are known as boiling crisis and it can be classified as 2.1:

• Dryout: term now used for the drying out of a liquid film in a annular flow;

• Departure from Nucleate Boiling (DNB): used to describe the CHF condi-
tions in pool boiling, or when the bubble formation is rapid enough to cause
a continuous vapour film to form on the wall in flow boiling.

Understanding the physics behind these two mechanisms is important for CHF
prediction, as it enhances safe operating condition under certain ranges.

3



Chapter 2. CHF Predictive Model Development

Figure 2.1: CHF mechanisms. (a) Dryout, (b) DNB [5]

2.1.1 CHF at low quality (Departure from Nucleate Boil-
ing (DNB)

1 Pool boiling. The earliest studies of CHF involved placing a heating surface in
a static liquid pool. The observed heat flow - wall temperature behaviour shows
a CHF condition leading to transition boiling. This pool boiling CHF provides
lower heat fluxes than does flow boiling, because the critical heat flux of the DNB
type increases with mass flux. This CHF mechanism (DNB) can occur for both
saturated and subcooled liquid conditions. [1]
2 Flow boiling. The nucleate regime exists at low quality flow conditions. If the
heat flux is very high, vapour blanketing of the surface can occur. It is possible
to set two limits for the CHF (q”cr). At the lower end, it must be high enough to
cause the wall temperature to reach saturation (TW = Tsat) while the bulk flow is
still undercooled. Hence:

(q”cr)min = hlo(Tw − Tbulk) = hlo(Tsat − Tbulk) (2.1)

For axial uniform heat flux:

(q”cr)minπDL =
GπD

4
cp(Tbulk − Tin) (2.2)

4



Chapter 2. CHF Predictive Model Development

where L = tube length. Therefore eliminating Tbulk

(q”cr)min =
(Tsat − Tin)
1
hlo

+ 4L
GDcp

(2.3)

At the high end, q”cr should be sufficiently high to cause an equilibrium density
(χe = 1.0). Hence:

(q”cr)max =
GD

4L
[cp(Tsat − Tin + hfg] (2.4)

From these equations it is clear that the higher the inlet temperature (or ther-
modynamic quality) the lower is the value of q”cr in a uniformly heated tube.
Generally it would be expected that:

q”cr = q”cr[p,G,D, L, (∆Tsub), q”(z)] (2.5)

The dependence on the inlet subcooling and the heat flux profile may be replaced

Figure 2.2: Effect of heat flux spike on q”cr [1]

by a dependence on the local value of the quality at the point of CHF (i.e., at L):

q”cr = q”cr[p,G,D, L, x(L)] (2.6)

It should be noted that the vapour blanketing is mainly influenced by the lo-
cal evapouration rate and therefore the effect of heating time on DNB is small.
However, for the dryout form at CHF, the hydrodynamic effects on the liquid film
behaviour are pronounced. The development of a particular form of hydrodynamic
behaviour is influenced by the length of the flow [1].

5
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2.1.2 CHF at High Quality (Dryout)

At high quality flow conditions, the vapour is mostly present in the core. Both
the shear action of the vapour and the local evaporation rate can cause the liquid
film to be stripped from the wall. In uniformly heated tubes, the value of q”cr at
high flow qualities is, roughly speaking, lower than that at low flow qualities. It is
also observed that q”cr is lower for lunger tubes. However, the total critical power
input increases with length. Therefore the critical quality (xcr) at the tube outlet
also increases with length. Due to the difference between the DNB and the dryout
mechanisms, they show an inverse dependence on the mass flux. As shown in the
figure below, the higher mass flux leads to a higher q”cr for low quality flow, but
decreases the q”cr for high quality flow. Total critical power in an evenly heated
tube of fixed length L increases as mass flux increases. For high quality CHF, the
critical channel power is not sensitive to the distribution of the heat flux along a
fixed length [1].

Figure 2.3: Effect of mass flux on critical heat flux [1]

We have three different approached to predicting CHF:

1. CHF correlations;

2. CHF Look-Up table (LUTs);

3. mechanistic model.
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2.2 CHF Empirical models

2.2.1 Parameters that affect CHF

Traditionally, CHF predictions have been based on empirical models developed
from extensive experimental data sets that capture the influence of operating pa-
rameters. The primary independent variables affecting CHF are: tube internal
diameter (D), tube length (L), system pressure (P), inlet flow rate or mass velocity
(G), quality (X) and the inlet temperature or inlet subcooling (∆Tsub,i = Tsat−Ti).

qc = f(G,∆T, p,D, L)

Secondary independent variables influencing the CHF can be the flow orientation,
the material and roughness of the pipe surface and the method of heating, or
the presence of cold walls. If the heat flux is uniform, overheating of the tube
surface at CHF almost always begins at the tube exit. CHF can also be expressed
as a function of the outlet conditions: instead of the inlet subcooling, either the
specific enthalpy at the outlet or the outlet quality can be used as an independent
parameter.

2.2.2 The 2006 CHF Look-Up table

The complexity of predicting the CHF increases significantly when additional fac-
tors such as transients, non-uniform flux distributions, and asymmetric cross sec-
tions are introduced. This has led to the development of the CHF Look-up table,
adopted in 2006. The CHF Look-Up table method has many advantages over
other CHF prediction methods:

• simple to use;

• no iterations required;

• wide range of applications;

• based on a very large database;

• eliminates the need to choose between among the many CHF prediction
methods currently available for water-cooled tubes.

Engineers can estimate CHF interpolating between reference data without using
iterative calculations. However, with the increasing complexity of reactor designs
and the drive for higher efficiencies, the limitations of traditional models have
become more apparent, particularly as they may not fully adapt to advanced
operating conditions. Traditional Look-Up Tables (LUTs) have certain limitations:
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• Static and inflexible: LUTs are inherently static, as they depend on prede-
fined experimental parameters. This limits their adaptability when applied
conditions beyond the reference scope, such as novel reactor designs or ex-
treme operating environments.

• Limited applicability: The applicability of LUTs is often limited to spe-
cific ranges. For example, the Groeneveld table is only accurate within cer-
tain pressure and temperature ranges, making it less effective outside its
original operational scope.

• Scalability and Adaptability: As reactor designs and configurations evolve,
LUTs may not scale or adapt adequately, requiring frequent updates of ex-
perimental data to maintain predictive accuracy

These limitations have paved the way for the integration of artificial intelligence
techniques to further refine CHF predictions [10].
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2.3 The prediction of CHF for subcooled flow

boiling

This model has since been developed for its accuracy and feasibility. It is based
on the concept of the subcooled flow boiling. Initially we have a subcooled
liquid (Tin < Tsat entering the channel. At a certain point we have the formation
of vapour bubbles as the liquid becomes superheated at the wall. This is the
subcooled boiling. Then the bubbles agglomerate into larger ones and finally
they form a vapour blanket that divides the flow region into two parts: a near-wall
region and the core region, as shown in the figure below [2].

Figure 2.4: Conceptual view of liquid sublayer dryout mechanism [2]

The CHF occurs when the liquid sublayer is completely dry.

CHF =
ρfδHfg

LB

UB (2.7)

where UB, LB and δ are the vapour blanket velocity, vapour blanket length and
thickness of liquid layer thickness respectively.
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2.3.1 Vapour Blanket Analysis

First, we consider the flow area divided by the vapour blanket, as shown in Figure
2.5. The two waves correspond to the interfaces, and their wavelengths are equal
to those predicted by the Helmholtz instability at each interface. This assumption
ensures that a stable blanket contains only one full wavelength. In this way, the
vapour blanket velocity can be written as a simple function of the average velocity
of the two-phase flow in the core region.

Figure 2.5: Schematic representation of a stable vapour blanket

Thanks to these assumptions we can evaluate the blanket velocity;

UB =
Vc

1 + b
(2.8)

where b is

b =

√
(ρc + ρg)

ρc
(2.9)

The diameter of the vapour blanket is:

DB = 0.015

(
σD

τw

)0.5

(2.10)
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where

τw =
fG2

8ρf
(2.11)

All of these parameters are important for the friction factor, calculated by the
Colebrook equation [2][11]:

1√
f
= 1.14− 2.0 log

(
ε

D
+

9.35

Re
√
f

)
(2.12)

The velocity of the vapour blanket can be obtained by a rearrangement of force
balance equation:

UBL = UB −
(
2LBg(ρf − ρg)

ρfCD

)0.5

(15)

Drag coefficient CD can be obtained either by Harmathy or Chan and Prince
expressions. The former determined by buoyancy and surface tension forces is
recommended in the present model at low pressure (P < 1 MPa). The latter
one, proposed for small bubbles dominated by viscous forces, is recommended at
medium and high pressures (P ≥ 1 MPa).

Harmathy:

CD =
2

3

DB(
σ

g(ρf−ρg)

)0.5 (2.13)

Chan and Prince:

CD =
48µf

ρfDB(UB − UBL)
(2.14)

If the CHF occurs at the tube exit, then Vc and ρc are the core region two-phase
average velocity and average density at the tube exit, respectively.

Vc =
G

ρc
(2.15)

ρc = (1− αc)ρlout + αc · ρg (2.16)

where αc and ρlout are the exit core region void fraction and liquid density, respec-
tively. For simplicity, we assume αc = αlout; the latter is obtained by the Ahmad
model.

αc =
χout

χout + ( ρg
ρf
)S(1− χout)

(2.17)

where S is the slip ratio

S =

(
ρf
ρg

)0.205(
GD

µf

)−0.016

(2.18)
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where χout is the exit true quality and can also be calculated from the Ahmad
model described below [2].

2.3.2 Axial distribution of bulk temperature and void frac-
tion in a heated channel with inlet subcooling

The proposed Ahmad model [12] satisfactorily correlates the measured bulk tem-
perature profiles. It plays a fundamental role in the evaluation of void fraction and
quality at the net vapour generation (NVG) point, where bubble detachment from
the wall occurs. It first divides the entire length of the tube into three regions as
shown in figure 2.6[3]:

Figure 2.6: Scheme of the three regions of heated channel [3]

1. Single phase region: where all the heat flux is used to raise the liquid bulk
temperature and no vapour is formed, until the nucleation.

2. Transitional region or subcooled boiling: where bubbles are formed but do
not grow large enough to detach from the wall and subsequently collapse at
the surface.

3. Bulk boiling: where the detachment occurs.

From this scheme we can obtain the significant boiling length Zsb

Zsb = L− Z0 (2.19)

where L is the total heated length and Z0 is the corresponding position of the
onset of bubble detachment.

Z0 = GDCp
∆Tin −∆Td

4q
(2.20)

12



Chapter 2. CHF Predictive Model Development

.
Here special attention is given to ∆Td, which is related to the temperature at
which onset of bubble detachment begins.

∆T =
q

h1−A

(2.21)

where q is the quenching heat flux and h1−A the liquid phase heat transfer coeffi-
cient :

h1−A = 2.44
kf
D

(
GD

µf

) 1
2
(
Cpµf

kf

) 1
3
(
Hlin

Hf

) 1
3
(
Hfg

Hf

) 1
3

(2.22)

In some cases the value of ∆T may exceed ∆Tin: this means that the bubble
detachment occurs from the beginning of the heated length. So we set ∆Td = ∆Tin

After developing the temperature distribution, the main objective is to predict the
void fraction. To do this, it is necessary first to find the true vapour weight
quality and the slip ratio. For the first one we use two dimensionless parameters:

A =
q∗Zsb

GDCpl∆Td/4
(2.23)

A is the ratio of the heat absorbed by the liquid from the NGV point to the tube
outlet to the total heat required to bring the liquid at the NGV to saturation.

B =
hfg

Cpl∆Td

(2.24)

From this we have:

χeqout =
A− 1

B
(2.25)

χd = − 1

B
(2.26)

χout =
χeqout − χd exp

(
χeqout

χd
− 1
)

1− χd exp
(

χeqout

χd
− 1
) (2.27)

After all of this procedure we can calculate the CHF [12].
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Chapter 3

Machine Learning to predict
Critical Heat Flux

Traditional methods explained earlier, such as empirical correlations and LUTs are
widely used, but show problems as needing constant updating to mantain accuracy
and efficiency to new reactor designs. With advances in computing power, nuclear
research has increasingly focused on machine learning as a new way to develop more
sophisticated and accurate CHF prediction models. Machine learning methods,
particularly neural networks and other advanced algorithms, offer a way to handle
large data sets and uncover underlying patterns that may be missed by traditional
approaches. This modern approach allows for the construction of models that
adapt to different operational parameters, ultimately providing a more refined
and responsive tool for CHF prediction [13].

This chapter briefly describes the characteristics of Artificial Neural Networks
(ANNs) with a focus on Feed-Forward Neural Networks (FFNNs). These have
been chosen for their ability to approximate complex functions and handle large
data sets.

3.1 The Artificial Neural Network

Artificial Neural Networks (ANNs) are a type of model of Machine Learning that
is becoming so competitive. It can be evaluated with respect to data analysis
on several factors like accuracy, processing speed, performance, convergence and
other, ANNs are used for their excellent response to solve the problems since they
are so fast, adaptive and good self-learning response [5]. ANN can be compared
to our brain for its unique design of information processing and capability. Inside
the brain we have the ”neurons” that carry out human activities by receiving and
sending signals between each other.
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3.1.1 The simplest part: the perceptron

The modern neural network is based on a simple structure that is the perceptron,
which was designed to illustrate the fundamental properties of intelligent systems.
In general it consists of a single a neuron capable of processing input synaptic
signals by producing an output signal corresponding to the inhibition or excitation
states. Synaptic signals are represented by the components of an input vector as
real values. They are linearly combined through the use of synaptic weights to
converge, together with a threshold value, to a function non-linear function[4].

Figure 3.1: Perceptron model [4]

The output y in figure 3.1 is expressed by

y = f

(
n∑

i=1

wixi − θ

)
(3.1)

where x = (x1, x2, ..., xn) is the vector with input values, w = (w1, w2, ..., wn) are
the weigths and they can be fixed or modified during training phase. θ is the offset
threshold. f(·) is the activation function, characterized by a step function.

Figure 3.2: Sketch of a step function

During the training, couple of input/output (x, y) are send to the perceptron
and the goal is to minimize the error function (3.2), updating each iteration the
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weigths.
e(t) = y(t)− g(t) (3.2)

where g(t) is the perceptron response at a generic time t. When the error function
is lower than a certain threshold, the training step is finished [4].

3.2 ANN classification and the Feed-Forward Neu-

ral Network

ANN can be classified into several model like in figure 3.3, but we are mainly
interested in the Feed-forward neural network (FFNN)

Figure 3.3: framework for artificial neural networks classification [5]

The Feed-Forward Neural Network is made up of a collection of multilayers (at
least three: input, hidden layer and output), where each unit in a layer communi-
cates with all the others. The connection between these layers are not equal, since
there are weights and biases randomly chosen from a uniform distribution. The
weights measure the potential amount of the knowledge in the network. In FFNN,
the information is only transmitted in one direction, from input to output.

Figure 3.4: Sketch of Neuron Network Method [6]
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The architecture of a neural network is shown in 3.4. There are 3 input units,
2 hidden layers and 1 output unit with the connections between them. The hidden
layers are called so called because they are not visible from either the input or the
output, although they are essential for the functioning of the model. In fact, these
layers introduce a certain complexity in the patterns that the network is able to
analyse, thus extend the applications to non-linear mapping functions.

3.3 State of the Task Force and Case Study

The role of AI in nuclear engineering has led the development of a new research
approach aimed at integrating Machine Learning models into safety applications.
The Working Party on Scientific Issues and Uncertainty Analysis of Reactor Sys-
tems (WPRS) analyses all the components of a nuclear plant and its Expert Group
on Reactor Systems Multiphysics (EGMUP) has set up a Task Force on Artificial
Intelligence and Machine Learning for Scientific Computing in Nuclear Engineer-
ing in 2022. The aim is to develop a benchmark that provides guidelines for the
use of artificial intelligence and Machine Learning to [7]:

• improve the know-how in the field of AI and ML applications;

• contribute to the development and performance evaluation of ML methods;

• to provide experience with these models and provide guidelines for future
applications in nuclear engineering.

This activity is divided into two phases[7]:

1. Phase 1: Regression, Classification and Verification, Validation and Uncer-
tainty Quantification (VVUQ);

2. Phase 2: Generative Deep Learning and Data Augmentation; Design Opti-
mization

The main activities are expected to respect the following schedule:
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Event Data
CHF benchmark introduction at TF meeting December 2022
Phase 1 draft specification and distribution May 2023
Presentation at 2023 OECD/WPRS Annual Workshops May 2023
Phase 1 final specifications and distribution September 2023
Phase 1 online kickoff meeting October 2023
Phase 1 online Q&A meeting (optional) December 2023
Phase 2 draft specifications and distribution May 2024
Presentation at 2024 OECD/WPRS Annual Workshops May 2024
Phase 1 submission August 2024
Phase 2 final specifications and distribution September 2024
Phase 2 online kickoff meeting October 2024
Phase 1 results draft report and online meeting December 2024
Phase 2 (fuel bundle) draft specifications and distribution May 2025
Presentation at 2025 OECD/WPRS Annual Workshops May 2025
Phase 2 submission August 2025
Phase 2 (fuel bundle) final specifications and distribution September 2025
Phase 2 (fuel bundle) online kickoff meeting October 2025
Presentation at 2026 OECD/WPRS Annual Workshops May 2026
Phase 2 (fuel bundle) submission August 2026

Table 3.1: Task Force Timeline [7]

This work belongs to Phase 1, since the aim is to develop a neural network
model to make the CHF that can predict better than the empirical methods. In
the next chapter the entire algorithm is described, with attention to each step that
must be followed to obtain a good result.
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Chapter 4

The construction of the model

Having explained the most important feature of a neural network, we now move on
the practical part, the construction of a neural network model for predicting CHF.
A brief summary of the sequential instructions, drawn in 4.1 for the NN model used
in this study is described here as a small guide for what will be explained below.
First, an overall framework of the algorithm is presented, followed by a detailed
breakdown of the execution steps within the network. As explained in Chapter 3,
the ”neurons” of a network need the input unit. So we read the CHF database
from the Task Force [7] and divide it into training, validation and test sets. A small
note: we make two different models, one with only training and validation and the
other with the whole set. This division is important for the training phase of the
network. Then we pre-allocate the metrics, because we don’t have just one output,
but we simulate our network 100 times. So we have an ensemble of networks and it
is useful to get a consistent result and we can do metrics analysis. Going into each
of these 100 iterations, we have an internal scheme, described by 4.2: we have a
permutation of the index of the sets and the successive normalization of the input
variables. Then we have the construction and the training of the network. Here
there is the choice of the best net, based on the best performance. So, before the
execution, we make another pre-allocation of the metrics related to the specific
net. After 5 iterations (4.3) we choose the best one, and we record the metrics for
the specific net, and the iterations go on.
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Figure 4.1: Flow chart of the NN
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Figure 4.2: Flowchart of ensemble iterations
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Figure 4.3: Flow chart of best net choice iterations

The algorithm’s presentation through flow diagrams allows us to analyze each
step of the process, starting with the data set management.
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4.1 CHF Database

The NRC CHF database contains 24.579 CHF measurements in vertical water-
cooled uniformly heated tubes compiled from various sources. The available data
consist of measured boundary conditions (pressure P, mass flux G, inlet temper-
ature Tin, and Critical Heat Flux CHF), geometrical parameters (test section di-
ameter D, heated length L) and calculated parameters derived from measurements
and water properties (outlet equilibrium quality X and inlet enthalpy ∆Hin. Due
to the complexity of the database, the selection of the most influential parameters
(Table 4.1 for range of values) is described in the following sections.

Variable CHF [KW/m2̂] P[Kpa] G [Kg/m2̂/s] X D [mm] L [m]
Min Value 50 100 8.2 -0.497 2 0.05
Max Value 16339.3 20000 7964 0.999 16 20

Table 4.1: Parameter spans of the NRC CHF database [7]

Figure 4.4 provides a plot matrix showing the relationship between any pair of
inputs and input with output.

Figure 4.4: Scatter plot matrix of the NRC CHF database showing the relationship
between pairs of variables [7].
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4.1.1 Feature extraction and feature selection

Before developing the neural network model, it is essential to identify the param-
eters that are most relevant to the target - in this case CHF. Given the large data
set of around 25,000 data points, feature extraction is particularly valuable
in simplifying and structuring the data. This process allows us to capture the
most important characteristics of the original data, allowing more efficient
processing and analysis while preserving the key elements that influence CHF.

Pearson and Spearman correlation

Correlation coefficients are essential tools for identifying the most influential vari-
ables within our data set. To effectively assess the relationships between variables,
it’s important to understand the differences between Pearson and Spearman cor-
relation coefficients. The Pearson correlation coefficient, also known as the linear
correlation coefficient, quantifies the strength and direction of a linear relationship
between two continuous variables. This coefficient, denoted r, ranges from -1 to 1,
where -1 indicates a perfect negative correlation and 1 indicates a perfect positive
correlation. A value of 0 indicates that there is no linear relationship between the
variables. Given that our data set is normally distributed, using Pearson’s corre-
lation allows us to determine which variables have the most significant influence
on the performance, specifically the Critical Heat Flux (CHF). The coefficient is
given by the following formula [14]:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(4.1)

We apply this to our database with MATLAB and obtain the following values:
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Figure 4.5: Pearson Correlation Matrix

For a better vision of the results here there is the table:

TubeDiameter HeatedLength Pressure MassFlux OutletQuality InletSubcooling InletTemperature CHF
TubeDiameter 1.00E+00 1.14E-01 -1.06E-01 -2.56E-01 1.16E-01 -1.19E-01 2.57E-02 2.57E-02
HeatedLength 1.14E-01 1.00E+00 3.09E-01 -7.58E-03 1.92E-01 -4.31E-02 2.92E-01 2.92E-01
Pressure -1.06E-01 3.09E-01 1.00E+00 1.92E-01 -4.55E-01 2.10E-01 6.05E-01 6.05E-01
MassFlux -2.56E-01 -7.58E-03 1.92E-01 1.00E+00 -6.26E-01 -1.55E-01 3.26E-01 3.26E-01
OutletQuality 1.16E-01 1.92E-01 -4.55E-01 -6.26E-01 1.00E+00 -2.00E-01 -2.30E-01 -2.30E-01
InletSubcooling -1.19E-01 -4.31E-02 2.10E-01 -1.55E-01 -2.00E-01 1.00E+00 -6.05E-01 -6.05E-01
InletTemperature 2.57E-02 2.92E-01 6.05E-01 3.26E-01 -2.30E-01 -6.05E-01 1.00E+00 1.00E+00
CHF -1.23E-01 -5.03E-01 -2.53E-01 4.24E-01 -5.55E-01 2.02E-01 -3.18E-01 -3.18E-01

Table 4.2: Pearson’s Linear Correlation Coefficient for various parameters
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As for the Spearman correlation, it measures the a monotonic relationship
between two variables based on the rank of the data. Spearman correlation is often
used for data that consists of outliers. To measure the Spearman correlation, the
indicator used is the Spearman coefficient rs, also known as the rank coefficient,
given by the formula below [14]:

rs = 1− 6
∑

d2

n(n2 − 1)
(4.2)

Also for this we do the analysis with MATLAB, providing the matrix and values
for each input.

Figure 4.6: Spearman Correlation Matrix

TubeDiameter HeatedLength Pressure MassFlux OutletQuality InletSubcooling InletTemperature CHF
TubeDiameter 1.00E+00 1.90E-01 -6.59E-02 -2.64E-01 1.41E-01 -1.02E-01 4.44E-02 4.44E-02
HeatedLength 1.90E-01 1.00E+00 3.34E-01 5.44E-02 2.72E-01 -7.63E-02 3.25E-01 3.25E-01
Pressure -6.59E-02 3.34E-01 1.00E+00 2.60E-01 -4.28E-01 1.73E-01 5.81E-01 5.81E-01
MassFlux -2.64E-01 5.44E-02 2.60E-01 1.00E+00 -7.18E-01 -1.70E-01 3.95E-01 3.95E-01
OutletQuality 1.41E-01 2.72E-01 -4.28E-01 -7.18E-01 1.00E+00 -1.85E-01 -1.84E-01 -1.84E-01
InletSubcooling -1.02E-01 -7.63E-02 1.73E-01 -1.70E-01 -1.85E-01 1.00E+00 -6.49E-01 -6.49E-01
InletTemperature 4.44E-02 3.25E-01 5.81E-01 3.95E-01 -1.84E-01 -6.49E-01 1.00E+00 1.00E+00
CHF -1.28E-01 -6.81E-01 -2.24E-01 4.48E-01 -5.93E-01 2.49E-01 -2.96E-01 -2.96E-01

Table 4.3: Spearman Correlation Coefficients
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4.1.2 Analysis of Linear Relationships and R2 Coefficient
Between Input Variables and CHF

We know that complex databases with multiple inputs are highly uncertain and
it is important to use a rigorous method to obtain a realistic output distribution.
The next step is to understand how each input affects the output. This is done by
analyzing the linear relationship and evaluating the R2 coefficient. In MATLAB
we perform linear regression:

1. for each pair of inputs (input 1 vs input 2, input 1 vs input 3 etc...);

2. between each input and the output;

3. between chf and the whole group of inputs;

4. between chf and the most influential inputs.

For each model the code provides the model formula, the estimated coefficients
(with their properties) and the model summary statistics. Coefficient properties
include:

• Estimate: Coefficient estimate for each corresponding term in the model;

• SE : Standard Error of the coefficients;

• tStat : t-statistic for each coefficient to test the null hypothesis that the cor-
responding coefficient is zero against the alternative that it is different from
zero, given the other predictors in the model. Note that tStat = Estimate

SE
;

• pValue: p-value for the t-statistic of the hypothesis test that the correspond-
ing coefficient is equal to zero or not

Instead, the summary statistics are:

• Number of observations : Number of rows without any NaN values;

• Error degrees of freedom: n− p, where n is the number of observations, and
p is the number of coefficients in the model, including the intercept;

• Root mean squared error : estimates the standard deviation of the error dis-
tribution;

• R-squared and Adjusted R-squared : Coefficient of determination and ad-
justed coefficient of determination, respectively
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Let’s focus on part 3 and 4. We obtain the following results:

Estimate SE tStat pValue
(Intercept) 4.13E+03 5.68E+01 7.28E+01 0.00E+00
x1 -1.25E+04 2.45E+03 -5.10E+00 3.45E-07
x2 -1.60E+02 3.30E+00 -4.84E+01 0.00E+00
x3 -1.66E-01 3.14E-03 -5.29E+01 0.00E+00
x4 1.76E-01 5.66E-03 3.11E+01 5.12E-208
x5 -3.58E+03 3.50E+01 -1.02E+02 0.00E+00
x6 1.19E+00 5.27E-02 2.26E+01 6.36E-112
x7 8.73E-01 2.41E-01 3.62E+00 2.97E-04

Table 4.4: Linear regression model between the whole group of inputs and the
CHF

Number of observations: 24579
Error degrees of freedom: 24571
Root Mean Squared Error: 874
R-squared: 0.699
Adjusted R-Squared: 0.698
F-statistic vs. constant model: 8.13e+03, p-value = 0

Table 4.5: Statistical Summary

Estimate SE tSat pValue
(Intercept) 5.38E+03 3.88E+01 1.39E+02 0.00E+00
x1 -3.79E+04 2.52E+03 -1.51E+01 5.83E-51
x2 -1.50E+02 3.46E+00 -4.32E+01 0.00E+00
x3 -1.53E-01 1.38E-03 -1.10E+02 0.00E+00
x4 6.44E-02 5.42E-03 1.19E+01 1.53E-32
x5 -4.19E+03 3.49E+01 -1.20E+02 0.00E+00

Table 4.6: Linear regression model between CHF and the most influencing inputs
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Number of observations: 24579
Error degrees of freedom: 24573
Root Mean Squared Error: 923
R-squared: 0.664
Adjusted R-Squared: 0.664
F-statistic vs. constant model: 9.71e+03, p-value = 0

Table 4.7: Statistical Summary

The same analysis has been held with the rank of the whole matrix, thanks to
Spearman correlation used previously. The results are the following;

Estimate SE tStat pValue
(Intercept) 6.21E+03 1.73E+02 3.59E+01 1.31E-275
x1 1.70E-01 2.82E-03 6.04E+01 0.00E+00
x2 -6.33E-01 3.67E-03 -1.73E+02 0.00E+00
x3 -4.54E-01 7.28E-03 -6.24E+01 0.00E+00
x4 5.85E-01 5.27E-03 1.11E+02 0.00E+00
x5 -5.59E-02 5.80E-03 -9.63E+00 6.29E-22
x6 5.81E-01 6.90E-03 8.43E+01 0.00E+00
x7 3.01E-01 8.87E-03 3.40E+01 1.28E-247

Table 4.8: Linear regression model (considering Rank of matrix) between the whole
group of inputs and the CHF
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4.2 Training, Validation and Test

Once the database has been created, the first step in training a neural network
(NN) is to divide the entire data set into training, validation and test sets.
They are independent of each other and we make this classification randomly.

• Training Set: this is the data set we use in our model to learn potential pat-
terns and relationships. It is used to adjust the parameters. It is important
to keep the division as unbiased as possible.

• Validation Set: it is used to evaluate and fine-tune a machine learning model
during training, helping to assess the model’s performance and make adjust-
ments. It is also essential for

• Test Set: it is the set of data used to evaluate the final performance of a
trained model.

There are several ways to split the data set, depending on several factors, including
the use case, the amount of data, the quality of the data and the number of hyper-
parameters. Random Sampling is the most common approach to partitioning a
data set and it is the method used in our model. This method involves a randomly
assigning samples to training, validation and test according to pre-determined ra-
tios. For class-balanced data sets, random sampling ensures that the partitioning
is unbiased. In our case study, we set up two different models: one without test
sets, with a split ratio of [80, 20], and one with test, with a split ratio [70/15/15],
ensuring a balanced and representative sample for each subset.

4.2.1 Normalization of data

After dividing the data set, scaling the inputs and targets before training is often
beneficial to keep them within a certain range. In MATLAB, the mapminmax
function is used to scale inputs and targets to the range [−1, 1], following the
equation below [13].

xnormalized = 2

(
x− xmin

xmax − xmin

)
− 1. (4.3)

Normalization is applied to both the training and validation sets before separation,
and to the test set if defined.
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4.3 Problem of overfitting

During the training phase, accuracy problems are common. They are typically
related to the poor performance of the model, depending on its ”simplicity” or
”complexity” [8].

Figure 4.7: Graphs showing the difference between underfitting (on the left), good
fit and overfitting (on the right) [8]

In an underfitting situation the line does not cover all the points on the graph.
Instead, in the opposite situation, overfitting, the model is too complex and the
line covers points that are outliers or noise. The best situation is the central
graph. An ideal way to keep it is to set the number of the total neurons of the net
(including input and output units) less than the number of training and validation
data, useful for the training of the net.

ni ·nh1+nh1+nh1 ·nh2+nh2+ ...+nho ·nho+no < Ntrain+Nvalidation(+Ntest) (4.4)

4.4 Train and execution of the Neural Network

This is the ”core” of our model. One of the ways to create a feed-forward network
in MATLAB is to use the ”feedforwardnet” function, specifying the number of
hidden layers and the type of training.

net = feed fo rwardnet ( n hidden , ’ t r a i n s c g ’ ) ;

Trainscg is a network training function that updates the weights and biases using
the scaled conjugate gradient method. For the training we need to set several
parameters:

• net.trainParam.min grad: Maximum performance gradient;

• net.trainParam.max Fails: Maximum number of validation failures;
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• net.trainParam.show: epoch visualization;

• net.trainParam.epoch: Maximum number of iteration.

We also set the subdivision index and the transfer function between input, layers
and output (”tansig” between input and the first layer hidden, ”tansig” between
adjacent layers hidden and ”purelin” between the last layer and output).

net . l a y e r s {1} . t r ans f e rFcn = ’ tans ig ’ ;
f o r i = 2 : l ength ( n hidden )

net . l a y e r s { i } . t r ans f e rFcn = ’ tans ig ’ ;
end
net . l a y e r s {end } . t r ans f e rFcn = ’ pure l in ’ ;

Then the execution starts and the following dashboard appears:

Figure 4.8: Neural network training dashboard
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At the top is the layout of the neural network, showing the input layer, hidden
layers, and output layer. Below this are the key algorithms used by the network,
including the data set partitioning, the training function, and the error metric
that determines performance and ultimately guides the selection of the optimal
network.

The progress section reflects the parameters set by the user and tracks their
evolution through the iterations, highlighting key indicators such as performance,
gradient, and validation checks.

At the bottom, these aspects are visualized through various plots, providing a
graphical representation of the network’s training process.

4.4.1 Performance

The Plotperform function tracks the error against the time for training, validation
and test performance of the TR training set returned by the train function.

Figure 4.9: Plot of the performance of training of the neural network

Typically, the error decreases after a larger number of training periods, but it
can start to increase on the validation data set as the network begins to overfit the
training data. To improve accuracy and minimize bias errors, the best network is
selected from five iterations based on the best performance on the validation set.
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4.4.2 plottrainstate

This plot represents the training state of a neural network. There are two sub-
sections: gradient is a value of the backpropagation gradient at each iteration in
logarithmic scale. The other is the validation checks: there are iterations where
the MSE has increased its value.

Figure 4.10: Evolution of gradient (top figure) and validation checks (bottom
figure)

When the validation check reaches the threshold set when the net was created,
the net stops training and execution and moves on to the next one.
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4.4.3 Error Histogram

The error histogram is the histogram of the errors between target values and
predicted values after training a feed-forward neural network.Since these error
values indicate how the predicted values differ from the target values, they can be
negative. The bins are the number of vertical bars on the graph. The entire error
range is divided into 20 smaller bins here. The Y-axis represents the number of
samples from data set which are in a particular bin. The zero error line corresponds
to the zero error value on the error axis (i.e. X-axis).

Figure 4.11: Plot of the error histogram
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4.4.4 Plot regression

This plots the actual targets against the predicted outputs. The x-axis represents
the targets (actual values), while y-axis represents the output values (predicted
values). The diagonal is the line of best fit and the ”coloured” line represents
the line of regression with respect to the data points. The variable ”R” is the
correlation coefficient between the targets and the outputs of the neural network.

Figure 4.12: Plot of network regression
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4.5 Post-processing

4.5.1 CHF LUTs Results

After execution, we evaluate the CHF and the corresponding metrics. First of all
we put the result of the LUTs (table 4.9), since we are starting from it, and then
we check if the NN model is better than it in predicting the CHF.

ALL

Size of the data set 24579 samples
E
v
a
lu
a
ti
o
n

Mean P/M 1.032

Std P/M 0.362

RMSPE [%] 19.8

MAPE [%] 36.3

Q2 error 0.063

Table 4.9: CHF LUTs prediction performance [7]

Figure 4.13: Measured vs LUTs predicted CHF [7]
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4.5.2 NN results

(a) NN ensemble with training and validation sets

(b) NN Ensemble with entire set

In addition, we analyse the metrics for each individual network over all iterations,
as well as the overall performance of the ensemble model [7]. It is therefore impor-
tant to clearly define the statistical terms used before comparing NN performance
with respect to the LUTs..
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• The mean µ is defined as the expected value of a random variable Y, which
is assumed to be continuous with probability density function (pdf) py(y):

µ = E[Y ] =

∫ +∞

−∞
ypy(y)dy (4.5)

If a pdf is unknown and the only thing available for Y is a set of N sam-
ples/meauserements yi with i = 1, ..., N , then its mean can be estimated
through:

µ̂ =

∑N
i=1 yi
N

(4.6)

• The standard deviation (σ) of a random variable is a metric of dispersion
around its expected value and for the continous random variable Y defined
as:

σ =
√
E[(Y − µ)2] =

√∫ +∞

−∞
(y − µ2)py(y)dy (4.7)

As for the mean, if all that is available for Y is a set of N samples/mea-
surements yi with i = 1, ..., N , then the standard deviation can be estimated
through:

Other metrics are considered to measure the discrepancy between predictions and
measurements.

• The root mean square error (RMSE) is the quadratic mean of the dif-
ferences between the observed and predicted values. These deviations are
called residuals when the calculations are performed on the sample of data
used for estimation (and are therefore always relative to an estimate) and
errors (or prediction errors) when they are calculated out of sample (aka on
the full set, relative to a true value rather than an estimate).[7] It can be
defined in three ways:

RMSE =
√

E[(Y − Y m)2] (4.8)

ˆRMSE =

√∑N
i=1(yi − ymi )

2

N
(4.9)

ˆRMSEp = 100

√∑N
i=1(

yi−ymi
ymi

)2

N
(4.10)
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• Themean absolute error (MAE) is a measure of the error between paired
observations expressing the same phenomenon. The MAE gives equal weight
to all discrepancies, whereas the RMSE gives more weight to larger discrep-
ancies [7].

MAE = E[|Y − Y m|] (4.11)

ˆMAE =

∑N
i=1 |yi − Y m

i |
N

(4.12)

ˆMAEp = 100

∑N
i=1 |

yi−ymi
yi

|
N

(4.13)

In this context, the RMSE and the MAE coincide. In the next figures we
have the distribution of errors between the average ensemble prediction (that
is the prediction we consider to be the final output of our model) and the
one experimentally collected in the initial database. We are interested in the
CHF, the output of the model. For the sake of completeness, figures showing
the distribution of the errors as a function of all possible input variables are
given in appendix A.
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(a) RMSE [%] (b) MAE [%]

Figure 4.15: RMSE and MAE percentage error distribution for neural network
with training and validation set

(a) RMSE [%] (b) MAE [%]

Figure 4.16: RMSE and MAE percentage error distribution for neural network
with rain, Validation and Test set
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• The Q2 error (EQ2) measures discrepancies without taking into account
the variance of the random variable. This means that small values of RMSE
and MAE can be misleading if the random variable has small variations. The
EQ2 weights the square error discrepancies by the variance and essentially
measures how much of the variability of the data are actually captured by
the ML model. There may be cases where the RMSE is small, and thus the
numerator of EQ2 is small, but the variance in the denominator is also small,
and thus the EQ2 metric ends up with a large value. A value of 0 indicates
that the ML model has perfect predictive capabilities, while a value greater
than 1 indicates that the ML model is worse than a model that always uses
the mean value as its predictor [7].

EQ2 =
E[(Y − Y m)2]

E[(Y − µ)2]
(4.14)

EQ2 =

∑N
i=1(yi − ymi )

2∑N
i=1(yi − µ̂)2

(4.15)

• Another way to measure the performance of regression algorithm is the nor-
malized root mean square error (NRMSE): which is calculated in:

NRMSE =

√∑N
i=0

(Yi−Ŷi)2

N

Ymean

(4.16)

The NRMSE is a measurement of the absolute error. This means that the
errors at high CHF will count more towards the NRMSE than the same
proportional error at lower CHF.

• Last but not least, the P
M

ratio relates P, the predicted or estimated value,
to M, the observed or actual value. In machine learning, this ratio is of-
ten used to assess how well a model’s predictions match the observed data.
This statistical metric allows the performance of the neural network to be
compared with that of the LUTs.

The two neural network models were simulated, the first with the data set split
into training and validation data and the second with training, validation and test
data. Once both simulations have been run, we record the performance metrics
and collect them in tables (4.10 and 4.11). If we compare them with the 4.9 table,
according to what has been described previously for each metric, we see that all of
them are better than those of the LUTs model. Another comparison is made by
analysing the respective P

M
ratio distribution among the input variables, as shown

in the set of figures of 4.17.
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ALL

Size of the data set 24579 samples

E
v
a
lu
a
ti
o
n

Mean P/M 1.022

Std P/M 0.161

RMSPE [%] 16.219

MAPE [%] 9.843

NRMSE 0.108

Q2 error 0.015

Table 4.10: NN with only training and Validation prediction performances

TEST

Size of the data set 3687 samples

E
v
a
lu
a
ti
o
n

Mean P/M 1.024

Std P/M 0.194

RMSPE [%] 19.567

MAPE [%] 11.085

NRMSE 0.122

Q2 error 0.019

ALL

Size of the data set 24579 samples

E
v
a
lu
a
ti
o
n

Mean P/M 1.023

Std P/M 0.163

RMSPE [%] 16.430

MAPE [%] 10.003

NRMSE 0.111

Q2 error 0.016

Table 4.11: NN with training, validation and Test prediction performances
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(a) P/M ratio vs Tube Diameter (b) P/M ratio vs Tube Diameter

(c) P/M ratio vs Heated Length (d) P/M ratio vs Heated Length

(e) P/M vs Pressure (f) P/M vs Pressure
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(g) P/M ratio vs Mass Flux (h) P/M ratio vs Mass Flux

(i) P/M ratio vs Outlet Quality (j) P/M ratio vs Outlet Quality

Figure 4.17: LUTs (blue) and NN (orange) Predicted versus Measured CHF scatter
plots, versus selected independent parameters, on the left we have the NN model
with only training and validation sets, on the right we have the ”complete” model
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4.5.3 Slice division of data set

Another approach to data analysis is to divide the whole data set into smaller
subsets. This allows for a more detailed extraction of information and a better
understanding of how CHF varies when only one input parameter is changed at a
time. As described in the NRC benchmark document [7], the data set is segmented
by varying parameters such as D,L,G, P, and χ while holding all other variables
reasonably constant.

From the identified data slices, two subsets per varying parameter have been
selected and summarized in table below.

Table 4.12: Slice data sets [7]

# Slice D [mm] L [m] P [KPa] G [Kg/(m2s)] X [-]
1 0 - 16 6.00 14701 998.5 0.391
2 0 - 16 6.00 9807 1003.3 0.529
3 8.01 0 - 20 9806 1000 0.587
4 8.11 0 - 20 2009 752.2 0.756
5 8.00 0.998 0 - 20000 2006 0.14
6 13.40 3.658 0 - 20000 20040.2 0.378
7 8.00 1.57 12750 0 - 80000 0.144
8 10.00 4.966 16000 0 - 80000 0.343
9 8.14 1.943 9831 1519.5 -0.5 - 1.0
10 8.00 0.997 17650 2002.7 -0.5 - 1.0

In the provided databases, the varying parameters are sliced into 15 equidis-
tant values across the defined ranges. These sliced data sets allow the physical
behaviour of predictive CHF models to be analysed across the parameter space,
ensuring robustness and mitigating overfitting. This approach enhances the ex-
planatory power of the models and increases confidence in their predictive ability
[7]. The representation of each of these is shown in the figures below.
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(a) The behavior of the model and
LUTs as a function of diameter (slice
1).

(b) The behavior of the model and
LUTs as a function of diameter (slice
2)

(c) The behavior of the model and
LUTs as a function of heated length
(slice 3)

(d) The behavior of the model and
LUTs as a function of heated length
(slice 4)
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(e) The behavior of the model and
LUTs as a function of pressure (slice 5)

(f) The behavior of the model and LUTs
as a function of pressure (slice 6)

(g) The behavior of the model and
LUTs as a function of mass flux (slice
7)

(h) The behavior of the model and
LUTs as a function of mass flux (slice
8)
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(i) The behavior of the model and LUTs
as a function of outlet quality (slice 9)

(j) The behavior of the model and LUTs
as a function of outlet quality (slice 10)

Figure 4.18: Comparison of the model and LUTs behavior as a function of different
parameters.
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Chapter 5

The split model: a way to
improve the effectiveness of the
neural network

This chapter looks at a method of improving the efficiency of the neural network in
predicting CHF. One initial strategy is to use the same type of model as the orig-
inal (an ensemble of networks), but to focus specifically on areas where accuracy
decreases, allowing the network to specialize accordingly. One possible approach
to achieve this is to analyze the points where the absolute value of P/M exceeds
a certain threshold, i.e. where there is an overestimation and underestimation.
Finally, two ”specialized” models are developed: one for the network without test
(i.e. only training and validation data) and one for the network with test, using
the same partitioning of the ”original” model.

5.1 Filtering and specialization of the Neural Net-

work

To refine our results, we define different target thresholds to ”filter” the data. This
allows us to identify the regions where the network performs worse compared to
the average accuracy. We highlight the points where accuracy is lower for different
target values (| P

M
| > [1.1 − 1.5]). This is the first step towards developing a spe-

cialized model. By analyzing the five different configurations and their respective
identified points, the best compromise is found in the second configuration (as
shown in 5.1, where the absolute ratio P

M
is set to be greater than 20% above the

threshold. For completeness other configurations are shown in the appendix.
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Figure 5.1: CHF database with points where the P
M

ratio is greater than the 20%
of threshold value

This approach allow us to divide the initial data set into two blocks: one with
the ”filtered” data, where the model’s performance deteriorates (in red), and the
other with the remaining data (in blue).
Another filter has been carried out, finding values of mass flux > 6000 Kg

m2s
and the

outlet quality > 0. We get about 2800 indices that represents the filtered data.
The others are the remaining data.

The next objective is to develop two specialized models for the split data sets.
For the first data set, an additional step is required: to avoid overfitting, the num-
ber of layers must be lower than the number of training and validation parameters,
which requires a reduction in complexity. This issue does not arise for the second
data set, where it is sufficient to maintain the original model structure.

5.1.1 The number of layer hidden

Choosing the number of layers, as described above, is a fundamental step, because
if we set too few neutrons, it will result in underfitting. So there are these ”rules
of thumb”:

• The number of hidden neurons should be between the size of the input layer
and the size of the output layer;

• The number of hidden neurons should be 2
3
the size of the input layer, plus

the size of the output layer;
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• The number of hidden neurons should not be less than twice the size of the
input layer.

The second step is to configure the hidden layers and analyze their impact on
the final results. For this purpose, a comparison has been made between three
different configurations: one with five intermediate layers, one with four, and one
with three. This approach allows us to determine the most effective structure.

Starting from the first configuration, we evaluate nine different parameter con-
figurations, reducing the total number proportionally each time to identify the
optimal one. The three main evaluation metrics used in this selection process are
RMSE, MAE, and the R2 coefficient, as shown in the results below.

Figure 5.2: Comparison of the different configurations based on the total number
of neurons

Comparing this model with the original one, we see that the data set is about
ten times smaller than the original. Consequently, a higher error would be ex-
pected. However, the RMSE remains within an acceptable range, indicating that
the network’s performance is still satisfactory. Moreover, the simplified model
retains a good degree of generalization. According to figure 5.2 the best configu-
ration is the last one with this layout: [38, 32, 17, 25, 17]. From it, we decrease the
number of layer hidden and we do the same.
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Figure 5.3: Comparison of the different configurations based on the total number
of neurons (4 layers)

In this case, the best configuration is: [38, 32, 22, 25].
For what regards the last configuration with only three layers, the best one is
[40, 36, 32].

Figure 5.4: Comparison of the different configurations based on the total number
of neurons (3 layers)
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So the final three configurations are:

Configuration # of parameters RMSEperc MAEperc Rˆ2
[38,32,17,25,17] 2920 23.71% 23.71% 0.9220
[38,32,22,25] 2800 23.30% 23.30% 0.9206
[40,36,32] 2938 23.21% 23.21% 0.9168

The three configurations are very similar, but in the end, as a compromise
between accuracy of ”structure complexity” and the condition of the number of
total parameters, the second is the best choice.
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5.2 Split model with training and validation sets

The algorithm remains the same as previously described (including the size of
data set). The main difference is the introduction of a split model. One model
is dedicated to the ”filtered” data points, using the previously selected hidden
layer configuration, while the other processes the remaining data with the original
configuration. Once both simulations are complete, the results are combined and
compared with the previous model to assess any improvement in efficiency.

Figure 5.5: Measured vs predicted CHF for a NN with only train and validation
data subdivision

The first thing we can see from the figure is that the majority of predicted CHFs
are inside the ”ideal” interval, which means that the improvement is made. The
measure of this improvement is based on the statistical metrics discussed earlier,
as noted in table 5.1.
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ALL

Size of the data set 24579 samples

E
v
a
lu
a
ti
o
n

Mean P/M 1.017

Std P/M 0.126

RMSPE [%] 12.746

MAPE [%] 8.385

NRMSE 0.092

Q2 error 0.011

Table 5.1: split NN model with only training and Validation prediction perfor-
mances

Regarding the distribution of RMSE and MAE percentage errors , we have
a pair of plots for the filtered database (Figure 5.6) and one for the remaining
(Figure 5.7), in order to show the difference in terms of accuracy between the two
parts. It reflects the initial split due to the different value of the P/M ratio. In
appendix C there are the other distribution of these errors versus the other input
variables.
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(a) RMSE [%] (b) MAE [%]

Figure 5.6: RMSE and MAE percentage error distribution for filtered points of
database of the split network with training and Validation set

(a) RMSE [%] (b) MAE [%]

Figure 5.7: RMSE and MAE percentage error distribution for remaining points of
database of the split network with training and Validation set
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When comparing this model with the original NN network, the respective met-
rics are coupled to find the relative error difference between the former and the
latter. The percentage difference has been set using the metrics of the first model
as a reference. So the graph is a kind of demonstration of how these metrics change
between the two models. We find that the split model is better than the previous
one, as shown in the figure.

Figure 5.8: Relative error difference between the original NN model and the split
one with training and Validation set

Another check was performed by comparing the P
M

ratio of the two models. In
the next figures we have the distribution of this ratio as a function of some input
variables.
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Figure 5.9: P/M Ratio vs Tube Di-
amete

Figure 5.10: P/M Ratio vs Heated
Length

Figure 5.11: P/M Ratio vs Pressure

Figure 5.12: P/M Ratio vs Mass Flux
Figure 5.13: P/M Ratio vs Outlet
Quality

Figure 5.14: Original NN (orange) and split NN (yellow) Predicted over Measured
CHF scatter plots, vs selected independent parameters. NN model with only
training and Validation
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5.3 Split model with training. validation and

test sets

For the model split by adding test data, we used the same procedure as for the
original network with the separate test. That is, for the two separate models,
the respective databases (the one with the filtered data and the one with the
remaining data) were taken and the test data were randomly extracted using the
same separation percentage as in the original model (hence 15% of the total). Once
these data were saved, the network development continued, using the previous split
model layout for the filtered data model without testing and the previous optimal
structure for the rest.

Figure 5.15: Measured vs predicted CHF for a NN with training validation and
test subdivision

Also for this case, we can observe the same thing seen in previous figure.
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In addition, once the results were obtained, the statistical metrics were com-
bined and compared with the original model.

TEST

Size of the data set 3687 samples

E
v
a
lu
a
ti
o
n

Mean P/M 1.020

Std P/M 0.202

RMSPE [%] 20.302

MAPE [%] 11.916

NRMSE 0.129

Q2 error 0.022

ALL

Size of the data set 24579 samples

E
v
a
lu
a
ti
o
n

Mean P/M 1.012

Std P/M 0.148

RMSPE [%] 14.904

MAPE [%] 9.339

NRMSE 0.105

Q2 error 0.013

Table 5.2: split NN model with training, Validation and Test prediction perfor-
mances

The distribution of the percentage errors follows the previous section instruc-
tion: first the filtered data set and then the remaining one.
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(a) RMSE [%] (b) MAE [%]

Figure 5.16: RMSE and MAE percentage error distribution for remaining points
of database of the split network with training and Validation set

(a) RMSE [%] (b) MAE [%]

Figure 5.17: RMSE and MAE percentage error distribution for remaining points
of database of the split network with training and Validation set

62



Chapter 5. The split model: a way to improve the effectiveness of the neural
network

Also for this case, we do the same comparison with the original NN model with
training, validation and test and we get an increase of the overall performance
with respect to the original one. So we can say that also for this model we have
an improvement in the accuracy and efficiency of predicting CHF.

Figure 5.18: Relative error difference between the original NN model and the split
one with training, Validation and Test

An additional check can be done by comparing the P/M ratio plots of the two
models. We can see in all the scatter plots that the second one is closer to the
ideal value compared to the original model.
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Figure 5.19: P/M Ratio vs Tube Di-
ameter

Figure 5.20: P/M Ratio vs Heated
Length

Figure 5.21: P/M Ratio vs Pressure

Figure 5.22: P/M Ratio vs Mass Flux
Figure 5.23: P/M Ratio vs Outlet
Quality

Figure 5.24: Original NN (orange) and split NN (yellow) Predicted over Measured
CHF scatter plots, vs selected independent parameters. NN model with training,
Validation and Test
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The results show that the choice of specialising the network, splitting it into
two separate databases, one for the points where the P

M
ratio is worse respect than

the threshold, and the remaining one, is a good move to improve the efficiency of
the model for critical heat flux prediction.

5.4 Slice division of data set

Since we are doing the slice subdivision for the original model, we can retrace the
same graph by adding the latter mesh. On this way we can see how the distribution
is with respect to the LUTs and the NN model previously performed.

(a) The behaviour of the model and
LUTs as a function of diameter (slice
1)

(b) The behaviour of the model and
LUTs as a function of diameter (slice
2)

(c) The behaviour of the model and
LUTs as a function of heated length
(slice 3)

(d) The behaviour of the model and
LUTs as a function of heated length
(slice 4)
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(e) The behaviour of the model and
LUTs as a function of pressure (slice 5)

(f) The behaviour of the model and
LUTs as a function of pressure (slice 6)

(g) The behaviour of the model and
LUTs as a function of mass flux (slice
7)

(h) The behaviour of the model and
LUTs as a function of mass flux (slice
8)
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network

(i) The behaviour of the model and
LUTs as a function of outlet quality
(slice 9)

(j) The behaviour of the model and
LUTs as a function of outlet quality
(slice 10)

Figure 5.25: Comparison of the model and LUTs behaviour as a function of dif-
ferent parameters
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Chapter 6

The Log-transformed Neural
Network

This chapter dealts with another possible approach to improve the neural network
model for better CHF prediction. Instead of splitting the data set, as discussed in
Chapter 5, here a logarithmic function is adopted. Comparing the maximum and
minimum values of each input variable and the output of the data set, we can see
that the ”distance” between these two values is quite large for heated length, pres-
sure, mass flux and the CHF. Applying the logarithm transformation decreases the
discrepancy between these extreme values in order to make the distribution wider,
as shown in the figures below (6.1, 6.2, 6.3, 6.4). This leads to an improvement of
numerical stability during the training phase of the net. Script implementation is
quite the same as the previous model, the difference is when we record whole the
data set where the logarithm is applied:

a l l d a t a i n = data ( 1 : 5 , : ) ; % Input f e a t u r e s
a l l d a t a o u t = data (end , : ) ; % Output
a l l d a t a i n ( 2 : 4 , : ) = log ( a l l d a t a i n ( 2 : 4 , : ) ) ;
a l l d a t a o u t = log ( a l l d a t a o u t ) ;

Of course, since the network is trained with log-transformed data, before applying
the metrics performance, we must convert the data to the original scale using the
exponential:

CHF predictions mean den = exp( CHF predictions mean den ) ;
CHF pred ic t ions s td den = std ( CHF predict ions den , 0 , 2 ) ;
a l l o u t = exp( a l l o u t ) ;
t r a i n and va l i d ou t = exp( t r a i n and va l i d ou t ) ;
t e s t o u t = exp( t e s t o u t ) ;

Figures below show how the transformation reduces the distance between minimum
and maximum values and makes the distribution more uniform.
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Figure 6.1: Distribution of heated length values

Figure 6.2: Distribution of pressure values
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Figure 6.3: Distribution of mass flux values

Figure 6.4: Distribution of CHF values
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6.1 Results

The predictive performance of the log transformation is evaluated using the same
metrics as the previous models. For this model, we only evaluate the case of
the model with training, validation and test sets. If we have an improvement in
performance, it is certain that we have the same for the model with only training
and validation. As described in the section of results for chapter 4 and 5, also here
we record the comparison between the measured vs predicted CHF (figure 6.5)
and metrics performance (table 6.1)

Figure 6.5: Measured vs predicted CHF for the log-net with train validation and
test subdivision
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TEST

Size of the data set 3073 samples

E
v
a
lu
a
ti
o
n

Mean P/M 1.005

Std P/M 0.117

RMSPE [%] 11.734

MAPE [%] 7.725

NRMSE 0.106

Q2 error 0.014

ALL

Size of the data set 24579 samples

E
v
a
lu
a
ti
o
n

Mean P/M 1.006

Std P/M 0.113

RMSPE [%] 11.268

MAPE [%] 7.382

NRMSE 0.099

Q2 error 0.0126

Table 6.1: Performance Evaluation for TEST and ALL data sets

The distribution of percentage errors, like before, is represented in 6.6, while
the percentage difference between this model and the original one is represented
in figure 6.7. The others are in Appendix D.
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(a) RMSE [%] (b) MAE [%]

Figure 6.6: RMSE and MAE percentage error distribution for neural network with
Train, Validation and Test set

Figure 6.7: Relative error difference between the original NN model and the log-
transformed one with training, validation and test sets

According to these results, we notice that the log-net has better accuracy com-
pared to the original, confirming a better predictive ability. In the next section a
final comparison is made between the three network models, in order to demon-
strate that this model is the best one.
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6.2 Final comparison between the three models

In this section, we make a final comparison between the three models and assess
how the changes in the setup improve the performance of the CHF predictions.
The key of the presentation is to analyze the performance of metrics: the lognet
model shows a better CHF prediction with respect to the first model and the split
one. This is drawn also by the figures below.

• Mean and std P
M

ratio (figures 6.8a and 6.8b): the lognet model pre-
dictions are closer to the expected values, infact it shows the smallest value
for both the two metrics. It means that the prediction is so consistent and
more efficient with respect to other two models.

• Root Mean Square Percentage Error (RMSE) and Mean Absolute
Percentage Error (MAPE) (6.8c and 6.8d): according to the definition
of these metrics, the lognet model overperform respect to the other, so this
means that we have a small discrepancy between the predicted CHF and its
expected value.

• Normalized Root Mean Square Error (NRMSE) and Q2 error (6.8e
and 6.8f): The lognet model have a better predictive power.

Overall, we can say that modifying the layout of the network, splitting it into
two databases: one for the points that have a worse prediction and the others, or
using the logarithm, reducing the distance between the maximum and minimum
range of each variable, improve the CHF prediction. However, the latter is the
best choice because it is computationally simpler, since we have only one model
to simulate instead of two, and it is more efficient, as reflected in all the figures
analysed before.
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(a) Mean P/M ratio comparison (b) Std P/M ratio comparison

(c) RMSPE comparison (d) MAPE comparison

(e) NRMSE comparison (f) Q2 error comparison

Figure 6.8: Network models final metrics comparison
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Figure 6.9: P/M Ratio vs Tube Di-
ameter

Figure 6.10: P/M Ratio vs Heated
Length

Figure 6.11: P/M Ratio vs Pressure

Figure 6.12: P/M Ratio vs Mass Flux
Figure 6.13: P/M Ratio vs Outlet
Quality

Figure 6.14: Original NN (orange), split NN (yellow) and log-net (green) Predicted
over Measured CHF scatter plots, vs selected independent parameters. NN model
with Train, Validation and Test
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Chapter 7

Conclusion and perspective

The construction of artificial intelligence models for the prediction of Critical Heat
Flux (CHF) is a major advance in nuclear reactor safety and optimization. In this
work the construction and analysis of artificial neural networks has been carried
out, comparing the results with those of traditional models, in accordance with
the Task Force provided by the EGMUP as mentioned in section 3.3. In the first
part of this work, the main mechanisms of the CHF inside a reactor are described,
from a physical and empirical point of view, through the study of Look-Up Tables
(LUTs). Then, based on this knowledge, an artificial intelligence model was con-
structed by selecting the most influential parameters (chapter 4).
The first results show that it is possible to obtain greater efficiency with respect
to the empirical LUTs, reducing error discrepancies and obtaining an adaptable
model for specific operating conditions. Several tests, optimizations, analysis and
comparisons have been carried out in order to obtain a potential tool for CHF
prediction.
In addition, there are possible ways to make the model more efficient: special-
izing network (Chapter 5), splitting the data set into two parts, according to
statistical metrics such as the P/M ratio, or applying a logarithmic transfor-
mation of the input (Chapter 6), where the discrepancy between the maximum
and minimum values is so large that it is reduced and the data made numerically
stable for the training of the network.
The comparison between these three models, with the results in section 6.2, was
based on the performance of several metrics: Root Mean Squared Percentage Er-
ror (RMSPE), Mean Absolute Percentage Error (MAPE), Normalized Root Mean
Squared Error (NRMSE), EQ2 error and the P/M ratio with its mean value and
standard deviation. Of these we chose as the key metrics the P/M ratio, because
it assesses how well a model’s predictions match the observed data.
From this comparison we can see that the log-transformed neural network is the
best choice to improve the first model. It is also simpler from computational point
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of view, because we only have one model and not two separate ones.
The overall results show how the machine learning can overcome the limitations of
previous empirical methodologies, being a potential tool for the future research to
solve security and other issues. Anyway, new actions will be taken for the future,
according to the timeline and plans of the Task Force[7]:

• Improve the accuracy and robustness of the model using advance uncertainty
quantification and Data Augmentation techniques;

• Adapting of the model to ”complex” geometries with the aim of applying
the physics learned from a given database to a different case (for example
CHF in subchannels of a rod bundle);

• Model interpretability and explainability to make the AI adaptable in any
industrial field;

• Fuel bundle benchmark: As a final step of the whole Task Force, a large CHF
database will be provided to allow a realistic application to nuclear power
plant safety analysis.

This work, despite its limitations, is proposed as a preliminary but but hopefully
valuable approach to artificial intelligence research to make an important contri-
bution to the safety and operability of nuclear power plants.
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Appendix A. RMSE e MAE for the original model

Appendix A

RMSE e MAE for the original
model

A.1 Model with training and validation sets

(a) RMSE vs L/D ratio (b) MAE vs L/D ratio

(c) RMSE vs Mass flux (d) MAE vs Mass flux

Figure A.1: RMSE and MAE percentage error distribution for neural network with
training and validation set (Part 1) 82



Appendix A. RMSE e MAE for the original model

(e) RMSE vs Pressure (f) MAE vs Pressure

(g) RMSE vs Quality (h) MAE vs Quality

Figure A.1: RMSE and MAE percentage error distribution for neural network with
training and validation set (Part 2)
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A.2 Model with entire set

(a) RMSE vs L/D ratio (b) MAE vs L/D ratio

(c) RMSE vs Mass flux (d) MAE vs Mass flux

Figure A.2: RMSE and MAE percentage error distribution for neural network with
training, validation and Test set (Part 1)
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(e) RMSE vs Pressure (f) MAE vs Pressure

(g) RMSE vs Quality (h) MAE vs Quality

Figure A.2: RMSE and MAE percentage error distribution for neural network with
training, validation and Test set (Part 2)
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Appendix B

Configurations for P/M ratio
threshold

Figure B.1: CHF database with points where the P
M

ratio is greater than the 10%
of threshold value

Figure B.2: CHF database with points where the P
M

ratio is greater than the 30%
of threshold value
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Figure B.3: CHF database with points where the P
M

ratio is greater than the 40%
of threshold value

Figure B.4: CHF database with points where the P
M

ratio is greater than the 50%
of threshold value
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Appendix C

RMSE e MAE for split model

C.1 Split model with training and validation set

- filtered points

(a) RMSE vs L/D ratio (b) MAE vs L/D ratio

(c) RMSE vs Pressure (d) MAE vs Pressure

Figure C.1: RMSE and MAE percentage error distribution for neural network with
training and validation set (Part 1)
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(e) RMSE vs Mass flux (f) MAE vs Mass flux

(g) RMSE vs Quality (h) MAE vs Quality

Figure C.1: RMSE and MAE percentage error distribution for neural network with
training and validation set (Part 2)
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C.2 Split model with training and validation set

- remaining points

(a) RMSE vs L/D ratio (b) MAE vs L/D ratio

(c) RMSE vs Pressure (d) MAE vs Pressure

Figure C.2: RMSE and MAE percentage error distribution for neural network with
training and validation set (Part 1)

92



Appendix C. RMSE e MAE for split model

(e) RMSE vs Mass flux (f) MAE vs Mass flux

(g) RMSE vs Quality (h) MAE vs Quality

Figure C.2: RMSE and MAE percentage error distribution for neural network with
training and Validation set (Part 2)

93



Appendix C. RMSE e MAE for split model

C.3 Split model with training, validation and

test set - filtered points

(a) RMSE vs L/D ratio (b) MAE vs L/D ratio

(c) RMSE vs Pressure (d) MAE vs Pressure

Figure C.3: RMSE and MAE percentage error distribution for neural network with
training and Validation set (Part 1)
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(e) RMSE vs Mass flux (f) MAE vs Mass flux

(g) RMSE vs Quality (h) MAE vs Quality

Figure C.3: RMSE and MAE percentage error distribution for neural network with
training and Validation set (Part 2)
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C.4 Split model with training, validation and

test set - remaining points

(a) RMSE vs L/D ratio (b) MAE vs L/D ratio

(c) RMSE vs Pressure (d) MAE vs Pressure

Figure C.4: RMSE and MAE percentage error distribution for neural network with
training and Validation set (Part 1)
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(e) RMSE vs Mass flux (f) MAE vs Mass flux

(g) RMSE vs Quality (h) MAE vs Quality

Figure C.4: RMSE and MAE percentage error distribution for neural network with
training and Validation set (Part 2)
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Appendix D

RMSE e MAE for the log-net
model

(a) RMSE vs L/D ratio (b) MAE vs L/D ratio

(c) RMSE vs Mass flux (d) MAE vs Mass flux

Figure D.1: RMSE and MAE percentage error distribution for log-net with train-
ing, Validation and Test set (Part 1)
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(e) RMSE vs Pressure (f) MAE vs Pressure

(g) RMSE vs Quality (h) MAE vs Quality

Figure D.1: RMSE and MAE percentage error distribution for log-net with train-
ing, Validation and Test set (Part 2)
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