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Abstract

Magnetic Resonance Imaging (MRI) is a widely used medical imaging modality, offer-
ing non-invasive and non-ionizing diagnostic capabilities. However, conventional MRI
relies on contrast-weighted images influenced by various physical parameters and scanner
characteristics, making their interpretation still highly qualitative and subjective. This
approach limits analysis only to relative changes in intensities or morphological features
and no absolute comparisons can be performed. Quantitative MRI (qMRI) is shifting
this perspective by enabling the generation of parameter-specific maps, such as relax-
ation times T1 and T2 maps, capable of providing absolute and quantitative information,
enabling longitudinal studies, inter-subject comparisons, and the establishment of nor-
mative ranges. Specifically, T2 relaxation times have been shown to be highly sensitive to
physiological and pathological changes, such as intra- and extra-cellular water accumu-
lation and myelin loss. Despite these advantages, gold standard T2 mapping techniques
are still constrained by long acquisition times, impacting patient comfort and increasing
the susceptibility to motion artifacts. GRAPPATINI, an accelerated technique, address
these limitations by leveraging the orthogonality of two previously established methods
in accelerating MRI, GRAPPA and MARTINI. However, this acceleration comes at the
cost of increased noise levels and reduced signal-to-noise ratio (SNR) in the reconstructed
T2 maps. Consequently, there is an urgent need to improve the final quality of T2 maps
reconstructed using GRAPPATINI. This thesis proposes two novel strategies to denoise
GRAPPATINI T2 maps using a self-supervised machine learning framework to train a
deep learning model, with the aim of bypassing the need for large datasets typically re-
quired for supervised learning approaches. The first strategy, operating in the k-space
domain, was found to be ineffective, while the second, implemented in the image-space
domain, demonstrated exceptional performance on the test set. Furthermore, the image-
space strategy showed remarkable generalizability considering 7T brain and knee datasets
acquired with different resolutions, field strengths, anatomies, and orientations compared
to those used during the training process. Statistical validation was performed through
scan-rescan analyses, with results confirming its ability to preserve unbiased and repro-
ducible T2 values. Reproducibility and generalizability are the key milestones of this
work, enabling potential integration of the strategy into scanner reconstruction pipelines
without retraining or modifications, independently from the anatomy or the acquisition
settings. Eventually, achieving superior denoising performance compared to traditional
methods, this work represents a significant advancement toward the potential clinical
adoption of GRAPPATINI, both at 3T and 7T, where the combination of high-resolution
and high-quality imaging can drive innovations in both research and clinical practice.
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Sommario

La Risonanza Magnetica per Immagini (MRI) è una modalità di imaging medicale non
invasiva e priva di radiazioni ampiamente utilizzata e diffusa. Tuttavia, l’MRI conven-
zionale si basa su immagini il cui contrasto è influenzato sia da parametri fisici sia dalle
caratteristiche dello scanner, rendendo di conseguenza la loro interpretazione altamente
qualitativa e soggettiva. Questo approccio limita l’analisi alla valutazione di soli cambia-
menti relativi di intensità o all’estrazione di features di carattere morfologico, impedendo
comparazioni di tipo assoluto. La Risonanza Magnetica Quantitativa (qMRI) permette
di cambiare prospettiva, consentendo la generazione di mappe quantitative specifiche per
ciascun parametro, come, ad esempio, le mappe dei tempi di rilassamento cerebrali lon-
gitudinale e trasversale T1 e T2, in grado di fornire informazioni assolute e quantitative,
abilitando di conseguenza studi longitudinali, comparazioni inter-soggetto e l’estrazione
di range normativi. In particolare, i tempi di rilassamento trasversali T2 si sono dimostrati
altamente sensibili a cambiamenti sia fisiologici sia patologici, come l’accumulo di acqua
intra- ed extracellulare e la perdita di mielina a livello assonale. Nonostante questi van-
taggi, le tecniche gold standard per la generazione di mappe T2 sono ancora limitate a
causa dei lunghi tempi di acquisizione, i quali influiscono sul comfort del paziente e aumen-
tano la suscettibilità agli artefatti da movimento. GRAPPATINI è un metodo sviluppato
per superare tali limitazioni unendo due approcci precedentemente sviluppati nell’ambito
dell’accelerazione del MRI e sfruttandone l’ortogonalità: GRAPPA e MARTINI. Tut-
tavia, questa accelerazione comporta una riduzione del rapporto segnale-rumore (SNR)
nelle mappe T2 ricostruite; di conseguenza, risulta rilevante sviluppare un metodo in
grado di migliorarne la qualità finale. Questo lavoro di tesi propone dunque due strategie
innovative con lo scopo di ridurre il rumore presente nelle mappe T2 GRAPPATINI utiliz-
zando un approccio self-supervised di Machine Learning per l’allenamento di un modello
di Deep Learning, con l’obiettivo di superare la necessità di grandi dataset tipicamente
richiesta dagli approcci di tipo supervised. La prima strategia, operante nel k-spazio,
si è rivelata inefficace, mentre la seconda, implementata nello spazio dell’immagine, ha
dimostrato prestazioni eccezionali sul test set. Inoltre, tale strategia ha mostrato una
notevole capacità di generalizzare su dataset cerebrali e del ginocchio acquisiti a 7T
con diverse risoluzioni, intensità di campo magnetico esterno, anatomie e orientazioni
rispetto a quelli utilizzati durante il training del modello. La validazione statistica è
stata effettuata attraverso analisi scan-rescan, con risultati che confermano la capac-
ità di preservare valori T2 non alterati e riproducibili. Riproducibilità e generalizzabilità
rappresentano quindi i traguardi chiave di questo lavoro, permettendo una rapida e poten-
ziale integrazione della strategia nella pipeline di ricostruzione all’interno degli scanner,
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senza necessità di ulteriori retrainings o modifiche, indipendentemente dall’anatomia o
dai parametri di acquisizione. Con prestazioni di riduzione del rumore superiori rispetto
ai metodi tradizionali, questo lavoro rappresenta un importante progresso nella direzione
di un’adozione clinica di GRAPPATINI, sia a 3T che a 7T, dove la combinazione di imag-
ing ad alta risoluzione e alta qualità può portare a innovazioni sia nella ricerca sia nella
pratica clinica.
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Chapter 1

Introduction

1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) has its roots in the phenomenon of Nuclear Magnetic
Resonance (NMR), first discovered and conceptualized by Stern and Gerlach in 1922 [1]
and then reported and experimentally demonstrated by Bloch and Purcell in 1946 [2, 3].
Their work earned them the joint Nobel Prize in Physics in 1952. Subsequently, Lauterbur
opened the path to acquire the first NMR-based image introducing the concept of spatial
encoding in the NMR signal using magnetic field gradients [4]. This innovation laid the
foundation for MRI as we know it today. In the 1980s, the first clinical MRI scanners
were installed [5], and since then the technology has seen remarkable advancements,
establishing MRI as one of the most widely used imaging modalities for the human
body. In particular, MRI has the capability of acquiring images of the brain, in a non-
ionizing and non-invasive way. Its field of applications spans from anatomical imaging,
up to spectroscopy [6], diffusion imaging [7], and neuroscience, where, for instance, the
functional activity of the brain is studied (fMRI)[8].

In a classical MRI experiment, protons in a medium or in a body are exposed to a
strong magnetic field, and their nuclear moment tends to align and precess around the
direction of the external magnetic field, causing a net magnetization to appear in the
body or object. With the aim of perturbing this condition, radio frequency (RF) pulses
are then applied at the precession frequency of the protons (known as Larmor frequency
ω0.), and due to this transmission of energy, the magnetization is tilted in the transverse
plane. This is the condition that is usually known as resonance. The magnetization in
the transverse plane can be measured as a fluctuation in voltage in nearby coils, explained
by the law of induction, or Faraday’s Law. This effect forms the basis of the MR signal.

After the application of the RF pulse, the spins undergo a relaxation process back to
the equilibrium direction along the external magnetic field resulting in a decay of the MR
signal. As protons relax, two key processes (T1 and T2 relaxation) come into play. In T1
relaxation, the magnetization realigns with the external magnetic field, while in T2 relax-
ation, spins lose phase coherence in the transverse plane, causing loss of magnetization
in the transverse plane. In order to form images, it is essential to spatially encode the
MR signal, during the acquisition. This is typically done using magnetic field gradients

1



Introduction

to sample the frequency domain of the object in the scanner, the so-called k-space. In
the k-space, different points correspond to various spatial frequencies within the image.
The final image is reconstructed by applying a mathematical transformation, the inverse
Fourier transformation, to convert this frequency information into the spatial domain.

Conventional MRI images are often described as "weighted" toward one of these re-
laxation parameters, or diffusion parameters (ADC, FA, among others) as a function of
their contribution to the overall contrast of the image. By adjusting the parameters of
an MRI sequence, the effect of one specific property can be emphasized over the other,
producing, considering the relaxation parameters, either T1-weighted or T2-weighted im-
ages. T1-weighted images excel at highlighting anatomical details and tissues with a high
fat content, while T2-weighted images make fluid-filled regions, e.g. cerebrospinal fluid
or edema, appear brighter, facilitating the identification of inflammation and lesions [9].
However, completely isolating specific contrast mechanisms in MRI is inherently chal-
lenging due to the intricate relation between these tissue or system properties. Even
considering the choice of MRI sequence, whether spin echo (SE), gradient echo (GE),
or inversion recovery (IR), as basis for a particular contrast inevitably allows for some
residual contributions from other factors. Additionally, hardware characteristics such
as magnetic field strength (B0), gradient performance, system imperfections, and coil
sensitivities introduce additional variability, even when imaging the same subject under
similar conditions. Eventually, in biological tissues, physiological variables such as blood
flow, temperature, and hydration could further modulate relaxation times, adding an
additional layer of complexity to the resulting image contrast.

1.2 Quantitative MRI

Since the early days of MRI, pioneers in the field were convinced that the future of the
technology would lean more toward quantitative rather than qualitative analysis. Two
key questions arise: why is the term qualitative always associated with the interpretation
of conventional MRI images? And what exactly does quantitative mean in the context
of MRI? As mentioned earlier, conventional MRI images are typically weighted toward a
specific parameter. This means that the imaging sequence and acquisition are designed to
emphasize one particular aspect, such as T1 or T2 relaxation times, making it the dominant
feature in the resulting image. Moreover, the pixel intensity values in MRI images are
proportional to the MR signal. However, their interpretation is valid only from a relative
perspective. This means that only the relative differences in image intensities carry
meaning, and absolute comparisons between images from different individuals or imaging
sequences are not reliable. Absolute pixel intensities cannot be compared directly.

On the other hand, the term "quantitative" in the MRI field is defined as the processes
necessary to obtain a map, which is a spatial representation of the distribution of absolute
values for a specific physical or chemical parameter. In fact, every intensity is represented
by a value with a specific physical or chemical unit of measurement [11]. For example,
a T1 map represents a spatial representation of the object in the scanner as an image
where each voxel provides the longitudinal relaxation time in milliseconds. An overview
on potential applications of qMRI is shown in Figure 1.1.
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Figure 1.1: General overview of qMRI techniques applied in the context of Multiple Sclerosis.
Figure entirely reproduced from [10].

Currently, the MRI images interpretation is still highly qualitative, and the need
to rely on robust and reproducible techniques and methodologies capable of extracting
quantitative information from the raw MRI signal is relevant. In conventional MRI, only
tissue volumes and spatial characteristics can be effectively measured. Differences in
tissue, based on biological or chemical properties cannot be quantified. For example, a
variation in contrast on a T2-weighted image, may be correlated with multiple underlying
contrasts mechanisms such as relaxation, diffusion or other physiological effects making it
harder to differentiate phenomena such as edema, necrosis, demyelination etc,[11] leading
to difficulties in the diagnosis, or limiting it only to cases where there is clear evidence of
the presence of an abnormal structure. This is the reason why a more quantitative, ro-
bust and reproducible approach may be ideal to open frontiers also in longitudinal studies,
comparing inter-subject with the use of normative values and intra-subject by monitoring
the temporal evolution of a pathological tissue. However, two primary challenges have
historically constrained the widespread clinical adoption of quantitative tissue properties
measurements: the long acquisition times required and, at least initially, and to some
extent still today, a lack of reproducibility for some of the quantitative measurements
available [12]. Currently, for qMRI to be translated for clinical use, there is a need to
address both the above concerns for reproducible and interpretable images which can be
acquired feasibly in the clinical routine. (see Figure 1.2 ). However, high reproducibil-
ity may come at the cost of reduced accuracy, while high accuracy can result in lower
reproducibility [10]. Reducing acquisition times often leads to worse Signal to Noise Ra-
tio (SNR) and image quality. As a result, numerous methods and techniques have been
developed throughout the parametric map acquisition pipeline with the goal of reducing
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Figure 1.2: A schematic overview on the clinical maturity stages of key approaches in quanti-
tative MRI and their advancements from 2021. Schematic representation inspired by the work in
[10]

scanning times while improving the quality of the final maps.

1.3 Thesis Rationale and Outline

This work aims to enhance the quality of T2 maps generated using the GRAPPATINI
method by means of a self-supervised ML approach (using Deep Learning) with the aim
of getting better results than traditional methods. The focus of this work is to apply
this approach to the two main domains of MRI: the k-space domain (or Fourier domain)
and the image domain, which in this context is better defined as the parameter domain.
A denoising step is needed since the GRAPPATINI method reduces the acquisition time
of T2 maps, and, consequently, a reduction in the SNR and an amplification of the
noise level is expected. The objective is to develop a robust and unbiased denoising
strategy that could potentially improve image quality and address common complaints
about standard GRAPPATINI. This approach ensures that the denoising process does not
disrupt or statistically alter the values obtained using the standard technique, preserving
the diagnostic integrity as a consequence. In this context, a self-supervised approach
was selected due to the lengthy acquisition times required to obtain a fully sampled and
extensive dataset, which would be necessary for use as ground truth in a supervised
approach.

The structure of the thesis is as follows. In Chapter 2, a general background on
MRI physics is provided to lay the foundation for the concepts discussed throughout the
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thesis. The basic principles of image acquisition are also introduced, along with relevant
techniques and technologies, explaining how data is typically collected during an MRI
session. Chapter 3 then addresses the techniques employed in accelerated MRI, focusing
in particular on parallel imaging and model-based reconstruction methods such as the
GRAPPATINI method. These techniques form the basis for the methodologies explored
in this project. In Chapter 4, the methods implemented throughout the project are
explained, starting from the datasets used, the self-supervised framework and in the end
the two strategies implemented in the two different domains. In Chapter 5 the results
are shown and then discussed in Chapter 6. Finally, Chapter 7 concludes the thesis
with a summary of the key findings and a discussion of the results, along with possibilities
for future work.
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Chapter 2

Background

The physics and technology behind MRI are crucial for understanding how a natural phe-
nomenon, like Nuclear Magnetic Resonance (NMR), can be leveraged to generate signals
that are transformed into detailed images. A solid grasp of these principles is necessary
for both working with and interpreting MRI images in clinical and research settings. In
this chapter, the essential physical concepts underlying MRI are covered, including how
magnetic fields interact with protons in the body, the role of radio-frequency (RF) pulses
in generating signals, the importance of T1 and T2 relaxation processes in determining
the contrast of the image, and how spatial encoding and gradients enable the creation of
images. The key references for the theory content of this chapter are from textbooks [13,
14] and in research articles cited below.

2.1 MRI Physics

The basic concept of MRI involves placing the body in an external magnetic field, after
which radio-frequency (RF) coils transmit and receive radio waves within the scanned
area. The key protagonists in this process are the magnetic moments of the protons in
the body’s tissues, particularly in water molecules, which possess the ability to align with
the magnetic field and interact with the RF waves. These interactions generate signals
that are detected as voltages by the RF coils, digitized by an analog-to-digital converter,
and then processed by a computer to create the final images.

2.1.1 Spin and Magnetic Moment

In classical physics, any rotating object possesses a property known as angular momen-
tum, which is analogous to linear momentum in linear motion. Angular momentum
reflects how much rotational inertia a body has, and it depends on extensive properties
of an object, e.g. mass, dimensions, shape, and rotational velocity. This concept can also
be extended to subatomic particles, such as protons and electrons.

These particles exhibit a property called spin, similar as a concept to classical angular
momentum. Spin can only be described with discretized values. For particles like protons,
the spin is non-zero, which means that the particle has an intrinsic magnetic moment,
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Figure 2.1: Graphical representation of a spinning nucleus around its axis.

often denoted by µ⃗. The magnetic moment can be thought of as a vector that describes
both the direction and strength of the magnetic dipole that arises from the "spinning"
motion of the particle (see Figure 2.1). Moreover, there is a relation between the
magnetic moment and the spin angular momentum J⃗ of a particle, such that:

µ⃗ = γJ⃗ (2.1)

, where γ is the so-called gyromagnetic ratio. In MRI, the hydrogen atom, H1
1 , plays a

crucial role because the single proton in the nucleus has a spin of s = +1
2 .

2.1.2 Protons in a Magnetic Field

When protons, and thus magnetic moments µ⃗, are placed in a region where the external
magnetic field, usually referred to as B0⃗ , is different from zero, in a similar way as the
needle of a compass, they tend to align along the direction of the magnetic field. This is
the effect of a torque, that the external magnetic field B0⃗ exerts on the magnetic moments
(see Figure 2.2). The protons are not capable of aligning exactly with the direction of
the external magnetic field, and the consequence is that they precess around the direction
of the external magnetic field like a gyroscope under the effect of the gravitational force.
This precession motion occurs at a specific frequency, known as the Larmor Frequency:

ω = γB0 (2.2)

Of relevant interest is the net magnetization, M⃗ , defined as the vector sum of the mag-
netic moments within a sample, e.g. an ensemble of hydrogen atoms or water molecules:

M⃗ =
∑︂

µ⃗ (2.3)

When the external magnetic field is equal to zero, the different magnetic moments are
randomly oriented, such that the vector sum is equal to zero. If an external magnetic field
is present, the ensemble of spins will produce a net magnetization which also precesses
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Figure 2.2: Magnetic Moment precession.

around the external magnetic field at the Larmor Frequency. One can show that the
alignment of the magnetic moments with the external magnetic field corresponds to the
lowest energy configuration, which is preferred at equilibrium. These correspond to the
quantized spins being either up (parallel) or down (anti-parallel). However, thermal
fluctuations result in magnetic moments also oriented anti-parallel to the B0 field (see
Figure 2.3). The thermal effects result in a distribution of magnetic moments which has

Figure 2.3: (a) Spin-up and spin-down orientations and the associated energy level. (b) Distri-
butions of random oriented spins in a region where the external magnetic field B0 = 0.

a relatively small bias toward spins parallel to the external magnetic field, i.e. spin up.
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The proportion of spin up to spin down moments can be derived from the Boltzmann
distribution:

N+

N− = e
−∆E

kT (2.4)

, where N+ and N− are the total number of spins in the parallel and anti-parallel orien-
tations, k is the Boltzmann constant, ∆E is the energy difference between the two states
and T is the temperature in Kelvin. Given this consideration, studying the system from
a macroscopic perspective, on average there will be more spins aligned with the external
magnetic field than the ones anti-parallel to the external magnetic field. The net magne-
tization, in this case, will be aligned with the magnetic field direction and the value can
be referred to as M0⃗ :

M0 = γ2h2NB0
4kT

(2.5)

In Equation 2.5, γ is the gyromagnetic ratio, h is Planck’s constant, N is the number of
spins, B0 is the magnitude of the external magnetic field, k is Boltzmann constant, and T
is the temperature in Kelvin. Eventually, the receiver coils measure voltages coming from
change in the magnetic flux driven by changes in the net magnetization M0. This is why
the net magnetization M0 is one of the key factors for the SNR of the final acquisition.
Note that the net magnetization is proportional to the strength of the external magnetic
field.

2.1.3 Resonance

To summarize the previous section, an external magnetic field induces a net magnetization
aligned with the direction of the field since the energetically favorable orientation for the
magnetic moment is aligned with the field, modulo the effects of thermal fluctuations.
The question then arises, whether the net magnetization can be manipulated by e.g.
rotating it into another plane. From the quantum mechanical perspective, the energy
difference between the spin up and spin down in which a proton can be found is equal to:

∆E = hf (2.6)

where f is the Larmor Frequency of the precession motion. In order to induce protons to
change their spin state and consequently the components of the net magnetization, we
need to give the system discrete amounts of energy which are integer multiples of ∆E.
Equation 2.6 tells us that we can give energy to the system, and the system will enter
a resonance condition if we introduce a perturbation exactly at the Larmor frequency. In
our case, this perturbation is another magnetic field, typically referred to as the B1 field.

The B1 field is a time-varying magnetic field oscillating at the Larmor frequency.
Considering Equation 2.2, that γ = 42.57MHz/T , and that the external magnetic field
magnitude is typically on the order of 1.5T or 3T, it is straightforward to compute that
the Larmor frequency is in the RF spectrum. The RF pulse is introduced into the system
through a transmit coil and the net magnetization is no longer parallel to the direction
of the external magnetic field, but most of the protons will align their precession motion
with the direction of the combined magnetic field.
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2.1.4 Bloch Equations

To reach a deeper understanding of what is happening mathematically in the process of
tilting the magnetization vector the Block Equations are presented. The Bloch equations
are phenomenological equations that describe the motion of the net magnetization vector
when the relaxation times T1 and T2 are known. Moreover, to better align with the
conventions in terms of the common nomenclature in MRI, it will be assumed that the
external magnetic field B0 is aligned with the z direction of a Cartesian frame of reference,
so that B0⃗ = B0ẑ. The z direction will be referred to as longitudinal, while the xy plane
as transverse plane. As for the magnetization vector M⃗ , the longitudinal component is:

M⃗∥ = Mz
⃗ = Mz ẑ (2.7)

while the transversal component, in the xy plane is:

M⃗⊥ = Mxy
⃗ = Mxx̂ + Myŷ (2.8)

Given these definitions, the Bloch Equations can be derived considering that:

• γ , the gyromagnetic ratio, which establishes a relationship between the angular
momentum and the magnetic moment.

• τ⃗ , the torque on a magnetic moment µ⃗, given by τ⃗ = µ⃗ × B⃗

• The torque τ⃗ can be written also as the time derivative of the angular momentum,
τ⃗ = dJ⃗

dt

When no relaxation mechanisms are considered, the time evolution of M⃗ is described
by the following torque (or precession) equation:

dM
dt

= γM × B = γ

⎡⎢⎣ (MyBz − MzBy)x̂
+(MzBx − MxBz)ŷ
+(MxBy − MyBx)ẑ

⎤⎥⎦ (2.9)

The total magnetic field B, can be considered as including a z component, which is the
typical B0, and two other components, forming a second magnetic field in the transverse
plane (xy plane), the so-called B1 field:

Bx
⃗ = B1 cos(ωt)x̂ By

⃗ = B1 sin(ωt)ŷ Bz
⃗ = B0ẑ (2.10)

If the RF pulse is designed so that the energy it is carrying is exactly equal to Equa-
tion 2.6, and such that it can be defined by:

B1⃗ = B1xx̂ (2.11)

the net magnetization will be tilted in the transverse plane. In the case where only a
single RF pulse is present, the angle by which M⃗ moves, referred to as flip angle is equal
to :
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Figure 2.4: Free Induction Decay (FID) signal.

α = γB1tp (2.12)

, which is the angle by which the net magnetization vector is tilted away from the z-axis.
If the magnetization is tilted exactly in the transverse plane, the RF pulse is defined as
a 90◦ pulse.

After this perturbation, a receiver coil can measure the transverse magnetization Mxy

and the signal produced is typically referred to as Free Induction Decay (FID), which
is characterized by a rapid and exponential decrease due to relaxation phenomena (see
Figure 2.4).

2.1.5 Longitudinal and Transversal Relaxation

The resonance condition is not something that lasts forever. As a natural tendency, every
system will tend spontaneously toward equilibrium in the absence of an external force.
For this reason, whenever the perturbation is removed from the system, the magnetization
vector will again tend to align with the external magnetic field. This recovery phenomenon
is also called relaxation. This relaxation phenomena happens in both the longitudinal
and transversal components of the net magnetization, arising from different mechanisms.

Recovery of longitudinal magnetization arises from a mechanism that is called spin-
lattice relaxation. In particular, protons will lose energy by interacting with the environ-
ment in which they are located, typically referred to as the lattice. Transversal relaxation,
where the transversal component of the net magnetization goes to zero, non-homogeneity
and the small magnetic fields that arise due to precession of the spins. This second mech-
anism is also known as spin-spin relaxation. Considering a complete recovery after the
application of an RF pulse, the longitudinal and the transverse components of the mag-
netization follow a relaxation process that can be modeled by the following expressions:

M⃗ z(t) = Mz(0)e− t
T 1 + M0(1 − e− t

T 1 ) (2.13)
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M⃗xy(t) = Mz(0)(1 − e− t
T 1 )e− t

T 2 (2.14)
The relaxation time constants T1 and T2 are tissue-specific properties that play a

crucial role in determining the contrast observed in MR images, and relaxation curves of
the main brain tissues are reported in the figure below (see Figure 2.5).

Figure 2.5: T1 (a) and T2 (b) relaxations for the main tissues in the brain: white matter, gray
matter and CSF. Differences in the curves are the consequence of different relaxation parameters,
due to their tissue-specificity.

2.2 Image Acquisition
Building on the fundamental physics of MRI introduced in the previous chapter, this
following chapter focuses on the core tools essential for translating raw MRI signals
into images. The concepts covered form the backbone of MRI image formation and
reconstruction.

2.2.1 Gradients

The first step to form MR images is to impose a spatial variation to the z-component
of the main magnetic field B0⃗ using magnetic field gradients. Generally, magnetic fields
gradients can be defined by the following relations:

Gx = ∂BZ

∂x
Gy = ∂BZ

∂y
Gz = ∂BZ

∂z
(2.15)

Most commonly, a linear variation is imposed, such that, for instance, the z-component
along the x axis changes linearly with respect to x. A linear change in the total magnetic
field experienced by the protons will cause the Larmor frequencies to shift proportionally
along the direction of the gradient.

Considering for instance a gradient applied in the x direction:

f = γ̄(B0 + Gxx) (2.16)
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In regions where the total magnetic field is lower, the protons precess at a lower
frequency, whereas in regions with a higher magnetic field, their precession frequency
increases. This principle of adjusting Larmor frequencies in protons forms the basis of
spatial encoding in MRI. Spatial Encoding is the process that allows the formation of
an image in MR. A spatial variation of the magnetic field eventually imposes a spatial
variation in the measured signals. Through some modeling and signal processing, one can
show that these spatially varying signals can be transformed into images thanks to the
inverse Fourier transformation. Typically, magnetic field gradients are applied as short
pulses, altering the local magnetic field for a brief period.

2.2.2 K-space

The fundamental concept for image reconstruction in magnetic resonance imaging is the
Fourier representation of an image, commonly referred to as the k-space. The Fourier
Transform (FT) is a mathematical tool that is used to analyze signals by decomposing
them into their constituent frequencies (see Figure 2.6). In essence, it transforms a
signal from a specific domain(time, space,..), into the frequency domain, where it is
represented as a sum of sinusoidal components, each characterized by a certain frequency
and amplitude.

Figure 2.6: The image f(x,y) is represented as a weighted sum of 2D orthogonal basis functions,
each with specific frequencies and orientations. Each basis function (such as the components
weighted by α, β, and γ) contributes uniquely to the overall image, similar to decomposing a
finite dimensional vector along basis vectors. This illustrates how an image can be constructed
from various frequency components through Fourier coefficients.

The raw data measured by the MR scanner are points in k-space, representing specific
spatial frequency components of the underlying image. The relationship between the k-
space domain and the spatial domain is governed by the Fourier Transform (FT) and its
inverse, known as the Inverse Fourier Transform (IFT).

Typically, a centered representation of k-space is used, where low frequency compo-
nents are concentrated at the origin. In this representation, the central portion of the
k-space corresponds to the low-frequency area, which contains the majority of information
related to the contrast and structure of the underlying image. In contrast, the peripheral
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area represents the high frequencies, which store information about edges, sharpness, and
image resolution.

2.2.3 Spatial Encoding

The entire encoding process can be summarized by the action of three main gradients:
the slice selective gradient, the frequency encoding, and the phase encoding. By properly
modulating their activations and combinations, the entire k-space can be acquired, i.e.
every spatial frequency component, for a specific slice, can be probed.

Slice selection is the process that allows spin excitation to be confined to a specific
two-dimensional plane or slice within the patient’s body. It is realized by exciting the
spins with a RF-pulse while, at the same time, a linear gradient is used to have spatially
dependent Larmor frequencies. The relationship between the selected slice, the RF band-
width, and the gradient applied to accurately excite the spins in that particular region is
illustrated in the figure below. (see Figure 2.7)

Figure 2.7: Slice selection process in MRI. The thickness of the selected slice is determined by
the bandwidth of the RF pulse and the amplitude of the magnetic field gradient applied.

Once a slice is selected, the next step is in-plane localization, which involves spatially
encoding information along the two remaining dimensions. This is achieved through the
application of frequency and phase encoding gradients. The frequency encoding gradient
is applied during signal acquisition, causing spins to precess at varying frequencies based
on their position along one axis. Previously, the phase-encoding gradient was applied to
assign a specific phase to the spins along that direction.

Each application of the frequency encoding and phase encoding gradients results in the
acquisition of one line in k-space, aligned with the read-out direction. To sample different
lines in k-space, a different phase encoding gradient is applied with larger gradients
resulting in larger phase differences due to the spatial location and hence lines further
away from the k-space center. This process is summarized in the diagram below (see
Figure 2.8).
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Figure 2.8: Schematic representation of a k-space trajectory and the acquisition of two lines
considering a Cartesian sampling.

2.3 Quantitative Mapping
Quantitative MRI, or parameter mapping in general, aims to generate accurate and reli-
able maps of physical and biophysical parameters, offering significant potential for clinical
applications. The general approach involves reconstructing a series of images acquired
with a specific contrast tailored to the parameter being mapped, followed by a pixel-wise
fit to a signal evolution model to estimate the parameter. This section will specifically
focus on T2 mapping, examining its current uses, technical characteristics, and current
challenges.

2.3.1 T2 Mapping

T2 mapping methods are methods which generate spatial maps of the relaxation time
T2. These T2 values are typically measured in milliseconds (ms). These techniques
can provide crucial insights into the tissue composition and chemical state by reflecting
variations mainly in water content, tissue structure, and pathological changes, making it
a potential biomarker of interest in both research and clinical settings.

The gold standard for T2 mapping is the Carr-Purcell-Meiboom-Gill (CPMG) se-
quence [15], also known as the Multi-Echo Spin-Echo (MESE) sequence. The sequence
diagram is illustrated in the figure below (see Figure 2.9). The process begins with a
90◦ pulse which tilts the magnetization into the transverse plane, and then a 180◦ RF
pulse is applied after some time t to inverse the spins in the transverse plane, causing
the spins to rephase back to their original position at time 2t. This rephasing produces
an echo signal at a specific echo time referred to as TE. Without the 180◦ RF pulse, this
would generate a free induction decay (FID) signal. Due to T2* effects, the FID signal
decays rapidly. As T2 relaxation progresses, the amplitude of successive echoes decreases,
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following the relation described in Equation 2.17.

Mxy(TE) = M0e
− T E

T2 (2.17)

T2 values can be determined by acquiring images at different echo times and per-
forming a voxel-wise fitting of the signal decay model. In a typical multi-echo protocol,
multiple slices can be acquired within a single repetition time (TR) using interleaved slice
acquisition. This approach enables the acquisition of several slices during the extended
TR period, thereby accelerating the imaging process. However, there is a trade-off be-
tween the number of slices acquired simultaneously and the total number of echoes in
a single TR, also known as the Echo Train Length (ETL). ETL is a critical parameter
since it determines the number of data points available per voxel for the fitting process.
A higher ETL generally improves the precision of T2 estimation. Even when interleaved
slice acquisition is considered, the overall process remains time-consuming, requiring the
application of optimized strategies to further enhance its efficiency.

Figure 2.9: Sequence Diagram for the Carr-Purcell-Meiboom-Gill sequence, also known as Multi-
Echo Spin-Echo sequence.

2.3.2 Clinical Applications of T2 Measurements

One of the main fields of application for T2 measurements is brain imaging. In particular,
both relaxation times, T1 and T2, are correlated with relaxation processes that dissipate
energy due to the interaction of protons with the surrounding lattice or with other protons.
This is why they are closely linked to the biophysical properties of the tissues. The amount
of water, the iron content, and the myelin content (i.e. lipid-based sheaths surrounding
axons of nerves) are all factors that influence the relaxation times T1 and T2. Differences
in white matter (WM) and gray matter (GM) relaxation times have been attributed to
variations in water and myelin content around the nerves [16]. Moreover, as demonstrated
in [17, 18], increases in myelin content are associated with shortening of relaxation times
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T1 and T2. Similarly, [19] showed that iron accumulation also leads to a reduction in
these relaxation times.

Moreover, both T1 and T2 have the potential to serve as biomarkers in the detection
of various pathologies, such as Multiple Sclerosis (MS), Parkinson’s Disease (PD), and
Alzheimer’s Disease (AD). In MS, increases in T2 have been linked to one of the typical
signs of the pathology, namely inflammation of normal-appearing white matter (NAWM)
[20]. In PD, myelin degradation, particularly in the brainstem region, the origin of the well
known motor disorders associated with PD, has been strongly correlated with shortening
of T2 values [21]. For patients with AD and memory loss, increases in T2 have been
observed in NAWM [22].

Lastly, T2 values, in particular, have shown potential in the study and diagnosis of
temporal lobe epilepsy (TLE). In TLE, the primary driver of epilepsy is hippocampal
sclerosis, and increases in T2 values have proven useful as potential biomarkers for identi-
fying seizure foci within the hippocampus or temporal lobe[23]. The fields of application
of T2 mapping are not restricted to brain imaging only, but span from cardiac to mus-
culoskeletal and prostate imaging, where a quantitative approach can potentially carry
more information about biological properties, structural organization, and composition
than traditional qualitative or weighted approaches. In cardiac magnetic resonance imag-
ing, high values of T2 are associated with an increase in free water, considered an indicator
of the presence of edema [24]. Differences in T2 values are also considered indicators of
acute myocardial infarction, myocarditis, rejection of heart transplant [25] and potential
dilated cardiomyopathy or general myocardial injury[26]. Moreover, several works are
present in the T2 mapping of knee cartilage, where with these techniques it is possible
to probe and study the composition of cartilage disks with a non-invasive approach, to
better study the short and long-term effects of pathologies [27] or the effects of physical
training[28].
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Chapter 3

Accelerated MRI

As mentioned in the previous chapter, the principal disadvantage of acquiring T2 maps
with the gold standard CPMG sequence is the long acquisition time. This is a problem
intrinsic to the nature of MR itself, in contrast to other imaging modalities like Com-
puted Tomography (CT). This limitation has driven significant research into acceleration
methods for k-space acquisition to make MRI more efficient. One natural approach to
speeding up the process would be sampling fewer points in k-space (i.e. undersampling),
but this must be balanced against the well-established Shannon-Nyquist theorem [29] ,
which establishes a theoretical condition for how much of the k-space must be sampled for
perfect reconstruction. According to this principle, inadequate sampling leads to aliasing
artifacts, which compromise image quality. To address these challenges, two primary
categories of techniques have emerged: parallel imaging, which takes advantage of the
possibility of relying on multiple receiver coils, and model-based reconstruction methods,
which incorporate prior knowledge directly into the reconstruction process [30].

In this section, the two primary techniques underlying the GRAPPATINI are intro-
duced, both in the parallel imaging and in the model-based family of methods.

3.1 Parallel Imaging

Parallel imaging represents one of the key approaches developed to accelerate MRI acqui-
sition. These methods operate by undersampling the k-space and multiple receiver coils
acquisitions can be used to compensate for artifacts. Although this significantly reduces
acquisition time on the one hand, undersampling introduces aliasing effects that compli-
cate the overall reconstruction process. A clear relationship exists between the sampling
density, resolution and field of view (FOV) of the k-space: if acquiring more k-space lines
leads to a higher resolution, acquiring k-space lines with higher inter-space in between
reduces the FOV, leading to folding artifacts[31] (see Figure 3.2). These artifacts are
particularly detrimental in the T2 mapping, where voxel-wise exponential fitting is re-
quired, making accurate reconstruction critical. To address this, techniques have been
developed to recover the missing k-space lines. Methods such as GRAPPA achieve this in
the k-space domain, while approaches like SENSE [32] unfold the undersampling artifacts
using optimization in image space.
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Figure 3.1: Schematic showing the relationship between the number of MRI samples acquired
and prior knowledge used in reconstruction, highlighting how the more prior knowledge is intro-
duced, the lower the total number of samples acquired and necessary.

Figure 3.2: A schematic representation illustrating the relationship between the field of view in
the x and y directions and the spacing between lines in the k-space shown on the left. The total
number of lines in one of the two directions of the 2D k-space is proportional to the resolution of
the underlying image.

3.1.1 GRAPPA

The GRAPPA (GeneRalized Autocalibrating Partially Parallel Acquisitions) method is
designed to recover missing k-space lines after MRI data acquisition, allowing the gener-
ation of an artifact-free image through Fourier transform reconstruction [33]. Each coil
could, in theory, independently acquire a k-space and GRAPPA addresses the problem of
undersampling by synthesizing missing data combining information from all of them. In
a multi-receiver acquisition, the final image intensities are weighted by the coils’ sensitiv-
ity profiles. When considering this effect in terms of image intensity as a multiplication,
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it corresponds to a convolution in the frequency domain (k-space), based on the known
relationship between the image and frequency domains. This convolution means that
information about specific k-space locations can be inferred from neighboring k-space
points. In Figure 3.3, a flow chart is presented illustrating the main steps of GRAPPA.

Figure 3.3: Schematic representation of the GRAPPA pipeline. In the scheme, every black dot
represents an acquired location in the k-space (sources), while every white dot is not acquired
(targets). The three different colors of the boxes, are to highlight k-spaces corresponding from
different coils.

A key component of GRAPPA is the Auto Calibrating Signal (ACS) region, a smaller,
fully sampled patch of k-space. The ACS region has the same Field of View (FOV) as
the desired image but is acquired at a lower resolution, i.e. fewer k-space lines with
the same spacing as the final target image. The ACS is fully sampled across the coil
dimension and can be acquired during the accelerated scan. This ACS data is used to
compute the weights for the GRAPPA method, which are then applied to the undersam-
pled k-space to recover the missing lines. In accelerated MRI methods, a key parameter
commonly defined is the Acceleration Factor (AF). Since phase encoding is typically the
most time-consuming part of the acquisition process, the AF can be described as the ratio
between the total number of phase encoding lines required for a specific resolution and
the number of lines actually acquired. This parameter effectively quantifies the degree of
undersampling in the scan.

Mathematically, the GRAPPA reconstruction can be defined by the following expres-
sion:

Sj(ky − m∆ky) =
C∑︂

c=1

Nb−1∑︂
b=0

n(j, b, l, m)Sl(ky − bA∆ky), (3.1)
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where Sj is a missing line at coil j, n(j,b,l,m) the weights obtained after the calibration
phase, A the acceleration factor and Nb the number of blocks. The GRAPPA reconstruc-
tion results in one image per channel; these are typically combined into a single image
by taking the sum of squares across the channels or performing a weighted sum using the
coil sensitivities.

3.2 Model-Based Reconstruction

Unlike methods such as GRAPPA, which first recover k-space locations and then compute
the image using the Inverse Fourier Transform, model-based reconstruction involves an
iterative optimization process to directly recover the parameter maps or the underlying
images [34]. In these methods, the reconstruction is obtained directly by solving an
optimization problem. This problem minimizes a cost function, typically using the square
of the L2 norm of the residual between the acquired k-space and the simulated k-space
from applying the forward model to the optimized image. The final result is a parametric
map or image that directly reflects the desired solution. The iterative reconstruction
starting from an undersampled k-space is essentially an ill-posed inverse problem.Given
a forward model which maps parameters of interest to measurable signals, an inverse
problem refers to the process of estimating parameters of interest based on measured
signals. In the context of MRI, this involves reconstructing an image from the observed
data, which corresponds to k-space samples, with the forward model being the application
of the Fourier transform and masking in k-space. The difficulty of an inverse problem
depends on how well-posed it is. For an inverse problem to be well-posed, three conditions
must be satisfied: the solution must exist, it must be unique, and it must be stable,
with respect to input data [35]. However, when k-space undersampling is introduced
to accelerate acquisition, the problem becomes increasingly ill-posed, deviating further
from these conditions. This highlights the importance of accurately defining the forward
model, which represents the mapping from image space to k-space, to achieve a high-
quality reconstruction despite the challenges posed by undersampling.

In the literature there are different examples for the application of iterative recon-
struction problems, many of them specialized in a particular sequence.

3.2.1 MARTINI

One example of a model based reconstruction in T2 mapping is the MARTINI (Model
Based Iterative Accelerated RelaxomeTry by Iterative Non-Linear Inversion) [36]. A
classical reconstruction problem can be implemented starting from the definition of the
underlying inverse problem. Let y be the acquired k-space data and x the underlying
image. It is possible to define an operator, E, called forward model operator, with the
function of mapping x from the image space to y in k-space.

y = Ex + n, (3.2)

where n is the noise typically present in the acquired data.

22



3.3 – GRAPPATINI

In a conventional image reconstruction, the forward operator E consists of multi-
plication by the coils sensitivities C (if the acquisition includes multiple receiver coils),
application of the Fourier Transform F , and potentially multiplication by an undersam-
pling pattern P , when not all the k-space locations are acquired.

yi,j = PFCjxi + n i = 1....T, j = 1.....C (3.3)
, where T is the total number of echo times and C the number of coils used in the
acquisition.

In a parametric mapping method, another step is included in the forward operator
E, typically including a model of the signal evolution considering the specific relaxation
time that is weighting the acquired data, e.g. the model M included in Equation 2.17.

yi,j = PFCjM0e
− T Ei

T2 + n, i = 1....T, j = 1.....C (3.4)
The problem of recovering M0 and T2 from undersampled k-space data, is solved using

an iterative optimization algorithm using the following cost function:

Φ(M0, T2) = argminM0,T2
1
2

C∑︂
j=1

T∑︂
i=1

∥PFCjM0e
− T Ei

T2 − yi,j∥2
2 (3.5)

In the MARTINI method, the inverse problem is solved using a non-linear optimiza-
tion approach, specifically a Non-Linear Conjugate Gradient algorithm with the Hager-
Zhang line-search method [37] (see Figure 3.4a for the pseudocode). The MARTINI
k-space undersampling pattern is different from those shown previously, known as block
sampling. A block consists of a collection of adjacent phase encoding (PE) lines, with its
width defined as the total number of PE lines divided by the acceleration factor (AF).
In a T2 mapping sequence, multiple k-spaces are acquired across the echo dimension.
Consequently, the block in the MARTINI method shifts along the PE dimension with
each echo, as illustrated in Figure 3.5.

3.3 GRAPPATINI
The GRAPPATINI method, the core T2 mapping approach in this project, is a natural
extension of the MARTINI and GRAPPA methods. GRAPPATINI combines MAR-
TINI’s iterative model-based reconstruction with GRAPPA’s concepts, leveraging their
orthogonality to achieve higher acceleration factors, shortening acquisition times, and
potentially achieving higher resolutions. The overall undersampling pattern uses a block-
sampled MARTINI pattern but with interleaved sampling within each block, as is done
in GRAPPA. The overall acceleration factor is the product of the individual factors from
both methods (see Figure 3.5). The reconstruction proceeds in two steps: first, a
GRAPPA reconstruction fills the missing PE lines within each block using coefficients
derived from a small ACS region in the first echo. Subsequently, the resulting k-space is
treated as a standard MARTINI set, enabling iterative model-based reconstruction using
the same optimization algorithm as the one present in MARTINI. This approach requires
only the cost function and gradient formulations to operate effectively.
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Figure 3.4: (a) Pseudocode for the non linear conjugate gradient used in the MARTINI method.
(b) Diagram showing the advantages in terms of convergence of a conjugate gradient method with
respect to a classical steepest descent.

Figure 3.5: Schematic representation of GRAPPA, MARTINI and GRAPPATINI sampling
patterns. Every column is a different echo, while every line is a different phase encoding step.
The gain in acceleration factor of the GRAPPATINI method is highlighted. The red line indicates
the k-space center, while the green box indicates the small ACS region acquired during the first
echo in the GRAPPATINI sequence.

The GRAPPATINI method has the capability to accelerate acquisition times while
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maintaining at the same time acceptable image quality in comparison to the standard
CPMG. The reduction in time, with respect to the other state-of-the-art method, is
highlighted by the following table and in Figure 3.6:

Parameter Brain
a. CPMG b. GRAPPATINI c. Fast SE

TA min 17:23 3:46 2:37
Acc. Fully sampled 10-fold Factor 9, GRAPPA 2

TR ms 6520 4000 4000
TE ms 9 10.9 77
Echoes 17 16 1
Matrix 160 x 192 512 x 270 512 x 270

Resol. mm3 1.1 x 1.0 x 1.3 0.4 x 0.8 x 3 0.4 x 0.8 x 3
Slices 30 43 43

Table 3.1: Comparison of three T2 mapping brain scanning methods (CPMG (a) , GRAPPATINI
(b), and Fast SE(c)) highlighting differences in acquisition time, resolution, and number of slices
acquired. The GRAPPATINI method significantly reduces acquisition time while providing higher
resolution and more slices than the CPMG fully sampled method.

Figure 3.6: Comparison of T2 maps computed with the GRAPPATINI method (AF = 10 ),
MARTINI (AF = 5) and a fully sampled acquisition. The different time of acquisition are also
highlighted. The image is reproduced entirely from the paper [38].

3.4 Machine Learning and Deep Learning in MRI

Machine Learning (ML) and Deep Learning (DL) have revolutionized medical imaging
by enabling data-driven methods that learn complex features from large-scale datasets.
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Among DL approaches, Convolutional Neural Networks (CNNs) have established them-
selves as a milestone architecture over the last decade, considering their ability to au-
tomatically learn hierarchical feature representations from raw input data, capturing
both local patterns and more global contextual information. In the MRI domain, CNN-
based models have demonstrated remarkable success in a variety of tasks, such as image
reconstruction starting from undersampled k-space data to, in the end, accelerate ac-
quisitions[39], denoising noisy scans to improve the signal-to-noise ratio (SNR) [40], and
segmenting anatomical structures with high accuracy [41]. Nevertheless, many existing
approaches continue to rely on a fully supervised training paradigm, where the model
learns to map, for instance, noisy (or undersampled) inputs to high-quality ground-truth
data. In the context of T2 mapping, as previously discussed in Section 2.3.1, acquiring
fully sampled k-space data that would yield high-SNR T2 maps is prohibitively time-
consuming. This challenge is amplified when trying to build large datasets required under
a classic supervised approach, as lengthy acquisition sessions not only require consider-
able resources but also pose limitations to patient comfort. Consequently, self-supervised
learning has emerged as an appealing alternative and, in the case of T2 mapping, is of-
ten the only feasible option because it can remove the need for clean or fully sampled
ground-truth data. As a consequence, several methods have already been proposed to
tackle various MRI-related tasks using self-supervised paradigms [42, 43, 44]. Under a self-
supervised framework, a model learns directly from, for instance, noisy or undersampled
measurements, by leveraging inherent data redundancies and internal data structures.

The previous chapters provided an overview of MR physics, MRI acquisition proce-
dures, and the fundamental concepts behind quantitative T2 mapping, illustrating why
denoising is crucial for accelerating T2 mapping techniques such as GRAPPATINI. The
following section introduces the specific self-supervised strategies developed and evaluated
in this work, with the aim of effectively denoising GRAPPATINI T2 maps.
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Chapter 4

Materials and Methods

In this chapter, the methods developed and tested in this project for training a neural
network with a self-supervised approach to denoise T2 maps acquired and reconstructed
using the GRAPPATINI method are presented. First, the datasets used throughout this
study are introduced, and their key characteristics are highlighted. Subsequently, the
self-supervised framework, the core of both strategies, is described. Since it was applied
in different domains, each of the implemented strategies and the corresponding methods
are then explained. Finally, the statistical tools and quantitative metrics employed to
evaluate the performance of these strategies are outlined.

4.1 Datasets

4.1.1 Fully Sampled 3T Dataset

A fully sampled MRI dataset was acquired at 3T (MAGNETOM Skyra, Siemens Health-
ineers AG, Erlangen, Germany). In this work, the term ’fully sampled dataset’ refers
to acquisitions in which all k-space locations necessary for achieving the desired resolu-
tion and field of view were collected at the scanner, thus leading to longer acquisition
times. The dataset was obtained using a standard Carr-Purcell-Meiboom-Gill (CPMG)
sequence, with the acquisition parameters summarized in Table 4.1. This dataset was
primarily used during the implementation phases of the methods and served as a refer-
ence for the final refinement step of one of the two denoising strategies evaluated in this
study.

Parameter Value
TA (Total Acquisition Time) 17:23 min

TR (Repetition Time) 6520 ms
TE (Echo Time) 9 ms
Number of Echoes 17
Resolution (mm3) 1.1 x 1.1 x 3

Slices 30

Table 4.1: Acquisition parameters of the fully sampled 3T Dataset used in this work.
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4.1.2 3T LPM Dataset

The principal dataset used in this project was acquired at 3T (MAGNETOM Skyra,
Siemens Healthineers AG, Erlangen, Germany) and is referred to as the Lausanne Para-
metric Mapping (LPM) dataset. The scans were performed using a commercial 20−channel
head/neck coil. All experimental sessions were approved by the local Hospital Review
Board, and written informed consent was obtained from each subject. All participants
were healthy controls, resulting in a total of 52 subjects (28 females, 24 males; mean age
± standard deviation: 28.58±5.94, age range: 21−48 years). The sequence parameters
used to acquire the data are those typically employed in a GRAPPATINI sequence (see
Table 4.2). To enable a more comprehensive analysis of the denoising methods studied
and proposed in this work, each subject underwent a second scanning session immediately
after the first. Consequently, both scan and rescan data were available, allowing the as-
sessment of the reproducibility of T2 values in terms of intra−subject and inter−subject
variability following the application of denoising methods. The demographics of the study
population are summarized in Table 4.3.

Parameter Value
TA (Total Acquisition Time) 3:22 min

Acceleration (AF) 10
TR (Repetition Time) 4000 ms

TE (Echo Time) 10 ms
Number of Echoes 16
Resolution (mm3) 0.7 x 0.7 x 3.3

Slices 44

Table 4.2: Acquisition parameteres for the 3T LPM dataset used in the training processes of
the models throughout the project.

Subjects Gender Age (years)

M F mean ± SD range

Healthy Controls 24 28 28.59 ± 5.84 [21 - 48]

Table 4.3: Demographics of the population in the 3T LPM Dataset.

For the two strategies implemented in this work and presented in Section 4.3 and
Section 4.4 a partition of the dataset into two independent sets was performed such that
32 subjects out of the 52 available were included in a training set, while the remaining
subjects were included in a test set. The criteria selected for the division is a stratified
sampling. Although not really necessary considering the age distribution of the subjects
in the dataset, differences in ages could potentially be a bias for the training of a model
in the T2 mapping field. With a stratified sampling strategy, at least one subject was
included in the training set for each bin created from the histogram of the ages.

To assess the model’s performance and generalizability during the training phase, a
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Figure 4.1: Flowchart illustrating the generation process of the 3T LPM T2 map dataset: starting
with acquisitions obtained from the scanner, the data is processed to reconstruct T2 maps for each
subject, slice, and session, i.e. scan and rescan.

Figure 4.2: A pie chart illustrating the division of subjects into training and validation sets
based on the number of subjects. The training set includes 32 subjects, while the test set consists
of 20 subjects. Additionally, the chart shows the division of the training set into training and
validation subsets based on slices, where 95% of the total slices are used for training and 5% for
validation.

second and random partition was applied to create a validation set. The partition ratio
was set to 0.95, leaving 5% of the training samples for validation. During the final testing
phase, the scan-rescan variability was evaluated. To avoid biasing the model’s learning
process, only the scan and rescan data from subjects included in the training set were
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used during training. However, at inference time, the model’s performance was evaluated
under both scan and rescan conditions. In summary, the training dataset consisted of 32
subjects, each with scan and rescan acquisitions, and each acquisition included 44 slices.
This results in a total of 44 × 2 × 32 = 2816 samples. Of these, 140 samples (5% of the
total) were set aside in the validation set (see Figure 4.2 ).

4.1.3 7T Datasets

To evaluate the generalizability of the model, four separate datasets were acquired at 7T.
Each dataset differed from those used during the training phase in terms of field strength,
resolution, orientation, anatomy, and consequently the range of T2 values. Each dataset
consisted of a single acquisition from one subject, providing diverse testing scenarios to
assess the performance of the model on data that substantially deviates from the training
conditions.

Parameter Brain Low Res. Brain High Res. Sagitt. Knee
TA (Time) 2:55 min 6:11 min 7:50 min

AF 10 10 6
TR (ms) 4680 4680 4880
TE (ms) 10.7 11.40 10.9
Echoes 16 16 10

Res. (mm3) 0.5 x 0.5 x 2.0 0.3 x 0.3 x 1.5 0.4 x 0.4 x 3.0
Slices 15 15 24

Table 4.4: Acquisition parameters of the 7T datasets acquired and used in the project to probe
the generalizability of the model.

All scans were acquired at 7T (MAGNETOM Terra.X, Siemens Healthineers, Forch-
heim, Germany). All experimental sessions were approved by the local Hospital Review
Board, and both informed and written consent were obtained from each subject. The
acquisition parameters are summarized in Table 4.4. Three brain datasets were acquired
at two different resolutions, resulting in T2 maps with higher in-plane resolution in the
coronal plane. For the fourth dataset, a knee scan was performed to obtain sagittal T2
maps.

4.2 Self-Supervised Blind Denoising
The concepts, notation, and background of the self-supervised method used throughout
the project are thoroughly presented in the article [45]. This method belongs to the family
of approaches known as Blind Denoising [46], as it does not rely on prior assumptions
about the noise model, the signal itself, or the availability of clean training data. The
need for a self-supervised approach arises due to the lengthy acquisition times required
to generate a fully sampled dataset of T2 maps, as highlighted in Section 3, which could
potentially be used as a reference in supervised learning for model training. In general,
it is possible to model a signal y, high-dimensional with a total of m dimensions, and the
corresponding noisy measurements as two random variables in Rm, as:
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x = y + n (4.1)

, where n is the additive noise present in the measurement.
A partition of the set containing all dimensions of y can be defined and denoted by J ,

where the values of the noisy measurement x restricted to this partition are denoted by
xj . Furthermore, let J be the subspace of all possible partitions of the space formed by
the dimensions of y, such that J ⊆ J . A function f : Rm → Rm is called J-invariant if
the value of f , restricted to x within the partition J , does not depend on the specific value
of xj . Thus, if f is J-invariant across all possible partitions of the space of the dimensions
of y, it can also be considered J -invariant. Conversely, if a function is J -invariant, then
it is automatically J-invariant for all partitions J ⊆ J .

The method then defines the self-supervised loss function, considering J -invariant
functions as follows:

L(f) = E∥f(x) − x∥2 (4.2)

, where the expectation is taken over the partitions. It is possible to demonstrate, con-
sidering the noise in a subset J independent from the noise in the complementary set Jc,
that this loss function is equal to:

E∥f(x) − x∥2 = E∥f(x) − y∥2 + E∥x − y∥2 (4.3)

As shown in Equation 4.3, the self-supervised loss is equal to the sum of the usual
supervised loss and the noise variance in the initial measurement. Consequently, minimiz-
ing the self-supervised loss in expectation leads to minimizing the error with respect to
the ground truth, noise free signal. This self-supervised loss can be employed as the loss
function for e.g. training a deep convolutional network to denoise a high−dimensional
measurement x. In order for a neural network to be considered J -invariant, an additional
operation must be applied to its input. Specifically, a masking procedure can ensure that
the network output remains independent of the original noisy values at specific points
within a partition of the input dimensions.

In this project, the high-dimensional and noisy measurements are GRAPPATINI k-
spaces and GRAPPATINI T2 maps. The described approach of training a model in
a self-supervised manner by masking the input to ensure the model behaves as a J -
invariant function was implemented in the two primary domains where the information
is stored and represented in MRI: the k-space and the image space.

4.3 K-Space Strategy (SSDU)
The first strategy implemented in this work is based on the concepts introduced in Sec-
tion 4.2, but adapting them to consider the k-spaces, acquired with a standard GRAP-
PATINI sequence, as the starting high-dimensional and noisy measurement. The objective
was to train a model using a self-supervised loss, as defined in Equation 4.2, with the
specific aim of formulating this loss directly in the k-space domain. To achieve this, as
a first step, the network needed to be transformed into a J -invariant function, which
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Figure 4.3: Diagram summarizing the pipeline of the self-supervised method implemented
throughout the project. The method involves training a model with a self-supervised approach
by modifying the input to ensure the model behaves as a J -invariant function.

was accomplished through a masking operation applied directly to the k-space locations
acquired during the GRAPPATINI sequence. In this way, the output of the network, was
no longer dependent on the original values in those k-space locations, and the weights
of the model could be trained by looking at the discrepancy between those originally
acquired k-space locations and the one "simulated" (using the forward MRI model) from
the output of the model itself.

To provide a clearer understanding of the nomenclature and concepts used in this
method, the definition of the inverse problem underlying the T2 mapping is here reported
again. The theory and notation presented in this section are largely based on the work
of [47].

Let yΩ represent the acquired locations in the k-space during a standard GRAPPA-
TINI acquisition. The forward model of the inverse problem is then given by:

yΩ = EΩx + n (4.4)

For T2 mapping reconstruction, the forward model operator EΩ is made up of several
components: the relaxation model M , which is a function of parameters M0 and T2;
multiplication by the coils sensitivities C; application of the Fourier transform F ; and the
sampling pattern PΩ, which selects the acquired locations of the k-space Ω. The recovery
of the maps is then formulated in the context of the GRAPPATINI reconstruction as:

argmin
M0,T2

∥PΩFCM(M0, T2) − yΩ∥2
2 (4.5)

In the self-supervised strategy implemented in this work, the first step was to consider
the acquired k-space locations Ω and divide them into two distinct sets, Θ and Λ. The
division was made such that:

{︄
Ω = Θ ∪ Λ,

Λ ∩ Θ = ∅
(4.6)
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Equation 4.6 demonstrates that the two subsets, Θ and Λ, are disjoint, i.e. there
are no k-space locations shared between the two sets. Furthermore, their union is equal
to the original set of acquired k-space locations, ensuring that all locations are taken into
account in the strategy.

The set Θ was used to perform the GRAPPATINI reconstruction, yielding a pair of
M0 and T2 maps for each scan and subject. In contrast, the set Λ of k-space locations
was used to define the loss function for the model, which was trained with the ultimate
goal of denoising the T2 maps.

The general form of the loss function can be expressed by the following equation:

min
θ

1
N

N∑︂
i=1

L
(︂
yi

Λ, Ei
Λ

(︂
f
(︂
yi

Θ, Ei
Θ; θ

)︂)︂)︂
(4.7)

Breaking down this expression, the network output f
(︁
yi

Θ, Ei
Θ; θ

)︁
is a function of the

k-space locations in the set Θ and the network parameters θ. This output is transformed
back to the k-space by the operator Ei

Λ, which selects only the k-space locations specified
by the indices in the set Λ. The key distinction between the operators Ei

Θ and Ei
Λ lies in

the definition of their sampling patterns, PΘ and PΛ, respectively.
The loss is then computed as the discrepancy between the original k-space values at

the locations in Λ (yΛ) and the transformed network output, which has been mapped back
to k-space and evaluated at the same locations using Ei

Λ. This discrepancy is quantified
by the loss function L and averaged over all N training samples.

The division of the acquired k-space locations Ω into the disjoint sets Θ and Λ is a
critical step to ensure that the function f , in this case a neural network, can be considered
J-invariant. By using only a subset of k-space locations (Θ) to compute the M0 and T2
maps, this approach effectively performs a masking procedure on the original k-space
data. The model output is then evaluated at the remaining locations (Λ), ensuring that
the network does not directly rely on information from the k-space values it aims to
predict.

The originally acquired k-space locations, which serve as the starting point, corre-
spond to standard GRAPPATINI datasets. For each echo in the sequence and each coil
in the system, a distinct k-space is acquired. The data are inherently undersampled, as is
typical in the GRAPPATINI sequence. Excluding the first echo, starting from the second,
a block of k-space lines is sampled and shifted along the phase encoding (PE) direction in
subsequent k-spaces at different echo times. Additionally, within each block, interleaved
undersampling is applied, enabling GRAPPA reconstruction to recover the missing lines.

The division of the acquired k-space locations into two distinct sets, Θ and Λ, was
performed after the GRAPPA reconstruction. For a given dataset, an example of the
masks used to select the Θ and Λ locations is shown in Figure 4.4.

The masks used are binary, selecting specific PE lines to exclude during the recon-
struction of the T2 maps. The selection of the lines was performed randomly. The ratio
ρ between the k-space locations removed from the reconstruction process and the total
acquired locations was set as:
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Figure 4.4: Set of masks along the echo dimension for a given GRAPPATINI dataset. Black
lines represent sampled lines, while white lines indicate lines that are not sampled and included
in the reconstruction process. Within each block, a certain number of phase encoding (PE) lines
is removed, forming the set of k-space locations Λ.

ρ = ∥Λ∥
∥Ω∥

= 0.05 (4.8)

, where ∥·∥ is the cardinality of the set of k-space locations. Moreover, in each echo k-
space, a specific number of lines were consistently kept sampled if the center of the k-space
had already been acquired according to the GRAPPATINI sequence and the acceleration
factor (AF). The number of lines always sampled and excluded from the random masking
procedure, in the center of the k-space, was fixed at 24.

The set of masks was randomly varied across subjects and slices within the entire
volume. However, the masks remained consistent across the coil dimension, ensuring
that, for a given slice, all k-spaces along the coil dimension were masked identically for
each echo. Figure 4.5 provides a graphical summary of the acquisition process, the
selection of random lines, and the division of the acquired k-space locations into the two
disjoint sets, Θ and Λ. The k-space is represented in a 4D space, highlighting the different
dimensions of the original data: Phase Encoding (PE), Readout (RO), echo, and coil.

4.3.1 Training

The initial goal of the training process using this self-supervised strategy was to delib-
erately overfit the proposed method to a single slice from the 3T LPM dataset. This
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Figure 4.5: A graphical representation of the division of the acquired k-space locations, Ω,
into two disjoint sets, Θ and Λ, is provided. The k-space is shown in a 4D space, where the
different dimensions of the original data—Phase Encoding (PE), Readout (RO), echo, and coil—
are highlighted.

was implemented by applying 10 distinct random masking patterns (as shown in Figure
4.4) to the k-space data of that slice. As detailed in the previous section, random mask-
ing was implemented such that, for each pattern, the masks were consistent along the
coil dimension but varied across the echo dimension. This approach exposed the model
to multiple masked versions of the same input, potentially accelerating the overfitting
process. Overfitting is a critical initial step in the development of a machine learning
model. If overfitting is not achieved on a single slice, it may indicate potential limitations
in the model’s architecture or its ability to generalize effectively across a larger dataset.
The first step in this process involved reconstructing T2 and M0 maps from the k-space
data of a single slice using the different random masking patterns. The reconstruction
was limited to the k-space locations defined by the set Θ, which varied for each random
pattern. As a result, each reconstruction produced a unique set of T2 and M0 maps, all
derived from the same slice but using different randomly masked k-space data. These
maps were then used as input to train the model.

Key decisions were made regarding the model training process. Instead of using both
the T2 and M0 maps as input, only the R2 map was used. The R2 map is defined as the
inverse of the T2 map, i.e., R2 = 1

T2
. This choice was made to enhance the stability of

pixel values during training and simplify the task by focusing the model on denoising a
single map at a time, rather than addressing both maps simultaneously. Before feeding
the R2 map into the model, a standardization process was applied. The mean value, µ,
was subtracted from the R2 map, and the result was divided by the standard deviation, σ,
to normalize the data. The final output was obtained by adding the original normalized
R2 map to the normalized residual output of the model, weighted by a λ coefficient. This
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coefficient was used to control the influence of the model’s output on the input to the
loss function.

Next, a denormalization step was applied to restore the R2 map to its original scale.
This was done by reintroducing the mean and standard deviation values. After de-
normalization, the model’s output remained in the parametric space. As part of the
self-supervised strategy, the loss was computed based on the discrepancy between two
elements: the k-space locations Λ (which were acquired but not used during the recon-
struction) and the model’s output. The model’s output was transformed back into the
k-space domain and evaluated at these same locations, using the forward model of the in-
verse problem. Specifically, the self-supervised k-space loss used in this work was defined
as follows:

L = 1
2

(︄
T E∑︂
t=2

⃦⃦
EΛ,t (f (yΘ, EΘ; θ)) − yΛ,t

⃦⃦
2⃦⃦

yΛ,t

⃦⃦
2

+
T E∑︂
t=2

⃦⃦
EΛ,t (f (yΘ, EΘ; θ)) − yΛ,t

⃦⃦
1⃦⃦

yΛ,t

⃦⃦
1

)︄
, (4.9)

where TE represents the total number of echo times. The total loss is computed as the
average of the normalized L1 and L2-norms, calculated from the residuals (discrepancies)
between the Λ-locations of the model’s output, transformed back into the k-space, and
the originally acquired data. To correctly apply the forward model to the output of the
model, the M0 map was also required. The chosen approach was to use the same M0
map reconstructed from the k-space locations in Θ.

The complete pipeline of the proposed strategy is summarized in the flow chart below
( see Figure 4.6).

The model and training scripts were implemented in Python using the PyTorch frame-
work [48]. In the initial attempt to overfit the model to a single slice of the 3T LPM
dataset, training was conducted over 80 epochs, with different learning rates explored.
The λ coefficient was varied within the range [0,1], while the ratio between the k-space
locations Λ and Ω was maintained constant at 0.05. The selected model was a U-Net, a
fully convolutional neural network originally designed originally for image segmentation
tasks [49]. The architecture consists of three main components: the encoder, the bottle-
neck, and the decoder, all interconnected by skip connections. The encoder progressively
reduces spatial resolution while increasing feature depth through convolutional blocks
followed by average pooling. The bottleneck processes the features at the lowest reso-
lution, and the decoder reconstructs the output by applying transpose convolutions and
skip connections, gradually increasing the resolution. Each convolutional block included
both instance normalization and LeakyReLU activation functions. The hyperparameters
used during the training process are summarized in the table below (see Table 4.5).

4.4 Image Space Strategy (N2S)
In the second denoising strategy implemented in this work, in this work referred to as
N2S, the perspective on the problem of denoising GRAPPATINI T2 maps was shifted.
Instead of considering the noisy k-space measurements as the initial high-dimensional
data (as done in the k-space strategy), the focus was placed on the T2 maps obtained
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Figure 4.6: Flowchart for the k-space strategy implemented in this work.

Hyperparameter Value
Epochs 80

Batch Size 1
Biases in Convolutions False

LeakyReLU Negative Slope 0.2

Table 4.5: Hyperparameters selected during the training of the model in the k-space strategy.

after the reconstruction considering the 3T LPM dataset. In this case, the dimensions of
the starting data could no longer be defined in the k-space domain but rather directly in
the image-space, consisting in the pixels forming a single T2 map.

As a result, the masking procedure, necessary to ensure that the neural network
could be considered J -invariant, was applied directly in the image space. This shift in
approach also implied that the loss function was defined in a different domain compared
to the k-space strategy. Specifically, the loss function was defined in the image space as
the discrepancy between the original values of specific pixels selected in the input map
and the predictions made by the neural network at those locations.

In each T2 map used as input to the model, a grid of pixels was replaced by a weighted
average of the surrounding neighborhood after a kernel was applied to each pixel in the
2D map (see Equation 4.10). The surrounding neighborhood was defined as the 4-
connected set of pixels with respect to the pixel where the kernel was centered. The
network could then be considered J -invariant, as the weighted average was computed
using only the surrounding pixel values rather than the original noisy value selected by
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Figure 4.7: Flow chart masking procedure on input and noisy T2 map.

the center of the kernel. The use of the average kernel provided an initial estimate of the
pixel value for the masked positions, but the approach would still be valid if all values
in these masked positions had been set to zero, as was done in the k-space strategy,
where k-space locations were directly masked and set to zero following the application of
a binary mask to the k-spaces acquired at different coils and echo times.

The masks used in this strategy were binary (see Figure 4.7), selecting a grid of pixels
from each map provided as input to the model. The crucial hyperparameter defining the
masks was the grid size, which was determined by the number of pixels in both directions
of a Cartesian grid between one selected pixel and another.

kernel =

⎡⎢⎣ 0 0.25 0
0.25 0 0.25

0 0.25 0

⎤⎥⎦ (4.10)

The model’s loss function was then designed to minimize the discrepancy between
the predictions made by the model at the initially masked pixel locations and their
original values. The model selected for this strategy was a deep convolutional neural
network specifically designed for image denoising (DnCNN) [50]. It consisted of a series
of convolutional layers with ReLU activations and batch normalization. The network
had an input layer that mapped the input image channels to 64 feature maps using a
3 × 3 convolutional filter. This was followed by multiple hidden layers, each employing
3 × 3 convolutions, batch normalization, and ReLU activation to progressively refine the
learned features. The final layer was designed to map the 64 feature maps back to the
original number of channels, ideally producing a denoised version of the input image (see
Figure 4.8).

4.4.1 Training

The model and training scripts were implemented in Python using the PyTorch framework
[48]. Training was conducted over 500 epochs, with a learning rate of 0.01. The chosen
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Figure 4.8: Schematic representation of the DnCNN model used in the Image Space strategy.

loss function was the L1 loss, and the ADAM optimizer was employed. The batch size
was fixed at 5, and, as mentioned in Section 4.1, the available data were split to create
a validation set for tracking the model’s performance during training. In each iteration
of training, a different masking operation was applied to the entire batch, relative to the
previous iteration. This operation depended on the current iteration number and the
grid size of the mask, which introduced an offset in the grid of selected pixels. The mask
was changed dynamically during each iteration. Specifically, the grid of pixels was shifted
according to the iteration number and the grid size, creating a new selection of pixels at
every training step. The shifting pattern was influenced by the current iteration, ensuring
that the batch was masked differently compared to the prior iteration. This resulted in
varied input configurations, which helped the model generalize better by learning from
different masked perspectives throughout each training iteration.

As pre-processing steps, an additional masking operation and a normalization were
applied to the T2 maps. The masking operation consisted of a threshold-based selection
using the values of the M0 map, where the threshold was set to 10% of the mean M0 value.
This procedure was performed to isolate and discard points with near-zero signal (e.g.,
background regions). For normalization, a Min-Max scaling technique was employed to
ensure all input values to the model fell within the range [0,1]. Specifically, the Min-Max
scaling method was defined by:

ynorm = y − ymin
ymax − ymin

(4.11)

where y is the input T2 map to the model.
The hyperparameters selected during the training process of the model are summa-

rized in the table below (see Table 4.6).
The complete pipeline of the steps involved in the training process for the image space

strategy is shown in the Figure 4.9.
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Hyperparameter Value
Epochs 500

Learning Rate 1e−2
Batch Size 5

Loss L1
Optimizer Adam

Mask Grid Size 12
Num. hidden layers 10

Table 4.6: Hyperparameters selected during the training of the model in the image-space strat-
egy.

Figure 4.9: Pipeline of the training process in the Image Space strategy.

4.4.2 Inference

At inference, the performances of the model were evaluated on the entire T2 map test
set. The generation of the test set was performed as explained in Section 4.1.2. The
complete pipeline for the inference process is shown in Figure 4.10.

For the final output of this strategy, a decision was made to consider the linear com-
bination of the model’s output and the original T2 map provided as input. This approach
was implemented to better control the blurring effect introduced by the denoising method.
As highlighted in the original paper discussed in the previous section (see Section 4.2),
this linear combination yielded the best results in terms of signal-to-noise ratio (SNR)
improvement. To justify the choice of the interpolation coefficient, α, a fully sampled
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Figure 4.10: Schematic representation of the inference step in the Image Space strategy.

dataset was utilized for fine-tuning, specifically the 3T fully sampled dataset, detailed in
Section 4.1. The tuning process involved performing a fully sampled reconstruction to
serve as a reference, followed by the introduction of Gaussian noise (µ = 0, σ = 3×10−5)
to the fully sampled k-space data. Then, T2 maps were reconstructed from the corrupted
k-space data, and the mean squared error (MSE) was computed relative to the fully
sampled reference, where MSE was defined by the following relation:

MSE = 1
N

N∑︂
i=1

(yi − ŷi)2 (4.12)

The interpolation coefficient α was varied between 0 and 1, with the final output
computed as the weighted sum:

Denoised T2 map = α · Model Output + (1 − α) · Input T2 Map. (4.13)

4.5 Statistical Analyses

4.5.1 Scan-Rescan Reproducibility

Scan-rescan reproducibility is a critical aspect when evaluating quantitative MRI mea-
surements. Ensuring the robustness and accuracy of parameter estimation is essential for
a potential clinical adoption of the technique. The reproducibility of T2 values using the
GRAPPATINI sequence has already been demonstrated in the study by Gruenebach et
al. [51]. With the aim to perform the same evaluation, two different tools were used to
ensure that the denoising methods did not alter the T2 values originally estimated with
the GRAPPATINI method. First, a definition of regions of interest (ROIs) was necessary.
To accurately and automatically segment specific tissues across the entire volume probed
by the GRAPPATINI sequence, an internal tool for brain segmentation, Morphobox [52],
was employed. The segmentation tool was applied across all slices of both scan and res-
can acquisitions for all subjects included in the test set. The selected ROIs for this study
were:

• Frontal White Matter (FWM)
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• Frontal Gray Matter (FGM)

• Thalamus (TH)

• Globus Pallidus (GP),

considering both the right and the left hemisphere.
The output of the segmentation tool consisted of binary masks for each of the regions

across the entire volume, as demonstrated in the figure below for a single slice (see Figure
4.11). Once the ROIs were defined, statistical analysis were performed on the selected
regions and the extracted T2 values. As a pre-processing step, morphological erosion was
applied to the binary masks using a 3×3 structural element (kernel) for a single iteration
(see Figure 4.11 for a visual representation).

Figure 4.11: ROIs selected in the scan-rescan reproducibility analysis. The effect of the erosion
process is highlighted.

This operation was performed to reduce the impact of partial volume effects when
calculating the median T2 values within the selected regions of interest (ROIs). Afterward,
the median T2 values were computed for each of the four different ROIs and to further
minimize the influence of any remaining partial volume effects, outliers were removed from
the distributions using the Median Absolute Deviation (MAD) method. Specifically, T2
values with a modified Z-score exceeding a threshold τ were excluded:

T2, filtered = {T2,i ∈ T2 | Zi = |T2,i − T2̃|
MAD ≤ τ},

where T2̃ is the median T2 in one of the four ROIs, and MAD is the median absolute
deviation between a T2 value in the ROI and the median value of that ROI.
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Consequently, a linear regression was conducted between the median T2 values in the
four different regions considering the scan and rescan sessions. Ideally, if the T2 values
were fully reproducible across sessions, the linear regression would yield a correlation
coefficient of 1 and an intercept of 0. To assess the quality of the linear fit, the R2

coefficient, known as the coefficient of determination or the squared value of Pearson’s
correlation coefficient, was also computed using the relation:

R2 =
(︃Cov(X, Y )

σXσY

)︃2
(4.14)

Additionally, scan-rescan reproducibility was evaluated using a Bland-Altman analysis
[53]. The Bland-Altman plot was computed for both scans and rescans within the same
method, to assess any potential intra-method bias and to establish intra-method limits
of agreement. Furthermore, the Bland-Altman analysis was also applied between the two
methods, identifying any potential bias between them and highlighting the variability in
the measurements. In the Bland-Altman analysis, the median T2 values were computed
for the four different ROIs selected for each subject in the test set. The difference between
the median values of scan and rescan (when assessing intra-method reproducibility) and
the difference between the median values in the two methods (when assessing inter-
method reproducibility) was plotted on the y-axis, while the mean of the medians was
plotted on the x-axis. To calculate the limits of agreement, a factor of 1.96 times the
standard deviation of all the differences in median values across the four regions was
applied.

4.5.2 Quantitative Metrics

Coefficient of Variation (COV)

With the final aim of assessing the quality and effect of the denoising, different metrics
were used considering different datasets. Considering the 3T LPM Dataset, in addition
to the evaluation of the scan and rescan reproducibility in four different regions, the
Coefficient of Variation (COV) was also evaluated considering the same regions, between
the original and noisy T2 maps and the denoised version for every single subject included
in the test set. The COV was computed considering the following relation:

COV [%] = σ

µ
× 100, (4.15)

where µ is the mean T2 value and σ the standard deviation of the T2 values for
the specific region considered. In addition, a statistical test was implemented to evaluate
whether a significant statistical difference existed between the distribution of COV values
in the regions before and after denoising using the implemented methods. The statistical
test used is the Wilcoxon test. The Wilcoxon test is a non-parametric statistical test
specifically designed to compare two distributions of data, determining whether there is
or not a significant difference in the means [54].

The p-value selected for this study was 0.05, which was used as the threshold for
determining statistical significance.
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Contrast to Noise Ratio (CNR) and Contrast Ratio (CR)

Considering the 4 different datasets at 7T, two other metrics were implemented to assess
the quality and performances of the denoising method. Let Mi be the median value of
T2 in the selected ROIs i and IQR the Interquantile Range considering the 25th and 75th

percentile of one of the two ROIs being considered, it is possible to define the Contrast
to Noise Ratio (CNR) and the Contrast Ratio (CR) as following:

CNR = M1 − M2
IQR

(4.16)

CR = M1
M2

(4.17)

In this case, the selection of regions of interest (ROIs) was performed manually rather
than automatically. Specifically, the segmentation tool implemented in ITK-SNAP [55]
was used to manually delineate the ROIs. For the brain datasets, one ROI was drawn in
the thalamus, and another in the hippocampal tissue. In the knee dataset, one ROI was
drawn in the cartilage, and another one in the muscle. The selected ROIs used in the
metric evaluation are shown in the figure below (see Figure 4.12).

Figure 4.12: ROIs selected for the computation of the metrics of Contrast to Noise Ratio
(CNR) and Contrast Ratio (CR) in the four available dataset at 7T, different in resolution and
in anatomy.

Finally, the same metrics were used to evaluate the effect of the denoising achieved
through the self-supervised strategies, in comparison to traditional methods already im-
plemented inside the pipeline of the online reconstruction, i.e. the direct output obtained
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at the scanner. The scanner’s reconstruction pipeline includes built-in post-processing
and filtering using standard denoising methods, and comparing the performance of the
deep learning-based denoising methods to these traditional techniques was essential for
assessing the potential advantages of the proposed approaches.
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Chapter 5

Results

In this chapter, the results of the experiments outlined in Chapter 4 are presented.
First, the outcomes of the k-space strategy are discussed, followed by the results of the
image-space strategy. Next, the findings from the scan-rescan reproducibility analysis
and the quantitative metrics used to evaluate the denoising performance are detailed.
Finally, four distinct proofs-of-concepts on 7T datasets are introduced, with the final
objective of demonstrating the generalizability of the model to datasets entirely different
from those used during its training.

5.1 K-Space Strategy

As outlined in Section 4.3, the initial goal of the k-space strategy was to deliberately
overfit the model to a single slice from a single subject in the 3T LPM dataset. The net-
work was trained for a total of 80 epochs, and the results are summarized in Figure 5.1.
Three learning rates were tested (1e−3, 1e−4, and 1e−5) along with three different values
(0.2, 0.5, and 1) for the λ coefficient, which weights the model output in the final T2 map.
Despite exploring these parameter combinations, none successfully denoised the T2 map.
While certain relative difference maps appeared promising for noise reduction, they did
not translate into effective denoising when evaluated visually on the T2 maps themselves,
where high relative error persisted. Moreover, the strategy consistently exhibited a neg-
ative bias in the T2 values, resulting, under the same color scale, in hypointense regions
that were particularly evident in the white matter.

5.2 Image Space Strategy

Training Results

The model’s performances were initially evaluated by analyzing the training and valida-
tion loss curves. As shown in Figure 5.2 , the training loss, in blue, consistently decreased
over the course of the training process, indicating that the model was effectively learning
from the training data. The validation loss, in red, also exhibited a downward trend,
though it was observed to slightly reach a plateau after 300-400 epochs, suggesting that
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Figure 5.1: Results of the overfitting process on a single slice obtained from a subject of the
3T LPM Dataset. (a) shows the original and noisy GRAPPATINI T2 map. In the subsequent
columns, different combinations of the λ parameter and learning rate of the model were tested.
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the model had reached a point of diminishing returns on the validation set. The gap
between the training and validation losses remained narrow across the epochs, imply-
ing minimal overfitting, and further supporting the model’s ability to generalize well to
unseen data.

Figure 5.2: Training and validation loss curves in the training process of the model in the image-
space strategy.

Interpolation Coefficient α

In the image-space strategy, the final model output at inference was linearly combined
with the input T2 map (see Equation 4.13), necessitating the selection of an interpola-
tion coefficient, α. The results of this selection process, applied to a fully sampled dataset
acquired at 3T, artificially corrupted with Gaussian noise, and subsequently denoised us-
ing the same strategy adapted for the larger dataset, are presented below (see Figure
5.3). Panel (a) illustrates the T2 map obtained from fully sampled k-spaces. Panel (b)
shows the impact of Gaussian noise corruption on the T2 map, derived from artificially
corrupted k-spaces. For this analysis, the DnCNN model was trained to overfit a sin-
gle T2 map derived from the corrupted fully sampled k-spaces, as described in Section
4.4.2. Panel (c) in Figure 5.3 shows the denoised T2 map resulting from this overfitting
process. Finally, the MSE was evaluated between the denoised version of the T2 map and
the original fully sampled GRAPPATINI considering values of α in the range [0,1]. The
minimum point of the MSE curve as a function of the α coefficient is highlighted with
a red dot (see Figure 5.3). For the results presented in this chapter, the interpolation
coefficient α was set to 0.7. The choice to interpolate the original input and the denoised
output was made to improve reconstruction accuracy and with future clinical applications
in mind, envisioning a user-friendly implementation in which α could be adjusted directly
on the scanner immediately after the reconstruction, to the preference of the radiologist.
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Figure 5.3: (a) GRAPPATINI reconstruction of the fully sampled 3T Dataset. (b) GRAPPA-
TINI reconstruction starting with fully-sampled k-spaces but with added artificial Gaussian noise
(µ = 0, σ = 3e − 5). (c) shows the result of the image-space strategy applied to the corrupted T2
map. (d) MSE as a function of the linear interpolation coefficient α.

3T LPM Dataset Results

As detailed in Section 4.1, the 3T LPM Dataset was divided into two sets for the
model’s training process. Specifically, 32 subjects were included in the training set, while
the remaining 20 formed the test set. The model’s performances on the test set were
evaluated and are presented in this section. Figure 5.4 and Figure 5.5 provide a
representative, though non-exhaustive, illustration of the denoising results achieved with
the image-space strategy. A subset of subjects from the test set was selected, focusing
on a specific subset of slices to demonstrate the denoising effect across the full range
of slices. This selection spans from the lowest slices, emphasizing structures like the
cerebellum, to the uppermost slices, where different anatomical structures are visible
simultaneously. Columns (a) and (b) display T2 maps reconstructed using the standard
GRAPPATINI method. Columns (c) and (d) present the results of the image-space
strategy implemented in this work, applied to the same slices shown in Columns (a) and
(b). Specifically, Columns (b) and (d) provide zoomed-in views of anatomical structures,
highlighting the impact of the denoising method and the level of noise originally present
in the T2 maps immediately after the GRAPPATINI reconstruction. Finally, column
(e) shows the relative difference maps between the original and noisy T2 map and the
denoised version.

Scan-Rescan Reproducibility

In this section, the results of the scan-rescan reproducibility analysis performed on the
3T LPM dataset are presented. Linear regression was performed on the median T2 values
obtained from four different ROIs, as described in Section 4.5.1. The analysis was
conducted for both the original GRAPPATINI method and the T2 maps denoised using
the image-space strategy. This study included all subjects from the test set, as detailed in
Section 4.1. The results, shown in Figure 5.6, demonstrate that for the GRAPPATINI
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Figure 5.4: T2 maps reconstructed using (a) standard GRAPPATINI, (c) applying the image-
space strategy (N2S), with detailed views on anatomical regions shown in (b) and (d) respectively.
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Figure 5.5: T2 maps reconstructed using (a) standard GRAPPATINI, (c) applying the image-
space strategy (N2S), with detailed views on anatomical regions shown in (b) and (d) respectively.
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method, the linear regression yielded a slope of 0.99, an intercept (bias) of 0.94 ms, and
an R2 coefficient of 0.98. Similarly, for the image-space strategy (referred to as N2S in
the figure), the regression produced a slope of 0.98, an intercept of 1.78 ms, and an R2

coefficient of 0.98.

Figure 5.6: Scatter plot diagrams comparing median T2 values obtained using GRAPPATINI
(a) and N2S (b) across the selected ROIs during scan and rescan acquisitions (FWM: Frontal
White Matter, FGM: Frontal Gray Matter, Thalamus, and GPallidus: Globus Pallidus). A linear
regression is performed, with the resulting linear model shown as a red line. The equation for the
linear model and the corresponding R2 coefficient are displayed in the top left corner of each plot.

The second analysis performed was a Bland-Altman analysis to evaluate potential
biases or systematic differences between the original GRAPPATINI method and the pro-
posed image-space denoising strategy. This analysis demonstrates that the new method
does not statistically alter the T2 values, given that the reproducibility of the GRAP-
PATINI T2 maps had already been established in previous studies. The Bland-Altman
analysis was conducted to evaluate the agreement between GRAPPATINI and N2S mea-
surements considering two consecutive scanning sessions and across four brain regions
of interest: Frontal White Matter (FWM), Frontal Gray Matter (FGM), Thalamus, and
Globus Pallidus (GPallidus). For every subject in the test set the median T2 was ex-
tracted from the four ROIs and then represented with a dot in the plot. As highlighted
by the results shown in Figure 5.7 the mean bias between the two methods was -0.34
ms, as indicated by the red dashed line, suggesting a small average offset between the
two methods. The limits of agreement in this case ranged from -2.05 ms to +1.38 ms, as
represented by the gray dashed lines and the blue area. Approximately 95% of the data
points fall within these limits, as expected under the assumption of the normality of the
data. The plot also reveals the distribution of differences across the range of mean mea-
surements (55 ms to 85 ms). Differences do not appear evenly distributed; for instance,
a slight clustering of data points near the upper limit of agreement is observed in certain
regions, particularly in the FGM. Additionally, there is one clear outlier with a difference
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exceeding -6 ms in the GPallidus region. Regional variations are evident, as indicated by
the color-coded points: differences in the FWM and Thalamus regions cluster near the
mean bias, while differences in the GPallidus and FGM regions show larger variability.

Figure 5.7: Bland-Altman diagram illustrates the comparison of GRAPPATINI median T2 values
across the selected ROIs (FWM: Frontal White Matter, FGM: Frontal Gray Matter, Thalamus,
and GPallidus: Globus Pallidus). The gray dotted lines represent the 95% confidence interval,
while the red dotted line indicates the bias between the two methods. The y-axis shows the
differences between the median T2 values and the mean of the two measurements, with values
expressed in milliseconds (ms). Each dot represents a subject in the test set.

Subsequently, a second Bland-Altman analysis was conducted to assess the scan-
rescan reproducibility of the two methods, this time evaluated separately. The primary
objective was to identify any potential intra-method biases or systematic differences. Fig-
ure 5.8a shows the result of the analysis considering the original GRAPPATINI method.
The mean bias evaluated was -0.02 ms, indicating a small average difference between the
two measurements. The limits of agreement ranged from -2.13 ms to +2.09 ms, encom-
passing the expected 95% of the differences between repeated scans. The differences
were plotted across the range of mean T2 values (55 ms to 85 ms). The distribution of
differences appeared consistent, with no apparent trend or proportional bias observed.
Most data points lie within the limits of agreement, with only a single outlier detected
at a difference below -6 ms in the GPallidus region. Regional differences show similar
clustering behavior, with FWM and Thalamus exhibiting tighter distributions around the
mean bias. The remaining two regions displayed slightly greater variability in differences
but remained within the limits of agreement. Figure 5.8b presents the results from the
analysis using the denoising strategy in the image-space (N2S). The mean bias calculated
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was -0.05 ms, indicating a negligible average difference between scan and rescan measure-
ments. The limits of agreement delimited an area from -2.35 ms to +2.25 ms, including
approximately 95% of the differences between the two scans. The differences are plot-
ted against the mean T2 values, which range from 55 ms to 85 ms. The distribution of
differences appears consistent, with no evident proportional bias across the measurement
range. One outlier, falling below -6 ms in the GPallidus region, was observed, consistent
with findings from the other analyses. As seen in the GRAPPATINI method, the FWM
and Thalamus regions show a tight distribution of points near the mean bias, indicating
low variability. However, the other two regions exhibit higher variability. Despite this,
all subjects remain within the established limits of agreement.

Figure 5.8: Bland-Altman diagrams comparing GRAPPATINI (a) and N2S (b) median T2 values
across the selected ROIs considering scan and rescan acquisitions (FWM: Frontal White Matter,
FGM: Frontal Gray Matter, Thalamus, and GPallidus: Globus Pallidus). The gray dotted lines
represent the 95% confidence intervals, and the red dotted lines indicate the bias between the two
methods. The y-axis shows the differences between the median T2 values and the mean of the two
measurements, with values expressed in milliseconds (ms). Each dot corresponds to a subject in
the test set.

An additional analysis was performed on the same four extracted ROIs, considering
all subjects in the test set, to evaluate the coefficient of variation (COV), as defined in
Section 4.5.2. For the FWM, the GRAPPATINI method yielded similar median COV
values of 11.99% and 11.91% for the scan and rescan sessions, respectively. In contrast, the
N2S method produced notably lower median COV values of 7.75% in the scan session and
7.77% in the rescan session. However, a few outliers were observed for GRAPPATINI
in the rescan session, with values exceeding 15%, suggesting higher variability under
these conditions. In the FGM, the GRAPPATINI method demonstrated similar inter-
scan median COV values of 14.71% and 14.20%, which were significantly higher than the
corresponding values obtained with the N2S method, at 10.52% and 10.28% for scan and
rescan sessions, respectively. For the Thalamus, the GRAPPATINI method reached the
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highest median COV values among all regions, with 16.22% and 15.88% for the scan and
rescan sessions. By comparison, the N2S method resulted in much lower median values
of 8.62% and 8.66% for the same conditions. Finally, in the Globus Pallidus, the N2S
reported an higher COV with respect to GRAPPATINI, with median values of 11.08%
and 11.40% for scan and rescan sessions, respectively, compared to 15.88% and 16.07%
for GRAPPATINI.

Figure 5.9: Box plot diagrams comparing the coefficients of variation for GRAPPATINI and N2S
across the selected ROIs (FWM: Frontal White Matter, FGM: Frontal Gray Matter, Thalamus,
and GPallidus: Globus Pallidus) and considering scan and rescan sessions (SC-RS).

Figure 5.10 represents a subset of the box plots shown in the previous figure (see
Figure 5.9), focusing on the COV values for the GRAPPATINI and N2S methods across
the same four ROIs in the first of the two sessions of scanning. In this plot, a Wilcoxon
statistical test was performed to assess the significance of the differences between the
two methods. The regions marked with an asterisk (*) indicate a statistically significant
difference, with p-values below 0.05. Statistically significant differences were found across
all the four ROIs.

5.2.1 Proofs of Concept : 7T Datasets

As a final step in the evaluation of the performances of the model trained using the
image-space strategy, an analysis of the capabilities of the model to generalize to T2
maps completely different from the ones used during the training and testing phases was
performed. Four distinct datasets were acquired at 7T and the results are shown in this
section.

Coronal Brain

Three datasets with the same anatomical structure (brain) as the training dataset were
acquired, but with higher resolutions and a different orientation as well as acquired at
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Figure 5.10: Box plot diagrams comparing the coefficients of variation for GRAPPATINI and
N2S across the selected ROIs (FWM: Frontal White Matter, FGM: Frontal Gray Matter, Thala-
mus, and GPallidus: Globus Pallidus). A Wilcoxon statistical test was performed, and statistically
significant differences are highlighted.

different field strength. Specifically, the lower in-plane resolution was set in a different
plane compared to the one used for the training samples. For all these datasets, T2
map reconstruction was performed using the standard GRAPPATINI method, followed
by denoising using the model trained on the 3T LPM dataset. As a comparison with
traditional methods of denoising, a comparison with the reconstruction directly performed
at the scanner was evaluated.

The first dataset had a resolution of 0.5 × 0.5 × 2.0mm3, in contrast to the 0.7 ×
0.7 × 3.3mm3 resolution of the 3T LPM dataset, and the T2 maps were coronal rather
than axial slices. Figure 5.11 presents a comparison of T2 maps generated with the
original and standard GRAPPATINI method, denoised with the image-space strategy
(N2S), and the online reconstruction, directly obtained at the scanner. Panel (a) displays
the original T2 map obtained with the GRAPPATINI method, while panel (b) shows
the T2 map after denoising with the image-space strategy (N2S). Panel (c) represents
the T2 map directly obtained from the scanner, referred to as "online reconstruction".
Panels (d), (e), and (f) provide detailed views of the hippocampus region corresponding
to panels (a), (b), and (c), respectively, while panels (h), (i), and (j) present detailed
views of the thalamus region. The consistent colormap scale across all panels allows for
direct comparison of signal intensities and visual differences in noise level between the
methods. Moreover, panels (d), (e) and (f) highlights notable differences in the noise
levels and structural clarity among the three methods. Panel (d), corresponding to the
GRAPPATINI method, shows higher levels of noise, which are obscuring finer anatom-
ical details in the hippocampus tissue. In contrast, panel (e), obtained after applying
the image-space denoising strategy (N2S), demonstrates a significant reduction in noise,
resulting in improved clarity and better preservation and recovery of the hippocampal
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structure and edges. Panel (f), representing the online reconstruction directly obtained
at the scanner, exhibits higher noise levels compared to panel (e), but the noise pattern
appears more uniform than in panel (d). Overall, the N2S method provides the cleanest
view of the hippocampus and thalamus, with both reduced noise and sharper visualization
of anatomical boundaries.

Method CNR (↑) CR (≈) COVT hal(%)(↓) COVHippo(%)(↓)
GRAPPATINI 2.697 1.370 9.925 16.590

N2S 5.566 1.382 6.259 11.208
Online Reconstruction 3.863 1.407 9.148 15.355

Table 5.1: CNR, CR and COV values for the coronal brain dataset at 7T with 0.5 × 0.5 × 2.0
mm3 resolution.

In Table 5.1, the Contrast-to-Noise Ratio (CNR) and Contrast Ratio (CR) for the
three methods are reported. Additionally, the COV, as defined in Section 4.5.2, was
computed for the two ROIs presented in Section 4.5.2, and the results are presented in
the same table. The N2S method achieved the highest CNR value (5.566), with almost
double the values from both GRAPPATINI (2.697) and the online reconstruction (3.863).
The CR values, representing the ratio between the median T2 values across the ROIs se-
lected, were relatively consistent across all methods, with GRAPPATINI at 1.370, N2S
at 1.382, and the online reconstruction at 1.407. Regarding the coefficient of variation
(COV), the lowest COV value was observed with the N2S method. In the thalamus ROI,
the COV was 6.259%, representing a reduction of approximately three percentage points
compared to both GRAPPATINI (9.925%) and the online reconstruction (9.148%). Sim-
ilarly, in the hippocampus ROI, the COV was 11.208%, showing a decrease of nearly five
percentage points compared to GRAPPATINI (16.590%) and the online reconstruction
(15.355%).

The second and the third brain datasets acquired at 7T were acquired with a higher
spatial resolution compared to the first one. As a consequence, the initial level of noise
in the T2 maps is significantly higher than in the previous case. In Figure 5.12 and
Figure 5.13, the comparison between the three methods are presented, considering the
two datasets obtained from two different subject, here referred to as "001" and "002". As
expected, the higher resolution in these datasets further amplifies the initial noise level
in the T2 maps, which is particularly evident in the GRAPPATINI reconstruction (a).
The denoising effect of the N2S method (b) remains consistent even at higher resolution,
effectively reducing the noise and allowing for improved visualization of the hippocam-
pus compared to both GRAPPATINI and the online reconstruction (c). The zoomed-in
views of the hippocampus (d), (e), and (f) highlight the capability of N2S to preserve
anatomical structures and enhance the edges and sharpness of the map more effectively
while maintaining a much lower noise level. The level of noise in the GRAPPATINI
map is quite high, and even the traditional denoising methods included in the online
reconstruction are not able to maintain their performance at this high resolution.

Table 5.2 reports the Contrast-to-Noise Ratio (CNR) and Contrast Ratio (CR)
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Figure 5.11: Comparison between T2 maps using 3 methods at 0.5 × 0.5 × 2.0 mm3 resolution.
(a) shows the GRAPPATINI T2 map used as input to the model, (b) displays the output of the
denoising method, and (c) the T2 map obtained directly at the scanner. Figures (d), (e) and (f)
provide more detailed views of the hippocampus regions, while (h), (i) and (j) present detailed
views of the thalamus.
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Figure 5.12: Comparison between T2 maps using 3 methods at 0.3 × 0.3 × 1.5 mm3 resolution,
considering the subject 001. (a) shows the GRAPPATINI T2 map used as input to the model, (b)
displays the output of the denoising method, and (c) the T2 map obtained directly at the scanner.
Figures (d), (e) and (f) provide more detailed views of the hippocampus regions, while (h), (i)
and (j) present detailed views of the thalamus.
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Method CNR (↑) CR (≈) COVT hal(%)(↓) COVHippo(%)(↓)
GRAPPATINI 1.845 1.397 17.961 22.640

N2S 3.240 1.385 9.616 15.817
Online Reconstruction 1.485 1.412 22.350 18.575

Table 5.2: CNR, CR and COV values for the coronal brain dataset at 7T with 0.3 × 0.3 × 1.5
mm3 resolution for the Subject 001.

values for the coronal brain dataset at 7T with a resolution of 0.3 × 0.3 × 1.5mm3. Addi-
tionally, the COV was computed for the two ROIs, and the results are presented in the
same table. The N2S method achieved a CNR value of 3.240, which is an increase of 75%
with respect to GRAPPATINI (1.845) and 95% with respect to the online reconstruc-
tion (1.661). The CR values remain consistent across methods with GRAPPATINI at
1.397, N2S at 1.385, and the online reconstruction slightly higher at 1.443. Considering
the COV values, the lowest values were observed with the N2S method for both ROIs,
at 9.616% and 15.817%. This represents a reduction of approximately eight percentage
points compared to the GRAPPATINI method (17.961% and 22.640%) for both ROIs.
Furthermore, with respect to the online reconstruction, the COV value in the thalamus
ROI was reduced by more than ten percentage points (22.350%), and by approximately
three percentage points in the hippocampus ROI (18.575%).

Method CNR (↑) CR (≈) COVT hal(%)(↓) COVHippo(%)(↓)
GRAPPATINI 0.846 1.238 26.419 24.878

N2S 1.513 1.216 12.180 16.446
Online Reconstruction 0.556 1.225 27.453 31.642

Table 5.3: CNR, CR and COV values for the coronal brain dataset at 7T with 0.3 × 0.3 × 1.5
mm3 resolution for the Subject 002.

Eventually, Table 5.3 reports the CNR and CR for the third and last brain dataset
acquired at 7T. The COV evaluated on the two ROIs are also reported. The N2S method
achieved a value of 1.513, higher than both GRAPPATINI (0.8462) and the online recon-
struction (0.673). The CR values remain consistent across methods with GRAPPATINI
at 1.238, N2S at 1.216, and the online reconstruction slightly higher at 1.225. The COV
was higher in both the GRAPPATINI and the online reconstructions compared to the
N2S method for both ROIs.

Sagittal Knee

The final dataset was a knee scan acquired at 7T, with a resolution of 0.4 × 0.4 × 3.0
mm3. Figure 5.14 presents the resulting T2 maps: Panel (a) depicts the reconstruc-
tion obtained using the GRAPPATINI method, column (b) shows the outcome of the
image-space strategy applied to the same slice, and Panel (c) illustrates the online re-
construction. Panels (d), (e), and (f) provide a magnified view of the cartilage region to
highlight the denoising effect, while panels (h), (i) and (j) present a view on a muscle
region. The CNR and CR values for these methods are summarized in Table 5.4. In this
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Figure 5.13: Comparison between T2 maps using three methods at 0.3×0.3×1.5 mm3 resolution,
considering the subject 002. (a) shows the GRAPPATINI T2 map used as input to the model, (b)
displays the output of the denoising method, and (c) the T2 map obtained directly at the scanner.
Figures (d), (e) and (f) provide more detailed views of the hippocampus regions, while (h), (i)
and (j) present detailed views of the thalamus.
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Figure 5.14: Comparison between three T2 maps of a sagittal slice of the 7T Knee dataset
acquired at 0.4 × 0.4 × 3.0 mm3 resolution. (a) shows the GRAPPATINI T2 map used as input to
the model, (b) displays the output of the denoising method, and (c) the T2 map obtained directly
at the scanner. Figures (d), (e) and (f) provide more detailed views of the cartilage region, while
(h), (i) and (j) present detailed views of a region in the muscle.
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dataset, the N2S method achieved a higher CNR value (7.667) compared to the original
GRAPPATINI reconstruction (3.763). Interestingly, the CNR of the online reconstruc-
tion was nearly identical to that of the N2S method (7.666). The contrast ratio (CR)
remained consistent across all three methods. Regarding the COV, better performance
was observed with the N2S method (3.616% and 13.278%) compared to the other two.

Method CNR (↑) CR (≈) COVMuscle(%)(↓) COVCartil(%)(↓)
GRAPPATINI 3.763 1.393 6.981 16.620

N2S 7.667 1.378 3.616 13.278
Online Recon. 7.666 1.379 3.645 16.896

Table 5.4: CNR, CR and COV values for the sagittal knee dataset at 7T with 0.4 × 0.4 × 3.0
mm3 resolution.
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Chapter 6

Discussions

In the previous chapter, the results of the two denoising strategies were presented. The
initial goal of this work, as described in the introduction, was to:

"...enhance the quality of T2 maps generated using the GRAPPATINI method by means
of a self-supervised ML approach (using Deep Learning), aiming for better results than

traditional methods."

Overall, the findings aligned well with this objective, particularly for the image-space
strategy. In contrast, the k-space strategy did not meet the initial expectations for its
potential. As an additional result, the performance of the model on the 7T datasets is
promising, highlighting the capability of the model to generalize. This chapter delves
into both the positive and negative outcomes of the work, as well as the main limitations
and insights that emerged over the course of the project.

6.1 K-Space Strategy
At least theoretically, this strategy appeared to be the most natural and logical approach
to follow in order to achieve a denoising strategy capable of "respecting" the original T2
values. By considering a loss function directly defined in k-space, a better smoothing
of the T2 values was expected, as the physics underlying the imaging process would be
inherently accounted for within the self-supervised framework itself. The concept was
to incorporate a data-consistency step into the denoising strategy, as one of the most
important aspects of the approach was to ensure that the statistical values remained
unaltered, given their intrinsic physical significance. Undoubtedly, the knowledge of the
forward model was, and still is, a significant advantage to leverage. However, despite
these theoretical strengths, the k-space strategy did not perform as intended, revealing
substantial challenges that limited its practical success. Different combinations of learning
rate and the λ coefficient failed to produce the expected results. These two parameters
were initially examined to manage the influence of the model itself on the input to the
loss function. This was done to ensure better control over the computation of the loss
and the subsequent updates to the model’s weights. Moreover, the model was designed
to be residual, meaning the input was added back to the output. This approach aimed
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to focus the learning process specifically on accurately modeling the behavior of the
noise itself. Additionally, the initial choice of the ratio between the acquired k-space
locations Ω and those used in the loss computation Λ was set at 0.05. This ratio was
already constrained by the initially available k-space locations in the dataset. For the 3T
LPM dataset, acquired with a GRAPPATINI acceleration factor of 10, a resolution of
0.7 × 0.7 × 3.3 mm3, and matrix sizes of 240 × 320 (considering 80% phase resolution),
only 48 phase encoding lines per echo were available after performing the GRAPPA
reconstruction. With a ratio ρ of 0.05, just two lines per echo were removed from the
reconstruction and subsequently used to evaluate the loss during each training iteration.
On one hand, this limitation constrains the amount of information the model can use
during its learning process. On the other hand, increasing the number of phase encoding
(PE) lines removed from the reconstruction, i.e. decreasing the cardinality of the Θ
set of k-space locations, would likely degrade the final quality of the T2 maps used as
input to the model itself. Additional undersampling along the PE dimension would
further amplify the ill-posed nature of the inverse problem, leading to a degradation in
reconstruction quality. Moreover, in the GRAPPATINI sequence, block sampling ensures
that the center of the k-space, where the highest concentration of information is stored,
is sampled only every AF/2 echoes (where AF is the total GRAPPATINI acceleration
factor). To preserve critical information for the reconstruction process, the central 24 lines
of these echo k-spaces were always included across all the random patterns generated, for
instance, in the attempt to reach overfitting on a single slice. This is why one of the initial
conjectures regarding the method’s failure was that attempting to denoise only two PE
lines in the k-spaces, most of which were far from the center of the k-space, may not have
provided the model with sufficient information to effectively learn the necessary features
for denoising the T2 maps. A second conjecture as to why the approach did not succeed
may lie in the structure of the loss function. The application of the forward model,
which includes the classical monoexponential decay, transforms the pair of M0 and T2
maps into a single image for each echo in the sequence. The signal-to-noise ratio (SNR)
of these images might already be sufficiently high that, when transformed into k-space,
the model does not receive enough information to effectively learn the noise pattern.
Finally, this strategy is implemented, as described in Section 4.3 with the k-spaces
after the GRAPPA reconstruction. Technically, this violates the original assumption of
independence between the input and output of the model. However, this was the only
viable solution, as dividing the k-space locations into the two sets Θ and Λ prior to
the GRAPPA reconstruction would have resulted in an unfeasible reconstruction. The
limited number of PE lines would not provide sufficient data to achieve a minimum of
the cost function during the non-linear optimization process defined inside the MARTINI
method.

6.2 Image Space Strategy

As an initial note on the developed strategy in the image-space, it is important to ac-
knowledge that the method technically violates one of the underlying assumptions of the
general self-supervised framework proposed in [45]. Specifically, in the image-space, the
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noise is spatially varying and, more importantly, correlated. However, the results pre-
sented in Section 5.2 demonstrate that, empirically, the method works effectively, with
a visible denoising effect.

Interpolation Coefficient

As described in Section 5.2, the final output of the image-space denoising strategy in-
volves performing a linear interpolation between the original GRAPPATINI T2 map (the
input to the model) and the model’s output. This interpolation is controlled by a coeffi-
cient α, whose selection, for the results of this work, was guided by the fully sampled 3T
dataset (see Section 4.1.1). This approach was selected as a first attempt to justify the
selection of the coefficient. Starting from fully sampled k-spaces, the reconstructed T2
map is characterized by an higher SNR. By introducing Gaussian noise to the k-spaces,
a noisy version of the same T2 map can be generated. Training the same DnCNN model
with identical hyperparameters to denoise this noisy T2 map would provide an initial
baseline method for evaluating the effectiveness of the α coefficient. Specifically, select-
ing α considering the minimum of the mean squared error (MSE) curve with respect to
the original GRAPPATINI T2 map could serve as an initial proof of its effectiveness in
achieving optimal denoising. However, this method introduces a potential limitation: the
lack of an automated and optimal process for selecting the interpolation coefficient. A
future improvement could involve developing a method to automatically determine the
optimal value of α, tailored to each specific case, perhaps including it directly into the
learning process of the model. Additionally, as discussed in Section 5.2, an alternative
solution might involve incorporating the interpolation coefficient as a configurable pa-
rameter within the reconstruction pipeline. This parameter could then be adjusted by
the radiologist analyzing the T2 map directly at the scanner, based on their assessment
of the overall blurriness and sharpness of the T2 map itself.

3T LPM Dataset

The 3T LPM dataset was partitioned into two sets: a training set comprising 32 out of the
52 subjects and a test set with the remaining 20 subjects. The model’s performance was
evaluated on the test set, with the results detailed in Section 5.2. The denoising effect is
visually evident in the zoomed views of selected anatomical structures, where it highlights
tissue boundaries more clearly, enhancing the visualization of specific regions. Relative
difference maps further illustrate the effectiveness of noise removal with the typical noise
pattern and no general bias. Most relative errors were confined around the 0% level,
indicating, potentially, an effective noise reduction. From a quantitative perspective, the
coefficient of variation (COV) was computed across four ROIs: Frontal White Matter
(FWM), Frontal Gray Matter (FGM), Thalamus, and Globus Pallidus (GPallidus). The
average reduction in the median COV across these ROIs was 5.20% and 4.98% for the
scan and rescan sessions, respectively, demonstrating the strategy’s capability to smooth
and reduce the variability in T2 values present in the original GRAPPATINI T2 maps and
being consistent in doing this considering two consecutive scanning sessions of the same
subjects. Additionally, statistically significant differences (p<0.05) were observed in the

67



Discussions

COV distributions for all four regions when considering the test set subjects between the
standard GRAPPATINI method and the image-space strategy. However, it is important
to note that a reduction in COVs may also indicate the potential suppression of natural
and physiological variability. For instance, the COV of a fully homogeneous image would
be 0. Nonetheless, this is not the case here, as evidenced by the relative difference maps.
As mentioned above, these maps present the typical pattern of noise, confirming that the
natural variability is in the end preserved.

6.2.1 Scan-Rescan Reproducibility Analyses

The scan-rescan reproducibility analyses aimed to assess the statistical robustness of the
T2 values after applying the denoising strategy developed. Calculating and evaluating
the COV alone was not sufficient, as the goal of this project goes beyond a typical
computer vision problem; the pixel intensities in the final map hold a physical meaning
and potential diagnostic value. Consequently, a more robust statistical analysis of the
method’s effectiveness was required, as a single metric assessing variability within specific
ROIs was not enough. While a reduction in variability within a specific ROI are important
factors, they are not the only effects to consider when evaluating the impact of denoising.

Specifically, the goal of the analyses was to identify any potential biases in T2 values
between two consecutive scanning sessions. The analyses were performed on the subjects
included in the test set, evaluating the performance of the model on subjects not seen
during the training process. The first step was to evaluate whether the original and
standard GRAPPATINI reconstruction provided reliable and reproducible T2 values. This
objective was addressed through the application of a linear regression, as presented in
Section 5.2 and Figure 5.6.

This analysis was conducted using median T2 values across four selected ROIs: Frontal
White Matter (FWM), Frontal Gray Matter (FGM), Thalamus, and Globus Pallidus
(GPallidus). The mean bias between scan and rescan median T2 values was 0.94 ms, and
the slope of the linear regression was 0.99. These results confirm that the GRAPPATINI
reconstruction is highly reproducible across two consecutive scanning sessions. However,
two outliers were identified in the GPallidus region and a potential explanation for these
outliers could lie in how the labels were extracted using the internal tool Morphobox or
in how T2 outlier values were excluded prior to calculating the final median, considering
the MAD distance. Notably, the same outliers observed in the original GRAPPATINI
analysis were also present in the linear regression performed on the median T2 values
obtained after applying the denoising model. Importantly, in addition to yielding a
comparable bias and linear regression coefficient relative to the original GRAPPATINI,
the distribution of median T2 values appeared more clustered with the denoising method,
i.e. the median T2 values evaluated for different subjects within the same ROI appeared
more tightly grouped, with a distribution closer to the expected T2 values for that region.
This increased clustering may indicate an improvement resulting from the application
of the denoising model and a more precise computation of the median T2 values as a
consequence.

Considering the Bland-Altman analyses, the first analysis aimed to evaluate potential
inter-method biases, while the subsequent two focused separately on the performance of
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the method during scan and rescan sessions. The results confirmed the effectiveness of the
image-space denoising strategy in reducing noise from the T2 maps. Notably, the Bland-
Altman analyses demonstrated that the area between the limits of agreement, that can
be considered as a measure of variability between two measurements, was smaller when
comparing the two methods than when evaluating the same method across scan and rescan
sessions. This finding indicates that inter-method variability is lower than intra-method
variability, which is in alignment with initial expectations. One point for discussion
could be the higher discrepancy between the two methods in the T2 values within the
GPallidus. A possible conjecture is that the standard GRAPPATINI, being more noisy in
hypointense regions like the GPallidus, may incorporate higher and erroneous T2 values in
the evaluation of the median T2, not effectively eliminated by the metrics used to remove
potential outliers, and eventually contributing to the observed differences.

6.2.2 Proofs of Concept

In Section 5.2.1, the results of the image-space strategy applied to the 7T datasets are
presented. Four different datasets were acquired, considering various anatomies, resolu-
tions, orientations and field strengths with respect to the T2 maps included in the train-
ing set of the model. Specifically, one brain dataset consisting of T2 maps in the coronal
plane was acquired with a resolution of 0.5×0.5×2.0 mm3. Additionally, two more brain
datasets with a spatial resolution of 0.3 × 0.3 × 1.5 mm3 were analyzed and lastly, a knee
dataset, which resulted in sagittal T2 maps with spatial resolution of 0.4 × 0.4 × 3.0 mm3,
was also included in the study. To the best of the author’s knowledge, the GRAPPATINI
T2 maps acquired at 7T in this work represent the highest resolution ever achieved and at-
tempted for such data. The denoising results on the reconstructed T2 maps are promising,
especially considering the model’s training conditions. The model was trained exclusively
on brain T2 maps with a resolution of 0.7 × 0.7 × 3.3 mm3 and an axial orientation. De-
spite these significant differences between the training set and the 7T datasets, the model
exhibited an exceptional ability to generalize. Starting from the brain datasets, two spe-
cific anatomical structures were highlighted. Detailed views of the hippocampus region
were provided with the final aim of assessing the effect of the denoising strategy as this
is one of the more relevant structures that can be studied and seen in a coronal T2 map.
T2 relaxometry of the hippocampus is indeed one of the most promising tools to assess
and study the so-called temporal lobe epilepsy (TLE), particularly by detecting subtle
changes like gliosis and neuronal loss. It is of crucial importance in diagnosis, seizure
focus localization, and surgical planning for TLE patients [56]. As illustrated in Fig-
ures 5.11, 5.12, 5.13, the image-space strategy produces hippocampal views in which
tissue areas, boundaries, and anatomical details are more prominently visible compared
to the original GRAPPATINI reconstruction. In the 7T dataset with lower resolution
(see Figure 5.11), the inherent noise level is already relatively low, which explains why
the "baseline" GRAPPATINI reconstruction appears less noisy than the corresponding
GRAPPATINI reconstructions from the other two datasets.

From a quantitative point of view, considering the brain datasets, the image-space
strategy outperformed the original GRAPPATINI, yielding higher contrast-to-noise ra-
tio (CNR) values in all three brain datasets with an average improvement of 87% (see
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Tables 5.1, 5.2, 5.3). Furthermore, this approach outperformed also the conventional
filtering methods integrated into the reconstruction directly performed at the scanner,
showing an average increase in the CNR value of 50.5%. Nearly doubling the performance
of traditional denoising methods currently used on the scanner represents a significant
success and an optimal starting point for future integration of the model trained in this
work into the scanner reconstruction pipeline. Additionally, the CR (Contrast Ratio)
value remained consistent and stable across all three datasets, indicating that the denois-
ing strategy was not introducing significant alterations to the T2 values. This is evidence
that the original level of contrast in the selected ROIs was preserved. Furthermore, across
the three brain datasets, the N2S method outperformed both reconstruction methods in
terms of COV for both ROIs (thalamus and hippocampus).

On the other hand, considering the knee datasets, the results are in line with what
happens inside the reconstruction at the scanner. In particular, Figure 5.14 provides
zoomed-in views of the most critical structure for T2 mapping of the knee: the cartilage.
Numerous studies have demonstrated that alterations or variations in cartilage maturity
can be tracked and analyzed through T2 values. This is especially relevant in the context
of pathologies, injuries, or the effects of training programs [57]. Regarding the CNR
value and considering the ROIs in the muscle and in the cartilage (see Table 5.4), the
online reconstruction is similar to that of the proposed image-space strategy (7.666 with
respect to 7.667). However, after a visual analysis, the blurring effect of traditional
methods included in the online reconstruction appears worse than that observed with the
denoising strategy proposed in this work. Notably, the effect of the proposed denoising
strategy on bone regions is significant. In the original GRAPPATINI protocol used
for knee dataset acquisition, a fat-saturation step is applied, resulting in highly noisy T2
values in the bones. After applying the model, potential bone patterns seemed to emerge.
However, it remains unclear whether this reflects a beneficial effect of denoising, revealing
previously hidden structures or patterns, or whether it represents model hallucinations
or regions where the T2 values lack meaningful interpretation due to the fat-saturation
step inherent in the sequence design. The COVs in the two ROIs (cartilage and muscle)
were lower considering the proposed image-space denoising strategy, with respect to both
GRAPPATINI and the online reconstruction.

Overall, the successful adaptation and generalization to different anatomical regions,
alongside the capabilities of handling varying T2 value ranges, is particularly significant
because it demonstrates that the ability of the model to denoise is not limited to the
training conditions but can be applied across diverse datasets. This is crucial for potential
and future clinical applications, as the model could potentially be used in a wide range of
patients and protocols without needing to retrain or adapt the model for each new case.

Demonstrating these generalization capabilities can be considered one of the key out-
comes of this work. The prospect of relying on a potentially universal model, capable of
denoising any T2 map regardless of its resolution, orientation, field strength or anatom-
ical structure being mapped, is highly appealing and attractive. Moreover, this could
reduce the amount of data required to still achieve high-quality results, potentially ad-
dressing the challenge of building large datasets in the T2 mapping field. This strategy
could generate impact in research environments but, more critically, in clinical settings.
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6.3 – Future Developments and Limitations

In such contexts, the adoption of new methodologies and technologies is often delayed
or constrained by the specific conditions required for their proper functionality, which
are typically quite restrictive or limited to few subcases. An additional key strength of
the proposed method lies in its inherent simplicity. The proposed strategy and trained
model serve as an effective, straightforward, and easily integrable addition to the standard
GRAPPATINI reconstruction. By functioning, in the end, as a classical post-processing
strategy, it seamlessly enhances and improves the existing pipeline without requiring
substantial additional modifications.

6.3 Future Developments and Limitations

The performance of the image-space denoising strategy, in terms of robustness and preser-
vation of T2 values without statistical alterations, was evaluated using both the test set
and the datasets acquired at 7T. The latter served as evidence of the model’s capability
to handle data not seen during the training process. As mentioned in this section, the
dataset comprised only healthy controls, meaning that, theoretically, no pathologies were
present that could have influenced the model’s performance. Therefore, a natural next
step would be to validate the model in cases with pathology. Such a study could help
in assessing whether the denoising method introduces masking effects or artifacts on T2
maps. However, it is worth emphasizing that, even though the subjects were all healthy
controls, the T2 value distributions between 3T and 7T datasets, as well as across different
anatomies, are already inherently distinct and different. This demonstrates the model’s
ability to generalize to values outside the training set. Consequently, it is reasonable to
expect that the model would still remain robust when applied to datasets with T2 values
typically associated with lesions in some regions. As a potential future improvement,
leveraging synthetic data could address the challenge of limited sample sizes during the
training process. Given the performance of the model on 7T datasets with only axial
brain T2 maps from 52 subjects, training including synthetic data could address the is-
sue of prolonged acquisition times in T2 mapping, which restricts the creation of large
datasets. As a final remark, the primary limitation of the image-space denoising strategy
implemented in this work is considering the T2 maps as conventional images. This per-
spective is not entirely accurate, as every pixel intensity in a T2 map represents a physical
parameter with a specific meaning behind and unit of measurement. By not incorporating
the underlying MRI physics, with for instance the knowledge of the forward model, this
approach risks altering the values in a manner that may not fully align with the origi-
nally acquired data. For this reason, a potential future improvement to the strategy could
involve incorporating, in the model or in the pipeline, a data consistency step. This addi-
tion would eventually bring the approach closer to the underlying concepts of the k-space
strategy, and such a hybrid method could potentially yield better final results than both
the strategies. Nonetheless, this work demonstrated, through statistical analyses, the
reproducibility of T2 values before and after denoising. These results were presented to
ensure that the denoising process did not significantly alter the GRAPPATINI T2 values,
in a consistent way as reported in previous studies. However, further in-depth analyses
are encouraged, particularly using a larger dataset and a broader group of subjects, to
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strengthen the statistical validation and enhance the reliability of the findings.
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Chapter 7

Conclusions

This thesis work introduced two distinct strategies aimed at denoising GRAPPATINI T2
maps using a self-supervised approach to train a deep learning model. While one of the
initially conceptualized strategies was found to be ineffective, the second strategy, in the
image-space, delivered promising results on the test set. More importantly, it demon-
strated remarkable generalization capabilities, achieving results beyond the original ex-
pectations on the 7T datasets acquired during the project, improving the performances
of traditional denoising methods already implemented in the online reconstruction per-
formed at the scanner.

Additionally, the scan-rescan analysis supported the quality of the denoising achieved,
confirming the reproducibility of T2 values after the application of the method without
introducing significant biases or statistical alterations. This study holds great promise
as a tailored solution directly integrated into the standard GRAPPATINI pipeline, with
potential applicability in scanner reconstruction workflows. The model’s generalizability
could be a key advantage, enabling a ready-to-use solution for T2 maps across various
anatomies, resolutions, orientations and field strengths without requiring further training
or adjustments.

In conclusion, this work represents a significant step forward toward the clinical appli-
cation of quantitative MRI (qMRI) techniques, such as T2 mapping, particularly consider-
ing the GRAPPATINI method. Eventually, it paves the way for applying GRAPPATINI
T2 maps at 7T, where the combination of high-quality and high-resolution imaging can
generate a huge impact across a range of clinical and research applications.
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