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Abstract

Human gait is a key health marker, offering critical insights into real-world
mobility. Among research-grade dedicated hardware, wearable inertial measurement
units (IMUs) are the most widely used for free-living assessments. In the European
research initiative Mobilise-D, which aims to develop validated digital mobility
outcomes (DMOs) for health monitoring, IMUs serve as the primary sensing
technology, enabling the computation of high-accuracy DMOs through a dedicated
computational pipeline. Smartphones with built-in inertial sensors offer a cheaper
and ubiquitous alternative to IMUs, but differences in positioning and metrological
characteristics require re-validation of IMU-based algorithms for phone-derived data.
The first objective of this thesis is to assess whether the python implementation
of the pipeline, MobGap, originally optimized for lower back-mounted IMU, can
achieve comparable results when applied to phone-derived inertial data from the
same placement. MobGap assumes that input data is recorded at the lower-back
level. Therefore, the second objective focuses on smartphone location recognition
with machine learning, including five non-lower back positions. Data were collected
at Politecnico di Torino and University of Sheffield. Data collected in Turin
included 15 subjects (9 males, 6 females, 23–34 yo) performing in-lab walking tasks.
Data collected in Sheffield included 15 subjects (10 males, 5 females, 22–57 yo)
performing both structured walking tasks and 2.5h free-living walking sessions.
All subjects wore a Samsung Galaxy A34 on the lower back, alongside the INDIP
multi-sensor system (pressure insoles + IMUs). In the experiments run at Sheffield,
subjects also carried five smartphones in different fixed locations to replicate
real-world behaviour. MobGap algorithms were applied to phone derived inertial
data and validated against INDIP references. Block-by-block and full pipeline
evaluations were conducted. Intermediate DMO such as cadence and stride length
were computed using INDIP reference gait sequence and initial contacts. For
smartphone location recognition, five machine learning models were compared to
distinguish between the six locations. For the first objective, gait sequence detection
showed high sensitivity (99.75% in-lab, 98.75% free-living). Initial contact detection
achieved 90.4% precision, and 84.3% recall in lab conditions, slightly declining in
free-living settings (81.7% precision, 81.9% recall). Cadence estimation had a mean
absolute error of 2.12 steps/min in lab conditions, increasing to 5.65 steps/min
in free-living conditions. Stride length estimation had a mean absolute error of
14.37 cm in lab conditions, improving to 10.7 cm in free-living conditions. Walking
speed, a key metric for Mobilise-D, had an in-lab mean absolute error of 0.13
m/s, decreasing to 0.09 m/s in free-living conditions. For the second objective,
the XGBoost model performed best in recognizing smartphone location. While



overall classification across all six positions was moderate (balanced accuracy:
74%), it achieved high accuracy for the lower-back location (96%), demonstrating
strong recognition for this placement. These findings suggest that smartphone
data can provide comparable gait analysis performance to dedicated IMUs. While
lower-back detection was highly accurate, distinguishing other placements (e.g.,
pocket, hand-held, shoulder bag) remains challenging. Improving this classification
could enable MobGap’s future application to alternative device locations.
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Chapter 1

Introduction

1.1 General introduction
The analysis of human gait is a multidisciplinary field with applications in clinical
assessment, rehabilitation, sports science, and emerging technologies such as virtual
and augmented reality [1]. The integration of data science into gait biomechanics
has significantly improved the ability to detect and monitor movement disorders.
Machine learning and statistical modeling allow the identification of subtle gait
abnormalities that may not be evident through traditional biomechanical methods,
facilitating personalized treatment strategies and improving clinical decision-making
[2]. Additionally, gait analysis is increasingly recognized for its potential in popu-
lation health monitoring, enabling large-scale mobility assessments that support
early diagnosis and intervention in conditions affecting motor function.

Historically, gait analysis has relied on laboratory-based techniques (such as
stereophotogrammetry), which is considered the gold standard for capturing kine-
matic and spatiotemporal parameters [3]. However, its dependency on controlled
laboratory settings, high costs, and complex calibration procedures limit its ap-
plicability in real-world scenarios. Giannouli et al. [4] highlighted the distinction
between gait capacity, measured in controlled environments, and gait performance,
which reflects natural mobility in daily life. This discrepancy underscores the
need for wearable sensors that enable continuous and unobtrusive gait monitoring
outside the laboratory.

The introduction of Inertial Measurement Units (IMUs) has addressed many of
these challenges by enabling gait analysis in free-living conditions. IMUs provide
a scalable and accessible solution, allowing continuous monitoring without the
constraints of a laboratory. These devices have proven to be valuable tools in
rehabilitation, elderly mobility assessment, and sports performance monitoring.
Despite their advantages, dedicated IMUs still require intentional placement on the
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body, precise calibration, and user compliance, which can limit their widespread
adoption for large-scale mobility monitoring.

A natural evolution in gait analysis is the integration of smartphones, which
are equipped with built-in inertial sensors and are already widely used in daily life.
Unlike dedicated IMUs, smartphones offer a cost-effective and scalable alternative
for gait assessment, as they eliminate the need for additional hardware while pro-
viding a seamless user experience. This transition enhances the accessibility of gait
monitoring, making it feasible for large-scale, long-term mobility tracking in both
clinical and non-clinical populations. Smartphones provide a viable platform for gait
analysis, as demonstrated by previous studies [5] [6], offering robust data collection
beyond controlled environments. Research by Bayat et al. [7] laid the founda-
tion for smartphone-based activity recognition, while more recent work by Olsen
et al. [8] validated smartphone-derived spatiotemporal gait parameters against
gold-standard methodologies, reinforcing their clinical and real-world applicability.

Among these approaches, the Mobilise-D project represents a major step for-
ward. As a large-scale European research initiative aimed to monitor the daily
life gait of people with various mobility problems, Mobilise-D aims to develop
and validate digital mobility assessment tools using wearable devices. One of the
main outputs of the project is represented by a alorithm pipeline for the assess-
ment of digital mobility outcomes from data recorded by a dedicated lower-back
IMU [9], whose implementation has been recently released as the open-source
Python package MobGap [10] [9] [11]. By exploiting the pipeline and the data
collected throughout the project, Mobilise-D seeks to establish gait analysis as a
clinically relevant biomarker, facilitating continuous, real-world monitoring of mo-
bility impairments in various populations, including older adults and patients with
chronic conditions. By integrating data-driven methodologies and standardized
frameworks, Mobilise-D bridges the gap between controlled laboratory assessments
and real-world applications, advancing the role of digital health in personalized
medicine.

1.2 Challenges and objectives
The analysis of human gait using dedicated IMUs has been extensively developed for
dedicated wearable sensors. These sensors are typically designed for biomechanical
assessments, needing precise positioning and secure attachment to the body. How-
ever, the growing ubiquity of smartphones, equipped with embedded IMUs, offers a
convenient and scalable alternative for gait analysis, thanks to their lower cost and
widespread adoption. Despite their potential, smartphone-embedded IMUs exhibit
key differences compared to dedicated sensors in terms of metrological properties,
placement variability, and attachment methods. These factors can significantly
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impact signal quality and gait parameters estimation. Consequently, rigorous
validation is necessary to determine whether gait analysis algorithms originally
designed for dedicated IMUs can be reliably applied to smartphone-acquired inertial
data. The first objective of this thesis is the validation of the Mobilise-D algorithm
pipeline, originally validated for data recorded by a waist-worn dedicated IMU,
using smartphone-acquired inertial data in both structured environments and real-
world settings. This thesis aims to assess the feasibility and accuracy of applying
the computational pipeline to smartphone data across different contexts. The vali-
dation process involves evaluating key gait parameters estimated by the pipeline,
ensuring that results align with those obtained from a wearable gold-standard
measurement system. Gait analysis algorithms, including the Mobilise-D pipeline,
are typically designed for specific sensor placements on the body. Smartphone
location during data collection significantly impacts signal orientation, feature
extraction, and ultimately, the accuracy of gait parameter estimation. Since users
carry their smartphones in various locations (e.g., trouser pockets, hand, or jacket
pockets), identifying the device’s placement is essential for ensuring reliable gait
analysis and accurate movement interpretation.

To address this, the second objective of this study is to develop a machine
learning model for recognizing smartphone location during walking. Given that the
Mobilise-D algorithm pipeline is optimized for lower-back IMU data, the classifier
will determine whether smartphone-acquired signals can be reliably processed using
the same methodology. This classification is particularly important in free-living
conditions, ensuring that gait analysis is applied under appropriate circumstances.

In the following, the key challenges of this study are outlined:

• Experimental Protocol Design: Developing a structured protocol to investi-
gate gait under various walking conditions, ensuring diverse and representative
data collection.

• Data Preprocessing: Aligning and standardizing inertial signals from smart-
phones with those from the reference system to ensure compatibility for the
validation process.

• Integration with the Mobilise-D pipeline: Adapting and interfacing
with the MobGap Python package for correct application of the Mobilise-D
pipeline.

• Multiclass Classification Complexity: Addressing the inherent difficulties
in differentiating smartphone placements solely from inertial data, requiring
effective feature extraction and model optimization.

The application of smartphone-based inertial sensors for gait analysis is an
expanding research area with significant potential for clinical and digital health
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applications. However, ensuring methodological rigor while maintaining prac-
tical usability is essential to validate their effectiveness. This study addresses
key challenges in leveraging smartphone-acquired inertial data for accurate gait
analysis by adapting methodologies originally designed for dedicated IMUs. By
systematically assessing the feasibility of using smartphones within the Mobilise-D
framework and developing a robust classification model for smartphone location,
this research contributes to the advancement of more adaptable and scalable gait
analysis techniques.

Beyond validating existing methodologies, this work aims to enhance the gen-
eralizability of gait analysis algorithms to accommodate real-world smartphone
usage. While traditional IMU-based approaches rely on standardized placements,
smartphones introduce variability in positioning that must be accounted for to
ensure reliable movement assessment. The development of classification models ca-
pable of identifying smartphone placement is a crucial step toward optimizing data
interpretation and refining digital mobility assessment tools. As smartphone-based
monitoring becomes more prevalent, future advancements will require position-
aware algorithms that adjust analytical methods according to device placement,
further expanding the applicability of gait analysis in free-living conditions.

1.3 Thesis outline
The structure of this thesis is organized as follows:

• Chapter 1 - Introduction:
This chapter introduces the context of gait analysis, its clinical and technolog-
ical applications, and the transition from traditional methods to smartphone-
based systems. It also outlines the key challenges and objectives of the thesis.

• Chapter 2 - Background:
This chapter provides foundational knowledge about gait, including basic
definitions, the gait cycle, and its phases. It reviews traditional and modern
gait analysis methods, focusing on spatio-temporal parameter estimation using
dedicated IMUs and smartphones. It also discusses the opportunities and
challenges of gait analysis in free-living conditions, emphasizing the role of
inertial sensors and smartphone positioning.

• Chapter 3 - Experimental Setup:
This chapter describes the components of the reference system used for data
acquisition, including IMUs, pressure insoles and distance sensors. It also
details the specifications of the Samsung Galaxy A34 smartphone, which serves
as the primary data collection device.

4



Introduction

• Chapter 4 - Data Collection:
This chapter outlines the experimental protocols for both in-lab and free-living
gait data collection. It covers the procedures for data preparation, ensuring
consistency and quality across different environments.

• Chapter 5 - Methods:
This chapter details the methodologies employed for validating Mobilise-D
algorithm pipeline with smartphone data and developing the machine learning
model for smartphone location recognition. This chapter delves into the various
steps of the Mobilise-D pipeline and its Python implementation (MobGap),
detailing methods for gait sequence detection, initial contact detection, cadence
estimation, and stride length estimation. Additionally, the chapter outlines
the processes undertaken for developing the smartphone location classifier,
including dataset construction, feature extraction, algorithm development,
and testing.

• Chapter 6 - Results:
This chapter presents the results of the pipeline validation and the smartphone
location recognition model, describing the performance and accuracy of each
method.

• Chapter 7 - Discussion:
This chapter analyzes the results in the context of existing literature, discussing
the implications, limitations, and potential improvements of the study.

• Chapter 8 - Conclusions:
The final chapter summarizes the key findings of the thesis, highlighting the
contributions to the field of gait analysis and suggesting directions for future
research.
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Chapter 2

Background

2.1 Gait
2.1.1 Basic notions
Gait refers to the pattern of movement of the limbs during locomotion, particularly
walking. It is a highly coordinated and repetitive process that enables humans to
move efficiently from one place to another while maintaining balance and minimizing
energy expenditure. The biomechanics of gait involve the interaction of multiple
body segments, joints, and muscles, all working in unison to achieve smooth and
stable motion.

According to Perry [12], the human body during gait can be divided into two
functionally distinct units:

• The Locomotive Unit: This comprises the pelvis and lower limbs, including
11 joints whose movements are controlled by 57 muscles. The bone segments
(pelvis, thigh, shank, foot, and toes) alternately support the body and propel it
forward, functioning as levers. The locomotive unit serves four main purposes:

1. Propulsion: Driving the body forward.
2. Vertical Stability: Maintaining an upright posture.
3. Shock Absorption: Mitigating impact forces at each step.
4. Energy Conservation: Reducing muscular energy expenditure through

efficient biomechanical interactions .

Additionally, the locomotive unit is responsible for critical motor control
functions. The central nervous system integrates feedback from sensory organs
to coordinate muscle activity, ensuring correct joint movements and balance
adjustments during each phase of the gait cycle. Proper functioning of this
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unit helps maintain foot trajectory control, mechanical energy generation for
forward propulsion, and energy absorption to moderate body speed [13].

• The Passenger Unit (Head, Arms, Trunk - HAT): Comprising approx-
imately 70% of the body’s weight, the passenger unit plays a vital role in
sustaining postural stability. While this unit contributes minimally to the
active propulsion of movement due to the inherent efficiency of healthy gait
mechanics, its proper alignment over the locomotive unit is essential. Mis-
alignment can significantly alter muscle activity in the lower limbs, affecting
overall gait stability and efficiency. Moreover, stabilizing the head and upper
trunk is crucial for maintaining balance, as it ensures the steadiness of the
visual and vestibular systems—key components for spatial orientation and the
adaptation of motor strategies during locomotion.
The passenger unit also aids in corrective postural movements through the
swinging of the arms and rotation of the shoulders. This motion counterbal-
ances the rhythmic accelerations and decelerations of the trunk caused by
leg movements, reducing rotational forces and enhancing overall gait stability.
Variations in arm swing and upper body movement are closely tied to changes
in walking speed and balance demands, highlighting the dynamic role of the
passenger unit in gait control [13].

The interplay between these units creates a complex, three-dimensional motion
framework essential for efficient and stable gait [12].

Understanding these basic notions of gait is fundamental for analyzing walking
patterns, identifying abnormalities, and developing interventions for improving
locomotor function in both healthy and clinical populations [13]

2.1.2 The gait cycle
The gait cycle or stride cycle refers to the sequence of events that occur from
the initial contact of one foot with the ground to the subsequent contact of the
same foot. This cyclical process is essential for efficient human locomotion and is
typically divided into two primary phases: the stance phase and the swing phase.

• Stance Phase: This phase constitutes approximately 60% of the gait cycle
and begins with the initial contact (heel strike) and ends when the foot leaves
the ground (toe-off). The stance phase provides stability and support as the
body moves forward. During this phase, there are two periods of double
support, where both feet are in contact with the ground. These periods are
critical for maintaining balance, especially during slower walking speeds. As
walking speed increases, the duration of double support decreases, eventually
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disappearing during running, which introduces a “flight phase” where neither
foot is in contact with the ground [14].

• Swing Phase: Making up the remaining 40% of the gait cycle, the swing
phase begins when the foot lifts off the ground and ends with the next initial
contact. This phase is crucial for repositioning the limb in preparation for the
next step.

To further analyze gait, three primary approaches are used:

1. Foot-to-Floor Contact Events: This method segments the gait cycle based
on the alternating contact of the feet with the ground. It highlights the periods
of single and double support, where either one or both feet are in contact with
the ground.

2. Temporal and Spatial Features: This approach focuses on time-related
(e.g., stride duration) and distance-related (e.g., step length) aspects of the
gait cycle, providing a quantitative perspective.

3. Functional Phases: The gait cycle is divided into functional phases based
on key events such as initial contact, toe-off, and mid-stance. These phases
describe the biomechanical roles of the limbs during walking, including weight
acceptance, single-limb support, and limb advancement [12].

Understanding the taxonomy of gait allows for precise analysis of walking
patterns, aiding in the identification of normal and pathological gait characteristics.

2.1.3 Phases and sub-phases of gait
According to Perry [12], the gait cycle can be hierarchically divided into periods,
tasks, and sub-phases, each representing specific motor functions necessary for
efficient locomotion. The two main periods are the stance phase and the swing
phase, which are further subdivided into functional tasks and sub-phases.

Stance Phase Sub-phases:

1. Initial Contact (0-2% of Gait Cycle): The moment the foot first touches the
ground, typically with the heel.

2. Loading Response (2-10%): The period immediately following initial contact,
where the body weight is transferred onto the leading limb, absorbing impact
forces.

3. Mid Stance (10-30%): The body progresses over the stationary foot, achieving
a stable, single-limb support.
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4. Terminal Stance (30-50%): The heel lifts off as the body continues forward,
preparing for the next phase.

5. Pre-Swing (50-60%): Also known as the “toe-off” phase, the foot leaves the
ground, marking the transition to the swing phase.

Swing Phase Sub-phases:

1. Initial Swing (60-73%): The limb accelerates forward, clearing the ground.

2. Mid Swing (73-87%): The limb continues its forward motion, aligning with
the stance leg.

3. Terminal Swing (87-100%): The limb decelerates, preparing for the next
initial contact.

These sub-phases collectively fulfill three critical functional tasks:

• Weight Acceptance: Involves initial contact and loading response, focusing
on absorbing impact and stabilizing the body. This is the most demanding
task in the gait cycle, as it requires an abrupt transfer of body weight onto a
limb that has just completed its swing phase [14].

• Single Limb Support: Comprises mid stance and terminal stance, main-
taining balance as the body progresses over one limb.

• Limb Advancement: Encompasses pre-swing and all swing phases, reposi-
tioning the limb for the next step.

This hierarchical structure provides a comprehensive framework for analyzing
gait mechanics, essential for both clinical assessments and biomechanical research
[12].

2.2 Gait analysis
Gait analysis is the systematic study of human walking, integrating biomechanical,
physiological, and clinical assessments to understand locomotion patterns. It is
a pivotal tool in both research and clinical environments, aiding in the diagnosis
of gait abnormalities, optimizing rehabilitation strategies, and enhancing athletic
performance.
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2.2.1 General overview
The formalization of gait analysis as a scientific discipline began in the late 19th
and early 20th centuries. The introduction of photographic techniques by Eadweard
Muybridge and Étienne-Jules Marey allowed for the visualization of movement
sequences, revolutionizing the understanding of gait cycles. Their pioneering
work laid the groundwork for motion analysis by capturing detailed images of
human locomotion. Figure 2.1 illustrates one of Muybridge’s famous photographic
sequences, depicting the different phases of a walking cycle.

Figure 2.1: Eadweard Muybridge’s photographic sequence depicting human
locomotion, illustrating the different phases of the walking cycle.

Following World War II, electromyography became the primary method for
studying muscle activity during walking. Jacquelin Perry [12] [15] and David
Sutherland [16], prominent figures in the field, significantly advanced gait anal-
ysis through the development of instrumented methods and three-dimensional
motion analysis. Their contributions established the foundation for modern gait
laboratories, enabling precise assessments of locomotor patterns.

The advent of computer technology in the 1970s further propelled gait analysis
into the modern era. Computational advancements allowed for more efficient data
processing and the integration of complex biomechanical models, making gait
analysis more accessible and clinically relevant [17]. However, as highlighted by
Sheldon [18], despite these technological advancements, the routine clinical use of
gait analysis has faced limitations due to the complexity of data interpretation, high
costs, and lengthy testing procedures, which have slowed its widespread adoption
in clinical settings.
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In the 1990s and early 2000s, the emergence of wearable sensor technologies
marked a significant shift in gait analysis. Tao et al. [19] emphasized the develop-
ment of accelerometers, gyroscopes, and magnetoresistive sensors, which allowed
for portable and cost-effective gait assessments outside of traditional laboratory
environments. These innovations expanded the applicability of gait analysis to
real-world settings, facilitating its use in rehabilitation, sports performance, and
continuous health monitoring.

More recently, the integration of data science and machine learning has revolu-
tionized gait biomechanics. Ferber et al. [1] discussed how modern data science
methods, have enhanced the ability to analyze large, complex datasets, providing
deeper insights into gait patterns and improving clinical decision-making. These
approaches enable the identification of subtle gait abnormalities and support
personalized treatment planning by leveraging big data collected from multiple
sources.

Today, gait analysis encompasses multiple scientific domains:

• Kinematics: Examining limb and joint movements using motion capture
systems, providing precise data on body segment trajectories [20].

• Clinical Applications: Implementing gait analysis in the diagnosis and
monitoring of neurological disorders (e.g., Parkinson’s disease), musculoskeletal
conditions (e.g., post-arthroplasty recovery), and in optimizing rehabilitation
protocols [20][21][22].

• Electromyography: Assessing muscle activation patterns to evaluate neuro-
muscular control and coordination [20].

• Energy Expenditure: Estimating the metabolic cost of walking, often
through indirect calorimetry or wearable sensors [20].

Modern gait analysis utilizes both sophisticated laboratory-based systems and
portable, wearable technologies that enable data collection in real-world environ-
ments. Clinically, gait analysis is vital for diagnosing conditions like Parkinson’s
disease, stroke-related impairments, and musculoskeletal disorders. For instance,
Morris and Summers [21] demonstrated how gait analysis can clarify abnormalities
in stride length-cadence relationships in Parkinsonian gait, offering valuable insights
into the effects of levodopa medication on locomotor patterns. Similarly, Temporiti
et al. [22] utilized gait analysis to compare functional recovery in patients undergo-
ing bilateral versus unilateral total hip arthroplasty, highlighting its role in tailoring
rehabilitation strategies. Whittle [20] emphasized the broader clinical applications
of gait analysis, particularly in cerebral palsy and stroke rehabilitation, illustrating
its utility in both diagnostic and therapeutic contexts. These examples underscore
how gait analysis not only aids in identifying specific gait abnormalities but also
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in evaluating the efficacy of interventions, from pharmacological treatments to
surgical and rehabilitative procedures.

In summary, mobility assessment is an indispensable tool that bridges multiple
disciplines, offering comprehensive insights into human locomotion, supporting
clinical decision-making, and advancing the development of assistive technologies.

2.2.2 Spatio-temporal parameters
Spatio-temporal parameters are fundamental metrics in gait analysis, providing
quantitative descriptions of the temporal (time-related) and spatial (distance-
related) characteristics of walking. These parameters are essential for identifying
deviations from normal gait patterns and for evaluating the efficacy of therapeutic
interventions in clinical settings [20].

Temporal Parameters:

• Gait Cycle Duration: (Also known as Stride Duration) The total time taken
for a single gait cycle, from the initial contact of one foot to the subsequent
contact of the same foot.

• Stance Time: The duration a foot remains in contact with the ground during
the gait cycle, typically representing about 60% of the cycle.

• Swing Time: The period during which the foot is off the ground, making up
the remaining 40% of the gait cycle.

• Double Support Time: The time when both feet are in contact with the
ground, occurring twice in each gait cycle. This parameter decreases with
increasing walking speed and disappears during running [23].

• Cadence: The number of steps taken per minute, reflecting the rhythm of
walking.

Spatial Parameters:

• Step Length: The distance between the initial contact point of one foot and
the initial contact point of the opposite foot.

• Stride Length: The distance covered in one complete gait cycle, typically
equal to two step lengths.

• Step Width: The lateral distance between the paths of the two feet, indicating
stability and balance.

• Walking Speed(Gait Velocity): The overall rate of walking, calculated as
the product of cadence and step length. It is a critical indicator of functional
mobility [23].
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Several methodologies have been developed to accurately capture spatio-temporal
parameters, each tailored to specific research and clinical contexts. Traditional
gait laboratories often employ motion capture systems with reflective markers [24],
enabling the tracking of body movements in three dimensions. While these systems
provide highly accurate spatial and temporal data, their cost and the necessity for
controlled environments limit their widespread use [20].

Another standard method involves the use of force platforms [24], which measure
ground reaction forces. These platforms allow precise determination of temporal
parameters like stance and swing times and provide insights into dynamic aspects
of gait such as propulsion and balance [20].

With the advent of portable technology, wearable IMUs have become increasingly
popular. These devices, including accelerometers, gyroscopes, and magnetome-
ters—referred to as Magneto-Inertial Measurement Units (MIMUs) when magne-
tometers are included—are embedded in wearable sensors and offer a cost-effective,
flexible solution for capturing gait data outside of laboratory environments. Tao
et al. [19] highlighted the effectiveness of IMUs in real-world settings, marking a
significant shift in how gait analysis is conducted.

Similarly, image-based systems like the Microsoft Kinect have introduced new
possibilities for gait analysis. Souza and Stemmer [25] demonstrated the use
of Kinect sensors to extract kinetic and kinematic parameters through three-
dimensional imaging. This technology provides a non-invasive, low-cost alternative
for both clinical assessments and biometric applications. Pedobarographic systems,
which use pressure-sensitive mats and insoles, offer another valuable approach.
These systems measure foot pressure distribution during walking, yielding detailed
insights into spatial parameters such as step width and gait symmetry, which are
critical for assessing balance and stability [20].

In addition to these technological advancements, normative data studies remain
fundamental for contextualizing individual gait assessments within population
benchmarks. Oberg and Oberg [23] conducted an extensive analysis of spatio-
temporal gait parameters, compiling data from a broad cohort spanning ages
10 to 79. Their research highlighted distinct trends: walking speed and step
length were shown to decrease progressively with age, reflecting natural declines
in muscle strength, joint flexibility, and overall mobility. Interestingly, cadence
remained relatively stable across age groups, suggesting compensatory mechanisms
to maintain gait rhythm despite shorter steps. The study also revealed gender
differences, with men typically exhibiting longer step and stride lengths, while
women demonstrated higher cadence rates. These normative datasets are critical
for clinical assessments, enabling practitioners to differentiate between normal
age-related gait changes and pathological deviations, thus refining diagnostic
accuracy and the personalization of rehabilitation strategies. Understanding and
accurately measuring spatio-temporal parameters are crucial for developing effective
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rehabilitation protocols and advancing research in human locomotion.

2.2.3 Estimating spatio-temporal parameters from dedi-
cated IMUs

As introduced in Subsection 2.2.2, IMUs have revolutionized the estimation of spatio-
temporal parameters in gait analysis, offering a portable and versatile alternative
to traditional motion capture systems.

The methodology for utilizing IMUs in gait analysis has evolved significantly,
with foundational work by Zijlstra and Hof [26] laying the groundwork. Their
approach used accelerometry data from the trunk combined with inverted pendulum
models to estimate stride length, a technique that has proven robust across various
populations and walking conditions. Subsequent refinements by Zijlstra and Zijlstra
[27] further validated this method, emphasizing its reliability.

Della Croce and Mancini [28] provided a comprehensive overview of the method-
ologies involved in extracting spatio-temporal parameters from IMU data. Sensor
placement plays a critical role in data accuracy, with common sites including the
lower back, thighs, shanks, and feet—each offering specific advantages depending
on the parameter being measured. For example, positioning an IMU on the lower
back aligns it closely with the body’s center of mass, facilitating reliable data
on overall gait dynamics, while sensors on the feet capture detailed foot-ground
interactions essential for precise step analysis.

Once data is collected, it undergoes sophisticated signal processing to extract
meaningful gait parameters like step length, stride duration, cadence, and walking
speed. Techniques such as Kalman filtering, complementary filtering, and sensor
fusion algorithms help mitigate noise and correct for sensor drift. Event detection
algorithms, including threshold-based detection and zero-crossing methods, iden-
tify key gait events like heel strikes and toe-offs, pivotal for accurate parameter
estimation.

Several methods have been reported in the literature for estimating spatial
parameters from inertial signals. Direct integration involves double integrating the
linear acceleration signals to derive displacement. While conceptually straightfor-
ward, this method is highly sensitive to noise and drift, often leading to cumulative
errors. To address this, corrective strategies such as zero-velocity updates and
direct-reverse integration are commonly employed.

Biomechanical models and abstraction techniques, such as the inverted pen-
dulum model, mathematically represent gait dynamics. These models leverage
anthropometric data and motion dynamics to estimate parameters like stride length.
The work by Zijlstra and Hof [26] remains a cornerstone in this area, and their
methodologies continue to be widely used in modern gait analysis.

The application of IMUs in gait analysis has been extensively validated in both
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clinical and research settings. Bovonsunthonchai et al. [29] demonstrated the
effectiveness of IMUs in capturing spatio-temporal parameters in patients with
Parkinson’s disease, facilitating the monitoring of disease progression and evaluation
of treatment efficacy. Trojaniello et al. [30] further validated IMUs for accurate foot
contact detection and parameter estimation in individuals with gait abnormalities.
IMUs have also been used to assess gait impairments in stroke survivors, individuals
with musculoskeletal disorders, and elderly populations at risk of falls, enabling
personalized rehabilitation programs and improving clinical outcomes [31] [32].

Several mobility assessment solutions based on dedicated IMUs are available
for research or clinical purposes on the market, such as the DynaPort sensor by
McRoberts, the G-Walk sensor by BTS, and others. Despite their many benefits,
dedicated IMUs also present several challenges. One of the main drawbacks is the
need for specialized software and proprietary tools, which can limit accessibility
and flexibility in data processing. Additionally, dedicated IMUs tend to have a
relatively high cost, often reaching several hundred euros, making them less feasible
for large-scale studies.

Another significant limitation is their operational complexity, which can reduce
their usability in real-world applications. These devices often require complex
calibration procedures, manual control over data acquisition, and external tools
for data transfer and processing. Such requirements increase the time and effort
needed for data collection, limiting their practicality outside controlled research or
clinical environments.

In light of these challenges, technologies that retain the benefits of IMUs while
offering greater accessibility and ease of use have been explored. One promising
direction is represented by the use of smartphones, which are equipped with built-in
inertial sensors similar to those in dedicated IMUs. The next section will explore
how smartphones can be effectively utilized for gait analysis, highlighting their
potential to democratize access to this important diagnostic tool.

2.2.4 Estimating spatio-temporal parameters from smart-
phones

The integration of advanced inertial sensors in smartphones has enabled the ex-
traction of spatio-temporal gait parameters, offering a cost-effective and accessible
alternative to dedicated IMUs. Modern smartphones are equipped with accelerom-
eters, gyroscopes, and magnetometers, mirroring the core functionalities of IMUs
and allowing for the estimation of spatio-temporal parameters in both clinical and
everyday environments.

Previous research has demonstrated that smartphones can achieve accuracy
comparable to dedicated IMUs in controlled conditions, as they leverage similar
methodologies for extracting spatio-temporal parameters. Several studies have
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validated the effectiveness of smartphone-based mobility assessment, employing
techniques such as signal integration, frequency-domain analysis, and biomechanical
modeling to estimate stride length, walking speed, cadence, and step detection.

Bayat et al. [7] applied direct integration methods, refining displacement
estimation through low-pass filtering, and demonstrated that stride length and
walking speed can be reliably measured using smartphone accelerometer data.
Similarly, Kang et al. [33] utilized gyroscope data and frequency-domain analysis
via Fast Fourier Transform (FFT) to enhance step detection, cadence estimation,
and walking pattern recognition, even in unconstrained smartphone placements.

Beyond direct signal integration, biomechanical models have been effectively
adapted for smartphones to estimate spatio-temporal gait parameters. Serra-Año
et al.[34] employed inverted pendulum models to assess gait cycle duration, step
length variability, and gait asymmetry in individuals with Alzheimer’s disease,
capturing subtle mobility impairments under single-task and dual-task conditions.
Olsen et al.[8] validated smartphone-based gait analysis by integrating double
inverted pendulum models, double integration, and peak detection techniques,
demonstrating that gait parameters such as step length, cadence, and gait speed
exhibited moderate to excellent validity when compared to the GAITRite® system.
[35]

Machine learning techniques have further enhanced the accuracy of smartphone-
derived spatio-temporal parameters. Hannink et al. (2017) [36] utilized deep
convolutional neural networks to estimate stride length, step duration, and variabil-
ity, showcasing the potential of AI-driven methodologies in refining gait assessments.
Olsen et al.[8] further demonstrated how machine learning models improve step
segmentation and variability detection, making smartphone-based gait analysis
even more precise.

Many studies validating smartphone-based methods are conducted in controlled
environments, ensuring repeatability and reducing external variability. However,
these controlled conditions can differ significantly from real-life scenarios, where
factors such as uneven terrain, environmental distractions, and variations in walking
behavior may affect gait analysis.

The ability of smartphones to extract spatio-temporal gait parameters in real-
world settings offers significant advantages for continuous mobility monitoring.
This capability is particularly relevant for assessing patients with Parkinson’s
disease, stroke, musculoskeletal disorders, and neurodegenerative conditions such
as Alzheimer’s, where changes in gait parameters can provide early indicators
of mobility impairments. By offering an unobtrusive, scalable, and cost-effective
solution, smartphones democratize access to spatio-temporal gait analysis, enabling
large-scale mobility assessments both in clinical practice and at home.
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2.2.5 Gait analysis in free-living conditions: opportunities
and challenges

Gait analysis in free-living conditions represents a significant shift from traditional
laboratory-based assessments, offering the potential to capture a more authentic
representation of an individual’s mobility. While controlled environments provide
precise measurements, they may not fully reflect the complexities and variabilities
of daily life. Free-living gait analysis addresses this gap, allowing continuous
monitoring in everyday-life settings and offering valuable insights into real-world
functional mobility.

One of the primary opportunities presented by free-living gait analysis is its
ability to reveal fluctuations in gait patterns that may be missed in clinical settings.
Galperin [37] demonstrated that gait metrics collected through wearable sensors in
daily life explained a significant portion of the variability in motor symptom severity
among Parkinson’s disease patients. These real-world measurements provided
complementary information to traditional clinical assessments, highlighting the
importance of monitoring mobility in natural environments to better understand
disease progression and functional decline.

Similarly, Giannouli [4] and Zijlstra [27] emphasized the distinction between
mobility capacity, as measured in laboratory tests, and mobility performance in
daily life. Their study showed that laboratory-based gait metrics explained only a
small fraction of the variance in real-life mobility behaviors. This suggests that
real-world gait performance is influenced by additional factors such as cognitive
load, environmental context, and social interactions, underscoring the value of
free-living gait analysis for a holistic understanding of functional mobility.

The integration of wearable sensors and smartphones has facilitated the widespread
adoption of free-living gait analysis. These technologies enable unobtrusive, con-
tinuous monitoring of gait parameters, providing clinicians and researchers with
rich datasets that capture the nuances of daily mobility. This data is particularly
valuable for tailoring personalized interventions, tracking treatment efficacy, and
detecting early signs of mobility impairments.

Despite its many advantages, free-living gait analysis also presents several
challenges. The variability introduced by uncontrolled environmental factors, such
as uneven terrain, varying lighting conditions, and the presence of obstacles, can
affect the accuracy and consistency of gait measurements. Moreover, ensuring data
reliability in the face of device placement variability and user compliance remains
a critical concern.

Privacy and data security are also paramount considerations in free-living gait
analysis. The continuous collection of sensitive personal data necessitates robust
data protection measures and adherence to ethical standards to ensure user trust
and compliance with regulatory requirements.
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Looking forward, the future of gait analysis in free-living conditions lies in
the continued advancement of wearable technologies and data analytics. The
development of smart textiles, unobtrusive sensors, and real-time feedback systems
will further enhance the feasibility and accuracy of free-living gait assessments.
Additionally, the integration of gait data with other health metrics, such as heart
rate and activity levels, will provide a more comprehensive view of an individual’s
overall health and well-being. In conclusion, gait analysis in free-living conditions
offers unparalleled opportunities to understand human mobility in real-world
contexts.

2.3 Use of Inertial Sensors for Free-Living Gait
Analysis

2.3.1 Principles of Operation of IMUs
Inertial sensors enable the tracking of an object’s motion relative to an inertial
reference frame [38]. These sensors directly capture inertial signals, such as accelera-
tions and angular velocities. Through successive integration of these measurements,
it is possible to derive linear velocities, linear displacements, and angular displace-
ments. Due to their affordability and sufficient reliability, inertial sensors are widely
employed across various fields, ranging from military applications to consumer
services. However, this technology is subject to certain limitations, including drift
errors and the necessity for frequent calibration. As introduced in Subsection 2.2.2,
inertial sensors are often integrated with magnetometers within MIMU.

Accelerometer

Accelerometers measure the proper linear acceleration ap, which is the vectorial
difference between the coordinate acceleration ac—representing the rate of change
of the sensor’s velocity—and the acceleration due to gravity, g:

ap = ac − g (2.1)

Thus, the output of an accelerometer does not directly represent the actual
acceleration experienced by the sensor but rather the difference between coordi-
nate acceleration and gravitational acceleration. As a result, a one-dimensional
accelerometer in free fall, with its positive axis aligned with gravity, will output
0 m/s2, whereas it will measure |g| = 9.81 m/s2 when stationary.

An accelerometer can be modeled as a second-order spring-mass-damper system,
consisting of a proof mass m, an elasticity constant k, and a damping factor b
((Figure 2.2)).
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Figure 2.2: Dynamic model of a 1D-accelerometer [39]

When an external force Fapplied is exerted on the system, the proof mass reacts
under the influence of elastic and damping forces, in accordance with Newton’s
second law:

Fapplied + Fspring + Fdamper = Fmass (2.2)

Substituting the expressions for the elastic and damping forces leads to the
equation:

kx + bẋ + mẍ = mac (2.3)

where ac is the coordinate acceleration. In the absence of gravity, ac corresponds
to the proper acceleration. However, if the accelerometer’s sensitivity axis is aligned
with gravity, the measured acceleration ap includes the gravitational component:

kx + bẋ + mẍ = m(ac − g) = map (2.4)

The accelerometer’s response to an input acceleration is characterized by its
transfer function H(s), which depends on the system’s resonance frequency ε0 and
quality factor Q:

H(s) = 1
ε2

0 + Qs + s2 (2.5)

where:
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Q = mε0

b
, ε0 =

ó
k

m
(2.6)

The sensitivity of the accelerometer decreases with the square of frequency,
from an initial static sensitivity H(0) when subjected to constant acceleration to
zero at very high frequencies. As a result, accelerometers are typically designed
to operate well below their resonance frequency to ensure reliable measurements.
However, increasing the resonance frequency expands the sensing bandwidth at
the cost of reducing sensitivity, requiring a trade-off between these parameters in
accelerometer design [39].

Transduction mechanism

Several sensing mechanisms can be employed to convert the displacement of the
proof mass, induced by input acceleration, into a measurable signal. Among
the various transduction principles available, the most commonly used types of
accelerometers can be classified as follows:

• Capacitive: In capacitive accelerometers, the displacement of the proof
mass is first converted into a proportional capacitance change, which is then
transformed into an amplified voltage signal. These accelerometers offer
high sensitivity, excellent DC performance, low noise, minimal drift, and
reduced temperature dependence. However, they are highly susceptible to
electromagnetic interference [39].

• Piezoresistive: These accelerometers leverage the property of piezoelectric
crystals to generate a change in resistivity in response to mechanical stress along
a sensitive axis. They also have a simple design, straightforward fabrication
process, and easy-to-read output circuits. However, they typically exhibit
low sensitivity, bulky structures, and significant sensitivity to temperature
variations [39].

• Piezoelectric: These accelerometers leverage the property of piezoelectric
crystals to generate an electric charge in response to mechanical stress along a
sensitive axis. Their main advantages include being self-powered and providing
a direct digital output with relatively simple interface circuitry. However, their
performance degrades under DC conditions due to charge leakage, and they
tend to have larger physical dimensions [39].

Gyroscope

Gyroscopes measure angular velocity along one, two, or three sensitivity axes.
Devices capable of measuring angular velocity in all three directions are commonly
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referred to as tri-axial gyroscopes, and their measurements are typically expressed
in degrees per second (dps) or radians per second (rad/s). When combined with
accelerometers, gyroscopes enable various applications that require sensor fusion of
integrated inertial sensing [40].

The most widely used gyroscopes operate based on the Coriolis effect, also known
as vibrating gyroscopes. These devices can be modeled as a spring-mass-damper
system with two degrees of freedom [39] [40], as illustrated in Figure 2.3.

Figure 2.3: Spring-mass-damper system used to model the gyroscope.

According to the Coriolis principle, when an object with mass m undergoes both
rotation at an angular velocity Ωz and linear motion at velocity vt, a force—referred
to as the Coriolis force—acts on the object:

Fc = 2mvt × Ωz (2.7)

In vibrating fork gyroscopes, a pair of proof masses oscillate with equal am-
plitude but in opposite directions. When the device is stationary, these tines
resonate in anti-phase within the plane of the fork (drive mode). Upon rotation,
an additional oscillation component appears along the direction orthogonal to the
plane, generating a torque that excites a torsional mode around the gyroscope stem.
The forces acting on the proof mass in both the drive and sensing directions can
be defined using Newton’s second law [40]:
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Fx = mẍ + bxẋ + kxx (2.8)

Fy − 2mΩzẋ = mÿ + byẏ + kyy (2.9)
These equations illustrate that angular velocity can be estimated by analyzing

the displacement of the proof mass.
Among the various gyroscope designs, the most widely used solution is based on

capacitive sensing, which can be arranged in different configurations depending on
complexity levels [41] [42]. The simplest gyroscope structure is shown in Figure 2.4
and consists of:

• A proof mass attached to a substrate.

• Driving electrodes, which induce a constant oscillatory motion along the drive
axis.

• Sensing electrodes, which detect the Coriolis force.

• A suspension system composed of four suspension pillars [42] [39].

The combined motion of the driving and sensing electrodes induces a differential
capacitance change, which is used to measure the Coriolis force and, consequently,
determine the angular velocity.

Unlike accelerometers, which can function as passive components, vibrating fork
gyroscopes necessarily require an active element, such as driving electrodes, to
sustain the oscillatory motion needed for Coriolis-based angular velocity sensing.

Figure 2.4: Schematic representation of a capacitive gyroscope, illustrating the
working principle based on Coriolis force detection through differential capacitance
changes.
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2.3.2 State of the Art in the Use of Dedicated IMUs for
gait assessment

The use of dedicated IMUs in gait analysis has evolved significantly over the
past decades, establishing itself as a cornerstone in both clinical and research
applications.

Setup and Methods Used

The typical setup for IMU-based gait analysis involves strategically placing sensors
on key body segments, such as the lower back, thighs, shanks, and feet. This
configuration allows for the capture of detailed kinematic data, including joint
angles, stride length, and walking speed. The accuracy of these measurements is
enhanced through advanced signal processing techniques, such as Kalman filtering
and sensor fusion algorithms [43], which mitigate sensor drift and noise.

Several methodologies have been developed to extract meaningful gait parameters
from IMU data. Direct integration methods, while straightforward, often require
additional correction techniques like zero-velocity updates to counteract cumulative
errors. Biomechanical models, such as the inverted pendulum model, provide a
theoretical framework for interpreting gait dynamics and have been widely adopted
for their robustness and reliability. More recently, machine learning algorithms have
been employed to enhance the accuracy of gait parameter estimation, leveraging
large datasets to identify complex patterns in motion data.

During the last six years, significant step forwards have been done in the frame-
work of the Mobilise-D project. The Mobilise-D project was an innovative European
initiative aimed at transforming the assessment of human mobility through ad-
vanced digital technologies. Funded under the Horizon 2020 program, Mobilise-D
developed and validated sensor-based tools for accurately and continuously mea-
suring mobility in individuals with chronic conditions such as Parkinson’s disease,
multiple sclerosis, and cardiovascular diseases. The ultimate goal was to enhance
diagnosis, treatment, and clinical management by providing reliable and standard-
ized data that can support personalized therapeutic decisions and improve patient
outcomes.

Within the scope of the technical validation study performed by the Mobilise-D
consortium, several studies addressed the challenge of digital moobility assessment
in free-living conditions with an IMU mounted on the lower-back. Kluge et al.[44]
proposed a consensus-based framework for the digital monitoring of mobility,
aiming to standardize the use of IMUs for gait analysis in both clinical and daily
life contexts. Their framework addresses challenges related to the reliability and
validity of IMU data, ensuring consistent methodologies across different studies.

Mazzà et al.[45] conducted a multicenter validation study for real-world gait
monitoring using IMUs. They performed extensive metrological verification of
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IMU devices and validated algorithms for calculating digital mobility outcomes
in real-life conditions across various clinical populations, including Parkinson’s
disease and COPD. Their results demonstrated high reliability and validity of IMUs
in capturing spatio-temporal gait parameters, highlighting their applicability in
diverse clinical scenarios.

Bertuletti et al. [46] introduced an innovative wearable platform combining
MIMUs with infrared proximity sensors to measure inter-foot distance. This
approach overcomes the limitations of traditional IMUs by improving the accuracy
of step stability assessments. Their study reported a mean error of less than 1.5 cm
in the estimation of step width, demonstrating the potential of this hybrid system
for precise gait analysis.

Salis et al. have progressively developed and validated a multi-sensor system
to enhance gait assessment in real-world conditions. In 2014 [47], they introduced
a method using low-resolution pressure insoles for gait event detection, providing
a cost-effective and portable alternative for integration with IMU-based systems.
Building upon this work, in 2019 [48], they presented the INDIP system, a wearable
multi-sensor setup combining IMUs, distance sensors, and pressure insoles to im-
prove spatio-temporal parameter estimation, particularly in detecting complex gait
abnormalities such as foot-dragging or freezing episodes. The study emphasized the
benefits of multi-sensor integration in reducing drift errors and enhancing real-world
gait analysis. In 2023, Salis et al.[49] refined the INDIP system, integrating two
plantar pressure insoles, three inertial units, and two distance sensors to compre-
hensively assess diseased gait in real-world conditions. The system was validated
against stereophotogrammetry during both structured laboratory tests and daily-
life activity simulations, involving 128 participants from seven cohorts, including
healthy individuals and patients with Parkinson’s disease, multiple sclerosis, and
chronic obstructive pulmonary disease.

Palmerini et al.[50] contributed to the standardization of data collected from
wearable devices through the Mobilise-D project. They provided comprehensive
guidelines for organizing, integrating, and storing gait data, facilitating the com-
parison and reproducibility of studies involving IMUs. Their work emphasizes
the importance of standardized protocols for enhancing the reliability of digital
mobility outcomes across different populations and settings.

Main Results

The application of dedicated IMUs in gait analysis has yielded significant results
across various domains. In clinical settings, IMUs have proven invaluable for diag-
nosing gait abnormalities and monitoring the progression of neurological conditions
such as Parkinson’s disease and multiple sclerosis. For instance, Bovonsunthonchai
et al. [29] demonstrated the effectiveness of IMUs in capturing spatio-temporal
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parameters in Parkinson’s patients, facilitating early detection of gait impairments
and enabling timely interventions.

In rehabilitation, IMUs have been used to track recovery progress and optimize
therapeutic strategies. Trojaniello et al.[30] validated the use of IMUs for accurate
foot contact detection and spatio-temporal parameter estimation in stroke survivors,
highlighting their role in personalized rehabilitation programs. Additionally, IMUs
have been employed in sports science to enhance athletic performance by providing
detailed feedback on movement mechanics.

Kluge et al.[44] reported that their standardized IMU framework improved the
consistency of mobility measurements, enhancing the comparability of data across
studies. Mazzà et al.[45] found that IMU-derived gait parameters showed strong
correlations with gold-standard laboratory measures, with intraclass correlation
coefficients (ICCs) exceeding 0.85 for key metrics like gait speed and stride length.
Bertuletti et al.[46] demonstrated that their hybrid MIMU-infrared system provided
superior accuracy in step width estimation, with a standard deviation of less than
2 cm compared to traditional IMU setups.

The 2014 study by Salis et al.[47] demonstrated the feasibility of using low-
resolution pressure insoles for gait event detection, achieving low root mean square
(RMS) errors of 22 ms for initial contacts and 18 ms for final contacts. Their
method also showed excellent precision in estimating stance and step duration,
with errors below 20 ms and 10 ms, respectively.

Building upon this foundation, the 2019 study [48] further validated the effective-
ness of multi-sensor integration, combining IMUs, distance sensors, and pressure
insoles to improve the accuracy of spatio-temporal gait assessments. This study
highlighted the ability of the INDIP system to detect complex gait abnormalities,
such as foot-dragging and freezing episodes, reinforcing its potential for real-world
applications.

The latest advancements in 2023 [49] provided a comprehensive validation of
the system across diverse clinical populations. The study demonstrated excellent
absolute agreement (ICC ≤ 0.95) for all cohorts and digital mobility outcomes
during structured tests, with minimal mean absolute errors (cadence ≤ 0.61 step-
s/min, stride length ≤ 0.02 m, walking speed ≤ 0.02 m/s). Even during real-life
simulations, the system maintained high accuracy, with stride length errors ranging
from 0.04 to 0.06 m and walking speed errors between 0.03 and 0.05 m/s. These
findings underscore the robustness of the INDIP system, confirming its feasibility
for long-term gait monitoring in both clinical and free-living conditions.

The versatility of IMUs extends to free-living conditions, where their portability
and unobtrusiveness allow for continuous gait monitoring outside of laboratory
environments. This capability provides a more comprehensive understanding of an
individual’s mobility, capturing variations that may not be evident in controlled
settings and offering valuable insights for both clinical assessments and daily activity
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monitoring.

2.3.3 Limitations of Dedicated IMUs
Despite their numerous advantages, dedicated IMUs present several limitations
that can hinder their widespread adoption.

From a practical standpoint, these sensors require periodic calibration to ensure
measurement accuracy, often necessitating specialized equipment and technical
expertise. Additionally, environmental factors such as temperature variations
and electromagnetic interference can introduce noise into the recorded signals,
complicating data interpretation. Addressing these challenges frequently demands
advanced data processing techniques, including sensor fusion and machine learning,
which increase computational complexity and limit their feasibility in certain
applications.

Usability is another critical concern, particularly in free-living conditions. The
need for customized mounting systems or fixation accessories makes these devices
cumbersome and impractical for everyday use. Prolonged wear can also be un-
comfortable for users, potentially reducing adherence in long-term monitoring
studies.

Cost and accessibility further constrain the adoption of dedicated IMUs. These
devices are typically expensive, often costing several hundred euros, which can
be prohibitive in resource-limited settings. Moreover, their operation generally
depends on proprietary software, requiring manual intervention for data acquisition,
sensor calibration, and post-processing. This reliance on specialized tools and
expertise introduces an additional layer of complexity, making dedicated IMUs less
user-friendly and difficult to integrate into non-specialist settings, where ease of
use and automation are essential for scalability.

In summary, while dedicated IMUs remain powerful tools for gait analysis, their
cost, usability challenges, and data processing complexity underscore the need for
alternative or complementary technologies. The following sections will explore the
potential of smartphones as a cost-effective and accessible alternative, addressing
some of the challenges associated with dedicated IMUs.

2.3.4 Potential of Smartphones for Gait Analysis
Given the limitations associated with dedicated IMUs—such as high cost, calibration
requirements, and usability constraints—smartphones have emerged as a promising
alternative for gait analysis. The integration of advanced inertial sensors in modern
smartphones has significantly expanded their potential, offering an accessible and
cost-effective solution compared to traditional methods relying on standalone IMUs.
Equipped with accelerometers, gyroscopes, and magnetometers, smartphones can
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capture detailed motion data, enabling the estimation of spatio-temporal gait
parameters in both clinical and real-world settings.

One of the key advantages of smartphones over dedicated IMUs is their widespread
availability and user familiarity. Unlike traditional IMUs, which often require spe-
cialized equipment and setup, smartphones seamlessly integrate into daily life,
allowing for unobtrusive and continuous gait monitoring. Their portability makes
them ideal for long-term assessments in natural environments, minimizing behav-
ioral modifications that could affect gait patterns.

Moreover, the cost-effectiveness of using smartphones for gait analysis is a major
advantage. Since most individuals already own a smartphone, there is no need
for additional hardware investments, significantly lowering financial barriers. This
democratizes access to gait analysis, making it more scalable and feasible for large-
scale studies, as well as for use in resource-limited settings where dedicated IMUs
may not be viable. Recent reviews highlight the growing adoption of smartphone-
based gait assessment in older adults, emphasizing their utility in both research
and clinical applications [51].

2.3.5 Challenges Related to Smartphone Positioning
Smartphone-based gait analysis presents several challenges, primarily due to the
variability in device placement, differences in hardware specifications across models,
and the influence of user behavior, all of which can introduce inconsistencies in the
recorded data. Unlike dedicated biomechanical measurement tools, smartphones
are not specifically designed for precise gait analysis, which can impact the accuracy
of estimated spatio-temporal parameters. Addressing these challenges necessitates
continuous advancements in data processing algorithms to ensure robust and reliable
measurements and rigorous validation of smartphone-derived estimates of digital
mobility parameters.

A critical aspect influencing the accuracy of smartphone-based gait analysis is
device placement. The orientation and placement of a smartphone significantly
affect the estimation of spatio-temporal gait parameters. Many biomechanical
models used in gait analysis, such as those applied in pedestrian dead reckoning,
assume a stable and consistent sensor alignment to estimate step length and
gait phases accurately. However, in real-world conditions, smartphones are often
carried in diverse locations—such as pockets, hand-held, or inside a bag—leading
to significant variations in recorded motion data. These inconsistencies introduce
errors in gait parameter estimation, ultimately affecting the reliability of gait
assessment algorithms [52].

Despite the growing body of research on smartphone-based motion analysis,
most studies have primarily focused on human activity recognition rather than
explicitly addressing the impact of smartphone positioning on gait analysis. For
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instance, Zhou et al. [53] applied deep learning techniques to classify activities
such as walking and stair climbing but did not examine how different smartphone
placements influence classification performance. Furthermore, some studies, such as
those by Klein [52] and Daniel et al. [54], have attempted to incorporate Smartphone
Location Recognition (SLR) into navigation frameworks, showing that position-
aware corrections can significantly improve step length estimation. However, these
works have been largely confined to controlled laboratory environments, with
minimal attention given to the variability and unpredictability of smartphone
positioning in real-world scenarios.

Understanding smartphone positioning while walking is crucial for improving the
robustness of gait assessment methods, particularly in clinical gait monitoring and
rehabilitation. Addressing this challenge enhances the accuracy and reliability of
smartphone-based gait analysis, making it more applicable to real-world scenarios
and scalable mobility assessments. Despite the challenges related to positioning
and measurement accuracy, smartphones offer a cost-effective and widely accessi-
ble alternative for gait analysis. The continuous integration of advanced sensor
technologies and machine learning algorithms is further refining their precision,
solidifying their role as a valuable tool for both clinical research and everyday
mobility monitoring.
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Experimental setup

The aim of the work consisted in validating smartphone-derived estimates of
digital mobility against a wearable reference system. In the following chapter,
the experimental setup of the study, including the smartphone and the reference
system, is presented.

3.1 The reference system: INDIP
The INDIP (INertial module with DIstance sensors and Pressure insoles) system
is a multi-sensor wearable platform developed by the Università degli Studi di
Sassari. Initially conceived as a validation tool in real-world conditions for other
gait analysis devices within the Mobilise-D project, INDIP was designed to ensure
high reliability at both the hardware and software levels.

3.1.1 INDIP System Setup
The INDIP system consists of inertial sensors, pressure insoles, and distance
sensors (Figure 3.1), providing a comprehensive platform for gait analysis. These
components can be combined in different configurations to adapt to the specific
requirements of various research protocols and experimental conditions. The
flexibility of this system allows researchers to select the most appropriate sensor
placement based on the parameters of interest and the constraints of each study.

The system includes:

• MIMUs, can be placed on various body segments. To ensure proper position-
ing on the body, the sensors are securely fastened using velcro straps. Those
intended for placement on the instep are instead anchored with clips to the
shoelaces, ensuring stability during movement.
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Figure 3.1: Experimental setup of the INDIP system, including two pressure
insoles and three MIMUs used as the reference system.

• Pressure insoles, designed to be inserted inside the participant’s shoes. Each
insole contains sixteen pressure sensors, enabling detailed mapping of foot-
to-ground contact dynamics, crucial for detecting gait phases and assessing
balance.

• Distance sensors, which measure inter-feet distance during the gait cycle
using infrared technology, providing additional information on step count and
width and stride patterns.

In this study, a configuration of the INDIP system including two pressure insoles
and three MIMUs was used as the reference system. Specifically, the setup included:

• Two pressure insoles, one for each foot, to assess foot contact timing to
ensure better reliability in extracting spatio-temporal parameters.

• Three MIMUs, placed as follows:

– One at the level of the fifth lumbar vertebra, approximately LB,
position of interest in this study

– On the insteps of the right foot and left foot Sensors were attached
to shoelaces via a clip and connected to the pressure insoles via a flexible
connector.
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This sensor configuration was chosen to ensure reliable gait analysis while
minimizing sensor burden on participants, making it suitable for both controlled
experimental conditions and potential real-world applications.

3.1.2 INDIP MIMU
Each MIMU consists of a printed circuit board (PCB) that integrates the inertial
sensors, transmission modules, and electronic circuitry for data acquisition and
storage [46]. The PCB is enclosed within a 3D-printed plastic case (Figure 3.2) and
is designed to operate autonomously, featuring an internal battery that provides
several hours of continuous use and an onboard memory slot for data storage.

Figure 3.2: (a) 3-D overview of an INDIP MIMU [49]. (b) Top-view of an INDIP
MIMU. The x and y components lie on the sensor’s plane, while the z-component
points up perpendicularly.

Each MIMU integrates two sensors from STMicroelectronics. The first com-
bines a 3D accelerometer and a 3D gyroscope with selectable full-scale ranges,
offering low-power operation and high performance. The second is a 3D digital
magnetometer with a ±50 gauss dynamic range, designed for ultralow-power con-
sumption. Additionally, they exhibit low zero-measurement offset and minimal
noise, optimizing data accuracy (Table 3.1).

Prior to each recording session, MIMUs must be connected individually via
USB to a computer to synchronize their internal timestamps with the current
date and time. This process, managed through a custom graphical user interface
(GUI) developed in MATLAB, is crucial to ensuring proper alignment between data
streams from different sensors. Once synchronization is completed, the MIMUs are
attached to the participant and wirelessly connected via Bluetooth Low Energy
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TRI-AXIAL ACCELEROMETER
Measurement range Up to ±16 g selectable FSR
Zero-g offset ±40 mg
Rate noise density 1.8 - 3.0 mg (Root Mean Squared (RMS))
Output data rate 1.6 to 6664 Hz

TRI-AXIAL GYROSCOPE
Measurement range Up to ±2000 dps selectable FSR
Zero-rate offset ±1 dps
RMS noise 0.075 dps
Output data rate 1.6 to 6664 Hz

TRI-AXIAL MAGNETOMETER
Measurement range ±50 G
Zero-G offset dynamically cancelled
Rate noise density 3 mG (RMS)
Output data rate 10 to 100 Hz

Table 3.1: Specifications of the sensors of the INDIP MIMU [55]

(BLE) to a custom application, which allows the experimenter to trigger the
acquisition process. During recording, participants can move freely. Recorded data
can be either streamed in real-time (if the distance between the device and the
computer is within the Bluetooth range) or logged to the device memory. At the
end of the session, MIMUs are reconnected via BLE to stop the acquisition and
then linked to a computer via USB for data transfer using the MATLAB GUI. The
device allows to record data at 100Hz or 200Hz, in this study data were recorded
at 100Hz.

3.1.3 INDIP pressure insoles
The pressure insole consists of 16 force-sensing resistors embedded in a thin, flexible
plastic substrate shaped like a shoe insole [55]. These resistors are strategically
positioned along the insole: 9 in the forefoot, 2 in the midfoot, and 5 in the
rearfoot (Figure 3.3). Unlike standalone sensors, the pressure insoles do not contain
batteries, as they are wired directly to the corresponding foot MIMU for power
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and data transmission (Figure ??). The output data rate of the pressure insoles
ranges at 100 or 200 Hz. Pressure insoles are available in different sizes (EU 36-37
40-41 42-43) to comply with the participant’s shoe size.

Figure 3.3: (a) Top view of one pressure insole. (b) A pressure insole connected
to its corresponding foot MIMU

3.2 The smartphone: Samsung Galaxy A34

The smartphone model selected for this study was the Samsung Galaxy A34. This
model was chosen as a representative mid-range smartphone, striking a balance
between cost and performance. Given the widespread availability and accessibility
of mid-range devices, using such a smartphone allows for a more generalizable
approach to gait analysis, ensuring that findings can be applied to a broader
population without relying on high-end, expensive models.

However, unlike dedicated IMUs, which have well-documented specifications,
consumer smartphones rarely provide detailed technical information about their
integrated inertial sensors. Understanding the accuracy, noise levels, and limitations
of these sensors is critical for validating their use in gait assessment.

For this reason, a metrological characterization was conducted to determine the
Samsung Galaxy A34’s inertial sensor specifications, ensuring that its performance
could be accurately assessed and compared to a reference system (INDIP). The
following sections describe the experimental tests performed, aimed at characterizing
the accelerometer, gyroscope, and magnetometer of the smartphone in terms of
accuracy, bias, noise, and consistency.
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3.2.1 Samsung Galaxy A34: Inertial Sensor Specifications
Due to the lack of publicly available specifications for the Samsung Galaxy A34’s
inertial sensors, a metrological characterization was carried out to assess their
performance. This characterization included a series of tests aimed at evaluat-
ing noise, accuracy, bias, and repeatability of the accelerometer, gyroscope, and
magnetometer.

Noise Characterization

• Objective: Determine the noise level of the accelerometer, gyroscope, and
magnetometer.

• Procedure:

– The smartphone was placed on a stable, non-vibrating surface.
– Data were recorded for two minutes while the device remained static.
– The noise level was quantified by computing the standard deviation of the

recorded signals for each axis. once calculated for each axis, STD values
were averaged to provide a unique measure of triaxial standard deviation

Accelerometer Calibration Validation

• Objective: Verify the accuracy of the accelerometer under gravitational
acceleration.

• Procedure:

– The device was aligned in six standard orientations (±X, ±Y, ±Z) using
a rigid support.

– Each orientation was held for one minute while acceleration data were
collected.

– The measured values were compared to the expected theoretical values
(±9.81 m/s2 for gravity-aligned axes).

Free-Fall Test for Accelerometer Accuracy

• Objective: Validate the accelerometer’s performance under pure gravitational
conditions.

• Procedure:

– The smartphone was dropped onto a soft surface from a controlled height.
– The acceleration data were analyzed during the free-fall phase, where the

expected total acceleration should be close to zero.

34



Experimental setup

Gyroscope Bias and Stability

• Objective: Estimate the gyroscope bias and assess its stability.

• Procedure:

– The device was placed on a stable surface, ensuring no external rotations.
– Gyroscope data were recorded for two minutes.
– The mean angular velocity for each axis was computed to assess potential

systematic bias.

• Additional Test: Gyroscope Rotational Accuracy

– The device was mounted on a rotating platform (Figure ??).
– 100 controlled rotations were executed along each axis.
– The The integrated angular velocities were compared to the theoretical

values to quantify rotational accuracy.

Allan Variance Analysis

• Objective: Characterize sensor instability over different time scales [56].

• Procedure:

– the data were collected for two hours in static conditions
– The collected data were analyzed to identify different noise components,

including white noise, bias instability, and random walk.
– A log-log Allan variance plot was generated to interpret the sensor noise

characteristics.

3.2.2 Summary of Findings
All tests were conducted on six Samsung Galaxy A34 smartphones, as these were
the same devices used for data collection. Testing all devices allowed for a more
comprehensive assessment, ensuring that the results account for device-to-device
variability and providing more reliable performance estimates across multiple units.

The Noise Characterization Test results, summarized in Table 3.2, provide
insights into the sensor stability under static conditions. Standard deviation values
were computed for each axis of the accelerometer, gyroscope, and magnetometer
across different smartphone placements.

The findings indicate that the accelerometer exhibited standard deviations
ranging from 0.0094 to 0.0299, suggesting high stability. The gyroscope showed
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Figure 3.4: Rotating platform performing the 100 controlled rotations

a mean standard deviation of 0.0647. The standard deviation for magnetometer
ranging from 0.6638 to 5.6417.

For the Accelerometer Calibration Validation Test the errors, computed as the
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difference between measured and expected values, are summarized in Table 3.3.
The findings reveal that the accelerometer generally aligns well with the expected

values, with errors typically remaining below 0.3 m/s2, except for a few cases where
deviations exceeded 0.35 m/s2 (e.g., +Z orientation for smartphone 1, where the
error reached -0.3514 m/s2). The Y and Z orientations exhibited slightly larger
errors, particularly in smartphones 6 and 5.

Under ideal conditions, when an object is in free fall, the accelerometer should
measure a total acceleration norm close to 0 m/s2, as the only acting force is gravity.
However, due to sensor limitations, air resistance, and minor external perturbations,
the measured norm may deviate from the expected value.

The results of Free-Fall Test, summarized in Table 3.4, show that the mean
acceleration norms across different smartphone positions range from 0.1324 m/s2
(smartphone 2) to 0.2458 m/s2 (smartphone 1). These values, which ideally
should be close to zero in a true free-fall scenario, suggest the presence of residual
accelerations likely caused by sensor noise, small device movements, or slight
imperfections in the free-fall conditions. The mean acceleration norm across all
devices is 0.1907 m/s2, indicating that while the sensors approximate the expected
behavior, some residual biases persist.

Ideally, the gyroscope should measure zero angular velocity in a static condition,
but in practice, minor biases can occur due to sensor drift, calibration inaccuracies,
or inherent noise. These biases can lead to accumulated errors in angular velocity
measurements, affecting motion tracking accuracy. The results of Gyroscope Bias
and Stability Test, summarized in Table 3.5, indicate that the bias values are
relatively low across all smartphone positions, with most deviations within ±0.02
deg/s. The mean bias across all positions is 0.0047 deg/s, suggesting that while
individual sensors may exhibit small offsets, the overall bias remains minimal and
manageable for gait analysis applications.

In addition to bias evaluation, the Rotational Accuracy Test was performed.
The recorded angular displacement was then compared to the expected value of
36000°. The results in Table 3.6 show that errors typically ranged between 200°
and 350°, indicating a percentage error below 1%.

Figure 3.5 presents the Allan Variance results for different smartphones and
sensor axes. The x-axis represents the averaging time τ in seconds on a logarithmic
scale, while the y-axis shows the Allan Deviation, which quantifies the sensor’s
noise characteristics over time.

The observed trends indicate three distinct regions:

• Short averaging times (τ < 1s): The Allan Deviation exhibits irregular fluc-
tuations, suggesting a dominant presence of white noise. This high-frequency
noise is characteristic of sensor measurement uncertainty and is particularly
pronounced in certain axes, such as Smartphone 1-x and Smartphone 3-y.
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Figure 3.5: Allan Variance analysis for different smartphones and sensor axes (x,
y, z).

• Intermediate region (1s < τ < 10s): The deviation stabilizes across most
axes, indicating a transition from high-frequency noise to bias instability. This
suggests that for these timescales, the sensor’s performance is less affected by
random fluctuations and instead begins to show systematic drift characteristics.

• Long averaging times (τ > 10s): Some axes display a continued decrease
in Allan Deviation, while others exhibit long-term drift effects. In particular,
the Smartphone 3-z and Smartphone 5-z axes show lower deviation values,
implying greater sensor stability in these configurations. Conversely, the
oscillations observed in Smartphone 4-x and Smartphone 3-y suggest increased
susceptibility to environmental disturbances or motion artifacts.

Overall, the analysis highlights that sensor placement significantly affects sta-
bility, with Smartphone 3 and Smartphone 1 exhibiting more consistent noise
characteristics over time.
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Smartphone Sensor Std Dev (Tri-axial)
1 Accelerometer 0.0094

Gyroscope 0.0550
Magnetometer 0.6638

2 Accelerometer 0.0190
Gyroscope 0.0620

Magnetometer 3.0358
3 Accelerometer 0.0151

Gyroscope 0.0540
Magnetometer 0.9685

4 Accelerometer 0.0148
Gyroscope 0.0627

Magnetometer 2.4889
5 Accelerometer 0.0122

Gyroscope 0.0734
Magnetometer 5.6417

6 Accelerometer 0.0299
Gyroscope 0.0812

Magnetometer 0.8906
Mean Accelerometer 0.0167

Gyroscope 0.0647
Magnetometer 2.2816

Table 3.2: Noise characterization results: triaxial standard deviation values for
each sensor and smartphone
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Smarthphone Orientation Measured (m/s2) Error (m/s2)
1 -X / +X 9.7061 / -9.9754 -0.1039 / -0.1654

-Y / +Y 9.7840 / -9.9602 -0.0260 / -0.1502
-Z / +Z 9.6874 / -10.1615 -0.1226 / -0.3515

2 -X / +X 9.8191 / -9.8700 0.0091 / -0.0600
-Y / +Y 9.8031 / -9.9578 -0.0069 / -0.1478
-Z / +Z 10.0612 / -9.8227 0.2512 / -0.0127

3 -X / +X 9.7562 / -9.8434 -0.0538 / -0.0334
-Y / +Y 9.6692 / -9.9078 -0.1408 / -0.0978
-Z / +Z 10.0870 / -9.6687 0.2770 / 0.1413

4 -X / +X 9.8658 / -9.8897 0.0558 / -0.0797
-Y / +Y 9.8447 / -9.9110 0.0347 / -0.1010
-Z / +Z 10.0035 / -9.8484 0.1935 / -0.0384

5 -X / +X 9.8243 / -9.9155 0.0143 / -0.1055
-Y / +Y 9.7095 / -9.8616 -0.1005 / -0.0516
-Z / +Z 10.0731 / -9.6683 0.2631 / 0.1417

6 -X / +X 9.8418 / -9.8039 0.0318 / 0.0061
-Y / +Y 9.6821 / -9.9573 -0.1279 / -0.1473
-Z / +Z 9.9703 / -9.8105 0.1603 / -0.0005

Mean Error -X / +X - -0.0074 / -0.0733
-Y / +Y - -0.0616 / -0.1158
-Z / +Z - 0.1360 / -0.0200

Table 3.3: Accelerometer Calibration Validation: Measured Acceleration and
Errors

Smartphone Mean Acceleration Norm (m/s2)
1 0.2458
2 0.1324
3 0.1983
4 0.1675
5 0.2147
6 0.1856
Mean 0.1907

Table 3.4: Free-Fall Test for Accelerometer Accuracy: Measured Acceleration
Norm
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Smartphone Bias x (deg/s) Bias y (deg/s) Bias z (deg/s)
1 0.0184 0.0167 0.0198
2 0.0159 -0.0174 -0.0165
3 0.0166 -0.0001 0.0160
4 -0.0175 -0.0180 0.0169
5 0.0170 0.0197 -0.0165
6 -0.0185 0.0157 0.0157
Mean Bias 0.0047 0.0028 0.0022

Table 3.5: Gyroscope Bias at Rest: Measured Bias for Each Smartphone

Smartphone Error x (deg) Error y (deg) Error z (deg)
1 243.5 310.2 287.9
2 298.4 275.6 320.1
3 259.7 295.3 305.8
4 276.4 318.9 289.5
5 301.2 250.3 322.8
6 287.9 309.4 270.6
Mean Error 277.9 293.3 299.4

Table 3.6: Gyroscope Rotational Accuracy: Measured Errors in Angular Displace-
ment
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Chapter 4

Data collection

The process of data collection is a fundamental step in any study involving gait
analysis, as the quality and reliability of the dataset directly influence the validity
of the subsequent analyses and model performance. This chapter describes the
procedures followed to acquire inertial data from smartphones and the INDIP system
in controlled laboratory settings as well as in free-living conditions. The acquisition
protocols have been carefully designed to ensure consistency, reproducibility, and a
comprehensive representation of real-world walking conditions.

4.1 Smartphone data collection
To record inertial data from smartphones, a custom research-grade application
developed by the University of Sheffield, Mobin, was used. This application was
specifically designed to enable continuous and reliable data acquisition from the
smartphones’ onboard sensors, ensuring the collection of high-quality signals for
subsequent analysis.

Mobin was configured to record data from the accelerometer, gyroscope, and
magnetometer at the highest possible sampling frequency supported by the device.
The data were logged locally on the smartphone throughout the acquisition session
and, once the recording was stopped, the application allowed users to export the
recorded data.

The exported data were stored in CSV format, with a separate file generated
for each sensor. Each file contained four columns:

• Timestamp (encoded in milliseconds),

• X-axis values,

• Y-axis values,
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• Z-axis values.

This structured format facilitated efficient data handling and preprocessing for
subsequent analysis.

Figure 4.1 illustrates the home screen of the Mobin application.

4.2 Experimental Protocol
To increase the amount and the heterogeneity of data, two distinct data acquisition
sessions were conducted at Politecnico di Torino and at the University of Sheffield.
Specifically, data from 15 healthy subjects were collected in Torino (Table 4.2),
while an additional 25 healthy subjects were recruited in Sheffield (Table 4.1).
Data collection took place both in controlled laboratory settings—in-Lab—and
in uncontrolled, real-world environments—free-living. All participants provided
written informed consent for the use of their recorded data. Additionally, the data
collection process conducted in Sheffield received ethical approval from the Ethics
Committee of the University of Sheffield.

In addition to inertial data, demographic information and specific measure-
ments were collected from participants, including the height of the LB-MIMU and
smartphone from the ground. These measurements were required for the correct
application of the Mobilise-D pipeline, ensuring accurate processing and validation
of the extracted gait parameters.

This chapter details the experimental setup, data acquisition protocols, and
preprocessing steps necessary to prepare the collected signals for further analysis

4.3 Acquisitions in Torino
The acquisitions done in Torino were conducted in a controlled enviroment, the ex-
periments took place within the Department of Electronics and Telecommunications
(DET) at Politecnico di Torino.

4.3.1 Data acquisition protocol
Participants were equipped with the INDIP kit configuration previously described
in Section 3.1.1. Additionally, a smartphone was securely positioned on the lower
back using an elastic belt to ensure stability during walking. The smartphone was
placed in a horizontal orientation, with its sensor axes aligned as follows:

• The positive Z-axis aligned with the anteroposterior direction.

• The positive X-axis aligned with the inferior-superior direction.

43



Data collection

Subject Gender Age Height (cm) Shoe Size (EU)
1 M 36 185 44
2 M 26 192 46
3 F 27 158 38
4 M 28 180 44
5 F 27 171 40
6 M 57 174 42
7 M 29 182 45
8 M 38 178 43
9 F 31 165 37
10 F 27 166 38
11 M 42 170 42
12 M 26 169 40
13 M 29 187 45
14 M 34 175 43
15 M 30 176 43
16 M 31 186 44
17 M 40 175 43
18 M 30 175 42
19 F 33 152 39
20 F 29 164 38
21 M 24 175 44
22 M 30 184 43
23 M 37 174 42
24 F 28 173 37
25 F 22 166 39

Summary M (68%) 31.64±7.22 174.08±9.31 41.50±3.00

Table 4.1: Participant characteristics for the Sheffield data acquisition

• The positive Y-axis aligned with the mediolateral direction.

The described equipment setup, along with an illustration of the reference
coordinate system used in Android smartphones, is presented in Figure 4.2.

The in-lab data acquisition protocol consisted of seven structured tests, each
conducted under the supervision of one or two operators. Each test included a
pre-defined number of repetitions, referred to as Trials. Below, a brief overview of
each test is provided.

• Spot check test (Test 1): This test aimed to assess the quality of sensor
performance. Data collected during this phase were analyzed using the INDIP
Data Quality Check tool to detect any artifacts or inconsistencies.
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Subject Gender Age Height (cm) Shoe Size (EU)
1 M 28 185 45
2 M 25 179 46
3 M 25 190 46
4 F 29 170 37
5 F 27 173 39
6 M 25 176 43
7 F 23 161 38
8 M 24 176 43
9 M 24 175 44
10 F 25 165 39
11 F 24 175 40
12 M 25 179 42
13 M 34 180 43
14 F 24 162 38
15 M 28 180 44

Summary M (60%) 26.00±2.83 175.06±8.03 41.08±3.05

Table 4.2: Participant characteristics for the Torino data acquisition

– IMU static test: A static acquisition was performed on each INDIP MIMUs
that was utilized during the acquisition. The devices were placed on a flat
surface for at least 60 seconds while ensuring no movement or disturbances
affected the sensors.

– Pressure insoles static test: This test verified the correct functionality of
the pressure insoles. An operator sequentially applied pressure to each
sensing unit, independently for both the right and left insoles.

The data recorded during this test were used for quality control. For the
MIMUs, the system evaluated whether the inertial signals had an expected
mean value (approximately zero), an accelerometer norm within the expected
range, and an appropriate standard deviation. Additionally, the system
checked whether the full-scale range was correct or if any sensors had ceased
recording during the acquisition. To ensure optimal performance during the
IMU static test, recording should not commence immediately after powering
on the MIMUs. This precaution is necessary because the sensors require a
stabilization period to reach their steady-state operating conditions. Failure
to allow sufficient time for stabilization often resulted in the spot check failing,
with the system reporting a "high standard deviation" condition. Similarly, for
the pressure insoles, the system assessed potential performance degradation
or recording failures. If any issues were identified, the faulty sensors were
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replaced, and the test was repeated before proceeding.

• Standing test (Test 2): This test involved a brief static acquisition, during
which the participant wore the complete device setup, including MIMUs,
pressure insoles, and the smartphone. The participant was instructed to
stand still for at least 10 seconds. This phase was essential for estimating the
angle between vertical axis of the device and the gravity axis, enabling the
computation of the rotation matrix required to align the inertial recordings
during subsequent dynamic acquisitions (Figure 4.4).

• Data Personalization (Test 3): This phase ensured the proper placement
of the pressure insoles inside the participant’s shoes and identified any malfunc-
tioning sensors that required recalibration or substitution. The participant
was instructed to:

– Stand still for at least 10 seconds.
– Lift the left foot for at least 5 seconds (single right-leg support).
– Return to a double support stance for 5 seconds.
– Lift the right foot for 5 seconds (single left-leg support).
– Return to a double support stance for 5 seconds.
– Walk at a comfortable pace along a 12-meter straight path(Figure 4.3).

Signals recorded during this test are illustrated in Figure 4.5.

• Slow straight walking (Test 4): The participant walked along a 12-meter
straight path at a slow pace. This test was repeated three times (Figure 4.6).

• Normal straight walking (Test 5): The participant walked along the same
12-meter path at a self-selected comfortable speed, again repeating the test
three times (Figure 4.7).

• Fast straight walking (Test 6): The participant walked the same path at
an increased pace. This test was also repeated three times (Figure 4.8).

• Round walking (Test 7): The participant walked four full laps around an
approximately 24-meter oval (Figure 4.3) path at a comfortable speed. This
test was repeated three times and was included in the protocol to introduce
non-linear walking trajectories into the dataset (Figure 4.9).

Conducting each test three times ensured redundancy, allowing for data recovery
in case of corrupted trials. Additionally, incorporating different walking speeds and
non-linear trajectories increased dataset variability, enhancing the generalization
capability of machine learning models. However, this also introduced the risk
of underfitting, as the model was required to learn a broader range of walking
patterns.
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4.3.2 Data preparation
Upon completion of all tests, the data recorded from all devices were manually
downloaded and systematically organized into structured directories to facilitate pre-
processing. Before standardizing each participant’s files into a MATLAB structure
(data.mat), preliminary data processing was performed.

The signals recorded by the INDIP MIMUs were inherently structured per
trial, allowing for a direct mapping of each test repetition. Conversely, due to
the inability to pause and resume recordings remotely, the smartphone data were
acquired as a single continuous recording. Consequently, a segmentation method
was implemented to identify and extract individual trials from the smartphone
recordings.

This segmentation was achieved by leveraging cross-correlation analysis between
the norm of the gyroscope signal from the LB-MIMU and the norm of the gyroscope
signal from the entire smartphone recording. The time instants corresponding to
the highest cross-correlation values were identified, and the time delay between the
two signals was estimated and applied to the smartphone data to synchronize it with
the MIMU reference signal. Subsequently, the smartphone recording was segmented
to isolate the signal corresponding to each trial, as illustrated in Figure 4.10.

4.4 Acquisitions in Sheffield
The acquisitions done in Sheffield were conducted in both controlled and free-
living confditions. In these acquisitions, participants were equipped as previously
described in Section 4.3.1 and illustrated in Figure 4.2.

To ensure comprehensive inertial data collection for the smartphone location
recognition task, participants carried six smartphones simultaneously, each assigned
to a predefined position, as shown in Figure 4.11. This setup allowed for the
development and evaluation of a model capable of recognizing smartphone placement
during gait. Among these, the LB position was specifically included, as the Mobilise-
D algorithm pipeline is designed for inertial data from this location. The remaining
five positions were selected based on common real-world smartphone placements,
as detailed in Section 3.2.2, ensuring a representative dataset for the recognition
task.

4.4.1 Data acquisition protocol
Immediately after performing the spot check test, an additional step was introduced
to ensure a common temporal reference for the signals recorded by the six smart-
phones. Before being worn by the participant, all six smartphones were placed
on a support mounted on a turntable and rotated simultaneously. This procedure

47



Data collection

generated an initial gyroscope signal with a consistent angular velocity pattern
across all devices, which was later used for temporal realignment.

This step was necessary due to a key difference between the experimental
setups in Torino and Sheffield. In the Torino acquisitions, only one smartphone
was placed on the lower back alongside an INDIP MIMU, ensuring that both
recorded the same movement as they shared the same anatomical reference point.
However, in the Sheffield configuration, where six smartphones were placed in
different locations, each device recorded distinct motion patterns. The turntable-
based synchronization approach was therefore implemented to provide a common
reference point, facilitating accurate temporal realignment across all smartphones.

Once the previously described tests were completed in a structured environment
(Section 4.3.1), participants were released into a free-living context for a duration of
2.5 hours. Given the nature of free-living conditions, participants were not required
to walk continuously for the entire period; instead, they were granted full autonomy
to carry out their daily activities. During this time, they were allowed to remove
the jacket and shoulder bag, as well as temporarily take off all smartphones and
place them on a surface, except for the smartphone positioned on the lower back
and the INDIP system.

Participants were instructed that whenever they resumed walking, they should
reattach all smartphones to their designated positions. To facilitate the correct
reattachment, each smartphone was labeled according to its specific placement,
and the background of each device was customized accordingly, as illustrated in
Figure 4.12.

Although participants were given complete freedom in their activities, they were
encouraged to walk as much as possible throughout the session to maximize the
amount of data collected for the development of the classifier.

4.4.2 Data preparation
The process for generating the MATLAB structure data.mat [50] followed the same
steps outlined in Section 4.3.2, with additional procedures required due to the
presence of multiple smartphones. Since six smartphones were used simultaneously,
it was necessary to align all recordings to a common temporal reference.

To achieve this, all smartphones were synchronized with the lower back smart-
phone using cross-correlation. Specifically, the angular velocity pattern recorded
during the controlled rotation on the turntable was leveraged as a shared reference
signal. This ensured that the initial timestamps of all smartphone recordings were
aligned before further processing.

Once the smartphones were temporally synchronized, the next step was to align
the LB smartphone with the LB-MIMU. Maintaining continuous synchronization
between the LB smartphone and the LB-MIMU was crucial, as the INDIP pipeline

48



Data collection

relied on the LB-MIMU signals to segment walking bouts, using its timestamps to
define the start and end of gait segments. This alignment ensured that all extracted
gait segments were correctly referenced across devices.

Finally, the data.mat structure was populated not only with all structured
test data—including the entire 2.5-hour free-living session—from both the LB
smartphone and the INDIP system, but also with the data from all additional
smartphones.

4.4.3 Intended use of the dataset
Data acquired in Turin and Sheffield in a controlled environment resulted in the
In-Lab dataset. The one acquired in the free-living context in Sheffield resulted
in the Free-living dataset. The acquired datasets served two primary objectives.
First, for the validation of the Mobilise-D algorithm pipeline, the INDIP kit was
used as the reference system to extract the temporal values of DMOs through
its dedicated algorithm. These reference values were then compared against the
DMOs estimated from the inertial data recorded by the smartphone, which serves
as the device under test, and processed through the Mobilise-D algorithm pipeline.
The second objective was to develop a model for smartphone position recognition
during gait, leveraging the multiple smartphone placements included in the dataset.
This setup ensured the availability of diverse inertial data necessary to train and
evaluate the recognition model, enhancing its robustness across different carrying
positions.
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Figure 4.1: Home screen of the Mobin application used for smartphone data
collection.
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Figure 4.2: Standard reference coordinate system in Android smartphones, exper-
imental setup configuration with a focus on foot-mounted MIMUs, the smartphone,
and the LB-MIMU.
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Figure 4.3: (a) Straight path for Test 3, 4, 5 and 6. (b) Ring path for Test 7.

Figure 4.4: Acceleration (a), Angular velocity (ω) and magnetic field (H) recorded
from the smartphone positioned on the lower back during the Standing Test.
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Figure 4.5: Acceleration (a), Angular velocity (ω) and magnetic field (H) recorded
from the smartphone positioned on the lower back during the Data Personalization
Test.
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Figure 4.6: Acceleration (a), Angular velocity (ω) and magnetic field (H) recorded
from the smartphone positioned on the lower back during the Slow Straight Walking
Test.
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Figure 4.7: Acceleration (a), Angular velocity (ω) and magnetic field (H) recorded
from the smartphone positioned on the lower back during the Normal Straight
Walking Test.
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Figure 4.8: Acceleration (a), Angular velocity (ω) and magnetic field (H) recorded
from the smartphone positioned on the lower back during the Fast Straight Walking
Test.
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Figure 4.9: Acceleration (a), Angular velocity (ω) and magnetic field (H) recorded
from the smartphone positioned on the lower back during the Round Walking Test.

Figure 4.10: Comparison of signal alignment between the LB Smartphone and
the INDIP system. The top plot shows the initial alignment check, highlighting
discrepancies between the signals. The bottom plot illustrates the improved
alignment after synchronization with INDIP.
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Figure 4.11: Schematic representation of the five additional smartphone positions
investigated in the SLR task: (A) Hand-held, (B) Shoulder bag, (C) Front pocket,
(D) Back pocket, and (E) Coat pocket.
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Figure 4.12: Customized smartphone backgrounds indicating their designated
positions to ensure correct reattachment by participants.
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Chapter 5

Methods

5.1 Overview
As, stated in previous chapters, this thesis focuses on two main objectives:

• Validation of the Mobilise-D algorithms and pipeline with smartphone-
acquired inertial data. The study assessed whether the Mobilise-D single
algorithms and full pipeline, originally validated for a lower back-mounted
dedicated IMU, can be reliably applied to smartphone inertial data. Key gait
parameters were evaluated and compared with reference values derived from
the INDIP system.

• Development and validation of a machine learning framework for
smartphone location recognition. The study assessed the feasibility of
recognizing the smartphone location during walking. Five machine learning
models were supervisedly trained using labeled inertial data recorded from
multiple smartphones simultaneously and their performance compared to
assess the optimal architecture and features set for the task. This process
involved constructing a labeled dataset from multiple smartphone placements,
extracting relevant features from accelerometer and gyroscope signals, and
training a classification model to distinguish between predefined carrying
positions.

5.2 MobGap validation with smartphone data
The Mobilise-D algorithm pipeline is an analytical framework developed to assess
real-world gait and estimate Digital Mobility Outcome (DMOs) from wearable
inertial sensors. Originating from the Mobilise-D project, a large-scale European
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initiative, it provides a standardized and validated method for extracting and
analyzing gait parameters from a single IMU mounted on the lower-back.

5.2.1 Development and validation of the Mobilise-D algo-
rithm pipeline

The development and validation of the Mobilise-D algorithm pipeline was performed
in the context of the Technical Validation Study (TVS) of the Mobilise-D project
[45]. The goal of the TVS was to demonstrate the technical validity of an algorithm
pipeline for the assessmnt of DMOs in real-world conditions. Such DMOs, including
gait sequences, initial contacts, cadence, stride length and walking speed, were
dependent one on each other (e.g., stride length can be estimated after that initial
contacts are detected). Therefore, the algorithm was devised as a pipeline composed
of various blocks, each one associated to many algorithms 1. To identify the best-
working algorithm for each block, a block-by-block validation of the algorithm
pipeline was performed [11], resulting in a final implementation referred to as the
Mobilise-D algorithm pipeline [9]. Recently, an open-source Python implementation
of the pipeline called MobGap has been validated and released on GitHub [10].

5.2.2 Technical Validation Study dataset
During the TVS, the pipeline, as well as the single algorithms, have been previously
validated with data of healthy individuals and patients with mobility impairments,
including both healthy individuals and those with mobility impairments, ensuring
its applicability for both clinical and general use [11][9]. One of the key strengths
of the Mobilise-D pipeline is its validation across multiple clinical conditions that
affect gait and mobility. Specifically, it has been validated in the context of the
Technical Validation Study (TVS)[45], with data of individuals with:

• Parkinson’s disease: Reduced gait speed, shorter step length, increased gait
variability, and freezing of gait episodes.

• Multiple sclerosis: Gait asymmetry, impaired coordination, reduced cadence,
and difficulty in maintaining a stable walking pattern.

• Chronic obstructive pulmonary disease: Reduced endurance, altered
step dynamics, and increased gait variability due to respiratory limitations.

1In the original implementation of the pipeline, most algorithms were coded in Matlab, other
in Python, only a few in R.
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• Proximal femoral fracture: Impaired weight-bearing, reduced stride length,
and compensatory movement patterns.

• Congestive heart failure: Affected walking speed and cadence, contributing
to slower and more effortful gait patterns.

• Older adults with frailty: Decreased step regularity, reduced stride length,
and increased risk of falls [9].

A refined version of the dataset has been recently released on the open-source
platform Zenodo [57]

Beyond clinical populations, the Mobilise-D algorithm pipeline is also suitable
for healthy individuals, enabling objective gait monitoring in everyday settings.
Unlike traditional gait analysis methods, which are often restricted to laboratory
environments, Mobilise-D allows for continuous gait assessment also in free-living
conditions, offering ecologically valid insights into mobility [9].

5.2.3 Blocks of the Mobilise-D algorithm pipeline
The pipeline comprises multiple algorithmic components, each responsible for
processing specific aspects of gait data (Figure 5.1).

The Mobilise-D algorithm pipeline is based on the following key blocks [11]:

• Gait Sequence Detection (GSD): Identifies periods of walking within
continuous sensor recordings, distinguishing gait sequences from non-walking
activities. This step is fundamental as it defines the segments where gait
analysis is performed. Detected gait sequences include straight as well as
curvilinear walking, in both inclined and flat surfaces.

• Initial Contact Detection (ICD): Determines the precise moments when
a foot makes contact with the ground, a key spatio-temporal parameter. The
refined gait sequences are obtained by detecting the start and end of walking
phases based on these contacts. Additionally, this spatio-temporal parameter
is essential to estimate step and stride according to what previously defined

• Cadence Estimation (CAD): Measures the number of steps per minute.
It is computed on a per second basis within each detected gait sequence,
providing a key measure of walking rhythm and intensity.

• Stride Length Estimation (SL): Computes stride length by measuring
acceleration-derived vertical displacement and assuming a biomechanical model
of the lower body, providing a stride length estimate per second of gait.
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In addition to these fundamental components, the pipeline includes other modules
that further refine the gait analysis and provide complementary parameters:

• Turning Detection: Identifies turns during walking and provides details on the
start, end, and degree of turning within the detected gait sequence.

• Left-Right Foot Classification: Assigns detected initial contacts to the left or
right foot, enabling gait asymmetry analyses.

• Walking Speed Calculation: Computes the walking speed per second using
cadence and stride length estimates.

• Stride-Level Interpolation: Ensures all calculated parameters are interpolated
to a fixed time step to maintain temporal consistency across estimates.

• Stride Selection: Filters out outlier stride estimates that fall outside physiolog-
ically plausible ranges, improving the robustness of extracted gait parameters.

• Walking Bout Assembly: Segments and structures gait data into meaningful
walking bouts, defining their start and end based on stride sequences.

Each algorithm in the pipeline has been optimized and validated against gold-
standard reference systems, such as INDIP, in the configuration as previously
described in Section 5.2.2 to ensure high-fidelity ground truth data [9].

5.2.4 Algorithms of the Mobilise-D algorithm pipeline
In this section, the algorithms recommended for correctly applying the Mobilise-D
pipeline to healthy individuals are analyzed and described. Based on the findings
from the technical validation study [9] [11], specific algorithmic choices ensure
optimal performance when processing gait data from a population of healthy
subjects, which is the target population for this study.

For this purpose, the most suitable algorithms for each of the core pipeline
blocks have been identified. According to the validation study, the recommended
algorithms for healthy individuals correspond to those within the pipeline con-
figuration labeled as P1 in Figure 5.1. These algorithms demonstrated the best
accuracy and reliability in detecting and estimating key gait parameters under
free-living conditions.

In this study, the Python implementation of the Mobilise-D algorithm pipeline
was employed, which is available through the MobGap package. The version
employed in this study is MobGap 0.10.0, which includes a validated and structured
set of methods for gait sequence detection, initial contacts detection, cadence
estimation, stride length estimation and walking speed estimation. The use of this
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Figure 5.1: Schematic representation of the Mobilise-D pipeline, outlining its
main algorithmic components and their respective outputs. The main validated
blocks are highlighted.Adapted from Kirk et al. [9]

package ensures reproducibility and compliance with the standardized pipeline
applied in previous studies.

The following subsections provide a detailed explanation of each selected algo-
rithm and its role within the pipeline.

Gait Sequence Detection

The detection of gait sequences is a fundamental step in the Mobilise-D pipeline,
ensuring that only valid walking periods are analyzed while filtering out non-walking
activities such as standing, sitting, or external perturbations. The method follows
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the approach proposed by Iluz et al. (2014) [58], leveraging the characteristic
frequency content of human gait, typically within the 0.5–3.0 Hz range. A band-
pass filter is applied to both vertical and anteroposterior acceleration components
to extract gait-related motion while attenuating noise.

A sliding window approach is then used to detect periodic gait cycles:

• A 5-second moving window is convolved with a 2 Hz sinusoidal reference signal,
representing the periodicity of human gait.

• Local maxima in the resulting signal correspond to detected gait cycles,
segmenting walking periods.

• Windows with a step frequency outside the physiologically plausible range of
2–15 steps per window are discarded.

Building on this approach, the implementation in the GsdIluz class within the
MobGap package introduces refinements to improve computational efficiency and
robustness [59]. The main modifications include reordering the processing steps to
optimize computational cost, replacing the custom peak detection method with the
find_peaks function from the Python library SciPy, and unifying thresholding
across sensor axes. Additionally, all parameters are converted to SI units, and
adjustments have been made to correct threshold applications to prevent erroneous
peak suppression.

Initial Contact Detection

The detection of initial contact (IC) events is critical for temporal gait analysis, as
it enables the computation of parameters such as stride time and cadence. The
method follows the approach of McCamley et al. (2012) [60], later refined by
Paraschiv-Ionescu et al. (2020) [61], and operates as follows:

• The accelerometer signal, recorded at 100 Hz, is downsampled to 40 Hz for
computational efficiency.

• A band-pass filter (0.15–3.14 Hz) isolates gait-related components while sup-
pressing noise.

• The filtered signal undergoes cumulative trapezoidal integration, followed by
a Continuous Wavelet Transform using the Ricker wavelet.

• Zero crossings are detected, and negative peaks occurring between crossings
are classified as IC events.
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In this study, the MobGap implementation of IC detection, through the Ic-
dIonescu class, retains the core methodology while incorporating minor refinements.
These modifications include an improved downsampling strategy and a refined
peak detection approach, which enhances computational efficiency while preserving
consistency with the original MATLAB implementation [62].

Cadence Estimation

Cadence estimation quantifies step frequency over time, providing insights into
gait stability and rhythm. The method extracts step times from detected ICs and
follows these steps:

• Step times are calculated from IC events. The last step time is replicated to
ensure each IC has an associated step time.

• A Hampel filter smooths the step time series, removing outliers.

• Step times per second are computed by averaging step times within each
second. If no ICs occur in a second, missing values are linearly interpolated
unless the gap exceeds a predefined threshold, in which case NaNs are assigned.

• A second smoothing step is applied before cadence is computed as the inverse
of step time per second.

The MobGap implementation modifies the original MATLAB method by post-
poning cadence computation until all preprocessing steps are complete. This avoids
distortions due to outliers and ensures greater robustness. Additionally, a maximum
interpolation gap is introduced to prevent erroneous assumptions about missing
data, and linear interpolation is used instead of simple averaging to better preserve
temporal structure [63].

Stride Length Estimation

Stride length estimation is essential for characterizing spatial gait parameters and
is based on an inverted pendulum model. The method follows the approach by
Zijlstra (2003) [26], later refined by Soltani et al. (2021) [64], and proceeds as
follows:

• Sensor signals may be aligned using a Madgwick complementary filter (op-
tional).

• A 4th-order Butterworth high-pass filter (0.1 Hz cut-off) removes drift from
acceleration signals.
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• Vertical acceleration is integrated to obtain vertical speed, followed by a second
high-pass filter (1 Hz) to remove drift.

• A second integration yields vertical displacement d(t).

• The total vertical displacement during a step (dstep) is computed as:

dstep = |max(d(t)) − min(d(t))| (5.1)

• Stride length is estimated using a biomechanical model:

StrideLength = A · 2 ·
ñ

2 · LBh · dstep − d2
step (5.2)

where A is a tuning coefficient optimized through grid search, and LBh
represents the approximate sensor height relative to the center of mass.

Stride length estimates undergo further post-processing:

• Step lengths are computed from ICs, and missing values are handled by
replicating the last step length.

• A Hampel filter smooths the step length data.

• Step length per second is computed, with missing values linearly interpolated
unless the gap exceeds a predefined threshold.

• A final smoothing pass is applied, and stride length per second is obtained by
doubling step length.

The MobGap implementation introduces refinements to the original method,
including a maximum interpolation gap to avoid masking errors in IC detection
and linear interpolation instead of simple averaging to improve robustness against
outliers [65].

Additionally, to ensure that the selected algorithms from pipeline P1 (Figure
5.1) were indeed the best suited for this specific dataset, an extensive comparative
evaluation was performed. All available algorithms within MobGap (Table 5.1)
for each processing block were tested and evaluated based on their accuracy and
agreement with the reference system. This analysis aimed to verify whether the
predefined P1 configuration remained the optimal choice in this context or if
alternative algorithms provided better performance.
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Module Available Algorithms
Gait Sequence Detection (GSD) GSDA (Illuz et al., 2014)

GSDA2 (Modified implementation of GSDA)
GSDB (Ionescu et al., 2019)
GSDC (Modified implementation of GSDB)

Cadence Estimation (CAD) CADA (Lee et al., 2010)
CADB (Ionescu et al., 2011)
CADC (Shin et al., 2011)

Initial Contact Detection (ICD) ICDA (Ionescu et al., 2019)
ICDD (Shin et al., 2011)
ICDE (Lee et al., 2010)

Stride Length Estimation (SL) SLA (Zijlstra et al., 2013)
SLB (Modified implementation of SLA)

Table 5.1: Summary of available algorithms in the MobGap pipeline, categorized
by module. Modified implementations are indicated accordingly.

5.2.5 Validation Strategy
To validate the Mobilise-D algorithm pipeline, two complementary approaches were
employed: a block-by-block validation and a full-pipeline validation. Each method
provides distinct insights into the accuracy and reliability of the system.

The block-by-block validation, inspired by the methodology used by Micò-Amigo
[11], evaluates each processing module in isolation by providing it with reference
inputs rather than the outputs of the preceding block in the pipeline. This approach
ensures that the accuracy of each block is assessed independently, preventing error
propagation from previous steps and allowing for a direct comparison between the
estimated outputs and those obtained from the validated INDIP pipeline.

The full-pipeline validation, following the approach implemented by Kirk in
[9], assesses the performance of the entire pipeline by considering the final output
rather than intermediate steps. In this case, the pipeline is executed in its entirety,
where each block processes the outputs of the preceding one, allowing errors to
propagate naturally. This approach helps evaluate how inaccuracies at different
stages influence the estimation of the walking speed, final output of the entire
pipeline.

For both validation methods, the INDIP pipeline served as the reference for
extracting DMOs. This system processes inertial data from a lower-back LB-MIMU
while also integrating information from foot-mounted MIMUs and pressure insoles
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to enhance the accuracy of gait event detection and spatio-temporal parameters
estimation [49]. The validation consists of comparing DMOs extracted with MobGap
from smartphone-based inertial data against DMOs extracted using INDIP from the
INDIP sensor kit. This approach enables a thorough assessment of both individual
algorithmic components and overall system performance, ensuring that smartphone-
based gait analysis can reliably approximate gold-standard measurements.

To assess the validity and performance of the Mobilise-D pipeline, a combination
of classification metrics and agreement measures was employed, depending on the
evaluated block. The classification metrics used to evaluate GSD and ICD included
accuracy, recall, precision, F1-score and specificity. These are defined as follows:

Accuracy = TP + TN

TP + TN + FP + FN
(5.3)

Recall = TP

TP + FN
(5.4)

Specificity = TN

TN + FP
(5.5)

Precision = TP

TP + FP
(5.6)

F1-score = 2 × Precision × Recall
Precision + Recall (5.7)

where TP represents true positive elements, TN true negative elements, FP
false positive elements, and FN false negative elements.

In addition to these classification metrics, agreement between the DMOs ex-
tracted from MobGap and those obtained from the INDIP pipeline was evaluated
using the Intra-Class Correlation Coefficient (ICC). ICC values were interpreted as
follows:

• < 0.5: Poor agreement

• 0.5 − 0.75: Moderate agreement

• 0.75 − 0.9: Good agreement

• > 0.9: Excellent agreement

To further assess absolute agreement, the absolute error, bias, and Limits of
Agreement (LoA) were quantified for each walking bout, providing insight into the
systematic differences between the two systems.
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Absolute Error : Measures the absolute difference between the values obtained
from the two systems. It is defined as:

AE = |DMOMobGap − DMOINDIP| (5.8)

where DMOMobGap and DMOINDIP represent the digital mobility outcomes
estimated by MobGap and INDIP, respectively.

Bias: Represents the mean difference between the two systems, indicating
systematic overestimation or underestimation. It is computed as:

Bias = 1
N

NØ
i=1

(DMOMobGap,i − DMOINDIP,i) (5.9)

where N is the number of walking bouts analyzed.
Limits of Agreement (LoA): Quantifies the range within which most differ-

ences between the two methods lie, offering an assessment of their agreement. LoA
is calculated as:

LoA = Bias ± 1.96 · SDdiff (5.10)

where SDdiff is the standard deviation of the differences between MobGap and
INDIP estimates.

Additionally, relative errors were computed to evaluate the percentage difference
between the DMOs extracted from smartphone-based inertial data and those
obtained using the INDIP reference system. This is defined as:

Relative Error = |DMOMobGap − DMOINDIP|
DMOINDIP

× 100 (5.11)

which provides a normalized measure of deviation, allowing for a more meaningful
comparison across different gait parameters.

These validation metrics offer a comprehensive evaluation of both the accuracy of
gait event detection and the reliability of estimated mobility outcomes, ensuring that
the smartphone-based analysis aligns with gold-standard reference measurements.

Gait sequence detection

The validation of GSD block was performed by classifying each sample as true
positive, false positive, false negative, or true negative. From these classifications,
accuracy, specificity, recall and precision were computed. Given that the inertial
data was recorded at 100 Hz, this evaluation was conducted with a temporal
resolution of 0.01 seconds, ensuring a fine-grained analysis of the detection process.

Following this sample-level validation, only gait sequences that overlapped with
the reference GSD for at least 80% of their duration were considered for further
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analysis. For these sequences, the duration in seconds was extracted and compared
to the reference values. Bias and LoA, Mean Absolute Error (MAE), and ICC were
computed to quantify agreement between the detected and reference gait sequences.

This validation approach ensures a comprehensive assessment of the GSD block,
capturing both individual sample accuracy and overall sequence detection reliability
against the gold-standard reference.

Initial contact detection

The validation of the ICD block was performed by identifying ICs within the gait
sequences detected by the reference system. Each detected IC was classified as true
positive, false positive, or false negative, allowing for the computation of recall,
precision, and F1-score.

To establish the matching between detected ICs and reference ICs, a tolerance
window of ±0.5 seconds was centered around each reference IC. If a detected IC fell
within this window, it was classified as a true positive. Conversely, detected ICs
outside this window were considered false positives, while reference ICs without
any corresponding detected IC within the window were classified as false negatives.

This matching process ensured that only temporally aligned ICs were vali-
dated against the ground truth, allowing for a robust assessment of the system’s
performance.

Additionally, the MAE in seconds was calculated to quantify the temporal
discrepancy between detected (TP IC events) and reference IC events. This
approach ensures a detailed evaluation of the ICD block, assessing both the accuracy
of IC identification and the timing precision relative to the gold-standard reference.

Cadence estimation

The validation of the CAD block was conducted by comparing the estimated
cadence values with those obtained from the reference system. The evaluation
was performed using MAE to measure the direct difference between estimated and
reference cadence, relative error to quantify the percentage deviation, and ICC to
assess the level of agreement between the two systems.

Stride length estimation

The same performance metrics of Cadence were used to evaluate the SL block.
MAE, relative error and ICC were computed also for this block.
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Full Pipeline validation

To evaluate the performance of the entire pipeline, a set of agreement and error
metrics was selected to assess how closely the walking speed aligned with one
obtained from the reference system. The evaluation included ICC, Bias and LoA to
measure systematic differences and the range within which most errors lie, absolute
error to quantify the direct deviation, and relative error to express the discrepancy
as a percentage. Additionally, relative absolute error was computed to provide a
normalized measure of deviation.

These metrics ensure a comprehensive evaluation of the full pipeline by capturing
both the accuracy of the final estimates and the extent to which errors propagate
through the different processing blocks.

5.3 Smartphone location recognition
The process of smartphone location recognition follows the structured pipeline
illustrated in Figure 5.2, consisting of two main phases: data preparation and
model development and validation. These steps ensured that raw inertial data were
properly processed and transformed into meaningful inputs for machine learning
models.

The data preparation phase was conducted using MATLAB (version 2024b). The
subsequent phase, involving model development and validation, was implemented
in Python (version 3.12.0), utilizing its extensive machine learning libraries to train
and evaluate classification models.

The following subsections will provide a detailed explanation of each step in the
pipeline, covering the data processing techniques and classification strategies used
in this study.

5.3.1 Dataset construction
The start and end points of each gait sequence identified by the INDIP pipeline
were extracted to isolate valid gait sequences from the smartphone inertial data.
Leveraging the temporal alignment between the LB-smartphone and the LB-MIMU,
followed by the synchronization of all other smartphones with the LB-smartphone,
it was possible to use the gait sequences detected by INDIP to segment and extract
the corresponding accelerometer and gyroscope signals exclusively during walking
periods for each smartphone. This ensures that only sequences truly representative
of walking are included in the dataset.

To enhance dataset variability and improve the generalizability of the classifi-
cation model, both laboratory trials and free-living recordings were incorporated.
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Figure 5.2: Overview of the smartphone location recognition pipeline. The process
is divided into two main phases: Pre-Processing and Classification.

This allows the model to learn from diverse conditions, making it more robust
across different walking scenarios.

As stated in Section 4.4.1, during free-living recordgins participants were allowed
to remove the smartphones at their discretion, with the exception of the LB-
smartphone, which remained fixed. As a result, while the gait sequences extracted
from INDIP were guaranteed to correspond to actual walking periods for the LB-
smartphone, this was not necessarily the case for the other smartphones. To prevent
the inclusion of non-walking segments—such as instances where a smartphone was
left on a desk or in a bag without movement—a quality control step was introduced.

A minimum gyroscope norm threshold was set to ensure that only walking
sequences were included for analysis. Specifically, for a walking bout to be con-
sidered valid, the norm of the gyroscope signal had to exceed 1°/s for at least
80% of the detected sequence samples. This threshold, determined based on a
empiric evaluation of various gait sequences, ensured that all extracted sequences
corresponded exclusively to walking data.

An example of this filtering process is shown in Figure 5.3, where, for subject
17, the 8th walking bout detected by the INDIP pipeline was discarded for the H,
SB, and CP smartphone positions.

As a result of this filtering process, a total of 412 walking bouts were discarded
across all smartphone positions, with the highest number of discarded bouts
observed for the ShoulderBag (146 bouts) and Hand (126 bouts) placements, as
shown in Table 5.2. This confirms that in some positions, the smartphone was
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Figure 5.3: Example of a discarded gait sequence for subject 17. The 8th WB
identified by the INDIP pipeline was removed for the Hand, ShoulderBag, and
CoatPocket positions due to insufficient gyroscope activity. The top section of the
figure illustrates the recorded walking bouts and their classification, while the lower
plot shows the corresponding gyroscope signals, highlighting the insufficient motion
detected for the discarded positions.

frequently removed or remained motionless during detected walking sequences,
necessitating careful data selection to ensure only valid walking segments were
included in the dataset.

Position Saved Discarded
LowerBack 645 0
BackPocket 621 24
FrontPocket 621 24
Hand 519 126
ShoulderBag 499 146
CoatPocket 522 92

Table 5.2: Number of walking bouts retained (Saved) and removed (Discarded)
for each smartphone position after data selection.
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This choice was made as part of the project design, where the classification task
was structured as a supervised learning problem focused exclusively on identifying
predefined smartphone positions. Alternatively, a different approach could have
been taken by including additional classes, such as "non-walking" or "unknown
position" leading to a broader classification task. However, such an approach would
have introduced different challenges and objectives, diverging from the primary
focus of this study.

5.3.2 Dataset preparation
Signal filtering

To isolate the gait-related components of the inertial signals while reducing high-
frequency noise, a Butterworth low-pass filter was applied. This filter was chosen
due to its maximally flat frequency response, which ensures a smooth attenuation
of unwanted high-frequency components while preserving the primary motion
characteristics of walking without excessive signal distortion. The magnitude and
phase response of the filter, illustrated in Figure 5.4, confirm its effectiveness in
suppressing unwanted frequency components while maintaining signal integrity.

A 4th-order Butterworth filter was implemented with a cutoff frequency nor-
malized to the Nyquist frequency to effectively suppress noise while retaining
gait-relevant signal information. However, standard filtering methods can intro-
duce phase distortion, meaning that important gait-related events (such as initial
contacts) could be shifted in time, potentially affecting the accuracy of subsequent
feature extraction.

To avoid this issue, the zero-phase filtering method filtfilt was used. The But-
terworth filter, being an infinite impulse response (IIR) filter, inherently introduces
nonlinear phase shifts when applied in a single direction. filtfilt compensates
for this by applying the filter twice—first forward and then backward—effectively
canceling out the phase distortion introduced in each pass. This results in a zero-
phase response, meaning that no time shifts are introduced in the filtered signal,
while still benefiting from the smooth frequency response of the Butterworth filter.

The stability of the applied filter is confirmed by analyzing its pole-zero plot,
shown in Figure 5.5. All poles of the designed filter lie inside the unit circle in
the z-plane, demonstrating that the filter is stable and suitable for processing gait
signals without introducing artifacts or numerical instabilities.

By applying zero-phase filtering, the temporal integrity of gait events is preserved,
ensuring that stride timings, initial contacts, and other gait-related features remain
accurate. This approach improves the reliability of subsequent feature extraction
and classification processes, maintaining the physiological accuracy of the recorded
movement data.

75



Methods

Figure 5.4: Magnitude and phase response of the implemented Butterworth low-
pass filter. The filter effectively suppresses high-frequency noise while maintaining
smooth signal attenuation.

Figure 5.5: Pole-zero plot of the Butterworth filter. All poles lie inside the unit
circle, confirming the stability of the filter.

Features extraction

To characterize gait patterns across different smartphone placements, a set of
handcrafted features was extracted from accelerometer and gyroscope signals.76
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Except for the cross-correlation features, all features were computed on the signal
norm to ensure orientation invariance (Orientation-Invariant approach, as illustrated
in the pipeline Figure 5.2) minimizing the impact of sensor placement angles. The
norm of a three-axis signal at sample i is defined as:

∥ai∥ =
ñ

x2
i + y2

i + z2
i (5.12)

where xi, yi, zi are the signal components along the three axes. This norm was
used in all subsequent feature calculations.

Time-Domain Features Time-domain features describe the variability and
distribution of the raw signals, providing insights into movement intensity, stability,
and periodicity across different smartphone positions:

• Variance: Captures the spread of the signal values, representing movement
intensity. It is defined as:

σ2 = 1
N

NØ
i=1

(∥ai∥ − ā)2 (5.13)

where ∥ai∥ represents the signal norm at sample i, ā is the mean of the signal
norm, and N is the total number of samples. Higher variance is associated
with more dynamic motion (Observed for the Handheld smartphone), while
lower variance suggests a more stable placement (e.g., Lower Back).

• Root Mean Square (RMS): Provides a measure of the overall energy of
the signal, incorporating both amplitude and frequency components. It is
calculated as:

RMS =

öõõô 1
N

NØ
i=1

∥ai∥2 (5.14)

Higher RMS values indicate greater motion intensity, differentiating highly
dynamic and more stable smartphone placements.

• Signal Magnitude Area (SMA): Computes the sum of absolute values of
the signal norm, offering a robust measure of total movement intensity. It is
defined as:

SMA = 1
N

NØ
i=1

|∥ai∥| (5.15)

This feature provides a reliable measure of total movement intensity, particu-
larly useful for identifying positions where the device experiences significant
motion.
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• Number of Peaks: Counts the local maxima in the signal, which reflects
periodic movements. A higher number of peaks typically corresponds to
increased gait variability or noise, often linked to less stable placements.

• Cross-Correlation Between Axes: Measures the relationship between
different accelerometer and gyroscope axes (XY, XZ, YZ). It is computed as
the Pearson correlation coefficient:

ρxy =
q(xi − x̄)(yi − ȳ)ñq(xi − x̄)2 q(yi − ȳ)2

(5.16)

where xi and yi represent signal values from two different axes, and x̄, ȳ are
their respective means. This feature provides information on movement syn-
chronization and device orientation, helping distinguish constrained placements
(e.g., Lower Back) from more freely moving positions (e.g., Hand).

Frequency-Domain Features Frequency-domain features were computed to
capture periodic characteristics of gait signals, which are essential for identifying
walking dynamics and differentiating smartphone placements:

• Dominant Frequency: Identifies the most prominent frequency component
in the signal. It is obtained by applying the Fast Fourier Transform (FFT)
and selecting the frequency with the highest power:

fdom = arg max
f

|X(f)| (5.17)

where X(f) represents the magnitude of the signal in the frequency domain.

• Dominant Power: Measures the magnitude of the dominant frequency,
indicating how periodic the movement is. It is defined as:

Pdom = max |X(f)| (5.18)

where Pdom represents the peak power of the dominant frequency component.
A strong dominant power suggests regular, structured motion (e.g., Lower
Back), while a weaker dominant power indicates more irregular patterns (e.g.,
Hand).

• Spectral Entropy: Quantifies the complexity of the frequency content. It is
computed as the Shannon entropy of the normalized power spectral density:

H = −
Ø

i

Pi log Pi (5.19)

where Pi represents the power spectral density at frequency bin i. Higher
entropy values suggest a broader frequency distribution, often associated with
irregular movement, while lower entropy values indicate more periodic and
structured motion.
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Feature Extraction Strategy Features were extracted from each segmented
walking bout using a sliding window approach to capture variations over different
time scales:

• 1-second windows to capture short-term gait fluctuations.

• 3-second windows to encompass a broader view of gait cycles, assuming that in
a healthy adult, at least one full gait cycle is completed within this duration,
given a detected cadence of 85–90 steps per minute [11].

By combining time-domain and frequency-domain features, the classification
model is provided with a rich representation of gait characteristics, improving its
ability to differentiate smartphone positions based on their specific motion patterns.

5.3.3 Training and Validation
Data splitting

The dataset used for training and evaluating the smartphone location recognition
model was constructed from 25 subjects recorded in Sheffield. However, due to
issues such as insufficient signal quality or difficulties in gait sequence detection,
only 15 subjects were retained for the final analysis. In total, 3.427 gait sequences
(45551 strides) were included in the dataset.

As previously mentioned in the pipeline overview, different data splitting strate-
gies were tested to assess model performance under various conditions. The first
approach followed a train-test split using an 80/20 hold-out strategy. To prevent
data leakage, the test set was not randomly selected at the walking bout level but
rather at the subject level. Specifically, three subjects were isolated for testing,
ensuring that the remaining 12 subjects in the training set provided a balanced
distribution of walking bouts across all six smartphone positions. This approach
was adopted to maintain a representative training set while preventing information
from the same subject from appearing in both training and test sets.

In addition to the hold-out split, a 5-fold cross-validation was performed to
further assess model robustness. In this approach, the dataset was divided into
five subsets, and the model was trained and evaluated five times, each time using a
different fold as the test set while training on the remaining four. This method
provides a more comprehensive evaluation of the model’s performance by reducing
the dependence on a single train-test split.

Model selection

In the field of machine learning, especially for complex tasks such as smartphone
location recognition, it is not possible to determine a priori which model will best
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capture the necessary information to achieve optimal performance. Therefore,
a result-driven approach was adopted, where multiple models were trained and
evaluated empirically. A diverse set of machine learning models was selected to
explore different learning paradigms and ensure a robust comparison.

The models considered for this study include:

• Decision Tree: A non-parametric model that recursively partitions the
feature space by selecting the best splits based on Gini impurity, aiming to
minimize classification uncertainty at each step.

• Random Forest: An ensemble of decision trees trained on randomly selected
feature subsets and bootstrap samples, aggregating predictions via majority
voting to improve generalization and reduce overfitting.

• XGBoost: An optimized gradient boosting algorithm where decision trees
are trained sequentially, with each tree correcting the errors of the previous
one. The boosting approach works by assigning higher weights to misclassi-
fied samples, making the model progressively focus on difficult cases while
minimizing a differentiable loss function.

• Logistic Regression: A linear model that estimates class probabilities using
the sigmoid function applied to a weighted sum of input features, making it
effective for linearly separable classification problems.

Additionally, an Artificial Neural Network (ANN) was explored. The ANN
architecture consisted of:

• An input layer with dimensionality corresponding to the number of extracted
features.

• Three fully connected hidden layers with 128, 64, and 32 neurons, respectively,
each followed by a ReLU activation function.

• Batch normalization after the first two hidden layers to stabilize training and
improve convergence.

• Dropout regularization with a dropout rate of 0.3 after the first two hidden
layers to prevent overfitting.

• A final output layer with a softmax activation function for multi-class classifi-
cation and a sigmoid activation function for the binarized problem.

The ANN model was optimized using the Adam optimizer with a learning
rate of 0.005 and trained with a sparse categorical cross-entropy loss function for
the multiclass problem. For the binarized problem a binary cross-entropy was
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implemented as loss function. Training was performed for a maximum of 50 epochs,
with early stopping enabled and a patience of 10 epochs to prevent overfitting. The
batch size was set to 128, as it provides a good balance between computational
efficiency and model generalization. A larger batch size accelerates training by
allowing more parallel computations, while a smaller batch size introduces more
stochasticity, which can help escape local minima.

By training and evaluating these models, the goal was to determine the most
effective approach for smartphone location recognition, balancing model complexity,
generalization ability, and computational efficiency.

5.3.4 Testing
The classification problem was approached in two different ways to evaluate the
robustness of the models in distinguishing smartphone positions. The first approach
considered a multi-class classification, where the model attempted to differentiate
between all six predefined positions. The second approach used a binary classifica-
tion strategy, where the goal was to distinguish between the LB placement and all
other positions combined.

The decision to include the binary classification focusing on the LB placement
was motivated by its relevance in gait analysis. Although the LB position is not
commonly used in daily-life smartphone carrying habits, it is a well-established
reference point for gait assessment. The Mobilise-D pipeline was designed and
validated specifically using LB-mounted wearable devices, making it a key bench-
mark position in digital mobility outcome (DMO) extraction. Therefore, evaluating
whether a model could reliably detect whether the smartphone was placed in this
reference position was of particular interest.

To assess model performance, the following evaluation metrics were considered:

• Confusion Matrices: Provide a detailed breakdown of correct and incorrect
classifications for each class, offering insights into common misclassifications.
The confusion matrix for the multi-class classification problem is shown in
Figure 5.6, while the confusion matrix for the binary classification approach
(LB vs. others) is illustrated in Figure 6.40.

• Accuracy: Measures the overall proportion of correctly classified instances
over the total number of instances and is defined as:

Accuracy =
qC

i=1 TPiqC
i=1(TPi + FPi + FNi)

(5.20)

where TPi represents the true positives for class i, FPi the false positives,
FNi the false negatives, while C is the total number of classes.
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Figure 5.6: Example of a confusion matrix for the multi-class classification
problem.

• Balanced Accuracy: Accounts for class imbalance by computing the average
recall across all classes, ensuring a fair evaluation when class distributions are
uneven. It is defined as:

Balanced Accuracy = 1
C

CØ
i=1

TPi

TPi + FNi

(5.21)

where C is the number of classes, and the recall for each class is computed
separately before averaging.

• Precision: Indicates how many instances classified as a specific position were
actually correct, reflecting the reliability of positive predictions. It is defined
as:

Precisioni = TPi

TPi + FPi

(5.22)

• Recall: Measures the ability of the model to correctly identify instances of
each class, assessing how well each smartphone placement is detected. It is
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Figure 5.7: Example of a confusion matrix for the binary classification problem
(LB vs. others).

computed as:
Recalli = TPi

TPi + FNi

(5.23)
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Chapter 6

Results

6.1 Mobilise-D Pipeline
This section presents the results of the validation of the Mobilise-D pipeline. The
results are structured into two parts: first, the performance of each individual
module within the pipeline is provided separately, providing a block-by-block
evaluation. Then, to assess the overall effectiveness of the pipeline, the final output
is considered, focusing on the estimation of walking speed. The results include
both data collected in controlled laboratory conditions and in free-living scenarios.
Performance metrics are reported for data acquired from the smartphone positioned
at the lower back as well as from the MIMU of the INDIP kit.

6.1.1 Gait Sequence Detection
In-Lab: Performance Metrics

The following figures illustrate the distributions of the performance metrics obtained
from smartphone-acquired data in a controlled laboratory setting. The results
refer to the different algorithms available in MobGap for the GSD module. The
box plots represent the variability of key metrics, including accuracy, precision,
recall, specificity, total duration absolute error, and total duration bias, providing
an overview of the performance across the available methods.

Free-living: Performance Metrics

The following figures instead, present the distributions of the performance metrics
obtained from smartphone-acquired data in free-living conditions.
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Figure 6.1: Total duration absolute error (s) for all algorithms in the GSD module
using laboratory-acquired data in MobGap.

Figure 6.2: Accuracy distribution for all algorithms in the GSD module using
laboratory-acquired data in MobGap.
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Figure 6.3: Total duration bias (s) for all algorithms in the Gait Sequence
Detection (GSD) module using laboratory-acquired data in MobGap.

Figure 6.4: Precision distribution for all algorithms in the Gait Sequence Detection
(GSD) module using laboratory-acquired data in MobGap.
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Figure 6.5: Recall distribution for all algorithms in the GSD module using
laboratory-acquired data in MobGap.

Figure 6.6: Specificity distribution for all algorithms in the GSD module using
laboratory-acquired data in MobGap.
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Figure 6.7: Total duration absolute error (s) for all algorithms in the GSD module
using free-living data in MobGap.

Figure 6.8: Accuracy distribution for all algorithms in the GSD module using
free-living data in MobGap.
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Figure 6.9: Total duration bias (s) for all algorithms in the GSD module using
free-living data in MobGap.

Figure 6.10: Precision distribution for all algorithms in the GSD module using
free-living data in MobGap.
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Figure 6.11: Recall distribution for all algorithms in the GSD module using
free-living data in MobGap.

Figure 6.12: Specificity distribution for all algorithms in the GSD module using
free-living data in MobGap.
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Comparison: Smartphone vs IMU

The following table presents a comparative analysis of the GSD module, highlighting
the differences between data collected using a smartphone and an INDIP IMU. The
evaluation is conducted in both laboratory and free-living conditions. The table
includes key performance indicators such as accuracy, precision, recall, specificity,
total duration absolute error, and total duration bias, along with their confidence.
This comparison provides insights into the impact of the sensing device on the
performance of the detection algorithms.

In Lab
Smartphone IMU

Accuracy 0.87 0.87
Precision 0.74 0.74
Recall 0.99 0.99
Specificity 0.75 0.74
Duration absolute error (s) 3.86 [1.00, 10.50] 3.95 [1.10, 11.00]
Duration bias (s) 3.79 [-6.50, 12.00] 3.65 [-7.00, 11.50]
ICC 0.99 0.99

Free-living
Smartphone IMU

Accuracy 0.97 0.97
Precision 0.85 0.85
Recall 0.99 0.98
Specificity 0.96 0.96
Duration absolute error (s) 4.78 [1.05, 12.70] 5.40 [0.62, 21.99]
Duration bias (s) 3.22 [-7.84, 14.27] 3.17 [-12.68, 19.03]
ICC 0.99 0.99

Table 6.1: Comparison of gait sequence detection performance for smartphone
and IMU in both lab and free-living conditions, including confidence intervals for
error metrics.
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6.1.2 Initial Contact Detection
In-Lab: Performance Metrics

The following figures illustrate the distributions of the performance metrics obtained
from smartphone-acquired data in a controlled laboratory setting. The results refer
to the different algorithms available in MobGap for the ICD module. The box
plots represent the variability of key metrics, including absolute error, F1-score,
precision, and recall, providing an overview of the performance across the available
methods.

Figure 6.13: Absolute error (s) for all algorithms in the ICD module using
laboratory-acquired data in MobGap.

Free-living: Performance Metrics

The following figures instead, present the distributions of the performance metrics
obtained from smartphone-acquired data in free-living conditions.

Comparison: Smartphone vs IMU

The following table presents a comparative analysis of the ICD module, highlighting
the differences between data collected using a smartphone and an INDIP IMU. The
evaluation is conducted in both laboratory and free-living conditions.
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Figure 6.14: F1-score distribution for all algorithms in the ICD module using
laboratory-acquired data in MobGap.

Figure 6.15: Precision distribution for all algorithms in the ICD module using
laboratory-acquired data in MobGap.
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Figure 6.16: Recall distribution for all algorithms in the ICD module using
laboratory-acquired data in MobGap.

Figure 6.17: Absolute error (s) for all algorithms in the ICD module using
free-living data in MobGap.
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Figure 6.18: F1-score distribution for all algorithms in the ICD module using
free-living data in MobGap.

Figure 6.19: Precision distribution for all algorithms in the ICD module using
free-living data in MobGap.
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Figure 6.20: Recall distribution for all algorithms in the ICD module using
free-living data in MobGap.

In Lab
Smartphone INDIP

F1-score 0.904 0.906
Precision 0.956 0.958
Recall 0.860 0.862
Absolute error (s) 0.069 [0.01, 0.18] 0.069 [0.01, 0.17]

Free-living
Smartphone INDIP

F1-score 0.842 0.838
Precision 0.862 0.859
Recall 0.832 0.828
Absolute error (s) 0.063 [0.01, 0.17] 0.065 [0.01, 0.17]

Table 6.2: Comparison of Initial Contact Detection (ICD) performance metrics
between Smartphone and INDIP in both lab and free-living conditions, including
confidence intervals for absolute error.
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6.1.3 Cadence Estimation
In-Lab: Performance Metrics

The following figures illustrate the distributions of the performance metrics obtained
from smartphone-acquired data in a controlled laboratory setting. The results refer
to the different algorithms available in MobGap for the CAD module. The box
plots represent the variability of key metrics, including absolute error and relative
error providing an overview of the performance across the available methods.

Figure 6.21: Absolute error (steps/min) for all algorithms in the CAD module
using laboratory-acquired data in MobGap.

Free-living: Performance Metrics

The following figures instead, present the distributions of the performance metrics
obtained from smartphone-acquired data in free-living conditions.

Comparison: Smartphone vs IMU

The following table presents a comparative analysis of the CAD module, highlighting
the differences between data collected using a smartphone and an INDIP IMU. The
evaluation is conducted in both laboratory and free-living conditions.
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Figure 6.22: Relative error (%) for all algorithms in the CAD module using
laboratory-acquired data in MobGap.

Figure 6.23: Absolute error (steps/min) for all algorithms in the CAD module
using free-living data in MobGap.
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Figure 6.24: Relative error (%) for all algorithms in the CAD module using
free-living data in MobGap.

In Lab
Smartphone INDIP

Absolute error (steps/min) 1.86 [0.07, 5.70] 1.75 [0.05, 5.23]
Relative error (%) 0.00 [-0.18, 0.18] 0.01 [-0.17, 0.18]

Free-living
Smartphone INDIP

Absolute error (steps/min) 5.66 [0.28, 21.08] 5.77 [0.28, 21.96]
Relative error (%) 0.01 [-0.26, 0.27] 0.01 [-0.26, 0.28]

Table 6.3: Comparison of Cadence Detection (CAD) performance metrics between
Smartphone and INDIP in both lab and free-living conditions, including confidence
intervals for error metrics.

6.1.4 Stride Length Estimation
In-Lab: Performance Metrics

The following figures illustrate the distributions of the performance metrics obtained
from smartphone-acquired data in a controlled laboratory setting. The results refer
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to the different algorithms available in MobGap for the SL module. The box plots
represent the variability of key metrics, including absolute error, relative error and
bias providing an overview of the performance across the available methods.

Figure 6.25: Absolute error (m) for all algorithms in the SL module using
laboratory-acquired data in MobGap.

Free-living: Performance Metrics

The following figures instead, present the distributions of the performance metrics
obtained from smartphone-acquired data in free-living conditions.

Comparison: Smartphone vs IMU

The following table presents a comparative analysis of the SL module, highlighting
the differences between data collected using a smartphone and an INDIP IMU. The
evaluation is conducted in both laboratory and free-living conditions.

6.1.5 Full Pipeline: Walking Speed
Comparison: Smartphone vs IMU

The following section presents a comparative analysis of the Walking Speed (WS)
estimation obtained from smartphone-acquired data and IMU data in both labora-
tory and free-living conditions. The results, summarized in Table 6.5, include key
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Figure 6.26: Bias (m) for all algorithms in the SL module using laboratory-
acquired data in MobGap.

Figure 6.27: Relative error (%) for all algorithms in the SL module using
laboratory-acquired data in MobGap.
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Figure 6.28: Absolute error (m) for all algorithms in the SL module using free-
living data in MobGap.

Figure 6.29: Bias (m) for all algorithms in the SL module using free-living data
in MobGap.
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Figure 6.30: Relative error (%) for all algorithms in the SL module using free-
living data in MobGap.

In Lab
Smartphone INDIP

Absolute error (m) 0.17 [0.03, 0.33] 0.18 [0.03, 0.35]
Relative error (%) -0.13 [-0.27, 0.01] -0.13 [-0.27, 0.02]
Bias (m) -0.18 [-0.35, -0.03] -0.18 [-0.35, -0.01]

Free-living
Smartphone INDIP

Absolute error (m) 0.11 [0.01, 0.26] 0.12 [0.01, 0.28]
Relative error (%) 0.02 [-0.48, 0.53] 0.03 [-0.49, 0.54]
Bias (m) -0.02 [-0.20, 0.23] -0.02 [-0.22, 0.24]

Table 6.4: Comparison of Step Length (SL) performance metrics between Smart-
phone and INDIP in both lab and free-living conditions, including confidence
intervals for error metrics.

performance metrics such as absolute error, relative error, and bias, with confidence
intervals. This comparison highlights the influence of different sensing devices on
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the performance of the Mobilise-D pipeline in estimating walking speed.
In addition to the numerical comparison, Figures 6.31 and 6.32 illustrate Bland-

Altman plots assessing the agreement between the walking speed values computed
using the smartphone and those obtained from the IMU. For these plots, the
median walking speed was selected from all computed values for the walking bouts
identified for each subject. The Bland-Altman analysis allows for a visual inspection
of systematic differences, potential biases, and agreement limits between the two
sensor types.

In Lab
Smartphone IMU

Absolute error (m/s2) 0.15 [0.04, 0.27] 0.16 [0.03, 0.31]
Relative error (%) -0.15 [-0.29, 0.00] -0.15 [-0.31, 0.00]
Bias (m/s2) -0.15 [-0.29, 0.00] -0.16 [-0.31, 0.00]

Free-living
Smartphone IMU

Absolute error (m/s2) 0.09 [0.01, 0.23] 0.09 [0.01, 0.21]
Relative error (%) 0.00 [-0.44, 0.43] -0.03 [-0.35, 0.29]
Bias (m/s2) -0.04 [-0.25, 0.17] -0.04 [-0.25, 0.16]

Table 6.5: Comparison of Walking Speed (WS) performance metrics between
Smartphone and IMU in both lab and free-living conditions, including confidence
intervals for error metrics.

6.2 Smartphone Location Recognition Model
This section presents the results of the smartphone location recognition model
across different classification tasks. The primary analysis was conducted on a
6-classes problem, where the model aimed to distinguish among all six predefined
smartphone placements. As an extension of this analysis, a 5-classes problem was
introduced to explore an alternative class grouping strategy and assess its impact
on classification performance. Additionally, a binary classification problem was
explored to assess the model’s ability to differentiate between the lower back (LB)
placement and all other positions, given its relevance in gait analysis and its role
in the Mobilise-D pipeline.

In the next sections, only the results obtained using the 5-Folds Cross-Validation
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Figure 6.31: Bland-Altman plot comparing walking speed estimation between
Smartphone and IMU in laboratory conditions. The median walking speed per
subject was used for this analysis.

Figure 6.32: Bland-Altman plot comparing walking speed estimation between
Smartphone and IMU in free-living conditions. The median walking speed per
subject was used for this analysis.

(CV) strategy are presented. This choice is motivated by the fact that cross-
validation provides a more reliable and robust assessment of model performance
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compared to the 80-20 Hold-Out approach. The latter, relying on a single data
split, may introduce a positive bias, potentially overestimating the model’s general-
izability.

6.2.1 6-classes Classification Problem

Figure 6.33: Performance metrics (Balanced Accuracy, Precision, Recall) for
different classification models evaluated using 5-fold cross-validation for the 6-class
classification problem. The error bars represent the standard deviation across folds.

To provide a detailed insight into the classification performance of the best-
performing model, a single confusion matrix is presented as a representative example
of the results across the five cross-validation folds. Specifically, Figure 6.35 reports
the confusion matrix obtained from the third fold of the 5-fold cross-validation
using the XGBoost model. While individual confusion matrices may exhibit slight
variations across different folds, the reported matrix is indicative of the general
classification trends observed throughout the evaluation process.

6.2.2 5-classes Classification Problem
6.2.3 Binary Classification Problem
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Figure 6.34: Per-class accuracy scores for XGBoost in the 6-class classification
problem, evaluated using 5-fold cross-validation. The error bars represent the
standard deviation across folds. The class labels correspond to the following
smartphone positions: LB - Lower Back, BP - Back Pocket, FP - Front Pocket,
H - Hand, SB - Shoulder Bag, and CP - Coat Pocket.
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Figure 6.35: Confusion matrix for the XGBoost model, evaluated on the third
fold of the 5-fold cross-validation. The rows represent the actual class labels, while
the columns correspond to the predicted labels. The class mappings are as follows:
LB (0) - Lower Back, BP (1) - Back Pocket, FP (2) - Front Pocket, H (3) -
Hand, SB (4) - Shoulder Bag, and CP (5) - Coat Pocket. The matrix provides
insights into the classification performance across different positions, highlighting
correct predictions along the diagonal and misclassifications in the off-diagonal
elements.
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Figure 6.36: Performance metrics (Balanced Accuracy, Precision, Recall) for
different classification models evaluated using 5-fold cross-validation for the 5-class
classification problem. The error bars represent the standard deviation across folds.

Figure 6.37: Per-class accuracy scores for XGBoost in the 5-class classification
problem using 5-fold cross-validation. The error bars represent the standard
deviation across folds. The class labels correspond to: LB - Lower Back, PT -
Pocket Trousers (Back and Front merged), H - Hand, SB - Shoulder Bag, and CP
- Coat Pocket.
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Figure 6.38: Confusion matrix for the XGBoost model in the 5-class classification
problem, evaluated on Fold 2 of the 5-fold cross-validation. The rows represent the
actual class labels, while the columns correspond to the predicted labels. The class
mappings are as follows: 0 - Lower Back (LB), 1 - Pocket (Back and Front merged,
PT), 2 - Hand (H), 3 - Shoulder Bag (SB), and 4 - Coat Pocket (CP).

Figure 6.39: Performance metrics for different models in the binary classification
problem (LB vs Other), evaluated using 5-fold cross-validation. The metrics
reported include balanced accuracy, precision, recall, and AUC (Area Under the
Curve). The error bars indicate the standard deviation across folds.
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Figure 6.40: Confusion matrix for XGBoost in the binary classification problem
(LB vs Other) using 5-fold cross-validation.
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Chapter 7

Discussion

The overarching goal of this work was twofold. Initially, the aim was to validate the
Mobilise-D pipeline by using inertial data collected from a standard smartphone,
with its performance being compared against that of a dedicated research-grade
device (an INDIP MIMU). Specifically, two complementary strategies were pursued:

1. Each of the four main modules of the pipeline—Gait Sequence Detection
(GSD), Initial Contact Detection (ICD), Cadence (CAD), and Stride Length
(SL)—was evaluated individually to determine its accuracy and robustness
when applied to smartphone data.

2. The entire pipeline was applied end-to-end and its final outcome (walking
speed) was assessed, thereby examining how smartphone-derived measurements
aligned with those from the INDIP system in both in-lab and free-living
scenarios.

By comparing a widely accessible consumer device (smartphone) with a specialized,
research-grade IMU, it was sought to establish whether smartphones could serve as
a practical alternative for reliable gait analysis.

The second objective of this study involved the development of a SLR model,
considering that smartphone positioning varied significantly in free-living conditions.

In the following sections, the results of these investigations were presented and
discussed, with a focus first on the individual modules, then on the full pipeline for
walking speed estimation, and finally on the smartphone location recognition task.
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7.1 Validation of the Mobilise-D Pipeline
7.1.1 GSD Module
The analysis of the smartphone data in both in-lab and free-living conditions
revealed distinct distributional patterns for the detection metrics across the four
algorithms (GSDA, GSDA2, GSDC, and GSDB). In the laboratory (see Fig-
ures 6.1, 6.2, 6.3, 6.4, and 6.5), the distributions of absolute error, accuracy,
bias, precision, and recall were relatively narrow. In this controlled environment,
GSDA—proposed as the optimal detector for a population of healthy adults—was
observed to show competitive performance with high recall (i.e., nearly all true
gait events were captured) and good accuracy. However, its precision was slightly
lower compared to GSDA2, indicating that while GSDA seldom missed a gait
sequence, it tended to include a few more false positives. Meanwhile, both GSDC
and GSDB exhibited lower median absolute errors and reduced variability; notably,
GSDB stood out for its minimal bias and well-balanced precision–recall trade-off.

In free-living conditions (refer to Figures 6.7, 6.8, 6.9, 6.10, and 6.11), the
inherent variability of everyday movements led to broader distributions of errors
and detection metrics for all algorithms. Although the accuracy remained high
(typically in the 0.96–0.98 range) and the ICC values continued to be robust,
the increased environmental variability caused the absolute errors and limits of
agreement (LOA) to widen. In this scenario, the recall and bias distributions still
favored GSDA, supporting its suitability for healthy adults; however, the improved
precision and reduced bias observed for GSDB suggested that a more balanced
performance under real-world conditions might have been offered by the latter.

In summary, while GSDA demonstrated excellent recall in the lab environment,
a comprehensive evaluation of all metrics showed that GSDB and GSDC achieved
lower absolute errors and tighter LOA in controlled settings. In free-living sce-
narios, despite an expected increase in variability, GSDA remained competitive;
nevertheless, GSDB appeared to better manage the trade-offs between precision,
bias, and recall. These findings underscored the necessity of considering multiple
performance metrics simultaneously, as the optimal choice of detector might have
varied depending on the specific application context.

Comparison of GSDA Applied to Smartphone vs. IMU Data

Table 6.1 presented a detailed comparison of the performance of the GSDA module
when applied to data acquired from a smartphone and from the IMU of the INDIP
kit, under both in-lab and free-living conditions.

In the laboratory setting, both systems exhibited very similar performance.
The accuracy for both the smartphone and the IMU was approximately 0.87, and
the recall was nearly 0.99, indicating that both devices were highly effective in
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capturing the true gait events. Precision and specificity values were also comparable
(around 0.74–0.75), suggesting that the proportion of false positives was minimal.
The duration absolute error and bias, which provided insight into the consistency
of the detected gait-sequence durations, were likewise very similar between the two
devices (with the smartphone showing an absolute error of 3.86 s and a bias of
3.79 s, compared to 3.95 s and 3.65 s for the IMU, respectively). The ICC value
of 0.99 in both cases further confirmed an excellent agreement with the reference
measurements.

Under free-living conditions, despite the natural increase in variability due to
unstructured movement, both devices continued to perform robustly. The accuracy
rose to approximately 0.97, and specificity reached around 0.96 for both systems.
Although the absolute error increased (to 4.78 s for the smartphone and 5.40 s for
the IMU) and the bias values became slightly larger (3.22 s for the smartphone
and 3.17 s for the IMU), the overall performance remained very similar, with the
ICC still at 0.99. These metrics indicated that, even in more challenging real-world
environments, the GSDA module yielded consistent and reliable gait-sequence
detection regardless of the acquisition device.

Overall, these results demonstrated that the smartphone, when paired with the
GSDA module, performed on par with the dedicated IMU of the INDIP kit.

7.1.2 ICD Module
The analysis of the smartphone data for initial contact detection in both in-lab
and free-living conditions revealed distinct distributional patterns for the detection
metrics across the three algorithms (ICDA, ICDD, and ICDE). In the laboratory
(see Figures 6.13, 6.14, 6.15, and 6.16), the overall distributions of absolute error,
F1-score, precision, and recall were relatively narrow. In this controlled setting,
ICDA—recommended for a healthy adult population—demonstrated excellent
performance, exhibiting very low median absolute error and high recall, which
indicated its outstanding ability to capture almost all true initial contacts. Although
its precision was strong, the slight differences when compared to ICDD suggested
that while ICDA rarely missed true events, it might occasionally have included
some false detections. Meanwhile, ICDD showed a comparable performance with
a similar error spread but with a slightly more stable precision, whereas ICDE
exhibited a somewhat higher error distribution and lower median precision, pointing
to a tendency for occasional misdetections.

When considering the free-living conditions (see Figures 6.17, 6.18, 6.19, and
6.20), the increased variability of real-world movements naturally led to broader
distributions of errors and detection metrics across all algorithms. Although all
methods showed a decrease in performance compared to the lab setting, the recall
values remained high, ensuring that most true initial contacts were still detected.

114



Discussion

Notably, ICDA continued to perform strongly, maintaining high recall and balanced
precision even in free-living scenarios. In contrast, ICDD and ICDE experienced a
more noticeable spread in both absolute error and precision, indicating that their
performance was more affected by the unstructured nature of free-living data.

In summary, while all three algorithms demonstrated robust initial contact de-
tection under controlled conditions, the boxplots clearly showed that ICDA offered
the most favorable trade-off between low absolute error and high recall, making
it particularly well-suited for applications involving healthy adults. Even though
free-living conditions introduced greater variability, ICDA remained competitive,
supporting its use as the preferred method for initial contact detection in real-world
scenarios.

Comparison of ICDA Applied to Smartphone vs. INDIP Data

Table 6.2 presented a detailed comparison of the performance of the ICDA module
when applied to data acquired from a smartphone and from the MIMU of the
INDIP kit, under both in-lab and free-living conditions.

In the laboratory setting, both systems exhibited very similar performance. The
F1-scores were 0.904 for the smartphone and 0.906 for INDIP, indicating that both
devices effectively balanced precision and recall in detecting initial contacts. The
precision was also comparable (0.956 for the smartphone versus 0.958 for INDIP),
while the recall values were nearly identical (0.860 vs. 0.862), demonstrating that
the proportion of false positives and false negatives was minimal. Furthermore,
the absolute error was extremely low at 0.069 s for both systems, with overlapping
confidence intervals ([0.01, 0.18] s for the smartphone and [0.01, 0.17] s for INDIP).
These findings confirmed that, under controlled conditions, the ICDA module
performed consistently regardless of the acquisition device.

Under free-living conditions, despite the increased variability inherent to real-
world environments, the performance remained robust. The F1-scores were 0.842
for the smartphone and 0.838 for INDIP, and precision was 0.862 compared to
0.859, while recall values were 0.832 and 0.828, respectively. The absolute error
remained similarly low, at 0.063 s for the smartphone and 0.065 s for INDIP, with
both systems exhibiting comparable confidence intervals ([0.01, 0.17] s). These
metrics suggested that even in less controlled, free-living scenarios, the ICDA
module yielded consistent and reliable detection of initial contacts across both
platforms.

Overall, these results demonstrated that the smartphone, when paired with the
ICDA module, performed on par with the dedicated MIMU of the INDIP kit in
both laboratory and free-living settings.
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7.1.3 CAD Module
An examination of the three cadence-estimation algorithms (CADA, CADB, and
CADC) in both in-lab and free-living conditions revealed notable variations in
their absolute and relative error distributions. In the controlled environment (see
Figures 6.21 and 6.22), all three methods produced consistently accurate estimates
of steps per minute, as indicated by relatively tight error spreads. However, CADA
showed a somewhat broader range of outliers, suggesting that it was slightly
more sensitive to minor fluctuations in step timing. By contrast, CADC—the
recommended algorithm—exhibited a particularly narrow distribution of relative
error, indicating a strong alignment with reference values.

When shifting to free-living scenarios (see Figures 6.23 and 6.24), the inherent
variability of daily activity became apparent, as the error distributions widened
for all three algorithms. Despite this, CADC maintained comparatively lower
median errors and a more contained spread, suggesting that it adapted effectively
to irregular walking patterns. CADB also remained viable, though it appeared
to yield more high-error outliers than CADC, whereas CADA demonstrated
larger overall deviations, potentially reflecting an increased sensitivity to real-world
variability.

In summary, although each algorithm performed reliably under controlled condi-
tions, CADC consistently showed the most stable performance in both laboratory
and free-living environments. Its tighter error distributions and reduced bias high-
lighted its robustness for a wide range of gait analysis applications, whereas CADA
and CADB appeared more susceptible to measurement fluctuations outside the
lab.

Comparison of CADC Applied to Smartphone vs. INDIP Data

Table 6.3 presented a detailed comparison of the performance of the CADC
algorithm when applied to cadence detection using data acquired from a smartphone
and from the INDIP MIMU, in both in-lab and free-living conditions.

In the laboratory setting, the absolute error in cadence estimation was very
similar between the two systems. The smartphone yielded an average absolute
error of 1.86 steps/min (with a confidence interval of [0.07, 5.70]), while the INDIP
system showed an error of 1.75 steps/min ([0.05, 5.23]). Likewise, the relative error
was nearly identical, with the smartphone recording 0.00% and the INDIP 0.01%,
both within overlapping confidence intervals. These results indicated that, under
controlled conditions, the CADC algorithm performed comparably regardless of
whether the data was sourced from a smartphone or a dedicated MIMU.

Under free-living conditions, as expected, the variability increased; however, the
performance remained essentially equivalent between the two acquisition methods.
The absolute error was 5.66 steps/min for the smartphone and 5.77 steps/min for
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the INDIP, with overlapping confidence intervals ([0.28, 21.08] vs. [0.28, 21.96]).
Similarly, the relative error was consistently around 0.01% for both devices. These
findings confirmed that the CADC module maintained robust and reliable cadence
detection even in real-world scenarios, independent of the sensor used.

Overall, the near-identical performance of CADC across both in-lab and free-
living environments underscored its suitability for accurate cadence estimation
using either smartphone or INDIP MIMU data.

7.1.4 SL Module
The analysis of the smartphone data for stride-length estimation in both in-lab
and free-living conditions revealed distinct distributional patterns for the estima-
tion metrics across the two algorithms (SLA and SLB). In the laboratory (see
Figures 6.25, 6.26, and 6.27), the overall distributions of absolute error, bias, and
relative error were relatively narrow. In this controlled setting, SLB—recommended
for a healthy adult population—demonstrated outstanding performance, exhibiting
a very low median absolute error and minimal bias, which indicated strong consis-
tency with the reference stride lengths. Although SLA achieved acceptable results,
its error distributions and bias were slightly broader, suggesting occasional over- or
underestimation.

Under free-living conditions (see Figures 6.28, 6.29, and 6.30), the increased vari-
ability inherent in real-world movements naturally led to broader error distributions
for both algorithms. Nonetheless, SLB maintained a comparatively lower median
absolute error and a tighter bias distribution, reflecting its robust performance even
in unstructured environments. In contrast, SLA showed a larger spread in errors,
indicating a higher sensitivity to irregular gait patterns during daily activities.

In summary, while both algorithms performed adequately in controlled settings,
the boxplots clearly indicated that SLB offered the most favorable trade-off between
low absolute error and minimal bias. This made it the preferred approach for
stride-length estimation in both laboratory and free-living scenarios.

Comparison of SLB Applied to Smartphone vs. INDIP Data

Table 6.4 presented a detailed comparison of the performance of the SLB module
for stride length estimation when applied to data acquired from a smartphone and
from the INDIP MIMU, under both in-lab and free-living conditions.

In the laboratory setting, both systems exhibited nearly identical performance.
The absolute error was 0.17 m for the smartphone and 0.18 m for INDIP, with
overlapping confidence intervals ([0.03, 0.33] m and [0.03, 0.35] m, respectively).
Likewise, the relative error was consistent between the two, with values of -0.13%
for both modalities, and the bias was the same at -0.18 m. These metrics indicated
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that in a controlled environment, the SLB module yielded equivalent and reliable
stride length estimates regardless of the acquisition device.

Under free-living conditions, despite the naturally increased variability, the
performance remained robust and comparable between the smartphone and INDIP.
The absolute error was 0.11 m for the smartphone and 0.12 m for INDIP, while
the relative error was nearly identical (0.02% versus 0.03%). The bias was also
consistent at -0.02 m for both systems, with similar confidence intervals. These
results confirmed that the SLB module maintained its accuracy and reliability in
real-world settings, independent of the sensor used.

Overall, these findings demonstrated that the smartphone, when paired with the
SLB module, provided stride length estimates that were on par with those obtained
from the dedicated INDIP MIMU, both in laboratory and free-living conditions.

7.1.5 Full Pipeline
Table 6.5 summarized the walking-speed results obtained by applying the full
processing pipeline to data from both the smartphone and the INDIP IMU, under
in-lab and free-living conditions. In the laboratory (upper panel), the absolute
errors for the smartphone and IMU were 0.15 m/s2 and 0.16 m/s2, respectively, with
largely overlapping confidence intervals. The relative error and bias values were
similarly close (both around -0.15), indicating that the smartphone performed on par
with the dedicated IMU in estimating walking speed in a controlled environment.

Under free-living conditions (lower panel), the absolute error decreased to around
0.09 m/s2 for both devices, highlighting that even with the increased variability of
real-world movement, the pipeline maintained robust performance. The relative
error remained near zero, and the bias was approximately -0.04 m/s2 for both
the smartphone and IMU. These findings suggested that the system effectively
adapted to unstructured daily activities, yielding comparable results regardless of
the acquisition modality.

Figures ?? and ?? presented Bland-Altman plots of median walking speed
per subject for in-lab and free-living data, respectively. In both plots, the mean
difference (solid gray line) lay very close to zero, and the limits of agreement
(dashed red and blue lines) remained relatively narrow. This further confirmed the
strong agreement between the smartphone and IMU measurements, with minimal
systematic offsets across different walking speeds.

Overall, these results demonstrated that the full pipeline, when applied to
smartphone data, yielded walking-speed estimates that closely matched those
obtained from a research grade device like the INDIP IMU. The small discrepancies
observed—both in controlled and free-living conditions—were well within acceptable
bounds, reinforcing the viability of using smartphones for accurate gait assessment
in various settings.
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7.2 Smartphone Location Recognition Model
7.2.1 6-Classes Classification Problem
Figure 6.33 shows the performance metrics (balanced accuracy, precision, and recall)
for five different classification models, all evaluated via 5-fold cross-validation on
the 6-class smartphone-location recognition task. The results indicate a generally
consistent level of performance across models, with XGBoost slightly outperforming
the others. Notably, balanced accuracy, precision, and recall scores cluster around
the 0.65–0.70 range, reflecting a reasonably balanced capability to detect each class
without heavily favoring one over the others.

A closer examination of the per-class accuracy for the XGBoost model (Fig-
ure 6.34) reveals that some classes, such as LB (Lower Back), achieve high accuracy
(above 0.90), while others, notably CP (Coat Pocket), are more challenging, with
an accuracy around 0.47. Intermediate performances are observed for positions
like SB (Shoulder Bag) and H (Hand), suggesting that although the model can
reliably recognize certain placements, it struggles with others due to less distinctive
features.

Furthermore, the confusion matrix shown in Figure 6.35 highlights a significant
issue between the BP (Back Pocket) and FP (Front Pocket) classes. Both classes
exhibit low accuracy and high standard deviation, which indicates that the features
extracted from these positions are not sufficiently discriminative. This outcome
suggests that the two placements, being located on the same anatomical region,
generate similar inertial signals. Moreover, when considering future developments
in gait analysis algorithms that may utilize data from these placements, it might
not be necessary to differentiate between front and back pockets if the signals are
essentially equivalent. For these reasons, a decision was made to merge BP and
FP into a single Trousers Pocket (PT) class. The impact of this merging on the
overall model performance will be discussed in the subsequent section.

In summary, while the 6-class classification problem demonstrates the model’s
overall capability to recognize multiple smartphone positions with moderate to
high accuracy, the analysis indicates that certain classes—specifically BP and
FP—pose a challenge due to insufficiently distinctive features. Merging these into
a single class appears to be a justified strategy both from a current performance
perspective and for the development of future gait analysis algorithms.

7.2.2 5-Classes Classification Problem
Following the merging of the Back Pocket (BP) and Front Pocket (FP) classes into
a single Pocket Trousers (PT) category, the classification task is reduced to
five classes: LB (Lower Back), PT (Pocket Trousers), H (Hand), SB (Shoulder
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Bag), and CP (Coat Pocket). Figure 6.36 illustrates the performance metrics
(balanced accuracy, precision, and recall) for the same five models (Random Forest,
Decision Tree, XGBoost, ANN, and Logistic Regression), each evaluated with 5-fold
cross-validation. Notably, the average scores for all three metrics cluster around
0.74, suggesting a slight overall improvement compared to the 6-class scenario.

Focusing on the XGBoost model, the best performing model, Figure 6.37 pro-
vides a breakdown of per-class accuracy. LB maintains the highest accuracy
(approximately 0.92), while CP remains the most challenging class, with an accu-
racy near 0.47. PT achieves about 0.76, indicating that merging the two pocket
classes alleviated some of the confusion observed in the 6-class problem, where BP
and FP had notably low accuracies and high variability. SB (Shoulder Bag) and H
(Hand) both show moderate accuracy levels (around 0.80 and 0.74, respectively),
confirming that these positions are reasonably distinct yet still prone to occasional
misclassification.

The confusion matrix for the XGBoost model on Fold 2 (Figure 6.38) further
illustrates these trends. Correct predictions are concentrated on the main diagonal,
with LB showing very few misclassifications, while CP exhibits a higher degree of
confusion with other classes. Notably, PT displays a reduced rate of misclassifi-
cations compared to the separate BP and FP classes, reinforcing the decision to
merge them into a single category.

In summary, the 5-class classification problem demonstrates that merging the
pocket-related classes yields a modest yet tangible improvement in overall model
performance. By reducing the overlap in sensor signals associated with front and
back pockets, the classification task becomes more tractable, resulting in balanced
accuracy, precision, and recall scores of around 0.74 for the best-performing methods.
Although some classes (e.g., CP) remain challenging, these findings suggest that
consolidating similar positions can enhance both model stability and interpretability
in smartphone location recognition.

7.2.3 Binary Classification Problem: LB vs Other
Finally, a binary classification task was carried out to distinguish the LB placement
from all other positions. Although the lower back is not a common spot for everyday
smartphone use, it is the standard location for many gait-analysis protocols,
including Mobilise-D. Demonstrating robust recognition of LB is thus valuable, as
it enables the integration of a location-recognition step into a broader smartphone-
based gait-analysis framework.

Figure 6.39 presents the balanced accuracy, precision, recall, and AUC (Area
Under the Curve) for five different models, all evaluated via 5-fold cross-validation.
The results are notably high, with XGBoost, for example, surpassing 0.90 in each
metric and reaching 0.99 in AUC. These findings confirm that distinguishing LB
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from other placements is considerably more straightforward than the more granular
multi-class tasks.

The confusion matrix for XGBoost (Figure 6.40) further supports this conclusion,
showing a large number of correctly identified Other instances (14,176) and a
similarly high count of correctly classified LB samples (2,830). Misclassifications
remain minimal, indicating that the model reliably detects the LB position with
little confusion. From a practical standpoint, this high level of accuracy suggests
that the location-recognition model can be readily incorporated into smartphone-
based gait-analysis pipelines. In other words, once the lower-back position is
confidently identified, specialized algorithms (e.g., those employed by Mobilise-D)
can be selectively applied to the sensor data, ensuring accurate gait metrics when
the smartphone is placed at LB.
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Chapter 8

Conclusions

8.1 General results
This thesis aimed to validate the Mobilise-D pipeline for gait analysis while also
developing a classification model for the task of smartphone location recognition.
Data acquired from both controlled (in-lab) and real-world (free-living) environ-
ments—using an Android smartphone and a research-grade device—were utilized
for both pipeline validation and model training. In particular, the INDIP sensor
kit was employed as the reference system, providing a benchmark to compare
performance metrics during pipeline validation and serving to extract walking
sequences from all recordings for training the location recognition model.

Beyond validating existing methodologies, this work sought to enhance the
generalizability of gait analysis algorithms to accommodate real-world smartphone
usage. While traditional IMU-based approaches rely on standardized placements,
smartphones introduce variability in positioning that must be accounted for to
ensure reliable movement assessment. The development of classification models
capable of identifying smartphone placement is therefore a crucial step toward
optimizing data interpretation and refining digital mobility assessment tools.

The output of this work were the validation results, which highlighted that the
smartphone—a widely available and accessible device—represented a viable hard-
ware alternative to dedicated research-grade sensors. Moreover, the construction
of the classification model for smartphone location recognition demonstrated that
the model reliably distinguished between different device placements across various
classification tasks (multi-class, 5-class, and binary), with performance metrics
consistently improving after merging classes with similar inertial signatures. In
particular, the results for the smartphone location recognition model were robust
and excellent for identifying the LB (Lower Back) position, although performance
for the other placements was slightly lower.
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Overall, the findings confirmed that smartphone-based measurements could
be effectively integrated within the Mobilise-D analytical framework, delivering
comparable accuracy to that of the reference system for gait parameters while also
enabling reliable device location recognition. These results underscored the poten-
tial of using smartphones as an accessible alternative to research-grade sensors in
gait analysis applications. However, limitations such as variability in certain device
placements and the need for more refined, position-aware analytical methods were
also revealed. As such, while this study provided a strong foundation, it simultane-
ously pointed to several avenues for future research. In the following section, the
study’s limitations and potential developments will be discussed, outlining strate-
gies to further enhance the robustness and generalizability of smartphone-based
gait analysis.

8.2 Future directions
Validation of smartphone-acquired data using the Mobilise-D pipeline
across different cohorts

One limitation of this study, particularly regarding the validation of the Mobilise-
D pipeline, is that although data were acquired from a substantial number of
participants, they were exclusively collected from healthy adults. Consequently, the
current findings may not fully generalize to populations with irregular gait patterns
or more complex conditions. Future research should extend the application of this
pipeline to smartphone data gathered from other cohorts—similar to the approach
used in the European Mobilise-D Technical Validation Study [45]—to evaluate
whether smartphones remain a reliable tool for gait analysis in populations with
conditions such as Parkinson’s disease, musculoskeletal disorders, or post-stroke
impairments.

Current constraints and future improvements for Smartphone Location
Recognition

Despite the optimal performance in correctly classifying the LB placement—which
supported the model’s applicability for recognizing this specific position—it was
acknowledged that the lower back is not a commonly used smartphone location. In
contrast, the results obtained for other, more frequently used placements indicated
that further improvements were needed to enhance the model’s accuracy in recog-
nizing these positions. Future work should explore why the current features did
not provide sufficiently discriminative information for differentiating among the
various placements, particularly for the coat pocket placement, which remains an
open challenge.
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Another limitation is that the model was trained exclusively on walking data.
Although this design choice was made to better extract distinctive features from
the signals corresponding to different placements, it meant that the model never
encountered signals representing transitions between placements—as is common in
typical smartphone usage. Incorporating these transitional signals would be crucial
for continuous monitoring, allowing the model to identify transition segments and
exclude them from the gait parameter extraction process, since they do not provide
the data that the analytical pipelines expect.

124



Bibliography

[1] Reed Ferber, Sean T. Osis, Jennifer L. Hicks, and Scott L. Delp. «Gait
Biomechanics in the Era of Data Science». In: Journal of Biomechanics
(2016). doi: 10.1016/j.jbiomech.2016.10.033. url: http://dx.doi.
org/10.1016/j.jbiomech.2016.10.033 (cit. on pp. 1, 11).

[2] A. Muro-de-la-Herran, B. García-Zapirain, and A. Méndez-Zorrilla. «Gait
analysis methods: An overview of wearable and non-wearable systems, high-
lighting clinical applications». In: Sensors 14.2 (2014), pp. 3362–3394. doi:
10.3390/s140203362. url: https://doi.org/10.3390/s140203362 (cit.
on p. 1).

[3] R. Baker. «Gait analysis methods in rehabilitation». In: Journal of NeuroEngi-
neering and Rehabilitation 3.1 (2006), p. 4. doi: 10.1186/1743-0003-3-4.
url: https://doi.org/10.1186/1743-0003-3-4 (cit. on p. 1).

[4] E. Giannouli, O. Bock, S. Mellone, and W. Zijlstra. «Mobility in old age:
Capacity is not performance». In: BioMed Research International 2016 (2016),
p. 3261567. doi: 10.1155/2016/3261567. url: https://doi.org/10.1155/
2016/3261567 (cit. on pp. 1, 17).

[5] M. A. Khan, S. Lee, H. Park, and M. Lee. «A wearable sensor-based gait
analysis framework for rehabilitation». In: Sensors 15.8 (2015), pp. 20795–
20821. doi: 10 . 3390 / s150820795. url: https : / / doi . org / 10 . 3390 /
s150820795 (cit. on p. 2).

[6] Z. Zhang, L. Wang, and J. Wang. «Smartphone-based gait analysis: Current
methodologies and future perspectives». In: IEEE Sensors Journal 21.14
(2021), pp. 15980–15991. doi: 10.1109/JSEN.2021.3075198. url: https:
//doi.org/10.1109/JSEN.2021.3075198 (cit. on p. 2).

[7] Akram Bayat, Marc Pomplun, and Duc A. Tran. «A Study on Human Activity
Recognition Using Accelerometer Data from Smartphones». In: Procedia
Computer Science. Vol. 34. 2014, pp. 450–457. doi: 10.1016/j.procs.2014.
07.009. url: https://doi.org/10.1016/j.procs.2014.07.009 (cit. on
pp. 2, 16).

125

https://doi.org/10.1016/j.jbiomech.2016.10.033
http://dx.doi.org/10.1016/j.jbiomech.2016.10.033
http://dx.doi.org/10.1016/j.jbiomech.2016.10.033
https://doi.org/10.3390/s140203362
https://doi.org/10.3390/s140203362
https://doi.org/10.1186/1743-0003-3-4
https://doi.org/10.1186/1743-0003-3-4
https://doi.org/10.1155/2016/3261567
https://doi.org/10.1155/2016/3261567
https://doi.org/10.1155/2016/3261567
https://doi.org/10.3390/s150820795
https://doi.org/10.3390/s150820795
https://doi.org/10.3390/s150820795
https://doi.org/10.1109/JSEN.2021.3075198
https://doi.org/10.1109/JSEN.2021.3075198
https://doi.org/10.1109/JSEN.2021.3075198
https://doi.org/10.1016/j.procs.2014.07.009
https://doi.org/10.1016/j.procs.2014.07.009
https://doi.org/10.1016/j.procs.2014.07.009


BIBLIOGRAPHY

[8] Sharon Olsen, Usman Rashid, David Barbado, Priyadharshini Suresh, Gemma
Alder, Imran Khan Niazi, and Denise Taylor. «The validity of smartphone-
based spatiotemporal gait measurements during walking with and without
head turns: Comparison with the GAITRite® system». In: Journal of Biome-
chanics 162 (2024). doi: 10.1016/j.jbiomech.2023.111899. url: https:
//doi.org/10.1016/j.jbiomech.2023.111899 (cit. on pp. 2, 16).

[9] C. Kirk, A. Küderle, M. E. Micó-Amigo, et al. «Mobilise-D insights to estimate
real-world walking speed in multiple conditions with a wearable device». In:
Scientific Reports 14 (2024), p. 1754. doi: 10.1038/s41598-024-51766-5.
url: https://doi.org/10.1038/s41598-024-51766-5 (cit. on pp. 2,
61–64, 68).

[10] MobGap development team. MobGap Documentation. 2025. url: https:
//mobgap.readthedocs.io/en/stable/ (cit. on pp. 2, 61).

[11] M. Encarna Micó-Amigo, Tecla Bonci, Anisoara Paraschiv-Ionescu, et al.
«Assessing real-world gait with digital technology? Validation, insights and
recommendations from the Mobilise-D consortium». In: Journal of Neuro-
Engineering and Rehabilitation 20 (2023), p. 78. doi: 10.1186/s12984-023-
01198-5. url: https://doi.org/10.1186/s12984-023-01198-5 (cit. on
pp. 2, 61–63, 68, 79).

[12] Jacquelin Perry. Gait Analysis: Normal and Pathological Function. Slack
Incorporated, 1992 (cit. on pp. 6–10).

[13] Thurmon E. Lockhart and Jeawon Kim. Biomechanics of Walking and Run-
ning. Springer, 2013 (cit. on p. 7).

[14] Chayanika Dhiman. «Gait Analysis: A Review». In: International Journal of
Computer Applications 29.6 (2011), pp. 38–45 (cit. on pp. 8, 9).

[15] J. Perry. «Clinical gait analyzer». In: Bulletin of Prosthetics Research (1974)
(cit. on p. 10).

[16] D. Sutherland and J. Hagy. «Measurement of gait movements from motion
picture film». In: British Journal of Bone and Joint Surgery (1972) (cit. on
p. 10).

[17] Richard Baker. «The history of gait analysis before the advent of modern
computers». In: Gait & Posture 26 (2007), pp. 331–342. doi: 10.1016/j.
gaitpost.2006.10.014. url: https://doi.org/10.1016/j.gaitpost.
2006.10.014 (cit. on p. 10).

[18] R. Sheldon. «Biomechanics of Gait Analysis». In: Journal of Biomechanics
37.4 (2004), pp. 543–550 (cit. on p. 10).

126

https://doi.org/10.1016/j.jbiomech.2023.111899
https://doi.org/10.1016/j.jbiomech.2023.111899
https://doi.org/10.1016/j.jbiomech.2023.111899
https://doi.org/10.1038/s41598-024-51766-5
https://doi.org/10.1038/s41598-024-51766-5
https://mobgap.readthedocs.io/en/stable/
https://mobgap.readthedocs.io/en/stable/
https://doi.org/10.1186/s12984-023-01198-5
https://doi.org/10.1186/s12984-023-01198-5
https://doi.org/10.1186/s12984-023-01198-5
https://doi.org/10.1016/j.gaitpost.2006.10.014
https://doi.org/10.1016/j.gaitpost.2006.10.014
https://doi.org/10.1016/j.gaitpost.2006.10.014
https://doi.org/10.1016/j.gaitpost.2006.10.014


BIBLIOGRAPHY

[19] Weijun Tao, Tao Liu, Rencheng Zheng, and Hutian Feng. «Gait Analysis
Using Wearable Sensors». In: Sensors 12.2 (2012). doi: 10.3390/s120202255.
url: https://doi.org/10.3390/s120202255 (cit. on pp. 11, 13).

[20] Michael W. Whittle. Gait Analysis: An Introduction. Butterworth-Heinemann,
1996 (cit. on pp. 11–13).

[21] Meg E. Morris, Robert Iansek, T. Alexander Matyas, and Jeffrey J. Summers.
«Abnormalities in the stride length-cadence relation in Parkinsonian gait».
In: Movement Disorders 13.1 (1998), pp. 61–69 (cit. on p. 11).

[22] Francesco Temporiti and Roberto Gatti. «Gait analysis in patients after
bilateral versus unilateral total hip arthroplasty». In: Gait & Posture 70
(2019), pp. 74–79 (cit. on p. 11).

[23] Tomas Oberg, Anna Karsznia, and Katarina Oberg. «Basic gait parameters:
Reference data for normal subjects, 10-79 years of age». In: Journal of
Rehabilitation Research and Development 30.2 (1993), pp. 210–223 (cit. on
pp. 12, 13).

[24] Elisa Digo. «Comparison of different inertial sensors setups and algorithms to
estimate gait spatio-temporal parameters». MA thesis. Politecnico di Torino,
2018 (cit. on p. 13).

[25] Alana de Mello Souza and Marcelo R. Stemmer. «Extraction and classification
of human gait parameters using Kinect sensor». In: Journal of Control,
Automation and Electrical Systems 29 (2018), pp. 586–604 (cit. on p. 13).

[26] Wiebren Zijlstra and At L. Hof. «Assessment of spatio-temporal gait param-
eters from trunk accelerations during human walking». In: Gait & Posture
18.2 (2003), pp. 1–10 (cit. on pp. 14, 66).

[27] Wiebren Zijlstra and Astrid Zijlstra. «Assessment of gait parameters in older
persons: A comparison of accelerometry and clinical observation». In: Gait &
Posture 19.1 (2004), pp. 1–7 (cit. on pp. 14, 17).

[28] Ugo Della Croce and Maurizio Mancini. «Application of Inertial Measurement
Units in Clinical Gait Analysis: Current Trends and Future Directions». In:
Handbook of Human Motion. Ed. by B. Muller and S. Wolf. Springer, 2018,
pp. 1–20 (cit. on p. 14).

[29] S. Bovonsunthonchai, R. Vachalathiti, A. Pisarnpong, F. Khobhun, and V.
Hiengkaew. «Spatiotemporal gait parameters for patients with Parkinson’s
disease compared with normal individuals». In: Physiotherapy Research In-
ternational 19.3 (Sept. 2014), pp. 158–165. doi: 10.1002/pri.1579. url:
https://doi.org/10.1002/pri.1579 (cit. on pp. 15, 24).

127

https://doi.org/10.3390/s120202255
https://doi.org/10.3390/s120202255
https://doi.org/10.1002/pri.1579
https://doi.org/10.1002/pri.1579


BIBLIOGRAPHY

[30] Daniele Trojaniello, Andrea Cereatti, and Ugo Della Croce. «Assessment of
spatio-temporal parameters of gait in stroke patients using wearable inertial
sensors». In: Gait & Posture 41.3 (2015), pp. 805–810 (cit. on pp. 15, 25).

[31] R. A. W. Felius, M. Geerars, S. M. Bruijn, J. H. van Dieën, N. C. Wouda,
and M. Punt. «Reliability of IMU-Based Gait Assessment in Clinical Stroke
Rehabilitation». In: Sensors (Basel) 22.3 (Jan. 2022), p. 908. doi: 10.3390/
s22030908. url: https://doi.org/10.3390/s22030908 (cit. on p. 15).

[32] S. Baklouti, A. Chaker, T. Rezgui, A. Sahbani, S. Bennour, and M. A. Laribi.
«A Novel IMU-Based System for Work-Related Musculoskeletal Disorders
Risk Assessment». In: Sensors 24 (2024), p. 3419. doi: 10.3390/s24113419.
url: https://doi.org/10.3390/s24113419 (cit. on p. 15).

[33] Sangrok Kang, Soo-Mi Choi, Sang-Rae Lee, Ho-Joon Lee, Kyung-Yeon Kim,
and Young-Seok Kim. «A novel walking detection and step counting algorithm
using unconstrained smartphones». In: Sensors 18.12 (2018), p. 4265 (cit. on
p. 16).

[34] Pilar Serra-Añó, Mónica Balasch-Bernat, Laura López-Bueno, Pedro Pérez-
Soriano, and Xavier García-Massó. «Mobility assessment in people with
Alzheimer’s disease using smartphone sensors: A feasibility study». In: Sensors
19.23 (2019), p. 5153 (cit. on p. 16).

[35] GAITRite. GAITRite - The Gold Standard in Gait Analysis. Accessed: 2024-
02-05. 2024. url: https://www.gaitrite.com/ (cit. on p. 16).

[36] Jannis Hannink, Tim Kautz, Cristian F. Pasluosta, Bernhard Gasser, Jochen
Klucken, and Bjoern M. Eskofier. «Mobile stride length estimation with deep
convolutional neural networks». In: IEEE Journal of Biomedical and Health
Informatics 21.3 (2017), pp. 568–576. doi: 10.1109/JBHI.2016.2633772
(cit. on p. 16).

[37] Ilya Galperin, Isaac Hillel, Silvia Del Din, Edith M.J. Bekkers, Alice Nieuw-
boer, Lynn Rochester, and Jeffrey M. Hausdorff. «Associations between
daily-living physical activity and mobility in patients with Parkinson’s dis-
ease». In: Parkinsonism & Related Disorders 62 (2019), pp. 85–90. doi:
10.1016/j.parkreldis.2019.01.029 (cit. on p. 17).

[38] Vectornav. Inertial Navigation Primer. 2022. url: https://www.vectornav.
com/resources/inertial-navigation-primer/theory-of-operation/
theory-inertial (cit. on p. 18).

[39] Zakriya Mohammed, Ibrahim M. Elfadel, and Mahmoud Rasras. «Monolithic
Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers». In:
Micromachines 9 (2018). doi: 10.3390/mi9010009. url: https://doi.org/
10.3390/mi9010009 (cit. on pp. 19–22).

128

https://doi.org/10.3390/s22030908
https://doi.org/10.3390/s22030908
https://doi.org/10.3390/s22030908
https://doi.org/10.3390/s24113419
https://doi.org/10.3390/s24113419
https://www.gaitrite.com/
https://doi.org/10.1109/JBHI.2016.2633772
https://doi.org/10.1016/j.parkreldis.2019.01.029
https://www.vectornav.com/resources/inertial-navigation-primer/theory-of-operation/theory-inertial
https://www.vectornav.com/resources/inertial-navigation-primer/theory-of-operation/theory-inertial
https://www.vectornav.com/resources/inertial-navigation-primer/theory-of-operation/theory-inertial
https://doi.org/10.3390/mi9010009
https://doi.org/10.3390/mi9010009
https://doi.org/10.3390/mi9010009


BIBLIOGRAPHY

[40] Riccardo Antonello and Roberto Oboe. «MEMS Gyroscopes for Consumers
and Industrial Applications». In: InTech, 2011. isbn: 978-953-307-170-1. doi:
10.5772/17689. url: https://doi.org/10.5772/17689 (cit. on p. 21).

[41] J. Bernstein, S. Cho, A. T. King, A. Kourepinis, P. Maciel, and M. Weinberg.
«Micromachined comb-drive tuning fork rate gyroscope». In: IEEE Micro
Electro Mechanical Systems. IEEE, 1993, pp. 143–148. doi: 10.1109/memsys.
1993.296932. url: https://doi.org/10.1109/memsys.1993.296932
(cit. on p. 22).

[42] W. A. Gill, I. Howard, I. Mazhar, and K. McKee. «A Review of MEMS
Vibrating Gyroscopes and Their Reliability Issues in Harsh Environments».
In: Sensors 22.19 (2022). doi: 10.3390/s22197405. url: https://doi.org/
10.3390/s22197405 (cit. on p. 22).

[43] Sebastian O. H. Madgwick, Andrew J. L. Harrison, and Ravi Vaidyanathan.
«Estimation of IMU and MARG orientation using a gradient descent algo-
rithm». In: 2011 IEEE International Conference on Rehabilitation Robotics.
2011, pp. 1–7. doi: 10.1109/ICORR.2011.5975346 (cit. on p. 23).

[44] Felix Kluge and Claudia Mazzà. «Towards a consensus on the use of wear-
able technology in gait analysis: A framework for the digital monitoring of
mobility». In: PLOS One 16.3 (2021), e0247645 (cit. on pp. 23, 25).

[45] C. Mazzà, L. Alcock, K. Aminian, C. Becker, S. Bertuletti, T. Bonci, et
al. «Technical Validation of Real-World Monitoring of Gait: A Multicentric
Observational Study». In: BMJ Open 11.12 (2021), e050785. doi: 10.1136/
bmjopen-2021-050785. url: https://doi.org/10.1136/bmjopen-2021-
050785 (cit. on pp. 23, 25, 61, 123).

[46] Stefano Bertuletti, Andrea Cereatti, Daniele Comotti, Michele Caldara, and
Ugo Della Croce. «Static and Dynamic Accuracy of an Innovative Miniatur-
ized Wearable Platform for Short Range Distance Measurements for Human
Movement Applications». In: Sensors 17.7 (2017). issn: 1424-8220. doi:
10.3390/s17071492. url: https://www.mdpi.com/1424-8220/17/7/1492
(cit. on pp. 24, 25, 31).

[47] Francesca Salis and Andrea Cereatti. «A method for detecting gait events
using low-resolution pressure insoles». In: Journal of Biomechanics 47.6 (2014),
pp. 1585–1588 (cit. on pp. 24, 25).

[48] Francesca Salis and Andrea Cereatti. «INDIP: A multi-sensor wearable system
for real-world gait analysis». In: SIAMOC Conference (2019) (cit. on pp. 24,
25).

129

https://doi.org/10.5772/17689
https://doi.org/10.5772/17689
https://doi.org/10.1109/memsys.1993.296932
https://doi.org/10.1109/memsys.1993.296932
https://doi.org/10.1109/memsys.1993.296932
https://doi.org/10.3390/s22197405
https://doi.org/10.3390/s22197405
https://doi.org/10.3390/s22197405
https://doi.org/10.1109/ICORR.2011.5975346
https://doi.org/10.1136/bmjopen-2021-050785
https://doi.org/10.1136/bmjopen-2021-050785
https://doi.org/10.1136/bmjopen-2021-050785
https://doi.org/10.1136/bmjopen-2021-050785
https://doi.org/10.3390/s17071492
https://www.mdpi.com/1424-8220/17/7/1492


BIBLIOGRAPHY

[49] Francesca Salis and Andrea Cereatti. «Technical validation of a multi-sensor
wearable system (INDIP) for real-world gait analysis». In: Frontiers in Bio-
engineering and Biotechnology 11 (2023), p. 1145 (cit. on pp. 24, 25, 31,
69).

[50] Luca Palmerini and Lorenzo Chiari. «Standardization of wearable data collec-
tion and processing: The Mobilise-D project». In: Scientific Data 10 (2023),
p. 245 (cit. on pp. 24, 48).

[51] L. Brognara. «Gait Assessment Using Smartphone Applications in Older
Adults: A Scoping Review». In: Geriatrics (Basel) 9.4 (July 2024), p. 95.
doi: 10.3390/geriatrics9040095. url: https://doi.org/10.3390/
geriatrics9040095 (cit. on p. 27).

[52] Daniel Klein and Timo Becker. «Enhancing pedestrian dead reckoning through
smartphone position recognition». In: Sensors 20.18 (2020), p. 5034 (cit. on
pp. 27, 28).

[53] Jing Zhou, Xinyu Wang, and Zhen Liu. «Deep learning-based human activity
recognition using smartphone sensors». In: IEEE Transactions on Neural
Networks and Learning Systems 30.3 (2019), pp. 818–827 (cit. on p. 28).

[54] Marc Daniel, Tobias Klein, and Soo-Mi Kim. «Deep learning-based smart-
phone position recognition for robust activity recognition». In: Pattern Recog-
nition Letters 146 (2021), pp. 72–79 (cit. on p. 28).

[55] F. Salis, S. Bertuletti, K. Scott, M. Caruso, T. Bonci, E. Buckley, U. Della
Croce, C. Mazzà, and A. Cereatti. «A wearable multi-sensor system for
real world gait analysis». In: Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). 2019 (cit. on p. 32).

[56] M. Caruso, A. M. Sabatini, D. Laidig, T. Seel, M. Knaflitz, U. Della Croce,
and A. Cereatti. «Analysis of the Accuracy of Ten Algorithms for Orientation
Estimation Using Inertial and Magnetic Sensing under Optimal Conditions:
One Size Does Not Fit All». In: Sensors 21 (2021), p. 2543. doi: 10.3390/
s21072543. url: https://doi.org/10.3390/s21072543 (cit. on p. 35).

[57] A. Küderle. Mobilise-D Technical Validation Study (TVS) dataset. 2024. doi:
10.5281/zenodo.13899385. url: http://doi.org/10.5281/zenodo.
13899385 (cit. on p. 62).

[58] Tal Iluz, Eran Gazit, Talia Herman, Eliot Sprecher, Marina Brozgol, Nir
Giladi, Anat Mirelman, and Jeffrey M. Hausdorff. «Automated detection of
missteps during community ambulation in patients with Parkinson’s disease: a
new approach for quantifying fall risk in the community setting». In: Journal
of NeuroEngineering and Rehabilitation 11 (2014), p. 48. doi: 10.1186/1743-
0003-11-48. url: http://www.jneuroengrehab.com/content/11/1/48
(cit. on p. 65).

130

https://doi.org/10.3390/geriatrics9040095
https://doi.org/10.3390/geriatrics9040095
https://doi.org/10.3390/geriatrics9040095
https://doi.org/10.3390/s21072543
https://doi.org/10.3390/s21072543
https://doi.org/10.3390/s21072543
https://doi.org/10.5281/zenodo.13899385
http://doi.org/10.5281/zenodo.13899385
http://doi.org/10.5281/zenodo.13899385
https://doi.org/10.1186/1743-0003-11-48
https://doi.org/10.1186/1743-0003-11-48
http://www.jneuroengrehab.com/content/11/1/48


BIBLIOGRAPHY

[59] MobGap Developers. MobGap: Gait Sequence Detection (GsdIluz). Online
documentation. Accessed: 2024-02-20. 2024. url: https://mobgap.readthe
docs.io/en/stable/modules/generated/gait_sequences/mobgap.gait_
sequences.GsdIluz.html (cit. on p. 65).

[60] John McCamley, Marcello Donati, Emiliano Grimpampi, and Claudia Mazza.
«An enhanced estimate of initial contact and final contact instants of time
using lower trunk inertial sensor data». In: Gait & Posture 36.2 (2012),
pp. 316–318. doi: 10.1016/j.gaitpost.2012.03.019. url: https://doi.
org/10.1016/j.gaitpost.2012.03.019 (cit. on p. 65).

[61] Anisoara Paraschiv-Ionescu and Kamiar Aminian. «Real-world ambulatory
monitoring: New frontiers in assessment and rehabilitation of mobility». In:
42nd Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC). IEEE, 2020, pp. 4226–4229. doi: 10.1109/
EMBC44109.2020.9175662. url: https://doi.org/10.1109/EMBC44109.
2020.9175662 (cit. on p. 65).

[62] MobGap Developers. MobGap: Initial Contact Detection (IcdIonescu). Online
documentation. Accessed: 2024-02-20. 2024. url: https://mobgap.readt
hedocs.io/en/stable/modules/generated/initial_contacts/mobgap.
initial_contacts.IcdIonescu.html (cit. on p. 66).

[63] MobGap Developers. MobGap: Cadence Estimation (CadFromIc). Online
documentation. Accessed: 2024-02-20. 2024. url: https://mobgap.readt
hedocs.io/en/stable/modules/generated/cadence/mobgap.cadence.
CadFromIc.html (cit. on p. 66).

[64] Amin Soltani, Anisoara Paraschiv-Ionescu, Hamid Dejnabadi, and Kamiar
Aminian. «Stride length estimation from a single trunk IMU: A machine
learning versus biomechanical modeling approach». In: IEEE Transactions
on Neural Systems and Rehabilitation Engineering 29 (2021), pp. 1116–1125.
doi: 10.1109/TNSRE.2021.3084091. url: https://doi.org/10.1109/
TNSRE.2021.3084091 (cit. on p. 66).

[65] MobGap Developers. MobGap: Stride Length Estimation (SlZijlstra). Online
documentation. Accessed: 2024-02-20. 2024. url: https://mobgap.readthed
ocs.io/en/stable/modules/generated/stride_length/mobgap.stride_
length.SlZijlstra.html (cit. on p. 67).

131

https://mobgap.readthedocs.io/en/stable/modules/generated/gait_sequences/mobgap.gait_sequences.GsdIluz.html
https://mobgap.readthedocs.io/en/stable/modules/generated/gait_sequences/mobgap.gait_sequences.GsdIluz.html
https://mobgap.readthedocs.io/en/stable/modules/generated/gait_sequences/mobgap.gait_sequences.GsdIluz.html
https://doi.org/10.1016/j.gaitpost.2012.03.019
https://doi.org/10.1016/j.gaitpost.2012.03.019
https://doi.org/10.1016/j.gaitpost.2012.03.019
https://doi.org/10.1109/EMBC44109.2020.9175662
https://doi.org/10.1109/EMBC44109.2020.9175662
https://doi.org/10.1109/EMBC44109.2020.9175662
https://doi.org/10.1109/EMBC44109.2020.9175662
https://mobgap.readthedocs.io/en/stable/modules/generated/initial_contacts/mobgap.initial_contacts.IcdIonescu.html
https://mobgap.readthedocs.io/en/stable/modules/generated/initial_contacts/mobgap.initial_contacts.IcdIonescu.html
https://mobgap.readthedocs.io/en/stable/modules/generated/initial_contacts/mobgap.initial_contacts.IcdIonescu.html
https://mobgap.readthedocs.io/en/stable/modules/generated/cadence/mobgap.cadence.CadFromIc.html
https://mobgap.readthedocs.io/en/stable/modules/generated/cadence/mobgap.cadence.CadFromIc.html
https://mobgap.readthedocs.io/en/stable/modules/generated/cadence/mobgap.cadence.CadFromIc.html
https://doi.org/10.1109/TNSRE.2021.3084091
https://doi.org/10.1109/TNSRE.2021.3084091
https://doi.org/10.1109/TNSRE.2021.3084091
https://mobgap.readthedocs.io/en/stable/modules/generated/stride_length/mobgap.stride_length.SlZijlstra.html
https://mobgap.readthedocs.io/en/stable/modules/generated/stride_length/mobgap.stride_length.SlZijlstra.html
https://mobgap.readthedocs.io/en/stable/modules/generated/stride_length/mobgap.stride_length.SlZijlstra.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	General introduction
	Challenges and objectives
	Thesis outline

	Background
	Gait
	Basic notions
	The gait cycle
	Phases and sub-phases of gait

	Gait analysis
	General overview
	Spatio-temporal parameters
	Estimating spatio-temporal parameters from dedicated IMUs
	Estimating spatio-temporal parameters from smartphones
	Gait analysis in free-living conditions: opportunities and challenges

	Use of Inertial Sensors for Free-Living Gait Analysis
	Principles of Operation of IMUs
	State of the Art in the Use of Dedicated IMUs for gait assessment
	Limitations of Dedicated IMUs
	Potential of Smartphones for Gait Analysis
	Challenges Related to Smartphone Positioning


	Experimental setup
	The reference system: INDIP
	INDIP System Setup
	INDIP MIMU
	INDIP pressure insoles

	The smartphone: Samsung Galaxy A34
	Samsung Galaxy A34: Inertial Sensor Specifications
	Summary of Findings


	Data collection
	Smartphone data collection
	Experimental Protocol
	Acquisitions in Torino
	Data acquisition protocol
	Data preparation

	Acquisitions in Sheffield
	Data acquisition protocol
	Data preparation
	Intended use of the dataset


	Methods
	Overview
	MobGap validation with smartphone data
	Development and validation of the Mobilise-D algorithm pipeline
	Technical Validation Study dataset
	Blocks of the Mobilise-D algorithm pipeline
	Algorithms of the Mobilise-D algorithm pipeline
	Validation Strategy

	Smartphone location recognition
	Dataset construction
	Dataset preparation
	Training and Validation
	Testing


	Results
	Mobilise-D Pipeline
	Gait Sequence Detection
	Initial Contact Detection
	Cadence Estimation
	Stride Length Estimation
	Full Pipeline: Walking Speed

	Smartphone Location Recognition Model
	6-classes Classification Problem
	5-classes Classification Problem
	Binary Classification Problem


	Discussion
	Validation of the Mobilise-D Pipeline
	GSD Module
	ICD Module
	CAD Module
	SL Module
	Full Pipeline

	Smartphone Location Recognition Model
	6-Classes Classification Problem
	5-Classes Classification Problem
	Binary Classification Problem: LB vs Other


	Conclusions
	General results
	Future directions

	Bibliography

