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Chapter 1

Introduction

1.1 Context e Motivation
Pulmonary hypertension is a pathological condition characterised by an abnormal
increase in blood pressure in the pulmonary circulation. Normally a haemodynamic
state characterised by mPAP at rest of 25 mm Hg or above may indicate the
presence of PH [1].

PH can be classified into three primary categories: precapillary, postcapillary
and mixed.

The precapillary form is characterised by increased pulmonary arterial pressures
without the involvement of the left heart and it is often associated with idiopathic
pulmonary arterial hypertension, chronic lung disease or chronic thromboembolism.

The postcapillary form, on the other hand, is linked to increased pressures of
the left side of the heart, caused by ventricular dysfunction, valvular disease or
cardiomyopathy.

Mixed hypertension combines pre-capillary and post-capillary mechanisms, and
it often appears in the context of advanced diseases [2].

In general, the main causes of PH include vascular changes, chronic lung disease,
cardiac dysfunction, chronic thromboembolism and systemic conditions, requiring
accurate diagnosis for effective treatment. [3]

Pulmonary hypertension manifests mainly with progressive and exertional diffi-
culty in breathing (dyspnoea), which is the cardinal symptom, often accompanied
by fatigue and exhaustion.

Initial symptoms are generally non-specific, which is why diagnosis may be
delayed by many months or even years.

As the disease progresses, symptoms worsen and new manifestations may appear,
such as bending dyspnoea (bendopnoea) and syncopes, the latter being particularly
frequent during or immediately after physical exertion [1].

Pulmonary hypertension has a higher prevalence than commonly assumed; it
is estimated to affect about 1% of the global population, with the prevalence
increasing to 10% in people over 65 years of age [1].
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Despite significant therapeutic advances in recent decades, PH remains a clin-
ically relevant condition, characterized by persistent symptoms and an elevated
risk of mortality.

Notably, the three-year survival rate has markedly improved, rising from ap-
proximately 40% in the 1980s to 70-80% today [4].

However, the management of certain PH subtypes, particularly those associated
with heart or lung disease, continues to be an area of active research. While clinical
investigations have contributed to better outcomes, further studies are needed to
optimize treatment strategies for these complex cases [5].

In general, traditional and contemporary diagnostic techniques still play a
crucial role in identifying PH, classifying its subtypes, and assessing its severity,
thereby suggesting appropriate management strategies.

Echocardiography is the main non-invasive procedure for diagnosing pulmonary
hypertension, as it allows the presence of the disease or an overload of the right
heart to be suspected. This examination is based on the assessment of cardiac
function and the estimation of right ventricular pressure, a parameter that, however,
can be inaccurate due to various technical and physiological factors [6].

Despite this limitation, the presence of obvious signs of right heart overload, such
as right ventricular dilatation, paradoxical movement of the interventricular septum
or dilatation of the inferior vena cava, offers important clinical indications [1][7].

These first elements, integrated with other clinical and instrumental data, guide
the physician in the diagnostic pathway and in the possible need for further
investigation, as shown in the algorithm present in Fig.1.1.

After the initial clinical evaluation and the performance of an echocardiography
to estimate the right ventricular pressure, further investigations are performed
based on the findings [6, 8].

As a matter of fact, the definitive diagnosis of PH can only be confirmed
by RHC, an invasive diagnostic procedure considered the gold standard for the
confirmation of pulmonary hypertension; in fact, it allows direct measurement of
pulmonary artery pressure and pulmonary vascular resistance, which represent the
key variables in the diagnosis, as they provide a direct assessment of the severity
of hypertension and haemodynamic impairment of the pulmonary circulation [9].

However, its clinical usefulness differs depending on the type of pulmonary
hypertension suspected.

Indeed, it is essential in cases of suspected pulmonary arterial hypertension
or chronic thromboembolic pulmonary hypertension, where an accurate diagnosis
is essential to establish the severity of the condition and to assess suitability for
specific treatment. Moreover, in these cases, right heart catheterisation allows to
make a distinction between pre-capillary and post-capillary forms of the disease,
improving diagnostic accuracy compared to non-invasive methods [2].

On the other hand, in some cases RHC appears often not necessary: for patients
with chronic left heart failure or lung disease the results of the procedure would
not change the treatment already planned for these conditions [1].
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Figure 1.1: Diagnostic algorithm for PH Reproduced from [1]. BNP, Brain
natriuretic peptide; CT, computed tomography; CTEPH, chronic thromboembolic
pulmonary hypertension; ECG, electrocardi - ography; PAH, pulmonary arterial
hypertension; PH, pulmonary hypertension; LA, left atrium; NT-proBNP, N-
terminal fragment of pro-brain natriuretic peptide; RV, right ventricle; V/Q,
ventilation/perfusion

However, both techniques have significant limitations.
Although RHC represents the gold standard examination for direct measurement

of PAP, it is an invasive, expensive procedure and it is only suitable for patients
with a high probability of PH [10].

On the other hand, Doppler echocardiography, despite its low cost and minimal
risk, shows significant limitations in estimating PAP.

As a matter of fact, it cannot provide reliable measurements in approximately
50% of patients with normal PAP [11] and has an average margin of error of 30%
compared to right heart catheterisation [12].

These limitations underline the need to develop innovative, non-invasive diag-
nostic methods that are more accessible and less costly.

One promising alternative approach is digital cardiac auscultation, which could
be used as a screening tool for pulmonary hypertension, especially in clinical
settings where the disease is asymptomatic.

In addition to requiring minimal training, this method is less expensive and
more widely applicable, providing a practical option for early detection of the
disease [13].

In recent years indeed, the widespread of digital cardiac auscultation has
increased due to the progresses made in the field of electronic phonendoscope
technology and due to the integration of artificial intelligence algorithms, which
improve the diagnostic capability and early detection of cardiopulmonary diseases.
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Recent studies show that the use of digital stethoscopes combined with sound
analysis has made diagnosis more accessible, especially in settings with limited
resources [14]. Furthermore, the increasing use of portable devices for monitoring
heart sounds has made this technology a practical and economically viable solution
for pathology screening [15].

Therefore there is substantial evidence indicating that in the last years, there
has been an unmet and significant need for early diagnostic methods for PH that
are at the same time non-invasive, reliable and cost-effective [16].

Cardiac auscultation with digital stethoscopes has indeed represented a faster
and more timely PH screening method, especially in contexts when an immediate
care is necessary and where the disease may be present but asymptomatic.

This method is a low-cost option, requires minimal training and can be easily
applied in a variety of clinical settings [17].

1.2 Objectives
The general aim of this project is to develop an innovative algorithm for the
diagnosis of PH based on the analysis of phonocardiographic signals captured at
the site of the pulmonary valve.

To achieve this goal, several aspects related to the analysis and processing of
phonocardiographic signals have been explored. Specifically, the main contributions
of this thesis can be summarized as follows:

• Development and application of a pre-processing pipeline for phonocardio-
graphic signals, with the aim of preserving only those components of the signal
that are most informative and relevant for diagnostic purposes, while reducing
noise and non-significant ones that could compromise the performance of the
analysis models.

• Evaluation of the quality of phonocardiographic signals with the aim of
providing an objective criterion for selecting the most reliable data, reducing
the impact of poor-quality signals on the analysis results.

• Development of several deep learning models with different levels of complex-
ity, with the aim of automated diagnosis of PH from the analysis of heart
sounds. This process included experimentation with various neural network
architectures, as well as optimisation of hyperparameters to maximise model
performance.

• Validation of the models on a real-world dataset of heart sounds acquired
under realistic conditions, with the purpose of testing their effectiveness in
realistic scenarios.

The dataset used to train and validate the model was collected in an ambula-
tory auscultation setting in collaboration with the Cardiac Department of the
Unidade Local de Saúde Gaia e Espinho and contains PCG and ECG data
from 190 patients, together with clinical and physiological information.
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• Comparison between the application of the model on datasets with different
sizes and ground truth, considering both RHC, the gold standard method for
diagnosing PH, and ECHO, a less invasive but commonly used technique in
clinical settings.

The variables used to determine the ground truth are a level of PH severity
derived from the echocardiographic exam, and the mean pulmonary artery
pressure value, which allows for the identification of potential pulmonary
hypertension in the case of patients who underwent the RHC examination.

This comparison enabled an evaluation of the differences in model performance
depending on the source of the reference truth.

• Comparative analysis between different post-processing techniques in order to
determine the most effective strategies to improve the quality of the model
output and optimise the interpretability of the results, thus facilitating a
possible clinical application of the proposed method.

Together, these contributions enabled the development of an innovative approach
for the automated analysis of heart sounds, with the potential to support clinicians
in diagnosing pulmonary hypertension by enhancing the reliability and speed of
assessment compared to traditional methods.

The proposed method represents a significant step toward a non-invasive screen-
ing system for PH, which could be particularly valuable in low-cost clinical settings.

By enabling early detection of at-risk patients and directing them to further
examinations only when necessary, it could also reduce reliance on invasive diag-
nostic tools, improve disease management, and potentially increase patient survival
through timely intervention.

1.3 Thesis Outline
The present work is structured to provide a comprehensive review of the methodol-
ogy, results and discussion on the use of deep learning techniques for the detection
of pulmonary hypertension via heart sounds.

Chapter 2 is dedicated to the Background, where the fundamental concepts and
theoretical foundations necessary for the development of this work are presented.

This chapter introduces the key principles of the cardiac function, the physiologi-
cal basis of heart sounds, and the role of artificial intelligence in medical diagnostics.

Chapter 3 presents the Literature Review, providing an overview of previous
studies and the current state of the art on the topic. The datasets, approaches,
features extracted from the data and results obtained from the different studies
are analysed and compared, highlighting the main differences between them, in
order to contextualize the problem addressed in this work.
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Chapter 4 on the other hand, describes the Materials and Methods, illustrating
the dataset composition, pre-processing techniques and deep learning architecture
used in this study for classification. The experimental setup, different configura-
tions of the dataset, classification strategies, evaluation metrics and post-processing
techniques applied to improve the performance of the model are also discussed.

Chapter 5 presents the Results and the Discussion, evaluating the performance
of the proposed algorithm in different dataset configurations. The chapter explores
the stability of the model through accuracy and loss curves, confusion matrices
and evaluation metrics. It also analyses the impact of different post-processing
techniques and the influence of signal quality on classification performance.

The section provides a descriptive review and in-depth interpretation of all the
results obtained, in order to facilitate their understanding and improve their inter-
pretability, while ensuring consistency with the objectives estabilished for this work.

Finally, Chapter 6 is dedicated to the Conclusions, in which the main results
are critically evaluated in the context of previous research. This chapter reflects on
the strengths and limitations of the proposed method, discusses potential clinical
applications and suggests possible future developments to improve the non-invasive
diagnosis of pulmonary hypertension using deep learning techniques.
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Chapter 2

Background

2.1 Cardiac Anatomy Overview
The heart is a fundamental organ that serves as double pump, granting blood flow
through the pulmonary and systemic circulation [18].

The pulmonary circulation transports deoxygenated blood to the lungs, where
gas exchange takes place: oxygen enters the blood while carbon dioxide is removed.
In contrast, the systemic circulation distributes oxygen-rich blood to the whole body,
supplying oxygen and nutrients to the tissues before returning the deoxygenated
blood back to the heart (Fig. 2.1) [19].

This dual circuit ensures continuous oxygenation and adequate distribution of
substances needed to maintain homeostasis and cellular functions.

It is composed of two sections: the right heart, that pumps blood through the
lungs, and the left heart that sends it into the systemic circulation, providing blood
supply to the other organs of the body [21].
Each one of these two is pulsatile and consists of two chambers: an atrium and
a ventricle. The atrium fill the ventricle, which provides the main pumping force
pushing blood either through the pulmonary circulation or the systemic circula-
tion [21]. The anatomy of the heart is shown in Figure 2.2.
The heart is enclosed in the pericardium, a fibroserous sac comprising three con-
centric layers that protects the heart and secure it in the thoracic cavity [18].

Blood flow in the heart is regulated by the four heart valves, which ensure
the unidirectional passage of blood between the heart chambers and the great
vessels [18]. Cardiac tones are generated with the sudden closure of the valve
leaflets and can be auscultated at specific points in the chest:

• mitral valve – cardiac apex

• tricuspid valve – over the lower part of sternum and right sternal edge at the
fifth intercostal space

• aortic valve – right sternal edge at second intercostal space

• pulmonary valve – left sternal edge at third intercostal space.
Besides its anatomical structure, the heart is characterised by an intrinsic

mechanism of cardiac rhythmicity, which allows the continuous transmission of
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Figure 2.1: Diagram illustrating the human circulatory system, highlighting
the pulmonary (blue) and systemic (red) circulation, with the heart and aorta as
central components. Reproduced from [20].

Figure 2.2: Heart Anatomy. Reproduced from [22].
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electrical impulses that are necessary to coordinate the contraction of the heart
muscle.

This property is essential to ensure an effective and continuous heartbeat, which
is fundamental to the body’s circulatory function [18].

2.2 Cardiac Cycle
The impulse-conducting system of the heart is ensured by the presence of conductive
fibres (Figure 2.3) whose main control points include:

• sinoatrial node

• atrioventricular node

• atrioventricular bundle of His

• right and left branches of the atrioventricular bundle

• subendocardial fibres of Purkinje [18].

The first node that is spontanously triggered to initiate the cardiac contraction
is the sinoatrial node; subsequently the impulse reaches the atrioventricular node
with a certain delay that ensure proper conduction timing and an adequate filling
of the ventricles before the ventricular contraction begins [18]. This phase is known
as diastole, and concerns the process in which the heart chambers relax and become
filled with blood.

The His bundle originates from the atrioventricular node and carries the electri-
cal impulse through the interventricular septum, where it divides into the right
and left branches, where the Purkinje fibres originate [18]. These specialized fibers
are distributed over the portion of myocardium that surrounds the ventricles and
trigger systole, the phase in which they contract to eject blood into the pulmonary
and systemic circulation.

Thus, the entire cardiac surface receives the electrical impulse necessary to
stimulate the contraction of the myocardium, the muscolar tissue of the heart. This
coordinated cycle of diastole and systole enables the exchange of blood between
the chambers and its subsequent ejection into the pulmonary circulation from the
right heart and into the systemic circulation from the left heart.

The electrical and mechanical activity of the heart can be monitored using
specific diagnostic tools, such as the electrocardiogram (ECG) and phonocardiogram
(PCG). These techniques offer valuable information on the relationship between
electrical impulses, myocardial contraction and heart sounds during the cardiac
cycle.
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2.2.1 Electrocardiogram (ECG): the Heart’s Electrical Ac-
tivity

If electrodes are placed on the skin on opposite sides of the heart, electrical poten-
tials generated by the currents can be recorded, giving rise to the electrocardiogram
(ECG) [21].

A normal ECG is normally composed of a P-wave, a QRS complex, a T wave,
and a series of important intervals, each representing specific phases of cardiac
electrical activation.
The P wave represents atria’s depolarization, before their contraction begins. It

Figure 2.3: Diagram of the cardiac conduction system, and the corresponding
electrocardiogram (ECG) waveform. Reproduced from [18].

manifests itself as a small positive deflection, that in normal conditions lasts 0,08-
0,10 seconds. It corresponds to the electrical impulse generated by the sinoatrial
node, which initiates the cardiac cycle.

QRS complex on the other hand indicates the ventricles’ depolarization, which
represents the moment when they contract to pump blood out of the heart to the
lungs and to the rest of the body.

This phase corresponds to the flow of the electrical impulse through the Purkinje
fibers.

The QRS complex normally lasts less then 0.12 seconds and it is characterised
by a sharp positive deflection which includes:

• Q-wave: First negative deflection of the complex, if present.

• R wave: First positive deflection.

• S wave: Negative deflection following the R wave [21].

The T wave is known as a repolarization wave because it is caused by potentials
generated as the ventricles recover from the initial depolarization. It is characterized
by a positive deflection that is subsequent to the QRS complex.

10
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2.2.2 Phonocardiogram (PCG): capturing Heart Sounds
The recording of sounds produced by the heart during a cardiac cycle is called
phonocardiogram. It can be obtained by putting a microphone on the chest, record-
ing the audible vibrations and digitizing them for further analysis, or through an
acoustic or electronic stethoscope [23].

Listening to a normal cardiac cycle, what one hears is the classic repetition of
the ‘lub-dub’ sounds: these represent respectively the closure of the atrioventricular
(mitral and tricuspid) valves at the beginning of the systole and the closure of the
semilunar (aortic and pulmonary) valves at the end of systole [21]. These are the
fundamental heart sounds and are always audible during ascultation, where the
’lub’ corresponds to the S1 and the ’dub’, which is normally louder, shorter and
sharper, corresponds to the S2 [24].

Among these, additional sounds S3 and S4 can sometimes be captured during
the recording of a PCG: both are very low-frequency sounds that can sometimes
be indicators of pathologies [24].

The S3 sound, often described as a low-frequency "ventricular gallop", occurs
during early diastole due to rapid ventricular filling and is more commonly heard
in conditions like heart failure and volume overload.

The S4 sound, or "atrial gallop", appears in late diastole and is usually asso-
ciated with reduced ventricular compliance, often seen in conditions such as left
ventricular hypertrophy or myocardial ischemia [25].

Heart murmurs are abnormal sound vibrations produced by the turbulent flow
of blood through the heart and the vessels [21].

They can be physiological and therefore harmless, or pathological and are
classified as systolic, diastolic or continuous, depending on when they appear
during the cardiac cycle [21].

Pathological murmurs can be indicative of conditions such as stenosis or valvular
insufficiency. In the phonocardiogram, heart murmurs appear as higher frequency
signals than normal heart tones (S1-S4) and are analysed to distinguish between
different clinical conditions [21].

An important correlation is observed between heart murmurs and pulmonary
hypertension.

In patients with pulmonary hypertension, increased blood pressure in the lungs
can lead to pulmonary valve regurgitation or functional tricuspid valve stenosis,
both of which are associated with audible diastolic or systolic murmurs in the PCG
[26].

A typical sign is Graham Steell’s murmur, a high-frequency diastolic murmur
caused by pulmonary insufficiency secondary to pulmonary hypertension [26].

In addition, in advanced cases of PH, the second heart tone (S2) appears ac-
centuated and doubled, due to increased pressure in the pulmonary artery and
delayed closure of the pulmonary valve [26].

PCG analysis therefore proves to be a useful tool for monitoring this condition,
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facilitating early diagnosis and assessment of the severity of the disease.

An illustrative explanation of a PCG signal and its components is shown in Fig.
2.4.

Figure 2.4: Typical waveform of a phonocardiogram (PCG) signal and its
components: S1 (T S1 = 70-150 ms), S2 (T S2 = 60-120 ms), S3 (T S3 = 40-100
ms), and S4 (T S4 = 40-80 ms). Reproduced from [27].

It is clear from these explanations that the PCG signal is closely related to the
ECG signal, as both are directly linked to the electrical activity of the heart and
its consequences on cardiac mechanical function.

The electromechanical phases of the cardiac cycle are properly shown in the
Wiggers diagram (Figure 2.5), a graphical representation of the relationship between
electrical activity, volume, pressure, and sounds of the heart during every beat.

As a consequence, combining PCG and ECG may allow a simultaneous clinical
assessment of the mechanical and electrical condition of the heart, potentially
improving the accuracy of an initial diagnosis of a cardiovascular disease [24].

Furthermore, both signals can be acquired using non-invasive and low-complexity
devices: although these methods do not replace more advanced techniques, they still
offer valuable preliminary information, guiding further diagnostic investigations and
facilitating clinical decisions, especially in contexts or situations where advanced
imaging technologies are not readily available [28].
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Figure 2.5: Wiggers diagram illustrating the relationship between pressure,
volume, and electrical activity in the cardiac cycle. Reproduced from [21].

2.2.3 Heart Sounds Alterations in Pulmonary Hyperten-
sion

The analysis of the PCG signal can reveal informative and essential alterations
that can suggest the presence of different cardiovascular diseases.

In particular, the second heart tone (S2) often reveals in its pattern key indica-
tive features for diagnosing pulmonary hypertension: abnormal intensity, quality
and division in components may serve as auscultatory signals for its detection [29].

Indeed, under normal conditions S2 is composed by the aortic (A2) and the
pulmonary (P2) components, which are temporally separated during inspiration
due to the increased pulmonary venous return [30], giving rise to a temporal
separation between 30 and 80 ms [31].

During expiration on the other hand, the A2-P2 interval narrows to a separation
of 15 ms, to the point that only a single sound is normally heard [32].

Figure 2.6 clearly shows this physiological difference: the upper part shows an
S2 with a wide split, characteristic of inspiration, while the lower part shows an S2
with a narrow split, typical of exhalation, where the A2 and P2 components are
hardly distinguishable.
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Figure 2.6: An illustrative example of a widely splitted S2 (top) and a narrowly
splitted S2 (bottom). Reproduced from [31].

In patients with pulmonary hypertension, the separation time between the two
components of the second heart tone tends to increase.

This phenomenon is due to the increase in PAP, which delays the closure of the
pulmonary valve compared to the aortic valve.

P2 is therefore further delayed compared to A2, making the separation more
apparent even during exhalation. This phenomenon, known as wide S2 splitting,
can be used as a non-invasive indicator to monitor pulmonary arterial pressure
and identify pathological conditions associated with this haemodynamic alteration
at an early stage [31].

More in general, the use of modern diagnostic techniques capable of detecting
these kinds of morphological alterations, such as deep learning models trained on
datasets of heart sounds, can become a key tool in early diagnosis or screening:
these type of algorithms as a matter of fact, can allow the detection of abnormalities
with higher sensitivity and specificity compared to traditional auscultation.

2.3 Mel Frequency Cepstral Coefficients
Mel Frequency Cepstral Coefficients (MFCC) are a fundamental technique for the
analysis of audio signals and also for the wide application in the processing of
cardiac sounds and photoplethysmographic signals.

They are based on the Mel scale, which reflects human perception of sound
frequencies, allowing significant characteristics to be extracted from signals [33].

The MFCC calculation process involves several steps. After a pre-emphasis
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phase to emphasize the high frequencies, the signal is divided into time windows
and transformed into the power spectrum by means of the Fourier transform.
Subsequently, a series of triangular filters on Mel scale reduces the complexity of
the spectrum, and the logarithm of the energy of the filters is then subjected to the
Discrete Cosine Transform, producing a set of numerical coefficients that represent
the signal in a compact and effective way [34].

A common extension of MFCCs are Delta and Delta-Delta MFCCs, which are
calculated from static MFCCs to capture temporal variations of the signal.

Delta MFCCs represent the first derivative of the original MFCCs in the time
domain and provide information on the rate of change of spectral characteristics.
This allows significant signal dynamics to be identified, improving the ability to
discriminate between different sound classes.

Delta-Delta MFCCs, on the other hand, represent the second derivative, i.e. the
variation of the variation of the original MFCCs. This information is useful for
capturing more complex variations in the audio signal, such as the acceleration of
frequency variations [35, 36].

The inclusion of biologically inspired features, such as MFCCs, in Machine
Learning and Deep Learning models can significantly enhance performance in
classifying pathological conditions like pulmonary stenosis and pulmonary hyper-
tension, as they provide a more comprehensive representation of the temporal
dynamics of heart sounds [37]. Since MFCCs resemble the resolution of the human
auditory system, they have been proven effective in differentiating between distinct
sound signals [38], thereby improving the performance of ML models and CNNs in
biomedical classification tasks [39].

Figure 2.7 illustrates the differences in MFCC representations between a normal
PCG signal and a PCG signal containing murmurs. The top illustration shows
the MFCCs of a normal heart sound, while the bottom one, associated with
pathological heart sounds, displays irregularities and spectral distortions. The
distinctive spectral patterns captured by MFCCs enhance their utility in automated
classification models, enabling more accurate detection of cardiovascular disorders.

2.4 Deep Learning
In the last years, Deep Learning (DL) has demostrated to be a key technique in
the field of artificial intelligence due to its ability to automatically extract complex
features from data.

Deep Learning is based on deep artificial neural networks consisting of multiple
layers of neurons that process information in a structured manner that is inspired
by the way our brain works.

These patterns are particularly effective in applications of image recognition,
language analysis and biomedical signal processing, including phonocardiographic
signals for heart sound recognition [40].
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Figure 2.7: Comparison of MFCC representations for a normal PCG signal (top)
and a PCG signal with murmurs (bottom). The spectral differences highlight the
ability of MFCCs to capture pathological variations in heart sounds. Reproduced
from [38].

From Figure 2.8, it can be seen that input data is processed through layers of
neurons, starting from the input layer to the final layer, which produces the model
prediction. Each layer may hold different neurons, connected to each other by
weights, whose role is to adapt to the input data in order to minimise the final
error.

Figure 2.8: A Deep Neural Network with N layers.

During the model training, the DNN uses the backpropagation algorithm, which
indeed iteratively updates the weights to minimise error and improve the network’s
accuracy [41].
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A key element in deep neural networks is the activation function, which in-
troduces non-linearity into the model and allows the network to learn complex
representations from the data.

Each neuron in a hidden layer applies an activation function to the weighted
sum of its inputs, determining whether and how to transmit the signal to the next
layer.

Among the most common activation functions is the ReLU (Rectified Linear
Unit), which returns zero for negative values and identity for positive values,
making the computation efficient [42].

2.4.1 Convolutional Neural Network
One of the most widely used architectures in Deep Learning is the Convolutional
Neural Network (CNN), initially designed for image recognition, but now also
widely applied to the analysis of biomedical signals [43].

CNNs use convolutional filters to automatically extract features from the data,
reducing the need for manual feature extraction. It is been proven to be convenient
to use time-frequency representations of the signals in order to effectively capture
and convey their information, making them more suitable for feature extraction
and pattern recognition in CNNs [44].

The working of a CNN is based on a series of convolutional operations, which
apply filters on the input data to identify relevant features. Each filter scans the
input, extracting initial information such as frequency variations and recurring
temporal patterns.

This process occurs in the first convolutional layers, which operate on small
portions of the input, detecting low-level features such as intensity variations and
rapid transitions between frequency bands.

As the information passes through successive layers, the network learns in-
creasingly abstract and deeper features, combining the lower-level information to
construct a more complex representation of the signal [45].

After the convolutional layers, the CNN uses pooling layers, which reduce
the dimensionality of the input while retaining the most meaningful information.
This improves the efficiency of the model and makes it more robust to minor
variations in the data. Finally, the processed data is transformed into a vector and
passes through fully connected layers, which allows the network to make the final
prediction [45].

An example of a CNN architecture is shown in Fig. 2.9.

The training of the CNN is done through the backpropagation algorithm already
discussed in section 2.4, which updates the weights of the convolutional filters and
fully connected layers to minimise the prediction error with respect to the desired
output.

As in deep learning models in general, convolutional neural networks also em-
ploy activation functions, key elements in these type of algorithms that guarantee
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the non-linearity of the model and allow the learning of complex representations [42].

This architecture allows CNNs to adapt effectively to the structure of the input
data, identifying complex patterns with a high degree of accuracy. The use of
convolutions enables the detection of spatial correlations in feature matrices, while
the combination of pooling and fully connected layers ensures effective synthesis of
information, optimising model performance.

Figure 2.9: A common form of CNN architecture. Reproduced from [46].
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Chapter 3

Literature Review

Over the past several years, significant attention has been devoted to the devel-
opment of a non-invasive method for the detection of pulmonary hypertension:
this can involve the analysis of heart sounds, which has proven to be a useful and
innovative tool for an early diagnosis [13].

The following section aims to compare and analyse several major studies that
have implemented different strategies to produce a consistent and reliable model.

The main aspects that distinguish and allow comparison among the different
approaches are:

1. The portion of signal analysed in the study.

2. The type of features extracted from the data.

3. The chosen method, such as statistical, machine learning, or deep learning.

4. The dataset used for the purpose of the investigation.

Table 1 compares a collection of studies that explore different methods with the
purpose of diagnosing pulmonary hypertension by analysing heart sounds, focusing
on some of the key aspects mentioned above; these are outlined in the following
subsections.

3.1 Portion of Signal Analysed
A first relevant distinction is the choice of the signal’s portion that is used in the
study.

Some authors use the entire phonocardiographic signal [47, 48, 49, 50, 51],
while others focus on the component associated with the second heart sound (S2),
corresponding to the closure of the aortic and pulmonary valves. Some other
studies further divide this second heart sound portion into its aortic and pulmonary
subcomponents to obtain a more detailed vision.

Indeed, the analysis of the A2 and P2 components of the second heart tone
(S2), can lead to relevant information regarding pulmonary arterial pressure (PAP)
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[52], which is a key parameter closely associated with the risk of developing PH [53].

On the contrary, some other works propose the employment of the entire signal,
since they argue that erroneous segmentation can strongly influence the quality of
the results when large databases are used [49].

However, an approach that focuses on isolating the S2 component, which is
considered informative for assessing pulmonary hypertension [31], is the most
common method in the analysed studies.

3.2 Features extracted from the data
In order to isolate the aortic-pulmonary component [29, 47], certain studies suggest
an energy-based analysis of the phonocardiographic signal [52], coupled with a
thresholding technique.

Other research studies exploit time synchronisation between the PCG signal
and the T-wave in the electrocardiogram (ECG) when available [16], a technique
that enables respectively a more accurate identification of the second heart tone
occurrence and a precise windowing of a heart-cycle. This strategy is based on the
evidence that since the T wave represents the end of ventricular repolarisation,
it also precedes temporally the moment of closure of the semilunar valves, which
matches the S2 sound in the PCG signal.

Regardless of the technique adopted to extract the second heart tones (S2),
many of these approaches tend to confine them within time windows of fixed
duration. The aim is to ensure homogeneous input data to neural networks, in
the studies that use a deep learning strategy: this facilitates the better capture of
relevant patterns and the extraction of meaningful signal features.

Some of the studies argue that a pre-processing technique is necessary to enhance
the quality of the phonocardiograms: the most common one involves filtering the
signal in a frequency range generally between 10 Hz and 400 Hz, since most of the
relevant information of heart sounds is typically between 50 Hz and 150 Hz [54].
Another frequently adopted technique regards downsampling the signal, which
aims to delete unhelpful information, thus simplifying the analysis and reducing
the computational load [47, 55].

Once the portion of the signal to be analysed has been extracted and eventually
preprocessed, a key step consists in specifically extracting the features that enable
the identification of information relevant to the diagnosis of pulmonary hyperten-
sion.

Regarding the type of features extracted from the data, a big distinction con-
cerns the choice of hand-crafted or deep features, i.e., learned automatically by
neural networks and adapted to the dataset used in the study.
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When extracted from the deep learning models, features are often able to
automatically capture the most relevant information from the PCG signal for
the diagnosis of pulmonary hypertension, without requiring manual selection.
Furthermore, since they are adapted to the specific dataset, these features can
capture peculiar properties of the signal not otherwise detectable, that may be
particularly predictive for the problem under investigation. Besides that, many
studies rely on hand-crafted features, including entropy, signal intensity, complexity
and strength [50, 29, 56].

Figure 3.1: Visual Description of Intensity and Complexity as hand-crafted
features used in [56]

Signal entropy and complexity are measures of the signal irregularity and they
can detect variations in heart sound patterns, which may suggest the presence of
pulmonary hypertension [50].

While intensity is a measure related to the signal’s amplitude, what in Ya-
makawa’s study is defined as “strength” is a probability score based on acoustic
features that reflect the possible presence of an audible S3 and S4 on standard
auscultation [56].

These hand-crafted features in most of the studies have been then statistically
compared with disease severity levels [11], or with hemodynamic variables [29], to
identify associations with the likelihood of having or not pulmonary hypertension
and to determine which features are most informative in this context.

In other cases, time-frequency transforms such as the Fourier transform or
the continuous wavelet transform (CWT) are used to obtain representations that
convey both temporal and frequency-related characteristics [49, 57, 58]: this
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can be particularly effective when studying specific frequency bands of the S2 sig-
nal that may correspond to pathological changes in pulmonary artery pressure [57] .

One approach used for feature extraction from phonocardiographic signals is
based on the wavelet transform, which allows the frequency content of heart sounds
to be examined in the time-frequency domain.

Huang et Al. employed this technique to extract parameters such as the energy
and frequency at the maximum amplitude of the second heart tone (S2), obtaining
promising results to distinguish different levels of pulmonary hypertension.

In Figure 3.2, the acoustic cardiographic output of a control patient (A) and a
patient with pulmonary hypertension (B) is shown, highlighting how the extracted
features can be used to differentiate between the two conditions.

This statistical approach showed encouraging results in detecting severe PH,
with an area under the ROC curve (auROC) of 0.882.

Figure 3.2: Acoustic cardiographic output for a control patient (A) and a
pulmonary hypertension (PH) patient (B), showing frequency, phonocardiogram
(PCG), and electrocardiogram (ECG). The scalogram time-frequency representation
displays frequency on a logarithmic scale (0–200 Hz) and time on the horizontal axis.
Wavelet transform energy is color-coded from light yellow to deep red. Key features
include S1 (first heart sound), S2 (second heart sound), S1A (S1 amplitude), S1E
(S1 energy), S1F (S1 frequency), S2A (S2 amplitude), S2E (S2 energy), and S2F
(S2 frequency). Reproduced from [57].

Finally, some more recent research, such as that of Pengyue Ma et al., com-
bines traditional features with deep learning techniques. In their study, they use
power-normalised cepstral coefficients (PNCC) to obtain a more robust recognition
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feature, as shown in Figure 3.3 [47].

Figure 3.3: Hybrid feature extraction framework from [47], combining time-
frequency features of heart sounds with PNCC-based deep learning

The quality of the features extracted from the data is also strongly correlated
with the method implemented in the different studies, since each approach, either
traditional or deep learning based, shows specific advantages and entails several
limitations that affect the quality and interpretability of the selected features.

3.3 Method Adopted
Traditional approaches include statistical techniques or classical machine learning
algorithms such as Linear Discriminant Analysis (LDA) [50, 51], linear regression
[52, 29] and validation methods such as k-fold [49, 16, 13, 55] or leave-one out
[50, 51] cross-validation.

One big advantage of the studies that implement these methods is their in-
terpretability, as they make it possible to understand the physical meaning of
the features identified as the most informative for the diagnosis of pulmonary
hypertension.

This approach allows indeed more comprehensible results, as demonstrated in
studies such as that of Elgendi et al. [51], who used measures of signal entropy
and complexity to identify patterns in disease-related heart sounds achieving a
sensibility ranging from 84% to 93%.

Moreover, traditional approaches are generally less computationally demanding
than deep learning methods and also more suitable for smaller datasets. However,
these techniques have significant limitations, especially when applied to complex
data.

As a matter of fact, traditional approaches rely on manually extracted features,
a process that often fails to fully capture the complexity of signals, especially when
datasets are characterised by high variability. In these cases, the obtained models
can’t generalise effectively and the results are not particularly encouraging, like in
Yamakawa’s and Kaddoura’s works [56][16].
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Figure 3.4: Flow diagram employed in [16] illustrating the training of the acoustic
models through a classical Machine Learning Algorithm

Figure 3.4 shows the pipeline emplyed by Kaddoura et Al. [16] who trained their
models using a classical machine learning algorithm based on Gaussian Mixture
Models (GMM).

That’s the reason why in many cases, more modern approaches such as deep
learning networks are preferred. An important advantage of these models lies in the
ability of neural networks to automatically learn relevant features from the data,
thus avoiding manual intervention and enabling the model to identify eventual
complex patterns. Wang et al. [Wanf ], for example, demonstrated that the use of
CNNs combined with a spectral representation of heart sounds (Figure 3.5) allows
to effectively classify them in five heart diseases, resulting in an auROC value of 0.99.

However, the reliability of the result may be compromised by the fact that
the training and validation sets include in some cases the same subjects, which
could lead to overfitting. To address this issue, a solution could be employing
cross-validation techniques and pre-trained models in studies with a limited amount
of data.

This solution is implemented by Gaudio’s study [13], which demonstrates with
a model gaining an auROC of 95% how deep networks outperform traditional
machine learning models.
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Figure 3.5: Flowchartof PCG classification employed by [49], using deep learning
and trasnfer learning models.

3.4 Dataset

Analysing the results obtained, it additionally emerges that the choice of method
combined with the dimension of the datasets has a direct impact on the quality of
the predictions and the ability of the models to generalise.

Studies that used larger datasets, such as Chan MFCC [29] and Huang MFCC
[57] , achieved promising outcomes, confirming that the availability of bigger
datasets helps neural network to capture all the possible physiological patterns
and trains it the most efficient way.

In contrast, studies based on smaller datasets like Elgendi’s work [50], while
achieving good results in terms of sensitivity and specificity, must be interpreted
with caution due to the high risk of overfitting. To address this issue, recent stud-
ies have therefore employed rigorous validation techniques to show more reliable
outcomes, such as stratified k-fold cross-validation and bootstrapping.

In conclusion, it can be stated that the choice of method and the size of
the dataset play a decisive role in the performance of the model. While deep
learning methods emerge as the most promising for large-scale analyses, traditional
approaches remain valuable for smaller studies, providing interpretable features,
results and limited computational resources. In any case, the reliablity of the
results must be verified according to the validation technique implemented, as it
can be a key factor in understanding whether the model’s outcomes are affected



by overfitting.

Table 3.1: Comparison of Studies on Pulmonary Hypertension Detection

Authors Dataset Reference Signal’s
portion
studied

Features
Extracted

Method Results

Tranulis
et al.
(2007)[58]

N=9 pigs,
15-50
PCGs for
each class
(baseline,
moderate,
severe).
Acces-
sibility
not men-
tioned.

RHC S2 Hand-
crafted
features:
maximum
instan-
taneous
frequency
of A2, that
of P2, and
the splitting
interval
between A2
and P2

ML: feed-
forward
back-
propagation
neural net-
work.

Linear
regression
between NN
estimated
systolic
and mean
PAP and
cathetered
systolic
and mean
PAP: r
coefficient=
0.89 and
0.86 respec-
tively.

Dennis
et al.
(2010)
[48]

N=51
patients.
Acces-
sibility
not men-
tioned.

RHC. Both
entire
cardiac
cycle and
S2, A2
and P2.

Hand-
crafted:
temporal
and fre-
quency
related
features.

Combination
of ML algo-
rithms for
detecting
the most
performa-
tive subset
of features,
location on
the chest
wall used
to record
the sounds
and ML
algorithm

0.77 accu-
racy and
0.78 auROC

Elgendi
et al.
(2015)[50]

N=27
children’s
recordings.
Acces-
sibility
not men-
tioned.

RHC. All signal
is used

Hand-
crafted
features:
relative
power, en-
ergy and
entropy of
the heart
sound’s
frequency
bands.

Linear Dis-
criminant
Analysis
(LDA) as a
statistical
technique
to help
distinguish
the patients
based on
the heart
sound
entropy

Sens=93%,
Spec=92%
for the first
sinusoid
formant’s
entropy



Elgendi
et al.
(2018)
[51]

N=60
patients
(35 PH
positive).
Acces-
sibility
not men-
tioned.

RHC. All signal
is used

Hand-
crafted
features: en-
tropy of the
formants
(resonance
frequencies)
of the heart
sound.

Linear Dis-
criminant
Analysis
(LDA) as a
statistical
technique
to help
distinguish
the patients
based on
the heart
sound
entropy.

Sens=84%,
Spec=88.57%
for the first
sinusoid
formant

Cherif
et al.
(2016)
[52]

N=17
recordings
Acces-
sibility:
private.

ECHO. A2 and
P2

Hand-
crafted:
frequency-
related
features.

Linear re-
gression
on spectral
parameters
of the PCG
+ kNN

Not shown

Yamakawa
et al.
(2021)
[56]

N=40
patients’
recordings
(18 PH
positive).
Acces-
sibility:
private.

RHC. S1, S2,
S3, and
S4

Hand-
crafted:
CABs:
Intensity,
complex-
ity, and
strength of
the 4 heart
sounds

Statistical
analysis be-
tween RHC
parameters
and some
cardiac
acoustic
features for
4 severity
levels of
PH.

AUC range:
Prec-PH:
0.674 to
0.720, Ipc-
PH: 0.646
to 0.807,
Cpc-PH:
0.742

Chan
et al.
(2013)
[29]

N=170
patients
(40 PH
positive).
Acces-
sibility:
private.

RHC. S1 and S2 Hand-
crafted:
Intensity
and com-
plexity.

T-test and
logistic
regression
between
hemody-
namic
variables
and PCG’s
features

AUC
ROC=0.85
for S2
complex-
ity. AUC
ROC=0.89
for S2/S1
complexity
ratio

Huang
et al.
(2023)
[57]

N=209
patients
(121 PH
positive).
Acces-
sibility:
public.

ECHO. S1 and S2 Hand-
crafted:
frequency-
related
features.

Statistical
comparison
between
PH’s sever-
ity (ECHO)
and PCG’s
features

auROC:
0.775 for S2
frequency.
Sens=79.34%,
Spec=67.05%



Kaddoura
et al.
(2016)
[16]

N=164
patients
(86 PH
positive).
Acces-
sibility
not men-
tioned.

RHC. S2 Hand-
crafted:
mel-
frequency
cepstral
coefficients.

ML Gaus-
sian Mix-
ture Model
+ Nega-
tive log-
likelihood

auROC=0.74

Pengyue
(2023)
[47]

Not men-
tioned.
Acces-
sibility:
private.

Not men-
tioned.

Both
entire
cardiac
cycle and
S2

Hand-
crafted:
time-
frequency
from both
the entire
cardiac
cycle and
S2 + Deep
features.

Hybrid
CNN +
XGBoost

Acc=88.61%

Wang
et al.
(2022)
[49]

N=1102
patients’
recordings
(102 PH
positive).
Acces-
sibility:
public.

Not men-
tioned.

All signal
is used

Deep fea-
tures.

10 pre-
trained
CNN mod-
els are
employed to
classify the
converted
spectro-
gram im-
ages into six
categories.

auROC=0.99

Gaudio
et al.
(2022)
[13]

N=42
patients
(29 PH
positive).
Acces-
sibility:
private.

RHC. S2 Deep fea-
tures.

3 differ-
ent CNN
models
initialized
with various
techniques
+ ML
models to
compare
the results.

auROC=0.95

Gaudio
et al.
(2023)
[55]

N=42
patients’
recordings
(29 PH
positive)
+ N=110
porcine’s
recordings
(all PH
positive).
Acces-
sibility:
private.

RHC. S2 Deep fea-
tures.

DenseNet121
randomly
initialized.

auROC=0.92



Chapter 4

Materials and Methods

The following chapter describes the materials and methods used to build the proposed
model.

In particular, the characteristics of the dataset, the pre-processing techniques applied
to the phonocardiographic and electrocardiographic signals, and the experimental configu-
rations adopted for the training and validation of the model are illustrated. Furthermore,
the evaluation metrics employed to analyse the performance of the model in the task of
classifying the presence of pulmonary hypertension are detailed.

4.1 Dataset
The dataset includes recordings from 178 individuals, with approximately 60% males
and 40% females. The participants’ ages range from 23 to 88 years.

To ensure a standardized and efficient data collection process, the Rijuven Cardiosleeve
was employed (Figure 4.6). It is an advanced and non-invasive stethoscope capable
of recording, analyzing, and displaying both ECG and heart sounds (PCG) signals
simultaneously [59].

Figure 4.1: Rijuven Cardiosleeve multimodal stethoscope.

Each patient underwent a single session, during which auscultation was performed.
Recordings were acquired at four auscultation sites: the aortic, pulmonary, tricuspid,
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and mitral valves, with each session lasting approximately 30 seconds per site.

Patients identified by IDs from 1 to 108 have their PCG and ECG signals recorded in
.mp3 and .raw format respectively, with a sampling rate of 8 kHz and 500 Hz. In contrast,
data for patients from id 109 onward were acquired at 3 kHz concerning PCG collec-
tion, and 500 Hz as regarding ECG, facilitating high-quality multimodal signal acquisition.

The dataset contains also an Excel file that contains physiological and clinical data
obtained from echocardiographic exam records for each patient, as well as information
extracted from RHC examinations, when present. All patients were subjected to the
echocardiogram examination, while only 23 of them underwent RHC.

The variable of interest extracted from the RHC exam and reported in the excel file
is the mean pulmonary arterial pressure (mPAP), whose value together with a threshold
are used to determine the presence of pulmonary hypertension.

Regarding the echocardiogram variables on the other hand, the relevant value is the
maximum velocity of tricuspid regurgitation, on the basis of which doctors estimated
a probability of pulmonary hypertension. This probability is described by four values
going from 0 (low probability of PH) to 3 (high probability of PH).

Table 4.1 shows the minimum and maximum values of the tricuspid regurgitation ve-
locity (TR) used by physicians and associated with each level of probability of pulmonary
hypertension (PH).

PH Probability Minimum velocity of TR (m/s) Maximum velocity of TR (m/s)
0 0.00 0.86
1 0.87 2.83
2 2.87 3.43
3 3.50 4.58

Table 4.1: Threshold values used by physicians for the velocity of TR for PH
probability estimation

4.1.1 Quality of the data
All signals, both ECG and PCG, acquired from the four heart valves were carefully
visualized and organised in a .mat structure to ensure better readability and accessibility
of the data.

To assess the overall quality of the dataset, a qualitative analysis of the signals was
conducted. Each recording was rated on a scale of 1 to 4, based on the visibility of the
main signal characteristics.

In particular for ECG signals, the classification took into account the clarity and
definition of QRS complexes, T-waves and other relevant components.

For PCG signals instead, quality was assessed based on the visibility of the S1 and S2
components, which are crucial for the analysis of heart sounds.

Figures 4.2 and 4.3 provide examples of high- and low-quality signals.



Figure 4.2: Good-quality illustrative recordings from the four heart valves: ECG
signals on the left and PCG signals on the right, limited to the first 5 seconds.

Figure 4.3: Low-quality illustrative recordings from the four heart valves: ECG
signals on the left and PCG signals on the right, limited to the first 5 seconds.

This classification made it possible to identify and select the patients who carried
highest quality signals, improving the reliability of subsequent analyses and optimizing



the use of the dataset for the next steps.

4.1.2 Selection Strategy and Experimental Configurations
Only the phonocardiographic signals from the pulmonary valve site were selected as useful
ones for the development of a model capable of distinguishing patients with pulmonary
hypertension from healthy ones.

Indeed, the auscultation of this area is a key site for the diagnosis and assessment of
pulmonary hypertension, as the accentuation of the pulmonary component of the second
heart tone (P2), one of the most distinctive signs of the condition, is particularly evident
when listened from here [60].

Moreover, in order to conduct a comprehensive analysis and assess the impact of the
configuration of the dataset on the model, experiments were conducted by successively
changing the dataset used, as shown in Table 4.2.

Initially, the analysis was performed considering only the signals from the 23 patients
for whom RHC (right heart catheterisation) data was available; this configuration allowed
to evaluate the performance of the model against the more reliable ground truth for the
diagnosis of pulmonary hypertension [48].

Subsequently, the analysis was extended to include the entire available dataset, using
the echocardiography-based pulmonary hypertension severity classification (ECHO) as
ground truth.

In this setup, the severity classes were binarised: probabilities of 0 and 1 were regarded
as negative, whereas probabilities 2 and 3 were classified as positive. This approach
allowed the model to be tested on a larger and more diversified dataset, even with a less
precise ground truth source than right heart catheterisation.

Finally, a third configuration was explored in which the dataset was filtered to include
only patients with echocardiographic data of better signal quality in order to improve
the reliability of the analysis. This selection resulted in a dataset of 60 patients in total,
24 positive and 36 negative. This configuration allowed us to evaluate the performance of
the model in a context where the echocardiographic signal quality is more homogeneous,
minimising potential bias due to low quality data.

Configuration Ground truth Number of patients Class distribution
1 RHC 23 17 positive and 6 negative
2 Echo 178 34 positive and 142 negative
3 Echo 60 34 positive and 26 negative

Table 4.2: Summary of the dataset configurations used in the study

4.2 Preprocessing
In the preprocessing phase, the first step was downsampling all the PCG signals to 1000
Hz, in order to make all signals homogeneous and reduce the computational load.



Then, a Butterworth bandpass filter of order 5 with a bandwidth between 20 and
200 Hz was applied, to reduce possible noise and non-informative components out of the
useful band. The illustration in Fig.4.4 shows a comparison between a normal signal and
a filtered one.

Figure 4.4: Comparison of the original and filtered 10-seconds PV signal over
time

The filtered signals were then normalised by subtracting their mean and dividing
by the standard deviation as shown in Equation 4.1, in order to equalise the amplitude
variations and ensure a more comprehensible and homogeneous representation.

xnorm,i = xi − µ

σ
(4.1)

At this point, the processed signals were used to compute the MFCC, a commonly
used technique for representing audio signals described in Section 2.3.

These coefficients map the original signal in a non-linear Mel-Scale that mimics the
listening process of the human ear.

For this purpose 13 MFCC coefficients were calculated, selecting a window length
of 32 milliseconds and a hop length of 16 milliseconds to achieve an optimal balance
between time and frequency resolution.

To capture the temporal variability of the signal as additional information, MFCC
delta and delta-delta were also calculated, which are computed from the first and second
derivative of the original preprocessed signal, respectively, as shown in Figure 4.5.

These derivatives contribute to give insights into the temporal evolution of the
spectral features [61]. The combination of MFCCs, delta, and delta-delta coefficients
forms a exhaustive feature set that completely represents both the static and dynamic
characteristics of the PCG signals.

The three matrices obtained, corresponding to the MFCCs of the original signal, its
first derivative (delta) and second derivative (delta-delta), were divided into 3-second



Figure 4.5: Filtered audio signal and MFCC features: time-domain signal, MFCC,
MFCC Delta, and MFCC Delta-Delta for a 10-second example

time segments with a 50% overlap, thus ensuring continuous coverage of the information
contained in the representation.

For each extracted segment, the three matrices were concatenated and normalized
again, obtaining the final representation intended for the input of the neural network.

This type of time-frequency representation of the signal contributed to improve the
model’s ability to recognize patterns and differences between positive and negative
patients.

4.3 Masking
Tests were also conducted using a dataset in which the masking technique was applied to
the signals. This consists of selectively preserving certain portions of the original signal,
masking the rest with null values.

In particular, masking was applied on the sections corresponding to the S2 components
of the phonocardiographic signal, in order to isolate and analyse the effects of these
segments alone on classification.

For each patient, S2 intervals were extracted using the technique employed in [62]
and were extended by 10 samples before and after to include any relevant transitions.
The rest of the signal was zeroed, resulting in a masked version of the original signal, as
shown in Figure 4.6.

This masking technique evaluates the model’s ability to identify discriminating
features based only on segments of the signal that might be most informative, reducing
the influence of other components that might introduce noise into the analysis.

4.4 Modelling
For the analysis and classification of phonocardiographic signals, a deep learning model
based on a CNN-type convolutional neural network was implemented. Its architecture
and characteristics are illustrated in Tables 4.3 and 4.4.



Figure 4.6: Comparison of downsampled and masked phonocardiographic signals
for a patient

Parameters Value
Input Dimension (39, 187, 1)

Batch Size 32
Epochs 150

Learning Rate 10−4

Optimizer Adam
Loss Function Binary Cross Entropy

Activation Function ReLu

Table 4.3: Characteristics of the Deep Learning Model used

The input of the model has a dimension of (39, 187, 1), where 39 is given by the
concatenation of the three matrices of 13 MFCC coefficients and 187 represents the
length proportional to the duration of the signal.

The model architecture consists of five convolutional layers with kernels of varying
size, each followed by Batch Normalization, MaxPooling and Spatial Dropout layers,
with a progressively increasing dropout rate up to 50%, to prevent overfitting.

The activation function used for the convolutional layers is the ReLU (Rectified Linear
Unit), which allows effective gradient propagation during training.

After convolutional feature extraction, the model uses three dense layers, each followed
by a dropout of 50%, to improve the generalisation capability of the model. Finally,
a dense layer with a single neuron and sigmoid activation function is used for binary
classification.

For the optimisation of the model, the Adam algorithm was adopted, with a learning
rate of 10−4.

The loss function used is the binary crossentropy and an Early Stopping mechanism
was implemented to avoid overtraining of the model.



Layer Dimensions
Convolutional Layer (32,(5x5))
Convolutional Layer (64,(3x3))
Convolutional Layer (128,(3x3))
Convolutional Layer (256,(3x3))
Convolutional Layer (512,(2x2))

Dense Layer 512
Dense Layer 256
Dense Layer 128

Table 4.4: Network Layers

In cases of imbalance between classes in the dataset, a weight balance was applied
during training, assigning a higher weight to the minority class to avoid the model
favouring the most represented class.

The architecture of the model used for this work is shown in figure 4.7.

4.5 Classification Strategies and Evaluation Met-
rics

In the present work, the k-fold cross-validation method with k=5 was adopted for the
evaluation of classification performance in the deep learning model: the dataset was
divided into five subgroups of equivalent size, balancing the distribution between positive
and negative classes.

At each iteration of the process, three of these groups were used for the training set,
another of these was used as the validation set, and the last as the test set.

The division into training, validation and test set was designed in such a way that
each subgroup was used as a test set at least once. This approach ensures that, at the
end of the cross-validation procedure, all patients were included in the test set, thus
allowing an evaluation of the model on completely new data during each iteration.

In order to evaluate the performance of the different trials performed, different evalu-
ation metrics were employed.

The confusion matrix is a table used to evaluate the performance of a classification
model. It shows the number of correct and incorrect predictions divided into four
categories: TP (True Positives) and TN (True Negatives) refer to correct prediction
instances, while FP (False Positives) and FN (False Negatives) represent incorrect
predictions.

The confusion matrix has been used to evaluate the model’s performance both at the
level of individual segment classification and at the patient level, where the assessment
holds greater diagnostic significance.

The accuracy measures the proportion of correct predictions in relation to the total



Figure 4.7: Architecture of the Convolutional Neural Network (CNN) for feature
extraction and classification.

number of observations (4.2). It represents an overall measure of model performance,
but can be misleading in the case of unbalanced classes.

Accuracy = TP + TN

TP + TN + FP + FN
(4.2)

Sensitivity, also called recall or True Positive Rate (TPR), measures the model’s
ability to correctly identify positive cases (4.3). A high value indicates that the model
detects well positives cases, which can be a crucial demand in medical contexts, but it is
a metric that does not take into account the number of false positives.

Sensitivity = TP

TP + FN
(4.3)



Specificity on the other hand, measures the model’s ability to correctly identify nega-
tive cases (4.4). It puts weight on the number of false positive but in cases of imbalanced
datasets, it may not be sufficient without considering performance on the minority class.

Specificity = TN

TN + FP
(4.4)

Precision measures the proportion of samples classified as positive that are actually
positive (4.5). For example, in a medical test, a high value of precision indicates that if the
model says that the disease is present, the probability that the patient is actually ill is high.

Precision = TP

TP + FP
(4.5)

A useful evaluation metric when the classes are inbalanced is the F1-score, which is
the armonic mean between precision and sensitivity (4.6).

F1 = 2 × precision × sensitivity
precision + sensitivity (4.6)

An important tool for evaluating the performance of the model as the threshold value
changes is the ROC curve: this is a graph showing the relationship between the True
Positive Rate (Sensitivity) and the False Positive Rate (1 - Specificity) for threshold
values that go from 0 to 1. A perfect model will have a curve approaching the upper left
vertex of the graph.

Finally, the AUROC measures the area under the ROC curve and provides a numerical
value to assess the model’s ability to distinguish between classes.

4.6 PostProcessing
In the context of performance evaluation of the classification model, predictions are
generated at the segment level. However, to obtain a clinically meaningful evaluation,
it is necessary to translate these predictions to the patient level. This process made
it possible to aggregate the outputs per segment into a single output for each patient.
This chapter will illustrate three different post-processing approaches and describe their
principles.

4.6.1 Probability Average with Fixed Threshold
The first method used to aggregate predictions at the patient level concerns calculating
the mean probability with a fixed threshold of 0.5.



In this approach, the classification probabilities associated with its segments are
collected for each patient and the average probability is calculated. If the average
probability exceeds the threshold of 0.5, the patient is classified as positive, otherwise as
negative.

4.6.2 Optimized Threshold Based on F1-Score
A second, more advanced approach involves searching for an optimal threshold for
classification, instead of using the fixed value of 0.5.

In this strategy, a process is performed in which a series of thresholds are systematically
tested, ranging from the minimum to the maximum value of the average probability of
the patients within the validation data of each fold.

For each tested threshold, the F1-score is computed to evaluate classification perfor-
mance, and the threshold that achieves the highest F1-score is selected as the optimal
one.

Once the best threshold is determined during the validation phase, it is subsequently
applied to the test data of the corresponding fold to classify patients.

This approach ensures that the classification decision is based on an empirically
optimized threshold, verifying the model’s ability to generalize effectively to unseen data.

4.6.3 Segment-Based Probability Aggregation with Opti-
mal Threshold

The third method adopted is based on counting positive segments within each patient.
Instead of calculating the average probability of the segments, the segment-by-segment
probabilities are binarised using the fixed threshold of 0.5. Then, for each patient, the
fraction of segments classified as positive out of the total number of segments belonging
to that patient is calculated.

This value represents the final probability for each subject and it is used to find an
optimal threshold through the same strategy as described in the previous method, i.e.
by selecting the threshold that maximises the F1-score on the validation data.

The optimal threshold thus obtained is then applied to the test data for final classifi-
cation.

Once the patient-level predictions have been obtained with each of the three described
methods, the performances of the model are evaluated by calculating the standard metrics
listed in 4.5.



Chapter 5

Results and Discussion

The purpose of this section is to show and evaluate the impact of the different configura-
tion of the dataset on the performance of the classification model.

Indeed, as the available dataset was organised into three distinct configurations as
reported in section 4.1.2, each characterised by a different level of ground truth reliability
and a different distribution of patients, the performance analysis present in this chapter
provide insight into how these aspects affect the model’s ability to distinguish patients
with pulmonary hypertension from healthy subjects.

From a methodological point of view, the model is evaluated through a 5-fold cross-fold
validation method, as discussed in Section 4.5, to analyze the stability of performances.

However, as the classification is initially performed at the phonocardiographic segment
level, an aggregation process of the performances was necessary to obtain a diagnosis at
the patient level, according to the methods reported in Section 4.6.

The analysis of the results is structured by initially presenting the trend of the
accuracy and loss curves in the training and validation for each configuration.

Next, the confusion matrices and evaluation metrics used for classification (Section
4.5) at segment level and at patient level are reported.

Finally, a comparison is made between the three configurations to identify the most
reliable for diagnostic application.

5.1 Model Performance with the RHC Dataset
The first results presented are those obtained using the RHC dataset, which represents the
configuration that carries the most reliable ground truth for the diagnosis of pulmonary
hypertension.

As a matter of fact, this dataset is mainly composed of positive patients (16 posi-
tive and 7 negative) since right cardiac catheterization is a procedure that is typically
performed on patients with suspected advanced cardiopulmonary dysfunction, thus at
higher risk of pulmonary hypertension, as shown in Figure 1.1 [63].

In order to monitor the stability of the net’s training and detect any overfitting or
underfitting of the model, the accuracy and loss curves were studied for each of the five
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folds of the cross-fold validation (Figure 5.1).

Figure 5.1: Accuracy and Loss Trends for the model trained on the RHC dataset

Next, the model’s ability to discriminate between positive and negative patients at
the phonocardiographic segment level was analysed.

Figure 5.2 reports the aggregated confusion matrix on segment-level predictions.

Figure 5.2: Confusion matrix for per-segment classification



Analysing the trends in loss and accuracy for the different folds, it was generally
possible to highlight overfitting and a great instability in the validation performances.

Continuous oscillation within the validation accuracy trend emphasizes a poor ability
of the model to generalise, and reveal a first algorithm that is not able to find a stable
pattern within the data.

The small size of the dataset and the strong imbalance between the two classes lead
the model to favour the dominant one, as it is shown in Figure 5.2.

Balancing strategies were also tested, including assigning weights to classes to favor
the least represented one and using focal loss to give greater emphasis to the samples
that are most difficult to classify, but without significant improvements in performance.

To obtain clinically relevant performance, aggregated results per patient are also
shown: Figure 5.3 shows the general ROC curve related to the classification of patients
comparing their mean probability with different thresholds and the confusion matrices
for the three aggregation strategies.

In addition, Table 5.1 shows the accuracy, F1-score, sensitivity and specificity values
for each method.

(a) ROC curve obtained using mean prob-
ability per-patient

(b) Confusion Matrix using 4.6.1

(c) Confusion Matrix using 4.6.2 (d) Confusion Matrix using 4.6.3

Figure 5.3: Per-patient performances using RHC dataset configuration

The analysis of the different post-processing strategies for aggregating segmental
predictions shows how the choice of method influences the performance of the model at



the patient level. Through these techniques, an attempt was made to mitigate the effect
of bias towards one of the two classes by using different classification methods, such as
using non-fixed thresholds, or using the fraction of positive segments as the probability
value per patient.

The method based on the average probability with a fixed threshold of 0.5, although
the simplest, shows some obvious limitations, in particular a tendency to generate false
positives, which indicates that this post-processing technique follows the trend and the
performances of the model in general, and does not bring any room for improvement in
classification.

This indicates that a rigid threshold is not necessarily the best choice, as it does not
take into account the fact that, due to class imbalance within the dataset, the average
probability values may be skewed toward higher or lower values depending on which
class is more represented (in this case the positive one).

As a consequence, the imbalance results in a higher number of false positives compared
to false negatives. However, it can be stated that, given the initial model performances,
the algorithm in general struggles to effectively learn from the available data, and this
also affects the performances per patient.

The next approach, which involves optimising the threshold based on the F1-score
and should allow the decision criterion to be dynamically adapted according to the
characteristics of the dataset, does not show a significant improvement in performance.
Although this method increases the number of negative predictions, thereby increasing
specificity as shown in 5.1, it still proves to be a rather random classifying approach.

In fact, using the optimal thresholds of each validation set on the test set, the model
continues to show significant variability in performance, suggesting that the threshold
optimisation strategy is not sufficient to correct the inherent instability of the model.

Finally, the method based on positive segment count with optimal threshold shows
even more extreme behaviour, classifying all patients as positive. Thus, although with
this last method an attempt was made to mitigate the effect of the imbalance between
classes in situations where the average probability per patient can be skewed towards
higher values for truly negative patients, the performances show how in practice the
model completely loses the ability to distinguish between the two classes and even ends
up amplifying the problem.

Per Patient PostProcessing Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)
Method 1 56.25 80.00 16.67 69.57
Method 2 50.00 60.00 33.33 60.00
Method 3 62.50 100.00 0.00 76.92

Table 5.1: Comparison of Performances Obtained using the RHC Dataset

5.2 ECHO Dataset
In the initial setup, in which the analysis was only conducted on the few patients for
whom RHC data was available, the results showed a strong bias towards one of the two
classes, due to the limited number of patients and the nature of the dataset itself.



The second step involved extending the analysis to all patients for whom echocardio-
graphic (ECHO) data was available, bringing the total to 178 patients, of whom 34 were
positive and 142 negative.

Although less accurate than catheterisation, echocardiography is currently the most
widely used method for screening pulmonary hypertension and is widely adopted in
clinical practice for an initial assessment of the condition [48].

5.2.1 Correlation between the two Ground Truths
In order to demonstrate the correlation between the two methods used as ground truth,
in the specific case of the patients and the available data, an illustrative graph of the
correlation between mPAP values measured by RHC and the corresponding severity
classes obtained by ECHO was made for patients with both examinations available (5.4).

The graph also highlights via a horizontal line the mPAP value used as a threshold
for diagnosing pulmonary hypertension.

Figure 5.4: Correlation between mPAP values obtained via RHC and ECHO
severity labels obtained via ECHO; a line marking the mPAP threshold value used
to discriminate PH patients is also shown

Although the examples shown are limited to the 23 patients with catheterism data
and are therefore mostly positive patients, a correlation between the two ground truth
sources can generally be observed.

However, the variability through mPAP values within each ECHO class indicates
some discrepancies between the two diagnostic methodologies.

Since the aim is to split the patients into two classes (positive and negative) and use
this as ground truth for the model, it can be deduced from this graph that the ECHO
examination can also be used as an indicator of the presence of pulmonary hypertension
(PH).

As a matter of fact, although there is some variability in mPAP values within each
severity class assigned by the ECHO, there is a general trend that follows that of ground
truth verified by cardiac catheterisation.

In this regard, in the entire set of 178 patients, those with severity labels 0 and 1
were assigned to the negative class, while those with labels 2 and 3 were assigned to the



positive class.

Figure 5.5: Accuracy and Loss Trends for the model trained on the full ECHO
dataset

Similarly, using this second dataset configuration, accuracy and loss curves for each
fold of the cross-fold validation were inspected to evaluate the stability of the trainings:
the results are shown in figure 5.5.

Validation accuracy shows sudden fluctuations between consecutive epochs, suggesting
a poor capability of the model to detect stable patterns in the data.

The training loss, on the other hand, moderately decreases, while the validation loss
stays pretty much constant, indicating overfitting.

Therefore, the model seems to learn from the training data, but struggles to transfer
this knowledge to the validation data, confirming that the use of the full dataset did not
solve the instability problems observed in the RHC dataset.

Again, the aggregated confusion matrix on segment-level predictions (Fig. 5.6) shows
the extreme bias towards the most represented class, signaling the low sensitivity in
detecting patients with pulmonary hypertension.

Since the clinical evaluation of the classification is most relevant at the patient level,
the three methods of aggregating the predictions were applied also in this case to obtain
an overall diagnosis for each patient.



Figure 5.6: Confusion matrix for per-segment classification

The ROC curve obtained using the average probability per patient and the confusion
matrices for the three aggregation methods (Fig. 5.11) show that performance remains
random and unsatisfactory.

Indeed, the first method with a fixed threshold of 0.5, reports the performance of
a model that classifies all patients as negative, following the performance trend by
segment with no room for improvement: this could be due to a distribution of the average
probability of patients tending towards values less than 0.5 even for positive patients.

An attempt was made to mitigate this problem by using the optimized threshold
method based on F1-score. Indeed, in this case the sensitivity shows an improvement,
proving that the model manages to classify, although erroneously, some patients as
positive. The lack of ability to generalise from patients in the validation set to those
in the test set is evidence that also the quality of the signals strongly influences the
performance of the model.

The analysis of the last post-processing method, based on counting the fraction of
positive segments per patient, led to the classification of all patients as positive. This
behaviour, which is anomalous compared to previous results, confirms that the probability
distribution of the model is strongly skewed towards very low values.

As a matter of fact, in this approach, the final value assigned to each patient is
determined by the proportion of segments classified as positive in relation to the total.
However, in the specific case of this setup, the fraction of positive segments is extremely
small for most patients. Consequently, during the threshold optimization process to
maximize the F1 score in the validation data, the algorithm identified very low threshold
values, almost close to zero, as the most effective for improving performance.

When these thresholds are applied to the test set, the result is that any patient is
automatically classified as positive, leading the model to identify all patients as having
pulmonary hypertension. This behaviour shows that the algorithm is not really learning
a separation between classes, but is rather adapting its decisions to an unbalanced
probability distribution.

In this context, threshold optimization is not sufficient to correct the problem of
imbalance between classes and ends up amplifying it, confirming that the aggregation
method based on the fraction of positive segments may not be suitable for this scenario.

All these results suggest that, in order to increase the robustness of the classification,



(a) ROC curve obtained using mean prob-
ability per-patient

(b) Confusion Matrix using 4.6.1

(c) Confusion Matrix using 4.6.2 (d) Confusion Matrix using 4.6.3

Figure 5.7: Per-patient performances using full ECHO dataset configuration

Per Patient PostProcessing Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)
Method 1 80.68 0.00 100.00 0.00
Method 2 51.14 58.82 49.30 31.75
Method 3 19.32 100.00 0.00 32.38

Table 5.2: Comparison of Performances Obtained using the full ECHO Dataset

it would be crucial to intervene on the configuration of the dataset, ensuring a balance
between the number of positive and negative patients and giving more importance to
quality. This would create more favorable conditions for learning the model, reducing
the impact of imbalance and improving its ability to generalize.

5.3 Dataset with Higher-Quality Signals
Following the analysis of the model’s performance on the RHC and ECHO datasets,
characterised respectively by a more reliable ground truth but with a smaller number of
patients, and a larger dataset but with great imbalance, a third configuration was explored.

In this configuration, the dataset was filtered to include only patients with higher
quality asclultation data in order to improve the reliability of the predictions and reduce
noise in the data. This selection resulted in a dataset containing 60 patients in total, of



which 24 were positive and 36 negative.

The objective of this set-up was to investigate whether a more homogeneous dataset in
terms of signal quality and balance between the two classes can improve the performance
of the model enhancing its reliability.

The analysis of the accuracy and loss curves (Fig. 5.8) for each fold shows an improve-
ment in stability compared to the configuration with the complete ECHO dataset. The
training curves show a progressive increase in accuracy and a progressive reduction in loss,
suggesting that the model is learning more effectively. However, the validation curves
still show fluctuations, suggesting that the model may suffer from overfitting on some folds.

Figure 5.8: Accuracy and Loss Trends for the model trained on the high-quality
dataset

The confusion matrix analysis for segment-level classification presented in Fig. 5.9
shows a reduction in errors compared to the previous configurations. However, the model
continues to generate a significant number of false negatives and false positives, which
can possibly impact on overall performance in classification at patient level.

However, both representations suggest that the model has a higher learning capacity
if the dataset is composed of a comparable number of positive and negative patients,
but above all good quality signals. This indeed facilitates the process of extraction of
intrinsic and more informative features by the network and thus improves the ability to
distinguish between segments of patients with pulmonary hypertension and healthy.



Figure 5.9: Confusion matrix for per-segment classification

The confounding matrices for the three aggregation methods shown in figure 5.10,
confirm an improvement in performance compared to previous configurations, but still
show margins of error, especially in the classification of positive patients.

The first method of aggregation, based on the mean of the probabilities with fixed
threshold, obtained an accuracy of 73.33%, with a sensitivity of 84.62% and a specificity
of 64.71%, proving to be the best for this configuration. The confusion matrix shows
that the model correctly identifies most positive and negative patients, although some
false positives persist.

The second method, with optimized threshold based on F1-score, increased sensitivity
up to 92.31%, as the number of false negatives decreased but compromised specificity,
which dropped to 32.35%, with a higher number of false positives. This behavior suggests
that this second method of post-processing based on the best threshold according to the
F1 score, tends to misclassify negative patients, therefore prioritizing sensitivity while
compromising specificity.

Similarly, the third method suffers from the same problem, in fact the number of
patients correctly classified as positive almost equals the number of false positives.

In summary, this configuration improved the model’s ability to discriminate between
positive and negative patients compared to previous models. However, specificity still
needs to be improved as the model continues to favour the positive class.

This behaviour may be considered acceptable in clinical contexts where the priority
is the detection of true positives, even at the cost of reduced specificity.

In other words, priority is given to the model’s ability to correctly detect patients with
the condition of interest, accepting a certain margin of false positives, i.e. misclassification
of healthy patients as sick.

This approach is justified by the fact that, from a diagnostic point of view, it may be
preferable to overestimate the presence of the condition rather than underestimate it,
thus avoiding the risk of failing to recognise a patient who is actually sick and excluding
him or her from possible early treatment.



(a) ROC curve obtained using mean prob-
ability per-patient

(b) Confusion Matrix using 4.6.1

(c) Confusion Matrix using 4.6.2 (d) Confusion Matrix using 4.6.3

Figure 5.10: Per-patient performances using high-quality ECHO dataset configu-
ration

Per Patient PostProcessing Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)
Method 1 73.33 84.62 64.71 73.33
Method 2 58.33 92.31 32.35 65.75
Method 3 58.33 80.77 41.18 62.69

Table 5.3: Comparison of Performances Obtained using the high-quality ECHO
Dataset

5.4 Masking technique
After identifying a dataset configuration that showed promising performance in the
context of classification, it was decided to examine in depth the analysis by applying the
same model to the same high-quality dataset modified through the masking technique
described in Section 4.3.

The objective of this trial is to verify whether the model is able to learn and generalise
better when the signal only includes the components that should be more informative,
thus reducing the influence of potentially irrelevant or noisy portions.

This segmentation technique was feasible and reliable since it was known that the
signals from the selected patients were of high quality; contrarily, since the masking
technique requires precise annotations to accurately isolate the S2 components, it would
have resulted as ineffective, leading to the selection of signal portions that were not truly
informative.



In the following paragraphs, the results obtained with the masked dataset are shown
and compared to those of the last configuration (Section 5.3).

According to the results shown in Table 5.4, masking has in most of the cases worsened
model performance, leading to a decrease in accuracy and specificity in almost all three
post-processing methods.

In particular the application of the technique has worsened the ability to distinguish
negative patients (reduction in specificity). This suggests that although the S2 component
of the phonocardiographic signal is considered a key element in the diagnosis of pulmonary
hypertension, the rest of the signal may contain useful information that the model loses
when masking is applied.

(a) ROC curve obtained using mean prob-
ability per-patient

(b) Confusion Matrix using 4.6.1

(c) Confusion Matrix using 4.6.2 (d) Confusion Matrix using 4.6.3

Figure 5.11: Per-patient performances using high-quality ECHO dataset configu-
ration and Masking technique

Per Patient PostProcessing Without Masking With Masking
Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)

Method 1 73.33 84.62 64.71 73.33 66.67 76.92 58.82 66.67
Method 2 58.33 92.31 32.35 65.75 60.00 84.62 41.18 64.71
Method 3 58.33 80.77 41.18 62.69 55.00 84.62 32.35 61.97

Table 5.4: Comparison of evaluation metrics for different methods with and
without masking. The higher value for each metric between the two conditions is
highlighted for each method

Analysing the performances per patient reported in the confusion matrix in fig. 5.11,



it is possible to state that these indicatively follow those for the model trained on the
complete signals of its entire morphology (Section 5.3).

This highlights the fact that applying the masking technique did not lead to the
expected results, and in general it is better to preserve the entire signal, rather than
restricting the analysis to a specific part of it.



Chapter 6

Conclusion

This study demonstrated how it is possible to develop a non-invasive, universally ac-
cessible, cost-effective and easily available method for the early diagnosis of pulmonary
hypertension. This was achieved by developing a processing and deep learning algorithm
for heart sound analysis, enabling the automatic detection of patterns associated with
the disease.

The results obtained show that, while it is possible to develop a reliable classification
system, the key to success depends more on the quality and configuration of the dataset
used for training rather than on the deep learning model itself.

Indeed, for the neural network to be able to learn information that is truly useful for
diagnosis, it is essential to start from high quality input data that contains relevant and
well distinguishable features. A balanced dataset, with a sufficient number of examples
for both classes (patients with and without pulmonary hypertension), proved to be a
decisive element in the progressive improvement of the model’s performance.

The review made on the literature review confirms that the choice of method and
dataset size play a crucial role in verifying model performance.

While deep learning methods emerge as the most promising for large-scale analyses,
traditional approaches remain valuable for smaller studies, as they provide interpretable
features and require fewer computational resources.

Additionally, the reliability of results must always be verified according to the valida-
tion technique employed, as improper validation can lead to overfitting and misleading
conclusions.

This perspective aligns with the findings of this study, where an initial dataset with
limited size and not opitmal quality led to significant performance fluctuations since it
was used to train a deep learning network, while a more structured and balanced dataset
improved the robustness of the model.

Througout the study, different configurations of the dataset were tested, starting with
the one consisting of the 23 patients with the mPAP data from the RHC examination as
ground truth, moving on to the one based on the ECHO data, and finally to the final
configuration comprising only high-quality echocardiographic signals.

This process showed a gradual improvement in the performance of the model, with a
final auROC of 0.72, confirming that, with a larger dataset of adequate quality, more
reliable results can be obtained.
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In particular, the performance obtained with the first dataset (RHC) showed that this
was highly sensitive to signal quality, demonstrating that even a small group of patients
with non-optimal signals, out of a total of 23, could drastically alter performance and
prevent the neural network from learning effectively.

This was also evident from the loss and accuracy curves, where those for the validation
set showed large fluctuations in all folds, which demostrates a lack capacity of learning
from the net. This made it non possible to use a leave-one-out validation strategy, as
the inclusion of a single patient in the validation set would have compromise the overall
performance too much, making it strictly dependent on the quality of the single patient’s
signals and thus making the model evaluation unreliable.

When the dataset was expanded to 178 patients with ECHO data, the problem of
signal quality was less relevant as the number of signals was markedly increased, but the
main obstacle remained the imbalance of classes. With a much higher number of negative
than positive subjects, the model showed a strong propensity to misclassify positive
patients, and none of the post-processing methods tested could effectively compensate
for this problem.

Only with the latest configuration of the dataset, in which high-quality data and a
balanced number of positive and negative patients were selected, did the model begin
to provide more reliable results. In this configuration, the model achieved an accuracy
of 73.33%, a sensitivity of 84.62%, a specificity of 64.71% and an F1-score of 73.33%,
with an AUROC of 72%. This demonstrates that, when provided with adequate data,
the model is able to learn effectively from the available data, allowing it to also evaluate
which post-processing method is most suitable.

Regarding the performance obtained on the final configuration of the dataset, it can
be stated that among the various aggregation methods tested to obtain a patient-level
classification, the simplest one, based on the average probability per patient and the use
of a fixed threshold of 0.5, proved to be the most effective in the final configuration of
the dataset.

However, the other post-processing methods may be useful in different scenarios,
where for example there is a heterogeneous distribution of patients within the different
folds, and therefore it may be convenient to use optimised thresholds for each of them.
Based on the results obtained from our model, methods that optimise the threshold for
each individual fold have been shown to improve the sensitivity of the model, albeit at
the expense of specificity. This means that these methods could be advantageous in
contexts where the main objective is to identify as many patients with the disease as
possible, even at the cost of including some false positives.

In the clinical setting, this approach could be justified in situations where it is
preferable to overestimate the presence of the disease rather than risk not detecting it,
especially if early diagnosis can lead to timely and potentially life-saving treatment. For
example, in the case of serious diseases such as pulmonary hypertension, a high-sensitivity
model may be preferable because it ensures that the majority of affected patients are
identified and undergo further diagnostic investigations.

However, it is important to consider that an excessive number of false positives could
lead to an overload of the healthcare system, increasing the number of unnecessary
invasive examinations and the associated costs.

Therefore, the choice of the most appropriate post-processing method will depend on
the balance between sensitivity and specificity required by the specific clinical context.



6.1 Limitations of the Study and Future Devel-
opments

While the study achieved promising results, several limitations must be acknowledged.
One of the primary constraints was the limited number of patients with the most

reliable ground truth, obtained through RHC.
The small size of this subset made it insufficient for training a deep learning model

effectively, leading to considerable fluctuations in performance and limiting the network’s
ability to generalize.

Additionally, the study was conducted under real-world conditions, meaning that
the model had to deal with variability in signal quality. This significantly impacted its
ability to learn, as low-quality signals introduced noise and potential misclassifications,
hindering performance.

To address these limitations and improve future models, several potential developments
can be considered:

• Larger and More Diverse Datasets: Expanding the dataset to include a larger
number of patients, especially those with ground truth obtained through RHC,
would enable the model to be trained on a dataset with fully reliable ground truth.

• Integration of Multi-Modal Data: Combining heart sound analysis with other
diagnostic signals, such as ECG, could provide additional features for the model to
learn from, improving classification accuracy.

• Using Data Augmentation to artificially increase the number of high-quality training
examples could help compensate for data scarcity.

In conclusion, the study demonstrated that, through the use of a quality dataset and
appropriate post-processing techniques, a non-invasive and cost-effective method for the
diagnosis of pulmonary hypertension can be achieved. Although the deep learning model
was a key element, the quality of the dataset and its balance between the two classes
were decisive factors in improving performances.
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