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Abstract
The present thesis focuses on the development of error reduction methods in simulation-
guided hyperthermia (HT) treatments, in particular for head and neck (H&N) tumors.
HT therapy has gained increasing attention in the medical field due to its role in en-
hancing conventional cancer treatments such as radiotherapy and chemotherapy. By
elevating the temperature of tumor tissues to 40-44 °C using non-ionizing microwave
radiation, it increases the sensitivity of cancer cells to radiation and improves drug
delivery without introducing additional toxicity. The benefits of HT have been well
demonstrated in various tumor sites, including the cervix, breast, head and neck, skin,
bladder, and esophagus. For sub-superficial and deep-seated tumors, phased-array an-
tenna systems optimize the Specific Absorption Rate (SAR) within the tumor target,
while minimizing the risk of hotspots in healthy tissues. Following clinically prescribed
hyperthermia treatment planning (HTP) guidelines, patient-specific numerical simu-
lations and temperature monitoring systems play a crucial role in controlling active
electronic systems that adjust antenna feedings during treatment sessions while si-
multaneously monitoring the achieved temperature in different regions. This research
focuses in particular on exploring pre-processing strategies to improve real-time recon-
struction of the patients temperature distribution from limited invasive measurements.
Chapter 1 provides a comprehensive overview of hyperthermia, covering its historical
background, biological effects, and the mathematical modeling of tissue heating, high-
lighting the limits of the Pennes bioheat equation and the uncertainties associated with
tissue properties, which can significantly affect simulation outcomes. Chapter 2 delves
into the challenges associated with current temperature monitoring techniques, such as
the invasiveness of thermometry catheters. The chapter introduces the high-resolution
virtual model used in this study and the concept of parameter space. The proce-
dures for electromagnetic and thermal simulations are detailed, as well as the method
used to predict the patient temperature distribution from limited measurement data,
which is based on inversion algorithms. Chapter 3 investigates the integration of S-
parameters (active reflection coefficients) into the reconstruction process to enhance
the accuracy of the predictions. The impact of this approach in different scenarios is
evaluated using three metrics: χ95 (minimum error threshold in 95% of the volume and
in 95% of the tested cases), ∆T (median of the pointwise absolute difference between
the reconstructed and actual temperature map) and ∆T50 (absolute difference between
the reconstructed T50 in the tumor volume and the actual T50 in the tumor volume).
Chapter 4 focuses on optimizing the exploration of the parameter space by initially em-
ploying Sobol sequences to ensure uniform coverage, followed by targeted refinement
in specific regions. Three types of refinement were investigated: two aimed at reducing
redundancy in the basis matrix and one targeting underrepresented regions associated
with higher errors. This approach seeks to identify the most effective sampling strate-
gies to minimize the magnitude and occurrence of errors in both tumors and healthy
tissues. The results of this analysis were reported in terms of error percentiles, χ95,
∆T50 and ∆T90.
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Introduction
Cancer and its treatment have been among the greatest challenges in medical sci-
ence for centuries. Systematic treatment for cancer patients began in the latter half
of the 19th century, initially focusing only on the surgical removal of tumors. In
the early twentieth century, the foundation of modern oncology was established, as
therapies were refined to include drugs and dietary interventions [1]. Today, oncol-
ogy has become one of the most interdisciplinary fields of research, encompassing
diverse areas such as biology, biophysics, biochemistry, genetics, environmental
sciences, epidemiology, immunology, microbiology, pathology, physiology, pharma-
cology, psychology, and virology. Although modern oncologic treatments, such as
chemotherapy and radiation therapy, are highly effective, they come with significant
side effects and remarkable impairments in patient quality of life. To maximize tu-
mor destruction, these therapies are often pushed to their toxicity limits, but even
then the results are not always satisfactory: achieving the desired tumor eradica-
tion often requires higher doses than what the body can safely tolerate. In the case
of H&N cancer, even good clinical results after multimodal treatment (surgery plus
chemoradiation) are accompanied by substantial side effects, often compromising
social contacts with the patient and thus decreasing quality of life [2]. In search of
alternative or complementary treatments that could minimize radiotoxicity, hyper-
thermia (HT) emerged as a promising method. Supported by numerous in vitro
and in vivo studies during the latter half of the twentieth century and many phase
III clinical trials in the last years, HT has demonstrated potential across a wide
range of tumor sites [3–5], as explained in the first chapter.

This thesis is part of a broader effort to improve temperature reconstruction
in microwave HT for the treatment of head and neck cancer. One of the biggest
challenges in HT is accurately estimating the temperature distribution within the
treated area, since inaccuracies can lead to suboptimal therapy outcomes or ex-
cessive heating of healthy tissues. This study focuses on refining pre-treatment
strategies to enhance real-time temperature mapping using a limited number of
invasive measurements. To address this, numerical simulations are used to model
how different tissue properties influence the temperature distribution. Advanced
reconstruction methods, based on inversion algorithms, are then applied to improve
the accuracy of the estimation. The study investigates whether the integration of
active reflection coefficients (S-parameters) or different parameter sampling strate-
gies into the reconstruction process can improve predictions. By optimizing these
aspects, this research aims to contribute to safer and more effective hyperthermia
treatments.
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Chapter 1

Hyperthermia: state of the
art

1.1 Hypertermia definition
Heat therapy can be considered a traditional healing method. Even the first known,
more than 5000 years old, written medical report from ancient Egypt mentions hy-
perthermia. The use of hyperthermia for cancer therapy was first documented by
Hypocrites for the treatment of breast tumor. His approach was mainly supported
by Greek philosophy, where fire (heat) had the highest level of abilities and free-
dom [1]. Several reports of tumor regression following high fever, secondary to
bacterial infections such as erysipelas, were available in the nineteenth century.
However, with the discovery of penicillin in the 1930s, as high fever secondary to
these infections became rare, the phenomenon of tumor regressions after high fever
was also rarely reported [3]. In modern times, hyperthermia therapy is defined as:

“A type of treatment in which body tissue is exposed to high temperatures
to damage and kill cancer cells or to make cancer cells more sensitive to
the effects of radiation and certain anticancer drugs.”1

HT exerts its therapeutic effects without chemical toxicity or the risks associated
with ionizing radiation, as it is delivered through non-ionizing electromagnetic
waves or ultrasound. This makes it a relatively safe treatment modality, with
mild side effects primarily related to heating sensitive healthy tissues. In terms of
temperature, the objective of HT is to warm the tumor region to approximately 43
°C, while keeping the heat in the surrounding healthy tissues in a tolerable range

1National Cancer Institute
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Hyperthermia: state of the art

and avoiding the presence of hotspots; however, in most clinical treatments, the
achieved temperature range is 39 °C to 42 °C [6]. There are internal (interstitial
or intraluminal) and external heating methods. External heating methods [7] are
often characterized as:

1. Whole body: very high frequencies (200-375 MHz) and long application
times (>2h) to reach 40.5 °C at most.

2. Superficial: frequencies in the range 400-1000 MHz in order to provide local-
ized heating of skin and superficial tissues. The applicator is placed directly
on the surface to be treated.

3. Deep : different frequency ranges (Regional:<100 MHz, Loco-regional: 100-
300 MHz, Local: 300-1000 MHz) to heat larger and deeper regions of the
body. In HT of tumors located beyond 2 cm from the skin, the temperature
goal is often better achieved with a phased array approach, where an array
of antennas is placed around the patient. The antennas are then suitably fed
in amplitude and phase to create constructive wave interference to selectively
heat the target region. For all electromagnetic (EM) waves, a circumferential
array is the optimum arrangement since this maximizes the interference of
the transverse waves, i.e. with the electric field component of the EM wave
oriented along the patient-axis.

Many techniques involve, in conjunction with the applicator, a water bolus that
works as a cooling system (useful to avoid hot spots on the patient’s skin and healthy
tissues) and to better couple the electromagnetic field radiated by the antennas into
the body. Generally, HT is applied for 60 min before / after radiation therapy within
a window of 0.5-4 hours, while with chemotherapy, HT is applied simultaneously or
shortly after the chemoterapic regimen [7]. Hyperthermia has also been shown to
be promising as a complement to proton beam radiotherapy (PBRT), leading to a
greater reduction in tumor dimensions and sensitizing hypoxic radioresistant cells
for more effective PBRT [6].

The addition of HT to radiotherapy (RT) and chemotherapy (CT) has demon-
strated significant benefits in various tumor sites, such as breast, cervix, head,
neck, rectum, bladder, esophagus, cutaneous melanoma, glioblastoma multiforme
and choroidal melanomas. These benefits were measured in terms of improved
complete response (CR) rates, prolonged time to progression (TTP) and enhanced
quality of life (QoL) [8–10] . For example, in Table 1.1, a comparison of CR obtained
with RT versus RT + HT is shown.

2



1.2 – Biological effects of HT

Site Treatment CR/Total CR
(%)

Odds Ratio (95% CI,
p-value)

Breast RT 88/181 48.6% 2.10 (1.34–3.30, 0.001)
RT + HT 122/198 61.6%

Cervix RT 173/263 65.7% 2.19 (1.45–3.32, <0.001)
RT + HT 200/251 79.6%

Head &
Neck

RT 183/364 50.3% 3.71 (2.55–5.38, <0.001)

RT + HT 266/353 75.3%

Rectum RT 16/205 7.8% 2.15 (1.10–4.20, 0.025)
RT + HT 36/208 17.3%

Urinary
Bladder

RT 35/86 40.6% 2.40 (1.25–4.62, 0.009)

RT + HT 69/118 58.4%

Esophagus RT 24/132 18.2% 2.64 (1.34–5.20, 0.005)
RT + HT 47/162 29.0%

Lung RT 2/70 2.8% 2.69 (0.51–14.22, 0.243)
RT + HT 7/59 11.8%

Table 1.1: Comparison of radiotherapy (RT) vs. RT + Hyperthermia (HT) applied
in various tumor sites [10].

1.2 Biological effects of HT
Hyperthermia is used primarily in conjunction with radiation therapy and chemother-
apy due to its thermobiological and immunological effects on the tumor environ-
ment [10], which can be summarized as:

• Increased sensitivity to chemoterapic drugs of hypoxic, nutritionally deficient
cells in low pH;

• Inhibition of radiation induced DNA damage repair and increase in tumor
DNA damage;

• Sensitization of the S phase cells 2;

• Local modification of the phenotype of the tumor cells and their micro-environment
which might render the tumor immunogenic (i.e. cause the body to make an

2S phase is the period of DNA synthesis during which the cell replicates its genetic content,
occurring between G1 phase and G2 phase.
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Hyperthermia: state of the art

immune response against it).

• Direct activation of immune cells present in the tumor and its microenviron-
ment, reflecting an “in situ tumor vaccination” (Figure 1.1).

Figure 1.1: In-situ vaccine mechanism: Heated tumor cells release heat shock pro-
teins (e.g., HSP70) and danger signals like HMGB1. HSP70 transports tumor peptides
to dendritic cells (DCs) via HSP receptors. DCs process and present these antigens
through MHC class I molecules to CD8 cytotoxic T lymphocytes (CTLs) with necessary
co-stimulation. HMGB1 binds to DCs via toll-like receptors (TLRs) or RAGE, enhancing
antigen cross-presentation. Additionally, danger signals activate natural killer (NK) cells,
which, together with CTLs, lyse the tumor cells. From [10].

The vessels in the tumor are generally leakier and have a more chaotic structure
compared to healthy tissues. This causes less nutrient diffusion and makes them
unable to remove heat efficiently, which can lead to higher temperatures during
heating, independently of any type of focusing. That is why, in easy-to-heat tu-
mors and / or in the hypoxic part of the tumor, treatment reaches temperatures
equal to or greater than 43 °C (always complying with safety requirements) result-
ing in direct death of the malignant cells. Direct damage at lower temperature
is also typical in some types of tumor that have a higher intrinsic sensitivity to
hyperthermia (e.g., sarcomas, melanomas) [11]. In summary, during hyperthermia
treatments, the heat generated induces biological damage due to the inability of
the tissue to dissipate excess energy at the same time it is supplied. The mass-
normalized rate of energy absorption by a biological body following hyperthermia
is estimated by one of the most important parameters used in radioprotection and
in the clinical applications of electromagnetic fields: the Specific Absorption Rate
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1.3 – Mathematical model

(SAR).

1.3 Mathematical model
At frequencies above 100 MHz, heating is generated mainly by mechanical friction
between adjacent polar water molecules (oscillations at more than 100 million cycles
per second) [12]. In general, for a volume Ω without internal sources, the energy
balance is [13]:

pdiss,Ω(t) +
dWΩ(t)

dt
= pδΩ(t) (1.1)

where pdiss,Ω [W] is the power dissipated in the volume, WΩ [J] is the stored energy
in Ω, and pδΩ [W] is the energy transport through the surface of Ω. The dissipated
power in function of the volume is defined as:

pdiss,Ω(t) := lim
∆t→0

∆W

∆t dΩ
(1.2)

where W is the work of the electromagnetic field, defined as the product of the
electromagnetic force on the free charges and their displacement s:

W = (FCoulomb + FLorentz) · s = q (E + v × B) · v t = ρ Ω (E · v) t (1.3)

with E being the electric field, B being the magnetic flux density and ρ being the
charge volumetric density. At this scale, the current I can be approximated equal
to the conduction current:

I = ρv ⇒ W = (E · I ) Ω t (1.4)

Consequently, considering Equation 1.2 and that the conduction current in a simple
mean can be also be written as I = σE (Ohm law for a simple mean 3), the
dissipated power is:

pdiss,Ω(t) = E (t) · I (t) = σ|E (t)|2 (1.5)
The heat generated by the electromagnetic field in the i-th tissue can be calculated
as the time average of the power dissipated in the tissue itself [14]:

qEM :=
1

T

∫ T

0

pdiss,Ω(t)

dΩ
dt (1.6)

By merging 1.5 and 1.6 , we have:

qEM =

∫ T

0

σ|E (t)|2 dt (1.7)

3Paul Drude model
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where T is the thermal diffusion time scale. The effective electrical conductivity σ
( S/m) is a parameter that accounts for all electrical losses in the material due to
currents driven by the EM field. In the case where the frequency of the field used
is “fixed”, it is more convenient to write qEM in its time-harmonic form; thus:

qEM = σ|E(P )|2 (1.8)

When Equation 1.8 is normalized by the tissue density (ρ), it is referred to as the
SAR [Wkg−1] and corresponds to the rate of EM energy absorption per unit weight
of tissue:

SAR =
σ|E|2

2ρ
(1.9)

1.3.1 Pennes bio-heat model
During the treatment planning phase, heat transport in the human body is typically
modeled using the Pennes Bioheat Transfer Equation (PBHE) [15]:

ρC
∂T

∂t
= k∇2T + qs (1.10)

where, for each considered tissue, ρ is the tissue mass density [kg m−3], C is the heat
capacity [J kg−1K−1], k is the thermal conductivity [W m−1K−1], and qs [W m−3]
is the source term. The source term can be expressed as qs = qhs + qm + qp, where:

• qhs: the heat source term, which is the qEM obtained in 1.8 :

qhs = qEM = σ|E(P )|2 (1.11)

• qm: the metabolic heat generation term (heat produced by metabolic reactions)

• qp: the heat loss due to blood perfusion which can be expressed as:

qp = −ωblCblρbl(T − Tbl) (1.12)

where ωbl is the blood perfusion rate [ml kg−1K−1], Cbl is the specific heat of
blood [J kg−1K−1], ρbl is the blood mass density, and Tbl is the arterial blood
temperature [K]. The negative sign reflects the compensatory role of blood:
when the temperature of the tissue increases, blood removes heat; when the
temperature of the tissue falls, blood delivers heat. The limitations of this
model will be discussed in Section 1.3.2.

In general, the metabolic heat generation term is considered negligible (qm ≈ 0)
to simplify the problem. In the instant following the irradiation, blood transfer
from the arteries, thermal conductivity and convection can be neglected. Thus,

6



1.3 – Mathematical model

at t = 0+, assuming the heat source remains constant over time, equation 1.10
becomes:

ρC
∂Tin
∂t

= qhs = σ|E(P )|2 (1.13)

Considering 1.9, the result is:
SAR = C

∂T

∂t
(1.14)

Equation 1.14 highlights the relationship between SAR and the initial increase in
temperature. For example, to raise the temperature of muscle tissue by 1◦C in 1
minute, an average SAR of 60 W/kg is required.

1.3.2 Uncertainty of Tissue Properties
The PBHE provides a simple way to model the behavior of the biological system,
but it has limitations. First, it has been shown to be valid only for a large region
of tissue with healthy microvasculature and blood flowing through vessels with
isotropically distributed orientations. For a more accurate modeling of the impact
of blood vessels with diameter greater than 0.2 mm on the local tissue temperature,
the Discrete Vasculature (DIVA) models [16] have been developed. These models
require the geometry of the vascular tree along with information on the diameters
and flow rates in the various sections of the vascular tree and as a result it is
unable to produce temperature predictions within a clinically realistic time frame.
Unfortunately, regardless of how accurately the blood vessel tree is modeled prior to
heating, static PBHE and DIVA models are only approximate, since blood vessel
size and perfusion rates change dramatically as a function of temperature and
duration of heating [17].

Second, the thermal and dielectric properties are tissue-dependent, frequency-
dependent, temperature-dependent and exhibit variability across patients. Gabriel
et al. originally measured and tabulated normal human dielectric properties [18].
A more comprehensive database, including thermal and physiological properties, is
available in the IT’IS Tissue Properties Database [19], which also provides statis-
tical information on the spread and standard deviation per tissue for the different
parameters. The limits of this database will be discussed in Section 1.3.2.

Third, obtaining new accurate tissue properties is very challenging; for example,
ex vivo dielectric measurements with an open-ended coaxial probe are prone to
inaccuracies due to tissue degradation, fluid loss, and the difficulty of achieving
proper probe contact and pressure 4. The dielectric properties are also sensitive

4Despite its limitations, the open-ended coaxial probe remains widely used due to its ability
to perform broadband, non-destructive measurements across frequency ranges, its suitability for
in vivo applications with bio-compatible probes.
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to temperature changes and thus strict environmental control is needed during
testing. In vivo measurements face further complications, such as the heterogeneity
of living tissues, physiological variability (e.g., hydration and blood perfusion),
motion artifacts caused by respiration or movement, and unstable probe-tissue
interface on irregular or moving surfaces. Finally, ethical and safety considerations
limit the experimental conditions [20].

This variability in dielectric and thermal properties can contribute to an ap-
proximately 20% inaccuracy in both SAR and temperature predictions (as stated
by [21], but also shown in this thesis), highlighting the need for a cautious and
precise approach, particularly in the head and neck region, where excessive heating
could lead to significant and potentially irreversible damage due to the presence of
thermosensitive tissues (e.g., cerebrum, cerebellum, brain stem, and spinal cord).

1.4 HT treatment plan for H&N cancer
SAR and temperature distributions in the clinical target volume5 (CTV) and in
the healthy volume strongly correlate with the clinical outcome [22]. As mentioned
above, when tumors are located beyond 2 cm from the skin, heating is better
achieved with a phased array of antennas; such applicators cannot be controlled
intuitively while doing the HT treatment (i.e. following the historically applied
subjective steering based on empirical knowledge and patient complaints).

Figure 1.2: Schematic view of hyperthermia treatment plan [23]

Rather, a more objective-based patient-dedicated treatment plan is followed, as
described in [3]:

1. Image acquisition and modeling: CT or MRI images are acquired with the
patient in treatment position. A 3D patient model is created via manual,
semi-automatic, or automatic segmentation of different tissue types (Figure
1.2, a and b). The position of the patient model relative to the applicator
must be documented and reproduced during the actual treatment.

5Tissue volume that contains the gross tumor volume (GTV) and subclinical microscopic
malignant lesions
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1.4 – HT treatment plan for H&N cancer

2. Virtual insertion into software: The segmented patient model and a 3D model
of the applicator are inserted into an electromagnetic simulation software based
on Finite Elements (FE) or Finite-Difference Time Domain (FDTD) methods.
Tissue-specific electromagnetic (relative permittivity εr [−], electric conductiv-
ity σ [S m−1] ) and thermal parameters (thermal conductivity k [W m−1K−1],
perfusion w [ml kg−1K−1]) are assigned, usually using the baseline values in
the IT’IS database. This digital twin is used for the applicator configuration
and to explore possible temperature distribution scenarios.

3. Applicator configuration: The phase(s), amplitude(s) and frequency(ies) of
the applicator (steering parameters) are optimized to concentrate heat on the
tumor while avoiding overheating surrounding healthy tissues (Figure 1.2, c
and d). Various optimization strategies have been developed for phased array
systems, which can be subdivided into temperature-based and SAR-based op-
timization methods. The former focuses on maximizing tumor temperatures
while maintaining hard or soft constraints (penalty terms added to the objec-
tive function) on healthy tissues. Temperature-based optimization methods
are usually based on Pennes model or DIVA model, but solving the corre-
sponding differential equation is extremely computationally intensive. SAR-
based optimization aims to maximize the ratio of absorbed power in the tumor
versus surrounding areas. This method can predict hotspots in a faster and
not necessarily less accurate way with respect to the temperature-based one,
as it accounts only for the electric field and is not influenced by the choice of
the thermal model and their related inaccuracies. A more detailed description
of the two techniques can be found in [24].

4. Placement of thermometry catheters: Closed-tip thermometry catheters are
placed interstitially, intraluminally, and/or on the skin. A CT scan is per-
formed to accurately document the catheter tracks.

5. Patient positioning: In the hyperthermia treatment room, the patient is posi-
tioned relative to the microwave applicator according to the optimized setup.

6. Insertion of thermometry fibers and probes: Optical thermometry fibers are
inserted into the interstitial and intraluminal catheters. Additional thermom-
etry probes are placed on the skin and at the inflow and outflow of the water
bolus.

7. Waterbolus preparation: The water bolus is filled with demineralized water
circulated at a temperature range of 20-30 °C. It improves the coupling be-
tween the electromagnetic field and the patient and to controls skin surface
temperature, avoiding superficial hotspots.

8. Transfer of Optimized Parameters: The optimized phase and amplitude set-
tings are transferred to the hyperthermia system unit and applied during the

9



Hyperthermia: state of the art

treatment session (Figure 1.2, e). Power is increased incrementally (one step
per minute).

9. Temperature monitoring and safety measures: Radiation is stopped if temper-
ature probes indicate tolerance limits are exceeded or if the patient reports
pain. Many quantitative assessments can also be used as stopping criteria,
for instance the maximum input RF power defined by [22] as the power that
leads to a threshold SAR of 60 Wkg−1, averaged over cubic spaces of 1 cm3,
in the spinal cord. If a hot spot is detected, amplitude and phase coefficients
are re-optimized.

(a) (b)

(c)

Figure 1.3: Pictures of the setups for three different patients discussed in [25],
with tumors in the oropharynx (a), nasopharynx/nasal cavity (b) and thyroid (c),
respectively.

Three examples of complete patient setup are given in Figure 1.3.

10



Chapter 2

Experimental setup

2.1 Critical aspects of temperature monitoring
Current MW hyperthermia treatments for deep tumors are driven by qualitative
patient complaints, where heating is steered from a region of complaint by adding
constraint factors for that region, and temperature monitoring with a few mea-
surement points [7]. As mentioned in Section 1.4, the most common approach
involves inserting invasive interstitial and intraluminal catheters containing probes
into the CTV. The probes often consist of fiber optic sensors (FOSs) that do not
interfere with the electromagnetic field. However, this practice poses significant
challenges for patients. The placement of catheters can cause serious morbidities,
including pain, local inflammation, and other side effects [22]. In addition, temper-
ature probes provide limited spatial information, as they measure only along the
catheters insertion path. Magnetic resonance thermometry (MRT) and computer
simulations are the two non invasive or minimally invasive alternatives [7] that are
being developed.

MRT provides 3D temperature maps superimposed with the patient anatomy
using the proton resonance frequency shift method [26], allowing operators to obtain
MRT maps about every 10 or 15 min and only now are starting to be used in HT
treatment guidance. Magnetic resonance imaging can also be used to measure
perfusion, with higher accuracy, using a variety of techniques [27]. Unfortunately,
its widespread use is hindered by the high operating costs of MR scanners and the
adaptations of the heating equipment to magnetic fields (they mainly consist of
metallic structures). Currently, it is also not feasible for moving tumors (abdomen)
and it is difficult to maintain stable temperature measurements over long durations
6090 min due to motion artifacts (respiratory motion, organ motion and air travel)
and magnetic field drift artifacts [7, 24].

11



Experimental setup

Computer simulations are typically used to generate a pre-treatment plan, but
the same tools are also used for online treatment guidance, which uses a feedback
scheme that is updated in real-time to optimize the treatment delivery. They use
numerical methods, measured temperatures and the 3D patient-specific anatomical
model to generate SAR and temperature maps of the region of interest (ROI).

This research is focused on computer simulations. Reconstructing large temper-
ature maps from few and possibly noisy measurements is an “ill-posed problem”,
meaning that small variations in the input data can lead to large variations in the
output. Moreover, their accuracy is highly dependent on the dielectric and thermal
properties of tissues, which are not measured in the specific patient. This often leads
to unacceptable reconstruction errors that can negatively impact the outcome of
therapy. To investigate preprocessing strategies aimed at improving the prediction
of patient temperature distribution, a controlled and realistic experimental setup
was required. In this chapter, this setup is described, as well as the mathematical
framework used to address the ill-posed nature of the problem, and some concepts
that will be used in Chapter 3 and Chapter 4.

2.2 Virtual model
Considering the HTP guidelines mentioned in Section 1.4 and to reproduce realistic
treatment conditions, one of the human models present in the Virtual Population
(ViP) of the Sim4Life software (see Appendix A) was chosen. The ViP models rep-
resent a series of comprehensive high-resolution anatomical digital twins generated
from magnetic resonance imaging data of volunteers. These models are used for
biophysical and biomedical modeling and simulations, such as evaluating the safety
of medical implants and characterizing specific demographic groups. Specifically,
the experiments presented in this thesis were performed using Yoon-Sun (2.1b),
whose characteristics are detailed in Table 2.1c. To simulate an applicator, a cir-
cular array of 8 probe-fed patch antennas was designed in Sim4Life, with features
optimized to obtain a working frequency of 434 MHz. These components, together
with the water bolus, were then integrated into the ViP model, as shown in Figure
2.1a.

A tumor (volume 4041.44 mm3 and overall dimensions 18.07 mm, 16.26 mm and
26.25 mm along the x, y, z axes, respectively) was modeled inside the phantom neck
region (Figure 2.2), to create a target region and simulate a realistic HT treatment
plan.
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(a) (b)

Characteristic Value
Age 26 [year]
Height 1.52 [m]
Weight 54.6 [kg]
BMI 23.6 [kg m−2]

(c)

Figure 2.1: Yoon Sun ViP model characteristics and visualization in Sim4Life:
(a) External view with antenna system and water bolus, (b) with visible internal
tissues, (c) key phantom characteristics.

Later, the entire volume was divided into a finite number of cubic elements
(voxels) with the Voxeler settings within the S4L workspace. Given the trade-off
between computational efficiency and model accuracy, the phantom was discretized
using a 2 mm maximum voxel size, with finer resolutions (1 mm) applied to the
neck region and an even more detailed, automatic refinement within the tumor
volume. This multiresolution approach ensures high fidelity in critical regions while
maintaining feasible computation times for iterative simulations 1. Each voxel
is treated as a Yee cell, and the finite-difference time-domain method (FDTD)
is applied (see Appendix A), allowing for the electric and magnetic fields to be
evaluated pointwise for a given excitation of the antennas.

1From S4L manual: “[...]in an evenly spaced mesh, if the mesh step size is halved, the storage
needed increases eightfold, and the computation time becomes 16 times longer.”
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(a) Posterior-lateral view of the tumor (el-
lipsoid in green), together with the trachea
(light blue), the spinal cord (aquamarine)
and the thyroid glands (purple)

(b) Fronto-lateral view of the tumor (ellip-
soid in green), together with the trachea
(light blue), the spinal cord (aquamarine)
and the thyroid glands (purple)

2.3 Antenna feedings optimization
Once the ROI has been voxeled, the next step consists in optimizing the amplitudes
and phases of antennas with SAR, in particular using a Particle Swarm Optimiza-
tion (PSO), which is a computational method inspired by the social behavior of
birds and fish that is commonly used for complex systems. It works by simulat-
ing a “swarm” of particles (potential solutions) that move through the solution
space [28]. Each particle adjusts its position based on the following:

• Personal best position (pBest): the best solution the particle has achieved so
far.

• Global best position (gBest): the best solution found by the entire swarm.

• Velocity: a vector determining the direction and magnitude of the particle’s
movement, influenced by the two bests above.

An EM FDTD Multiport Simulation conducted in Sim4Life was used to solve
Maxwell’s equations by activating one antenna at a time with a normalized power
input of 1 W. Under these conditions, the total electric field would naturally super-
impose at the geometric center of the array, failing to target the tumor due to the
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2.3 – Antenna feedings optimization

absence of phase and amplitude diversity. To address this, the individual electric
fields generated by each antenna and computed for each voxel were exported to
MATLAB, where the PSO algorithm was applied to determine the optimal set of
feeding coefficients. The total electric field E can be expressed as:

E =
N∑

n=1

ν̃n · En (2.1)

In this expression, En represents the electric field produced by the n-th antenna
when it operates independently (i.e., all other antennas are deactivated) and ν̃n are
the coefficients that need to be optimized. For the optimization of both phase and
amplitude, ν̃n can be written as:

ν̃n = C · ν0 · ζn · eiϕn (2.2)

where ϕn are the phases of the antennas included in the range [0, 2π], ν0 =
√
2R0P0

with R0 = 50Ω and P0 = 20W, ζn is included in the range [0, 1] and C is:

C =
1√∑
n ζ

2
n

(2.3)

The fitness function to minimize was the Hotspot to Tumor Quotient (HTQ),
identified by Canter et al. [29] as particularly effective for SAR-based optimization.
HTQ is defined as:

HTQ =
⟨SARV 1⟩
⟨SARtarget⟩

(2.4)

where ⟨SARV 1⟩ denotes the average SAR within the top 1% of healthy tissue
exhibiting the highest SAR values, and ⟨SARtarget⟩ represents the average SAR
within the tumor volume. Minimizing HTQ promotes effective energy deposition
within the tumor while reducing unwanted heating of healthy tissues. The results
of the optimization are presented in Table2.1. In the experiments that will fol-
low, these values will be used as feedings (phase and amplitude) for each antenna,
respectively.

In a clinical setting, the power settings (P0) should be adjusted to have suffi-
cient heating of the target volume and to avoid hotspots. Here, the focus is on
the accuracy of the temperature reconstruction rather than the closeness of the
temperature to clinically effective values, so the input power is left untouched. An
example of the SAR distribution with input power of 60 W is shown in Figure 2.2
in two planes that cut the tumor centroid; the tumor is shown as a green ellipsoid,
with decreased opacity when necessary to highlight SAR focusing.
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Table 2.1: Phase-amplitude optimization

Antenna (n.) ϕ [deg] ζ [V]
1 27.02 0.9281
2 32.51 0.8635
3 0 0.7359
4 0 0.1951
5 307.25 0.5934
6 293.51 0.6389
7 311.57 0.9966
8 0 0.8670

(a) (b)

Figure 2.2: Optimized SAR profiles obtained with the PSO algorithm, normalized
at 60 W input power; XY (a) and XZ (b) slices corresponding to maximum SAR

2.4 EM and Thermal simulations
Once the feedings have been chosen and the volume has been voxeled, an EM Ar-
ray Simulation is run in Sim4Life, exciting all the antennas simultaneously. The
dielectric and thermal properties of each one of the tissues of the phantom are
automatically assigned following the baseline values registered at the ITI’S founda-
tion, but can be modified within the simulation settings. In Chapter 3, the study
involved performing a series of simulations that varied both properties for muscle,
fat, subcutaneous adipose tissue (SAT), skin and tumor tissues; in Chapter 4 ,
mainly due to time limitations, only different combinations of thermal parameters
were considered in the four tissues. For each imposed set of properties ξ, the overall
field is computed and the Power Loss density [Wm−3] is extracted and saved in a
specified folder as a cache file. Subsequently, it is used as source for a Stationary
Thermal Simulation (TS), which assumes steady-state conditions where the tem-
perature no longer changes with time, focusing on the final equilibrium distribution.
In fact, the European Society of Hyperthermic Oncology (ESHO) guidelines [30]
recommend only considering the steady-state version of PBHE due to its lower
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computational time which is trivial for a real-time application. This is equivalent
to solving the following equation for T :

k∇2T + σ|E(P )|2 − ωblCblρbl(T − Tbl) = 0 (2.5)

Finally, as the thermal simulation is carried out, a temperature value is assigned to
each voxel of the phantom, defining a temperature map uniquely related to a given
set of tissue properties. The temperature map is then exported to Matlab, after a
little pre-processing: a Sim4Life analysis tool called mask filter was used to mask
out each antenna, the background, and the internal air, therefore considering only
the voxels of the tumor and healthy tissues. Since the extracted file also includes
the X, Y and Z coordinates of each voxel, only a certain interval of points have
been selected in Matlab’s workspace, in particular the one corresponding to Yoon
Sun’s neck area. The only thing needed is the index range of the desired slices,
which in this case was 60 to 120. The resulting 3-dimensional map is reshaped into
a [n×1] vector, with n equal to the number of voxels in the region of interest, namely
374624, containing NaNs in the masked portions and point-wise temperature values
(in °C) in the rest of the volume. It should be highlighted that, in this scenario,
the tumor volume represents 0.16% of the total ROI.

2.5 Reconstruction method
The reconstruction method aims to estimate the temperature distribution of the
entire ROI of the patient based on a limited set of invasive temperature measure-
ments. This is an important requirement, as real-time knowledge of the temperature
distribution is required to control the energy settings. However, directly measuring
the entire temperature field in a clinical setting is challenging due to the invasive
nature of thermometry catheters and the high cost of alternative imaging-based
methods.

Let us assume that mb, b = 1, . . . , B is a subset of unique combinations of
parameters used in EM and thermal simulations: then it is possible to build B
different temperature maps of elements n that represent possible outcomes of a
simulation for the same patient and consequentially different possible adjustments
to the initial treatment plan. These maps can be obtained in a pre-treatment phase.
Let us also assume that mt, t = 1, . . . , A is another subset of unique points in the
parameters space, such as that:

∀ψ ∈ mt, ∀ ξ ∈ mb, ψ ̸= ξ, with mt,mb ⊂ R16

with ψ, ξ any given combination of the respective subset. The temperature maps
generated with mt can be used as target maps, i.e. a dataset of simulated tem-
perature maps on which the reconstruction method can be tested and that ulti-
mately form the matrix Φt. During treatment, the measured temperatures along
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the catheter track provide a partial snapshot of the patients actual temperature
map. The reconstruction method assumes that the true temperature distribution
can be approximated as a linear combination of the precomputed maps with weight-
ing coefficients β that are obtained solving the following equation:

Φ|catheter points × β = f(r;ψ)|catheter points (2.6)

where

• f|catheter points represents the measured temperatures along the catheter track.
In a clinical setting, the full temperature map f is unknown, making it impos-
sible to directly assess the reconstruction error; however, in this experimental
setup, one of the target maps previously defined is used as ground truth.

• Φ|catheter points represents the temperatures at the same catheter points in the
matrix Φ [n× B], where all pre-treatment simulated maps are stored.

Once the vector β [B × 1] is computed, it is possible to attempt reconstructing
a [n× 1] approximation f̂ of the unknown patient’s map as follows:

Φ|ROI × β = f̂(r;ψ)|ROI (2.7)

Listing 2.1: Example of inversion with lsqlin function enforcing non-negativity
and sum-to-one conditions

% bound ub i s not necce s sa ry
beta = l s q l i n ( Phi ( ind_Cath , : ) , f ( ind_Cath )+N, [ ] , [ ] , ones (1 ,B

) ,1 , z e r o s (B, 1 ) ,+ in f , 1 ) ;

f_hat = Phi ( ind_ROI , : ) ∗ beta ;
e r r = abs ( f_hat − f ( ind_ROI) ) ;

The reconstruction error therefore is:

err = |f̂(r;ψ)− f(r;ψ)| (2.8)

where r ∈ Ω = ROI ⊂ R3, and ψ is the parameter set of the target map. It all
depends on Φ, also called basis, and on the inversion algorithm used to evaluate β.

In this project, 20 catheter points were used, equally spaced with steps of one
voxel and pointing toward the tumor center (Figure 2.3). A custom Matlab function
was employed to map their respective indices within the temperature vectors.
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Figure 2.3: XY plane section of Yoon Sun neck, at Z = -0.005 m (tumor center).
The color levels indicate the temperature of each pixel, while the catheter points
are represented as black dots.

2.5.1 Inversion algorithms
The first step is to determine the solution β for Equation 2.6, which, for the sake
of clarity, will be simplified here as Ax = b (β is x). This can be achieved through
various inversion algorithms; this section provides a description of the four that
have been assessed.

The first is the Ordinary Least Squares (LSQ). This technique tries to find the
set of values that minimizes the sum of squared errors, expressed as ||Ax − b||22
through the iterative algorithm called lsqr. It can be sensitive to noise, meaning
that even small errors in the measurements can significantly affect the results.

The second method, Constrained Least Squares (LSQLIN constraints), adds
additional conditions to the basic LSQ method. These constraints are enforced
using the lsqlin Matlab function, which handles linear inequalities and equalities
as follows:

min
x

∥Ax− b∥22 subject to

 Cx ≤ d,
Ceqx = deq,
lb ≤ x ≤ ub,

Where:

• A and b define the least squares objective ∥Ax− b∥22.

• C and d define the linear inequality constraints Cx ≤ d, which were NOT
imposed in our application.

• Ceq and deq define the linear equality constraints Ceq was set to a vector of ones
and deq as the value 1. This ensures that the sum of all estimated contributions
equals one, maintaining some kind of balance in the reconstruction.
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• lb and ub are the lower and upper bounds on x, respectively. The lower bound
was imposed as a vector of zeros, while the upper bound was not enforced;
this ensures that the estimated temperatures cannot not be negative.

The third method, Tikhonov regularization (Tikhonov), addresses the instability
of the LSQ solution by adding a “regularization” term to the equation. The modified
equation becomes ||Ax − b||22 + µ||x||22, where µ is a parameter that controls the
balance between the fitting of the data and the stability of the solution. This
additional term, imposed equal to 13.35 in this thesis, penalizes large fluctuations
in the estimated temperatures. This method is particularly useful when dealing
with noisy data, as it reduces the risk of overfitting.

The fourth and most advanced method is L1-Regularization (L1-Magic), which
focuses on promoting sparsity in the solution [31]. The idea is to find a β (x) with
most of its values equal to zero or near zero, which translates to the possibility of
having a patient temperature map very different from some temperature maps of
the basis and very similar to some others. The optimization problem is formulated
to find:

min
x

||x||1, subject to ||Ax− b||2 ≤ ε, (2.9)

where ||x||1 is the ℓ1-norm of the solution and ε represents the allowable error in the
reconstruction. In particular, the l1qc_logbarrier2 function was used: it allows
an initialization of the starting point and then iteratively updates the solution using
Newton’s method within the log-barrier framework. This barrier term becomes
increasingly steep as the solution approaches the constraint boundaries, effectively
guiding the solution towards the feasible region while minimizing the objective
function. The barrier parameter τ is increased in each iteration to tighten the
approximation of the ℓ1- norm.

2.6 The parameters space
The space of the parameters is an N-dimensional space, with N being the number
of tissues multiplied by the number of parameters considered. The selection of a set
of dielectric (εr, σ) and thermal (k, w) parameters for all chosen tissues (muscle,
skin, fat and tumor) translates to the definition of a point with a unique set of 16
coordinates (8 if considering only the thermal ones) inside a 16-D (8-D) hypercube
whose boundaries are taken from the maximum and minimum values reported in
the literature. This choice always leads to the generation of a specific temperature
distribution. In this thesis, the ranges listed in Table 2.3 have been considered; to

2developed by Justin Romberg at Georgia Tech
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highlight the discrepancy with the baseline values of the same tissues, Table 2.2 is
also shown.

Table 2.2: Baseline parameter values for healthy tissues, from [19,32,33].

Tissue εr [−] σ [S m−1] k [W m−1K−1] w [ml kg−1K−1]
Muscle 56.90 0.805 0.49 39.10

Fat 11.60 0.082 0.21 33.00
Skin 49.40 0.681 0.37 106.00

Tumor 59.00 0.890 0.51 72.30

Table 2.3: Min-Max parameter values for different tissues, from [19,32,33].

Tissue εr [−] σ [S m−1] k [W m−1K−1] w [ml kg−1K−1]
Muscle 51.21-62.59 0.644-0.966 0.40-0.56 19.00-442.80

Fat 10.44-12.76 0.066-0.098 0.18-0.50 20.00-255.00
Skin 44.46-54.34 0.545-0.817 0.32-0.50 49.00-175.00

Tumor 53.10-64.90 0.712-1.070 0.41-1.50 36.15-848.00

Sobol distribution

Since the specific set of parameters belonging to the patient is unknown, every
combination of parameters is equally likely, and therefore, the selection of a subset
to build Φ should not be biased towards a specific region of the hyperspace. As
a consequence, the Sobol distribution was used as the main sampling method (see
Appendix A for details of the algorithm), varying the number of points as needed.
The Sobol sequence is a low-discrepancy method designed to more uniformly cover
high-dimensional spaces compared to purely random sampling. This ensures that
sampling points are evenly distributed across all 16 (or 8) dimensions, minimizing
gaps and clustering (e.g., Figure 2.4).

This thesis focuses on the two key pre-treatment elements of the reconstruction
method: β and Φ. In fact, Chapter 3 explores the possibility of increasing the
number of effective measurement points used to compute β. Since the number of
catheter positions is inherently limited in a clinical setting, one way to improve
reconstruction is to extract more information by integrating alternative sources
of tissue-related data. In this part of the work the testing was carried out using
the leave-one-out method: B − 1 maps were used to reconstruct the left-out map,
iteratively until all B basis maps were used as targets. Instead, Chapter 4 focuses
on how the basis matrix Φ is built. Although the Sobol sequence is widely used for
its ability to uniformly cover a parameter space, it does not necessarily guarantee
the best outcome for all cases. The relationship between tissue properties and
temperature distributions is complex, meaning that some regions of the parameter
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Figure 2.4: Example of sampling uniform in 2D, but not in 3D (bottom right). The
same can happen by trying to sample uniformly tissue by tissue instead of all four
tissue simultaneously

space may have a bigger impact on reconstruction accuracy than others. Instead of
simply increasing the number of samples everywhere, targeted sampling strategies
are explored such that coverage in those regions is improved and redundancy is
avoided. These strategies focus on minimizing the Euclidean distance between the
temperature maps or exploring areas that lead to a larger reconstruction error.
Here, Φt was built using a Sobol distribution with A = 500. Ultimately, the goal is
to build a more robust and reliable framework to estimate temperature distributions
during hyperthermia treatments, minimizing the impact of uncertainties in tissue
properties and measurement limitations.
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Chapter 3

Active reflection coefficients
implementation

The first goal simply consists in improving the inversion output β and thus the
reconstruction, by adding measurement points from an alternative source. This
source has to be non-invasive and assessable in a clinical setting, which is one of
the reasons why the S parameters (or active reflection coefficients) were chosen.

3.1 Introduction
Before describing the implementation of the technique, it is important to explain
why active reflection coefficients can be considered carriers of additional informa-
tion; one must refer to the research field of microwave imaging [34] (MWI). MWI is
a non-invasive modality for retrieving the geometrical and/or dielectric properties
of objects (scatterers) embedded in an inaccessible domain through probing MW
radiation; it has wide applications in non-destructive evaluation, medical imaging,
remote sensing, seismic exploration, optics, atmospheric sciences, and other fields.

Consider an object occupying the volume V bounded by the surface S with a unit
outer normal n̂. This object of interest is embedded in a homogeneous background
with dielectric constant εbr. When an incident time-harmonic electromagnetic wave
with electric field Ei(r) and angular frequency ω impinges on the object, one can
measure the scattered field Es(r) outside it. The purpose of MWI is to reconstruct
the shape of the object (for a conductor) or the dielectric constant distribution
εr(r) of the object (for a dielectric) based on the measured scattered field. Starting
with Maxwells equations as well as appropriate boundary conditions and using the
Greens function technique, the following integral equations can be derived that link
the scattered field to the property function of the object [35]:
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For a Conductor:

Es(r) = jωµ

∫∫
S

G(r, r′) · Js(r′) dS ′, r /∈ S (3.1)

−n̂× Ei(r0
′) = jωµn̂×

∫∫
S

G(r0, r′) · Js(r′) dS ′, r0 ∈ S (3.2)

For a dielectric:

Es(r) = −k2
∫∫∫

V

G(r, r′) ·
[
εr(r)
εbr

− 1

]
E(r′) dV ′, r /∈ V (3.3)

E(r0) = Ei(r0)− k2
∫∫∫

V

G(r0, r′) ·
[
εr(r′)
εbr

− 1

]
E(r′) dV ′, r0 ∈ V (3.4)

Where:

• Js: Induced surface current density on the conductor.

• G: Dyadic Greens function1.

• E: Total electric field in the dielectric object.

• µ: Magnetic permeability.

• k: Wave number of the background medium.

Equations 3.1 and 3.3 show the relationship between the incident fields, the
scattered fields and the properties of the scatterer, which in the case of this thesis
is the body model of Yoon-Sun. In both a real scenario and a simulated one, the
overall change in the scattered field, linked to the change in the dielectric properties,
can be measured. Therefore, the eight antennas are indirectly used as additional,
non-invasive probes sensitive to the specific Sobol combination of parameters. This
is where the active S-parameters or active reflection coefficients come into play. In
general, the S-parameters of a scattering matrix Sij provide a complete description
of the network system as seen at its N ports, making it unnecessary to know what
components comprise its interior [36]. Sij is found by driving port j with an incident
wave of voltage V inc

i and measuring the scattered wave of amplitude V scat
i coming

out of port j:

Sij =
ascati

aincj

, fori, j = [1, N ] (3.5)

1Impulse response of an inhomogeneous linear differential operator defined in a domain with
specified initial conditions or boundary conditions.
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where:
ainci =

1

2

V inc
i√
Z0i

(3.6)

ascati =
1

2

V scat
i√
Z0i

(3.7)

with Z0i = nominal matching impedance at port i, typically 50Ω.

Figure 3.1: A general four-port microwave network, where forward (or incident)
and backward (or scattered) waves are defined as a+1−4 and a−1−4, respectively.

For example, consider the N-port network shown in 3.1; its associated scattering
matrix is: 

a−1
a−2
a−3
a−4

 =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S44

S41 S42 S43 S44



a+1
a+2
a+3
a+4

 (3.8)

Notice that the self terms Sii (diagonal elements of the scattering matrix) are the
reflection coefficients associated with each port, and the off-diagonal terms Sij|i ̸=j

are the transmission coefficients [36]. The standard definition states that, to obtain
such a matrix, a signal is injected into one port with all other inputs at all other
ports set to zero. This implies that all the ports with no signals injected are match-
terminated, so that no reflections occur. If this procedure is followed for all N ports,
the standard scattering matrix is complete. However, when the circular array of
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antennas must consider the “active” reflection coefficients, that are measured when
all array elements are in place and excited [37]:

Γactive
i =

ascati

ainci

, whenak = aexck ∀k (3.9)

⇒ Γactive
i =

N∑
k=1

Sik
aexck

aexci

= Sii +
∑
k ̸=i

Sik
aexck

aexci

(3.10)

It is to be noted that the active reflection coefficients are complex numbers and
they depend on the frequency.

3.2 Extraction
A total of 75 unique parameter combinations were selected using the Sobol sequence
in the 16-D parameter space. For each one of them, an EM simulation was per-
formed in Sim4Life. A Python script (3.1) then automatically extracted the active
reflection coefficients (RC) for each antenna.

Listing 3.1: Extraction of active reflection coefficients
# R e f l e c t i o n c o e f f i c i e n t s
for patch_num in range (1 , 9) :

# Adding a new EmSensorExtractor
em_sensor_extractor = s imu la t i on_ext rac to r [ " Source␣

{}␣␣ ( Patch␣{}) " . format (patch_num , patch_num) ]
document . Al lAlgor i thms . Add( em_sensor_extractor )

# Adding a new Exce lExpor ter
inputs = [ em_sensor_extractor . Outputs [ " R e f l e c t i o n ␣

C o e f f i c i e n t ( f ) " ] ]
exce l_exporte r= a n a l y s i s . expo r t e r s . ExcelExporter (

inputs=inputs )
exce l_exporte r . FileName = (dir_RC + "RC{}_Patch {} .

x l sx " . format ( i , patch_num) )
exce l_exporte r . UpdateAttr ibutes ( )
document . Al lAlgor i thms . Add( exce l_exporte r )
exce l_exporte r . Update ( ove rwr i t e=True )
exce l_exporte r . Update ( ove rwr i t e=True )

Following this, thermal simulations were conducted and the corresponding tem-
perature maps used to construct the Φ matrix were extracted. The extracted RC
data for each antenna was stored in a 5002 × 3 Excel table. The first column
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listed frequencies ranging from 384 MHz to 484 MHz in 0.02 MHz increments.
The second and third columns contain the real and imaginary parts of the RC,
respectively. To isolate the relevant values, the row corresponding to the working
frequency (434 MHz) was extracted with a custom code (3.2).

Listing 3.2: Extraction of real and imaginary parts of the RC at 434 MHz
function FromExcelToMat (B)
% Function to e x t r a c t the S − a c t i v e parameter at 434 MHz

fo r each
% antenna and each Sobo l s e t o f parameters

% inpu t s :
% − B = t o t a l number o f Sobo l s e t s cons idered
% Outputs :
% − S_active . mat = 16 x B matrix contaning the a c t i v e

r e f l e c t i o n
% c o e f f i c i e n t s at the working f requency

f i l e p a t h = cd + "\ Re f l_coe f f " ;
S = zeros (16 , B) ;

t ic
for i = 1 : B

for j = 1 : 8
i f i s f i l e ( s t r c a t ( f i l e p a t h , ’ \RC’ ,num2str( i ) , ’ _Patch

’ , num2str( j ) , ’ . x l sx ’ ) )
RCtable = readtab l e ( s t r c a t ( f i l e p a t h , ’ \RC’ ,

num2str( i ) , ’ _Patch ’ , . . .
num2str( j ) , ’ . x l sx ’ ) , VariableNamingRule="

pre s e rve " ) ;
RC = tab l e2a r ray ( RCtable ) ;

else
disp ( " Error : the re aren ’ t as many combinat ions

o f parameters " + . . .
" as you think " )

end
%s e l e c t on ly the va l u e s at 434 MHz ( index 2501)
S( j , i ) = RC(2501 , 2) ;
S ( j +8, i ) = RC(2501 , 3) ;

end
end
toc
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save ( " S_active . mat " , " S " ) ;

end

These values are then concatenated to form a 16-element feature vector for each
iteration:

S(:, j) =



ℜ{RC1}
ℜ{RC2}

...
ℜ{RC8}
ℑ{RC1}
ℑ{RC2}

...
ℑ{RC8}


j

, example : S(: ,1) =



−0.1945
−0.2416
0.0098

−1.1384
0.1464

−0.0313
0.1666

−0.1821
0.1535

−0.1455
−0.3213
−3.6487
−0.1888
−0.4107
−0.0858
−0.2031



(3.11)

where S(:, j) represents the feature vector corresponding to the j-th iteration,
with the first eight elements containing the real parts of the reflection coefficients
and the last eight containing the imaginary parts. An example of the first column
of the S-matrix is given. The S matrix is concatenated to the matrix Φ evaluated
in the catheter indexes, creating a matrix with dimensions [36× 75]:[

Φ|catheter points

S

]
× β =

[
f |catheter points

Sf

]
(3.12)

Where Sf stands for the S-active parameters related to the target map’s set of
parameters (only one column).
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3.3 Accuracy analysis
This study evaluated the accuracy of the reconstruction with and without the
inclusion of the S matrix in a combination of different scenarios, resulting in a total
of 64 cases. The scenarios are structured as follows:

• Four inversion methods (described in 2.5.1).

• Two catheter directions of insertion (x and y directions along the transversal
plane).

• Two sets of measurement points (the limited subset of 20 catheter points vs.
the entire ROI 2).

• Noise-free measurements vs. addition of Gaussian noise (standard deviation
σ = 0.2°C and mean µ = ± 0.1°C), with 100 positive realizations and 100
negative realizations for each target map.

In order to have a comprehensive view of performance and compare all different
cases, some custom metrics were created and used along with the T50, which is a
clinically relevant parameter to determine the quality of hyperthermia [38].

3.3.1 Goodness, likelihood and error thresholds
The goodness function is defined as the percentage of voxels whose reconstructed
temperature has an error lower than a certain threshold:

g(ψ, χ) =
V ol(r ∈ A : |f̂(r;ψ)− f(r;ψ)| ≤ χ)

V ol(A)
· 100 (3.13)

where χ °C is the error threshold and A = ROI ⊂ R3 represents the set of
mesh points where the temperature map is evaluated. f̂(r) is the reconstructed
temperature map, while f(r;ψ) is the target map corresponding to a given set
of pseudo-random parameters ψ. According to its definition, g = 100 denotes a
perfect (ideal) reconstruction. Repetition of the reconstruction for a large number
of target maps yields a matrix of goodness values, where each row represents a
different target temperature map, and each column corresponds to a specific error
threshold.

Among all the considered cases, the likelihood function quantifies the probability
that at least a percentage ζ of the ROI exhibits an error lower than a specified

2Ideal case which sets the upper limit in the accuracy of the reconstruction under the same
combination of experimental conditions
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threshold χ:

e(ζ, χ) =

∑
{g(ψ, χ) : g(ψ, χ) ≥ ζ}

mt

(3.14)

In other words, the fraction of target maps whose reconstruction meets a certain
goodness is computed for each threshold. In those trials were noise was added, mt

in Equation 3.14 has to be multiplied by the number of noise realizations, for a
total of 15000 reconstructions.

The key estimator in this study is χ95, defined as the minimum error threshold
achieved by at least 95% of the ROI with a 95% probability:

χ95 = min
χ

e(95, χ) > 0.95 (3.15)

The error thresholds ranged from 0 °C to 1.5 °C with a spacing of 0.02 °C. It
should be noted that this metric is particularly stringent as it focuses not only on
a broad spatial accuracy but also on a high level of certainty.

As shown in Table 3.1 and Table 3.2, χ95 exhibits minimal sensitivity to the
inclusion of S-parameters. In the noise-free case, LSQR achieves the lowest χ95 (0.3
°C in the x direction), followed by Tikhonov and LSQR (0.9 °C), while LSQLIN
constraints yields the highest values (1.2 °C in the y direction, 0.9 °C in the x
direction). In noisy conditions, LSQR and L1 magic χ95 exceeded the maximum
error threshold. Tikhonov remains the best choice, achieving 0.9 °C in the x di-
rection and 1.10 °C in the y direction. LSQLIN constraints follows with slightly
higher values (0.96 °C in the x direction, 1.18 °C in the y direction).

Table 3.1: X95 [°C] using 20 catheter measurements without noise.
The reconstruction using the whole ROI yielded a X95 of 0.06, 0.4,
0.08 °C for the LSQR, LSQLIN constraints and Tikhonov methodsa,
respectively, regardless of S and direction.

Method DIR. Y DIR. X
Without S With S Without S With S

LSQR 0.98 0.98 0.3 0.36
LSQLIN constraints 1.20 1.22 0.9 0.96

Tikhonov 1.08 1.08 0.9 0.9
L1 magic 1.02 1.0 0.9 0.92

a L1 magic results in the whole ROI couldn’t be estimated due to the
algorithm need to generate matrices exceeding storage capacity.
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Table 3.2: X95 [°C] with Gaussian noise added to the 20 catheter measurements.
The reconstruction using the whole ROI yielded a X95 of 0.14, 0.44, 0.16 °C for the
LSQR, LSQLIN constraints and Tikhonov methodsa, respectively, regardless of S
and direction.

Method DIR. Y DIR. X
Without S With S Without S With S

LSQR > 1.5 > 1.5 > 1.5 > 1.5
LSQLIN constraints 1.18 1.18 0.96 0.94

Tikhonov 1.10 1.10 0.9 0.9
L1 magic > 1.5 > 1.5 > 1.5 > 1.5

3.3.2 Temperature in the tumor and healthy tissues
The T50 is defined as the median temperature in the tumor volume and it was used
in this differential formulation:

∆T50 = |T50 − T̂ 50| (3.16)

where T50 is the median temperature of the tumor in the target map and T̂ 50 is the
median temperature of the tumor in the reconstructed target map. The ∆T was
also evaluated, defined as the median of the absolute difference between the target
map and the reconstructed map on the entire ROI.

∆T = median(|f|whole ROI − f̂ |whole ROI |) (3.17)

These metrics too were evaluated for each target map and then their median was
computed across the entire test set (75 reconstructions in the noiseless scenarios
and on 15000 reconstructions in the noisy scenarios), in order to have a unique
representative value for each scenario.

The effect on ∆T is more pronounced than on χ95 (Table 3.3 and Table 3.4).
Without noise, LSQR in the x direction achieves the lowest ∆T (0.0318 °C), fol-
lowed closely by LSQLIN constraints (0.0470 °C). In noisy conditions, the per-
formance of LSQR deteriorates drastically, reaching 4.7878 °C in the x direction,
although the S parameters help mitigate this, reducing it to 1.7162 °C. LSQLIN
constraints in the x direction emerges as the best choice (0.0877 °C without S,
0.0729 °C with S), maintaining a low error even in noisy conditions. Tikhonov and
L1 magic perform worse, with values exceeding 0.13 °C and 4.40 °C, respectively.

For ∆T50 the differences in noise-free conditions are minor, with LSQLIN con-
straints in the x direction (0.2953 °C) yielding the best performance, followed by
Tikhonov (0.3390 °C) and LSQR (0.3432 °C). However, under noise, LSQR in
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Table 3.3: ∆T [°C] using 20 catheter measurements without noise. The recon-
struction using the whole ROI yielded a ∆T of 0.0053, 0.0251, 0.0085 °C for the
LSQR, LSQLIN constraints and Tikhonov methodsa, respectively, regardless of S
and direction.

Method DIR. Y DIR. X
Without S With S Without S With S

LSQR 0.0802 0.0712 0.0318 0.0285
LSQLIN constraints 0.0885 0.0826 0.0470 0.0435

Tikhonov 0.1315 0.1327 0.0917 0.0911
L1 magic 0.2270 0.2094 0.1719 0.1670

Table 3.4: ∆T [°C] with Gaussian noise added to the 20 catheter measurements.
The reconstruction using the whole ROI yielded a ∆T of 0.1000, 0.0549, 0.1001 °C
for the LSQR, LSQLIN constraints and Tikhonov methodsa, respectively, without
S, regardless of the direction. With S, the whole ROI results were 0.0999, 0.0475,
0.1001 °C respectively

Method DIR. Y DIR. X
Without S With S Without S With S

LSQR 2.679 1.0144 4.7878 1.7162
LSQLIN constraints 0.0983 0.0944 0.0877 0.0729

Tikhonov 0.1606 0.1704 0.1355 0.1314
L1 magic 4.4446 3.6903 5.9377 4.4036

the x direction completely breaks down, producing extreme errors of 15.3122 °C,
even though S-parameters improve it to 6.9412 °C. LSQLIN constraints in the x
direction, on the other hand, remains highly stable (0.3279 °C without S, 0.3053
°C with S), making it the best choice for the estimation of tumor temperature.
Tikhonov follows closely behind (0.3402 °C), but LSQR remains too unreliable for
clinical use.
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Table 3.5: ∆T50 [°C] using 20 catheter measurements without noise. The recon-
struction using the whole ROI yelded a ∆T50 of 0.0163, 0.02544, 0.0582 °C for the
LSQR, LSQLIN constraints and Tikhonov methodsa, respectively, regardless of S
and direction

Method DIR. Y DIR. X
Without S With S Without S With S

LSQR 0.0187 0.0192 0.3432 0.3121
LSQLIN constraints 0.031 0.0299 0.2953 0.2834

Tikhonov 0.0578 0.0575 0.339 0.3369
L1 magic 0.0762 0.0783 0.2694 0.2789

Table 3.6: ∆T50 with Gaussian noise added to the 20 catheter measurements. The
reconstruction using the whole ROI yielded a ∆T50 of 0.1002, 0.2603, 0.1010 °C
for the LSQR, LSQLIN constraints and Tikhonov methodsa, respectively, without
S, regardless of the direction. With S, the whole ROI results were 0.1000, 0.2602,
0.1010 °C respectively

Method DIR. Y DIR. X
Without S With S Without S With S

LSQR 0.9759 0.4007 15.3122 6.9412
LSQLIN constraints 0.1195 0.1195 0.3279 0.3053

Tikhonov 0.1128 0.1125 0.3427 0.3402
L1 magic 0.9276 1.3419 33.5112 53.5681
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Chapter 4

Optimized sampling in the
parameters space

4.1 Introduction
The Sobol distribution offers an excellent foundation for exploring various combi-
nations of tissue parameters due to its uniform coverage of high-dimensional spaces.
However, that same uniformity can also become a limitation. Despite simplifying
assumptions, the relationship between the temperature distribution and the prop-
erties of the tissue in a heterogeneous region such as the head and neck (H&N)
remains very complex. As a result, two parameter sets very close in a particular
region of the parameter space may yield markedly different temperature maps and
vice versa. This was already evident in the first part of this work, where a single
EM simulation was performed with the baseline values of the dielectric parameters
and an initial Sobol distribution of 30 unique combinations (ξ30) of thermal param-
eters for the four mentioned tissues (8-D parameter space) used to create just as
many temperature maps. The function pdist in Matlab was used to calculate the
distance between each pair of combinations and maps, respectively; in particular,
the standardized Euclidean distance was chosen for ξ30 and the Euclidean distance
for Φ. The Euclidean distance between the i-th temperature map and the j-th one,
with i, j = [1 : 30], is defined as the norm of the euclidean vector difference:

d(Φ(r; ξi),Φ(r; ξj)) = ||Φ(r; ξi)− Φ(r; ξj)|| (4.1)

The standardized euclidean distance follows the same definition, but each coor-
dinate difference between observations is scaled by dividing by the corresponding
element of the standard deviation. Standardization is needed because in the pa-
rameter space the two coordinates have very different magnitudes, with w ranging
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from 19 to 848 [ml kg−1K−1] and k ranging from 0.18 to 1.5 [W m−1K−1]. The
distances can be visualized as the following matrix:

(a) (b)

Figure 4.1: Standardized euclidean distance [−] between initial batch of 30 Sobol
sets of parameters (a) and euclidean distance [°C] between their respective temper-
ature maps (b). The diagonal is nil as the distance between one map and itself is,
by definition, equal to zero.

Figure 4.2: Distribution of the thermal parameters in each tissue

It was observed that the temperature map n.28 (and n.17) had a large distance
from many of the other maps, although the corresponding set of parameters is not
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“far” from the others. Figure 4.2 may provide a clearer visualization.

The reconstruction of a map generated by parameters located in these high-
gradient regions (in the example, near distribution n.28) is likely to be inaccurate
due to the insufficient representation of that region within the basis matrix Φ
built using Sobol sequences. A straightforward approach might be to increase
the number of sampling points throughout the parameter space, but this would
not produce better results, as the basis matrix would be cluttered with “useless”
information; this was demonstrated by a previous research [39], where an SVD
analysis of Φ revealed a plateau in the magnitude of its eigenvalues, indicating
diminishing returns in information gain when using more than 50 to 70 Sobol
points. This redundancy is also evident in Figure 4.1 where the sets generally have
the same distance between them, but the temperature maps do not, with many
“close” to each other in the temperature space.

(a) (b)

Figure 4.3: Standardized euclidean distance [−] between 70 Sobol sets of parameters
(a) and euclidean distance [°C] between their respective temperature maps (b).

This behavior led us to choose new sets in a targeted way, allowing them to
cluster or disperse in some regions rather than always imposing uniformity. It must
be specified that the Sobol sequence was still used, but after iteratively questioning
the temperature space and subsequently restricting the algorithm’s area of effect.
As a reference to compare the efficacy of this optimization, 40 sets and maps were
chosen with Sobol and used together with the 30 mentioned sets and maps to build
a ’standard’ Φ, the distance matrix of which is shown in Figure 4.1.
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4.2 Target refinement strategies
The basis construction process was implemented in MATLAB, where the following
sequence of steps was executed in each iteration:

1. Check if, in the folder where the temperature maps are stored, there were more
than 70 maps. If there were, it maintained the first 30 (initial Sobol ones) and
randomly selected 40 from the remaining, then saved that specific basis Φ. If
there were not, select n temperature maps with either method, stored their
indexes and selected the respective sets of thermal parameters.

2. Create n “bounding boxes” (8D hypercubes) surrounding each couple of se-
lected points in the parameter space, leaving a margin d (fraction of a range
which depends on the method), for each tissue and always within some bound-
aries defined by the min-max values found in literature (4.1).

Listing 4.1: bounding box creation
% Read boundar ies from Exce l f i l e −> otherw i s e the

new ranges may not r e s p e c t the l i t e r a t u r e va l u e s
boundary_f i le = ‘ ‘ Parameters . x lsx ’ ’ ;

␣␣␣␣x_boundaries␣=␣ readmatr ix ( boundary_fi le , ␣ . . .
␣␣␣␣␣␣␣␣ . . . ’ Sheet ’ , 3 , ’ Range ’ , ’C2 :D5 ’ ) ; % k boundar ies

y_boundaries = readmatr ix ( boundary_fi le , . . .
. . . ’ Sheet ’ , 4 , ’ Range ’ , ’C2 :D5 ’ ) ; % w boundar ies

for j =1:n
for i = 1 : s ize ( column_pairs , 1)

col_x = column_pairs ( i , 1) ; % k column
indexes

col_y = column_pairs ( i , 2) ; % w column
indexes

X_data = therm_par ( : , col_x ) ; % k va lue s
Y_data = therm_par ( : , col_y ) ; % w va lue s

% Extrac t boundar ies f o r the current t i s s u e
x_min_boundary = x_boundaries ( i , 1) ;
x_max_boundary = x_boundaries ( i , 2) ;
y_min_boundary = y_boundaries ( i , 1) ;
y_max_boundary = y_boundaries ( i , 2) ;

x_min = min(X_data( i 0 ( j ) ) , X_data( i 1 ( j ) ) ) ;
x_max = max(X_data( i 0 ( j ) ) , X_data( i 1 ( j ) ) ) ;
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y_min = min(Y_data( i 0 ( j ) ) , Y_data( i 1 ( j ) ) ) ;
y_max = max(Y_data( i 0 ( j ) ) , Y_data( i 1 ( j ) ) ) ;

% Add a margin , r e s p e c t i n g the boundar ies
margin_x = d ∗ (x_max − x_min) ;
margin_y = d ∗ (y_max − y_min) ;

bounding_boxes{ j }( i , : ) = . . .
. . . [ max(x_min − margin_x , x_min_boundary

) , . . .
min(x_max + margin_x , x_max_boundary) ] ;

bounding_boxes{ j }( i +4, : ) = . . .
. . . [ max(y_min − margin_y , y_min_boundary

) , . . .
min(y_max + margin_y , y_max_boundary) ] ;

end
end

3. Generate k additional Sobol values within each bounding box (4.2).

Listing 4.2: New batch creation
% Quasi random Sobo l sequence %
q = qrandstream ( ’ sobo l ’ , numel (param) ∗numel ( t i s s u e s )

, . . .
. . . ’ Skip ’ , 1 ) ;

for j = 1 : n
% genera t e s k numbers from the f l u x o f semi−random
%numbers q . Then use them as c o e f f i c i e n t s f o r the
%ranges and them to the minimum va lue s
X = rand (q , k , numel (param) ∗numel ( t i s s u e s ) ) ;

for i = 1 : length ( bounding_boxes{ j })
NewBatch (k∗( j −1)+1:k∗ j , i ) = bounding_boxes{ j }( i

, 1 ) . . .
. . . + range ( bounding_boxes{ j }( i , : ) ) .∗X( : , i ) ;

end

end

4. Perform the thermal simulation in Sim4Life imposing the newly found thermal
conductivity and perfusion values for each tissue. As source for the stationary
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thermal simulation, the power density obtained with the baseline dielectric
parameters for all the tissue was used.

5. Save the temperature maps in a specific folder.

The three optimized bases, Maximum Sum of Distances (MSD), Largest Minimum
Distances (LMD) and Maximum Error Leave-One-Out (MELOO), share this build-
ing process, only differing in how they select the regions to refine in the first step.

Figure 4.4: Optimization flowchart with key steps

Figure 4.5: Example: bounding boxes creation in the parameter space, for a single
tissue. Visualization of the margins using d.

To explore the influence of the optimization variables n, d and k, two values were
used for each variable, resulting in eight different bases for each method and a total
of 24 bases, plus the Sobol one for comparison. In particular:

• n was either 1 or 5

• d was either 10% or 50% of the range of the selected pair of sets for the LMD
and MSD methods (Figure 4.5), 10% or 50% of the range of properties for that
tissue for the MELOO method.

• k was either 5 or 8.
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For each method, two examples of how the points were added during the iter-
ations of the algorithm are shown, as well as two examples of the final distance
matrices.

4.2.1 Maximum Sum of Distances method
The Maximum Sum of Distances is the most intuitive method, prioritizing maps
that have the highest overall distance from the rest. This prevents parameters from
being added in regions where the temperature space already has sufficient coverage,
preferring the ones where the outcome of the thermal simulations appears to be very
sensitive to the parameters variation.

Listing 4.3: MSD initial selection of maps
% Compute pa i rw i s e Eucl idean d i s t a n c e s
D = pd i s t ( Phi ’ , ’ euc l i d ean ’ ) ;

% Convert d i s t a n c e s to a squareform matrix
squareD = squareform (D) ;

% copy squareD
temp=squareD ;
% change d iagona l made o f z e ro s
temp ( 1 : s ize ( squareD , 1) +1:end) = Inf ;

% sum on the rows
sum_distances = sum( squareD , 2) ;

% s e l e c t max sum of d i s t a n c e s
[ ~ , ind_sum ] = sort ( sum_distances , ’ descend ’ ) ;
i 0 ( 1 , : ) = ind_sum ( 1 : n) ;

% s e l e c t ne i ghbor s
for j = 1 : n

[~ , i 1 ( j ) ] = min( temp( i 0 ( j ) , : ) , [ ] , 2) ;
end

The selection in the first step of the algorithm is carried out as shown in 4.3,
explained as follows:

a) evaluate the sum of the distances between each map and the others

b) find the indices of the n largest sums of distances

c) find the indices of their closest temperature maps, respectively.
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As already described, those indexes will then be used to pinpoint the related
sets of parameters and generate new ones. If the new parameters produce temper-
ature maps near the previously selected ones, then those maps will not be selected
anymore. If there are still maps with the maximum sum of distances in that same
region, it means that increasing the points in the related parameter space still has
not provided enough coverage of that particular temperature space. Thus, another
iteration will be performed there.

Example: MSD n=1, d = 0.1, k = 8

Figure 4.6: Final parameter distribution, for each tissue, for the MSD basis created
with n=1, d = 0.1, k = 8. Each color represents a different batch.

Figure 4.6 shows a color-coded scatter plot of how the parameters were added in
each iteration (batch), while Figure 4.7 shows an example of bounding box created
during one of the iterations.

Figure 4.2.1 shows a distance matrix that is very different from the one obtained
with plain Sobol. Both the parameters distances and the temperature ones exhibit
a larger number of yellow cells and a brighter shade of yellow, indicating a higher
number of maps found with a higher distance (more isolated). Blue areas are also
more present, but it is not surprising: it indicates that the maps and parameters
that are within the same bounding box have a small distance. This characteristic
is particularly noticeable in the MSD method and, in general, when the margin d
is on the lower range and k is on the higher range, since it leads to more crowded
bounding boxes.
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Figure 4.7: Bounding boxes created during the third iteration with n=1, d = 0.1,
k = 8

(a) (b)

Figure 4.8: Standardized euclidean distance [−] between sets of parameters (a)
obtained with MSD, n=1, d=0.1, k = 8 and euclidean distance [°C] between their
respective temperature maps (b).

Example: MSD n=5, d = 0.1, k = 5

For this second example with a higher initial number of selected maps, the final
color-coded distribution is shown in Figure 4.9.
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Figure 4.9: Final parameter distribution for the MSD basis created with n = 5, d
= 0.1 and k = 5. Each color represents a different batch.

Figure 4.10: Bounding boxes created during the second iteration with MSD, n=5,
d=0.1, k=5

In this example (Figure 4.2.1, the crowding is less present; however, the magni-
tude of the distances is lower with respect to MSD with n = 1, d = 0.1 and k =
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(a) (b)

Figure 4.11: Standardized euclidean distance [−] between sets of parameters (a)
obtained with MSD, n = 5, d = 0.1, k = 5 and euclidean distance [°C] between
their respective temperature maps (b).

8 (approximately 1350 °C vs. 1500 °C). This suggests that the method identified
parameter sets with closer temperature maps.
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4.2.2 Largest Minimum Distances method
The LMD method is similar to the MSD one, but is more strict, focusing on those
maps that are the most different from their closest neighbor; this translates to maps
that are the most isolated in absolute terms. For example, in the simplification

Figure 4.12: Example of MSD and LMD different selection criteria in a 2D sim-
plification of the temperature space. Maps 1 and 2 selected by the LMD method
(upper plot), maps 5 and 6 selected by the MSD method (lower plot)

shown in Figure 4.12, maps 5 and 6 are selected by the MSD method because they
are the most distant overall, although they are close to each other. In contrast,
by the LMD interpretation, the exploration of that region is not a priority because
it is already represented by two points. Instead, point 1 is pinpointed as the only
representative of its region and thus worth of additional neighbors.

Listing 4.4: LMD initial selection of maps
% Compute pa i rw i s e Eucl idean d i s t a n c e s
D = pd i s t ( Phi ’ , ’ euc l i d ean ’ ) ;
% Convert d i s t a n c e s to a squareform matrix
squareD = squareform (D) ;

% copy squareD
temp=squareD ;
% change d iagona l made o f z e ro s
temp ( 1 : s ize ( squareD , 1) +1:end) = Inf ;

% eva l ua t e minimum d i s t a n c e s f o r each tmap ( e x c l ud ing
%themse l ve s )

46



4.2 – Target refinement strategies

min_distances = min( temp , [ ] , 2) ;

% f i n d the index o f the tmaps wi th the
% l a r g e s t minimum d i s t ance

[ ~ , ind_min ] = sort ( min_distances , ’ descend ’ ) ;
i 0 ( 1 , : ) = ind_min ( 1 : n) ;

% f ind t h e i r r e s p e c t i v e neare s t ne ighbour
for j = 1 : n
[~ , i 1 ( j ) ] = min( temp( i 0 ( j ) , : ) , [ ] , 2) ;
end

The selection is carried out as shown in 4.4, detailed as follows:

1. evaluate the minimum distances in the temperature space, excluding the di-
agonal.

2. Find the indices of the n largest minimum distances.

3. find the indexes of their closest temperature maps, respectively.

Example: LMD n=1, d = 0.1, k = 5

Figure 4.13: Final parameter distribution for the LMD basis created with n = 1, d
= 0.1 and k = 5. Each color represents a different batch.

With a number of new points for each bounding box equal to 5, and a number

47



Optimized sampling in the parameters space

of initial selected maps equal to 1, the number of batches increases to 8, as shown
in figure 4.13.

Figure 4.14: Bounding boxes created during the seventh iteration with LMD, n=1,
d=0.1, k=5

(a) (b)

Figure 4.15: Standardized euclidean distance [−] between sets of parameters (a)
obtained with LMD, n = 1, d = 0.1, k = 5 and euclidean distance [°C] between
their respective temperature maps (b).

The parameters found with this method, in general, are more broadly placed
with respect to MSD.
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Example: LMD n=5, d = 0.5, k = 8

In this second example, only one iteration was necessary, as the optimization pa-
rameters dictated that 40 new maps were created at once. The higher margin d
allows for a larger exploration of the parameter space, as evident in Figure 4.17

Figure 4.16: Final parameter distribution for the LMD basis created with n = 5, d
= 0.5 and k = 8

The broader exploration makes this method similar to the plain Sobol, as Figure
4.2.2 confirms. The magnitude of the temperature distances is on the lower side
with respect to the other methods. The big blue squared area in the lower-right part
of the parameter distance plot simply indicates a superimposition of two bounding
hyperspaces.
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Figure 4.17: Bounding boxes created during one of the iterations with LMD, n =
5, d = 0.5 and k = 8

(a) (b)

Figure 4.18: Standardized euclidean distance [−] between sets of parameters (a)
obtained with LMD, n = 5, d = 0.5, k = 8 and euclidean distance [°C] between
their respective temperature maps (b).
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4.2.3 Maximum Error Leave-One-Out method
The MELOO method identifies parameter sets associated with the highest recon-
struction errors in the temperature space. The method employs a leave-one-out
approach: each basis temperature map is considered as a target, one at a time, the
reconstruction is attempted and the error is computed. A piece of the used code
is shown in 4.5. The n maps with the highest error are then used as centers for
as many bounding boxes (always within the boundaries determined by the litera-
ture). The idea is that including the neighbors of the maps that suffer from a bad
reconstruction, the latter will improve.

Listing 4.5: MELOO initial selection of maps
% Recons truc t ion error a n a l y s i s
for target_idx = 1 : numtmaps

f = Phi ( : , target_idx ) ;
bas i s_idx = s e t d i f f ( 1 : numtmaps , target_idx ) ;

% No Noise Case
[ err_0N ( : , target_idx ) ,~ ] = . . .

. . . I n v e r s i o n s ( Inv_Case , zeros ( length ( ind_Cath ) ,
1) , . . .

. . . ind_Cath , ind_ROI , Phi ( : , bas i s_idx ) , f , numel (
bas i s_idx ) ) ;

end

% f ind the indexes o f the tmaps wi th the
% l a r g e s t 95 th p e r c e n t i l e e r ror
MaxError = p r c t i l e ( err_0N , 95 , 1) ;
[ ~ , ind_ME] = sort ( MaxError , ’ descend ’ ) ;
i 0 ( 1 , : ) = ind_ME( 1 : n) ;
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Optimized sampling in the parameters space

Example: MELOO n=1, d = 0.1, k = 8

Figure 4.19: Final parameter distribution for the MELOO basis created with n=1,
d = 0.1, k = 8

Figure 4.20: Bounding boxes created during one of the iterations with MELOO,
n=1, d = 0.1, k = 8
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4.2 – Target refinement strategies

(a) (b)

Figure 4.21: Standardized euclidean distance [−] between sets of parameters (a)
obtained with MELOO, n=1, d = 0.1, k = 8 and euclidean distance [°C] between
their respective temperature maps (b).
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Example: MELOO n=1, d = 0.5, k = 5

Figure 4.22: Final parameter distribution for the MELOO basis created with n =
1, d = 0.5 and k = 5

Figure 4.23: Bounding boxes created during one of the iterations with n=1, d =
0.5, k = 5
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4.2 – Target refinement strategies

(a) (b)

Figure 4.24: Standardized euclidean distance [−] between sets of parameters (a)
obtained with MELOO, n = 1, d = 0.5, k = 8 and euclidean distance [°C] between
their respective temperature maps (b).

The peculiar distance distribution observable in Figure 4.2.3 indicates that within
each batch the parameters and the temperature maps are quite different, while be-
tween different batches some parameters and maps have some similarities.
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4.3 Accuracy analysis
4.3.1 Study on 500 Sobol targets
A Φt with 500 target maps was used to provide a statistically strong testbed and
evaluate the efficacy of the optimization with respect to the uniform basis. Six
metrics were used:

• χ95, across 500 noiseless targets and 100000 noisy targets (each Φt target being
added 200 realizations of Gaussian noise on the measurement points), similarly
to 3.3.

• ∆T50, ∆T90, maximum error (Max Error), 99.9th percentile of error, 95th
quantile and 95th superquantile of error across the 100000 noisy targets.

The superquantile measure, also known as the conditional value at risk (CVaR)
is a risk measure that extends the concept of quantiles (or value at risk, VaR).
For a given probability level α ∈ (0,1), the superquantile of a random variable X,
denoted as SQα(X), is defined as:

SQα(X) = E[X | X ≥ Qα(X)] (4.2)

where Qα(X) is the quantile function which satisfies:

Qα(X) = inf{x ∈ R | P (X ≤ x) ≥ α}. (4.3)

In other words, the superquantile at level α is the expected value of X given that
X exceeds the quantile Qα(X). In Matlab, the 95th superquantile of the error for
the j-th method is calculated as in 4.6:

Listing 4.6: superquantile formula in Matlab
e r ro r95_quant i l e ( j ) = quan t i l e ( error_samples ( : , j ) , 0 . 9 5 ) ;
e r ro r95_superquant i l e ( j ) = er ro r95_quant i l e ( j ) + 1/(1 −0.95)

∗ mean( (max( erro_samples ( : , j ) − e r ro r95_quant i l e ( j ) , 0) ) )
;

where:

• error95_quantile(j) calculates the 95th quantile of the error.

• error_samples(:, j) represents the reconstruction error data for the j -th method.

• max(error95_samples(:, j) − error95_quantile(j), 0) extracts the values that
exceed the quantile threshold (tail losses).

• The mean(·) computes the expectation of the tail losses, which is multiplied
by the scaling factor 1/(1− 0.95) = 20.
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4.3 – Accuracy analysis

This method provides a more robust risk assessment compared to the quantile
(VaR) by considering the magnitude of extreme losses rather than just the thresh-
old.

The number of catheter points was still 20 and LSQLIN constraints was used
due to the conclusions from the S-parameters experiment (in the y-direction to
maintain consistency with previous studies that adopted this orientation).

Table 4.1: X95 [°C] without any noise added

Optimization parameters Method
LMD MSD MELOO Sobol

n=1, d=0.1, k=5 1.2563 1.2286 1.2500

1.0750

n=1, d=0.1, k=8 1.2400 1.2143 1.2389
n=1, d=0.5, k=5 1.2333 1.2389 1.1667
n=1, d=0.5, k=8 1.3000 1.2700 1.1250
n=5, d=0.1, k=5 1.2333 1.2500 1.2400
n=5, d=0.1, k=8 1.2643 1.2857 1.1625
n=5, d=0.5, k=5 1.2300 1.2286 1.1286
n=5, d=0.5, k=8 1.2429 1.2917 1.1000

Table 4.2: X95 [°C] with Gaussian noise added to the 20 catheter measurements.

Optimization parameters Method
LMD MSD MELOO Sobol

n=1, d=0.1, k=5 1.2408 1.2394 1.2468

1.1180

n=1, d=0.1, k=8 1.2600 1.2581 1.2613
n=1, d=0.5, k=5 1.2477 1.2641 1.2216
n=1, d=0.5, k=8 1.3232 1.2932 1.1909
n=5, d=0.1, k=5 1.2407 1.2441 1.2392
n=5, d=0.1, k=8 1.2884 1.3016 1.2251
n=5, d=0.5, k=5 1.2487 1.2369 1.1597
n=5, d=0.5, k=8 1.2556 1.3362 1.2081

In the noiseless scenario (Table 4.1), the baseline Sobol method yielded a χ95

of 1.0750 °C, serving as reference for comparison. Among the optimized methods,
the MELOO approach achieved the best performance, with a χ95 of 1.1000 °C in
its best configuration (n=5, d=0.5, k=8). The MSD method followed with a χ95

of 1.2143 °C in its best configuration (n=1, d=0.1, k=8), while the LMD method
yielded a χ95 of 1.2300 °C with n=5, d=0.5, k=5.

Under noisy conditions (Table 4.2), the baseline Sobol method exhibited a χ95 of
1.1180 °C. The optimized methods maintained a similar ranking as in the noiseless
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Optimized sampling in the parameters space

case, with MELOO again achieving the lowest value at 1.1597 °C, followed by
MSD at 1.2369 °C and LMD at 1.2407 °C. Although all methods suffered a slight
increase in error thresholds under noise, as expected, Sobol remained the best
method. The results indicate that no optimized method consistently outperforms
the others across all conditions, as their performance varied with different parameter
configurations.

Figure 4.25: Boxplot of ∆T50 (absolute difference between the reconstructed median
temperature in the tumor and the actual one) between the different basis

The analysis on ∆T50 (Figure 4.25), ∆T90 (Figure 4.26), Max Error (Figure
4.27) and the 99.9th percentile of error (Figure 4.28) could not bring to any partic-
ular conclusion. The median for all the considered realizations, which is identified
by the circle with a dot at its center within the bold vertical bar, is slightly lower
with Sobol for all four metrics (0.1253 °C, 0.1261 °C, 0.9099 °C, 0.8565 °C, respec-
tively) . This indicates that there is no measurable improvement of these metrics
after the optimization of the bases. The temperature reconstruction in the tumor,
which accounts for 0.016% of the total volume, showed good, but still not accept-
able values of accuracy, with a ∆T50 and ∆T90 below 0.3 °C for more than 75%
of the realizations.

Figure 4.29 indicates that Sobol has the better 95th quantile (1.15 °C) and that
MELOO falls short from it (1.25 °C). There seems also to be a tendency of this
metric to be higher when k = 8, in particular for the LM and MSD methods,
suggesting a slightly larger error when considering many new points in the region
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4.3 – Accuracy analysis

Figure 4.26: Boxplot of ∆T90 (absolute difference between the reconstructed 90th
percentile of temperature in the tumor and the actual one) between the different
basis

Figure 4.27: Boxplot of Max Error associated to the different bases
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Optimized sampling in the parameters space

Figure 4.28: Boxplot of 99.9th percentile of error [ °C]associated to the different
bases

Figure 4.29: 95th quantile of error associated to the different bases

selected by the algorithm. Finally, Figure 4.29 indicates that MSD has overall
better 95th superquantiles (min 1.449 °C) with respect to Sobol (1.466 °C). MELOO
performs the worst, with a minimum 95th superquantile of 1.512 °C. Unfortunately,
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4.3 – Accuracy analysis

Figure 4.30: 95th superquantile of error [ °C] associated to the different bases

a 0.017 °C difference cannot be accounted as a significant improvement, but the
results suggest that MSD could be better than MELOO at mitigating extreme
errors without increasing their occurrence.

(a) (b)

Figure 4.31: Example of good temperature reconstruction: comparison of true vs.
reconstructed target map n.245 on the YZ plane, at x coordinate of the tumor
center (a) and on the XY plane, at z coordinate of the tumor center (b).

Figure 4.3.1 shows an example of good temperature prediction obtained with one
of the optimized methods. In contrast, 4.3.1 shows one of the worst reconstructed
temperature distributions, where the temperature underestimate is evident both in
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(a) (b)

Figure 4.32: Example of bad temperature reconstruction: comparison of true vs.
reconstructed target map n.446 on the YZ plane, at x coordinate of the tumor
center (a) and on the XY plane, at z coordinate of the tumor center (b).

the YZ and in the XY plane.

62



4.3 – Accuracy analysis

4.3.2 Study on 256 extreme targets
The last study was carried out using all possible combinations of parameters at
the vertices of the 8-D parameter space, with the aim of quantifying the quality
of reconstruction for the most extreme cases (the ones that differ the most from
the baseline values). The number of vertices of this space is equal to 28 = 256,
therefore, 256 targets were considered.

Listing 4.7: sampling of the most extreme parameter sets
function MGrid = MultiGrid_extreme ( f i l e p a t h , param ,

t i s s u e )
t ab l e = c e l l (1 , numel (param) ) ;
for i = 1 : numel (param)

tab l e { i } = x l s r e ad ( f i l e p a t h , param( i ) , ’A1 :D5 ’ ) ;
t ab l e { i } = tab l e { i }( t i s s u e , : ) ;

end
ranges = c e l l ( numel ( t i s s u e ) , numel (param) ) ;
for i = 1 : numel ( t i s s u e )

for j = 1 : numel (param)
ranges { i , j } = [ t ab l e { j }( i , 2 ) , t ab l e { j }( i , 3 ) ] ;

end
end
output = c e l l (1 , numel (param) ∗numel ( t i s s u e ) ) ;
[ output { : } ] = ndgrid ( ranges { : } ) ;
r e s u l t s = [ ] ;
for i = 1 : length ( output )

r e s u l t s = [ r e s u l t s output {1 , i } ( : ) ] ;
end

MGrid = r e s u l t s ;
end

The results were much worse than the ones obtained considering the entire vol-
ume; however, in relative terms, the optimized methods performed better than
Sobol, lowering the χ95 from 3.33 °C to 2.89 °C (MSD, n=1, d=0.5, k=8,) in the
noiseless case (Table 4.3). The reduction of approximately 0.44 °C in the error
threshold indicates that the MSD method can contribute to a more accurate re-
construction in these challenging conditions. The same thing can be said for the
LMD method, which achieved a χ95 of 2.94 °C under the same configuration. The
MELOO method provided mixed results. In the best-case configuration, it pro-
duced a χ95 of 2.97 °C, which is very close to MSD and LMD, but in half of the
cases it was higher than Sobol. It appears that this method lacks the generalization
capability provided by the other sampling strategies.
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Table 4.3: X95 [°C] without any noise added

Optimization parameters Method
LMD MSD MELOO Sobol

n=1, d=0.1, k=5 3.0140 2.9900 3.8866

3.3300

n=1, d=0.1, k=8 2.9775 2.9025 2.9700
n=1, d=0.5, k=5 3.0887 3.0275 3.0600
n=1, d=0.5, k=8 2.9366 2.8900 3.0720
n=5, d=0.1, k=5 3.0844 3.1020 3.2100
n=5, d=0.1, k=8 2.9650 2.9514 3.8400
n=5, d=0.5, k=5 3.0866 3.0400 3.4800
n=5, d=0.5, k=8 3.0866 2.860 3.3740

Table 4.4: X95 [°C] with Gaussian noise added to the 20 catheter measurements.

Optimization parameters Method
LMD MSD MELOO Sobol

n=1, d=0.1, k=5 3.0148 2.9833 3.9403

3.3937

n=1, d=0.1, k=8 2.9467 2.8578 3.0923
n=1, d=0.5, k=5 3.0908 2.9946 3.0850
n=1, d=0.5, k=8 2.8256 2.8200 3.0336
n=5, d=0.1, k=5 3.0716 3.0850 3.3403
n=5, d=0.1, k=8 2.8603 2.8393 3.9878
n=5, d=0.5, k=5 3.0675 3.0547 3.5111
n=5, d=0.5, k=8 3.0754 2.7652 3.4811

Under noisy conditions (Table 4.4), the Sobol method exhibited a χ95 of 3.39 °C,
while the MSD method maintained its lead, achieving a χ95 of 2.82 °C, showing a
strong resilience to noise. This indicates that the maps selected through the MSD
strategy not only span a broad and diverse range of the parameter space but also
provide stable reconstructions. The LMD method also demonstrated robustness,
with a χ95 of 2.83 °C, closely following MSD. The MELOO method, while still an
improvement over Sobol, showed a higher χ95 of 3.03 °C in the noisy scenario.

In addition, in this case, the analysis of ∆T50 (Figure 4.33), ∆T90 (Figure 4.34),
Max Error (Figure 4.35) and the 99.9th percentile of error (Figure 4.36) could not
reach any significant conclusion. However, the median for all the considered realiza-
tions tended to be the highest with Sobol for ∆T50 and ∆T90 (0.328 °C, 0.355 °C,
respectively). MELOO slightly outperformed Sobol with a lower Max Error
(1.878 °C vs. 2.095 °C); similar results are obtained for the 99.9th percentile of
error.
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4.3 – Accuracy analysis

Figure 4.33: ∆T50 (absolute difference between the reconstructed median temper-
ature in the tumor and the actual one) between the different basis

Figure 4.34: ∆T90 (absolute difference between the reconstructed 90th percentile
of temperature in the tumor and the actual one) between the different basis
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Figure 4.35: Max Error associated to the different bases

Figure 4.36: 99.9th percentile of error associated to the different bases

Finally, Figure 4.29 indicates that in these extreme cases, MSD has relatively
better 95th superquantiles (min 2.981 °C) with respect to Sobol (3.927 °C). MELOO
performs the worst overall, with a minimum 95th superquantile of 3.58 °C. LMD
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4.3 – Accuracy analysis

Figure 4.37: 95th quantile of error associated to the different bases

Figure 4.38: 95th superquantile of error associated to the different bases

has also several configurations below the Sobol value. These results suggest that
the optimizations based on the distance generally improves the reconstruction in
cases where the patient has tissue properties that diverge significantly from the
baseline values. Unfortunately, these high errors would still limit, if not deny, the
application of therapy in such cases.
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4.4 Preliminary studies
This section describes some of the discarded ideas, as they can provide some inter-
esting insights for future research.

The MSD was initially created similarly to a Maximum Distances (MD) method,
which:

1. Selected the temperature maps with the singular highest distances (> 75th
percentile)

2. Applied hierarchical clustering in the related points of the parameter space
through the Matlab function clusterdata, with the input “distance” set to
“standardized euclidean” and the input “linkage” set to “complete” (farthest
distance between clusters); the number of clusters was automatically set by
imposing a 10% threshold on the Within-Cluster Sum of Squares (WCSS).
This was needed to avoid the superimposition of too many bounding boxes,
creating just the necessary amount.

3. created the bounding box around the centroids of the clusters.

4. Produced 25 additional sets of parameters and related temperature maps, with
Sobol. The new points were split according to the number of clusters (e.g. if
there were 3 clusters, the number of new points in each bounding box was 8,
8, 9, respectively)

5. Repeat for one and last iteration, considering only the 25 maps just created.

The idea was to exacerbate the mentioned condition (MD or MSD) on the tem-
perature distance, in order to have a basis which contained some of the “worse
cases”. However, it ignored the relationships between the three batches, excluding
some potential information. For this reason and because of its too many arbitrary
variables, this approach was excluded, preserving only the idea of the bounding
boxes. The last 10 from the third batch, which represented the “most distinctive”
maps, were used as targets instead of being part of Φ. Together with them, 10
additional targets were created with Sobol and the 20 resulting maps were used to
evaluate some early reconstruction results.

The LMD also had a preliminary version, “LMD with mean”, where Φ was built
in 40 iterations (starting from 30 Sobol maps) structured as:

1. evaluate the minimum distances in the temperature space, excluding the di-
agonal

2. find the index i0 of the map with the largest minimum distance (this isolates
the first map of the pair)

3. find the index i1 of the closest temperature map (this isolates the second one)
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4.4 – Preliminary studies

(a) (b)

Figure 4.39: Standardized euclidean distance [−] between sets of parameters (a)
obtained with LMD (with mean) and euclidean distance [°C] between their respec-
tive temperature maps (b).

4. evaluate the mean between the set of parameters ξi0 and the set of parameters
ξi1, for each tissue.

5. perform the thermal simulation using the new set of k and w

6. repeat until reaching 80 temperature maps. The last 10 were used as targets.

It might be interesting to note that this method also showed a distance uniformity
similar to that observed with Sobol, as shown in Figure 4.4 (b).

In summary, some reconstructions were performed with the following:

• MD basis vs. Sobol basis using 10 MD and 10 Sobol targets

• MD basis vs. Sobol basis with 10 MSD and 10 Sobol targets

• LMD with mean basis vs. Sobol basis with 10 LMD and 10 Sobol targets

The median of the 5th, 25th, 50th, 75th, and 95th percentiles of error across the
target maps and the realizations are shown in Figure 4.40

As can be observed in Figure 4.41, the Sobol basis poorly reconstructed all the
targets coming from the last batch of MD and more than half of those from the last
batch of MSD (previous version), confirming the negative effects of the magnitude
of the distance on the inversion algorithms. As for the MD basis, despite its good
early performance, it was discarded for its poor explainability and for the fact that
it tended to always select the same maps when increasing the number of iterations.
The LMD with mean approach was later adapted to become the one previously
described because the linear combination of the two sets, instead of a convex one,
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Figure 4.40: 5th, 25th, 50th, 75th and 95th percentiles of error during reconstruc-
tion with few, mixed targets.

Figure 4.41: 95th percentile of error evaluated on each target map. Red dots
represent the performance on the last 10 maps created with the optimization, blu
dots the the performance on 10 uniformly distributed targets

ultimately produced a temperature-distance matrix with lower values.
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Discussion

This thesis focused on improving temperature predictions in microwave hyperther-
mia for head and neck cancer treatments by combining electromagnetic and ther-
mal simulations with enhanced reconstruction strategies. Traditionally, thermom-
etry catheters provide only a small number of invasive temperature readings, and
baseline tissue parameters often fail to capture their natural variability between
patients. To address this, a detailed digital phantom was used, and different tissue
properties were imposed by sampling the parameter space, thereby generating a
library of simulated temperature maps.

Inversion techniques using catheter data and additional non-invasive antenna
reflection coefficients were used to refine temperature estimates, with little success.
As explained in Chapter 3, the impact of the S parameters on reconstruction quality
varies between the different metrics, showing negligible influence on χ95 and some
positive effects on ∆T and ∆T50, particularly in the presence of noise. LSQLIN
constraints provide the best performance in the presence of noise, which is arguably
the most realistic scenario. The choice of the best method should not strictly
depend on its performance in the two directions of the catheter, as they were
arbitrarily chosen. In a clinical setting, the catheter insertion path must be defined
in order to minimize damage to the specific structures of the head and neck of the
patient, so the actual positioning may differ significantly from the configurations
analyzed in this study. Comparison with χ95 obtained using the entire ROI rather
than catheter measurements reinforces the idea that χ95 is mainly determined by
temperature-related information rather than additional EM information. The main
reason could lie in the fact that the S parameters are one to two orders of magnitude
smaller than the temperatures, providing little to no additional information in the
reconstruction. Another explanation could be that their sensitivity to the variation
of dielectric parameters is too small to be used on a par with that of an actual sensor.
A future development could involve a normalization phase that better exploits the
magnitude and/or dynamic of the reflection coefficient instead of using their raw
values.

Finally, to improve the performances obtained with a plain Sobol basis, it was
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assumed that uniform sampling probably overlooked the complexity of the tissues’
thermal response to MW irradiation. Therefore, some iterative targeted sampling
approaches were designed to build an optimized Φ that could keep up with some
challenging temperature maps and simultaneously avoid including similar maps in-
side it. The results probably left us with more questions than answers. It was
hypothesized that the implementation of strict metrics (e.g. χ95) was downplaying
the effects of optimization, so other estimators were considered. Unfortunately, the
analysis still lacked strong results, either positive or negative, which could have
guided the investigation toward a specific method. Further analysis of the error
associated with each target map revealed that some targets were still badly re-
constructed even when their parameters were close to large clusters of parameters
whose maps were used in the basis. This suggests that the reconstruction per-
formance, even in the optimized cases, mostly depends on the overall distribution
of the parameters rather than on some local “enhancements”. However, other at-
tempts with different values of n, d, and k could be attempted; the MD method
could also benefit from a rework and be evaluated. Finally, since this work basically
produced a comprehensive dataset of unique parameter combinations and their as-
sociated temperature maps (1530 including the 25 bases and the target maps), the
implementation of machine learning to find the best parameter configuration to
obtain the best reconstruction is surely appealing. Deep learning could also be
implemented, as it appears that features that link the parameter space to the tem-
perature space are not as straightforward as we thought and may need some more
complex elaboration to be found.
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Appendix A

Sim4Life

Sim4Life, product by ZMT Zurich MedTech, is a multiphysics simulation platform
for computational life scientists. It combines computable human phantoms with
powerful physics solvers and advanced tissue models. The software directly analyzes
biological phenomena and complex technical devices in a validated biological and
anatomical environment. The software phantoms subsequently provide a realistic
biological environment to conduct fundamental studies to test the effectiveness and
safety of medical devices and treatments, and to supplement clinical trials [40]. The
Electromagnetic Full Wave Solvers (P-EM-FDTD) enable accelerated full-wave,
large-scale EM modeling (billion voxels) with Yee discretization on geometrically
adaptive, inhomogeneous, rectilinear meshes with conformal sub-cell correction and
thin layer models. These solvers, which are the most frequently applied in near-field
dosimetry, have been extensively validated and documented according to the IEEE
/ IEC 62704-1 standard, as well as by comparisons with measured data [40].

A.1 Discretization of Maxwells Equations
The Finite-Difference Time-Domain method (FDTD) proposed by Yee in 1966 is a
direct solution of Maxwells curl equations in the time domain. The electric (E-field)
and magnetic (H-field) components are allocated in space on a staggered mesh of
a Cartesian coordinate system. The E and H field components are updated in a
leap-frog scheme according to the finite-difference form of the curl surrounding the
component. The transient fields can be calculated when the initial field, boundary,
and source conditions are known.

Maxwells curl equations are discretized by means of a second-order finite-difference
approximation both in space and in time in an equidistantly spaced mesh. The first
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Sim4Life

Figure A.1: 3D Yee cell showing the E- and H-field components in the staggered
grid.

partial space and time derivatives lead to:

∂F (i, j, k, n)

∂x
=
F n(i+ 1/2, j, k)− F n(i− 1/2, j, k)

∆x
+O[(∆x)2]

∂F (i, j, k, n)

∂t
=
F n+1/2(i, j, k)− F n−1/2(i, j, k)

∆t
+O[(∆t)2]

A.1.1 Numerical Stability
For the explicit finite difference scheme to yield a stable solution, the time step
used for updating must be limited according to the Courant-Friedrich-Levy (CFL)
criterion [41]. This is a stability condition for time discretization:

∆t ≤ 1

c
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

where ∆x, ∆y, and ∆z are the mesh steps of a Cartesian coordinate system and c
is the speed of light within the material of a cell.
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Appendix B

Sobol sequence
implementation

Listing B.1: loading of the tissue parameters and definition of the number of points

% Multi−dimensiona l pseudo−random Sobo l g r i d .
% The parameters are organ i zed in an e x t e r n a l Exce l f i l e .

clear a l l
%c l c

f i l ename = ’ NewParameters . x l sx ’ ;
f i l e p a t h = [pwd, ’ \ ’ , f i l ename ] ;

% Type o f parameters : [ epsr , sigma , k ,w]
param = [ 1 , 2 , 3 , 4 ] ;

% Type o f t i s s u e s : [ Muscle , Fat , Skin , Tumor ]
t i s s u e = [ 1 , 2 , 3 , 4 ] ;

Ns = 1000 ; % [ −] number o f Sobo l quasi−
random po in t s

MGrid = MultiGrid_Sobol ( f i l e p a t h , param , t i s s u e , Ns) ;
save ( [pwd, ’ \MGrid . txt ’ ] , ’MGrid ’ , ’−a s c i i ’ , ’−tabs ’ ) ;
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Sobol sequence implementation

where:

Listing B.2: Sobol semi-random sequence
% Multi−dimensiona l pseudo−random Sobo l g r i d
% The parameters are organ i zed in an e x t e r n a l Exce l f i l e .

function MGrid = MultiGrid_Sobol ( f i l e p a t h , param , t i s s u e , S )

t ab l e = c e l l (1 , numel (param) ) ;

for i = 1 : numel ( param)
tab l e { i } = x l s r e ad ( f i l e p a t h , param( i ) , ’A1 :D5 ’ ) ;
t ab l e { i } = tab l e { i }( t i s s u e , : ) ;

end

ranges = c e l l ( numel ( t i s s u e ) , numel (param) ) ;

for i = 1 : numel ( t i s s u e )
for j = 1 : numel (param)

ranges { i , j } = [ t ab l e { j }( i , 2 ) , t ab l e { j }( i , 3 ) ] ;
end

end

%%% Quasi random Sobo l sequence ( green po in t s ) %%%
% creo numeri quas i c a s u a l i
q = qrandstream ( ’ sobo l ’ , numel (param) ∗numel ( t i s s u e ) , ’ Skip ’

, 1 ) ;

% genero numeri da l f l u s s o d i numeri c a s u a l i q anz iché da l
f l u s s o g l o b a l e

% p r e d e f i n i t o . avrò S r i g h e e 16 colonne
X = rand (q , S , numel (param) ∗numel ( t i s s u e ) ) ;

% metto in colonne i minimi e i massimi , l e r i g h e sono : l e
prime 4 l e epsr

% di muscle , f a t , sk in , tumor , poi l e seconde 4 sono l e
sigma , ecc . . .

RF = reshape ( [ ranges { : } ] , 2 , numel (param) ∗numel ( t i s s u e ) ) . ’ ;

% ogni colonna d i X v iene s o s t i t u i t a con un va l o r e
semicasua le t ra max e
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% min d e l parametro d e l t e s s u t o corr i sponden te a l l a r i g a d i
RF

for i = 1 : length (RF)
X( : , i ) = RF( i , 1 )+range (RF( i , : ) ) .∗X( : , i ) ;

end

MGrid = X;

end
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