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Summary

Nowadays, it is increasingly common to entrust decisions to Artificial In-
telligence through Machine Learning algorithms, especially in fields such as
medical diagnosis, social networks, smart cities, and finance.

Since these decisions directly impact people, it is essential to assess their
reliability and trustworthiness. Accuracy provides an indication of a model’s
performance but is insufficient to determine how much one can truly rely
on its predictions. A key issue is that models depend on data, which is
often unevenly represented, potentially leading to unfair predictions that
disproportionately affect smaller or less represented populations. This phe-
nomenon, known as Representation Bias, arises when the sample used for
model development does not adequately capture certain segments of the
population, resulting in poor generalization for those groups.

When a model systematically misclassifies specific feature value pairs,
problematic subgroups, it exhibits bias against the affected populations.
Existing bias mitigation methods for tabular data often require prior knowl-
edge of biases rather than identifying them automatically, which may be
limiting when misclassifications stem from complex social contexts. Addi-
tionally, some approaches rely on a held-out dataset, which is not always
available.

This thesis proposes a new model-agnostic bias mitigation method for
tabular data, which uses an algorithm for the automatic identification of
problematic subgroups and generates new representative data using an in-
terpolation model. This improves model predictions for instances containing
problematic subgroups and, most importantly, enhances fairness.
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Chapter 1

Introduction and
Motivation

This first chapter introduces the fundamental concepts related to Represen-
tation Bias and its possible solutions, along with a general overview of the
thesis.

Specifically, Section 1.1 provides a definition of Representation Bias, ex-
plaining its causes and the contexts in which it can occur. Real-world exam-
ples of situations where this phenomenon has been observed are presented
in 1.1.1.

Next, Section 1.2 introduces the concept of Bias Mitigation and presents
a classification of the main bias mitigation techniques. Section 1.2.1 delves
deeper into a specific approach that involves the identification of subgroups,
also providing a general definition of subgroups.

Finally, Section 1.3 offers a comprehensive overview of the thesis struc-
ture, outlining the content of each chapter.

1.1 Representation Bias in Machine Learn-
ing

Nowadays, it is becoming increasingly common for certain decisions to be
entrusted to Artificial Intelligence through Machine Learning algorithms.
This is happening more frequently in areas such as medical diagnosis, social
network, smart cities, or finance: more broadly, machine learning is being
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Introduction and Motivation

applied in any field where decisions are required. Since these types of de-
cisions directly impact people, it is essential to assess both the reliability
and trustworthiness of the predictions. In particular, when decisions are
based on data, the Accuracy of such predictions depends on the data used
to make them. The system essentially learns the patterns that are present
within the data provided. Ideally, we would like these data to accurately
reflect the underlying distribution from which future production data will
come. However, this alone is insufficient, as it only offers a broad view of
the general performance of the model. A model that performs well overall
may still be unreliable in areas where the data has sparse representation,
potentially impacting smaller or less common subgroups. Such areas often
correspond to minority populations or rare yet critical cases where accurate
predictions are essential for important decisions. Consequently, if the data
do not adequately capture all relevant groups within a population, the results
of the decision-making system for those groups may be lacking reliability.
This kind of bias that arises when the sample used for model development
does not adequately capture certain segments of the population, leading to
poor generalization for specific groups within the intended user population,
is called Representation Bias [1].
In summary, Representation Bias can occur when the sampling process cap-
tures only part of the population or when the target population has shifted
or differs from the population used in model training.

1.1.1 Examples of Representation Bias

To better understand how the bias issue unfolds and emerges, it can be help-
ful to examine examples that demonstrate the impact of bias on individuals
and society. This bias can lead to actual discrimination if one relies solely
on the ML model and its potentially high Accuracy, without conducting
further in-depth analysis of the data.
Due to Representation Bias, data-driven ML models can learn unfair and
discriminatory patterns as happens in:
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1.1 – Representation Bias in Machine Learning

COMPAS score case

Here the goal is to use AI to assist judges to make decisions.
The COMPAS score (Correctional Offender Management Profile for Alter-
native Sanctions) is a tool developed by the company Northpointe to assess
the risk of criminal recidivism. Journalists at ProPublica analyzed data
from 7,000 arrests in Broward County, Florida, made in 2013 and 2014,
examining the risk scores assigned to individuals alongside their actual re-
cidivism, defined as whether they were charged with new crimes within two
years. The analysis revealed notable racial disparities: the algorithm was
more likely to incorrectly label Black defendants as high risk, resulting in
nearly double the False Positiverate compared to white defendants. Con-
versely, white defendants were often mislabeled as low risk more frequently
than Black defendants [2]. The issue here is that the model is trained on
data in which African-American individuals with a high risk of recidivism
are overrepresented compared to the number of Caucasian individuals who
reoffend. This results in a clear racial bias in the model’s predictions.

Amazon recruitment case

Here the goal is to use AI for the examination of job applications for Ama-
zon.
The AI tool designed to assist recruiters with tech field applications ex-
hibited bias against women. Specifically, it penalized candidates from all-
women’s colleges because the model tended to downgrade applications that
included the word “women’s” [3].
The issue lies in the AI system that learns to make decisions based on his-
torical data, which means it can reinforce existing biases. In this case, the
discrimination is directed at women because the tech industry is predomi-
nantly male.

United Kingdom exam results in 2020 pandemic case

During the COVID-19 pandemic, the UK government implemented an algo-
rithm to determine A-Level results after exams were canceled. This system
relied on students’ prior academic performance to predict their grades. How-
ever, the algorithm produced significant issues, particularly disadvantaging
students from underrepresented and disadvantaged backgrounds. As a re-
sult, many students received lower-than-expected grades [4]. In this case,
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Introduction and Motivation

the model leads to discrimination against students from lower-income back-
grounds, as it relies heavily on historical academic performance, which may
not reflect their true potential due to external factors like limited access to
resources. This causes students from disadvantaged groups to be unfairly
penalized.

These three real-world examples share an important commonality: in
each case, the discrimination arises from the underrepresentation of certain
population groups in the training data provided to the model. This lack of
diverse and inclusive data leads to biased outcomes, where marginalized or
minority groups are unfairly impacted by the model’s decisions.

1.2 Bias Mitigation as Solution for Bias Prob-
lems

The term "Bias Mitigation" refers to the collection of all methods aimed
at reducing, and ideally eliminating, discriminatory effects generated by a
model’s predictions. These techniques are designed to address and correct
for biases that may arise in the decision-making process, ultimately striving
to ensure fairer and more equitable outcomes across different demographic
or sensitive groups.
Although the biases can emerge from both structured (tabular) data and
unstructured (e.g. images, text, graph) data, this thesis will focus on the
bias mitigation applied to the former.
Drawing on the concept of "trustworthy AI", bias mitigation solutions can
be categorized into two types: model-dependent and model-agnostic.
For an ML model making decisions for humans, a certain level of fairness is
expected: if we can trust the prediction and understand the model’s func-
tionality, we can assess whether it relies on sensitive or protected information
or makes decisions based on discriminatory factors.
Once these biases are identified, they can be mitigated through two main
strategies. The first involves modifying the model itself, such as by includ-
ing constraints or by adding penalties to the loss function; in this case, the
bias mitigation solution is model-dependent. The second strategy leaves
the model unchanged and instead addresses the available data. This might
include pre-processing steps such as re-balancing classes, performing data

18



1.3 – Thesis Overview

augmentation, or reweighing, as well as post-processing methods that ad-
just model outputs rather than the model itself; in this case, the solution is
model-agnostic.

1.2.1 What Subgroup-based Bias Mitigation means
In the case of model-agnostic bias mitigation achieved through data aug-
mentation, additional data could be acquired externally. However, this in-
evitably incurs costs and requires targeted efforts to identify data that align
with specific objectives to minimize expenses. Alternatively, additional data
can be generated using techniques and strategies that leverage existing data.
This second approach offers significant advantages, as it eliminates the costs
associated with acquiring new data and avoids any ethical concerns related
to data collection.

In any case, for this thesis, subgroup-based mitigation refers to a bias
mitigation approach where additional data are incorporated into the train-
ing set only after identifying which specific data to include. Subgroups are
defined as feature-value pairs (e.g ., age=30 and gender=female) [5] that
represent specific segments of the dataset. These data are typically selected
because they are associated with problematic subgroups, such as those re-
sponsible for a high number of False Positives, False Negatives, or for which
the ML model tends to make more incorrect predictions.

1.3 Thesis Overview
The aim of this thesis is to propose innovative, model-agnostic bias mitiga-
tion methodologies specifically designed for structured data. The proposed
techniques are based on data augmentation and do not require the acquisi-
tion of new data. Instead, the additional data are either generated from the
existing dataset or drawn directly from a "reserved" subset of data that is
kept separate from both the training and testing sets.

The structure of this thesis is as follows. Chapter 2 explores various bias
mitigation studies applied to both structured and unstructured datasets, us-
ing techniques that either involve or exclude an initial automatic subgroup
identification step. This section compares these approaches, highlighting
the necessity of subgroup identification for achieving the objectives of this
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Introduction and Motivation

thesis. Additionally, it emphasizes that the proposed data augmentation
methods do not incur extra costs for acquiring new data, as they rely on
augmenting or generating data from the existing dataset. Chapter 3 presents
the prerequisites necessary to describe and understand the proposed solu-
tion. Chapter 4 provides the general method designed to address the bias
problem, while Chapter 5 showcases the results obtained by applying these
methods to the data, along with a description of the datasets. Finally and
Chapter 6 contains the corresponding conclusions and future works.
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Chapter 2

Related works

The Representation Bias, as previously defined and described, can be con-
sidered an intrinsic property of the dataset itself, independent of how the
data will be used downstream. This type of bias is not tied to the machine
learning model applied to the data: if it exists, it remains a characteristic
of the dataset, regardless of the chosen model.

While the primary objective of this thesis is to propose mitigation so-
lutions for structured data, with a particular focus on tabular datasets,
analyzing techniques applicable to unstructured data can be valuable. Such
methodologies may provide useful insights or encompass concepts and ap-
proaches that could be adapted and applied to tabular data as well.

To this end, Section 2.1 provides a description of the specific causes of
Representation Bias, while Section 2.2 examines the techniques for address-
ing Representation Bias presented in various papers. Specifically, Section
2.2.1 discusses methods that require domain experts to identify potential
biased categories in the data, whereas Section 2.2.2 explores techniques that
do not rely on experts, as the subgroups are automatically identified by spe-
cialized algorithms. Finally, Section 2.3 offers a commentary on the related
works presented in the previous section.

2.1 Possible causes of Representation Bias
To better understand what Rapresentation Bias means, let’s analyze
three possible reasons that cause it. In practical terms, its origin can be
understood by analyzing the various types of biases that contribute to it.
For example, Historical Bias [6] reflects the socio-technical issues in the
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world. One example of this is the Google search for "CEO United States,"
where the results predominantly show images of male CEOs. This is not
surprising, as, according to the latest data, women hold the position of CEO
in 10.4% of Fortune 500 companies. While there has been progress toward
gender equality, this percentage remains lower than the overall representa-
tion of women in the workforce. Another cause could be the Underlying
Distribution Skew [6] since the data may be imbalanced across subpop-
ulations without discriminatory intent. For example, according to the US
Census Bureau [7], 7% of the American population is of Asian descent, but
if a sample were collected, this subgroup would be underrepresented simply
due to chance. This can lead to unintentional discrimination in some ap-
plications. Finally, another possible cause could be Self-Selection Bias
[6], which occurs when a subset of the population voluntarily chooses not to
participate or is unable to participate in a specific experiment. For example,
if an online survey about the benefits of technology is distributed only via
email, people without internet access or those who do not check their inbox
frequently may be excluded, skewing the results in favor of participants with
greater access to technology.

In this chapter, some of the existing techniques for mitigating this type of
bias will be examined. These techniques are typically categorized into two
main groups: those designed for structured data (e.g., images, text, graphs)
and those developed for unstructured data (e.g., tabular data). Recall that
these types can further be categorized into two groups again: those that do
not involve intervening on the model, known as model-agnostic methods,
and those that require modifying the model itself, referred to as model-
dependent methods.

2.2 Representation-Bias Mitigation Techniques

2.2.1 Subgroups Identified by Domain Experts
Some studies propose solutions to address bias without automated subgroup
identification. One such approach, applied to image data, is the Partition-
and-Debias (PnD) [8] method, which handles multiple unknown biases with-
out relying on predefined subgroups. The PnD method implicitly divides the
bias space into distinct subspaces, using a set of experts specialized for each
type of bias, with each expert focusing on a specific aspect of the problem.
In other words, partitioning the space into subspaces allows the model to
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"specialize" in handling different facets of the bias, with each expert dealing
with a particular dimension, thereby improving the precision of bias miti-
gation. A gating module is then employed to combine the contributions of
the experts, deciding which expert to activate and how to integrate their
respective information to produce a final bias-free classification. The gating
module acts as a "selector", directing data to the most appropriate expert
for processing, and generating a final decision based on an aggregation of
the experts’ responses. This approach stands out for its ability to tackle sce-
narios where the type and extent of biases are unknown, without the need
to explicitly define subgroups. As a result, the method proves particularly
effective and adaptable in addressing complex biases that arise in real-world
contexts, where the specific manifestations of bias in the data cannot always
be predicted in advance.
Another methodology that does not require subgroup identification is FairDo,
[9] a method designed to reduce bias in tabular datasets by transforming
them to mitigate discrimination across multiple protected attributes such
as nationality, age, and gender. Rather than removing data, FairDo uses
preprocessing techniques to adjust feature distributions, ensuring fairness
without explicitly defining subgroups. This approach minimizes dispari-
ties in model predictions, enhancing fairness without compromising perfor-
mance, as demonstrated on real-world datasets.

Another group of bias mitigation states can be found in various synthetic
data generation methods that share the common goal of improving fairness
without compromising the overall performance of the model. For exam-
ple, several synthetic data generation techniques have been developed and
compared [10], which certainly allow data augmentation, but often do not
involve careful selection of the data to be generated, as they typically focus
only on balancing datasets that are biased due to class imbalance. One of
the techniques presented in the discussed survey is SMOTE, which will be
mathematically described in detail in the Background section. Unlike other
works that use SMOTE to generate data, in this thesis the process will first
involve searching for subgroups where the model is under-performing.

Even though the data is generated from scratch, no additional costs for
acquiring external data are required. This represents a significant advan-
tage. Another advantage is that generating new data allows for the removal
of some of the causes underlying Representation Bias. Creating new data
points with feature-value pairs that may be difficult to extract using tra-
ditional acquisition techniques logically helps eliminate at least three main
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causes of bias already discussed: historical bias, underlying distribution bias,
and self-selection bias, as discussed earlier in this chapter.

The selection of these studies as examples of bias mitigation techniques
highlights an important limitation: bypassing automated subgroup identifi-
cation relies heavily on prior knowledge of the problem and the categories
potentially subject to discrimination. While this approach can be effective,
it carries the risk of overlooking problematic categories that were not antic-
ipated, leaving certain sources of bias unaddressed and potentially reducing
the comprehensiveness of the mitigation strategy. Not identifying subgroups
for bias mitigation simplifies implementation by avoiding the need to man-
ually define and manage them. It also makes the approach more scalable,
as it can be applied to a broader range of datasets without requiring prior
knowledge of all possible subgroups. Furthermore, this approach is flexible
and adaptable to situations where bias may arise from complex, unknown
interactions, rather than from easily identifiable subgroups.

2.2.2 Automated Subgroup Identification
It is worth noting that methodologies have been developed which work even
when subgroups are not explicitly defined. However, not searching for sub-
groups can lead to lower precision in addressing complex biases, as such
approaches may miss subtle aspects of the issue. Generalizing to undefined
groups may be less effective in cases where specific subgroups need focused
attention. Furthermore, in situations where bias is linked to interactions
between variables, a targeted subgroup analysis would be necessary. For
example, if the bias is only present among young women of a specific na-
tionality, not exploring such subgroups may fail to detect it.
For these reasons, the objective of the thesis, bias mitigation in structured
data, is achieved through the identification of subgroups. This section does
not detail how the subgroup identification is performed in some related
works, as the algorithm used - DivExplorer [5] - is thoroughly explained
in the Background section. Therefore, for the purposes of this part, it is
assumed that the method for identifying subgroups is already established
and understood as a foundational aspect of the approach.

As previously mentioned, analyzing bias mitigation techniques which are
effective for specific data types can broaden the understanding of the prob-
lem and inspire adaptable methods for other contexts. In this thesis, the
bias mitigation approach applied to speech data [11] has played a pivotal
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role. This method identifies problematic subgroups where the ML model
performs poorly.

Here, data are initially split into four sets: train, test, validation, and
holdout (or held-out). Subgroup discovery occurs in the validation set, fo-
cusing on the top K problematic subgroups with the highest divergence,
defined as "a measure of different classification behavior on data subgroups"
[5]. Matching data is then retrieved from the held-out set and incorporated
into the train set.

A critical advantage of this process is its cost-free nature: new data are
not acquired but they are strategically selected from a reserved subset. This
approach improves model performance, evaluated on the test set, while max-
imizing the effective use of available data; moreover it benefits from the
advantages of an initial analysis of subgroups where the model is under-
performing.

2.3 Discussion
In conclusion, this chapter has provided an overview of various bias mit-
igation techniques, emphasizing the distinction between approaches that
require and do not require the automatic identification of subgroups. While
methods that do not explicitly define subgroups, such as PnD and FairDo,
offer flexibility and scalability, they may fall short in addressing complex,
subtle biases that arise in specific subgroups. By contrast, approaches that
involve the identification of problematic subgroups offer a more targeted and
precise solution, particularly in cases where bias is linked to interactions be-
tween variables or underperforming model segments.

This thesis adopts a hybrid approach, combining the subgroup identifica-
tion strategy used in speech data with synthetic data generation techniques
such as SMOTE. By first identifying subgroups where the model exhibits
underperformance, followed by data augmentation, this approach ensures
that bias mitigation is both effective and efficient. The method leverages
existing data, avoiding additional acquisition costs, and enhances fairness
by addressing multiple causes of Representation Bias. Furthermore, it guar-
antees that the approach is grounded in the specific characteristics of the
data, ensuring that no significant biases go unnoticed.

Ultimately, the combination of subgroup identification and data aug-
mentation represents a powerful strategy for mitigating bias in structured
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datasets, offering a more comprehensive and cost-effective solution to the
complex issue of fairness in machine learning models.
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Chapter 3

Background

In this chapter, the prerequisites necessary to fully understand the bias
mitigation approaches developed throughout this thesis are presented. The
mathematical theory and general notation used in the subsequent chapters
are thoroughly examined, with particular attention to the operation of Di-
vExplorer for subgroup identification.

Specifically, 3.1 outlines the main features of DivExplorer that make it
particularly suitable for our purposes, highlighting how this algorithm will
be used to identify problematic subgroups. Section 3.2 introduces key defi-
nitions such as itemset, support set, outcome function, support, divergence,
and f-divergence, which are essential for understanding the algorithm’s func-
tioning. A general overview of the algorithm is provided in 3.3. Finally, the
last section, 3.4, presents a mathematical explanation of why and when
divergence is statistically significant and not merely the result of random
statistical fluctuations.

3.1 Problematic Subgroup Identification via
DivExplorer

The purpose of this section is to describe and analyze the functioning of
DivExplorer, an algorithm for identifying problematic subgroups that lever-
ages frequent pattern mining (FPM) techniques. This tool will be used to
identify subgroups that pose challenges for a given ML model. The choice
of DivExplorer over other existing approaches is motivated by its unique
features, which make it particularly suited to the objectives of this study.
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Specifically, the algorithm allows for the identification of problematic sub-
groups while ensuring they are sufficiently represented in the dataset; it
also allows for a complete exploration of the dataset, which is a critical
feature for a thorough and comprehensive analysis.
Another extremely important feature of the algorithm is that it can search
for subgroups without altering the data in any way, thereby ensuring the
interpretability of the results. An additional important property is that it
is model agnostic. This is particularly useful for subgroup search because
it allows the approach to be applied to any classification model, making it
flexible and adaptable. Whether someone is working with decision trees,
k-nearest neighbors, or neural networks, the approach remains consistent,
enabling broad applicability across different model types without needing
specific adjustments for each.

However, complete exploration is essential because the metrics used to
evaluate performance differences between subgroups do not adhere to the
property of monotonicity. This means that, given two subsets D1 and D2 of
the main dataset D, where

D1 ⊂ D2 ⊂ D

it is not possible to establish a priori whether the divergence of D1 is greater
than, less than, or equal to that of D2, also if it is known that D2 is a superset
for D1. Thus, a full exploration of the dataset is necessary to ensure the
identification of all relevant subgroups.

Additionally, DivExplorer stands out for its ability to set a representa-
tiveness threshold for subgroups and its computational efficiency. These
characteristics make it the ideal tool for this study. The details of the al-
gorithm’s functioning, along with its definitions and properties presented in
this chapter, will be entirely derived from the paper "Looking for Truble: An-
alyzing Classifier Behavior via Pattern Divergence" [5], where DivExplorer
is introduced and described in detail.

3.2 Notation and Preliminary Definitions
As previously mentioned, divergence can be generally defined at a theoretical
level as a measure of differing classification behavior on data subgroups.
Here, subgroups refer to itemsets composed of multiple feature-attribute
pairs.
The main formal definitions useful for these concepts are presented below.
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Definition 3.2.1 (Itemset). Given an n-dimensional dataset D, it consists
of a set of instances on a set of A attributes, so that |A| = n is the number of
attributes; every attribute is discrete and a ∈ A can take finite and discrete
set Da of values and ma is such that ma = |Da|. An itemα is an attribute
equality a = c for a ∈ A and c ∈ Da. An instance x is covered by the item
α : a = c, written x |= a, if x(a) = c.
Finally, an itemset is a set of items I = {α1, ..., αk} such that

attr(αi) /= attr(αj), ∀1 ≤ i < j ≤ k

The itemset I can be also represented as the conjunction α1 ∧ · · · ∧ αk of its
items.

Definition 3.2.2 (Support-set and Support). The support-set of the item-
set I is defined as D(I) = {x ∈ D | x |= I} and consists of the instances
that satisfy I.
The support of I is given by

supp(I) = |D(I)|
|D|

Definition 3.2.3 (Length of an Itemset). The length of an itemset is
the number of elements it contains, ranging from 0 (empty itemset) to n
(number of attributes), attr(I) denotes the set of attributes in an itemset
I. For a subset B ⊆ A, IB represents the itemsets over the attributes in B.
Specifically, IA consists of the itemsets that contain all the attributes of the
dataset.

Definition 3.2.4 (Itemset f -divergence). Consider a dataset D as before,
be f : 2D → R a function, such function represents a statistic that can
be computed over subsets of the dataset, such as False Positive or negative
classification rates.
The notation f(I) is used to denote f evaluated on the set of instances that
satisfy I.

The f-divergence of an itemset I is defined as the difference between
the statistic f computed on I and the statistic f computed on the entire
dataset. The f -divergence of itemset I is given by the following expression:

∆f (I) = f(I) − f(D)
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Instead of passing f directly to DivExplorer, f is specified as an outcome
rate of an outcome function, this enables the efficient calculation of itemset
divergences.
If f is generic or can be understood from the context, then ∆f (I) ≡ ∆(I).

Property 3.2.1 (a finer discretization never hides f-divergence ). Let X be
a set of instances, and let X1, ..., Xm be such that tm

i=1 Xi = X
and Xi

u
Xj = 0 , ∀ 1 ≤ i < j ≤ m, so that Xi, ..., Xj is a partition for X,

it holds that: ∃i ∈ {1, 2, . . . , m} such that

|∆f (X)| <= |∆f (Xi)|

so for any f-divergence measure, there is at least one subset Xi, 1 ≤ i ≤ m,
with f-divergence equal or greater than the f-divergence of X in absolute
value.

The demonstration follows from the definition of the overall f-divergence:
the f-divergence of X is a weighted average of Xi, ..., Xm.
Mathematically,

∆f (X) =
mØ

i=1

|Xi|
|X|

∆f (Xi)

The implication of this property is that if a discretization is refined further,
for every divergent itemset in the coarser discretization, there is at least one
finer itemset that has equal or greater divergence.

Definition 3.2.5 (Outcome Function and Positive Outcome Rate). As in
the previous definitions, let D be a dataset, it is defined as
outcome function the function

o : D → {T, F, ⊥},

where the letters T and F stand, respectively, for True and False and the
symbol ⊥ stands for Ignored.
In the same context and under the same notation, it is defined as posive
outcome rate of o over a set of instances X ⊆ D the ratio that measures
the fraction of instances in X for which the outcome function o yields a
positive result T relative to the total number of instances in X for which
the outcome function is defined. Matematically,

fo(X) := |{x ∈ X | o(x) = T}|
|{x ∈ X | o(x) /=⊥}|
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it is possible to notice that the instances x such that o(x) =⊥ are not counted
in the number that represents the positive outcome rate.

An outcome function like the following:

ofpr(x) =


T if u(x) ∧ ¬v(x),
F if ¬u(x) ∧ ¬v(x),
⊥ if v(x).

is an example of outcome function suitable for this study, indeed when the
function v : D → {T, F} is the ground truth and u : D → {T, F} is the
classification1 outcome, ofpr is suitable to study the False Positiverate. In-
deed, going into the details:

• ofpr(x) is True when u(x) ∧ ¬v(x), here the classifier predicts positive
(u(x) = True), but the ground truth is negative (v(x) = False);

• ofpr(x) is False when ¬u(x)∧¬v(x), here the classifier predicts negative
(u(x) = False), and the ground truth is also negative (v(x) = False);

• ofpr =⊥, here the ground truth is positive (v(x) = True) this case
excludes the instance from consideration, as it concerns instances with
positive ground truth. These may correspond to true positives or False
Negatives.

In this case the related outcome rate is the following:

fofpr
(X) := |{x ∈ X | ofpr(x) = T}|

|{x ∈ X | ofpr(x) /=⊥}|

Another appropriate example of an outcome function is the next one:

ofnr(x) =


T if ¬u(x) ∧ v(x),
F if u(x) ∧ ¬v(x),
⊥ if v(x).

This function computes the number of False Negatives in fact:

1under the hypothesis that dealing with classifiers is the focus
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• ofnr(x) is True when ¬u(x)∧v(x), that is the classifier predicts negative
(u(x) = False) but the ground truth is positive (v(x) = True).

• ofnr(x) is false when u(x)∧¬v(x), meaning the classifier predicts positive
(u(x) = True) but the ground truth is negative (v(x) = False).

• ofnr(x) =⊥ when ¬v(x), that is the ground truth is negative, in which
case the instance is excluded from consideration.

Similarly to before, the related outcome rate measures the fraction of in-
stances in X for which the outcome function yields a False Negative result
(i.e., True) relative to the total number of instances in X for which the
outcome function is defined (i.e., when the ground truth is positive), math-
ematically:

fofnr
(X) := |{x ∈ X | ofnr(x) = T}|

|{x ∈ X | ofnr(x) /=⊥}|

From this discussion, it is evident that the subgroup search approach is
model agnostic. In fact, the classification result u represents the result of a
generic classification function, not a specific one. Therefore, the approach is
applicable to any classification model, making it versatile and independent
of the particular classifier used. In other words, the method does not rely on
a specific classification model and can be applied to various models without
modification to apply to the model itself.

3.3 DivExplorer Algorithm Overview
The algorithm described in [5] focuses on efficiently identifying subgroups
within a dataset where the behavior of a classification model significantly
deviates from its overall behavior. This approach is implemented in the
DivExplorer tool, which leverages FPM techniques to extract meaningful
patterns and evaluate their divergence, making it possible to uncover issues
like bias or systematic Errorsin the model.

The process begins by preparing the dataset, discretizing continuous at-
tributes, and encoding the classifier’s outcomes (such as FP or FN) into a
format that allows for efficient computation. The encoded outcomes are used
to compute metrics like the positive outcome rate for any subset of data.
This step ensures that the algorithm is flexible and applicable to various
metrics of interest.
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The algorithm then performs a systematic exploration of frequent pat-
terns in the dataset using methods like Apriori or FP-growth, which are
well-established techniques in FPM. For each candidate subgroup (itemset)
identified, it calculates its frequency (support) in the dataset and evaluates
its divergence. As stated before, divergence is computed as the difference
between the metric observed within the subgroup and the metric observed
globally across the entire dataset. Only itemsets that meet a user-defined
support threshold are retained, ensuring that the analysis focuses on statis-
tically significant subgroups.

What sets this algorithm apart is its integration of divergence computa-
tion directly within the pattern mining process. This approach eliminates
the need for additional dataset scans, significantly improving efficiency. Fur-
thermore, the algorithm is designed to support multiple metrics, such as
FPR and FNR, allowing for a comprehensive evaluation of the classifier’s
performance.

DivExplorer focuses on frequent itemsets, defined by a user-specified
threshold, to avoid the impact of statistical fluctuations in low-support
groups and prioritize divergences that affect substantial portions of the
dataset. To streamline results, it employs post-exploration pruning: a pat-
tern is discarded if adding an attribute contributes only marginally to di-
vergence below a threshold ϵ:

|∆f (I) − ∆f (I − {α})| ≤ ϵ,

the modification assumes that the pattern I − α captures the f-divergence
of pattern I. This ensures the output highlights only the most meaningful
and informative patterns, eliminating redundancy and noise.

At the end of the process, the algorithm outputs a ranked list of sub-
groups, sorted by their divergence values. This allows users to quickly iden-
tify the most critical patterns where the classifier’s behavior diverges from
its overall performance. By providing insights into subgroup-specific behav-
iors, the algorithm facilitates fairness analysis, Error detection, and model
debugging, enabling a deeper understanding of the model’s limitations and
potential biases. It is important to recall that the combination of efficiency,
scalability, and model-agnostic design makes this algorithm a powerful tool
for exploring and improving ML models.
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3.4 Statistical Significance of Divergence
Once it is established that DivExplorer identifies problematic subgroups
by ranking them based on their divergence, one might question whether the
observed divergence is statistically significant or merely the result of random
statistical fluctuations due to the finite size of the dataset.
Since the outcome function is boolean, it is possible to adopt an approach
based on Bayesian statistics [12]; in particular, one can assume that the
goal is to estimate the precision in the knowledge of the positive
rate. Under this hypothesis, each instance in the itemset can be viewed as
a Bernoulli trial where:

• the outcome T represents a success with probability Z

• the outcome F represents a failure with probability 1 − Z

The goal is therefore to estimate the parameter Z which corresponds to the
positive success rate as said before.
A set of n instances observed in the itemset produces k+ successes (T ) and
k− failures (F ), with k+ + k− = n.

Then:

k+ = |{x|x |= I ∧ o(x) = T}|, k− = |{x|x |= I ∧ o(x) = F}|

This scenario can be modeled as a series of independent trials, each char-
acterized by a common parameter Z, typical of the Bernoulli distribution.
Initially, before observing any trial, the value of Z is unknown.
To reflect this lack of knowledge, a uniform distribution is assumed as the
prior for Z, such that

P (Z) = 1, Z ∈ [0, 1]

This implies that every value of Z in the range [0, 1] is considered equally
probable.

Using Bayes’ rule, after observing k+ successes and k− failures, the knowl-
edge about Z can be updated as follows:

P (Z | data) ∝ P (data | Z)P (Z)
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where data refers to the subset of instances D(I) from the main dataset
D that satisfy the conditions defined by a specific itemset I. Each instance
in "data" contributes to the calculation of success and failure rates based
on an outcome function o(x), which categorizes the instances (e.g., as true
positive, False Positive , or ignored) according to the classifier’s predictions
and the ground truth labels.

Here, P (data | Z) represents the likelihood of the observed data given Z.
For independent Bernoulli trials, this likelihood follows a binomial distribution[13]:

P (data | Z) = Zk+
(1 − Z)k−

,

since P (Z) is the uniform prior assumed initially.
Combining these, we get:

P (Z | data) ∝ Zk+
(1 − Z)k−

,

but

P (Z | data) ∝ Zk+
(1 − Z)k−

= Beta(k+ + 1, k− + 1)(Z)2.

For the previous Beta distribution, the mean is:

µI = k+ + 1
k+ + k− + 2

and the variance is:

νI = (k+ + 1)(k− + 1)
(k+ + k− + 2)2(k+ + k− + 3)

the advantages of this form of mean and variance is the numerical stability
when k+ + k− = 0, so when the outcome function is ⊥ on the itemset con-
sidered.

2The Beta distribution [13]is defined as:

Beta(α, β)(Z = z) = kzα−1(1 − z)β−1, z ∈ [0,1]

where k is a normalization constant and α, β > 0. The expected value and variance are:

E[Beta(α, β)] = α

α + β
, Var(Beta(α, β)) = αβ

(α + β)2(α + β + 1) .
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Finally with these values, it is possible to compare the positive rate ob-
served in the itemset with the global rate using a Welch’s t-test, which
accounts for the estimated variances.

This approach allows for a robust estimation of the significance of the
divergence, even for itemsets with limited data, leveraging the properties of
the Beta distribution to rigorously represent the uncertainty associated with
the estimation of the parameter Z.
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Chapter 4

Proposed Solution

This chapter provides a detailed analysis of the method developed for Bias
Mitigation in tabular data. The proposed method, referred to throughout
this work as SMOTE-NC Data Generation, represents an innovative ap-
proach and will be examined here from a theoretical perspective, while its
practical application, along with experimental results, will be discussed in
the next chapter.

Specifically, 4.1 outlines the main steps of the bias mitigation proposal
presented in this thesis. The proposed approach can ideally be divided into
three main steps, which are described in 4.2, 4.3, and 4.4. These sections
cover, respectively, the identification of subgroups, the generation of new
data, and the retraining phase.

Within section 4.3, the subsection 4.3.1 explains the general functioning
and use of SMOTE and SMOTE-NC, while sections 4.3.2 and 4.3.3 provide
a mathematical description of these two methods.

4.1 SMOTE-NC Data Generation method
The method developed in this thesis work, described in detail in this section,
is based on the premise that bias mitigation in tabular data requires targeted
interventions to address underrepresented or problematic subgroups. These
subgroups, if neglected, can compromise the fairness and accuracy of ma-
chine learning models, making it essential to adopt a systematic approach to
mitigate disparities and improve the representativeness of the data, thereby
enhancing predictive performance.
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The SMOTE-NC Data Generation Method is an innovative approach de-
signed to tackle these challenges by systematically augmenting the training
set with synthetic data. This method leverages data augmentation to im-
prove the representation of minority subgroups and, finally, to reduce bias in
model predictions. After the preprocessing and the splitting of the data into
training, test and validation sets, and after training the model, the proposed
solution is structured into three main phases, as shown in the figure 4.1.

Figure 4.1: Visual description of the SMOTE-NC generation method. After preprocess-
ing, a mitigation metric and model are chosen, and problematic subgroups are identified
in the validation set using DivExplorer. Instances from the validation that match these
subgroups (Problematic instances) are then selected, and new data points are generated
based on these instances. The generated samples are added to the training set, followed
by model retraining to enhance performance and fairness.

In particular, the first phase focuses on identifying problematic subgroups
within the dataset, specifically in the validation set. These subgroups are
defined as subsets of data that exhibit bias, are underrepresented, or demon-
strate disparities in model performance, posing a risk to the overall fairness
of the system.

The second phase focuses on generating synthetic samples that replicate
the characteristics of the identified problematic subgroups. This is achieved
by selecting instances from the validation set (here called problematic in-
stances)that match the problematic subgroups detected in the validation
set. Synthetic data is then generated using techniques such as SMOTE
(for numerical variables) or SMOTE-NC (a more general approach suited
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for datasets containing categorical variables). This process ensures that the
generated samples preserve the statistical properties of the subgroups while
mitigating their underrepresentation.

The third phase incorporates the newly created samples into the training
set, enhancing its diversity and mitigating the imbalance or bias present in
the original dataset. The model is then retrained on this augmented training
set to improve its performance and fairness.

4.2 Problematic Subgroup Identification
The identification of problematic subgroups represents the first step in the
methodology proposed in this Bias Mitigation study.
This process is carried out using DivExplorer, a tool whose theoretical foun-
dations and functionality have been detailed in the Background chapter.
Specifically, in this work, DivExplorer is employed to detect problematic
subgroups, following the divergent subgroup search approach outlined in
[11].

After selecting a Machine Learning model, defining a metric for iden-
tifying underperforming subgroups (e.g., False Positives, False Negatives,
or Error rate), and splitting the dataset into three subsets: train set, test
set, and validation set, the search for problematic subgroups is performed
on the validation set. Thanks to the model predictions on the validation
set and the corresponding ground truth labels, DivExplorer can be applied
to the validation set itself to identify problematic subgroups. Then, using
these subgroups, the problematic instances from the validation set—i.e., in-
stances that contain a certain number of problematic subgroups—are used
to generate new data. By the way, during the analysis, both the reference
metric and the support threshold—representing the minimum percentage of
subgroup presence in the considered dataset portion—can be specified. By
varying these parameters, it is possible to identify subgroups and determine
which ones are problematic or divergent.

4.3 New samples Generation
The core idea of this Bias Mitigation approach is that increasing the presence
of samples in the train set that match the identified problematic subgroups
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can significantly improve the model’s predictions for these subgroups. Ini-
tially, the model’s performance on these subgroups may be poor, but by
incorporating a sufficient number of representative examples into the train
set, the model becomes better at generalizing, leading to more accurate
predictions for these specific cases.

The methodology developed in this work involves, after identifying the
problematic subgroups as described in the previous section, generating new
samples that match these subgroups using a linear interpolation method
called SMOTE, which is applicable when all variables are numerical, or
SMOTE-NC, which is used when there are also categorical variables.

This approach provides greater flexibility, allowing for:

• the selection of how many of the problematic subgroups identified by
DivExplorer should be considered for sample generation;

• the total number of synthetic samples to be generated;

• the distribution of these synthetic samples across the different classes.

In the next sections, the mathematical formulation and the explanation
of SMOTE and SMOTE-NC will be provided.

4.3.1 SMOTE and SMOTE-NC
Datasets are defined as imbalanced when the samples belonging to a certain
class are significantly fewer than those of another class. This condition
poses a significant challenge for ML models, as the uneven distribution of
classes can compromise the model’s performance. Specifically, classifiers
tend to underestimate the importance of the minority class, resulting in
difficulties in correctly identifying the examples that belong to it. For this
reason, the use of specific techniques designed to handle imbalanced datasets
proves particularly valuable, especially in contexts where data subgroups are
underrepresented but crucial for analysis.

One of the most widely used techniques to address the issue of class imbal-
ance is SMOTE (Synthetic Minority Over-sampling Technique), introduced
by Chawla et al. (2002)[14]. This technique, designed for datasets with nu-
merical features, generates new synthetic examples for the minority class by
performing linear interpolation between pairs of existing points belonging
to the same class.
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An extension of SMOTE presented in the same publication is SMOTE-NC
(Synthetic Minority Over-sampling Technique for Nominal and Continuous
features)[14], which allows the method to be applied to datasets contain-
ing both numerical and categorical features. SMOTE-NC combines linear
interpolation for numerical features with a probabilistic approach for cate-
gorical features, where category values are chosen randomly based on the
most frequent categories among the nearest neighbors.

Both approaches stand out for their ability to enhance the representation
of the minority class without simply duplicating the original data, thereby
reducing the risk of overfitting and improving the model’s performance.

This section will delve into and mathematically formalize the synthetic
data generation technique employed by the two methods, with a particular
focus on both numerical and categorical values. For simplicity, the generated
instance will be referred to as a synthetic data point, a synthetic point, a
synthetic instance, or simply data, instance or point, whenever it is clear
from the context that it refers to a simulated instance rather than an existing
one.

While this chapter focuses solely on the theoretical and mathematical
formalization of data generation, the following chapters will explore how
SMOTE is applied to address the problem of bias mitigation.

4.3.2 SMOTE Theoretical Formulation
As will become evident from the theoretical discussion presented in this
section, one of the distinctive features of SMOTE is that the generation of
synthetic examples occurs in the feature space, rather than in the data
space. This means that synthetic data is created by operating directly on
the numerical or categorical variables that describe the observations
in the dataset, without manipulating the raw data, such as images, text, or
signals.

Working in the feature space makes the method less constrained by the
specifics of a given application, enabling its use in a wide variety of contexts.
For instance, in the case of numerical variables, SMOTE generates new data
through linear interpolation between nearby points belonging to the minority
class, avoiding mere replication of existing examples.
Formally, let D be an imbalanced dataset composed of n classes, and let
Pclass1 ⊂ D, . . . , Pclassn ⊂ D, where Pz for z ∈ {1, . . . , n} is the set of data
points belonging to class z.
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Under the hypothesis that i is the minority class in D, let Pi represent
the set of data points that belong to this class. The objective is to generate
new synthetic points specifically for Pi, thereby increasing its representation
in the dataset.

To achieve this, the procedure begins with the random selection of a point

P chosen
i ∈ Pi

For a fixed parameter k, the k-nearest neighbors of P chosen
i within Pi are

identified.
From these neighbors, one is randomly selected, denoted as kchosen

j .
Given the two data points P chosen

i and kchosen
j , a new synthetic data point

P synthetic
ij

is generated via linear interpolation as follows:

P synthetic
ij = P chosen

i + r · (kchosen
j − P chosen

i )

where r is a random scalar uniformly sampled from the interval [0, 1].
This interpolation is performed component-wise , that is to say feature

by feature, ensuring that each feature of the synthetic point is calculated
as a linear combination of the corresponding features of P chosen

i and kchosen
j .

Repeating this procedure multiple times generates a desired number of syn-
thetic samples for the minority class Pi.

The figure 4.2. illustrates a simple and stylized example of the genera-
tion of a synthetic sample in a small unreal dataset consisting of only two
features. The synthetic point generated, P synthetic

ij , lies on the line segment
connecting the two points P chosen

i and kchosen
j . This is because the genera-

tion method relies on linear interpolation. Linear interpolation calculates an
intermediate point along the segment joining two points in a vector space,
using a weighted combination of their coordinates, where the weight is de-
termined by a random value r chosen in the interval [0,1].

4.3.3 SMOTE-NC Theoretical Formulation
As reminder, SMOTE-NC is an extension of SMOTE designed to handle
datasets that contain both numerical and categorical features. This method
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Figure 4.2: Example of SMOTE synthetic data generation, when the number of features
is 2, r = 0.5, kchosen

j = k3 = (55, 45), P chosen
i = P chosen

2 = (65, 45), so P chosen
ij = P chosen

23 =
(60,45).

adapts the synthetic data generation process to consider the distinct na-
ture of categorical variables, ensuring meaningful interpolation across both
feature types.

As with SMOTE, SMOTE-NC operates in the feature space, generating
synthetic examples directly on the variables that describe the observations
in the dataset. For numerical features, SMOTE-NC uses linear interpo-
lation, while for categorical features, the new synthetic values are chosen
based on the mode (most frequent category) among the neighbors. This
hybrid approach enables the generation of realistic synthetic examples with-
out altering the raw data, making the method versatile and applicable across
various domains.

Formally,

43



Proposed Solution

let D represent an imbalanced dataset composed of n classes, and let Pclass1 ⊂
D, . . . , Pclassn ⊂ D, where Pz for z ∈ {1, . . . , n} is the set of data points be-
longing to class z.

Assuming i is the minority class in D, let Pi represent the set of data
points that belong to this class. The goal is to generate new synthetic
points for Pi while respecting the nature of both numerical and categorical
features.

To achieve this, the process begins by selecting a point

P chosen
i ∈ Pi

at random.
For a fixed parameter k, the k-nearest neighbors of P chosen

i within Pi are
identified. From these neighbors, one is randomly selected, denoted as

kchosen
j .

To identify the k-nearest neighbors of a point P chosen
i ∈ Pi, SMOTE-NC

uses a mixed distance metric that combines numerical and categorical dis-
tances. Let the feature set of the dataset be divided into numerical compo-
nents N and categorical components C. The distance d between two points
P and Q is defined as:

d(P, Q) =
ó Ø

x∈N
(Px − Qx)2 +

Ø
y∈C

∆(Py, Qy) · Med2,

where Px and Qx are the values of the numerical feature x for points P and
Q, respectively and ∆(Py, Qy) is 0 if the categorical feature y matches (Py =
Qy), and 1 otherwise (Py /= Qy), finally Med is the median of the standard
deviations of the numerical features in Pi. This term scales the contribution
of categorical mismatches relative to numerical distances, ensuring balanced
weighting.

This mixed distance metric allows SMOTE-NC to consider both feature
types effectively when identifying neighbors.

With the same distinction between categorical and numerical features, so
that N (numerical) and C (categorical), for numerical features x ∈ N , the
synthetic data point P synthetic

ij is calculated using linear interpolation:

P synthetic
ij,x = P chosen

i,x + r · (kchosen
j,x − P chosen

i,x ),
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where r is a random scalar uniformly sampled from the interval [0, 1].
For categorical features y ∈ C, the synthetic value is determined by se-

lecting the most frequent category among P chosen
i , kchosen

j , and the other
neighbors:

P synthetic
ij,y = Mode({P chosen

i,y , kchosen
j,y , . . . , kmax,y}).

By combining these rules for numerical and categorical features, SMOTE-
NC produces a hybrid synthetic point:

P synthetic
ij = {P synthetic

ij,x for x ∈ N , P synthetic
ij,y for y ∈ C}.

It is possible to conclude that both SMOTE and SMOTE-NC represent
a general and flexible approach that reduce the complexity associated with
handling raw data by focusing on feature-space operations. This makes
these methods particularly well-suited for structured or tabular datasets
with numerical or categorical features.

A key advantage of both techniques is their independence from the data’s
domain or origin: they can be applied across diverse fields, such as health-
care, finance, image analysis, or natural language processing, as long as the
data is represented as vectors of features. This flexibility ensures broad ap-
plicability regardless of the specific context or application requirements.

These characteristics make them particularly well-suited for addressing
bias mitigation in structured data contexts, where an adequate representa-
tion of classes is crucial for improving model fairness and performances.

4.4 Model Retraining
The synthetic records generated using this technique are then incorporated
into the training set, significantly enriching it with additional data points
that have been created through interpolation.
This process involves generating new samples that share the same statistical
properties as the identified problematic subgroups, ensuring that the model
is exposed to a more diverse and balanced set of training examples. The
newly generated samples not only enhance the representativeness of under-
represented subgroups but also reduce the bias in the model by addressing
the disparities that existed in the original dataset.
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Once these synthetic samples are added to the training set, the next step
involves retraining the selected ML model on this augmented dataset. This
retraining process ensures that the model is exposed to a broader range of
data, ideally improving its ability to generalize across previously underrep-
resented subgroups. The key advantage of this phase is that the model is no
longer trained on a dataset with imbalanced subgroup representation, but on
one that has been adjusted to provide a different distribution of subgroups.

To evaluate the effectiveness of this bias mitigation strategy, the model’s
performance is compared before and after the augmentation phase. This
comparison can be done both qualitatively and quantitatively.
Qualitative evaluation involves examining how well the model now handles
the previously problematic subgroups by looking at its predictions on those
specific groups.
Quantitatively, performance metrics such as Accuracy, False Positives, False
Negatives, and Error rates can be measured and compared, providing a clear
picture of how much improvement has been made. This comprehensive
evaluation allows for a thorough understanding of the impact of the bias
mitigation technique and its ability to enhance the fairness and performance
of the ML model.

The next chapter will present the experiments conducted and the results
obtained by applying the strategies outlined in the baselines. Practical de-
tails of the implementation and an in-depth evaluation of the experimental
results will be analyzed.
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Chapter 5

Experimental Setting and
Results

This chapter describes the experimental setting and presents the results of
the experiments conducted to test the proposed bias mitigation strategy.
The code used in this thesis can be found in [15]. In particular, 5.1 explains
the criteria used for describing the datasets, highlighting which aspects are
emphasized and which are omitted. Subsections 5.1.1 and 5.1.2 focus on
the Adult and COMPAS datasets, respectively, including only the elements
relevant to the proposed Bias Mitigation solution. Section 5.2 focuses on
the experiments and results. In particular,it presents the competitor strate-
gies and the metrics used to assess bias mitigation. Its subsections—5.2.1,
5.2.2, 5.2.3, and 5.2.4—describe, respectively, the evaluation metrics used
to determine whether and which strategy is the most effective, the models
trained and used for predictions, the results obtained on the Adult, and
those obtained on the COMPAS datasets. The last two subsections are fur-
ther divided into six sub-subsections each. For the Adult dataset, 5.2.3.1
presents the results of BM when the chosen metric is False Positives, with a
general overview of the outcomes provided in 5.2.3.2. Similarly, 5.2.3.3 fo-
cuses on the results when False Negatives are the selected metric, with the
main outcomes summarized in 5.2.3.4. Finally, 5.2.3.5 extends the analysis
to the more general metric of total Errors, with the main outcomes in 5.2.3.6.
For the COMPAS dataset, the same structure is followed. 5.2.4.1 presents
the results for False Positives, with a summary in 5.2.4.2. 5.2.4.3 focuses on
False Negatives, with the main findings outlined in 5.2.4.4. Lastly, 5.2.4.5
examines total Errors, concluding the key outcomes in 5.2.4.6.
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5.1 Datasets Description
In this chapter, the concepts explained theoretically so far will be put into
practice by presenting the results of bias mitigation experiments. Particular
attention will be given to the preprocessing phase of the dataset, focusing
on its attributes, values, and discretization. These steps are crucial for
implementing the strategy, especially as this work involves the injection of
new data points designed to address problematic subgroups. Discretization
plays a fundamental role, as tools like DivExplorer are highly sensitive to
how data is grouped. By managing variable granularity, it becomes possible
to identify fairness issues more effectively and provide explainable solutions.

5.1.1 Adult Dataset Description
The Census Income Dataset, more commonly known as Adult, is a
dataset provided by the U.S. Census Bureau through the UCI Machine
Learning Repository. It is widely used for classification problems and pre-
dictive analysis, specifically to determine whether an individual’s annual in-
come exceeds $50,000 based on economic and socio-demographic attributes.

As shown in Table 5.1, the dataset includes sensitive variables such as
gender and race, making it particularly suitable for analyzing and miti-
gating bias in tabular data. The target variable, income, serves as an ideal
case study for evaluating the fairness of predictive models. Additionally, it
demonstrates how the identification of problematic subgroups can highlight
disparities observable in real-world scenarios. This underscores the impor-
tance of adopting methods that not only mitigate bias but also ensure high
interpretability and explainability of results.

The original dataset, as downloaded and before preprocessing, consists of
32,561 instances and 15 attributes, including the target variable income.

During the preprocessing phase, duplicate entries were removed, result-
ing in a total of 32,537 available instances, with 24,698 belonging to class 0
and 7,839 to class 1. This indicates a strong class imbalance toward class
0;values with similar meanings were standardized. For example, values such
as ’?’ and ’Unknown’ in the workclass feature were unified under the same
label. Similarly, for the native-country feature, categories such as ’Ger-
many’, ’England’, ’Scotland’, ’France’, ’Italy’, ’Ireland’, ’Greece’, ’Poland’,
’Portugal’, ’Yugoslavia’, and ’Hungary’ were grouped under a single value,
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Table 5.1: Description and Type of attributes in the Adult dataset.

Attribute Description Values
age Age of the individual Numeric

workclass Employment type Categorical
fnlwgt Final weight (sampling weight) Numeric

education Highest level of education Categorical
education-num Years of education Numeric
marital-status Marital status Categorical

occupation Type of occupation Categorical
relationship Relationship to the household Categorical

race Race of the individual Categorical
sex Gender of the individual Categorical

capital-gain Capital gains Numeric
capital-loss Capital losses Numeric

hours-per-week Hours worked per week Numeric
native-country Country of origin Categorical

income Income level of the individual <50K, >50K

’Caucasian/White’. Features like educational-num and age were discretized
to enhance interpretability and facilitate the analysis. Only after completing
these steps was label encoding applied to convert categorical variables into
numerical representations.

This is just one example of the preprocessing steps applied to the dataset.
More details on the number of possible values for each feature, both before
and after the full preprocessing, can be found in Table 5.2, this table pro-
vides only general information; if necessary, further details will be provided
regarding the possible values. It is important to note that DivExplorer is
sensitive to discretization choices, and passing features to the tool prior
to encoding ensures explainability, maintaining the interpretability of both
the input data and the results, this concept will be more clear in the next
subsection.
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Table 5.2: Number of attributes in the Adult dataset before and after pre-
processing.

Attribute # original
distinct values

# preprocessed
distinct values

age 73 6
workclass 9 6

fnlwgt 21648 only normalized
education 16 4

education-num 16 12
marital-status 7 5

occupation 15 6
relationship 6 6

race 5 5
sex 2 2

capital-gain 119 only normalized
capital-loss 92 only normalized

hours-per-week 94 3
native-country 42 6

income 2 2

5.1.2 COMPAS Dataset Description
The COMPAS Dataset is derived from the COMPAS (Correctional Of-
fender Management Profiling for Alternative Sanctions) risk assessment tool,
which is used in the American criminal justice system to predict the like-
lihood that an individual will reoffend. The dataset, sourced from the
ProPublica investigation and available through Kaggle, includes informa-
tion on individuals assessed by COMPAS, such as demographic attributes,
prior criminal history, and risk scores. It is widely used in fairness and bias
analysis within machine learning, particularly to study algorithmic decision-
making and potential disparities across different demographic groups. The
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original dataset consists of 52 features and 18,316 instances and includes sen-
sitive information such as race and gender, making it particularly suitable
for the objectives of this thesis. During the preprocessing phase, redundant
or less informative features—such as first name, last name, middle name,
and arrest date—were removed. The target variable used for the analysis
is the feature renamed "violent recidivist", which takes the value 1 if an
individual is considered a repeat offender in the case of violent crime and 0
otherwise. After eliminating irrelevant features and instances with missing
values, the dataset comprises 10 features, including the target variable, and
a total of 18,293 instances, with 16,954 belonging to class 0 and 1,339 to
class 1. This indicates a strong class imbalance toward class 0. Table 5.3
provides a concise description of the variables along with their respective
types.

Table 5.3: Description and Type of Attributes in the COMPAS Dataset.

Attribute Description Values
sex Gender Categorical
race Race/ethnicity Categorical

recidivism risk Risk score for recidivism Numeric

risk level Risk category w.r.t.
recidivism score Categorical

violent recidivism risk Predicted risk score
for violent recidivism Numeric

violent risk level Risk category w.r.t.
violent recidivism score Categorical

juvenile offenses # Prior juvenile offenses Numeric

age Age at the
assessment time Numeric

prior offenses # Prior Offenses Numeric

violent recidivist Whether the individual
reoffended violently

Binary
(0 = No, 1 = Yes)

The feature juvenile offenses does not exist in the original dataset; it was
created during the preprocessing phase by summing the values of three fea-
tures: juv_fel_count, juv_misd_count, and juv_other_count. These fea-
tures represent, respectively, the number of juvenile felony offenses, juvenile
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misdemeanor offenses, and other juvenile offenses recorded for an individual.

Table 5.4: Number of attributes in COMPAS dataset before and after pre-
processing.

Attribute # original
distinct values

# preprocessed
distinct values

sex 2 2
race 6 6

recidivism risk 10 10
violent recidivism risk 10 10

violent risk level 3 3
juvenile offenses - 14

age 65 6 - discretized
prior offenses 39 7 - discretized

violent recidivist 2 2

For this reason, in Table 5.4, which details the number of distinct val-
ues each feature could assume before and after preprocessing, a dash ("-")
is placed in the corresponding row for juvenile offenses under the "Before
Preprocessing" column, indicating that it was not originally present in the
dataset.

Recall that it is important to note that DivExplorer is sensitive to dis-
cretization choices, and passing features to the tool prior to encoding ensures
explainability, maintaining the interpretability of both the input data and
the results, this concept will be more clear in the next subsection.

5.2 Experiments and Results
In this section, the general method described in the previous chapter will be
applied to the data from the tabular datasets previously described. Specifi-
cally, for the datasets described, the effect of the data generation technique
on False Positives, False Negatives, and overall number of Errors
will be examined.
The results obtained with this method will be compared to those from two
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alternative methods: the Random Data Acquisition Method, which
involves acquiring a specific number of random instances from the held-out
set, which are then added to the training set for retraining, and the Tar-
geted Data Acquisition Method, which follows the approach proposed
in the paper [11], where, after identifying the problematic subgroups, in-
stances matching these subgroups are searched for in the held-out set and
added to the training set for retraining. Finally, the method described in
this thesis, known as the SMOTE-NC Data Generation Method or
simply, the Data Generation Method, will be used for comparison.

5.2.1 Evaluation Metrics
In the following sections, concerning the metrics used for bias mitigation,
recall that the mitigation will be performed by considering the number of
False Positives, the number of False Negatives, and the total number
of Errors made by the model. Regarding the evaluation metrics for the
applied methods, Accuracy and F1-Score will be considered to assess
the overall performance before and after mitigation. However, to assess
the effectiveness of the mitigation, divergence values will be analyzed both
before and after the process. Specifically, ∆avg represents the absolute mean
divergence across all subgroups, ∆max is the worst-case absolute divergence
for any subgroup, and ∆i denotes the absolute mean divergence for the top
i most problematic subgroups.

5.2.2 Experimental Setting
The diverging subgroups are identified in the validation set. The experi-
ments are conducted using the following machine learning models: Decision
Tree, Gradient Boosting, Logistic Regression, and Random Forest. It is
important to emphasize that the methodology adopted is model-agnostic,
meaning it is independent of the specific model. These models are employed
solely to enable comparisons and to evaluate the consistency of the proposed
methodology. Indeed, the models were used with their default parameters,
without any hyperparameter tuning or optimization. However, if any of
these four models exhibit zero False Positives, zero False Negatives, or both,
they will be replaced by the k-Nearest Neighbors algorithm to ensure a more
balanced evaluation.
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With the DivExplorer tool, it is possible to identify all subgroups with a
minimum support in the dataset. In this context, subgroups with pos-
itive divergence and a t-statistic > 2 are considered problematic
or divergent, as they exhibit behavior that significantly deviates from the
overall dataset.

Moreover, the following experiments will present the results of the mit-
igation process by adjusting the min_sup that is the minimum support:
the minimum percentage of instances containing a specific subgroup. As
this threshold changes, the number of problematic subgroups varies.

K% represents the percentage of problematic subgroups, relative to the
total number of problematic subgroups found by varying the metric and
support, that are used to perform the mitigation. Another parameter influ-
encing the number of identified problematic subgroups is the redundancy or
pruning parameter. This parameter defines the threshold below which a
pattern is discarded if its contribution to the overall divergence is smaller
than the defined threshold.

The following sections present the results of the mitigation applied to the
previously described datasets, varying the problematic subgroups injected
into the training set.

5.2.3 Adult Experiments and Results
The preprocessed Adult Dataset consists of a total of 32,537 instances.
These are divided as follows: 40% (13,014 instances) is allocated to the
train set, while the remaining 60% is evenly split among the test set, val-
idation set, and held-out set, with 20% each (6,507 or 6,508 instances).
Specifically, the train set contains 13,014 instances, the validation set has
6,507 instances, the holdout set includes 6,508 instances, and the test set
comprises 6,508 instances.

Table 5.5 shows how the number of subgroups found with DivExplorer
varies as the minimum support changes, while keeping the redundancy pa-
rameter fixed at ϵ = 0.01 and the model used is the DT.

From this table, it is clear that the number of original subgroups found
remains the same regardless of the reference metric. What changes according
to the reference metric is the divergence, and indeed, it can be observed that
the number of subgroups varies when the pruning parameter is adjusted
between different metrics. This happens because the number of subgroups
with a given support is an inherent characteristic of the dataset, independent
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of the model and its performance.

Table 5.5: Number of subgroups before and after post-exploration pruning
for DT model and fixed ϵ = 0.01

Metric Minimum
Support # Subgroups # Pruned

Subgroups

FP
10% 3793 224
15% 1655 96
20% 893 58

FN
10% 3793 658
15% 1655 270
20% 893 146

ER
10% 3793 271
15% 1655 133
20% 893 83

However, when pruning is applied, it is done based on divergence, which
instead varies depending on the model and the chosen metric.

The Table 5.6 shows the most divergent subgroups with respect to the
False Positive, False Negative and Error Metrics, along with their respective
divergences for the aforementioned Decision Tree Model when redundancy
parameter is ϵ = 0.01 and the minimum support varies from 10% to 20% of
the validation set.

Such table provides a detailed overview of the problematic subgroups
for the various metrics. From this point, it is possible to understand what
interpretable subgroups mean: intuitively, it can be observed that, when
the metric is False Positive , the problematic subgroups with feature-value
pairs like race = ’White’ or relationship = ’Husband’ reflect the social belief
that a white male (since "Husband") might more easily be associated with
a higher income.

It is important to notice that, after preprocessing the data, the value
names differ from those in the original dataset.

Specifically: {race=’White’} encompasses the ethnicities: ’Germany’,
’England’, ’Scotland’, ’France’, ’Italy’, ’Ireland’, ’Greece’, ’Poland’, ’Por-
tugal’, ’Yugoslavia’, ’Hungary’; {education =’Non Graduated’} includes:
’Preschool’, ’1st-4th’, ’5th-6th’, ’7th-8th’, ’9th’, ’10th’, ’11th’, ’HS-grad’,
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’Some-college’, ’12th’; {hours = ’Overtime’} refers to more of 41 working
hours per week.

Table 5.6: Number of subgroups, number of problematic subgroups, the most divergent
one with different minimum support and different the metrics for DT model.

Metric Minimum
Support

# Pruned
Subgroups

#Divergent
Subgroups

Most Divergent
Subgroup

FP

10% 224 169
{hours=Overtime,
marital-status=Married,
education=Bachelor’s Degree}

15% 96 60

{hours=Overtime,
race= White,
native-country=United-States,
relationship= Husband}

20% 58 34

{hours=Overtime,
race= White,
native-country=United-States,
relationship= Husband}

FN

10% 658 426

{capital-gain=0.0,capital-loss=0.0
relationship= Not-in-family,
workclass=Private,
education=Non Graduated}

15% 270 194
{capital-gain=0.0, capital-loss=0.0,
education=Non Graduated,
marital-status=Never-married}

20% 146 104
{capital-gain=0.0, capital-loss=0.0,
education=Non Graduated,
marital-status=Never-married}

ER

10% 271 178
{education=Bachelor’s Degree,
capital-gain=0.0,
marital-status=Married}

15% 133 77

{marital-status=Married,
native-country=United-States,
capital-loss=0.0, capital-gain=0.0,
hours=Overtime}

20% 83 50

{marital-status=Married,
native-country=United-States,
capital-loss=0.0, capital-gain=0.0,
hours=Overtime}

5.2.3.1 Adult False Positive Mitigation

As a preliminary analysis of the solution’s impact on False Positives, Figure
5.1 is examined.
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This image illustrates the impact of bias mitigation on False Positives
using SMOTE-NC, applied to problematic subgroups identified with DivEx-
plorer, and for a Decision Tree Model. The x-axis represents the probability
that synthetic points belong to class 0, while the y-axis indicates the number
of False Positives. To perform the mitigation, synthetic points (1K-6K) are
injected into the training set aiming to balance the data and reduce False
Positives. The experiments are conducted by varying the number of prob-
lematic subgroups used to identify problematic instances in the validation
set, allowing an analysis of how different subgroup selections influence the
effectiveness of the mitigation strategy.

On the left side of the figure, the minimum support threshold is lower,
allowing for the identification of a larger number of problematic subgroups,
while on the right, the higher support threshold results in fewer detected
subgroups. From top to bottom, the number of subgroups selected for data
augmentation increases, leading to a more gradual and stable reduction in
False Positives, regardless of the number of synthetic points injected.

The overall trend shows that, for a lower support threshold, the number
of False Positives drops below the initial level (before mitigation) as soon as
the probability of a synthetic point belonging to class 0 exceeds 70%. For
a higher support threshold, this occurs only when the probability reaches
80%. This difference arises because lower support captures more subgroups
and more divergences, allowing mitigation to act on a broader range of
problematic instances.

In contrast, a higher minimum support selects only the most represen-
tative and frequent patterns, reducing noise and preventing overfitting to
specific subgroups. As a result, the number of False Positives reaches the
lowest absolute value for this experimental setting when the probability of a
sample belonging to class 0 is maximized (p=1). Recall that the probability
of a sample belonging to class 0 is increased as part of a False Positive Bias
Mitigation strategy.
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Figure 5.1: False Positives trend generated with SMOTE-NC (1K-6K) as pclass 0 varies
for a Decision Tree. On the left, min_sup = 2%; on the right, min_sup = 20%; for
both pruning parameter = 1%. Each row compares results for the same percentage of
problematic subgroups used in mitigation.
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However, this greater coverage can introduce more variability and noise
in the synthetic data, leading to a less effective reduction in False Positives.

Although the previous image may provide an idea of the effects of miti-
gation, it says nothing about the progression of the divergence. Therefore, a
more accurate view of how the evaluation metrics described at the beginning
of the chapter vary can be found in Tables 5.7 and 5.8.

Such Tables compare the three data acquisition strategies -described at
the beginning of the section- for False Positive Mitigation in a Decision Tree
model, considering an increasing number of problematic subgroups (%K)
to consider for mitigation the Representation Bias, and so more additional
training samples.

In the first Table, the minimum support is set to 0.02, while in the second,
it is set to 0.2.

By comparing the two tables, it can be observed that, given the same
number of samples included in the training set, the Generation strategy,
proposed in this thesis, is the most effective in reducing divergence and the
number of False Positives when the number of inserted samples is sufficiently
high.

On the other hand, when evaluating divergence performance with a smaller
number of samples, the Targeted Acquisition approach performs better. In
this case, all holdout points matching the problematic subgroups and be-
longing to class 0 were included, aligning with the objective of False Positive
Mitigation . This confirms that the targeted inclusion of samples from prob-
lematic subgroups is particularly beneficial in the early stages of data ac-
quisition, where the availability of new examples is limited, and each added
sample has a greater impact on reducing divergence.

Another noteworthy observation is that in the second table, which con-
siders a minimum support of 20%, the divergence values are overall lower
compared to the case with a minimum support of 2%.
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Table 5.7: Comparison of Results for Targeted Data Acquisition, Random Data Acqui-
sition, and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
False Positive , MinimumSupport:2%, and Pruning:0.01.
Note: For each % K (10, 20, 25), the best results for each metric within the same sample
size are marked with underline, while the overall best results are marked in bold.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
FP ∆avg ∆max ∆10 ∆20

- - - Original 0.803 0.593 641 0.171 0.631 0.608 0.593

10 214

406

Random
Acquisition 0.805 0.595 632 0.163 0.640 0.619 0.604

Targeted
Acquisition 0.805 0.586 600 0.152 0.545 0.531 0.512

Generation
p = 1 0.805 0.584 593 0.160 0.514 0.506 0.497

5000

Random
Acquisition 0.805 0.595 654 0.176 0.586 0.574 0.563

Generation
p = 1 0.800 0.564 574 0.104 0.472 0.449 0.436

20 428

553

Random
Acquisition 0.805 0.598 650 0.167 0.636 0.614 0.602

Targeted
Acquisition 0.811 0.595 567 0.159 0.573 0.547 0.527

Generation
p = 1 0.806 0.585 583 0.160 0.649 0.613 0.590

5000

Random
Acquisition 0.805 0.598 654 0.176 0.586 0.574 0.563

Generation
p = 1 0.799 0.558 565 0.126 0.552 0.510 0.497

25 535

604

Random
Acquisition 0.806 0.603 656 0.164 0.607 0.581 0.570

Targeted
Acquisition 0.808 0.579 576 0.139 0.548 0.537 0.529

Generation
p = 1 0.811 0.592 585 0.177 0.629 0.613 0.604

6000

Random
Acquisition 0.804 0.597 651 0.164 0.633 0.606 0.591

Generation
p = 1 0.797 0.553 572 0.108 0.551 0.530 0.513

This suggests that when problematic subgroups are less fragmented and
more representative, the False Positive issue is more contained, and diver-
gence reduction occurs more effectively, regardless of the acquisition strategy
adopted.

60



5.2 – Experiments and Results

Table 5.8: Comparison of Results for Targeted Data Acquisition, Random Data Acqui-
sition, and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
False Positive , MinimumSupport:20%, and Pruning:0.01.
Note: For each % K (10, 20, 25), the best results for each metric within the same sample
size are marked with underline, while the overall best results are marked in bold.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
FP ∆avg ∆max ∆10 ∆20

- - - Original 0.803 0.593 641 0.054 0.190 0.172 0.153

10 3

1252

Random
Acquisition 0.809 0.605 634 0.038 0.177 0.154 0.129

Targeted
Acquisition 0.813 0.592 533 0.009 0.123 0.079 0.049

Generation
p = 1 0.812 0.598 569 0.018 0.152 0.106 0.069

8000

Random
Acquisition 0.809 0.605 653 0.045 0.193 0.168 0.142

Generation
p = 1 0.806 0.559 489 0.008 0.086 0.066 0.047

20 6

1440

Random
Acquisition 0.805 0.600 647 0.045 0.189 0.165 0.138

Targeted
Acquisition 0.811 0.589 547 0.012 0.135 0.100 0.061

Generation
p = 1 0.813 0.596 549 0.014 0.136 0.102 0.070

2000

Random
Acquisition 0.805 0.600 664 0.013 0.173 0.115 0.072

Generation
p = 1 0.815 0.596 528 0.008 0.128 0.083 0.053

25 8

1715

Random
Acquisition 0.808 0.606 643 0.024 0.168 0.138 0.091

Targeted
Acquisition 0.816 0.599 522 0.013 0.136 0.094 0.061

Generation
p = 1 0.808 0.587 573 0.020 0.133 0.100 0.073

4000

Random
Acquisition 0.808 0.606 634 0.034 0.171 0.145 0.115

Generation
p = 1 0.813 0.582 493 0.005 0.112 0.071 0.042

This confirms that the overall improvement of the model should not be
assessed solely based on aggregate metrics but also by considering the im-
pact on critical subgroups. In general, the best performance is achieved with
the Generation Acquisition Method when p = 1, provided that the number
of inserted data points is sufficiently high.
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As the proposed solution is model-agnostic, it is expected that the ob-
servations made for the Decision Tree can be generalized to any model. To
confirm this, an analysis is conducted on Gradient Boosting, Logistic Re-
gression, and Random Forest.

Table 5.9 presents a comparative analysis of different models—Gradient
Boosting (GB), Logistic Regression (LR), and Random Forest (RF)—to
evaluate the impact of bias mitigation strategies.

Table 5.9: Comparison of results for different models. Metric: False Positive , K:20%,
Minimum Support: 20%, and Pruning: 1%.
Note: For each model type (GB, LR, RF), the best results for each metric are marked in
bold.

Model #
Samples Approach Accuracy F1-Score #

FP ∆avg ∆max ∆10 ∆20

GB

- Original 0.865 0.681 247 0.022 0.117 0.092 0.055

2000

Random
Acquisition 0.866 0.684 237 0.022 0.113 0.087 0.053

Generation
p = 1 0.861 0.645 158 0.007 0.069 0.038 0.007

4000

Random
Acquisition 0.866 0.684 242 0.018 0.112 0.079 0.041

Generation
p = 1 0.858 0.622 109 0.006 0.048 0.029 0.006

LR

- Original 0.809 0.474 234 0.018 0.144 0.077 0.052

2000

Random
Acquisition 0.809 0.474 246 0.018 0.144 0.077 0.052

Generation
p = 1 0.800 0.369 117 0.005 0.036 0.020 0.009

6000

Random
Acquisition 0.808 0.474 181 0.019 0.162 0.080 0.055

Generation
p = 1 0.791 0.304 12 0.004 0.030 0.010 0.004

RF

- Original 0.843 0.655 426 0.081 0.204 0.179 0.167

2000

Random
Acquisition 0.842 0.653 420 0.071 0.183 0.164 0.149

Generation
p = 1 0.843 0.632 335 0.026 0.134 0.085 0.056

6000

Random
Acquisition 0.842 0.653 415 0.073 0.200 0.178 0.164

Generation
p = 1 0.840 0.611 251 0.008 0.099 0.044 0.014

The table reports accuracy, F1-score, False Positives, and divergence met-
rics (∆avg, ∆max, ∆10, ∆20) before and after mitigation while maintaining a
minimum support of 20%, a 20% threshold for problematic subgroups, and
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pruning at 1%.

The results confirm that increasing the number of generated samples con-
sistently enhances bias mitigation. Across all models, the Generation strat-
egy (p = 1) achieves the most significant reduction in False Positives and
divergence metrics. For GB, using 4000 generated samples reduces False
Positives from 247 to 109, with ∆max decreasing from 0.117 to 0.048. Sim-
ilarly, for LR, False Positives drop from 234 to 12, and ∆max is minimized
to 0.030 with 6000 generated samples. In RF, the number of False Positives
decreases from 426 to 251, and ∆max is reduced to 0.099 with the same ap-
proach.

While Random Acquisition achieves moderate reductions, its effective-
ness is lower than that of Generation, particularly at higher sample sizes.
The results reinforce that synthetic data augmentation through SMOTE-
NC is the most effective strategy for mitigating bias, minimizing subgroup
disparities, and improving overall fairness across different models.
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5.2.3.2 Adult FP Mitigation Main Outcomes

The analysis demonstrates that bias mitigation using SMOTE-NC effec-
tively reduces False Positives, particularly when synthetic points are pre-
dominantly assigned to class 0. The extent of this reduction depends on
the number of problematic subgroups considered and the minimum support
threshold used.

Key observations:

1. The Generation strategy, proposed in this study, proves to be the most
effective approach when a sufficiently large number of synthetic samples
are injected into the training set.

2. Targeted Acquisition outperforms other methods when the number of
additional samples is limited, highlighting its suitability for early-stage
data augmentation.

3. A higher minimum support threshold leads to a more effective reduc-
tion in False Positives and divergence, suggesting that addressing less
fragmented, more representative subgroups enhances mitigation effec-
tiveness.

4. While Accuracy and F1-score provide a general performance overview,
they do not fully capture fairness improvements at the subgroup level.
A slight decrease in F1-score in some cases aligns with a stronger reduc-
tion in divergence, emphasizing the need for fairness-aware evaluation
metrics.

5. The best overall performance is achieved using the Generation Acquisi-
tion strategy when a sufficiently large number of samples are included.

This confirms that bias mitigation strategies must be carefully tailored based
on the dataset characteristics and the balance between fairness and model
Accuracy.
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5.2.3.3 Adult False Negative Mitigation

In this section, the experiments from the previous section are repeated, but
with a focus on a different metric. Specifically, the objective here is to
mitigate False Negatives.

In the previous section, the experiments were conducted by comparing
results between a low and a high support. This comparison can be repli-
cated in this section; however, the number of subgroups with low support
is extremely high in this case. For instance, when min_sup = 0.02, the
identified subgroups are 49,692. After applying pruning with ϵ = 0.01, this
number is reduced to 11,554 and 4,102 subgroups have positive divergence
and a t-test > 2. This large number of problematic subgroups makes the
mitigation process unstable if we aim to replicate the exact approach used
previously. The instability arises because for example, the divergence values
for the first 20 subgroups and the first 40 subgroups are very similar. This
similarity in divergence makes it challenging to assess the differences between
subgroups or to rank them meaningfully, complicating the comparison and
the mitigation process.

Therefore, there are two possible ways to reduce the number of problem-
atic subgroups: adjusting the pruning parameter, epsilon, or performing the
mitigation starting from subgroups identified with a higher minimum sup-
port threshold.
If the first strategy is adopted, bias mitigation does not occur effectively.
Specifically, considering that in this case, mitigation is expected when prob-
lematic instances are included in the training set, provided their label is 1,
it is observed that for an epsilon value equal or greater than 0.01 and a sup-
port of 2%, the problematic instances with label 1, from which SMOTE-NC
should generate new class 1 data, are not sufficient in number to represent
an adequate variety of feature-value pairs, thus rendering the mitigation in-
effective. The results of the mitigation attempt with low support can be
visualized in Table 5.10, from this table, it can be observed that it is not
possible to determine which method is the most effective for mitigation. In
fact, the divergence performance often worsens after adding new data. To
analyze the trend of False Negatives as the previously described parameters
vary, a pattern similar to that observed for False Positives in the previous
subsection emerges. The Figure 5.2 illustrates the impact of bias mitigation
on False Negatives using SMOTE-NC, applied to problematic subgroups
identified with DivExplorer, for a Decision Tree model.
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The x-axis represents the probability that synthetic points belong to class
1, while the y-axis indicates the number of False Negatives. To perform the
mitigation, synthetic points (1K-6K) are injected into the training set to
balance the data and reduce False Negatives.

Table 5.10: Comparison of Results for Targeted Data Acquisition, Random Data Ac-
quisition and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
False Negative, MinimumSupport:2%, and Pruning:0.03.
Note: For each % K (15, 20, 25), the best results for each metric within the same sam-
ple size are marked with underline, while the overall best results are marked in bold.If
nothing is in bold, then the metric is worse than the initial one.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
FN ∆avg ∆max ∆10 ∆20

- - - Original 0.803 0.593 638 0.236 0.593 0.593 0.593

15 173

219

Random
Acquisition 0.804 0.596 627 0.219 0.600 0.600 0.600

Targeted
Acquisition 0.797 0.586 633 0.224 0.596 0.596 0.596

Generation
p = 1 0.805 0.595 634 0.234 0.594 0.594 0.594

5000

Random
Acquisition 0.804 0.596 631 0.212 0.598 0.598 0.598

Generation
p = 1 0.786 0.586 585 0.201 0.627 0.627 0.627

20 231

320

Random
Acquisition 0.810 0.604 626 0.218 0.601 0.601 0.601

Targeted
Acquisition 0.794 0.587 618 0.214 0.606 0.606 0.606

Generation
p = 1 0.808 0.598 635 0.223 0.595 0.595 0.595

6000

Random
Acquisition 0.810 0.604 606 0.235 0.614 0.614 0.614

Generation
p = 1 0.782 0.584 574 0.222 0.634 0.634 0.634

25 289

373

Random
Acquisition 0.811 0.606 622 0.229 0.603 0.603 0.603

Targeted
Acquisition 0.792 0.587 607 0.216 0.613 0.613 0.613

Generation
p = 1 0.801 0.585 654 0.226 0.583 0.583 0.583

6000

Random
Acquisition 0.811 0.606 606 0.235 0.614 0.614 0.614

Generation
p = 0.8 0.778 0.572 602 0.205 0.616 0.616 0.616
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Figure 5.2: False Negative trend generated with SMOTE-NC (1K-6K) as pclass 1 varies
for a Decision Tree. On the left, min_sup = 2% and pruning parameter = 3% ; on the
right, min_sup = 25% and pruning parameter = 1%. Each row compares results for the
same percentage of problematic subgroups used in mitigation.
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The experiments are conducted by varying the number of problematic
subgroups used to identify problematic instances in the validation set, allow-
ing an analysis of how different subgroup selections influence the effective-
ness of the mitigation strategy. On the left side of the figure, the minimum
support is lower (2%), whereas on the right side, it is higher (25%). From
top to bottom, the number of subgroups considered in the problematic in-
stances increases as a larger percentage of subgroups are incorporated into
the mitigation strategy.

These variations in support and subgroup selection significantly impact
the number of False Negatives. When the support is low and fewer sub-
groups are considered, the number of False Negatives tends to be higher.
This is because a broader coverage, resulting from a lower minimum sup-
port, introduces more variability and noise into the synthetic data, making
the mitigation process less effective. Conversely, a higher minimum support
focuses on the most representative and frequent patterns, reducing noise
and minimizing the risk of overfitting to specific subgroups. As a result, the
number of False Negatives tends to decrease as the probability of generat-
ing a class 1 instance increases. This aligns with the False Negative bias
mitigation strategy, where the probability of assigning a sample to class 1 is
intentionally increased to counteract the bias.

To gain a clearer understanding of the impact on other metrics, partic-
ularly divergence, the strategy of fixing the pruning parameter at 0.01 is
adopted, and the performance are compared while varying the percentage
of subgroups considered in the mitigation process for two relatively high
values of minimum support.

It is important to note that keeping the pruning parameter at a higher
value and setting the minimum support excessively high can lead to a sig-
nificant imbalance between the number of instances labeled as class 0 and
those labeled as class 1 in the validation set, specifically when filtering for
instances that match problematic subgroups.

In fact, during experiments focused on False Negative Mitigation, it was
observed that for certain (low) values of support and subgroup selection,
the number of problematic class 1 instances was several orders of magni-
tude lower than that of class 0 instances. However, the generation strategy
developed in this thesis relies on a sufficient number of original data points
to generate synthetic ones effectively, ensuring that the mitigation process
remains impactful.
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Table 5.11: Comparison of Results for Targeted Data Acquisition, Random Data Ac-
quisition and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
False Negative, MinimumSupport:25%, and Pruning:0.01.
Note: For each % K (15, 20, 25), the best results for each metric within the same sample
size are marked with underline, while the overall best results are marked in bold.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
FN ∆avg ∆max ∆10 ∆20

- - - Original 0.803 0.593 638 0.111 0.444 0.329 0.255

15 7

534

Random
Acquisition 0.807 0.602 616 0.128 0.437 0.339 0.291

Targeted
Acquisition 0.799 0.606 564 0.095 0.422 0.277 0.225

Generation
p = 0.85 0.799 0.596 602 0.112 0.467 0.343 0.266

4000

Random
Acquisition 0.807 0.602 609 0.125 0.441 0.311 0.240

Generation
p = 1 0.786 0.599 528 0.060 0.405 0.234 0.185

20 9

557

Random
Acquisition 0.805 0.599 649 0.129 0.455 0.341 0.290

Targeted
Acquisition 0.800 0.609 557 0.093 0.427 0.276 0.224

Generation
p = 1 0.799 0.601 586 0.079 0.408 0.267 0.223

8000

Random
Acquisition 0.805 0.609 601 0.134 0.423 0.329 0.276

Generation
p = 0.8 0.784 0.592 548 0.054 0.409 0.240 0.179

25 12

648

Random
Acquisition 0.805 0.599 617 0.134 0.479 0.363 0.295

Targeted
Acquisition 0.800 0.609 553 0.088 0.389 0.256 0.207

Generation
p = 1 0.798 0.598 588 0.094 0.370 0.274 0.236

5000

Random
Acquisition 0.805 0.599 631 0.111 0.372 0.275 0.218

Generation
p = 1 0.782 0.594 532 0.054 0.333 0.242 0.194

For this reason, Tables 5.11 and 5.12 compare performance for those
specific values of minimum support, pruning parameter, and percentage of
subgroups considered, here the support threshold is set to 25% and 35%,
respectively, with the pruning parameter fixed at ϵ = 0.01.

By analyzing the two tables, it is evident that, given the same number
of samples in the training set, the Generation strategy, when a sufficiently
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large number of samples is added, is the most effective in reducing both
divergence and the number of False Negatives.

Table 5.12: Comparison of Results for Targeted Data Acquisition, Random Data Ac-
quisition and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
False Negative, MinimumSupport:35%, and Pruning:0.01.
Note: For each % K (15, 20, 25), the best results for each metric within the same sample
size are marked with underline, while the overall best results are marked in bold.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
FN ∆avg ∆max ∆10 ∆20

- - - Original 0.803 0.593 638 0.071 0.298 0.175 0.134

15 3

511

Random
Acquisition 0.806 0.599 625 0.100 0.313 0.220 0.171

Targeted
Acquisition 0.800 0.606 564 0.067 0.234 0.195 0.159

Generation
p = 1 0.804 0.606 587 0.071 0.234 0.197 0.160

3000

Random
Acquisition 0.806 0.599 610 0.108 0.316 0.219 0.162

Generation
p = 1 0.797 0.618 499 0.038 0.167 0.147 0.128

20 4

534

Random
Acquisition 0.807 0.602 616 0.101 0.306 0.246 0.190

Targeted
Acquisition 0.801 0.608 561 0.078 0.241 0.187 0.150

Generation
p = 0.95 0.799 0.598 599 0.063 0.225 0.199 0.157

6000

Random
Acquisition 0.807 0.602 606 0.077 0.313 0.204 0.134

Generation
p = 0.8 0.788 0.579 618 0.062 0.179 0.143 0.106

25 5

615

Random
Acquisition 0.806 0.602 613 0.111 0.289 0.219 0.169

Targeted
Acquisition 0.799 0.606 561 0.069 0.230 0.161 0.126

Generation
p = 1 0.797 0.597 590 0.068 0.247 0.194 0.152

6000

Random
Acquisition 0.806 0.602 606 0.077 0.313 0.204 0.134

Generation
p = 1 0.783 0.598 519 0.033 0.119 0.094 0.084

However, when fewer samples are introduced, the Targeted Acquisition
approach performs better in reducing False Negatives. This aligns with the
objective of False Negative Mitigation, as all holdout points belonging to the
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problematic subgroups and classified as class 1 are included. This confirms
that a focused inclusion of samples from these problematic subgroups is
especially advantageous in the early stages of data acquisition when new
examples are limited, and each additional sample has a more significant
impact on divergence reduction.

Another key observation is that, in the second table—where a minimum
support of 35% is applied—divergence values are consistently lower than
in the case with a minimum support of 25%. This suggests that when
problematic subgroups are less fragmented and more representative, the
False Negative issue is more contained, and divergence reduction is more
effective, regardless of the adopted acquisition strategy.

Additionally, Accuracy and F1-score provide a broad measure of model
performance but do not fully capture subgroup-level behavior. A high Accu-
racy or F1-score does not necessarily imply a better mitigation of divergence
in problematic subgroups. Consequently, again, it is not surprising that
strategies such as Generation Acquisition, particularly when a large num-
ber of samples is added, show a significant reduction in divergence while
experiencing a slight decrease in F1-score compared to other approaches.
This highlights the importance of evaluating model improvements not solely
through aggregate metrics but also through their impact on critical sub-
groups.

In general, the Generation Acquisition Method achieves the best per-
formance when , provided that a sufficiently large number of samples is
introduced. However, Targeted Acquisition offers strong results when fewer
samples are available, demonstrating its effectiveness in early-stage data
augmentation strategies.

As before, since the proposed solution is model-agnostic, it is reasonable
to assume that the observations made for the Decision Tree can be general-
ized to other models.

To confirm this hypothesis, an analysis was conducted on Gradient Boost-
ing, Logistic Regression, and Random Forest. The key findings are summa-
rized in Table 5.13, which presents the performance of different models while
keeping the Minimum Support, the percentage of problematic subgroups in
the holdout set, and pruning fixed, with specific values for each model.
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Table 5.13: Comparison of results for different models, metric: False Negative.
For GB K:10%, MinimumSupport: 2%, and Pruning: 5%. For LR K:15%, MinimumSup-
port: 40%, and Pruning:1%. For RF K:35%, MinimumSupport: 25%, and Pruning:1%.
Note: For each model type (GB, LR, RF), the best results for each metric are marked in
bold. If nothing is in bold, then the metric is worse than the initial one.

Model #
Samples Approach Accuracy F1-Score #

FP ∆avg ∆max ∆10 ∆20

GB

- Original 0.865 0.681 630 0.281 0.598 0.547 0.475

3000

Random
Acquisition 0.867 0.686 624 0.279 0.602 0.529 0.453

Generation
p = 0.8 0.841 0.690 410 0.253 0.696 0.514 0.384

6000

Random
Acquisition 0.867 0.686 612 0.291 0.610 0.550 0.470

Generation
p = 1 0.812 0.663 365 0.222 0.658 0.461 0.298

LR

- Original 0.809 0.474 1008 0.106 0.345 0.246 0.173

2000

Random
Acquisition 0.809 0.476 1005 0.104 0.347 0.245 0.175

Generation
p = 0.8 0.787 0.524 779 0.072 0.286 0.217 0.183

4000

Random
Acquisition 0.809 0.476 987 0.104 0.354 0.257 0.189

Generation
p = 0.8 0.754 0.532 612 0.015 0.178 0.127 0.105

RF

- Original 0.843 0.655 598 0.127 0.490 0.373 0.328

2000

Random
Acquisition 0.843 0.655 594 0.146 0.494 0.413 0.362

Generation
p = 1 0.832 0.661 500 0.100 0.439 0.297 0.256

6000

Random
Acquisition 0.843 0.655 428 0.141 0.481 0.407 0.357

Generation
p = 1 0.821 0.653 305 0.062 0.424 0.283 0.231

The results indicate that increasing the number of generated samples
leads to a substantial reduction in False Negatives across all models. For
GB, using 6000 generated samples decreases False Negatives from 630 to
365, with ∆avg reducing from 0.281 to 0.222. In LR, False Negatives drop
from 1008 to 612 with 4000 generated samples, and ∆max is reduced from
0.345 to 0.178. Similarly, for RF, False Negatives decrease from 598 to 305,
while ∆avg is minimized from 0.127 to 0.062.

Unlike the results observed for False Positives, the mitigation strategy
in this case also leads to an improvement in the overall F1-score. This is
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likely due to the initial dataset imbalance, where the minority class (label
1) was underrepresented, causing the models to struggle with recall. The
introduction of synthetic samples helps address this imbalance, leading to
better overall predictive performance.

These findings reinforce that increasing the number of synthetic samples
effectively mitigates False Negatives and reduces subgroup discrepancies.
Furthermore, the observed improvement in F1-score suggests that the mit-
igation strategy not only enhances fairness but also improves the model’s
ability to correctly classify minority class instances.
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5.2.3.4 Adult FN Main Outcomes

The analysis demonstrates that bias mitigation using SMOTE-NC effectively
reduces False Negatives, particularly when synthetic points are predomi-
nantly assigned to class 1. However, the extent of this reduction is strongly
influenced by data imbalance, the number of problematic subgroups consid-
ered, and the minimum support threshold. Key observations:

1. Data imbalance poses a major challenge: when the number of class 1
instances is significantly lower than class 0 (e.g., for support = 30%, ep-
silon = 1% ,and 5% of problematic subgroup considered, 52 instances of
class 1 vs. 1,895 of class 0), SMOTE-NC struggles to generate effective
synthetic samples, limiting the mitigation effectiveness.

2. A high number of problematic subgroups, especially when using a low
support threshold, reduces the effectiveness of the mitigation due to
increased variability and noise in the synthetic data.

3. For higher support values, the Generation strategy achieves better mit-
igation, even when a lower number of synthetic samples are added, as
it focuses on the most representative and frequent patterns.

4. As in the case of False Positives, Accuracy and F1-score are not reliable
indicators for evaluating bias mitigation. Instead, divergence metrics
should be prioritized, as they better capture subgroup-level behavior
and fairness improvements.

The best overall performance is achieved using the Generation Acquisition
strategy when a sufficiently large number of samples are included. However,
Targeted Acquisition remains effective in early-stage data augmentation,
particularly when fewer samples are available.
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5.2.3.5 Adult Error Mitigation

At the end, for the Adult Dataset, the mitigation in this section is performed
with respect to the Error Metric.

In this case, the analysis is conducted by exploring the entire range of
probabilities for class 0, from 0 to 1. This methodological choice differs from
other approaches where False Positives and False Negatives are examined
separately. In those cases, the probability of class 0 is varied from 0.5 to 1
for False Positives, while the same interval is applied to class 1 probability
for False Negatives.

However, in this part of study, the focus is not on distinguishing between
False Positives and False Negatives but rather on analyzing problematic
subgroups as a whole—those in which the model makes a high number of
Errors, regardless of their nature. Since it is not known in advance whether
the predominant type of Error in these subgroups arises from overestima-
tion or underestimation of the true class, it is necessary to explore the full
probability spectrum. This ensures a comprehensive coverage of all possible
Error configurations.

As done previously, the first step is to observe how the total number of
Errors changes after applying the mitigation strategy proposed in this thesis.

For this reason the Figure 5.3 illustrates the trend of Errors on the test set
following the addition of a variable number of new instances to the training
set, specifically targeting subgroups where the classification model exhibits
the most difficulty.

Recall that the dashed line in each panel represents the initial number of
Errors, given by the sum of False Positives and False Negatives. The x-axis
indicates the probability that a synthetic point belongs to class 0; since this
is a binary classification problem, the complementary value represents the
probability of belonging to class 1. The number of newly added instances
increases progressively from left to right, while the number of problematic
subgroups considered increases from top to bottom.
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Figure 5.3: Error trend generated with SMOTE-NC (1K-6K) as pclass 0 varies for a
Decision Tree. On the left, min_sup = 10% and pruning parameter = 3% ; on the right,
min_sup = 15% and pruning parameter = 1%. Each row compares results for the same
percentage of problematic subgroups used in mitigation.
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Two additional parameters influence the process: the minimum support,
which defines the threshold of data required for a subgroup to be considered
relevant, and pruning, which removes subgroups whose divergence from the
model’s overall behavior falls below a certain threshold.

On the left side of the figure, the minimum support is lower (10%) and
the pruning parameter is higher (3%) whereas on the right side, the min-
imum support is higher (15%) and the pruning paramerer is lower (1%).
From top to bottom, the number of subgroups considered in the problem-
atic instances increases as a larger percentage of subgroups are incorporated
into the mitigation strategy. Analyzing the graph reveals several key trends.
In general, adding data from problematic subgroups contributes to a reduc-
tion in Errors compared to the baseline indicated by the dashed line. This
effect becomes more pronounced in panels where a greater number of sub-
groups are considered, suggesting that broader coverage of the areas where
the model struggles leads to improved performance. Another clear trend is
that a higher minimum support results in a more significant reduction in
Errors. This indicates that including more representative subgroups—those
with a larger amount of data—has a stronger impact on the model’s ability
to generalize effectively to the test set instances.

An interesting aspect concerns the effect of pruning. In the panels on
the right, where a higher pruning threshold is applied, the Error reduction
appears more consistent and pronounced compared to the panels on the left.
This suggests that removing subgroups with low divergence can be beneficial,
preventing the addition of instances to the training set that do not contribute
meaningfully to Error mitigation. However, excessive pruning may lead to
the loss of relevant information, potentially reducing the effectiveness of the
method.

Finally, the analysis of the x-axis shows that Errors tend to decrease more
consistently in the rightmost panels as the probability of class 0 increases.
This suggests that generating new data with a more pronounced distribution
toward one of the two classes can positively impact the model’s ability to
correct its Errors.

In summary, the addition of synthetic instances belonging to problematic
subgroups is an effective strategy to improve the performance of the model,
as in the case of Error Metric, provided that the selection of these subgroups
is made in a targeted manner, prioritizing those with sufficient support and
a meaningful divergence from the general behavior of the classifier.
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The newly described image provides insights into how the number of Er-
rors in the test set changes when new synthetic data is added. However, they
do not offer any information about divergence performance. To investigate
this aspect, Tables 5.14 and 5.15 are used.

Table 5.14: Comparison of Results for Targeted Data Acquisition, Random Data Ac-
quisition and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
Errors, MinimumSupport:10%, and Pruning:3%.
Note: For each % K (5, 15, 20), the best results for each metric within the same sam-
ple size are marked with underline, while the overall best results are marked in bold.If
nothing is in bold, then the metric is worse than the initial one.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
ER ∆avg ∆max ∆10 ∆20

- - - Original 0.803 0.593 1279 0.026 0.201 0.167 0.123

5 1

704

Random
Acquisition 0.806 0.601 1262 0.019 0.198 0.160 0.120

Targeted
Acquisition 0.808 0.601 1248 0.014 0.206 0.156 0.113

Generation
p = 0.1 0.809 0.599 1245 0.044 0.225 0.170 0.132

4000

Random
Acquisition 0.806 0.601 1243 0.013 0.189 0.150 0.111

Generation
p = 0.5 0.800 0.589 1304 0.002 0.214 0.138 0.097

15 3

2551

Random
Acquisition 0.810 0.603 1280 0.025 0.196 0.154 0.118

Targeted
Acquisition 0.803 0.595 1235 0.015 0.209 0.146 0.100

Generation
p = 0.8 0.805 0.586 1270 0.026 0.224 0.166 0.121

4000

Random
Acquisition 0.803 0.595 1243 0.013 0.189 0.150 0.111

Generation
p = 0.5 0.801 0.593 1295 0.003 0.207 0.122 0.076

20 4

2817

Random
Acquisition 0.814 0.617 1209 0.018 0.197 0.136 0.100

Targeted
Acquisition 0.810 0.607 1239 0.023 0.191 0.145 0.108

Generation
p = 0.8 0.803 0.592 1283 0.023 0.223 0.160 0.119

4000

Random
Acquisition 0.814 0.617 1243 0.013 0.189 0.150 0.111

Generation
p = 0.2 0.807 0.607 1258 0.001 0.180 0.127 0.095
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Table 5.15: Comparison of Results for Targeted Data Acquisition, Random Data Ac-
quisition and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
Errors, MinimumSupport:15%, and Pruning:1%.
Note: For each % K (5, 15, 20), the best results for each metric within the same sample
size are marked with underline, while the overall best results are marked in bold.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
ER ∆avg ∆max ∆10 ∆20

- - - Original 0.803 0.593 1279 0.079 0.403 0.370 0.360

5 227

1710

Random
Acquisition 0.808 0.606 1250 0.085 0.422 0.380 0.367

Targeted
Acquisition 0.806 0.601 1265 0.080 0.397 0.375 0.362

Generation
p = 0.8 0.808 0.596 1249 0.077 0.382 0.374 0.365

3000

Random
Acquisition 0.808 0.606 1242 0.076 0.415 0.361 0.346

Generation
p = 0.5 0.806 0.603 1264 0.075 0.363 0.345 0.335

15 681

2750

Random
Acquisition 0.811 0.611 1229 0.074 0.372 0.351 0.339

Targeted
Acquisition 0.812 0.607 1224 0.088 0.403 0.375 0.364

Generation
p = 1 0.805 0.577 1268 0.081 0.411 0.383 0.368

2000

Random
Acquisition 0.808 0.611 1275 0.079 0.384 0.364 0.358

Generation
p = 1 0.813 0.594 1216 0.077 0.374 0.351 0.341

20 909

2962

Random
Acquisition 0.808 0.602 1250 0.074 0.384 0.352 0.342

Targeted
Acquisition 0.810 0.608 1235 0.089 0.449 0.419 0.403

Generation
p = 1 0.810 0.592 1238 0.084 0.400 0.377 0.363

5000

Random
Acquisition 0.808 0.602 1026 0.089 0.378 0.369 0.363

Generation
p = 0.5 0.802 0.603 1058 0.089 0.388 0.356 0.345

These Tables compare the three data acquisition strategies described at
the beginning of the chapter when using the Decision Tree model. The com-
parison considers an increasing number of problematic subgroups, leading to
a progressively larger training set. In the first table, the minimum support
is set to 10%, while the pruning parameter is fixed at 3%. In the second
table, the minimum support is increased to 15%, while pruning is set to 1%.
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The results indicate that the use of Generation Acquisition with SMOTE-
NC has a complex impact on Errors, which must be carefully analyzed. In
particular, the reduction of total Errors is less evident compared to the de-
crease in False Positives or False Negatives individually. This occurs because
total Error is a combination of both components: improving one aspect can
worsen the other, making the overall balance less effective.

One key factor to consider is the effect of increasing the percentage of
problematic subgroups (% K). When K increases, the Generation Acqui-
sition strategy introduces synthetic samples into a broader range of sub-
groups, enhancing the dataset’s diversity. However, this diversification can
have contrasting effects: in some cases, the model benefits from the enriched
dataset and improves its generalization capabilities, while in others, the in-
troduction of synthetic data leads to variations that the model struggles to
interpret correctly, increasing divergence from the original distribution. The
net effect depends on the model’s ability to adapt to the new information,
and in many scenarios, adding generated data reduces Errors within specific
subgroups but does not significantly decrease overall Errors.

A similar mechanism occurs when increasing the minimum support thresh-
old for selecting problematic subgroups. A higher threshold means that the
model focuses on larger, more representative subgroups of the overall data
distribution, excluding rarer ones. While this can enhance learning stability,
it also reduces the model’s ability to correct Errors in minority subgroups,
which may negatively impact the overall Error mitigation capability. Specif-
ically, if the model is already biased toward a particular type of Error (e.g.,
producing more False Negatives than False Positives), using SMOTE-NC
may amplify this tendency, improving one metric while worsening another.

This phenomenon explains why, in many cases, Generation Acquisition
with SMOTE-NC does not necessarily lead to a reduction in total Error,
despite improving False Positives or False Negatives individually. Unlike
Random Acquisition, which introduces new points uniformly, Targeted Ac-
quisition selects specific samples from the holdout set that belong to prob-
lematic subgroups.

However, this strategy can have unintended consequences: if the added
samples have labels that do not help the model correct its decisions, they
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can reinforce existing divergences and degrade overall performance.
Generation Acquisition, on the other hand, actively modifies the data distri-
bution by generating new points, influencing the model’s behavior in unpre-
dictable ways. For Accuracy and F1-Score, the same considerations apply
as those made in the False Negative and False Positive Mitigation.

These results suggest that Error mitigation through data augmentation
techniques like SMOTE-NC requires careful attention to the balance be-
tween False Positives and False Negatives. The choice of K and the min-
imum support threshold can significantly impact the effectiveness of the
intervention, and an overly aggressive optimization of a single aspect may
compromise the overall classification balance.

To verify whether the observations made for the Decision Tree hold for
other models, Table 5.16 presents a comparative analysis of different mod-
els—Gradient Boosting (GB), Logistic Regression (LR), and Random For-
est (RF)—to evaluate the impact of data augmentation strategies on overall
classification Errors. The table reports accuracy, F1-score, total Errors, and
divergence metrics (∆avg, ∆max, ∆10, ∆20) before and after mitigation, using
model-specific parameters for K, minimum support, and pruning.

The results highlight that data augmentation has varying effects depend-
ing on the model and the chosen augmentation method. In the case of
GB, Random Acquisition with 2000 samples yields slight improvements in
Accuracy and F1-Score, while marginally reducing the total number of Er-
rors. Similarly, using Generation Acquisition with 5000 samples (p = 0.5)
decreases ∆avg and ∆10, suggesting a positive impact on subgroup discrep-
ancies.
However, the overall number of Errors remains stable, indicating that aug-
mentation does not always directly enhance all metrics.
For LR, the use of Generation Acquisition with 5000 samples increases the
F1-Score from 0.474 to 0.578, but at the cost of a higher number of total Er-
rors. This suggests that while the model becomes more effective at capturing
the minority class, it also introduces more misclassifications overall.
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Table 5.16: Comparison of results for different models, metric: Error.
For GB K:25%, MinimumSupport: 10%, and Pruning: 1%. For LR K:20%, Minimum-
Support: 10%, and Pruning:3%. For RF K:5%, MinimumSupport: 15%, and Pruning:1%.
Note: For each model type (GB, LR, RF), the best results for each metric are marked in
bold. If nothing is in bold, then the metric is worse than the initial one.

Model #
Samples Approach Accuracy F1-Score #

ER ∆avg ∆max ∆10 ∆20

GB

- Original 0.865 0.681 877 0.063 0.195 0.176 0.164

2000

Random
Acquisition 0.866 0.684 868 0.066 0.195 0.180 0.169

Generation
p = 0.2 0.860 0.704 910 0.062 0.186 0.174 0.167

5000

Random
Acquisition 0.865 0.681 874 0.063 0.195 0.176 0.164

Generation
p = 0.5 0.864 0.699 883 0.056 0.189 0.169 0.160

LR

- Original 0.809 0.474 1242 0.040 0.245 0.206 0.166

2000

Random
Acquisition 0.809 0.478 1251 0.034 0.242 0.202 0.158

Generation
p = 0.2 0.803 0.547 1284 0.030 0.216 0.152 0.123

5000

Random
Acquisition 0.809 0.478 1250 0.040 0.248 0.204 0.165

Generation
p = 0.2 0.789 0.578 1371 0.011 0.214 0.129 0.103

RF

- Original 0.843 0.655 1024 0.069 0.195 0.182 0.174

2000

Random
Acquisition 0.839 0.648 1014 0.070 0.191 0.178 0.170

Generation
p = 1 0.838 0.623 1047 0.063 0.199 0.182 0.172

6000

Random
Acquisition 0.839 0.648 1043 0.067 0.197 0.186 0.177

Generation
p = 1 0.838 0.604 1058 0.064 0.195 0.175 0.165

Similarly, for RF, Random Acquisition with 2000 samples slightly reduces
Errors, whereas Generation Acquisition (p = 1) leads to variations in Error
distribution, with improvements in ∆10 and ∆20, but no clear overall gain.

These findings reinforce that the effectiveness of synthetic sample gener-
ation depends on the model and the specific parameter configuration.

Unlike the case of False Negatives, where augmentation consistently im-
proved results, the impact on total Errors is less predictable. This is likely

82



5.2 – Experiments and Results

due to the initial class imbalance: before augmentation, the dataset con-
tained a limited number of positive instances (label 1), making the models
prone to underfitting the minority class. As a result, while augmentation
helps rebalance the dataset, it can also introduce new classification Errors,
emphasizing the need for careful tuning to maximize fairness without com-
promising overall model performance.
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5.2.3.6 Adult Error Main Outcomes

The analysis demonstrates that bias mitigation using SMOTE-NC effectively
impacts overall Error reduction, particularly in relation to the balance be-
tween False Positives and False Negatives. The effectiveness of this approach
depends on the number of synthetic samples generated, the subgroup selec-
tion criteria, and specific parameter configurations.
Key observations:

1. The Generation Acquisition through SMOTE-NC has complex effects
on Errors. It improves False Positives or False Negatives separately,
but it doesn’t always lead to an overall reduction in total Error. This
is because improving one type of Error may worsen the other.

2. Increasing the number of subgroups (% K) and adjusting the minimum
support threshold impacts data distribution. A higher value of % K
increases diversity, but it can also lead to greater divergence. A higher
support threshold improves learning in larger subgroups but limits Error
correction in minority groups.

3. Random Acquisition adds samples uniformly, while Targeted Acquisi-
tion focuses on problematic subgroups. However, the latter can worsen
the situation if the added samples do not help in Error correction.

4. The main challenge is to maintain a balance between False Positives
and False Negatives. If not balanced properly, addressing one type of
Error may exacerbate the other.

5. Difficulty in Finding Optimal Parameters for Error Mitigation: For
False Positives and False Negatives, it was easier to find parameters
that improve bias mitigation, with good results across various settings.
In contrast, optimizing for total Error was more complex, as small ad-
justments to parameters (%K, pruning, min support) had a significant
impact on all metrics.

6. Accuracy and F1-score primarily reflect overall model performance and
do not provide insights into subgroup-level behavior. These metrics may
not reveal important issues within specific subgroups, making them less
reliable for evaluating fairness or bias mitigation in detail.

In conclusion optimizing total Error requires more fine-tuned attention and
a more challenging parameter search.
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5.2.4 COMPAS Experimental Settings and Results
The preprocessed COMPAS Dataset consists of a total of 18,293 instances.
These are divided as follows: 40% (7,317 instances) is allocated to the train
set, while the remaining 60% is evenly split among the test set (3,659),
validation set (3,658), and held-out set (3,659), with 20% each.

Table 5.17: Number of subgroups, number of problematic subgroups, one of the most
divergent one with different minimum support and different the metrics for DT model.

Metric Minimum
Support # Subgroups #Divergent

Subgroups
Most Divergent

Subgroup

FP

5% 1149 54
{sex = Male,
Violent Risk Level = Medium,
Violent Recidivism Risk = 7}

10% 349 16 {Violent Risk Level = Medium,
Risk Level = High}

15% 154 10 {Risk Level=High,
race=African-American }

FN

5% 1149 416
{Prior Offenses = [0-5],
Violent Risk Level = Low,
Juvenile offenses = 0}

10% 349 223
{Prior Offenses = [0-5],
Violent Risk Level = Low,
Juvenile Offenses = 0)}

15% 154 109
{Prior Offenses = [0-5],
Violent Risk Level = Low,
Risk Level = Low}

ER

5% 1149 96
{Recidivism Risk = 10,
sex = Male,
Race = African-American}

10% 349 23
{Prior Offenses = [6-10],
Race = African-American,
sex = Male}

15% 154 10 { sex = Male,
Prior Offenses = [6-10]}

The Table 5.17 presents the most divergent subgroups concerning the
False Positive, False Negative, and Error Metrics, along with their respec-
tive divergence values for the Decision Tree model.
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The analysis considers different minimum support values, ranging from
5% to 15% of the validation set.

In the experiments conducted using the COMPAS dataset, the pruning
parameter was set to 0, meaning no pruning was applied. This choice is jus-
tified by the relatively small number of instances in the dataset compared to
the one used previously. As a result, it is expected that the number of iden-
tified subgroups will already be limited, and applying pruning could further
reduce them to a point where they may not be sufficient for bias mitigation.

This assumption is confirmed by the results shown in the table: as the
minimum support increases, the number of problematic subgroups decreases
significantly. It is important to note that the total number of subgroups for
a given support value remains the same across all three metrics since it de-
pends solely on the support threshold. However, the number of problematic
subgroups varies for each metric, as divergence is influenced not only by
support but also by the specific metric used for evaluation.

Moreover, such a table provides a detailed overview of the problematic
subgroups across different metrics. From this perspective, it becomes clearer
what interpretable subgroups represent: since the subgroups are not encoded
numerically, they are easily understandable. This makes it reasonable to as-
sume, for example, that the subgroup {Recidivism Risk = 10, Sex = Male,
Prior Offenses = [6-10]} is more likely to be subject to False Positives, just
as the subgroup {Prior Offenses = [0-5], Violent Risk = Low, Risk Level =
Low} is more likely to be subject to False Negatives.

In other words, the interpretability of these subgroups allows us to directly
observe the characteristics of individuals most affected by classification Er-
rors. Unlike purely numerical representations, categorical and structured
attributes highlight meaningful patterns, making it easier to identify biases
and disparities in the model’s predictions.

After analyzing the subgroups experimentally, the following pages will
provide details of the mitigation process for the COMPAS dataset.
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5.2.4.1 COMPAS False Positive Mitigation

As a preliminary analysis of the solution’s impact on False Positives por
COMPAS dataset, Figure 5.4 is examined.

This image illustrates the impact of bias mitigation on False Positives
using SMOTE-NC, applied to problematic subgroups identified with Div-
Explorer for a Decision Tree model. The x-axis represents the probability
that synthetic points belong to class 0, ranging from 0.5 to 1. This aligns
with the idea that, in mitigating False Positives, it is necessary to increase
the number of synthetic data points representing problematic instances la-
beled as 0. The y-axis indicates the number of False Positives.

To perform the mitigation, synthetic samples (ranging from 0.5K to 2.5K)
are injected into the training set to balance the data distribution and re-
duce False Positives. The experiments are conducted by varying the num-
ber of problematic subgroups used to identify problematic instances in the
validation set. This approach allows for analyzing how different subgroup
selections influence the effectiveness of the mitigation strategy.

On the left side of the figure, a lower minimum support threshold is
applied, enabling the identification of a larger number of problematic sub-
groups. Conversely, on the right side, a higher support threshold results in
fewer detected subgroups. Moving from top to bottom in the figure, the
number of subgroups selected for data augmentation increases. From the
analysis of the figure, we observe key trends in how the number of False
Positives varies depending on the number of problematic subgroups and the
minimum support threshold used in DivExplorer.

As the number of selected subgroups increases (moving from top to bot-
tom in the figure), the mitigation effect generally improves, leading to a
greater reduction in False Positives, especially for higher pclass 0 values. This
suggests that generating synthetic data from a larger set of problematic sub-
groups helps balance the dataset more effectively. However, when too many
subgroups are included, the impact may stabilize or even decrease due to
excessive data variability.

Comparing the left and right columns, a lower minimum support thresh-
old (left) allows for identifying more subgroups, but many of them are less
representative, leading to a less effective reduction in false positives. In
contrast, with a higher minimum support threshold (right), fewer but more
representative subgroups are selected, resulting in a more significant reduc-
tion in false positives.
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Figure 5.4: False Positives trend generated with SMOTE-NC (0.5K-2.5K) as pclass 0
varies for a Decision Tree. On the left, min_sup = 2%; on the right, min_sup = 10%;
for both pruning parameter = 0%. Each row compares results for the same percentage
of problematic subgroups used in mitigation.
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In almost all cases, increasing pclass 0 reduces false positives, confirming
that boosting the presence of label-0 instances through synthetic data helps
mitigate bias. This effect is particularly evident when fewer subgroups are
selected (right column), where the reduction is sharper and more effective.
The Table 5.18 compares the three bias mitigation strategies:

Table 5.18: Comparison of Results for Targeted Data Acquisition, Random Data Ac-
quisition and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
False Positive, MinimumSupport:10%.
Note: For each % K (15, 30, 40), the best results for each metric within the same sample
size are marked with underline, while the overall best results are marked in bold.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
FP ∆avg ∆max ∆10 ∆20

- - - Original 0.919 0.275 84 0.012 0.039 0.029 0.024

15 2

295

Random
Acquisition 0.915 0.244 92 0.014 0.052 0.034 0.030

Targeted
Acquisition 0.920 0.263 76 0.012 0.052 0.029 0.021

Generation
p = 1 0.920 0.284 82 0.012 0.046 0.034 0.027

500

Random
Acquisition 0.918 0.246 81 0.014 0.052 0.034 0.030

Generation
p = 1 0.921 0.261 72 0.010 0.036 0.025 0.020

30 4

421

Random
Acquisition 0.917 0.243 86 0.013 0.057 0.036 0.031

Targeted
Acquisition 0.922 0.260 66 0.010 0.042 0.025 0.018

Generation
p = 1 0.922 0.270 71 0.011 0.045 0.030 0.022

1000

Random
Acquisition 0.918 0.264 87 0.013 0.057 0.036 0.031

Generation
p = 1 0.925 0.262 57 0.008 0.031 0.022 0.017

40 6

559

Random
Acquisition 0.918 0.246 82 0.012 0.043 0.033 0.028

Targeted
Acquisition 0.923 0.263 62 0.009 0.041 0.029 0.022

Generation
p = 0.8 0.920 0.263 75 0.011 0.045 0.033 0.026

1000

Random
Acquisition 0.918 0.264 87 0.012 0.043 0.033 0.028

Generation
p = 1 0.922 0.241 61 0.009 0.023 0.015 0.013
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Targeted Data Acquisition, Random Data Acquisition, and SMOTE-NC
Data Generation, in reducing False Positives and divergence metrics.

With a minimum support of 10% in the validation set, Targeted Acquisi-
tion is the most effective when the number of added samples is low. Selecting
problematic instances from the holdout set with label 0 provides a direct
reduction in False Positives. However, as the number of generated sam-
ples increases, Data Generation (SMOTE-NC) becomes the best approach,
achieving the most significant reduction in False Positives and divergence
metrics. This suggests that synthetic data generation enhances distribution
homogeneity and minimizes gaps between problematic subgroups and the
overall population.

For a fixed , Data Generation consistently achieves better results with
more generated samples. The reduction in ∆avg and ∆max indicates im-
proved subgroup alignment, while ∆10 and ∆20 confirm that even the most
problematic subgroups benefit from mitigation. These metrics measure the
absolute variation in average, maximum, top 10, and top 20 divergences on
the test set before and after mitigation. Accuracy and F1-score do not nec-
essarily follow this trend, as they are general evaluation metrics rather than
subgroup-specific ones.

At lower sample sizes, Targeted Acquisition is more effective at reducing
False Positives due to its focused selection of problematic instances. With
a higher number of generated samples, Data Generation using SMOTE-NC
is the superior strategy, consistently reducing divergence metrics and False
Positives more effectively than the other approaches.

The choice of bias mitigation strategy depends on the number of available
samples. With fewer added samples, Targeted Acquisition is preferable for
its immediate reduction of False Positives. If more synthetic samples can
be generated, Data Generation proves to be the most effective long-term
strategy, ensuring greater divergence reduction and better overall data dis-
tribution balance.

Since the proposed solution is model-agnostic, the method was tested
on different models to evaluate its effectiveness in reducing False Positives.
In this analysis, K-Nearest Neighbors (KNN) was used instead of Logistic
Regression, as Logistic Regression produced zero False Positives, making a
meaningful comparison impossible. The results in Table 5.19 show that the
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Generation Acquisition strategy with SMOTE-NC improves False Positive
mitigation and reduces subgroup divergence as the number of generated
samples increases.

Table 5.19: Comparison of results for different models, metric: False Positive.
For GB K:30%, MinimumSupport: 2%, and Pruning: 0%. For KNN K:15%, Minimum-
Support: 2%, and Pruning:0%. For RF K:20%, MinimumSupport: 2%, and Pruning:0%.
Note: For each model type (GB, KNN, RF), the best results for each metric are marked
in bold. If nothing is in bold, then the metric is worse or equal than the initial one.

Model #
Samples Approach Accuracy F1-Score #

FP ∆avg ∆max ∆10 ∆20

GB

- Original 0.927 0.032 4 0.001 0.043 0.037 0.032

500

Random
Acquisition 0.926 0.032 5 0.001 0.043 0.037 0.032

Generation
p = 0.95 0.928 0.043 2 0.001 0.037 0.034 0.023

1500

Random
Acquisition 0.928 0.054 2 0.001 0.043 0.037 0.032

Generation
p = 0.95 0.928 0.033 1 0.000 0.022 0.019 0.018

KNN

- Original 0.925 0.179 26 0.002 0.131 0.108 0.100

500

Random
Acquisition 0.929 0.196 15 0.002 0.108 0.100 0.095

Generation
p = 0.95 0.926 0.182 22 0.002 0.070 0.066 0.063

1500

Random
Acquisition 0.927 0.234 26 0.002 0.108 0.100 0.095

Generation
p = 0.6 0.927 0.183 20 0.002 0.071 0.066 0.061

RF

- Original 0.934 0.359 28 0.004 0.014 0.007 0.003

500

Random
Acquisition 0.934 0.365 28 0.005 0.016 0.007 0.003

Generation
p = 0.95 0.936 0.361 22 0.003 0.011 0.005 0.002

1500

Random
Acquisition 0.934 0.370 29 0.005 0.016 0.007 0.003

Generation
p = 1 0.936 0.350 20 0.003 0.009 0.004 0.002

In general, Generation Acquisition strategies lead to a reduction in the
total number of False Positives and a decrease in divergence metrics (∆max,
∆avg, ∆10, and ∆20), indicating greater fairness across subgroups.

For Gradient Boosting (GB), the Generation Acquisition strategy with
p=0.95 and 1500 samples yields the best results, reducing the number of
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False Positives from 4 to 1, lowering ∆max from 0.043 to 0.022, and slightly
improving Accuracy (0.928). In the case of KNN, Random Acquisition with
500 samples improves Accuracy (0.929) and F1-Score (0.196) while reduc-
ing False Positives from 26 to 15. Similarly, Generation Acquisition with
p = 0.95 lowers ∆max from 0.131 to 0.070, but does not achieve noticeable
improvements in other metrics. For Random Forest (RF), Generation Ac-
quisition with p = 1 and 1500 samples delivers the best results, reducing
False Positives from 28 to 20 and lowering ∆max from 0.014 to 0.009. Ac-
curacy also improves slightly (0.936) although the F1-Score experiences a
minor decrease (from 0.359 to 0.350).

For all models, increasing the number of synthetic samples tends to en-
hance bias mitigation. In particular, using a higher number of generated
samples results in the most significant reductions in False Positives and
subgroup disparities. Accuracy and F1-Score, being overall performance
metrics, vary depending on the chosen strategy but do not always directly
reflect improvements in fairness.

These results confirm that increasing the number of synthetic samples
with SMOTE-NC is an effective strategy for reducing False Positives and
subgroup discrepancies, improving overall fairness without excessively com-
promising the model’s general performance.
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5.2.4.2 COMPAS FP Mitigation Main Outcomes

The analysis demonstrates that bias mitigation using SMOTE-NC effec-
tively reduces False Positives, particularly when synthetic points are pre-
dominantly assigned to class 0. Though its impact varies based on factors
such as synthetic sample size, subgroup selection, and parameter settings.

Key observations:

1. The Generation strategy, proposed in this study, proves to be the most
effective approach when a sufficiently large number of synthetic samples
are injected into the training set.

2. Targeted Acquisition outperforms other methods when the number of
additional samples is limited, highlighting its suitability for early-stage
data augmentation.

3. Higher thresholds detect fewer subgroups, but more representative, while
a lower minimum support thresholds identify more subgroups, but less
representative. Here selecting too many subgroups can introduce noise,
limiting effectiveness. A low support threshold is more effective, as it
captures more representative problematic subgroups enhances mitiga-
tion effectiveness.

4. While Accuracy and F1-score provide a general performance overview,
they do not fully capture fairness improvements at the subgroup level.
A slight decrease in F1-score in some cases aligns with a stronger reduc-
tion in divergence, emphasizing the need for fairness-aware evaluation
metrics.

5. The best overall performance is achieved using the Generation Acquisi-
tion strategy when a sufficiently large number of samples are included.
This confirms that bias mitigation strategies must be carefully tailored
based on the dataset characteristics and the balance between fairness
and model Accuracy.

In conclusion, SMOTE-NC is effective in mitigating False Positives, but
achieving fairness requires careful parameter tuning. Targeted Acquisition
works best for fewer samples, while Data Generation with SMOTE-NC en-
sures long-term improvements in fairness and subgroup balance.
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5.2.4.3 COMPAS False Negative Mitigation

Again, as a preliminary analysis of the solution’s impact on False Negatives
for COMPAS dataset, Figure 5.5 is examined.

This image illustrates the impact of bias mitigation on False Negatives
using SMOTE-NC, applied to problematic subgroups identified with DivEx-
plorer for a Decision Tree model. The x-axis represents the probability that
synthetic points belong to class 1, ranging from 0.5 to 1. This aligns with
the idea that, in mitigating False Negatives, it is necessary to increase the
number of synthetic data points representing problematic instances labeled
as 1. The y-axis indicates the number of False Positives.

To perform the mitigation, synthetic samples (ranging from 0.5K to 2.5K)
are injected into the training set to balance the data distribution and re-
duce False Positives. The experiments are conducted by varying the num-
ber of problematic subgroups used to identify problematic instances in the
validation set. This approach allows for analyzing how different subgroup
selections influence the effectiveness of the mitigation strategy.

On the left side of the figure, a lower minimum support threshold is
applied, enabling the identification of a larger number of problematic sub-
groups. Conversely, on the right side, a higher support threshold results in
fewer detected subgroups. Moving from top to bottom in the figure, the
number of subgroups selected for data augmentation increases. From the
analysis of the figure, we observe key trends in how the number of False
Negatives varies depending on the number of problematic subgroups and
the minimum support threshold used in DivExplorer.

As before, a higher minimum support threshold (right column) proves
more effective. Since the mitigation strategy targets False Negatives, in-
creasing the support threshold ensures that the identified subgroups contain
more class-1 instances, leading to a more reliable synthetic data generation
process. This results in a greater reduction of False Negatives compared to
a lower support threshold (left column), where subgroups may contain fewer
meaningful class-1 instances.
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Figure 5.5: False Negatives trend generated with SMOTE-NC (0.5K-2.5K) as pclass 1
varies for a Decision Tree. On the left, min_sup = 2%; on the right, min_sup = 25%;
for both pruning parameter = 0%. Each row compares results for the same percentage
of problematic subgroups used in mitigation.
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As the number of selected subgroups increases (moving from top to bot-
tom), the effect of mitigation is generally more pronounced. A larger set of
subgroups provides more diverse instances for data augmentation, helping to
balance the dataset and reduce False Negatives more effectively. However,
the impact stabilizes or fluctuates when too many subgroups are included,
suggesting that excessive subgroup diversity may limit the benefits of syn-
thetic data generation.

Overall, SMOTE-NC is most effective in mitigating False Negatives when
applied to subgroups with a sufficiently high support threshold, ensuring
that synthetic data is generated from well-represented class-1 instances. A
balance must be maintained, as selecting too many or too few subgroups
can affect the overall effectiveness of the mitigation strategy.

Table 5.20 not only highlights the reduction of False Negatives through
different bias mitigation strategies but also provides a detailed comparison of
divergence metrics. While Accuracy and F1-score offer a global measure of
model performance, they do not provide insights into subgroup disparities.
The table allows for a deeper evaluation of how each approach impacts both
overall classification and fairness across different groups.

When the number of added samples is low, generally, Random Data Ac-
quisition proves to be the most effective in reducing False Negatives.
However, as the number of generated samples increases, SMOTE-NC be-
comes the most effective strategy in reducing both False Negatives and di-
vergence metrics. This indicates that synthetic data generation helps create
a more homogeneous distribution, reducing gaps between problematic sub-
groups and the overall population.

In this specific case, Random Acquisition performances often yield better
local results because there are very few problematic instances of class 1. As
a result, SMOTE-NC struggles to generate effective synthetic samples, lim-
iting its ability to reduce False Negatives as efficiently as in other scenarios.
This highlights the strong influence of data imbalance on the performance
of synthetic data generation techniques.
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Table 5.20: Comparison of Results for Targeted Data Acquisition, Random Data Ac-
quisition and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
False Negative, MinimumSupport:25%.
Note: For each % K (20, 30, 60), the best results for each metric within the same sample
size are marked with underline, while the overall best results are marked in bold.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
FN ∆avg ∆max ∆10 ∆20

- - - Original 0.919 0.275 212 0.124 0.209 0.197 0.179

20 7

413

Random
Acquisition 0.916 0.246 218 0.108 0.187 0.174 0.157

Targeted
Acquisition 0.922 0.282 212 0.124 0.209 0.197 0.179

Generation
p = 1 0.913 0.273 208 0.121 0.224 0.206 0.185

1000

Random
Acquisition 0.918 0.264 214 0.108 0.187 0.174 0.157

Generation
p = 0.75 0.912 0.248 215 0.102 0.173 0.165 0.148

30 11

542

Random
Acquisition 0.916 0.243 219 0.105 0.183 0.170 0.153

Targeted
Acquisition 0.922 0.277 213 0.124 0.205 0.197 0.181

Generation
p = 1 0.907 0.261 208 0.127 0.224 0.210 0.190

1500

Random
Acquisition 0.920 0.297 215 0.105 0.183 0.170 0.153

Generation
p = 0.6 0.909 0.241 206 0.103 0.173 0.165 0.148

60 22

1105

Random
Acquisition 0.917 0.260 215 0.108 0.198 0.182 0.161

Targeted
Acquisition 0.925 0.272 217 0.115 0.190 0.183 0.167

Generation
p = 0.95 0.902 0.231 214 0.107 0.177 0.169 0.155

2500

Random
Acquisition 0.923 0.291 210 0.108 0.198 0.182 0.161

Generation
p = 0.9 0.899 0.240 210 0.106 0.192 0.179 0.160

Again, since the proposed solution is model-agnostic, the method is tested
on different models to evaluate its effectiveness in reducing False Negatives.

The results in Table 5.21 show that the Generation Acquisition strat-
egy generally improves this metric and reduces subgroup divergences as the
number of generated samples increases.
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Table 5.21: Comparison of results for different models, metric: False Negative.
For GB K:45%, MinimumSupport: 25%, and Pruning: 0%. For KNN K:20%, Min-
imumSupport: 25%, and Pruning:0%. For RF K:30%, MinimumSupport: 25%, and
Pruning:0%.
Note: For each model type (GB, KNN, RF), the best results for each metric are marked
in bold. If nothing is in bold, then the metric is worse or equal than the initial one.

Model #
Samples Approach Accuracy F1-Score #

FN ∆avg ∆max ∆10 ∆20

GB

- Original 0.927 0.032 175 0.011 0.017 0.015 0.011

500

Random
Acquisition 0.926 0.032 173 0.018 0.028 0.022 0.018

Generation
p = 0.75 0.927 0.032 174 0.011 0.017 0.015 0.011

1500

Random
Acquisition 0.928 0.054 173 0.018 0.028 0.022 0.018

Generation
p = 0.5 0.918 0.020 172 0.008 0.011 0.010 0.008

KNN

- Original 0.925 0.179 158 0.065 0.112 0.112 0.103

500

Random
Acquisition 0.929 0.196 157 0.084 0.152 0.152 0.137

Generation
p = 0.95 0.928 0.215 154 0.078 0.135 0.135 0.122

3000

Random
Acquisition 0.926 0.196 156 0.084 0.152 0.152 0.137

Generation
p = 0.85 0.922 0.167 159 0.064 0.107 0.107 0.103

RF

- Original 0.934 0.359 133 0.143 0.253 0.249 0.231

500

Random
Acquisition 0.934 0.365 132 0.144 0.253 0.249 0.231

Generation
p = 0.85 0.932 0.357 132 0.143 0.258 0.249 0.229

3000

Random
Acquisition 0.936 0.379 131 0.144 0.253 0.249 0.231

Generation
p = 0.95 0.918 0.321 130 0.143 0.264 0.242 0.223

For Gradient Boosting (GB), the generation strategy with 1500 additional
samples (p = 0.5) achieves the most significant reduction in False Negatives
and subgroup divergence metrics. The Random Acquisition approach does
not appear to offer substantial improvements in these aspects.

For K-Nearest Neighbors (KNN), the generation strategy with p = 0.95
results in the lowest number of False Negatives while also improving the
F1-score. However, with a higher number of generated samples (p = 0.85,
3000 samples), the divergence metrics decrease further, suggesting a trade-
off between overall performance and model fairness improvement.
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For Random Forest (RF), the generation strategy with p = 0.95 achieves the
lowest number of False Negatives but does not significantly reduce subgroup
divergence. An important factor to consider is that SMOTE-NC generates
new samples based on existing data, but in this case, the number of minor-
ity class instances was limited, reducing the effectiveness of data generation
and the potential improvement in fairness metrics.

In summary, the results confirm that increasing the number of synthetic
samples can help reduce False Negatives and subgroup divergences, but the
effectiveness of this strategy depends on the original class distribution and
the model used.
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5.2.4.4 COMPAS FN Mitigation Main Outcomes

The analysis demonstrates that bias mitigation using SMOTE-NC effec-
tively reduces False Negatives, particularly when synthetic points are pre-
dominantly assigned to class 1. However, its impact varies based on factors
such as synthetic sample size, subgroup selection, and parameter settings.
Key Observations

1. The Generation strategy, proposed in this study, proves to be the most
effective approach when a sufficiently large number of synthetic samples
are injected into the training set.

2. Random Acquisition outperforms other methods when the number of
additional samples is limited.

3. Higher minimum support thresholds detect fewer subgroups, leading to
a more reliable synthetic data generation process and sharper reduc-
tions in False Negatives. Conversely, lower thresholds capture a larger
number of subgroups, offering gradual mitigation but introducing noise
when too many subgroups are selected. In small datasets, a low support
threshold is more effective as it identifies more problematic subgroups
without overwhelming the original data distribution.

4. While Accuracy and F1-score provide a general performance overview,
they do not fully capture fairness improvements at the subgroup level.
A slight decrease in F1-score in some cases aligns with a stronger reduc-
tion in divergence, emphasizing the need for fairness-aware evaluation
metrics.

5. The best overall performance is achieved using the Generation Acquisi-
tion strategy when a sufficiently large number of samples are included.
This confirms that bias mitigation strategies must be carefully tailored
based on the dataset characteristics and the balance between fairness
and model accuracy.

For these reasons SMOTE-NC is effective in mitigating False Negatives,
but achieving fairness requires careful parameter tuning. Targeted Acqui-
sition works best when fewer samples are available, while Data Generation
with SMOTE-NC ensures long-term improvements in fairness and subgroup
balance.
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5.2.4.5 COMPAS Error Mitigation

For the last time, as a preliminary analysis of the solution’s impact on Errors
for COMPAS dataset, Figure 5.6 is examined.

This image illustrates the impact of bias mitigation on Errors using
SMOTE-NC, applied to problematic subgroups identified with DivExplorer
for a Decision Tree model. The x-axis represents the probability that syn-
thetic points belong to class 0; since this is a binary classification problem,
the complementary value represents the probability of belong to class 1. The
y-axis indicates the number of Errors.

To perform the mitigation, synthetic samples (ranging from 0.5K to 2.5K)
are injected into the training set to balance the data distribution and reduce
the Errors. The experiments are conducted by varying the number of prob-
lematic subgroups used to identify problematic instances in the validation
set. This approach allows for analyzing how different subgroup selections
influence the effectiveness of the mitigation strategy.

On the left side of the figure, a lower minimum support threshold is
applied, enabling the identification of a larger number of problematic sub-
groups. Conversely, on the right side, a higher support threshold results in
fewer detected subgroups. Moving from top to bottom in the figure, the
number of subgroups selected for data augmentation increases. The fig-
ure shows how Error mitigation is affected by the number of problematic
subgroups and the minimum support threshold used in DivExplorer.

A higher minimum support threshold (right column) generally leads to a
more stable Error reduction because the identified subgroups contain more
representative instances, making SMOTE-NC more effective. In contrast,
a lower support threshold (left column) detects more subgroups, but they
may include less meaningful instances, leading to less consistent results.

As the number of selected subgroups increases (top to bottom), Error
mitigation becomes more pronounced, particularly when a higher number
of synthetic points is injected. However, when too many subgroups are
selected, the effect stabilizes, indicating that excessive subgroup diversity
may reduce the overall impact of synthetic data generation.
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Figure 5.6: Error trend generated with SMOTE-NC (0.5K-2.5K) as pclass 0 varies for a
Decision Tree. On the left, min_sup = 5%; on the right, min_sup = 10%; for both prun-
ing parameter = 0%. Each row compares results for the same percentage of problematic
subgroups used in mitigation.
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Although the previously described figure provides insight into how the
number of Errors evolves when new data is added to the training set, it does
not offer any information on divergence metrics. For this reason, Table 5.22
compares the three different mitigation methods as the number of inspected
subgroups varies, while keeping the minimum support fixed at 10%.

Table 5.22: Comparison of Results for Targeted Data Acquisition, Random Data Ac-
quisition and SMOTE-NC Data Generation Approaches for Decision Tree Model, metric:
Errors, MinimumSupport:10%.
Note: For each % K (10, 20, 50), the best results for each metric within the same sam-
ple size are marked with underline, while the overall best results are marked in bold.If
nothing is in bold, then the metric is worse than the initial one.

%
K

#
Sub-

groups

#
Sam-
ples

Approach Accuracy F1-Score #
ER ∆avg ∆max ∆10 ∆20

- - - Original 0.919 0.275 296 0.023 0.076 0.062 0.054

10 2

383

Random
Acquisition 0.917 0.248 304 0.024 0.081 0.070 0.063

Targeted
Acquisition 0.922 0.281 287 0.022 0.069 0.058 0.051

Generation
p = 0.1 0.920 0.262 293 0.024 0.072 0.063 0.052

1500

Random
Acquisition 0.920 0.297 293 0.024 0.081 0.070 0.063

Generation
p = 1 0.920 0.244 292 0.023 0.068 0.055 0.048

20 4

496

Random
Acquisition 0.917 0.244 304 0.025 0.086 0.073 0.064

Targeted
Acquisition 0.923 0.296 280 0.021 0.071 0.057 0.051

Generation
p = 1 0.920 0.270 292 0.023 0.090 0.066 0.059

2000

Random
Acquisition 0.918 0.293 299 0.025 0.086 0.073 0.064

Generation
p = 1 0.925 0.267 274 0.020 0.086 0.068 0.059

50 11

790

Random
Acquisition 0.920 0.269 294 0.023 0.086 0.071 0.061

Targeted
Acquisition 0.927 0.310 267 0.019 0.064 0.053 0.047

Generation
p = 0.8 0.921 0.287 288 0.021 0.102 0.076 0.065

1000

Random
Acquisition 0.918 0.264 301 0.023 0.086 0.071 0.061

Generation
p = 1 0.919 0.261 295 0.023 0.075 0.063 0.058
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It is observed that, unlike in previous cases, here it is not possible to
select labels ad hoc for Targeted Acquisition. As a result, the problematic
instances from the holdout set that are added to the training set may some-
times worsen the metrics instead of improving them. However, in this case,
even without the specific selection of labels, Targeted Acquisition generally
performs better.

Moreover, as the number of added samples increases, the Generation
Strategy in this case does not always prove to be the most effective, as
already observed in previous cases. It is important to note that the total
number of errors does not decrease dramatically. This is because injecting
too many instances of class 0 or class 1 improves one of the two metrics
(False Negatives or False Positives) while worsening the other, ultimately
keeping the total error count high.

As for Accuracy and F1-Score, the same considerations as before apply:
while they provide a general performance overview, they do not fully capture
fairness improvements at the subgroup level.

For the last time, recall that since the proposed solution is model-agnostic,its
impact is evaluated on overall Errors across different models. Table 5.23
shows that the Generation Acquisition strategy can improve False Negative
reduction but may increase False Positives, leading to a relatively stable
total Error count.

For Gradient Boosting (GB), the generation strategy with p = 0.9 and
2000 additional samples achieves the lowest number of Errors while also
improving subgroup divergence metrics. However, the overall reduction in
Errors is not drastic, as improvements in False Negatives are counterbal-
anced by potential increases in False Positives.

For K-Nearest Neighbors (KNN), the results show a trade-off: the Ran-
dom Acquisition approach reduces the total number of Errors the most,
while the Generation Acquisition strategy with p=0.5 achieves better sub-
group fairness metrics. This suggests that although the generation strategy
enhances fairness, it may not always lead to a significant reduction in total
Errors.
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Table 5.23: Comparison of results for different models, metric: Error.
For GB K:30%, MinimumSupport: 15%, and Pruning: 0%. For KNN K:40%, Min-
imumSupport: 15%, and Pruning:0%. For RF K:40%, MinimumSupport: 10%, and
Pruning:0%.
Note: For each model type (GB, KNN, RF), the best results for each metric are marked
in bold. If nothing is in bold, then the metric is worse or equal than the initial one.

Model #
Samples Approach Accuracy F1-Score #

ER ∆avg ∆max ∆10 ∆20

GB

- Original 0.927 0.032 179 0.013 0.057 0.039 0.030

500

Random
Acquisition 0.926 0.032 180 0.013 0.060 0.040 0.030

Generation
p = 1 0.927 0.043 178 0.013 0.055 0.038 0.029

2000

Random
Acquisition 0.927 0.053 177 0.013 0.060 0.040 0.030

Generation
p = 0.9 0.928 0.054 175 0.012 0.054 0.037 0.029

KNN

- Original 0.925 0.179 184 0.010 0.053 0.045 0.038

500

Random
Acquisition 0.929 0.196 172 0.010 0.051 0.041 0.029

Generation
p = 0.4 0.925 0.208 183 0.009 0.048 0.042 0.038

5000

Random
Acquisition 0.927 0.234 177 0.010 0.051 0.041 0.029

Generation
p = 0.5 0.928 0.200 176 0.010 0.041 0.035 0.028

RF

- Original 0.934 0.359 161 0.009 0.054 0.045 0.040

500

Random
Acquisition 0.934 0.365 160 0.009 0.057 0.047 0.041

Generation
p = 0.5 0.936 0.386 156 0.008 0.052 0.039 0.034

2500

Random
Acquisition 0.935 0.368 158 0.009 0.057 0.047 0.041

Generation
p = 0.8 0.936 0.381 156 0.007 0.052 0.039 0.033

For Random Forest (RF), the generation strategy with p = 0.8 achieves
the lowest number of Errors and subgroup divergence. However, as SMOTE-
NC relies on available minority class data to generate new instances, the
effectiveness of this strategy is limited when the original dataset has an im-
balanced class distribution.

In general, increasing the number of generated samples tends to improve
performance on subgroup-related metrics, leading to better fairness and re-
duced divergence across different groups.
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However, the impact on overall Errors remains balanced due to trade-offs
between False Positives and False Negatives. The results confirm that the
Generation Acquisition strategy can effectively reduce the number of Errors
and improve subgroup divergence, but it does not necessarily lead to a sharp
decrease in total Errors.

When False Negatives decrease, False Positives may increase, and con-
versely, when False Negatives rise, False Positives may decrease. This high-
lights the importance of carefully selecting the number of generated samples
to optimize both overall performance and fairness.
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5.2.4.6 COMPAS Error Mitigation Main Outcomes

The analysis demonstrates that bias mitigation using SMOTE-NC effectively
impacts overall Error reduction, particularly in relation to the balance be-
tween False Positives and False Negatives. The effectiveness of this approach
depends on several factors, including the number of synthetic samples gener-
ated, the subgroup selection criteria, and specific parameter configurations.
Key observations:

1. The Generation Strategy, as proposed in this study, is not always the
most effective also when a large number of synthetic samples are in-
jected into the training set. However this strategy generally improves
subgroup divergence metrics, reducing disparities between problematic
groups and the overall population.

2. Targeted Acquisition often performs best even when the number of ad-
ditional samples is low. Despite the inability to select labels ad hoc in
this scenario, the method effectively mitigates the impact of problematic
instances from the holdout set, leading to overall metric improvements.

3. A higher minimum support threshold detects fewer subgroups, leading
to a more stable but sometimes limited reduction in Errors. Conversely,
a lower minimum support threshold identifies a larger number of sub-
groups, which can result in more effective bias mitigation. However,
excessive subgroup diversity may introduce noise, reducing the overall
benefits of synthetic data generation.

4. The total number of Errors does not decrease dramatically because in-
creasing synthetic instances of either class (0 or 1) improves one metric
(False Negatives or False Positives) at the cost of the other. This bal-
ance suggests that careful tuning of synthetic data generation is required
to optimize fairness without disproportionately affecting accuracy.

SMOTE-NC proves to be an effective tool for mitigating bias and improving
fairness metrics, particularly when applied through the Generation Strat-
egy. However, the impact on overall Error reduction is nuanced: reducing
False Negatives often leads to an increase in False Positives, and vice versa.
Therefore, selecting an appropriate number of synthetic samples is crucial
to balancing fairness with model accuracy.
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Chapter 6

Conclusions and Future
Works

In this final chapter, the conclusions are presented in 6.1, while the potential
future works are discussed in 6.2.

6.1 Conclusions
Machine Learning is now widely used in various decision-making domains,
directly impacting people’s lives. However, ML models can inherit and am-
plify biases present in the data, compromising the fairness of their predic-
tions. For this reason, it is crucial to develop bias mitigation strategies that
improve the reliability and transparency of these systems.

This thesis proposes a new model-agnostic bias mitigation method for tab-
ular data, which automatically identifies problematic subgroups and gener-
ates new representative data to balance the training set. The data generation
process is performed using SMOTE-NC, a pre-existing method traditionally
used to balance imbalanced datasets. However, in this work, SMOTE-NC
has been employed in an innovative way, specifically aimed at bias mitiga-
tion, thus expanding its application scope.

Experimental results have shown that the proposed approach can improve
prediction fairness depending on the dataset characteristics, by adjusting the
parameters described in the thesis. This process may lead to a reduction in
overall accuracy, but it is important to note that global accuracy does not
provide insight into the quality of predictions for problematic subgroups.
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For example, increasing the number of synthetic instances with a negative
class can reduce False Positives (FP) at the cost of increasing False Negatives
(FN) and decreasing overall accuracy. However, if the goal is to minimize
FP, the adopted strategy proves effective, highlighting the importance of a
flexible approach that allows balancing the trade-off between fairness and
accuracy based on the specific objectives of the problem.

Ultimately, this work contributes to the development of more balanced
and representative datasets, enabling a training phase that better accounts
for fairness and reduces the risk of bias in machine learning model decisions.

6.2 Future Works
This work opens several directions for future development. One possible ex-
tension of the proposed strategy is its adaptation to multi-class classification
by modifying the probability with which the generated samples belong to a
specific class. This would allow the method to be applied in more complex
scenarios, expanding its applicability.

Moreover, the current strategy may not be optimal for certain metrics,
such as the total number of Errors. Since reducing False Positives (FP)
increases False Negatives (FN) and vice versa, the overall number of Er-
rors may not decrease significantly. For this reason, it would be beneficial
to extend the method so that it can mitigate bias across multiple metrics
simultaneously, better balancing the effects on different types of Errors.
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