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Summary

The work focuses on the lateral tire forces during cornering manoeuvres. The topic
concerns the estimation of tire parameters with real manoeuvres on the track with a
Formula Student car. An introduction is given to the current state of the art in tire
ground contact force measurement techniques. This is followed by the description
of the tire behaviour in a race car and the definition of the Pacejka Magic formula.
The organisation and analysis of the track tests are reported. Fitting algorithms are
developed to estimate tire parameters. The results are then verified by simulations
on the team’s LapTime Simulator. As a further step, the design of an Extended
Kalmann Filter is explained. Finally, a comparison is made with the laboratory test
of FSAE Tire Testing Consortium data. The project is developed at the RWTH
University of Aachen (Germany) in the Formula Student Team Ecurie Aix.
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Chapter 1

Introduction

1.1 Formula Student Competition
Formula Student is an international engineering competition for university students
that challenges teams to design, build and race a Formula-style racing car. Formula
Student provides a platform for students to apply their theoretical knowledge
in a real-world environment and to develop skills in teamwork, communication,
leadership, innovation and entrepreneurship.

Formula Student aims to develop the next generation of engineers, innovators and
leaders in the automotive and motorsport industries and to promote sustainability,
safety and affordability in motorsport. The competition involves a series of static
and dynamic events that test the performance, reliability and cost effectiveness of
the cars. The events are:

Static events:

• Engineering Design Event: teams present their car design to a panel of judges
who assess the design, innovation and feasibility of the car. The judges may
ask questions to test the team’s knowledge of the car’s design, validation and
engineering principles.

• Cost and Manufacturing: teams present a cost report detailing the cost of
materials and manufacturing processes used in the design and production of
the car.

• Business Plan Presentation: All teams present a business case for their car,
detailing the marketing and sponsorship strategies, financial planning, and
sustainability aspects of their project.

Dynamic events:

1



Introduction

• Acceleration: A simple straight line acceleration over a 75 meter track, the
fastest car wins. Traction and low drag are the key to winning this event.

• Skidpad: In this event the car must complete a figure of eight pattern, driving
2 laps of the right circle and 2 laps of the left circle. The second lap of each
circle is timed and the average of these times plus any penalties is the total
time of the run. This event tests the car’s cornering grip and stability.

• Autocross: This event is like an F1 qualifying session. Drivers race around a
technical track full of tight corners, chicanes and slaloms. The event tests the
car’s handling, agility and driver skill.

• Endurance & Efficiency: The endurance event evaluates the durability and
reliability of the car by testing its performance over a long distance, the track
has the same characteristics as the autocross and the total event is about 22
km long. At the end of the course, the total energy consumed is calculated,
taking into account the amount of energy recovered as a negative contribution.
This is how the efficiency ranking is determined.

To participate in Formula Student, each team must design and build a single-seat,
open-wheel, formula-style race car that meets a set of technical regulations and
safety standards. To take part in the dynamic events, the team must pass a series
of technical inspections and tests, such as the electrical inspection, mechanical
inspection, brake test and rain test. The future of Formula Student is a promising
one, as the competition continues to evolve and adapt to the changing landscape
of motorsport and mobility. The competition embraces new technologies such
as autonomous driving, electric and hybrid powertrains, advanced materials and
manufacturing methods. Overall, Formula Student is an exciting and rewarding
programme that offers students a unique and valuable experience in the world of
engineering and motorsport.

1.1.1 RWTH Ecurie Aix
The RWTH Ecurie Aix is a strong group of around 70 students from the RWTH
Aachen University, they are well organised and with a large Alumni network. The
already graduated students are always available to provide the proper support
to the new members, with videocalls and reviews, in order to ensure the good
trasmission of knowledge through the following generations. This process is ensuring
great results. The team has reached astonishing achievements in the last years,
remarkable is the 1st place in the hardest competition, FSG Formula student
Germany, in the 2023. Also in the last season the team has achieved successes,
such as the 2nd overall place in Formula Student Netherlands. The aim of this
project is to improve the performance of the car with a deeper knowledge of

2



Introduction

tyre behaviour. The topic has been proposed by the "Performance" group in the
"LapTime Simulation" department. The support of the team will be provided
through the introduction to the software used to analyse the data collected from
the car, the projects developed in the past years as the Simulink model "LapTime
Simulator", material support for the track tests.

1.1.2 Tyre impact on Formula Student
The thesis represents a novelty in the Formula Student environment, especially
because of the use of real data. The teams can afford to have an account with
the Tire Testing Consortium (TTC), a tyre testing laboratory in Calspan, where
several of the components have been tested. This is a good tool for evaluating tyre
performance, but it has some limitations. Firstly, the tyres most commonly used
by the Formula Student teams are the 10-inch Hoosier compound, and this type of
tyre has not been tested in longitudinal dynamics by the TTC. This lack of data
and knowledge is a significant limitation for the teams. In addition, the laboratory
provides data that has not yet been compared with real data. The friction and
grip levels obtained on the tyre testers are obviously not in line with the normal
track conditions of the Formula Student Championship. The aim of this work is to
overcome these problems, the real data will only be collected in lateral dynamics
in order to have values that can be compared with the TTC. It is worth noting
that the tyre is a crucial component in the design of a racing car. All of the team’s
efforts in powertrain and mechanical design need to be exploited as forces on the
ground. The grip of the tyres can be a bottleneck if not properly designed. The
choice of tyres is therefore an important aspect of the Ecurie Aix team’s project.
This season, the team has decided to test two different Hoosier compounds: Hoosier
43075 16x7.5-10 LCO and Hoosier 43075 16x7.5-10 R20. The only difference is the
material and the hardness of the surface, the main dimensions have been confirmed
by previous years’ tests. A brief comparison using TTC data is given in one of the
following paragraphs. More details on the tyre’s behaviour can be found in the
chapter chapter 3.

1.1.3 Equipment and Sensors
This section briefly describes the equipment used in the tests of the thesis. Only
the sensors that are useful for the specific test will be discussed. The main
sensor used by the team is the SBG Ellipse-N. This is a high performance Inertial
Measurement Unit (IMU) designed for motion sensing applications such as racing
cars, making it particularly suitable for Formula Student. This compact and
lightweight sensor integrates a multi-band RTK (Real-Time Kinematic, a satellite
navigation technique) GNSS (Global Navigation Satellite System) receiver, enabling
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precise positioning to centimetre accuracy. The Ellipse-N offers high orientation
performance with a roll and pitch accuracy of 0.05° RMS in real time conditions
and a heading accuracy of up to 0.2° when using GNSS augmentation. These
features are critical for capturing the dynamic behaviour of the vehicle with high
accuracy. These characteristics are highly demanded by the driverless group:
the Ecurie Aix team is competing with the same car in the human driver and
autonomous categories. In terms of mechanical characteristics, the Ellipse-N is
remarkably compact, with dimensions of 29.5 x 25.5 x 16 mm. It weighs only
17 grams, minimising its impact on the overall vehicle mass. The rugged design
ensures reliable operation in harsh environments and can withstand shocks of
up to 500g. The sensor communicates via the Controller Area Network (CAN)
interface, a robust vehicle bus standard that allows microcontrollers and devices to
communicate without a host computer. This feature facilitates easy integration
with the vehicle’s data acquisition systems and enables real-time data transmission,
essential for telemetry analysis in Formula Student. The other sensor used is a
steering angle sensor, the Euro-CMRK-A-111-1216-360-17-50. The steering angle
measurement system uses the Euro-CMRK Hall-effect sensor, which offers a good
balance between accuracy and compact design for racing applications. It is a
non-contact rotary position sensor in an anodised aluminium housing, making it
particularly suitable for the space-constrained Formula Student steering assembly.
With an outer diameter of 21.5mm and a thickness of 6.6mm, the sensor is integrated
into the steering column. The assumed range of the driver’s steering angle in the
vehicle is the interval (-120, 120) degrees. The sensor is capable of providing a
full 360 degree measurement range with ś0.5% independent linearity, making it
perfectly suited to its application.

4



Chapter 2

State of art

In this chapter a brief analysis of the state of art, relative to the methodologies
used in scientific researches, is shown. In particular, the different possibilities of
approach to determine the tire forces are reported.

2.1 Researches on sensors
The problem of measuring the tire ground contact forces arises when the dynamics
of the pneumatic system is not completely clear. This mathematical problem is
better described in the chapter chapter 4. To overcome the inaccuracies of the
physical model of the tyre compound, a direct measurement is used. There are
several possibilities. The sensors used in a laboratory test machine are based on
the Wheel Force Transducer (WFT). This is a multiaxial precision measurement
system, more precisely a 6-component measurement system, capable of measuring
three forces and moments on a rotating wheel. It is widely used in laboratories
and can be mounted directly on the wheel hub. One of the main manufacturers is
Kistler, a company that develops specific sensors for the automotive sector. The
description of this sensor on their website states: "Wheel force transducers are
designed for use in the development and testing of complete chassis and chassis
components of various vehicles such as passenger cars, SUVs, commercial vehicles,
racing cars and industrial vehicles. During measurement, a wheel force transducer
replaces a standard wheel and measures the forces and moments acting on the tire
contact patch.[1]" There is no other component between the road and the vehicle
hub other than the tire and the mechanical structure of the wheel force transducer,
so this design allows a rather direct transmission of loads. Most scientific papers use
this technology to validate wheel load estimates, an example of which is reported in
the paper [2]. The main drawback of the WFT is its high cost. As a student team,
the price asked for one of these sensors was beyond our budget. An effort was made
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to get more information and get the lowest price. After several meetings, the best
offer was around €6250, made by Bota Systems, a start-up company from the ETH
Zurich. Other interesting sensors that can provide measurements related to wheel
loads are "strain gauges". A strain gauge is a sensor whose measured electrical
resistance varies with changes in strain, i.e. deformation or displacement of material.
Strain gauges convert the applied force, pressure, torque, etc. into an electrical
signal that can be measured. Force causes strain, which is then measured by the
strain gage through a change in electrical resistance. The strain measurement is
then collected using data acquisition. These devices cannot be mounted directly on
the wheel, but a good analysis can be made by positioning them on the suspension
arms. Knowing the suspension geometry and the inertia of the wheel hub assembly,
the forces measured on the suspension arms can be converted into tyre contact
forces. This solution is an indirect measurement, but the position of the strain
gauges is close enough to the wheel to overcome many inaccuracies. Very accurate
results can be achieved, but there are several disadvantages. The first is cost;
the strain gauges are very cheap, but the extensometer electronic control unit
is expensive. Without this component, the electrical signal cannot be converted.
Finally, this system requires long and hard work to calibrate the strain gauges.
For these reasons, the solution of using strain gauges was discarded. For the
sake of completeness, an interesting article on a new type of sensor is reported
[3]. It concerns "intelligent tyres", a modern construction of a wheel in which an
accelerometer is mounted inside the tyre, between the rim and the thread. This
technology is not only able to measure the wheel loads through the accelerations,
but it also gives important data about the length of the contact patch. This solution
is capable of providing a complete understanding of the wheel characteristics and
could also be more accurate than the wheel force transducers. The main drawback
is the high complexity of the system to be implemented on the wheel assembly,
especially when dealing with small tires such as those used in Formula Student
cars.

Figure 2.1: WFT
Megaone from Bota Sys-
tems

Figure 2.2: Strain gauge
on a suspension arm

Figure 2.3: Intelligent
tire, accelerometer in the
wheel

6



State of art

In the following paragraph the last and adopted solution for this thesis is
presented.

2.2 Estimation methodologies
Most of the scientific papers use different estimation techniques to evaluate the
tyre ground forces. The starting point is the use of cheaper sensors such as GPS
and IMU (Inertial Measurement Unit). In this way, the experimental data collected
by the car are not close to the wheel, but are global parameters of the vehicle,
such as lateral and longitudinal accelerations, vehicle speeds, yaw and roll angles.
To obtain tyre force values, a vehicle model is required. There are basically two
possibilities: build an accurate vehicle model with many degrees of freedom, or use
a simpler vehicle model and correct it using control techniques. The accuracy of
the values obtained increases as the mathematical model becomes more detailed,
bringing them closer to real-world data. However, this level of complexity requires
significant computational resources. On the other hand, the model can use the
obtained values to perform a detailed analysis of the vehicle dynamics. Conversely,
a simplified model reduces the computational load and still provides accurate values
when compared to real data. However, such a model is limited in its ability to
analyse vehicle behaviour as it is restricted to the specific conditions used during
the identification process. Finally, the second approach is the most widely used and
provides accurate results, usually validated by experimental measurements using
one of the sensors described in the previous section. The control systems that can
be used in this way are very different. An example of a complex control strategy
is the cascade observer structure developed in the paper by Rafael A. Cordeiro
[2]. He uses three different observers to estimate the vertical, longitudinal and
lateral forces, and finally an unscented Kalman filter to correct the calculations
by comparing them with the direct measurements. The use of a Kalman filter
is the most widely used, as it represents an optimal control technique capable of
managing conditions in a fast and reliable way. Another example is reported in
2.2.1, it concerns an interesting study focused only on the lateral dynamics made
by the researcher J. Kim [4].

2.2.1 Control system technologies, focus on EKF
Most of the efforts in this field are made to collect reliable data for autonomous
driving. This means that the control techniques should be able to calculate the tyre
parameters online, quickly and reliably, in all the different road conditions. Most
of the complexities arise when the objective is to develop a system that can be
implemented in everyday passenger cars. Given this aim, it is not possible to rely
on expensive sensors. The tyre parameter problem is intrinsically non-linear, which
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suggests the use of an Extended Kalman Filter, EKF. J. Kim [4] has developed a 4
dof vehicle model and an Extended Kalman Filter based on a combination of IMU
and GPS that measures lateral acceleration, longitudinal and lateral velocities, roll
and yaw angle derivatives.

Figure 2.4: Graphical scheme of the procedure adopted to estimate tire model
parameters

The figure 2.4 shows the loop of the strategy. The measured data is used as a
reference for the states calculated in the vehicle model. The difference between
these two quantities represents an estimation error, which is fed into the Kalman
filter to correct the inputs to the vehicle model. Through this closed-loop feedback,
after several iterations, the filter is tuned so that the outputs of the 3 dof model
match the actual measurements. The lateral forces at tire ground contact are part
of these outputs. As a consequence, these values can now be considered reliable for
use in a fitting procedure that extrapolates the tyre parameters. The tire model
used is the Pacejka Magic formula, for a more detailed description see chapter 4.
The study [4] avoids complex and expensive sensors, moreover the chosen approach,
based on a simple model with a correction technique, make it a good reference for
the work of the thesis. Another similarity is the focus on lateral dynamics. The
Hoosier 43075 16x7.5-10 LCO, the tire chosen by Ecurie Aix, has been analysed
by the tire testing consortium only in terms of lateral dynamics. This meant that
the thesis aimed to model lateral forces using real data. At the end of the work,
it will be possible to compare the laboratory results with the estimates obtained
from the simulations. The thesis is also a valuable reference for the manoeuvres
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carried out, more details in the chapter 6. The focus is on the Extended Kalman
Filter, which, as is well known, has a high reliability for observing states and
parameters simultaneously. These characteristics make the EKF the necessary tool
to avoid expensive instruments. The identification technique used in the paper,
the continuous extended nonlinear Kalman filter, requires both the model and the
measurements to be available as continuous functions of time. To achieve this,
the measurements must be sampled at a high enough frequency so that they can
be transformed into continuous data during the execution of the algorithm by
linear interpolation. The states are the quantities that the Kalman filter aims to
predict, but the measurements are the references that come from the real world.
An interesting feature of the EKF is the operation that maintains its dynamics. It
is based on two phases: Time update or prediction phase, measurement update or
correction phase. The first is the calculation of the states, through the equations
that hold the model. It represents a prediction, since these results are in the
future, following the time step. The correction phase is performed through the
Kalman gain matrix and the covariance matrix P. In this way, the Kalman filter
has a probabilistic aspect, it introduces random variables as noises both on the
process and on the measurements with normal probability distribution. A detailed
description of the EKF design can be found in the reference [5]. In the paper
described above, the state vector has 7 components:

x(t) = [vx(t), vy(t), r(t), ϕ(t), Fyf (t), Fyr(t), p(t)]
With ϕ(t) yaw angle and r(t) derivative of the roll angle. The last component, p(t),
is the vector of the parameters to be defined:

p(t) = [Bf , Df , Ef , Br, Dr, Er, σf , σr, Fxd, ˙Fxd]
It contains the Pacejka parameters for the front and rear axle, the relaxation
lengths and the longitudinal drag force (that includes aerodynamics drag force and
rolling resistance) with its derivative. Instead, the measurement vector is

z(t) = [vx(t), vy(t), r(t), p(t), ay(t)]
where p(t) is the derivative of the yaw angle. In this way the state vector has
about 17 components and the measurement vector has 5 components. This applies
to a large number of differential equations calculated for each time step, and the
updating of the Jacobians (derivative of the system equations with respect to the
vector of parameters p) requires a large computational effort. The number of
simultaneous equations is 170, at each time step 374 numerical derivatives have to
be computed for the Jacobians. As the EKF uses statistical information, it requires
several identification runs to obtain more reliable results. The values obtained in
one iteration can be used as initial values for the next integration cycle. This large
computational effort is not reproduced in the work of the thesis, but the general
workflow described has been considered as a good reference.
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Chapter 3

Tire Behavior

The tire is a fundamental component of a racing car, as most of the performance
depends on how well its behaviour is understood. In a Formula Student team, great
results, in terms of vehicle dynamics, can be achieved by analysing the grip of the
wheels.The tire becomes a crucial element from which experimental studies can be
carried out. From a mathematical point of view, it is still an area that leaves place
for deep research and continuous development. In this thesis, a brief introduction
to the subject is given, considering the notes of the book "Milliken & Milliken Race
car vehicle dynamics"[6].

The interaction between the tire and the road provides the traction, braking
and cornering forces for manoeuvring. Tyres support the weight and any vertical
force, and it is to its needs that the aerodynamics are developed (in terms of
downforce as a normal force for the pneumatics). These forces affect the vehicle
in many different ways. For example, steering torques are generated by the tires
and affect the driver’s feeling; the steering system is designed from the tire torques.
Temperature, pressure and speed all affect the tires. In this thesis, they are studied
only in the generation of lateral forces, which are of primary interest in cornering.
Some basic concepts are now reported, just as introduction to the topic. The area
of the tire in contact with the ground is called the footprint or contact patch. The
rubber elements can stick to the road or slide over it. There is not yet a complete
understanding of how the rubber elements stick and slide. Sticking is a mechanical
process that depends mainly on the hysteresis of the material when it is subjected
to compression and relaxation during the rotation of the wheel. So a large part of
the grip is determined by a mechanical process. The molecular adhesion is a lesser
part of the grip, with the chemical and/or physical interaction between the atoms
of the thread and the road surface.

A lateral force comes from the centre of the contact patch and is perpendicular
to the direction in which the wheel is heading, if there is no camber angle. The
latter is the angle of inclination of the wheel as seen from the front of the car.
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To analyse the lateral behaviour of the tire, it is worth considering a model in
which a constant vertical force and a lateral force are applied. During the rotation,
imagine a contact point in the footprint: when it enters, it is subjected to a lateral
displacement, since the tire behaves like a spring, it reaches a maximum deflection
then, when it approaches the trailing edge, the spring behaviour brings it back to
the undeformed state. This displacement is due to the frictional force between the
contact point and the road. When the static friction limit is exceeded a lateral
force is exploited and the tire begins to slip. In this way the model is deflected
sideways and rolled, so the tire moves in one direction at an angle called the ’side
slip angle’ (see in the book [6] section Tire Behavior - Section 2.1 pp.18-20). A
higher lateral force means a higher slip angle, looking at the contact patch this
means that the onset of slippage is moved forward to the front of the footprint.

Figure 3.1: Deformation of the footprint and distribution of forces over the
contact patch

The upper part of the figure 3.1 shows the distortion of the footprint, from
which the "pneumatic trail" can be defined. It is the distance between the centroid
of the footprint and the actual point of application of the lateral force. The "tire
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aligning torque" is the product of the "pneumatic trail" and the lateral force. It is
a moment that tends to realign the tire in the direction opposite to the lateral slip
angle. In the third graph, the letter t indicates exactly the "pneumatic trail".

Laboratory and on-road test machines are used to measure lateral forces. Both
are described in the following chapters. An example of the lateral force characteristic
is reported in [7].

Figure 3.2: Side lateral force vs slip angle

The figure 3.2 shows the cornering force versus slip angle for a racing tyre. There
are three regions: the linear region, which is described by the cornering stiffness, i.e.
the slope of the line; the transitional region, where the maximum force is reached
at its extreme limit; finally the frictional region, where the slip completely affects
the footprint, causing a reduction of the grip. In general, the peak of lateral force
is reached between 3° and 7°. On wet surfaces the peak will be lower and the
drop will be faster. The influence of various factors on lateral force will now be
explained.

3.1 Normal Force Fz: load sensitivity

The normal force (Fz) is the amount of load at which a tyre is imposed, in a race car
different factors determine the value of it especially in dynamic condition. These
will be better explained in the chapter 7. In general as the load increases the peak
of lateral force is shifted towards higher slip angle and at higher values. Also the
cornering stiffness increases 3.3.
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Figure 3.3: Effect of Fz on Fy vs slip angle [7]

In the following an important rule is played by the friction coefficient, defined
as:

µ = Fy

Fz

(3.1)

It is a dimensionless measure of the amount of lateral force with respect to the
load. It can also be seen as frictional force between two bodies over normal force
between them. Due to the road characteristics the fact that different values of µ are
obtained, between laboratory and track, have to be taken into account. The tire
load sensitivity is the phenomenon for which the peak of lateral friction coefficient
falls off as load increases. This effect in a race car is affecting the balance since the
tyres are working near the limit.

3.2 Inclination angle or Camber angle γ

Camber angle is defined as the angle between the vertical and the titled wheel
plane. In tyre testers following the SAE Tire Axis System, camber is positive when
the wheel is tilted outwards at the top relative to the vehicle. The nomenclature
inclination angle is used in relation to the tilt of the wheel. A wheel in the tester
has a positive inclination angle if it is seen tilted to the right behind the rolling tyre.
In racing, the inclination of a wheel is called camber. A cambered tyre produces
a lateral force in the direction of the tilt, when this occurs at zero slip angle it is
called camber thrust. For wide street radial tyres, the camber force has a small
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effect on the slip angle force, and the peak of camber thrust is at 5° and then
decreases rapidly. (book [6] Tire Behavior - Section 2.5 pp.46-47) In racing tyres,
the maximum force due to camber occurs at smaller angles. Different case for
motorcycles, where this effect has a high impact on performance.

The camber also has an effect on the alignment torque, causing a distortion of
the print which results in an increase in the slip angle. To prevent the alignment
torque from being cancelled out by the combination of slip and camber angle, it
may be necessary to increase the mechanical trail. The lateral force Fy versus slip
angle α is translated up and down by camber. This is only true in the linear range
where camber thrust and lateral force are additive, but the roll-off is reached when
the linear range is exceeded and the camber effect is reduced. The peak of the
cornering curve is obtained with negative camber values, i.e. when the tyre is tilted
inwards into the corner.

Figure 3.4: Camber effect on lateral force and roll-off [6]

Maximum lateral force is obtained at higher camber angles when the normal
load on the tyre increases. In a racing car it is used to tilt the wheels on the same
axle cambered inwards.

3.3 Pressure
One of the simplest changes that can be done to the set-up of a race car is about the
tire pressure. It affects performance in a number of ways. The tire manufacturer
set the range of permissible pressures, this means lower and higher values are here
said with reference to a range of pressures. Cornering stiffness is increased as the
pressure is raised because the carcass becomes stiffer. This means that in the linear
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range, i.e. for small side slip angles, increasing pressure results in an increase in
lateral force. In terms of friction, lower tire pressure promotes contact between the
rubber thread and the road, resulting in an higher effective coefficient of friction.
Another effect is an increase in contact patch. The disadvantage of lower pressure
is an increase in steering effort during lateral acceleration due to lower cornering
stiffness and an increase in alignment torque. The consequence of too low a pressure
is the formation of high pressure areas at the sides of the tire, mainly due to the
stiffness of the sidewalls. To avoid this, the pressure is generally set so that the
centre and edges of the tread carry a proportional load. Rolling resistance, or
the energy lost in deforming the tire, is reduced at higher pressures thanks to the
smaller footprint. Induced drag, the energy lost when cornering, is reduced with
higher pressure. This is due to the lower slip angle required to develop lateral force.
Finally, tire pressure is a compromise between tread performance and grip, the
former achievable at high pressure and the latter at low pressure. Only through
experimental testing can the best value be found for each specific car. (book [6]
Tire Behavior - Section 2.6 pp.54-55)

3.4 Temperature
The effects of temperature are related to wear and performance. The higher the
temperature, the shorter the life of the tire. The main reason for this is the melting
between the tread and the road. In the work of this thesis, this effect is less relevant
in terms of the consequences on the performance of the pneumatic. It is important
to distinguish between the possible measurements that can be taken. The internal
temperature is an average between the rim and the thread, it is complex to measure
with cheap sensors. In this work, the temperatures collected are relative to the
surface of the tyre. It is possible to understand different characteristics just by
taking temperatures at different points of the wheel thread. For example, a high
value of camber angle leads to a hotter inner part of the thread. Cornering stiffness
is affected by a change in temperature because it changes the modulus of elasticity
of the tyre. The effect of temperature is closely related to pressure, with lower
initial pressure resulting in a stiffer tyre and therefore higher temperatures. If the
tyres are too cold, they will be slippery, but if they are too hot, they will melt on
the contrary. Maximum grip is achieved at an optimum temperature, generally the
best way to obtain data on this is to test and rely on the data provided by the
suppliers.
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Chapter 4

Pacejka Magic Formula

This chapter presents the most commonly used tire model. The focus of the work is
on lateral dynamics, more specifically the lateral force model during cornering. For
this reason, all the presented notes deal only with lateral dynamics. More details
can be found in the book by Pacejka [8]. It is worth noting Pacejka’s definition
of pure slip, i.e. when either longitudinal or lateral slip occurs in isolation. It
is possible to see that the curves exhibiting a shape like the figure 3.2 can be
represented by a mathematical formula called the " Magic Formula ". This is a
semi-empirical tire model for calculating steady-state tire forces. The formula is
the result of a collaboration between TU Delft University and Volvo in 1996. The
original formula is given below, it is valid for fixed values of vertical load Fz and
camber angle γ.

Fy(α) = D · sin[C · arctan(B · α− E(B · α− arctan(B · α)))] (4.1)

The input variable, in that case, is the side slip angle α, but in some other
formulations it is also possible to see the lateral slip as k = tan(α). The parameters
to be determined in this thesis are here presented:

• B: stiffness factor;

• C: shape factor;

• D: peak value;

• E: curvature factor.

Normally, this mathematical equation produces a function that crosses the origin
and, after a maximum peak, tends to an asymptote. The shape is anti-symmetric
with respect to the origin. The cornering stiffness or slope at the origin is given by
the product BCD. Among these three terms, B is called the stiffness factor, since
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the others are chosen to control other characteristics. D is responsible for the peak
and is strictly related to the friction coefficient µ and the vertical force Fz.

The shape factor C defines the limits of the sine wave in terms of its range.
Finally, the horizontal position and the curvature at the peak are controlled by

the E term.
In the pictures 4.1 it is possible to visualise the effect of varying the individual

parameters.

Figure 4.1: Sensitivity analysis of the Pacejka parameters B,C,D,E

In some extreme cases, it is needed to add a parameter H to have an increased
sharpness of the curves:

Fy(α) = D ·sin[C ·arctan(B ·α−E(B ·α−arctan(B ·α)+H ·arctan7(B ·α))] (4.2)

All the factors described are dependent on the physical variables described
in the chapter 3. The Pacejka formulation describes the factors focusing on the
dependence on normal load and camber angle. For the determination of B,C,D,E a
regression technique has to be used, different methods are described in the following
chapter 7. A very complex set of equations is described in Pacejka’s book [8],
but the regression technique used in the thesis is based on direct identification
of parameters B,C,D,E. The full set of equations presented in Pacejka’s complete
tire model requires the knowledge of tire parameters not available from the team
equipment. The dependence of the mathematical parameters on variables such
as normal load, camber angle, internal pressure and temperature is difficult to
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take into account because the available sensors do not measure these variables
directly. Moreover, most studies carried out on real track data do not rely on the
dimensionless parameters and scaling factors introduced in the full set of equations,
but only on the main coefficients D, C, B and E. In the following 6 the way in
which these effects are considered in the track tests is described. The complete
Pacejka model equations have been reported in the following for completeness.

αy = α∗ + SHy

Cy = pCy1 · λCy

Dy = µy · Fz · ζ2

µy = (pDy1 + pDy2dfz)(1 + ppy3dpi + ppy4dp
2
i )(1 − pDy3γ

∗2)λ∗
µy

Ey = (pEy1 + pEy2dfz) (1 + pEy5γ
∗2 − (pEy3 + pEy4γ

∗)sgn(αy))λEy

Kyα = pKy1F
′
z0(1+ppy1dpi)(1−pKy3|γ∗|)·sin

1
pKy4 arctan

1
Fz/F ′

z0
(pKy2+pKy5γ∗2)(1+ppy2dpi)

22
ζ3λKyα

By = Kyα

(CyDy+εy)

SHy = (pHy1 + pHy2dfz)λHy + Kyy0γ∗−SV yγζ0+ζ4−1
Kyα+εK

SV yγ = Fz · (pV y3 + pV y4dfz)γ∗ · λKyγλ
′
µy
ζ2

SV y = Fz · (pV y1 + pV y2dfz)λ′
µy
ζ2 + SV yγ

Kyy0 = (pKy6 + pKy7dfz)(1 + ppy5dpi) · λKyγ

These equations contain non-dimensional parameters, p factors, and scaling
factors λ. They are used to investigate, without implementing a new tire data set,
the change of friction coefficient, cornering stiffness, camber stiffness. A better
understanding is left to the reader through the source [8].
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Chapter 5

Laptime Simulator

This chapter describes the main tool used in this thesis. The Laptime Simulator
division in Ecurie Aix is composed by 15 students, that deals with the development
of the Simulator. It is a tool on Matlab Simulink able to reproduce the behaviour of
the car. At first sight, the model is very complex as it is entirely developed by the
team in all over the years. This simulator is highly requested in the most important
competitions of Formula Student. In the design of the car it is a fondamental tool
to define the targets for the improvements of all the other groups. For instance,
at the beginning of the season, LapTime provides the forces on the wheels. These
are considered input for a multi body model on Adams to collect the loads at
which the suspension system, for instance the rods of the whishbone assembly,
is subjected. All the aspects that influences the performance of the vehicle are
in the Laptime modelled. For instance, the battery and cooling have their own
model with specific calculations, and the entire control system is developed in
detail. This allows important design decisions to be made. For example, the effect
on performance of increasing the battery capacity in relation to the increase in
weight can be understood. The effect on the differential mass distribution can also
be simulated. The different control strategies can be implemented and from the
simulations the effect on performance can be analysed. For the sake of simplicity,
only the general aspects of the tool are reported in this thesis. All blocks relevant
to the work are described. After a brief introduction, the modifications to the
Simulink model required for the thesis are described.
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Figure 5.1: Laptime simulator loop

The figure 5.1 shows how the LapSim 1 is structured. It takes as input the
characteristics of the car, in terms of geometry and mass distribution, and the
layout of the track. The track is provided as a Matlab struct, it is seen as a series of
points representing the path. From these inputs a target velocity map is developed.
During the events, the efficiency in terms of energy consumption is evaluated. In
order to optimise it, LapTime is used to give the driver the lifting points. After
a track walk, the path is computed. Thanks to the simulations, the efficiency of
the different points of lifting is optimized. The locations of the lifting points are
then shown to the driver on the steering wheel display. The GPS is the sensor that
provides the updated position of the car with sufficient accuracy during the race.
It is visible the loop that characterize the simulator. The Bus vector, marked in
blue in the figure 5.1, contains all the variables calculated in each subsystem at
each moment.

The "driver" subsystem contains the predictive model of the driver. In this block
the basic command inputs are evaluated. For the lateral view, the steering angle is
calculated taking into account a tunable parameter called lateral accuracy. In this
sense, it imposes limits on the lateral acceleration, considering the distance from the
theoretical path as an error. The model is based on a LookAhead approach, that
means the steering angle is computed considering not only the immediate following
point of the track, but weighting properly the 7 successives points. In terms of
longitudinal dynamics, two constants are defined. They mainly represent the
hardness of the accelerator and brake pedals. The corresponding pedal command
is elaborated in terms of the target longitudinal speed and acceleration.

1Abbreviation for Laptime Simulator
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The next subsystem is the " control systems ", where a version of the real
control systems is implemented. Not all the calculations affect the LapSim, but
the throttle and the torque to be applied to the electric motors are computed
here. The command to the gas pedal is here limited based on the slip control, yaw
rate controller and torque distribution. These blocks reproduce the real torque
vectoring of the car, and their outputs are the torques applied to the wheels. The
signals coming from the sensors in the real car are reproduced in this block. The
maximum torque is evaluated using look-up tables that reproduce the engine maps,
the input being the engine speeds.

The next subsystem works out the "Normal Loads". The static Fz, aerodynamic
Fz, longitudinal and lateral load transfer components are computed. It is worth to
notice that the aerodynamic normal loads, are elaborated through 4D LUT. The
inputs are side slip, roll, pitch and steering angles, the outputs are lift and drag coef-
ficients Cl, Cw. The choice of these coefficients depends on the longitudinal speed: 6
different LUTs can be selected, they are defined for vx = [11, 15, 18, 22, 25, 30] m/s.
The data in the table have been extracted from the CFD analysis carried out by
the Aerodynamics Group (updated periodically).

Figure 5.2: Example of aerodynamic 4D LUT for Cl evaluation

Moreover, the general loop in the LapSim is visible in that block, through the
dependency of the lateral and longitudinal load transfer, to the accelerations ay

ans ax. In that computation the effect of the roll and pitch motion are taken into
account, considering the torsional stiffness of the chassis, the sprung and unsprung
masses contributions and the roll center location. The formulas are here reported.

USWT = mushus

l
ay, SGWT = mshpc

l
ay, SEWT = ms(hs − hpc)

l
ay (5.1)

With hus height of the barycenter of the nonsuspended mass, hpc height of the
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roll center and hs barycenter suspended mass height. Then similar formulas for
the longitudinal contribution, with ax instead of ay.

The additional pitch moment, APM, is also computed. With MRf and MRr

motion ratios of front and rear, cs,f and cs,r elastic suspensions constants front
and rear, MRheave,f and MRheave,r motion ratios for the heave, cheave,f and cheave,r

elastic heave constants.

APM = 2l2pc,f

A
cs,f

MR2
f

+ 0.5cheave,f

MR2
heave,f

B
+ 2(l − lpc,f )2

A
cs,r

MR2
r

+ 0.5cheave,r

MR2
heave,r

B
(5.2)

Also the dynamic radii are computed, they are based on the wheel normal loads
that in input to a LUT are providing a difference with respect to the original
dynamic radius. The LUT has five columns, one for a specific different value of
tire pressure.

In the "kinematic" subsystem the camber, or inclination angle is analyzed. The
final value is provided by the static value plus the contributions of steering rack
travel and wheel travels. Both are evaluated through LUTs.

The next subsystem is the "drivetrain" in which there are the Battery Model,
the Cooling analysis and the estimation of the front and rear longitudinal forces
Fx. A Magic Formula 5.2 version is used for that target. Other blocks are here
present for the slip ratios, torques and rotational wheel speeds estimations. Also
the analysis of the brake moment is here conducted, starting from the driver brake
signal. After all the longitudinal force is converted from the reference system of
the wheel to the car RS, the presence of a toe angle is here considered.

The "lateral forces" subsystem presents lot of similarities with the previous one.
The tire model, through the .tir file, is providing the values of Fy. These are rotated
to the car reference system, and finally added to a vector containing the three x,y,z
contributions of the wheel forces distinguished between front left, front right, rear
left, rear right.

The last subsystem is the "dynamics". In that part the accelerations are elabo-
rated through the balance equations starting from the wheel forces and moments.
The longitudinal and lateral accelerations are coming from the Newton equations,
in particular for the longitudinal equilibrium the rolling resistances and the aero
drag force are considered. The global reference accelerations are then computed
through the yaw rate ψ̇ . This last variable is coming out from the integration of
the yaw acceleration. To compute it, a moment equilibrium is elaborated. The
equations reported show what has been now described.

m
dvx

dt
= Fx,fl + Fx,fr + Fx,rl + Fx,rr − My,fl

rdyn,fl
− My,fr

rdyn,fr
− My,rl

rdyn,rl
− My,rr

rdyn,rr
(5.3)
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m
dvy

dt
= Fy,fl + Fy,fr + Fy,rl + Fy,rr (5.4)

Izz
dψ̇

dt
= aFy,fl −

3
t

2 + yoff

4
Fx,fl + aFy,fr −

3
t

2 + yoff

4
Fx,fr

− bFy,rl +
3
t

2 + yoff

4
Fx,rl − bFy,rr −

3
t

2 − yoff

4
Fx,rr

(5.5)

Through integrations the yaw angle, the velocities vx and vy, then the positions
are computed. As before, the rotation to the car reference system of ax, ay, vx,
vy and ψ is performed. In this section also the side slip angles are estimated. In
order to have all the variables at each time step, a delay block is needed. In that
way it is possible to store for the previous time step the values of all the quantities
necessary for the calculations in the other subsystems. All the quantities are finally
assigned to the Bus to follow the loop.

In the following an example of a simulation output is shown. After the upload
of the car characteristics and the track layout, without any additional script, the
Simulink model is executed. A figure is opening during the simulation, where it is
possible to follow the car motion through the track.

Figure 5.3: Figure output of LapSim simulation. Car data from eax02 on
Autocross of FSG 2023

When the simulation ends, it is possible to see how the trajectory done by the
car is following the path and tune it with the driver model parameters described at
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the beginning of this chapter.

Figure 5.4: Trajectory analysis of the LapSim simulation. Car data from eax02
on Autocross of FSG 2023

In the picture 5.4 is it possible to see how the look ahead approach is working.
The final trajectory doesn’t match exactly the track path, in order to optimize the
speeds in a corner entry and/or exit.

5.1 Logged data as input

LapTime, described up to now, is not able to receive as input the data coming
from the sensors of the car. This is the first obstacle to be overcome, practically
it means to convert a Simulation tool to a vehicle characteristics estimation tool.
The sensors that provides the input data have been described in the section 1.1.3,
basically the driver commands need to be preprocessed to run the new model. An
overview of the new version is given in the picture 5.5.
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Figure 5.5: Overview of Thesis simulink model

It is possible to appreciate that the loop is no more present. Since the model
needs to evaluate the lateral dynamics of the car by following the data coming
from the sensors as input, the different subsystems are linked, but not in a circular
way. The logged data is processed in the form of time-series signals. A deeper
understanding of the process behind the export of the IMU and steering wheel
sensor signals to Matlab is provided in the section 6.2. In order to run the model,
a Matlab script must first be executed. In these simple lines, the time interval
for the simulation is selected from the "Logdaten" structure, which contains all
the experimental signals. The input driver commands are created as time series
vectors, and additional useful reference signals are imported into the workspace. In
this section the steering angle calibration error is performed, further description is
given in the following 6. The logged signals used are

• Driver commands: braking "Log_PB_Brakeforce", steering "Log_SteeringAngle"
and trottle "Log_PB_Torque";

• Vehicle global dynamics: longitudinal and lateral accelerations and velocities,
yaw angle and yaw rate. All these are coming from the IMU, they are used as
reference to check the results of the simulations. Only the accelerations are
used as input for the vertical force load transfer;

• Wheel slip: longitudinal slip ratios and side slip ratios α for each wheels.
Basically, these signals are used in the wheel force computation;

Some other variables are loaded, for instance the car characteristics and the tire
parameters, and finally the simulation is started.

The "Bus Initialization" subsystem loads the logged signals and provides the
conversion of them into the scales of the LapTime calculations. The driver’s steering
angle is first divided by the rack ratio to be expressed in the wheel reference system,
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then by the Ackermann geometry to obtain the steering angle of the left and right
wheels.

The normal loads computation is exactly the same as in LapSim with the only
change of having the logged accelerations as input. Same considerations hold for
the "kinematics" and the "drivetrain" subsystems, the latter uses the slip ratios as
input from experimental data.

More complex modifications have been done for the "lateral forces" and "dy-
namics" subsystems. The lateral forces require the addition of Matlab functions
to compute them through the parameters extracted experimentally, described in
the chapter 7. The "dynamics" subsystem will be explained in details in the next
section, it represents the core of the vehicle modelling.

Finally, a completely new subsystem is implemented with the Extended Kalman
Filter, this step is described and used at the end of the thesis.

5.2 Vehicle model
In this section the model of the vehicle used in the Simulink project is described
from a physical point of view.

A 3 degrees of freedom model is implemented, it is a rigid two-axle vehicle body
model to calculate longitudinal, lateral, and yaw motion. It accounts for body mass,
aerodynamic drag, and weight distribution between the axles due to accelerations
and steering. The effect of the roll motion is considered in the load transfer, as
already explained. The vertical motion is not considered in the model, but the
pitch angle is used to determine the lift and drag coefficients of the aerodynamic
forces. To determine the vehicle motion, the model implements these equations.

m(u̇− ψ̇v) = q
Fx

m(v̇ + ψ̇u) = q
Fy

Jzψ̈ = q
Mz

(5.6)

With u and v longitudinal and lateral velocities in the car reference system.
The resultant longitudinal force qFx takes into account the wheel loads, the
rolling resistance and the aero drag. The resultant lateral force qFy is sum of the
lateral forces coming from the tires. The moment around the vertical axle qMz is
following the equation previously reported 5.5. The accelerations are equal to:

ax = u̇− ψ̇v (5.7)

ay = v̇ + ψ̇u (5.8)

It is worth to notice that the yaw angle estimation is crucial to have good values of
the velocities. In the following the simulink blocks are reported, to see the way in
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Figure 5.6: ax and ay equations in Simulink

which the equations of motion are implemented. The vectors of the wheel forces is
of dimension [1x3], with the components distinguished between the three axis x,y,z.
Only in the longitudinal equation the drag force Fd is added, moreover the rolling
resistance is computed for each tire as My,ij/rdyn,ij and contribute to the resultant
Fx. My,ij is calculated with the .tir file, instead the dynamic radius rdyn,ij through
LUTs function of vertical loads and tire pressure. As it is possible to notice the
blocks are calculating the accelerations only in x,y directions. For the z axle the
picture 5.7 is representing the moment equilibrium around z.

The yaw acceleration results from an equilibrium moment realised in Simulink
with the cross products of the force vectors and a geometric vector. The latter gives
the distance to the centre of gravity for each wheel. It also takes into account the
offset of the COG on the y-axis and the z-coordinate is a function of the dynamic
radius.

One of the limit of this vehicle model is due to the complexity of measuring
precisely all the geometric characteristics of the car. The vehicle mass is measured
during the events, but the inertia on the z-axis Izz is a theoretical estimate. It is
calculated at the end of the design phase, when all the members have completed the
final CAD drawings for the current season. In this way, the geometries and masses
of all the components are collected in an Excel file where it is possible to estimate
the global inertias of the car. For the next season the team is going to validate
these values through a real measurement with a Vehicle Inertia Measuring Machine
VIMM, with the company CFM Schiller in Roetgen. Overall, the dual track vehicle
model is a good compromise between complexity and too simplified models. The
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Figure 5.7: ψ̇ equation in Simulink

goal of the thesis is the estimation of the tire parameters, for this target the 3
dof is sufficiently accurate to simulate the dynamics of the car. Moreover, the
manoeuvres necessary to analyse only the lateral dynamics are relatively simple,
with constant longitudinal speed of the vehicle, which makes it reasonable not to
increase the complexity of the equations. The distintion between the forces of each
wheel makes possible to have a better comparison with the real data.
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Chapter 6

Track tests

In this chapter, an exposition of the configuration of the test tracks is presented. The
initial section delineates the research methodologies employed in the identification
of the manoeuvres. The subsequent segment reportes the team’s organisational
framework and the materials utilised. Finally, an analysis of the data is conducted,
with key findings illustrated through the utilisation of software vSignalyzer.

6.1 Manoeuvres for testing
The test was conducted on the 9th of December at the Aldenhoven testing centre,
an institution that sponsors the team Ecurie Aix. However, the timing of the
test was determined well in advance, given that the centre is utilised by various
customers. The primary reason for selecting this site is the periodic measurement
of the friction coefficient of the asphalt throughout the year.Additionally, there is a
large space available for conducting maneuvers to assess lateral behaviour.

Different papers and scientific researches have been used in order to organize
the maneuvers. First reference is the paper [4] already reported in chapter 2. The
authors have scheduled two sinusoidal steering strokes, a sine weave steering and a
ramp steer. In the paper the first maneuver is for estimation of the parameters and
the other two for validation. The sinusoidal steering stroke with a peak of 135 deg
is the reference test data. Three quarters of the sine is applied and then the input
is for 0,5 sec keept constant, finally the last quarter of the sine is performed. The
same maneuver is repeated with the peak of 90 deg. The other two tests are done
not to identificate the tire parameters, but to look for results in different lateral
conditions. This tipe of schedule is not enough for the case of study of the thesis.
It is needed a larger number of tests to collect data, moreover an analysis of the
transient properties of the tire is not considered in that paper. To understand
deeply which maneuvers should be performed the ISO standards have been studied.
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The starting point for the test methods are the ISO 7401 and ISO 4138. The
international standards report the general procedure to adopt for the open loop
test in lateral transient response, ISO 7401, and in steady state behavior, ISO 4138,
of a road vehicle. The indications reported need to be properly adapted to the
scenario of a Formula Student car. The first consideration is about the warm-up.
In the ISO is reported to drive "at the test speed for a distance of 10 km or driving
500 m at 3 m/s2 lateral acceleration both left and right turn." The FSAE cars have
the battery capacity designed for the maximum distance of the endurance, that is
22 km. In terms of lateral acceleration, driving at 3 m/s2 for 500 m is not enough
to warm the tires. For these reasons the team has decided to perform 10 minutes of
warm-up, stressing the tires with both right and left corners. A series of cones have
been arranged in order to perform slaloms. Furthermore, the driver has utilised
the given time to become more confident in their steering movements for the later
manoeuvres. At the end of the time, the tire temperatures have been measured
and the tire pressure is set. The selected pressure is 0.7 bar, this value comes from
the experience in the past years of the team. The longitudinal speed is controlled
by the Vehicle Control Unit, VCU, limiting the maximum angular speed of the
motors. For each manoeuvre a different test speed is necessary, for that reason
four possibilities have been defined: 20, 30, 40, 50 km/h (the corresponding engine
rpm are coming from the formula: v = rpm · 2π · rdyn/12.132 · 60, with dynamic
radius 0.2 m). The main target of the track tests is to collect data to estimate the
lateral forces. Moreover, to perform analysis of the transient properties of the tires,
mainly to evaluate experimentally the relaxation lenghts. Three manoeuvres have
been performed for theese reasons: ramp steer, sinusoidal sweep steer and step
steering. The Step input procedure is well defined in the ISO: "Drive the vehicle
at the test speed in a straight line. The initial speed shall not deviate by more
than 2 km/h from the test speed. Starting from a 0 deg/sś0,5 deg/s yaw velocity
equilibrium condition, apply a steering input as rapidly as possible to a preselected
value and maintain at that value for several seconds after the measured vehicle
motion variables have reached a steady state. ... A steering-wheel stop may be
used for selecting the input angle." [9] All the four speeds have been tested, with
increasing order from 20 to 50 km/h. The maximum value of steering angle has
been fixed through a series of 3D printing blocks reducing the length of the steering
rack. In this way the driver is confident to reach the maximum steer in the lowest
time possible. The team has developed a script that calculates the reduction of
the steering rack needed to reach the target steering angle value, after that it is
possible to produce the CAD for the blocks. A further check is provided by the
driver display, the VCU has worked on the PCBs of the screen to provide to the
driver the livetime signals of steering angle and longitudinal velocity. In this way
the driver conduces the vehicle at the test speed in a straight line for the first
seconds, then he applies a steering input as rapidly as possible and maintain the
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command for several seconds after the measured vehicle motion variables have
reached a steady state. The same maneuver is repeated several times for both right
and left input. The feedback of the driver is immediately received with a bluetooth
connection, without interrupting the test.

The other two maneuvers are stricly linked each other. On the ISO 7401, only
the simple sinusoidal input is explained. The feedback of the Alumnis has been
fundamental to organize the other part of the test. The main advantage of the
sinusoidal sweep steer is the collection of a lot of information in a small amount
of time. Testing at different frequencies the vehicle response is similar to perform
several single sinusoidal inputs at the same time. The past experience of the
Alumnis suggests the procedure to be used. The main difficulties in performing
this test is the way in which the steering input has to be produced by the driver. A
specific script in Matlab has been written in order to produce an audio signal that
helps the driver to follow the variations of the frequencies. The audio is structured
in this way: 30 seconds of silence, one sound to start the straight acceleration and
reach the test speed, after 2 sec a second sound is giving the start of the steering
input. Finally, a series of "beep" (different from the previous two) gives to the
driver the information to change direction in the steer command. The picture 6.1
is produced by the Matlab script and it is a visual way to understand the method
described.

Figure 6.1: Matlab plot for the sinusoidal sweep steering audio

One audio has been produced for each test speed. In the script the starting and
ending frequencies of the steering are tunable. The track experience gives as result
that the driver is able to follow the sweep up to 2 Hz. The starting frequency is
set equal to 0.2 Hz. Finally, the maneuver requires a total time of minimum 30 sec,
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lower values will give an impossible steering command to be followed by the driver.
Considering also the initial part of acceleration to reach the test speed, the sine
sweep requires a very large distance. For 20 km/h about 170 m are required, for 50
km/h about 420 m. That value corresponds to the maximum that is possible to
perform in the Aldenhoven circuit center. A picture 6.2 of the dynamic area of the
track is reported.

Figure 6.2: Aldenhoven testing area

The last consideration is regarding the value of the steering angle that the driver
should perform as peak of the sine sweep. In order to determine it, the ISO 7401
states: "The standard steady-state lateral acceleration level is 3 m/s2 or less, as
necessary to remain within the range in which the vehicle exhibits linear properties.
Optionally, higher lateral acceleration levels may also be used, provided the vehicle
remains in the linear range."

In order to determine the value of the driver steering angle that, at the test
speed, produces a lateral acceleration of 3 m/s2, is necessary to perform a series of
ramp steer.

These maneuvers have been performed several times for all the test speeds in
both directions. After them, the logged data have been extracted to determine
the target driver steering angle. This procedure has been done for 20 km/h, 30
km/h, 40 km/h. It has been asked to the driver to try to keep the same slope of
the ramp and do the manoeuvre slowly keeping for some seconds the steering after
the maximum rack position has been reached. Two figures 6.4 6.3 are presented for
a better understanding; one coming from the real tests, the other from the paper
[10].

All the studies reported in that section have been shown in a meeting with the
Alumnis of the team, in order to collect important feedbacks and experiences from
the past years. The advices, through "Alumni reviews", have been taken also after
the tests.
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Figure 6.3: Ramp steer at 100 km/h determination of the limit of the linear range
of the car, paper [10]

Figure 6.4: Experimental ramp data to determine the limit of the linear range of
the car

Some preliminary studies have been done regarding the longitudinal dynamics
manoeuvres. In this thesis they represent only a future development, the starting
point is already given by the formula student team of Hamburg[11]. Some possible
manoeuvres are:
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• Regenerative braking: slowly braking with only rear tires. Braking with
constant force on the motor, starting from a defined wheel speed for a specific
interval of time (example: from wheel speed of 10 rad/s in 4 sec);

• Step: input of hard braking and then acceleration. Fluctuation of wheel speed
between 10 and 12 rad/s. Constant brake force for 1 sec, then release for the
next 1 sec;

• Acceleration: 8 sec of test with linear increase of Fx (tentatively because that
means linear increase of ax).

A very precise schedule has been organised, because the track was available
for only 4 hours. The testing crew partecipated to a briefing meeting the day
before, every member received a role for the following tasks: tire temperature
measurement, VCU checking live telemetry and logged data, mechanics for the
steering rack limitations, electrical system officer (ESO) and marshals. At the end
of the day the team concluded successfully:

• Ramp steer manoeuvres: 8 runs at 40km/h, 10 at 30km/h, 9 at 20km/h;

• Sinusoidal sweep steer: 3 runs at 40km/h, 6 at 30km/h, 4 at 20km/h;

• Step steer: 2 runs at 50km/h, 6 at 40km/h, 8 at 30km/h, 7 at 20km/h;

It should be noted that not all of the scheduled tests were conducted, primarily
due to adverse weather conditions that restricted the feasibility of the journey. It
proved to be a near-impossible task to identify a day that met all the necessary
criteria: the track was to be available, the team members were to be available to
assist during the test, and the IKA Institute van was to be available. However, a
more significant challenge was the prevailing weather conditions in Aachen during
the winter months, which almost invariably resulted in rain. However, the driver
was able to conduct a limited number of tests without freezing, due to the hard rain.
The ambient temperature was approximately 2-3 °C, which made it impossible to
warm up the tyres. The collected measurements reported a stable condition of 8-9
°C for the outside tyre temperature. The team tried to replicate the same test the
following week, the 13th of December, not in the Aldenhven test, but in the track
of the IKA institute from the RWTH University of Aachen. Unfortunately, also
in that day the environmental conditions were not ideal. Immediately after the
warm-up the car figured out an IMD error (Insulation Monitoring Device), that
obliged the team to abort the test without collecting any data. Nevertheless, the
collected data are enough to procede with the work. In the next section an analysis
of them is given.
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6.2 Analysis of logged data
Ecurie Aix uses as telemetry viewer the program Vector vSignalyzer. It is a simple
tool to evaluate measurement data of all types. Some images from that visualizer
are shown.

Figure 6.5: Ramp steer 30 km/h Figure 6.6: Sinusoidal sweep steer 30
km/h

In the figure 6.5 is visible a ramp steer, instead in 6.6 a sinusoidal sweep steering
both performed at 30 km/h. The signals displayed are: the steering wheel angle in
white, the lateral acceleration in green, the longitudinal velocity in red. Through
a rough analysis is possible to appreciate how the steering locks are limitating
correctly the steer amplitude, moreover also the test speed is properly kept constant
at the desidered value through the VCU. The vSignalyzer is primarily utilised by
Ecurie Aix for the purpose of rapid data analysis. However, to operate on the
data, a Matlab script is employed to collect it into a struct. In this way more
computations are done. The steering wheel sensor figures out an error of calibration
of +7 deg, through Matlab this signal is easily corrected. The same correction is
needed to the side slip angles, the formula that computes for instance the front left
αf,l.

αf,l = −

δ − arctan
 vy + ψ̇lf

vx − ψ̇
bf

2

 (6.1)

With δ steering angle at wheel level. To correct the side slip angle is necessary to
add the calibration error at the previous formula (taking care of the conversion to
radians and from driver to wheel reference system).

The focus should now be directed towards the sweep sinusoidal steer. It is
possible to notice from vSignalyzer that the driver is able to follow the increase
of frequency requested.Looking at the first sine waves, the frequency evaluated
in Matlab is equal to 0.69 Hz, whereas for the last waves it is 2.22 Hz. These
values are sufficiently close to the theoretically requested frequencies of 0.5 Hz to 2
Hz. The analysis of the data in Matlab reveals the hysteresis of the lateral forces,
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computed using the following formula:

FyF = maylR + Jzψ̇

lR + lF
(6.2)

Where lR and lF are the distances of the rear and front axle to the COG, Jz

moment of inertia on vertical axis, ψ̇ yaw rate. This formulation is an approximation
of the front lateral forces, it is done considering that:

• No direct sensor for the tire force is available. The best approximation that
can be done is through the computation of the lateral force on the axle.

• It is considered the front axle not the rear one, because the test is conducted
with only FWD. This assumes to neglect the longitudinal contribution of the
force to the total front wheel force.

• The formula given is from a moment equilibrium in a bicycle model, all the
limitations of this simple model hold. The load transfer is not considered in
that analysis.

In the picture 6.7 the last two periods for the lateral force of a sine sweep maneuver
are shown. A smaller hysteresis than desidered is possible to be noticed.

This plot demonstrates that it is not possible to estimate the relaxation lengths
from the data collected. This result is confirmed by the behaviour of the lateral
acceleration function over time. It is also evident from the vSignalyzer that the
expected reduction in amplitude at high frequencies of the steering input is not
present in the lateral acceleration signal 6.8.

Main reason of this result is the low longitudinal velocity of the test. The
relaxation lenght is highly dependent on that parameter, as it is possible to
appreciate in the paper [12]. The following formulation holds:

τyḞ
D
y + FD

y = F S
y (6.3)

With FD
y and F S

y dynamic and static lateral tire forces and τy relaxation time,
linked to the target of the relaxation length ry through the equation:

τy = ry

vt

. (6.4)

In which vt is the longitudinal velocity. In the picture 6.9 is possible to see the
expected behavior of the lateral force in time with a sweep sine steer. As illustrated
in 6.9, the manoeuvre was executed at a velocity of 60 km/h, under constant
vertical load. It is important to note that these conditions are not replicable
within the test conducted in Aldenhoven. Additional factors that influence the
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Figure 6.7: Hysteresis of lateral force in sweep sinusoidal maneuver

Figure 6.8: lateral acceleration and steering angle in sweep sinusoidal maneuver
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Figure 6.9: lateral force reduction in amplitude at high frequency in sweep
sinusoidal maneuver

outcomes include the critical wet condition of the track and the extremely low
tyre temperatures. Notwithstanding these limitations, the procedure and the work
accomplished provide significant experience and a methodology for estimating the
relaxation lengths. When the team replicates the test in the summer period, an
estimation of these parameters will be feasible.

Focussing on the ramp steering, the runs conducted provide the data to estimate
the Pacejka parameters. Following the example of the Master thesis [13] from
Alexander Liniger done in the Swiss Federal Institute of Technology (ETH) Zurich,
the identification can be done using slow ramp steer maneuvers. Where a slow ramp
input is given to the steering angle with a slope of 0.1 rad/s, such that the steering
angle does not introduce dynamic effects. That work considers the experiment in
stationary conditions with v̇x = 0, v̇y = 0 and ψ̈ = 0. The data from Aldenhoven
are not respecting this assumptions, for that reason a deeper analysis should be
done. Firstly, not all the tentatives of the ramp in the data can be used. After a
selection nine ramps have been considered for the successive steps. The plots from
Matlab 6.10 show the steering angle variation with time for each ramp.

From that plots the calibration error of the steering sensor is more visible. It is
possible to notice that, since the car is driven by a driver, for each attempt the
slope of the steering is different, moreover the time to reach the peak is between
2 sec and 4 sec. This higher slope is producing not stationary conditions, further
considerations are given in the next chapter.
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Figure 6.10: Ramp steering steering angle versus time, right turn

Figure 6.11: Ramp steering steering angle versus time, left turn
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Chapter 7

Estimation of tire modelling
parameters

In this chapter all the steps needed to obtain the tyre parameters are described. The
assumptions used in the process are reported, different tyre models are investigated,
finally the mathematical problem is described.

7.1 Selection of data
The first step is to select the useful data from all the logged signals. For that
target only the ramps have been used as lateral maneuvers, with the characteristics
already described in the chapter6. They are extracted as struct "Logdatem" in
Matlab, from the complete vectors only the interesting range of time is selected.
To select precisely the moment vSignalyzer is used. After the definition of the
time duration, the steering angle, lateral acceleration, yaw rate and side slip angle
signals are extracted. For each ramp a different vector of them is created. The
plot of steer angle vs time 6.10 is done to check the selected time intervals. It is
worth to notice that consider more time instants after the end of the slope of the
steering is giving as results more points in the saturation region of the tyre. This is
possible to see directly on vSignalyzer7.1, and it is mainly due to the wet and cold
conditions of the tires. These environmental conditions has the advantage to show
the complete evolution of the wheel force with respect to the side slip. Normally,
in dry conditions the saturation of the tire force is more difficult to be detected.
One of the disadvantages is that the cornering region is exploited only in half of
the slope of the ramp, with a maximum of driver steering angle of about 50 deg.
The physical formula used for the lateral forces has been already shown in chapter
5 6.2 and is more described in the following section. To have a proper fitting two
different possibilities are developed:
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Figure 7.1: Ramp steering ay saturation at half slope of steer angle

• Filtering of the complete ramp data in Matlab, that means postprocessing of
the raw data with brushing and weighting functions;

• Extraction of the ramp data with approximately same number of points in
the cornering and saturation region.

The first method consists in a postprocessing of the signals, with brushing and
correction of the calibration errors of the sensors. Brush action is the remotion of
very low lateral force values at high side slip angle. These come out from points at
the end of the ramp slope with low lateral acceleration. The result of this process
is shown in the picture 7.2, with on the left the original data and on the right the
brushed ones. Final step is the centering of the data to correct the calibration of
the sensors. The procedure is already described in 6.2, moreover a normalisation to
the origin is performed. This is done because the initial time step is immediately
before the start of the input steering. This means straight condition with zero
side slip and lateral force. The final raw data are displayed in the picture 7.3,
considering both ramps on left and right corners. The main drawback of this
method is the excessive processing of the experimental data. The use of brushing
improves the fitting, but removes experimental points without a proper physical
criterion. Furthermore, this type of post-processing leads to excessive reworking of
the data, all to be done manually. For a more consistent result to the experimental
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Figure 7.2: Brushing process: on the right final postprocessed data, on the left
raw data

Figure 7.3: Final raw data after postprocessing with filtering (brushing and
normalisation to origin)

tests, a second method is developed. An alternative to the postprocessing is the
direct analysis of only part of the data. That means to extract approximately the
same number of points in the cornering and saturation region of the ramp data. In
order to do that, for each ramp the interval of time has been restricted, considering
the behavior of the lateral acceleration visible with vSignalyzer. Following the
same procedure of before, the logged signals are extracted and the lateral forces
evaluated. Finally, only the correction of the steering angle calibration error is
applied to the side slip angle vector. No normalisation and brushing are performed,
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the final set of points is diplayed in the image 7.4. It is possible to appreciate an

Figure 7.4: Final raw data with limited ramp slope and no postprocessing

asymmetrical behavior with respect to the origin, this result is intrinsically due to
the real tests. In the positive quadrant of the axes the steering ramps have been
performed for longer time, so that here the cloud of points is larger.

7.1.1 Force evaluation

The points, displayed in the pictures of the previous paragraphs, are coming out
from the equilibrium of the momentum in a bycicle model. This assumption is done
following the paper [14], in which the tire forces are approximated to the lateral
forces computed with the lateral acceleration and the yaw rate. This approximation
is necessary due to the lack of sensors. Relying only on IMU signals, the proposed
formulation is the estimation closest to the real values. For the fitting procedure,
a more accurate analysis is conducted considering that the tests have been done
with a rear wheel drive vehicle. Normally, the formula student cars have one
electric motor for each wheel. In order to reduce the longitudinal component of
the tire force, the team decided to switch off the front engines. In this way, the
consideration of only lateral forces exploited by the front wheels is more reliable.
That problem arises always due to the lack of information regarding the wheel
forces, when the longitudinal component can not be measured the best solution is
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to not have its contribution.

FyF = mayb+ Jzψ̇

a+ b

FyR = maya− Jzψ̇

a+ b

With "a" and "b" front and rear axle distance to the COG, Jz moment of inertia
around the z axis and ψ̇ yaw rate. Only the front axle forces are taken into account
for the fitting.

7.2 Tyre models
After the definition of the experimental set, the exploited tyre models are presented.
They are reported in increasing order of complexity. Three different mathematical
formulations are presented. The results of the fitting are analyzed in the next
chapter. A comparison between the models is provided.

7.2.1 Simplified Pacejka
It is the first and the easier expression of the tyre forces. It takes into account the
only dependence of the side slip angle.

Fy,P ac = D · sin(C · arctan(B · α))

It represents the Magic Formula, already presented in the chapter 4, with only
three parameters to be evaluated. This simplified approach is also used in the
reference master’s thesis mentioned above [13]. The immediately next step is the
introduction of the fourth parameter E:

Fy,P ac = D · sin(C · arctan(B · α− E · (B · α− arctan(B · α))))

Both the formulations are used in the following developments.

7.2.2 Normal loads
To introduce a more accurate tyre model, the dependence on the vertical forces
needs to be considered. Also in that case no sensors are measuring the normal loads,
for this reason they are estimated through the load transfers with logged signals of
longitudinal and lateral accelerations. The used expression is the following:
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FZ,F L = m ·
A
lR
l
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· ax

BA
1
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B
(7.1)

FZ,F R = m ·
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B
(7.2)

FZ,RL = m ·
A
lF
l
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· ax

BA
1
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B
(7.3)

FZ,RR = m ·
A
lF
l

· g + hCoG

l
· ax

BA
1
2 + hCoG · ay

tR · g

B
(7.4)

With the same notation used before. The only aerodynamic contribution needs
to be computed separately. The method used is the simulation through the
LapSim tool of the ramp maneuvers. Through LUTs present in the Simulink, the
aerodynamic load transfer is collected into a ".mat" file. The sign of the aero
vertical loads is already considered in the LapTime, this leads to the simply sum of
the values to the above formulas. In the figure 7.5 the behavior of Fz is displayed.

Figure 7.5: Vertical loads behavior: left picture Fz in Ramp1 for the different
wheels, right picture Fz,F L in different ramps

On the left, one single ramp is considered and the differences between the wheels
are visible. On the right image, a comparison between different ramps is present.
The maximum variation of vertical load is about 200 N, this means that the load
transfer is not heavily affecting the dynamics of the maneuver. Nevertheless, the
raw set of data, previously elaborated, can now be augmented with the vectors of
Fz. For the following, the front left wheel is always considered. The 3D plot shown
in 7.6 is considered as the experimental set of points through which the fitting can
be done for the next models.
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Figure 7.6: Set of raw data, plot 3D with Fy(α, Fz)

7.2.3 Pacejka with Fz
The Pacejka tire model can now take into account not only the side slip angle but
also the vertical loads. The Magic Formula takes into account of Fz through the
parameter D.

D(µ, Fz) = µ · Fz

With µ friction coefficient of the track. The problem of estimating the proper value
of this variable is treated in the fitting algorithm. Due to the heavy rain conditions,
a good prevision of µ is 0.6, but a range of values between [0.4 , 0.7] is kept into the
estimation problem. In this way the parameters to be identified are B, C and µ.

Fy,P ac = D(µ, Fz) · sin(C · arctan(B · α))

7.2.4 Heuristic approach Kiencke and Nielsen
In the reference book [15] of Uwe Kiencke and Lars Nielsen, of the university of
Karlsruhe (TH), the approximation of the tire ground contact forces is made with
an adaptation of the tire slip constants. As already explained before, the linear
relationship between side slip angle and lateral tire characteristics is not valid for
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ay > 4m/s2 and large α. Introducing the dependence on the normal loads, the
last tire model is presented. It is defined by Kiencke and Nielsen as an heuristic
approach. It models the wheel forces, as function of side slip angles and normal
loads, with the formula:

Fy,ij = kred,ij

3
k1 − Fz,ij

k2

4
· Fz,ij · arctan (k3 · αij)

The reduction factor kred,ij contains the actual friction coefficient estimation from
the equation:

kred,ij = µRes,ij · FZijñ
F 2

W Lij + F 2
W Sij

(7.5)

This factor is introduced for the reduction of the longitudinal and lateral wheel
forces (FW Lij and FW Sij) ensuring that the geometrical sum of them lies in the
Kamm circle. It is important for extreme driving situations, in the ramps of the
thesis it is calculated but giving as result a vector of all ones values. The Kamm
circle is determining the directional distribution of the friction coefficients, from
them the amount of the forces. For a better understanding, the formulations used
to obtain the reduction factor kred,ij 7.5 are reported. The starting point is the
wheel slip calculation. The Burckhardt approach is used. It defines the longitudinal
slip sL in the direction of the wheel ground contact point velocity vW,ij and the
lateral slip ss at right angles to this. The resultant wheel slip sres is the geometrical
sum of them.

sres =
ñ
s2

L + s2
s

With
ss = tan(α)

The method of Burckhardt computes the resultant friction coefficient with:

µres(sres) =
1
c1 ·

1
1 − e−c2·sres

2
− c3sres

2
· e−c4·sres·vCoG ·

1
1 − c5F

2
Z

2
(7.6)

This formulation is described through experimental parameters c1, c2, c3, c4, c5
and with the resultant slip, the normal loads and the resultant speed of the COG.
The parameters are reported in the book [15], distinguishing between different
road characteristics. Moreover the matching between the experimental test and
the estimated values is proved in the reference. For the thesis calculations, the
parameters related to asphalt in wet conditions are chosen:

• c1 = 0.857;

• c2 = 33.822;

• c3 = 0.347;
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• c4 = 0.003 s/m;

• c5 = 0.00015 (1/kN)2;

In the figure 7.7 the result from the Matlab computation of the resultant friction
coefficient µres is shown. On the right, it is displayed the typical cohesion coefficient
characteristics reported by Kiencke and Nielsen. The matching of the plots is
confirming the good calculations. The wheel forces FW L and FW S are obtained

Figure 7.7: Burckhardt resultant friction coefficient: left Matlab result for Hoosier
tires, right typical cohesion coefficient characteristics (Book [15] Section Vehicle
Modelling p.320 )

from the corresponding lateral and longitudinal friction coefficient,

µs = ksµres
ss

sres

and
µL = µres

sL

sres

With ks attenuation factor for the reduced maximum friction in lateral direction
with respect to the longitudinal one.

FW L = µLFZ = µRes · sL

sRes
· FZ (7.7)

FW S = µSFZ = µRes · kS · sS

sRes
· FZ (7.8)

The plot 7.8, elaborated in Matlab, is showing the good behavior of the lateral
force. Since the tested maneuvers are on lateral dynamics, the prevailing force is
the lateral.

It emerges from the image that there is a greater concentration of points
in the positive quadrant. This provides further confirmation of the preceding
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Figure 7.8: Lateral wheel force FW S for front left with Kiencke and Nielsen
formulation

considerations regarding the filtration of the raw data. It is also visible the
saturation of the characteristics, possible to be completely seen due to the wet
conditions of the track. At this point, all the quantities to evaluate the heuristic
wheel forces Fy,ij are computed. In the fitting step the tire parameters k1, k2 and
k3 are determined.

7.3 Fitting procedures
In this section the mathematical problem of the fitting of the experimental data is
presented. Moreover, two possible solutions are developed. The first easier approach
is the use of a Matlab tool, Curve Fitter. It deals with the Levenberg-Marquardt
algorithm. It has the big advantage to be userfriendly, but with some limitations.
The alternative method is based on the Genetic Algorithm, whereby a dedicated
script is developed, thus affording greater freedom in determining the parameters.

7.3.1 Levenberg-Marquardt algorithm
The fitting problem of a function with a set of points is based on the Least Squares
Parametric Estimation. Least squares, in general, is the problem of finding a vector
θ that is a local minimizer to a function that is a sum of squares, possibly subject
to some constraints. A brief introduction is present in the book of Kiencke and
Nielsen [15], where the mathematical formulation is given.

min
θ

S(θ) =
NØ

k=1
e2(k) =

NØ
k=1

[yp(k) − ym(k)]2 =
NØ

i=1
[Fy,exp − Fy(αi,θ)]2 → min

(7.9)
Where:
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• yp o Fy,exp are the experimental observed data;

• ym o Fy(αi, θ) are the theoretical points evaluated with the choosen mathe-
matical tire model, parametrized with θ;

• θ the tire parameters associated to the data ym or Fy(αi,θ);

• e(k) is the observed error;

• S(θ) is the squared error sum.

Target of the fitting is the estimation of the vector θ. The Levenberg-Marquardt
algorithm (LMA) solves this problem with an iterative update of the parameters θ.
A brief overview of the LMA is provided. The mathematical reasoning behind the
LMA is quite involved and beyond the scope of this work. The reader is directed
to references [16] for an extensive treatment. The Levenberg-Marquardt algorithm
is a combination of two minimization algorithms, the gradient descent method
and the Gauss-Newton method. At the beginning of the iteration the LMA acts
more like a gradient descent method,then when the coefficients are close to their
optimal value it acts like the Gauss-Newton method. The goodness of a fit can be
measured by the total value of the sum S(θ), usually called chi-squared function χ2.
The objective of each step is to perturb the vector θ by a quantity such that the
chi-squared χ2 is reduced. The Gradient Descent Method updates the coefficients
in the downhill direction, that means in the opposite direction to the gradient of
the objective function. Usually this method has a good convergence only for simple
objective functions. To understand mathematically that solution, the perturbation
of θ is equal to the derivative ∂

∂θ
of the equation 7.9. The Gauss-Newton Method

presumes that the chi-squared is approximable with a quadratic function in the
coefficients near the optimal solution. It uses a first-order Taylor series expansion
of the objective function with the perturbation of the coefficients. Imposing to
the chi-squared perturbed the ∂χ2

∂θ
= 0, the update of the GNM is computed. The

Levenberg-Marquardt algorithm adaptively adjusts the updated coefficients by
switching between gradient descent and Gauss-Newton methods. The update of
the LMA follows the equation:

θk+1 = θk −
è
J⊤J + λI

é−1
J⊤r

Where:

• J is the Jacobian matrix, with Jij = ∂f(xi,θ)
∂θj

,

• r is the residual vector, with ri(k) = yp(k) − ym(k),

• λ is a damping parameter to have a balance in the convergence between the
Gauss–Newton algorithm (GNA) and the method of gradient descent.
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When the damping coefficient λ is small, the algorithm behaves like a Gauss-Newton
update, while large values of λ produce a gradient descent update. Initially, λ
is set to a large value to ensure that the first updates take small steps in the
steepest descent direction. If an iteration leads to a worse approximation (i.e.
χ2(θ + h) > χ2(θ)), λ is increased. Conversely, as the solution improves, λ is
reduced, causing the Levenberg-Marquardt method to converge towards the Gauss-
Newton method, which typically speeds up convergence to the local minimum.

7.3.2 Genetic Algorithm
The second method deals with the theory of Genetic Algorithm. GA is a type
of parallel heuristic search method, that means a type of search process that
involves previously known information to reduce the amount of searching that
needs to be done for an optimal solution. It is used in problem-solving, in that
application looking to the Least Squares Problem as an optimization problem. This
method for the curve fitting is widely used, since genetic algorithms have been
used successfully as global optimization techniques. An example is reported in the
paper of M. Gulsen [17]. The GA was originally developed for the natural selection
of biological systems, from that origin come the names of the phases in which
this optimization heurisitc is structured. It is possible to distinguish five features:
encoding, selection, crossover, mutation and culling mechaninsm. The encoding is
a compact representation of a data structure that describes a unique solution to
the problem. In the case of study, an encoding is the vector of the tire parameters
that define a tyre model (for instance, B, C, D, E for the Pacejka model). The
selection mechanism is the computation of the sum of the objective function, in the
thesis object 7.9, that is given by the encoding. This means it takes the individual
solution as input and computes the corresponding value with the objective of the
optimization. The crossover mechanism produces new encodings through ’parent’
encodings from the current population. In the curve fitting, that means taking new
sequence of tire parameters mixing the values of previous computed solutions. The
mutation phase is the perturbation of an encoding to produce a nearby solution,
this mechanism is fundamental to maintain a differentiation in the pool of the
population and be able to test new encodings. The last mechanism is the culling, a
procedure to remove worst solutions to keep constant the size of the population.
The genetic algorithm is intrinsecely an iterative process, it ends only when specific
criteria are reached. Scientific researches prove that GA is fairly robust and that
usually it finds a near-optimal solution. This has been proven on widely different
applications, the results encourage to believe that GA is able to escape local
minima or maxima with the crossover and mutation mechanisms. Focussing on
the thesis objective, different aspects lead to consider the genetic algorithm the
best approach for the curve fitting. First of all the indipendence of the method to
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the characteristic of the objective function. No gradient or other information are
needed. Moreover, the type of search is highly parallel, with the extremely efficiency
on massively parallel hardware, leading to test more combinations of parameters
with the same computational time. The GA approach is viable and versatile, the
tyre parameters can be restricted into a range of values. The indication of the
limits in the coefficient’s values is not possible to prform in the LMA. For the fitting
of the tyre parameters the mathematical expressions of the function is already
provided, this avoid the GA to spend time on the selection of the functional form.
The knowledge of the fitting function helps in the understanding of feasible results
and the limited complexity of the tyre model equations allows to have a sustainable
computational effort and accurate solution. In the following the genetic algorithm
is implemented in Matlab scripts through the specific "ga" function. They are
divided into steps:

1. Load of experimental data: the different set of points are considered. Different
fittings are performed for the filtered and brushed data and for the limited
ramp steer data (as described in section 6.2).

2. Weights: definition of weight functions to increase the importance of some
points in the fitting.

3. Constraints: fixed points for the final function can be defined. In the following
only the origin is constrained.

4. Initial conditions of θ: the range of variation of the tyre parameters is defined.
Moreover, to make the script able to run iteratively, previously computed
results are assumed as new initial values.

5. Objective function and iteration: equation 7.9 is coded, the ’ga’ options are
defined and the iterations made.

6. Standard deviations: through the Bootstrap probability distribution, the
standard deviations of the coefficients are computed.

7. Plot of the results: an image of the cloud of points, the actual and the old
fitted equations are displayed. Finally, the actual parameters are stored in a
".mat" file.

In the next chapter the results are reported.
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Chapter 8

Results

In this chapter the estimated tire modelling parameters are explained. Firstly,
the values elaborated through the Curve Fitter Matlab tool performing the LMA
are reported. Then the genetic algorithm is implemented, the tire coefficents are
evaluated for the three different tyre models presented: Simplified Pacejka, Kiencke
and Nielsen heuristic model, Pacejka with normal load model.

8.1 Curve Fitter with LMA
The first attempt to evaluate the parameters is made through the Matlab app
Curve Fitter. This tool needs that the data points are loaded as vectors in the
workspace of Matlab. The experimental data choosen are coming out from the
filtering and brushing method. Then the custom fitting equation is written, the
solving options are set up and automatically the result is visible as a plot 8.1. In
that example the complete Magic Formula is used. The results are reported:

• B = 16.22;

• C = 0.246;

• D = 1.698;

• E = -4.704;

The standard deviations of the parameters are not computed by the Matlab app.
In the plot the lateral force is expressed in kN, while the side slip in radians. It is
worth noting that the fitted curve shows an unacceptable behaviour in the cornering
region. The variation in the slope makes the theoretically linear region non-linear.
The main reason for this is the uncontrollable range of variation of the B, C, D
and E coefficients. When the Levenberg-Marquardt algorithm is used, there is no
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Figure 8.1: Curve Fitter Matlab with LMA

limit to the possible combinations of the parameters. This results in a sub-optimal
solution. For these regions the other results rely on the genetic algorithm approach.

8.2 Lateral force characteristic Fy(α)
The first fitting of the lateral force, through the genetic algorithm, is made with
the post-processing experimental data, the ones subjected to filtering and brushing.
The results are reported in the following, near the value also the standard deviation
is shown:

• B = 7.448 ± 0.992;

• C = 1.745 ± 0.138;

• D = 0.648 ± 0.010;

• E = −0.0002 ± 0.213;

It is worth to notice that the last parameter E is practically zero and it changed
sign considering its standard deviation. This result means that the E parameter is
not usefull in the fitting formula, that leads to the simplified Pacejka with only
B,C and D coefficients. The Matlab script is used several times to run the genetic
algorithm with initial conditions, for the tyre parameters, the previously computed
value. This iterative procedure guarantee more reliable results. The first iterations
of the GA have been done without weighting vectors. This leads to curves that fit
better the saturated region of the tyre characteristic, but the cornering stiffness
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is not matched. To give more importance to the linear region, each point in the
range [−0.5, 0.5]kN of the Fy have a weight equal to 10 points. In the picture 8.2
the experimental data are reported in blu, the constraint of the origin with a green
circle, the curve without wieghting in violet, the last fitted curve in red. The values
of B, C, D and E provided before are the ones of the "Latest fitted curve".

Figure 8.2: Lateral force characteristic, fitting with GA

The same procedure is repetead with the reduced ramp steer set of experimental
data. As expected the new curve is fitting better the cornering stiffness region,
indeed no weighting functions are necessary. The comparison between the two
estimated Pacejka’s characteristics is shown in the image 8.3. In blue the points
of the dataset with no postprocessing, in red the new fitting curve, in green the
estimation of the previous fitting with brushed experimental data. The last Pacejka
parameters are:

• B = 8.219 ± 1.670;

• C = 1.360 ± 0.555;
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Figure 8.3: Fitting with GA: change of dataset to limited ramp steer slope

• D = 0.771 ± 0.011;

• E = −1.864 ± 0.818;

As it is possible to see, each parameter is not changing sign as it was with the E
value in the previous results 8.2. The new coefficients and the standard deviations
have proper values, confirmed by similar results in the Master thesis of Alexander
Liniger from ETH [13].

8.3 Improvements on the model Fy(α, Fz)

In this section the addition of the normal load as input in the tyre equations is
considered. The first implemented model is the heuristic formula from Kiencke and
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Nielsen [15].

Fy,F L = kred,F L

3
k1 − Fz,F L

k2 · 105

4
· Fz,F L · arctan

è
(k3 · 102) · αF L

é
It is worth to notice that the expected coefficients k1, k2 and k3 have not the
same order of magnitude. That is the reason why in the objective function
multiplication factors are present. This process take as reference the paper from
Luis M. Castellanos Molina[14], in which k1 is between 0 and 1, k2 of the order of
105 and k3 of 102. This sort of normalisation in the objective function is an usefull
operation for the genetic algorithm iterations. The same order of magnitude of
the parameters to be estimated helps in the phase of crossover and mutation. The
defined range of the parameters is: [1, 10] for k1, [−1, 1] for k2 and [0.1, 1] for k3.
The result is shown in the picture 8.4 and the final values are here reported:

• k1 = 1.832 ± 0.167;

• k2 = 0.0099 ± 0.2156;

• k3 = 0.124 ± 0.015;

As the first fitting results, also in that case the standard deviation of k2 is higher
than the value assumed. This is probably due to the difference in the magnitude
of the parameter, more trial and error should be done in order to obtain better
results from this model.

The last fitting is done with the Pacejka Magic Formula taking into account the
normal loads. This is done through the parameter D, for which the formulation
holds:

D = µ · Fz

Where µ is the friction coefficient. Since that last variable can not be measured in
the wet conditions of the track tests, two are the possibilities: assuming it constant
and equal to 0.6; or considering it a variable to be estimated during the iterations
of the GA. As it is possible to see by the results, the second option has been carried
out taking as range of values [0.4, 0.7]. At the end, the value of µ is practically
equal to the expected value of 0.6. The results are here listed:

• B = 21.68 ± 2.24;

• C = 1.32 ± 0.06;

• µ = 0.5986;

In the picture 8.4 it is visible the data set with the variation of the normal loads.
Since, as it has already been discussed, the load transfer in the simplified maneuvers
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Figure 8.4: Fitting with GA: heuristic tyre model

of the test is not reaching high values, the experimental points are squeezed in
a narrow variation of the Fz. This affects the fitting in the 3D view, since too
few points are present for a vertical load variation analysis. Nevertheless, the tyre
parameters show good standard variations and resonable values.

A comparison between the different models is presented in the picture 8.6. The
experimental data displyed in blue are coming from the not filtered ones, the red
curve is the simplified Pacejka considering the GA approach, the green function is
from Kiencke and Nielsen equation, the violet curve is the Pacejka Magic Formula
with the parameter D function of normal loads. At first glance it may seem that the
more accurate tyre model is giving the worst result in the fitting of the experimental
data, the next section is explaining better this result.

58



Results

Figure 8.5: Fitting with GA: Pacejka model with Fz, 3D plot

8.4 Simulink results
To have a proper understanding of the goodness of the estimated tyre parameters,
the Simulink model is used. To evaluate the lateral force of the tire with the results,
reported in the previous sections, different Matlab functions have been defined.
Through a Multiport switch at each run of the Simulink it is possible to select the
tyre model to use. In the Matlab functions the mathematical equations, reported
in chapter 7, are implemented. 8.7

The logged lateral acceleration is compared with the simulated one. This
procedure is taken as reference to understand if the tyre model, with the estimated
coefficients, is giving accurate results. The maneuvers performed are the ramp
steering of the experimental data set, with the configuration of the LapSim with
the logged data as input. In the figure 8.8 the results of all the nine ramps are
shown.

As it is possible to notice in the picture 8.8, none of the fitted models is able to
follow the high fluctuations of the real lateral acceleration. The high oscillations of
ay are mainly due to the high sensitivity of the IMU, but the trend of the signal is
followed by all the models. The initial values of the simulated ay are always different
from the real value. This is mainly due to the not zero value of the side slip angle
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Figure 8.6: Comparison between the fitted tire models

Figure 8.7: Matlab functions for the tyre models

at the beginning of the maneuver. Since the αi vectors are coming from the logged
data, even a small magnitude is giving from the equations a not zero result. Both
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Figure 8.8: Simulated ramp steering, comparison of the fitted tire models in
terms of lateral acceleration

the simplified pacejka and the heuristic approach are overestimating the lateral
acceleration, in this terms the best tyre model is the Magic Formula with Fz. Even
if the Pacejka model, with the contribution of the normal load, is not capable to
follow the variations of the real signal, the average value of it corresponds to the
logged acceleration. This result leads to consider the load transfer as an important
factor in the estimation, even if it corresponds to a limitated amount for this short
time maneuvers. In the following the Pacejka Magic Formula with the normal
loads contribution is taken as the starting model for the Extended Kalmann Filter.

8.5 Extended Kalman Filter design
In order to have a simulation that is following more precisely the real behavior
of the car, a control tecnique for a closeloop control is needed. One of the most
promising method is the use of an Extended Kalmann Filter. The Kalman filter is
a set of mathematical equations that provides an efficient computational (recursive)
means to estimate the state of a process, in a way that minimizes the mean of the
squared error. More in detail, the Kalman filter addresses the general problem of
trying to estimate the state x ∈ Rn of a discrete-time controlled process that is
governed by a linear stochastic difference equation. The main difference with the
Extended Kalmann Filter is the generalization to a non-linear process estimation
function and non-linear measurement relationship to the process. This last case is
of most interest and it is applied to the tire ground contact problem. The EKF
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rely on the linearization around the current estimate using the partial derivatives
of the process and measurement functions to compute estimates even in the face of
non-linear relationships. The non linear difference equation of the process can be
written as:

xk = f(xk−1, uk−1, wk−1) (8.1)
zk = h(xk, vk) (8.2)

Where f is the non-linear function that relates the state at the previous time step
k-1 to the state at the current time step k. The non-linear function h is the
measurement equation relating current state xk to current measurement zk. In the
thesis objective the state xk is composed by seven components.

x =
è
vx vy ψ̇ Fy,fl Fy,fr Fy,rl Fy,rr

é
(8.3)

Instead the input vector uk is composed by:

u =
C
Fx,fl Fx,fr Fx,rl Fx,rr My,fl My,fr My,rl My,rr rdyn,fl rdyn,fr
rdyn,rl rdyn,rr αfl αfr αrl αrr

D
(8.4)

Finally, the measurement vector zk or yk is [3x1] with longitudinal, lateral
velocities and yaw rate.

y =
è
vx vy ψ̇

é
(8.5)

wk and vk are random variables that represent the process and measurement
noise. They are assumed independent and white noises with Gaussian probability
distribution.

p(w) ∼ N (0, Q) (8.6)
p(v) ∼ N (0, R) (8.7)

With Q and R covariances of the process and measurement noise. The exact value
of them is not known. For the measurement covariance R it is possible to have an
estimation. Repeating different off-line sample measurements of the quantities used
in zk is it possible to observe the variance of results. But the process covariance
Q, since this quantities are not directly observable, is not achievable. The method
that is often used is a tuning from the EKF results. It can be done through the
help of another Kalman Filter performing the tuning off-line To be more precise,
in the most of the cases Q and R change at each time step. In that thesis they are
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assumed constant, the values are reported.

Q =



0.01 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.05 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 0.01 0 0
0 0 0 0 0 0.01 0
0 0 0 0 0 0 0.01


R =

0.01 0 0
0 0.01 0
0 0 0.05

 (8.8)

The values of the first three rows are related to vx, vy and ψ̇ coming from the
characteristics of the sensors, described in the paragraph 1.1.3. A further reference
is the work presented in the bibliography [18].

The linearized governing equations can be written as.

xk ≈ x̃k + A(xk−1 − x̂k−1) +Wwk−1 (8.9)

zk ≈ z̃k +H(xk − x̃k) + V vk (8.10)
With x̃k and z̃k approximate states and measurements, x̂k a posteriori estimate.
The matrixes A, W, H and V are the Jacobians of f with respect to x, w and of h
with respect to x and v.

A[i,j] = ∂f[i]

∂x[j]

1
x̂k−1, uk−1, 0

2
(8.11)

W[i,j] = ∂f[i]

∂w[j]

1
x̂k−1, uk−1, 0

2
(8.12)

H[i,j] = ∂h[i]

∂x[j]

1
x̃k, 0

2
(8.13)

V[i,j] = ∂h[i]

∂v[j]

1
x̃k, 0

2
(8.14)

Applied to the thesis case of study, A is a matrix of dimension [7x7] and H [3x7].
The complete set of equations is now reported, distinguishing between time update
8.15 8.16 and measurement update equations. 8.17 8.18 8.19

x̃k = f(x̂k−1, uk−1, 0) (8.15)
P̃k = AkPk−1A

T
k +WkQk−1W

T
k (8.16)

Kk = P̃kH
T
k (HkP̃kH

T
k + VkRkV

T
k )−1 (8.17)

x̂k = x̃k +Kk(zk − h(x̃k, 0)) (8.18)
Pk = (I −KkHk)P̃k (8.19)
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The equation 8.15 is the non linear difference equation already reported at the
beginning of the paragraph 8.1, the only difference is the assumption of no noise
wk. The P̃k matrix is the a priori estimate error covariance computed resolving the
Difference Riccati Equation 8.16 in iterative way through the a posteriori estimate
error covariance Pk−1. The matrix Kk in 8.17 is called Kalman predictor gain
matrix, chosen to be the gain or blending factor that minimizes the a posteriori
error covariance Pk in 8.19. This latter is obtained with the correction of the a
priori estimate error covariance P̃k. The equation 8.18 has the goal of finding an
equation that computes an a posteriori state estimate x̂k as a linear combination of
an a priori estimate x̃k and a weighted difference between an actual measurement
zk and a measurement prediction h(x̃k,0). This weighting is performed by the
matrix K. The difference (zk − h(x̃k,0)) is called residual or innovation.

In the figure 8.9 the complete operation of the extended Kalman filter is shown.
To the reader is given the reference [19] for a deeper understanding.

Figure 8.9: A complete picture of the operation of the extended Kalman filter
[19]
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The specific equations used in that thesis are now reported:

m
d(vx)

dt = Fx_fl + Fx_fr + Fx_rl + Fx_rr

− My_fl

rdyn_fl

− My_fr

rdyn_fr

− My_rl

rdyn_rl

− My_rr

rdyn_rr

(8.20)

m
d(vy)

dt = Fy_fl + Fy_fr + Fy_rl + Fy_rr (8.21)

Izz
d(ψ)
dt = aFy_fl −

3
t

2 + yoff

4
Fx_fl + aFy_fr −

3
t

2 + yoff

4
Fx_fr

− bFy_rl +
3
t

2 + yoff

4
Fx_rl − bFy_rr −

3
t

2 − yoff

4
Fx_rr (8.22)

dFy_fl

dt = vx

σfl

(FP ac_fl − Fy_fl) (8.23)

dFy_fr

dt = vx

σfr

(FP ac_fr − Fy_fr) (8.24)

dFy_rl

dt = vx

σrl

(FP ac_rl − Fy_rl) (8.25)

dFy_rr

dt = vx

σrr

(FP ac_rr − Fy_rr) (8.26)

The first three equations have already described in previous paragraph 5.35.45.5,
instead the last four are equal to 6.3 with assumed constant relaxation lengths σij of
0.15 m. It is possible, starting from these equations, to compute the matrixes A[i,j]
and H[i,j]. The other matrixes, W[i,j] and V[i,j], are not necessary for the Simulink
EKF block.

A =



1 0 0 0 0 0 0
0 1 0 dt

m
dt
m

dt
m

dt
m

0 0 1 a·dt
Izz

a·dt
Izz

− b·dt
Izz

− b·dt
Izz

dt·(FP ac_fl−Fy_fl)
σfl

0 0 1 − vx·dt
σfl

0 0 0
dt·(FP ac_fr−Fy_fr)

σfr
0 0 0 1 − vx·dt

σfr
0 0

dt·(FP ac_rl−Fy_rl)
σrl

0 0 0 0 1 − vx·dt
σrl

0
dt·(FP ac_rr−Fy_rr)

σrr
0 0 0 0 0 1 − vx·dt

σrr


(8.27)

H =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 (8.28)

In the Simulink model the control is applied through the Extended Kalman
Filter block. It requires several input: the covariances Q and R
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• StateTransitionFcn: it is a Matlab function that collects the equations that
hold the prediction phase of the filter. This means the time update equations.
To compute the following time step of the state, it uses an Euler discretization
for the derivative approximation.

• MeasurementFcn: second Matlab function, it indicates to the EKF which are
the measurements to consider (vx, vy and yaw rate ψ̇).

• StateTransitionJacobianFcn: third Matlab function to compute the Jacobians
of the equations of the “StateTransitionFcn”. In this way, at each time step,
the matrixes A[i,j] and W[i,j] are updated.

• MeasurementJacobianFcn: last Matlab function, it is basically the same of
the “StateTransitionJacobianFcn” but for the Jacobians of the measurement
function, H[i,j] and V[i,j].

• Q and R: the covariance Matrixes for process and measurement noise.

• The states: the initial values of the states (vx, vy, yaw rate ψ̇, Fy,fl, Fy,fr,
Fy,rl, Fy,rr).

• StateTransitionFcnInputs: it is a Simulink signal containing all the data
needed for the equations in the "StateTransitionFcn". It is the uk vector of
the equation 8.1.

• y1: it is the Simulink signal containing the vectors of the logged data used as
measurements. In the case of study it is made by vx, vy and yaw rate ψ̇ from
logged signals, all collapsed in one vector through a mux block.

All the signals that enter in the Extended Kalman Filter Block need to be sampled,
to the specific frequency 200 Hz of the IMU, staring from timeseries with a Zero-
Order Hold. It is a Simulink block to keep constant the value of a signal for one
time step. The LapSim modified with the Extended Kalman Filter is used to
simulate the ramp steering maneuvers of the Aldenhoven track test. The results
show a very accurate correction of the trend of the states. In the picture 8.10 is
it possible to appreciate that the simulated signals are very close to the logged
data, this emphasises the role of the EKF in the closeloop feedback correction.
At the end of the maneuver, in the last instances of time, the error between the
logged yaw rate and the simulated one is increasing. This means that with long
simulations the convergence of the signals is not guaranteed. Since in the context
of Formula Student the cornering event of Skidpad is about 4 seconds, this issue is
not really relevant and not dealed in that work. Computing from vx and vy the
lateral acceleration ay, better results with respect to the image 8.8 are obtained.
This is shown in the figures 8.11 and in the complete one 8.12. To have a closer
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Figure 8.10: States behavior of the EKF with respect to the measurements in
ramp steering simulation

Figure 8.11: Ramp steering simulations with the signals of ay corrected by EKF
and the logged data

look a focus on the ramp3 and ramp8 is provided in the picture 8.13. The high
oscillations of the logged signals are now followed by the simulated accelerations.
Not a perfect match is achieved, but now the accuracy is much higher. Since the
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Figure 8.12: Ramp steering simulations with the signals of ay coming from: the
logged data, the tire models and the simulations corrected by EKF

targets of the simulations are the lateral forces, having the precise overlapping of
logged and simulated ay is not the priority of this work. More considerations and

Figure 8.13: Ramp3 and Ramp8 simulations with the signals of ay from logged
data and the simulations corrected by EKF

consequences of these last results are present in the final chapter.
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Chapter 9

Tire Testing Consortium
Data

9.1 What is the TTC
The Formula SAE Tire Testing Consortium is the web portal mostly used by the
formula student teams to analyze the tire data. The consortium works with the
Calspan Tire Testing and, for the registered, teams provides all the data coming
from the testing with the tire testing machine. Periodically, the TTC updates its
tests providing new tested tire data, mainly based on the requests of the formula
student teams. The tendency of the last years was to reduce the diameter of the
wheels, that result in lower inertia, higher grip and performance. The main reason
is due to the reduction of the total weight of the vehicle, this is ever years one of
the goals of all the teams. Starting from more than 200 kg, the more competitive
teams are now manufacturing cars of 170 kg. Ecurie Aix represents in this field one
of the best formula student solutions with 162.5 kg, with the lightest battery pack
of 42 kg. The reduction of the mass is affecting the vertical forces that are loading
the tires. Reducing the magnitude of the static Fz and of the load transfer, lower
tire diameters are able to exploit higher lateral and longitudinal forces. About five
years ago the teams were practically all using pneumatics with 13 or 15 inches
of diameter, nowadays most of all agree with the optimal solution of 10 inches.
Every year each team tests new tires, an example of that is coming from TU Delft.
From the 2021 they decided to use the tires of 8 inches. This possibilities has been
considered by the other teams an excessive solution. The lack of tire data from this
very small tire, the difficulty in finding these compounds and the simulated lower
performances have led the teams to prefer a different tyre. A very low diameter
is a strong limitation for most of the laboratory test machines, mainly due to the
difficult adaptation of the sensors such as for instance the wheel force transducer
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located in the rim. After some analysis and years of testing, Ecurie Aix has found
in the Hoosier 43075 16x7.5-10 LCO 1 its best compound. In this season also
Hoosier 43075 16x7.5-10 R20 has been tested, a brief comparison of the laboratory
data is then provided.

9.2 Laboratory data characteristics
In the web portal of the TTC there are different sections that provide not only the
laboratory data, but general tire models and discussions to improve the exchange
of knowledge between teams. Focussing on the data, they are structered in Rounds
containing guides to explain the contents. A one-page summary of the tire/rim
combination and test type for each test run is provided, in the following Run16 in
Round8 for LCO and Run9 in Round9 for R20 are analysed. The selected Hoosier
43075 of 10 inches have been tested by the TTC only in lateral dynamic. This
represents a bottleneck in the accuracy of the simulations. To realize the complete
set of the Pacejka equations, explained in chapter 4, data from longitudinal are
essential. The lack of them makes impossible to produce a ".tir" file of the tires.
The solution adopted by Ecurie Aix is to scale to the 10 inches case the available
data in longitudinal dynamic of the Hoosier of 13 inches with the same material.
This represents the best approximation that can be done untill the TTC is not
pubblishing the requested data.

In the figure 9.1 is it possible to understand the structure of the test. Inside
pressure, camber angle, normal load and side slip angle are the variables controlled
by the tire testing machine. The Calspan laboratory is not controlling the tire
temperature, but only storing it. The recorded variables are related to ambient
temperature, road surface, tire surface center, tire surface inboard and tire surface
outboard temperatures. In 9.1 the inboard surface temperature is displayed. In all
cornering tests the SAE slip ratio (SL) is zero and the tire is in free-rolling condition.
The primary sweeps involve varying the slip angle between ±12 degrees for each
test condition, including load, inclination and inflation pressure. The first slip angle
sweep takes longer than the others because it includes several "conditioning sweeps".
These serve as a final effort to prepare the tyre and ensure its performance stabilises
before the main set of force and moment data is collected. The inside pressure
is set at 0.55 bar and 0.84 bar, the camber angle is changed between 0, 2 and 4
degrees. The vertical force is set constant with values [222, 444, 667, 889, 1112]
N. For each sweep of the side slip angle a constant set of the other parameters is
tested. In the picture 9.2 the lateral force Fy is shown with respect to the different

1Explanation of the nomenclature: 16 is total diameter in inches, 7.5 is tire width in inches,
10 is the hub diameter in inches, LCO is the material of the thread.
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Figure 9.1: Testing cycle in lateral dynamic for Hoosier 43075 16x7.5-10 LCO
from TTC

Figure 9.2: Cornering test Lateral Force Fy for Hoosier 43075 16x7.5-10 LCO
from TTC

normal loads.
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9.3 Comparison
It is worth to notice that with the TTC data the lateral characteristics of the
Hoosier LCO and R20 can be compared. In the image 9.3 it is possible to see that

Figure 9.3: Cornering test, lateral Force Fy comparison Hoosier 43075 16x7.5-10
LCO and Hoosier 43075 16x7.5-10 R20 from TTC

at the lowest normal loads the two pneumatics provide practically the same lateral
force. Increasing the vertical load the difference between the two compounds is
more visible. At the highest loads, the R20 is theoretically exploiting the highest
Fy. In the chapter 7.2.2 the computed range of Fz is between 500 N and 900 N,
for the Ecurie Aix car. This leads to consider from the second to the last level of
Fz tested by the Calspan laboratory. Taking into account this information, the
team has considered the R20 as a possible improvement. As it is visible by the
picture 9.3 this advantage is very small in magnitude. A further analysis has been
done through real track testing. Running under the same conditions on a set up
Autocross track, the team concluded that there was no difference in performance
between the Hoosier LCO and the R20. More interesting analysis is done through
the comparison between the experimental data of the Aldhenoven test, described
in chapter 6, and the TTC raw data. The teams for the thesis test has used the
Hoosier LCO. Usefull data are coming from the Calspan summary table in the TTC
web portal, in particular regarding the Spring Rate and Cornering Stiffness. From
the laboratory the Cornering Stiffness in the 5 levels of Fz [222, 444, 667, 889, 1112]
N is equal to [13.5, 20.9, 26.3, 29.6, 31.6] kN/rad. First comparison can be done
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considering the estimated parameters from the Pacejka models. In the Simplified
Pacejka Model the product between B, C and D that give the Cornering Stiffness
is equal to 8.612 kN/rad. This very low value is mainly due to the conditions
of the test. The tire temperatures were far lower with respect to the laboratory
ones, moreover the wet conditions limit the performance of the pneumatic. This
last different condition can be considered through a scaling factor of the friction
coefficient µ. For the following comparison the notes coming from the Similarity
Method in the Pacejka book [8] have been taken as reference. To compare the
experimental track test data with the Tire Testing Consortium data the following
formula has been used.

Fycorrected
= Fylab

µroad

µlab

(9.1)

The corrected Fy is the vector coming from the raw data of the laboratory, the
µroad is taken equal to 0.6, as already described in the chapter 8.3. Taking into
account that µ = F y

F z
, this scaling is affecting the different vertical loads at which

the tire is subjected. In the figure 9.4 the laboratory data, the experimental track
test data and Pacejka fitted model are displayed in the same graph. It is worth
to notice that the track data are located between the second and third level of
the laboratory normal loads. They correspond to 444 N and 667 N. This range is
confirming the good calculations done in section 7.2.2, where for the outside wheel
in the ramp steering the normal loads varies between 450 N and 700 N.

Finally, in the last picture 9.5 it is possible to appreciate better the considerations
already done. The Pacejka fitted model has a lower Cornering Stiffness with respect
to the laboratory curves, but the saturation region is corresponding with the lowest
loaded curve. This results are due to the discrepancies between real and laboratory
evrinmental conditions. The saturation region is well modeled with the Pacejka
due to the wet conditions that allows to detect with lot of points this phenomenon.
The Cornering Stiffness region is worst represented due to cold temperatures of the
tires.
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Figure 9.4: Comparison of the lateral Force Fy between TTC lab data, experi-
mental track test data and Pacejka fitted model

Figure 9.5: Lateral Force between TTC lab data at Fz=444 N and Fz=667N,
experimental track test data and Pacejka fitted model
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Chapter 10

Conclusions

To conclude the work of the thesis it is worth to analyze the accuracies of the
tire models elaborated. In order to do so, maximum and average errors have been
computed for all the ramps of the track tests. The results are shown in the tables
10.1.

Figure 10.1: Tables for averaged and maximum errors in the lateral acceleration
between tire models and logged data

The Mean Errors are computed as mean value of the absolute difference between
simulated ay and logged ay. Similar formulas are used for the Maximum Errors, in
which the "max" Matlab function is used instead of the "mean". As it is possible to
appreciate, the use of the Extended Kalman Filter guarantees the best results in
practically all the ramps. A part from it, the Pacejka Magic Formula, with the effect
of the normal loads, is showing the second lower errors. Focussing on the mean
table, an average error between 1 − 2 m/s2 is visible for the Pacejka model with Fz.
Even if these values are low, considering the simplicity of the maneuver and the
maximum values of 10 − 11 m/s2 of the logged ay, these errors are not tolerable for
an accurate estimation. The max error table is showing the same behavior, in terms
of goodness of the tyre models, and it emphatises the inaccuracies of the simulated
ay with the simple fitting lateral forces. The worst results are coming from the
Kiencke and Nielsen tyre model. This heuristic approach is showing always an
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overestimation of the lateral acceleration, as it is possible to see in the picture 8.12.
All these considerations lead to strongly encourage the use of a control technique, as
it is described with the Extended Kalman Filter. The development of a closed-loop
feedback system has enabled the simulation to produce highly accurate results.
The maximum errors visible in the table are related to spices, in the simulated
signals, that can be corrected through a moving average operation. A part from this
isolated points, practically in all the ramps the ay from EKF simulations have mean
errors between 0.4 − 0.8m/s2. Focussing on other possible sources of inaccuracies,
it is worth to notice that repeting the tests in better environmental condition could
really affect the estimations. The team has already started to organize new track
session in the summer period, in order to follow the procedure described by this
thesis for dry track layout. An other important factor are the working conditions
of the tires. With hot temperatures, higher grip is achieved and complete different
scenarios can be described. This report represents the first initial step that Ecurie
Aix is going to develop, in the next years, to have a deep understanding of the tyres.
The methodology described can be considered as reference for the following studies.
In particular, the analysis of the relaxation lengths is promising good results. All
the effort put on that topic is going to give satisfaction, repeting the sinusoidal
sweep maneuver as described in the chapter 6. The identification of the relaxation
lengths is affecting the estimation of the tire parameters. Strong improvements
for the estimation of the tyre coefficients are not expectable from the knowledge
of these parameters. An higher impact is instead given by the vertical moment of
inertia Izz. In this work the value used is coming from CAD geometries collected
by all the components of the car. This huge effort of all the team members is
admirable, but it leads to strong inaccuracies. To improve this condition, Ecurie
Aix has scheduled for the next year to collect data from a Vehicle Inertia Measuring
Machine (VIMM), spending part of the budget for these expensive experimentally
measurements. The values that are going to be collected by the VIMM are very
usefull, not only for this project, but for further analysis and other divisions in the
team. One of the possible next steps is to replicate the work of this thesis also for
the longitudinal dynamics. In this topic, other teams have initiated the estimation
of tyre parameters, especially to optimize the Acceleration event. The knowledge
and the methodology developed by this thesis are again source of inspiration for
that study. On the long term, the team is thinking to purchase or develop sensors
to validate the estimations of the tire parameters. Possible equipments are strain
gauges, wheel force trasducer WFT, accelerometers between rim and thread, as
described in chapter 2. In the next testing session, the developed tool with the
Extended Kalman Filter can be used to study the lateral forces developed in the
Skidpad event. This is possible thanks to the accuracy of the control technique that
is capable to enlarge the scenarios that are possible to be simulated. The LapSim
modified, with the logged data as input, is providing information on the grip level
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developed during the cornering maneuvers, typical of the Skidpad. Finally, the
effects on the performance of the different set-up can be analysed in terms of tire
lateral forces with the developed tool of this thesis.
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