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Abstract 

The future of driving systems is strongly oriented towards autonomous 

driving, and consequently, safety control systems aimed at ensuring the safety 

of the driver, passengers, and the surrounding environment are becoming 

increasingly present in modern vehicles. At the core of these systems is the 

necessary and solid development of cutting-edge control systems, but equally 

important is the understanding of the dynamics of the system to be controlled, 

which is crucial for achieving safety objectives. In this regard, the work 

developed within this document aims to study the dynamics of road vehicles, 

specifically their characterization in both linear and non-linear domains, by 

examining the effects that various parameters have on axle characteristics 

and, therefore, on the stability zone. The challenge in defining such zones lies 

precisely in the non-linear nature of the system under consideration. The basic 

approach has been to conduct simulations and develop a robust method for 

defining the stability and instability zones as vehicle operating conditions 

change, with the goal of defining stability maps on the phase plane and 

implementing them within a vehicle model equipped with a model-based 

predictive controller for complex autonomous driving scenarios in highway 

environments. 
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Abstract in Italiano 

Il futuro dei sistemi di guida è fortemente proiettato verso la guida autonoma 

e conseguentemente sempre più presenti nei veicoli moderni sono i sistemi di 

controllo mirati alla sicurezza del conducente, dei passeggeri e dell'ambiente 

circostante. Alla base di questi sistemi c'è sicuramente una necessaria e solida 

capacità di sviluppo di sistemi di controllo sempre più all'avanguardia, ma 

non solo, la conoscenza della dinamica del sistema che si intende controllare 

è di altrettanta importanza per la riuscita dell'obiettivo di sicurezza. A tal 

proposito il lavoro sviluppato all'interno di questo documento si prefigge di 

studiare la dinamica dei veicoli stradali, in particolare della loro 

caratterizzazione sia in campo lineare che non lineare, attraverso lo studio 

degli effetti che svariati parametri hanno sulle caratteristiche degli assali e 

dunque sulla zona di stabilità. La difficoltà nella definizione di tali zone sta 

proprio nella natura non lineare del sistema in esame. L'approccio di base è 

stato quello di condurre simulazioni e di sviluppare un metodo solido per la 

definizione delle zone di stabilità e di instabilità al variare delle condizioni di 

esercizio del veicolo con l'obiettivo di definire delle mappe di stabilità sul 

piano delle fasi e di implementarle all'interno di un modello di veicolo dotato 

di un controllore predittivo basato su modelli di veicolo per scenari complessi 

di guida autonoma in ambiente autostradale. 
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Introduction 

Vehicle dynamics is the study of how vehicles respond to driver inputs, 

external forces, and environmental conditions. It plays a critical role in 

understanding and improving vehicle stability, handling, ride comfort, and 

safety. As described by Milliken & Milliken (1995) [1] and Genta & Genta (2017) 

[2], vehicle dynamics is a multidisciplinary field that involves tire mechanics, 

chassis dynamics, aerodynamics, and control systems, all of which contribute 

to the overall behaviour of a vehicle in different operating conditions. 

As stated by the physicist Albert Einstein, “…the supreme goal of all theory is to 

make the irreducible basic elements as simple and as few as possible without having 

to surrender the adequate representation of a single datum of experience.” This 

philosophy is directly applicable to vehicle dynamics modeling, where the 

goal is to simplify the model as much as possible while retaining the essential 

behaviors that accurately reflect real-world performance. In vehicle dynamics, 

a simple yet effective model allows for easier computation, faster simulations, 

and applicability in real-time systems, making it crucial for both engineering 

design and practical applications in areas such as active safety systems, 

autonomous vehicles, and driver assistance technologies. 

This brings us to a key perspective shared by statistician and engineer George 

E.P. Box, who famously said, “All models are wrong, but some are useful.” This 

statement underscores the inherent limitations of all models. Every model, no 

matter how sophisticated, approximates reality and thus contains 

inaccuracies. However, if the inaccuracies are small enough and do not 

significantly affect the key predictions of the system, models remain 

incredibly powerful tools. In the context of vehicle dynamics, even simplified 

models—despite their inherent inaccuracies—can provide valuable insights 

that guide vehicle design, performance testing, and safety analysis, while also 

offering considerable cost and time efficiencies in the development process. 

The challenge, however, lies in the trade-off between simplicity and accuracy. 

While a simplified model reduces computational demands, there is always 

the risk that certain complexities of real-world vehicle behavior may be 

neglected. In these situations, a careful balance must be struck between a 

model's simplicity and its ability to produce effective results that closely 

match real-world observations. 
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The simple models also prove to be highly practical for real-time applications. 

Such models enable fast computations, making them ideal for real-time 

systems such as active suspension control, stability management, and 

autonomous vehicle navigation, where decisions need to be made in fractions 

of a second. However, simplifying the model too much—by omitting 

phenomena like roll motion, relaxation length, or cornering stiffness 

variation—can lead to inaccuracies in predicting the vehicle's true behavior, 

which can impact safety or performance. 

Moreover, these simple vehicle models can be effectively implemented in 

MATLAB for simulation and testing. MATLAB offers a flexible environment 

for rapidly developing and refining vehicle dynamics models, and the results 

of such simulations can be directly compared with real vehicle tests. This 

comparison allows for the validation and refinement of the simplified model, 

ensuring that its predictions align closely with actual vehicle behavior. 

Additionally, these simple models can be compared with more complex 

vehicle dynamics tools such as AdamsCar or other multibody simulation 

tools. These advanced tools provide detailed, high-fidelity simulations of 

vehicle behavior, accounting for complex interactions between components 

such as suspension, tire, and chassis. By comparing the results from simple 

models with those from more complex tools, engineers can evaluate the 

effectiveness and accuracy of the simplified model in predicting real-world 

behavior. This comparison also helps to identify the specific areas where 

simplifications may have compromised accuracy, allowing for further 

refinement or enhancement of the model. A structured approach to 

comparing simple and multibody models has been proposed by Galvagno et 

al. (2021) [3], who developed a methodology for parameter estimation of 

nonlinear single-track models using data from full-vehicle multibody 

simulations. Their research provides a framework for systematically 

extracting key parameters from multibody simulations and comparing them 

whit simplified models. By leveraging the findings of Galvagno et al. (2021) [3], 

simple vehicle models can be refined and validated against multibody 

simulations and experimental data, making them more reliable tools for 

preliminary vehicle design and control strategy development  

A fundamental challenge in vehicle dynamics is that it deals with nonlinear 

system, meaning that small changes in initial conditions, inputs, or system 

parameters can lead to disproportionately large variations in behaviour. As 

emphasized in S. H. Strogatz's (2015) [4] work on nonlinear dynamics and 

chaos, many real-world systems, including vehicle dynamics, exhibit 

nonlinear characteristics that require appropriate modelling approaches. 

Although vehicle dynamics is fundamentally nonlinear, linearized models 

can still provide accurate predictions of system behavior under certain 
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conditions. By linearizing the equations of motion around a fixed operating 

point, it is possible to analyze local stability, handling characteristics, and 

control system design. Linearized models remain essential tools for control 

strategies and real-time applications, as they allow for simpler mathematical 

treatment while still capturing critical system dynamics. 

However, when studying large-scale dynamic responses, limit handling, or 

transient behaviors, a nonlinear approach may be necessary to avoid losing 

key dynamic effects. In such cases, phase plane analysis, phase portraits, and 

bifurcation analysis provide deeper insights into vehicle stability and control 

limits.  

Phase plane analysis is a powerful tool in nonlinear vehicle dynamics that 

allows for a graphical representation of system trajectories in state space. The 

study by Zhang et al. (2011) [5] explores the phase plane representation of 

vehicle handling and stability, illustrating how critical state transitions can be 

detected by analyzing system trajectories in terms of yaw rate and sideslip 

angle. 

This approach is further expanded in Wang et al. (2023) [6], who investigate 

vehicle steering and braking stability regions. Their study shows how stability 

boundaries can be determined in phase space, providing a clear distinction 

between stable and unstable operating conditions. This analysis is crucial for 

understanding limit behavior in emergency maneuvers, where sudden 

changes in tire forces or road conditions can push the vehicle into an unstable 

regime. 

Additionally, Tian et al. (2023) [7] examine the impacts of pavement rutting, 

road alignment, and adverse weather on vehicle lateral stability. Their 

research highlights how external disturbances, such as uneven road surfaces 

or sudden friction changes, influence the phase trajectories, potentially 

leading to loss of control. This reinforces the need for robust vehicle stability 

control systems that can adapt to varying operating conditions.  

Beyond phase plane analysis, bifurcation theory is essential for understanding 

how vehicle stability changes as system parameters vary. A bifurcation occurs 

when a small change in a parameter (e.g., steering angle, speed, or road 

friction) causes a sudden qualitative change in vehicle behavior, such as 

transitioning from stable cornering to complete loss of control. 

The study by Della Rossa, Mastinu, and Piccardi (2012) [8] performs a 

bifurcation analysis of an automobile negotiating a curve, identifying critical 

thresholds beyond which the vehicle becomes unstable. Their findings are 

particularly relevant for designing stability control systems, as they help 
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define safe operating regions and critical intervention points for active control 

strategies. 

Moreover, Mastinu et al. (2024) [9] present an extensive investigation into how 

drivers lose control of their vehicles, emphasizing that the stability of an open-

loop vehicle system is highly influenced by driver actions. This research 

demonstrates that even a vehicle that is inherently stable can become unstable 

due to improper driver inputs or delayed corrective actions. 

These findings underline the fact that a realistic vehicle stability analysis must 

consider driver behavior. Consequently, closed-loop stability, where the 

driver (or an autonomous control system) interacts with the vehicle, must be 

analyzed alongside open-loop stability studies. This is especially important 

for autonomous vehicle control, where stability limits must be well-defined 

for automated decision-making. 

Ultimately The key to effective vehicle dynamics modeling is to find the 

optimal trade-off between simplicity and accuracy. A simplified model that 

includes critical phenomena like roll motion, relaxation length, and cornering 

stiffness variation ensures computational efficiency while still providing 

reliable predictions of real-world vehicle behavior. Since vehicle dynamics is 

inherently nonlinear, relying solely on linear approximations may lead to 

inaccurate predictions, making nonlinear studies crucial for high-fidelity 

analysis. 

Despite their inherent limitations, simplified models remain powerful tools 

for vehicle development, cost efficiency, and reduced time-to-market. By 

implementing these models in MATLAB, validating them with real vehicle 

tests, and comparing them with multibody simulation tools like AdamsCar, 

engineers can ensure that simplified models provide meaningful and 

actionable insights into vehicle dynamics, making them indispensable in 

modern automotive engineering. 

Structure of the thesis 

In the first chapter, the models used for simulations and subsequently for the 

post-processing of data will be presented, utilizing a linearized and simplified 

model of the equations of motion. This chapter will also include a discussion 

on the linearization of the system around its equilibrium points to study its 

stability. This analysis will later allow us to define the variation of critical 

vehicle speeds as lateral acceleration conditions change. In addition, a new 

model for defining the characteristics of axles will be introduced in this 

chapter, as well as the basic theory used to define phase diagrams. 
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In the second chapter, the maneuvers and related results will be introduced 

to characterize the examined vehicle across its entire operating range, 

considering the influence of various parameters that may alter its 

characteristics. This chapter is particularly important since, ultimately, the 

vehicle’s directional behavior is strongly dependent on the characteristics of 

the two axles and their variation under different operating conditions. The 

variations in axle characteristics will be used as known data for a model-based 

predictive system, which, through these modifications, will be able to 

determine the "real" capacity of both axles to generate lateral forces based on 

surrounding environmental data (such as road inclination, adhesion 

coefficients…) and the vehicle's operating conditions (including lateral 

acceleration…). Two methods for defining axle characteristics will be 

considered: the first relies on a full vehicle model implemented in Simulink 

and the use of well-known maneuvers in the literature, such as the ramp steer 

maneuver for vehicle characterization; the second is a model that requires 

only knowledge of tire and vehicle parameters (such as suspension 

parameters). The second approach allows for the estimation of axle 

characteristics without requiring a full vehicle simulation, thus offering 

greater computational efficiency compared to the first method. The results of 

both models will be analyzed in this document. 

In the third chapter, the discussion will focus on the nonlinear analysis of the 

vehicle system, with particular attention to the effectiveness of representing 

stability regions in the phase plane. The development of this tool, aimed at 

studying nonlinear dynamics and the variation of equilibrium points under 

different operating conditions, will enable us to validate the critical speed 

diagram as a function of lateral acceleration, developed using the linearized 

vehicle model around its equilibrium points. This represents a significant 

additional contribution to the numerous studies already present in the 

literature on vehicle stability. Furthermore, the stability regions evaluated in 

an open-loop configuration will serve as a starting point for further analysis 

aimed at identifying the effects of the driver (or alternatively, a model-based 

predictive controller) on the stability region. In this case, we can discuss the 

closed-loop stability of the system. It will be highlighted how the driver’s (or 

controller’s) preparedness and reaction times play a crucial role in stability; 

these factors can significantly modify the stability region of the standalone 

vehicle system (i.e., in open loop), even potentially leading to instability in 

understeering vehicles, which are, by definition, stable. Once identified and 

parameterized, these stability regions can be used by the trajectory planner in 

autonomous driving environments to assess the feasibility of generated 

trajectories in terms of dynamic stability. 
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Chapter 4 will highlight the contribution of this work to the study of vehicle 

dynamics through example cases in simulation, with a particular focus on the 

effective benefits that the analyzed methods bring to the complete 

autonomous driving model.  

 

Methodology  

The basic methodology was to analyze the vehicle system, first in open loop 

and in a second phase in closed loop, through simulations. 

The first analysis to be examined is an analysis of the vehicle's characteristics 

as a series of parameters vary, such as road inclination, adhesion coefficients, 

and characteristic tire angles. Two approaches for defining the axle 

characteristics will be analysed: the first requires a full simulation of the 

vehicle model and thus the definition of a manoeuvre scenario widely used in 

the literature, namely the ramp steer manoeuvre, while the second will use 

tire and vehicle data to estimate the characteristics and therefore does not 

require a full simulation of the entire vehicle. A flowchart summarizes the 

main steps carried out. 

 

Figure 0.1:Flow chart cornering stiffness computation 

 

Once the axle characteristics have been defined, a linearization model of these 

characteristics around the equilibrium points will be developed with the aim 

of defining the vehicle's characteristics as, for example, the lateral acceleration 

varies. This will make it possible to determine critical speeds and understeer 
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gradients not only around the system's origin but also for initial conditions 

different from this. 

Below, the logic behind the study of the open-loop stability of equilibrium 

points, around which the system is linearized, is briefly presented. 

 

 

Figure 0.2: Flow chart equilibrium points open-loop stability analysis 

 

Document Outline 

Briefly summarize the outline of the following thesis work.: 

• Linearized models remain valuable tools for understanding local 

stability and developing real-time control strategies, especially when 

analyzing small perturbations around equilibrium points. 

• Phase plane analysis helps visualize vehicle stability and instability 

regions, offering insights into how external disturbances or extreme 

maneuvers push the vehicle beyond safe limits. 

• Bifurcation analysis reveals critical stability thresholds, identifying 

transition points between controllable and uncontrollable behavior. 

• The open-loop stability of a vehicle is significantly affected by 

driver/controller behavior, making closed-loop analysis essential for 

realistic stability assessments, especially in autonomous vehicle 

development. 
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1 Vehicle Models and Tools 

In this first chapter, an analysis of the models used to obtain the simulation 

results and thus to generate the relevant data will be carried out. First, the 

adopted vehicle models will be presented, and subsequently, the tool capable 

of analysing vehicle stability in the nonlinear domain will be introduced. 

1.1. Vehicle Models 

1.1.1. Single-track model 

To study the behaviour of the vehicle in stationary conditions, a vehicle model 

called single-track model is used, of which the main equations are given 

below with reference to the following free body diagram.  

 

Figure 1.1: Free-body diagram of the single-track model 

 

The dynamic equations are:  

 

∑𝑋𝑖 = 𝑚𝑎𝑋

𝑁

𝑖

  ;   ∑𝑌𝑖 = 𝑚𝑎𝑦

𝑁

𝑖

  ;∑𝑀𝑧𝐺,𝑖

𝑁

𝑖

= 𝐽𝑧𝑟̇ 
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Where 𝑋𝑖 and 𝑌𝑖 are the force component along the longitudinal and lateral 

axis of the vehicle, in particular:  

 

{

𝐹𝑥𝐹
cos 𝛿𝐹 + 𝐹𝑥𝑅

cos 𝛿𝑟 − 𝐹𝑦𝐹
𝑠𝑖𝑛𝛿𝑓 − 𝐹𝑦𝑅

𝑠𝑖𝑛𝛿𝑟 − 𝐹𝑎𝑥
= 𝑚𝑎𝑥

𝐹𝑦𝐹
𝑐𝑜𝑠𝛿𝑓 + 𝐹𝑦𝑅

cos 𝛿𝑟 + 𝐹𝑥𝐹
𝑠𝑖𝑛𝛿𝑓 + 𝐹𝑥𝑅

𝑠𝑖𝑛𝛿𝑅 = 𝑚𝑎𝑦

𝐹𝑦𝐹
𝑐𝑜𝑠𝛿𝑓𝑎 − 𝐹𝑦𝑅

cos 𝛿𝑟𝑏 + 𝐹𝑥𝐹
𝑠𝑖𝑛𝛿𝑓𝑎−𝐹𝑥𝑅

𝑠𝑖𝑛𝛿𝑅𝑏 = 𝐽𝑧𝑟̇

 

 

Where 𝐹𝑥𝑖
and 𝐹𝑦𝑖

 are the longitudinal and lateral force of the i-th axle whit 

respect to the wheel reference frame and 𝐹𝑥𝑎
 is the aerodynamic drag force. 

Assuming small steering angle:  

𝑠𝑖𝑛𝛿𝑓 = 0   ; 𝑐𝑜𝑠𝛿𝑓 = 1 

 

 In our case we are considering a RWD and front steering vehicle so that:  

𝛿𝑟 = 0 ;  𝐹𝑥𝑟
≠ 0 ; 𝐹𝑥𝑓

= 0 

In this condition and considering 𝑉𝐺 = 𝑐𝑜𝑛𝑠𝑡  the second and third equations 

in () are decoupled from the first one so that we are decoupling the 

longitudinal motion of the vehicle whit respect to the lateral one. The dynamic 

equations that describe the lateral motion became:  

 

{
𝐹𝑦𝐹

+ 𝐹𝑦𝑅
= 𝑚𝑎𝑦

𝐹𝑦𝐹
𝑎 − 𝐹𝑦𝑅

𝑏 = 𝐽𝑧𝑟̇
 

 

Such a system of equations is now linearized, except for the term expressing 

the lateral forces. To address this, the linear axle model is introduced: 𝐹𝑦𝑖
=

 𝐶𝛼𝑖
⋅ 𝛼𝑖  

 

{
𝐶𝛼𝑓

𝛼𝑓  + 𝐶𝛼𝑟
𝛼𝑟 = 𝑚𝑎𝑦

𝐶𝛼𝑓
𝛼𝑓𝑎 − 𝐶𝛼𝑟

𝛼𝑟𝑏 = 𝐽𝑧𝑟̇
 

 

To eliminate the slip angle and to express the equation in terms of state 

variable 𝛽 and 𝜓, we can introduce the congruence equation:  

𝛼𝑓 = 𝛿𝑓 −
𝑣 + 𝑟 ⋅ 𝑎

𝑢
   ;  𝛼𝑟 = 𝛿𝑟 −

𝑣 − 𝑟 ⋅ 𝑏

𝑢
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{
𝐶𝛼𝑓

(𝛿𝑓 −
𝑣 + 𝑟 ⋅ 𝑎

𝑢
 )    + 𝐶𝛼𝑟

(−
𝑣 − 𝑟 ⋅ 𝑏

𝑢
) = 𝑚(𝑣̇ + 𝑢𝑟)

𝐶𝛼𝑓
(𝛿𝑓 −

𝑣 + 𝑟 ⋅ 𝑎

𝑢
 ) 𝑎 − 𝐶𝛼𝑟

(−
𝑣 − 𝑟 ⋅ 𝑏

𝑢
) 𝑏 = 𝐽𝑧𝑟̇

 

 

Where u and v are the longitudinal and lateral component of 𝑉𝐺, in particular:  

 

 𝑽𝑮
⃗⃗⃗⃗  ⃗ = 𝑢𝒊 + 𝑣𝒋  

 

Defining 𝛽 as the angle between 𝒊  and  𝑽𝑮
⃗⃗⃗⃗  ⃗  , assuming small 𝛽 angle   

 

𝑉𝐺 = 𝑢 = 𝑐𝑜𝑛𝑠𝑡.  ;  𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑣

𝑢
) =

𝑣

𝑢
  ; 𝛽̇ =  

𝑣̇

𝑢
   

 

The equation of motion ( ) can be rewritten in a state-space form:  

 

{
 
 

 
 

1

𝑚𝑉
[(−𝐶𝛼𝑓

− 𝐶𝛼𝑟
)𝛽 + (

𝐶𝛼𝑟
⋅ 𝑏 − 𝐶𝛼𝑓

⋅ 𝑎

𝑉
− 𝑚𝑉 ) 𝑟 + 𝐶𝛼𝑓

⋅ 𝛿] = 𝛽̇

1

𝐽
𝑧

 [(−𝐶𝛼𝑓
⋅ 𝑎 + 𝐶𝛼𝑟

⋅ 𝑏)𝛽 + (
−𝐶𝛼𝑓

⋅ 𝑎2 − 𝐶𝛼𝑟
⋅ 𝑏2

𝑉
) 𝑟 + 𝐶𝛼𝑓

⋅ 𝑎 ⋅ 𝛿  ] = 𝑟̇

 

 

We can define the simplified expression of the so-called derivatives of stability 

as: 

 

𝑌𝑟 = −
𝑎𝐶𝛼,𝑓−𝑏𝐶𝛼,𝑟

𝑉
  ;  𝑌𝛽 = −(𝐶𝛼,𝑓 + 𝐶𝛼,𝑟)  ;   𝑌𝛿 = 𝐶𝛼,𝑓 

  

𝑁𝑟 = −
𝑎2𝐶𝛼,𝑓+𝑏2𝐶𝛼,𝑟

𝑉
 ;  𝑁𝛽 = −(𝑎𝐶𝛼,𝑓 − 𝑏𝐶𝛼,𝑟)   ;   𝑁𝛿 = 𝑎𝐶𝛼,𝑓; 

 

In matrix form,  
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[𝛽̇
𝑟̇
] =

[
 
 
 
𝑌𝛽

𝑚𝑉

𝑌𝑟

𝑚𝑉
− 1

𝑁𝛽

𝐼𝑍

𝑁𝑟

𝐼𝑧 ]
 
 
 

[
𝛽
𝑟
] +

[
 
 
 
𝑌𝛿

𝑚𝑉
𝑁𝛿

𝐼𝑍 ]
 
 
 
𝛿𝑓 

 

1.1.2. Single-track model: Linearization around its fixed points 

With reference to [3], The objective of this part is to explain the mathematical 

model used to obtain the linearization of the system around its equilibrium 

points. 

At the beginning of the stability study a simple model was used to express the 

contributions of lateral forces in linear field, but now it is our wish to deepen 

the analysis of system stability also in non-linear field, this is then done by 

studying the stability of the system around its equilibrium points.  

We recall the EOM of the single-track model in the following form  

 

{
𝐹𝑦𝑓

+ 𝐹𝑦𝑟
= 𝑚𝑢(𝛽̇ + 𝑟)

𝐹𝑦𝑓
⋅ 𝑎 − 𝐹𝑦𝑟

⋅ 𝑏 = 𝐽𝑧 ⋅ 𝑟̇
 (A.1) 

We introduce the expressions useful to express the system in variational terms  

 

{
𝛽 = 𝛽̅ + 𝑑𝛽
𝑟 = 𝑟̅ + 𝑑𝑟
𝛿 = 𝛿̅ + 𝑑𝛿

 

 

Replacing A.1 we get  

 

{
𝐹𝑦𝑓

+ 𝐹𝑦𝑟
= 𝑚𝑢(𝑑𝛽̇ + 𝑟̅ + 𝑑𝑟)

𝐹𝑦𝑓
⋅ 𝑎 − 𝐹𝑦𝑟

⋅ 𝑏 = 𝐽𝑧 ⋅ 𝑑𝑟̇
 

 

To derive the constant terms, that is the contributions of lateral forces to 

equilibrium, we set the variations of the states to zero, thus obtaining:  

 

{
𝐹𝑦𝑓

+ 𝐹𝑦𝑟
= 𝑚𝑢𝑟̅

𝐹𝑦𝑓
⋅ 𝑎 = 𝐹𝑦𝑟

⋅ 𝑏
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We then introduce the relation that allows us to linearize the contributions of 

lateral forces by a truncated Taylor polynomial at first order. 

 

                                  𝐹𝑦𝑖
= 𝐹𝑦𝑖|𝛼=𝛼̅ + (

𝜕𝐹𝑦𝑖

𝜕𝛼𝑖
)
|𝛼=𝛼̅

⋅ (𝛼𝑖 − 𝛼̅𝑖)                   (A.2) 

 

Where 

- subscript i refers to the axle considered: front o rear;  

- terms 𝛼̅𝑖 is the value at the equilibrium point of the drift angle for the i-th 

axle, therefore it is a constant value. 

 - term 𝐹𝑦𝑖|𝛼=𝛼̅, an t is constant, it represents the value of lateral forces for the 

i-th axle at the equilibrium point α_i. From now on writing will be simplified 

as 𝐹̅𝑦𝑖
. 

-  𝐶𝛼̅𝑖
= (

𝜕𝐹𝑦𝑖

𝜕𝛼𝑖
)
|𝛼=𝛼̅

 

 

Considering also the following expressions of drift angles:  

 

𝛼𝑓 = 𝛿𝑓 −
𝑣+𝑟⋅𝑎

𝑢
   ;  𝛼𝑟 = −

𝑣−𝑟⋅𝑏

𝑢
 (A.3) 

 

Replacing the expressions of lateral forces (A.2) eand side slip angle(A.3) 

inside (A.1), we get  

 

 

{
 
 
 
 

 
 
 
       [𝐹̅𝑦𝑓

+ 𝐶𝛼̅𝑓
⋅ 𝛿𝑓 −

𝐶𝛼̅𝑓
⋅𝑣+𝐶𝛼̅𝑓

⋅𝑟⋅𝑎

𝑢
− 𝐶𝛼̅𝑓

⋅ 𝛼𝑓̅̅ ̅] + [𝐹̅𝑦𝑟
−

𝐶𝛼̅𝑟⋅𝑣−𝐶𝛼̅𝑟⋅𝑟⋅𝑏

𝑢
− 𝐶𝛼̅𝑟

⋅ 𝛼𝑟̅̅ ̅] = 𝑚𝑢(𝑑𝛽̇ + 𝑟𝑜 + 𝑑𝑟)    

 
 
 
 
 

[𝐹̅𝑦𝑓
+ 𝐶𝛼̅𝑓

⋅ 𝛿𝑓 −
𝐶𝛼̅𝑓

⋅𝑣+𝐶𝛼̅𝑓
⋅𝑟⋅𝑎

𝑢
− 𝐶𝛼̅𝑓

⋅ 𝛼𝑓̅̅ ̅] ⋅ 𝑎 − [𝐹̅𝑦𝑟
−

𝐶𝛼̅𝑟⋅𝑣−𝐶𝛼̅𝑟⋅𝑟⋅𝑏

𝑢
− 𝐶𝛼̅𝑟

⋅ 𝛼𝑟̅̅ ̅] ⋅ 𝑏 = 𝐽𝑧 ⋅ 𝑑𝑟̇

 (A.4) 

 

 

 

Considering also the following expressions:  
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𝛽 =
𝑣

𝑢
       ;       𝑢 = 𝑐𝑜𝑛𝑠𝑡. = 𝑉   ;        𝛽̇ =

𝑣̇

𝑉
 

 

 

{
 
 
 
 

 
 
 
       𝑚𝑉𝑟𝑜 + 𝐶𝛼̅𝑓

(𝛿𝑓̅ + 𝑑𝛿𝑓 − 𝛽̅ − 𝑑𝛽 −
𝑟̅ ⋅ 𝑎

𝑉
−

𝑑𝑟 ⋅ 𝑎

𝑉
 − 𝛼𝑓̅̅ ̅)  + 𝐶𝛼̅𝑟

(−𝛽̅ − 𝑑𝛽 +
𝑟̅ ⋅ 𝑏

𝑉
+

𝑑𝑟 ⋅ 𝑏

𝑉
 − 𝛼𝑟̅̅ ̅) = 𝑚𝑢(𝑑𝛽̇ + 𝑟𝑜 + 𝑑𝑟)    

 
 
 
 
 

𝐶𝛼̅𝑓
(𝛿𝑓̅ + 𝑑𝛿𝑓 − 𝛽̅ − 𝑑𝛽 −

𝑟̅ ⋅ 𝑎

𝑉
−

𝑑𝑟 ⋅ 𝑎

𝑉
 − 𝛼𝑓̅̅ ̅) ⋅ 𝑎 − 𝐶𝛼̅𝑟

(−𝛽̅ − 𝑑𝛽 +
𝑟̅ ⋅ 𝑏

𝑉
+

𝑑𝑟 ⋅ 𝑏

𝑉
 − 𝛼𝑟̅̅ ̅) ⋅ 𝑏 = 𝐽𝑧 ⋅ 𝑑𝑟̇

 

 

Replacing the constant contributions of lateral forces as previously stated and 

also clarifying the terms 𝛼𝑓̅̅ ̅ and  𝛼𝑟̅̅ ̅ as  

 

𝛼𝑓̅̅ ̅ = 𝛿𝑓
̅̅̅̅ −

𝑣̅ + 𝑟 ⋅ 𝑎
𝑉

   ;𝛼𝑟̅̅ ̅ = −
𝑣̅ − 𝑟 ⋅ 𝑏

𝑉
 

 

Where terms 𝛿𝑓̅, 𝑣̅, 𝑟̅ represent the steady state (constant) values for a given 

lateral acceleration, and replacing within EOM it is possible to express the system 
in terms of variation with respect to equilibrium conditions, obtaining the 
following system 

 

 

 

{
 
 
 

 
 
 𝑑𝛽̇ =

1

𝑚𝑉
  [(−𝐶𝛼̅𝑓

− 𝐶𝛼̅𝑟
)𝑑𝛽 + (

𝐶𝛼̅𝑟⋅𝑏−𝐶𝛼̅𝑓
⋅𝑎

𝑉
− 𝑚𝑉 ) 𝑑𝑟 + 𝐶𝛼̅𝑓

⋅ 𝑑𝛿]

 
 
 
 

𝑑𝑟̇ =
1

𝐽𝑧
 [(−𝐶𝛼̅𝑓

⋅ 𝑎 + 𝐶𝛼̅𝑟
⋅ 𝑏)𝑑𝛽 + (

−𝐶𝛼̅𝑓
⋅𝑎2−𝐶𝛼̅𝑟⋅𝑏2

𝑉
)𝑑𝑟 + 𝐶𝛼̅𝑓

⋅ 𝑎 ⋅ 𝑑𝛿  ]

(A.6) 

 

 

 It is now possible to express the system in the state space. 

 

𝒙̇ = 𝐴̅𝒙 + 𝐵̅𝒖 
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𝒙̇ = {𝑑𝛽̇, 𝑑𝑟̇}
𝑇
 ; 𝒙 = {𝑑𝛽, 𝑑𝑟}𝑇; 𝒖 = {𝑑𝛿𝑓}

𝑇
 

 

Matrices A and B correspond to linearized matrices in the equilibrium point 

introno. These matrices are now coefficients for ease of writing. 

 

𝐴̅ = [
𝑎11 𝑎12

𝑎21 𝑎22
]      𝐵̅ = [

𝑏11

𝑏21
] 

 

The following coefficients:  

 

𝑎11 = 
1

𝑚𝑉
 (−𝐶𝛼̅𝑓

− 𝐶𝛼̅𝑟
) 

𝑎12 = 
1

𝑚𝑉
  (

𝐶𝛼̅𝑟
⋅ 𝑏 − 𝐶𝛼̅𝑓

⋅ 𝑎

𝑉
− 𝑚𝑉 ) 

𝑎21 = 
1

𝐽
𝑧

 (−𝐶𝛼̅𝑓
⋅ 𝑎 + 𝐶𝛼̅𝑟

⋅ 𝑏) 

𝑎22 = 
1

𝐽
𝑧

 (
−𝐶𝛼̅𝑓

⋅ 𝑎2 − 𝐶𝛼̅𝑟
⋅ 𝑏2

𝑉
) 

 

𝑏11 = 
1

𝑚𝑉
  𝐶𝛼̅𝑓

 

𝑏21 = 
1

𝐽
𝑧

  𝐶𝛼 ̅𝑓
⋅ 𝑎 

 

We obtain the same matrices as in the case of the linear field study. The 

stability study is reduced to the study of the eigenvalues of the updated A 

matrix with drift stiffnesses, this time evaluated by simulations at different 

lateral acceleration values, such as:  

  

𝐶𝛼̅𝑖
= −(

𝜕𝐹𝑦𝑖

𝜕𝛼𝑖
)

|𝛼=𝛼̅
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1.1.3. Double-track model 

Finally, the complete model used in the simulations is presented below. This 

model, known in the literature as the double-track model, is augmented with 

the contributions of roll motion, which adds an additional degree of freedom 

to the system and increases the model's accuracy compared to the real vehicle 

system.  A general overview of the blocks implemented in Simulink is 

provided below. 

 

 

 

 

Figure 1.2 : Simulation Model Block Diagram 
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The free-body diagrams of the system and the main governing equations are 

provided below 

 

 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑎𝑥 =

1

𝑚
[(𝐹𝑥,𝐹𝐿

+ 𝐹𝑥,𝐹𝑅
) 𝑐𝑜𝑠𝛿𝐹 + (𝐹𝑥,𝑅𝐿

+ 𝐹𝑥,𝑅𝑅
) 𝑐𝑜𝑠𝛿𝑅 − (𝐹𝑦,𝐹𝐿

+ 𝐹𝑦,𝐹𝑅
) 𝑠𝑒𝑛𝛿𝐹 − (𝐹𝑦,𝑅𝐿

+ 𝐹𝑦,𝑅𝑅
) 𝑠𝑒𝑛𝛿𝑅 −

1

2
𝐴𝑓𝜌𝐶𝑥𝑢

2]

𝑎𝑦 =
1

𝑚
[(𝐹𝑥,𝐹𝐿

+ 𝐹𝑥,𝐹𝑅
) 𝑠𝑒𝑛𝛿𝑓 + (𝐹𝑥,𝑅𝐿

+ 𝐹𝑥,𝑅𝑅
) 𝑠𝑒𝑛𝛿𝑅 − (𝐹𝑦,𝐹𝐿

+ 𝐹𝑦,𝐹𝑅
) 𝑐𝑜𝑠𝛿𝐹 − (𝐹𝑦,𝑅𝐿

+ 𝐹𝑦,𝑅𝑅
) cos 𝛿𝑅]

ψ̈ =
1

𝐽𝑧
[(𝐹𝑥,𝐹𝐿

− 𝐹𝑥,𝐹𝑅
)
𝑡𝑓

2
⋅ 𝑐𝑜𝑠𝛿𝐹 + (𝐹𝑥,𝑅𝐿

− 𝐹𝑥,𝑅𝑅
)
𝑡𝑟
2

⋅ 𝑐𝑜𝑠𝛿𝑅 + (𝐹𝑥,𝐹𝐿
+ 𝐹𝑥,𝐹𝑅

) 𝑎 ⋅ 𝑠𝑒𝑛𝛿𝐹 + (𝐹𝑥,𝑅𝐿
+ 𝐹𝑥,𝑅𝑅

)𝑎 ⋅ 𝑠𝑒𝑛𝛿𝑅 +

+(𝐹𝑦,𝐹𝐿
+ 𝐹𝑦,𝐹𝑅

) 𝑎 ⋅ 𝑐𝑜𝑠𝛿𝐹 − (𝐹𝑦,𝑅𝐿
+ 𝐹𝑦,𝑅𝑅

)𝑏 ⋅ 𝑐𝑜𝑠𝛿𝑅 − (𝐹𝑦,𝐹𝐿
− 𝐹𝑦,𝐹𝑅

)
𝑡𝑓

2
⋅ 𝑠𝑒𝑛𝛿𝐹 + (𝐹𝑥,𝑅𝐿

− 𝐹𝑥,𝑅𝑅
)
𝑡𝑟
2

⋅ 𝑠𝑒𝑛𝛿𝑅] 

 

 

 

One of the critical phenomena that must be accounted for in even the simplest 

vehicle models is roll motion, which describes the lateral tilting of the vehicle 

body during cornering. Roll motion has a significant impact on stability, 

handling, and comfort. If ignored, the model might fail to reflect important 

aspects of vehicle behavior such as weight transfer, tire grip, and vehicle 

stability during high-speed cornering. Including roll motion in a simple 

model ensures that these behaviors are captured without overwhelming the 

system with unnecessary complexity. 
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𝜃̈ =
1

(𝐼𝑥𝑔
+ 𝑚ℎ𝑟𝑐

2 )
[ 𝑚𝑎𝑦ℎ𝑟𝑐𝑐𝑜𝑠𝜃 + 𝑚𝑔ℎ𝑟𝑐𝑠𝑒𝑛𝜃 − 𝐾𝑟𝑜𝑙𝑙𝜃 − 𝐶𝑟𝑜𝑙𝑙𝜃̇] 

 

 

Similarly, the relaxation length -the delay between the application of 

longitudinal/lateral forces (such as braking or acceleration) and the resulting 

tire response- must also be considered. The relaxation length reflects the time 

it takes for the tire to respond fully to changes in longitudinal/lateral forces 

due to factors such as tire deformation and road surface friction. In real-world 

driving, this delay can significantly affect vehicle handling, particularly 

during transient maneuvers such as braking or acceleration in corners. 

Neglecting the relaxation length in a simplified model could lead to 

inaccuracies in predicting the vehicle's response to such inputs. Including this 

phenomenon, even in a simplified form, allows the model to more accurately 

reflect the vehicle's dynamic response and improves the relevance of the 

model for real-time applications such as stability control and anti-lock braking 

systems. 
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Figure 1.3 : Relaxation Length block Diagram 

 

 

Furthermore, the tire model used will be presented in more detail in  Errore. 

L'origine riferimento non è stata trovata.. This model is employed to account 

for the nonlinearity of the tire characteristics, a choice that is crucial for an 

accurate comparison between the simulation model and the actual vehicle 

behaviour. 
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1.1.4. Vehicle model and Controller 

The goal of this thesis work is to leverage the developed axle characteristics 

and closed-loop stability maps to enhance the performance of the controller 

in autonomous driving scenarios. Below, the complete vehicle model 

equipped with a path generator and a model-based predictive controller will 

be briefly introduced. For further details, please refer to the reference [10]. 

 

 

Figure 1.4 : Flow Chart Controller Model 

 

For the analysis of the trajectory planner and controller blocks, reference is 

made to the "Highway Lane Change Planner" model available within Matlab's 

"Automated Driving Toolbox." For a more detailed analysis of these blocks, 

please refer to the documentation available in Matlab. However, it is 

important to specify the two most significant modifications introduced within 

these blocks. 

Trajectory Planner upgrade  

The trajectory planning block is responsible for generating and evaluating a 

set of feasible trajectories for the vehicle. However, in the baseline model 

available in Matlab’s toolbox, feasibility analyses did not include any 

verification of the system's dynamic stability. 

To address this, this thesis introduces this functionality by leveraging stability 

maps of the controlled vehicle in the phase plane. This verification aims to 

assess, based on the velocity and curvature parameters of the trajectory under 

consideration, the possible future state conditions of the system using 

updated axle characteristic maps according to the vehicle's operating 

conditions. 

The significance of this update will be analyzed in greater detail in Chapter 4, 

which focuses on simulation test 
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Adaptive MPC Controller  

A general adaptive MPC flow chart is presented below. This type of controller 

is a flexible approach to nonlinear system control. The general concept is that 

for each time-step a prediction over a well-defined time horizon is computed 

using a model of the plant, starting from the actual measured output and 

control moves. The command input selected is then chosen as the one that 

leads the plant to the closest desired behavior by means of some on-line 

optimization algorithm.  

 

Figure 1.5 :Adaptive MPC flow chart 

 

In our specific case, the model underlying the state estimator is a combination 

of a single-track model, like the one analyzed  in 1.1.1, and an adaptive cruise 

control model 

Whit reference to Matlab documentation [Path Following Control System], 

the combined model is described below. 

Adaptive Cruise Control Predictive Model 

The predictive state-space model for adaptive cruise control in matrix form is: 

𝑥(𝑡) = [
𝑎𝑥𝑜𝑢𝑡

𝑣𝑥𝑜𝑢𝑡
] ;  𝑦(𝑡) =  𝑣𝑥𝑜𝑢𝑡

 ;  𝑢(𝑡) = 𝑎𝑥𝑖𝑛
   

𝐴1 = [−
1

𝜏
0

1 0
] ;   𝐵1 = [

1

𝜏
0
] ; 𝐶1 = [0 1]  ; 𝐷1 = 0 

Here, τ is the Longitudinal acceleration tracking time constant parameter. 

https://it.mathworks.com/help/releases/R2024b/mpc/ref/pathfollowingcontrolsystem.html#mw_66d763ce-fef0-42db-befa-7399d11c1ace
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The input to this model is the longitudinal acceleration, and the output is the 

longitudinal velocity. 

Lane-Keeping Predictive Model 

The predictive state-space model for lane keeping in matrix form is: 

 

𝑥(𝑡) = [
𝑣𝑦

𝜓̇
] ;  𝑦(𝑡) =  [

𝑣𝑦

𝜓̇
] ;  𝑢(𝑡) = 𝛿𝑓   

 

𝐴2 =

[
 
 
 
 −

(𝐶𝑓 + 𝐶𝑟)

𝑚𝑣𝑥
−

(𝐶𝑓𝑎 − 𝐶𝑟𝑏)

𝑚𝑣𝑥
− 𝑣𝑥

−
(𝐶𝑓𝑎 − 𝐶𝑟𝑏)

𝐽𝑧𝑣𝑥
−

(𝐶𝑓𝑎
2 + 𝐶𝑟𝑏

2)

𝐽𝑧𝑣𝑥 ]
 
 
 
 

 ;   𝐵2 = [

1

𝑚
𝑎

𝐽𝑧

] ;  

𝐶2 = [
1 0
0 1

]  ;  𝐷2 = [ 0 0]𝑇 

Here: 

• 𝑣𝑦 is the lateral velocity. 

• 𝜓̇ is the yaw rate. 

• 𝛿𝑓 Steering wheel angle at the front tires. 

•  

In this model, the update of the cornering stiffness values 𝐶𝑓 and 𝐶𝑟 has been 

implemented to account for variations in the vehicle's operating conditions 

and the characteristics of the scenario (such as road inclination and adhesion 

coefficients). 

Combined Path-Following Predictive Model 

The Path Following Control System block combines these models as follows: 

 

𝑥(𝑡) = [

𝑎𝑥𝑜𝑢𝑡

𝑣𝑥𝑜𝑢𝑡

𝑣𝑦

𝜓̇

] ;  𝑢(𝑡) =  [
𝑎𝑥𝑜𝑢𝑡

𝛿𝑓
] 

 

𝐴 = [
𝐴1 0
0 𝐴2

] ;  𝐵 = [
𝐵1 0
0 𝐵2

] ;  
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𝐶 = [
𝐶1 0
0 𝐶2

] ;  𝐷 = [
𝐷1 0
0 𝐷2

] 

 

1.2. Tools 

1.2.1. Map-based Axial Cornering Stiffness tool 

This section will consider a different method for axle characterization. This 

model involves using only the block related to the tire-ground interaction, 

within which the semi-empirical Pacejka '96 model is implemented. 

Please note that the tire contact model used is the same adopted in previously 

described model.  

 

𝐹𝑦 = 𝐷 ⋅ 𝑠𝑒𝑛(𝐶 ⋅ atan(𝐵𝛼 − 𝐸(𝐵𝛼 − 𝑎𝑡𝑎𝑛𝐵𝛼))) 

 

Where B,C,D,E, are empirical coefficients. An example of nonlinear 

characteristics is reported in the following figure.  

 

 

 

 

Figure 1.6:Example of non-linear tire characteristics 
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Figure 1.7 : Pacejka 96 model 

 

The model requires the following inputs: 

Pac: These represent the various coefficients present in the semi-empirical formula. 

Gamma: Represents the camber angle, which is considered zero in the simulations 

performed in this section. 

Slip: The longitudinal slip of the individual tire. By varying this parameter, it is 

possible to estimate its influence on the axle characteristics. 

Alpha: Slip angles. 

Fz: Normal forces on the tire. As with slip, assigning different Fz values allows for 

simulating various conditions of lateral load transfer (and thus lateral accelerations). 

Mu: Tire-ground friction coefficient. 

Vcx: Velocity of the wheel center. 

R0: Radius of the undeformed tire. 

 

In the following discussion, the steps used within the algorithm for 

computing the cornering stiffness will be explained. By varying the 

previously described parameters, it will also be possible to estimate the 

influence these parameters have on the magnitude of forces the tire can 

exchange with the ground, which define the dynamic behavior of a vehicle. 

The validation tool will therefore be the characteristics previously determined 

for the vehicle under analysis through the ramp steer maneuvers in  2.3.2. 
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Method 

The following outlines the method used to obtain the characteristics of a single 

axle point by point, starting from the characteristics of the individual wheels 

on the same axle. This method assumes the validity of the following 

hypothesis: the wheels on the same axle are subjected to the same slip angle. 

Now, let us introduce some parameters that will be useful later: 

𝒒𝒓: Height from the ground to the roll center at the rear axle. 

𝒒𝒇: Height from the ground to the roll center at the front axle. 

q: Height from the ground to the roll center at the vehicle's center of gravity. 

𝑲𝑹𝒇
: Overall roll stiffness of the front axle. 

𝑲𝑹𝑽
: Overall roll stiffness of the vehicle. 

G_r: Roll gradient, defined as the ratio between the roll angle and lateral 

acceleration, which can be expressed as: 

 

𝐺𝑟 =
𝑚 ⋅ (ℎ − 𝑞)

𝐾𝑅𝑉
− 𝑚𝑔 ⋅ (ℎ − 𝑞)

 

 

Through the force and moment equilibrium expressions for the individual 

axles, the following expressions can be derived: 

 

Δ𝐹𝑧𝐹
= 

𝑚 ⋅ 𝑎𝑦

𝑡𝑓
⋅ (

𝑏

𝐿
⋅ 𝑞𝑓 +

𝐺𝑟

𝑚
⋅ 𝐾𝑅𝑓

) =  𝜂𝑓 ⋅ 𝑚 ⋅ 𝑎𝑦 

Δ𝐹𝑧𝑅
= 

𝑚 ⋅ 𝑎𝑦

𝑡𝑟
⋅ (

𝑎

𝐿
⋅ 𝑞𝑟 +

𝐺𝑟

𝑚
⋅ 𝐾𝑅𝑟

) = 𝜂𝑟 ⋅ 𝑚 ⋅ 𝑎𝑦 

 

By decomposing the lateral force contribution for the front and rear axles, the 

following expression can be defined, which will then be useful for 

characterizing the axle as the load transfer varies. 

 

Δ𝐹𝑧𝐹
= 𝜂𝑓 ⋅

𝐿

𝑏
⋅ 𝐹𝑦𝐹

 

Δ𝐹𝑧𝑅 = 𝜂𝑟 ⋅
𝐿

𝑎
⋅ 𝐹𝑦𝑅
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The following steps are now outlined for the axle characterization: 

Step 1: Test the individual tire (both inner and outer during a turn) under the 

effect of symmetric and opposite load transfer. 

Step 2: Sum the lateral forces of the inner and outer tires for each vertical load 

condition examined. 

Step 3: Evaluate the lateral forces developed under the given vertical load 

condition using the coefficients η_f and η_r. 

Step 4: Compare the lateral force value obtained in Step 3 and select the 

corresponding value according to the curves plotted in Step 2. 

The curve obtained by interpolating the data derived in Step 4 will correspond 

to the actual operating condition of the axle under the specific lateral load 

transfer conditions (or alternatively, the lateral acceleration). 

 

 

1.2.2. Phase Portrait and Bifurcation Analysis  

1.2.2.1. Phase Plane theoretical background  

There are mainly three causes of non-linearity of the vehicle system: the 

trigonometric functions which cannot be approximated to linear (small 

angles) in all operating conditions, the product of variables, and finally the 

most relevant one: the non-linear characteristics of the axles (in this model the 

tyres characteristic is computed by the Packejka empirical formula). Since 

picture are more helpful than formula for analysing nonlinear system, we 

now introduce a method to describe and interpret the nonlinear equation, and 

thus the stability of the vehicle, through the use of vector fields. A generic 

system can be seen as a vector field in the from  

 

𝒙̇ = 𝑓(𝒙) 

 

Where 𝒙 is the states vector and 𝑓(𝒙) is the non-linear function that describes 

the state evolution. In the analysed case, the following states of the system are 

defined as the side slip angle and the yaw rate.  

 

𝒙 = [𝛽, 𝜓̇]
𝑇
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To describe the trajectory of this state we can start from a generic initial 

condition, known as phase point, 𝒙𝒐 = [𝛽𝑜 , 𝜓𝑜̇]
𝑇
 and follow its variation 

according to 𝑓(𝒙). Unfortunately, the analytical solution of a nonlinear system 

is really hard to find analytically, and a quantitative solution is needed, so we 

can proceed by numerical integration of the equation. The most important 

property of a nonlinear continuous and differentiable system is that the 

existence and uniqueness theorem:  

“Considering the initial value problem 𝒙̇ = 𝑓(𝒙), 𝒙(0) = 𝒙𝒐, suppose that f is 

continuously differentiable system then for  𝒙𝒐 the initial value problem has a 

unique solution x(t). “  

Furthermore, this theorem led to state that all the different trajectories never 

intersect each other.  A graph that shows the different trajectory of the system 

starting from any possible initial condition is defined as phase portrait. The 

shape of this type of graph are governed by same particularly interesting 

point known as equilibrium solution or fixed point such that 𝒙̇ = [0 0]𝑇 . It is also 

possible to define two main categories of equilibrium point:  

• Stable: if any sufficiently small disturbances away from that point leads 

to a trajectory that ends in the same equilibrium point. We say that this 

type of point shows an attractive nature. 

• Unstable: if any sufficiently small disturbances from that point grow 

up in time. We say that this type of point shows a repulsive nature.  

 
However, the concept of “small disturbances” is complex to be define and we 

can generalize the above definition by saying that a stable equilibrium point 

is locally stable and not globally stable. 

An extremely important tool to study the nature of equilibrium point is the 

linearization around a fixed point, in fact the nature of the equilibrium point 

studied throughout linearization coincide whit the real nature of the 

equilibrium points of the nonlinear system.So, the main concept is that we can 

approximate the phase portrait near a fixed point by that of a corresponding 

linear system. The linearization of a system can be expressed by formulating 

the Taylor series expansion. In particular, whit respect to a generic two-

dimensional system like one needed to describe the lateral behaviour of the 

vehicle:  

 

𝑥1̇ = 𝑓(𝑥1, 𝑥2) 

𝑥2̇ = 𝑔(𝑥1, 𝑥2) 
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 it is possible to write:  

 

𝑓(𝑥1, 𝑥2) = 𝑓(𝑥0,1 , 𝑥0,2) +
𝜕𝑓

𝜕𝑥1
(𝑥0,1, 𝑥0,2) ⋅ (𝑥1 − 𝑥0,1) +

𝜕𝑓

𝜕𝑥2
(𝑥0,1, 𝑥0,2) ⋅ (𝑥2 − 𝑥0,2)

+ 𝑂(𝑥1
2, 𝑥2

2, 𝑥1𝑥2) 

𝑔(𝑥1, 𝑥2) = 𝑔(𝑥0,1 , 𝑥0,2) +
𝜕𝑔

𝜕𝑥1
(𝑥0,1, 𝑥0,2) ⋅ (𝑥1 − 𝑥0,1) +

𝜕𝑔

𝜕𝑥2
(𝑥0,1, 𝑥0,2) ⋅ (𝑥2 − 𝑥0,2)

+ 𝑂(𝑥1
2, 𝑥2

2, 𝑥1𝑥2) 

 

 

Where partial derivatives are to be evaluated at the fixed point (𝑥0,1, 𝑥0,2) , and 

by the definition of fixed point we can say that 𝑓(𝑥0,1 , 𝑥0,2) = 0 and 

𝑔(𝑥0,1 , 𝑥0,2) = 0 

In a matrix form  

(
𝑥1

𝑥2̇

̇
)  =  

[
 
 
 
𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2

𝜕𝑔

𝜕𝑥1

𝜕𝑔

𝜕𝑥2]
 
 
 

(𝑥0,1,𝑥0,2)

(
𝑥1

𝑥2
) + 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑡𝑒𝑟𝑚𝑠 

Where A=[

𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2

𝜕𝑔

𝜕𝑥1

𝜕𝑔

𝜕𝑥2

]

(𝑥0,1,𝑥0,2)

is the Jacobian matrix of the system at the fixed 

point (𝑥0,1, 𝑥0,2). If the Quadratic terms are negligible, we obtain the linearized 

system:  

 

(
𝑥1

𝑥2̇

̇
)  =  

[
 
 
 
𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2

𝜕𝑔

𝜕𝑥1

𝜕𝑔

𝜕𝑥2]
 
 
 

(𝑥0,1,𝑥0,2)

(
𝑥1

𝑥2
) 

It is now possible to discuss the classification of the fixed point of the 

linearized system, based on matrix A, as a function of the sign of the trace, 

determinant, and discriminant of A.  

If 𝐴 =  [
𝑎 𝑏

𝑐 𝑑
]  by definition:  

 Trace(A):  𝜏 = a+d ;  

Det(A): Δ = 𝑎𝑑 − 𝑏𝑐 

Discriminant of general solution:  Δ𝑑 = 𝜏2 − 4Δ 

It is now possible to show all the different types of fixed point on a single 

graph.  
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Figure 1.8: Fixed Point Classification 

 

Whit reference to Figure 1.8: Fixed Point Classification, it is possible to see that 

the majority of fixed points belong to the category of saddle points, nodes and 

spirals. The other type of classification are borderline cases that occur typically 

in frictionless system, and they are not evaluated in this work. For further 

insights on the topic, refer to [4]. 

1.2.2.2. Bifurcation 

What has been discussed so far is useful for determining the stability region 

of the vehicle system in the nonlinear domain through the linearization of the 

system around its equilibrium points. However, this stability region is 

actually valid only under specific operating conditions of the vehicle. Looking 

at  Figure 3.2 and Figure 3.3 it is possible to see that a variation in steering 

angle changes the shape of the phase portrait and can also lead to equilibrium 

point destruction. The method by which it is possible to parameterize the 

behaviour of equilibrium points as certain operating conditions and 

parameters change is called bifurcation analysis. Bifurcation is the fundamental 

mechanism by which equilibrium points are created or destroyed, or change 

their nature (stable, unstable) as the parameters of the nonlinear system vary. 

In Chapter 2, several parameters will be analysed that can alter the vehicle's 

behaviour, even making an understeering vehicle behave as if it were 

oversteering. This is a critical aspect when attempting to parameterize the 

stability conditions of the vehicle to avoid instability phenomena.  

 

 

 



39 

 

 

2 Vehicle Characterization  

The aim of this chapter is to characterize the vehicle model used to obtain a 

clear understanding of its behaviour. The vehicle whose data is listed in Table 

2.1: Vehicle Data  has been subjected to specific maneuvers as described in 2.2 

for this purpose. 

2.1. Vehicle Data 

 The data of the analyzed vehicle is given below. It is useful to pay attention 

to the values of static load distribution, percentage of distribution of anti-roll 

bar stiffness for front axle and type of traction (RWD), because these 

parameters have been specially chosen to study the characterization of a 

vehicle tending to oversteer behaviour, and therefore unstable above a certain 

critical speed threshold.  

 

Table 2.1: Vehicle Data 

 value unit 

m 1600  [kg] 

L 2.6  [m] 

Jz 2860 [𝑘𝑔 ⋅ 𝑚2] 

a 1.56  [m] 

b 1.04  [m] 

Hg 0.65  [m] 

K 1.3 ⋅ 105 [Nm/rad] 

%ARB front 30 %  

Rs 13  

TBR 1  

Ro 3.28 ⋅ 10−1  [m] 

Toe Front -0.1 [deg] 

Toe Rear 0.1 [deg] 

𝑯𝒓𝒄𝒇𝒓𝒐𝒏𝒕
 40 [mm] 

𝑯𝒓𝒄𝒓𝒆𝒂𝒓
 100 [mm] 

Traction RWD [-] 
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2.2. Type of manoeuvres 

The types of manoeuvres that have been examined are well-known in 

literature and are referred to as: 

-  Ramp steer  

-  Step steer  

The first of these is particularly suitable for tracing the understeering and side 

slip characteristics of the vehicle with good approximation in linear field, 

while the second one is used to analyse the transient behaviour of the vehicle. 

2.3. Ramp Steer 

Table 2.2: Ramp Steer parameters. 

 value unit 

Steering angle slope  5  [deg/s] 

Vehicle speed 50  [Km/h] 

 

The maneuver consists of maintaining the vehicle's speed and gradually 

increasing,whit a constant rate, the steering: the increase in steering angle 

does not occur too quickly in order to maintain the study of vehicle dynamics 

as a progressive succession of equilibrium states.  

The parameters for speed, lateral acceleration and applied steering angle are 

given below 

 

Figure 2.1: Input Ramp Steer 
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2.3.1. Vehicle’s responses 

The vehicle's responses are provided here in terms of side slip angle and yaw 

rate as function of time. The choice of this type of maneuver is driven by the 

objective of characterizing the behaviour of the axles as the lateral acceleration 

varies, up to its maximum limit. 

 
(a)  

 
(b)  

Figure 2.2: (a) Yaw rate (b) Side slip as function of 𝑎𝑦. 

 

From the simulation data, it is also possible to evaluate the kinematic sideslip 

angle β₀ as: 

𝛽0 =
𝑏

𝑅
= 𝑏 ⋅

𝜓̇

𝑉
 

From this value and the computed value of the sideslip angle β, it is already 

possible to visualize β and β₀ as a function of lateral acceleration. 

 

Figure 2.3: Side Slip vs Kinematic Side Slip 
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2.3.2. Lateral Force and Cornering Stiffness  

The values of lateral forces and slip angles in output to the vehicle model are 

shown below. These values were then used to estimate the cornering stiffness 

of each axis.   

 

Figure 2.4: (a) Lateral Forces (b) Slip Angle as function of time 

 
(a)  

 
(b)  

  

 

 
(a)  

 
(b)  

Figure 2.5:(a) Lateral Forces (b) Slip Angle as function of 𝑎𝑦 

 

 

 

Based on the data of lateral forces and slip angles, the cornering stiffness 

values were calculated as the derivative of the lateral force with respect to the 

slip angle, thus as the slope of the characteristic in the [α-𝐹𝑦] plane. 
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𝐶𝛼𝑖
= −

𝜕𝐹𝑦𝑖

𝜕𝛼𝑖
 

 

 

Figure 2.6: Cornering Stiffness 

 

The selected values of cornering stiffness (approximation in linear field) 

around the origin are as follows:  

 

𝐶𝛼,𝑓 = 1.2756 ⋅ 105 𝑁/𝑟𝑎𝑑 

𝐶𝛼,𝑟 =  1.6969 ⋅ 105 𝑁/𝑟𝑎𝑑 
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2.3.3. Steady State Turning 

 

It is important to note that, by assuming constant velocity, and thus constant 

values for the derivatives of stability, we reduce matrix A to an LTI (Linear 

Time-Invariant) matrix. 

We can now visualize the system's stability by examining the signs of the 

eigenvalues of matrix A as the velocity 𝑣𝑥 varies. 

The graph in the complex plane in Figure 2.7: Root-Locus dependent on 

vehicle speed, shown below for the vehicle under analysis, is of particular 

interest. It illustrates the vehicle's oversteering nature. Under these 

conditions, the system’s eigenvalues have no imaginary part, indicating that 

no oscillatory behavior is expected before reaching an unstable condition 

when Re(λ) > 0. 

 

 

 

 

Figure 2.7: Root-Locus dependent on vehicle speed 

2.3.3.1. Understeering curve & Side Slip Angle curve 

A vehicle is defined as understeering (oversteering), if more (less) steering 

angle to the wheels is required to increase the curvature 𝜌 than in the case of 

kinematic steering. A neutral vehicle will require exactly the kinematic 
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steering angle to increase the curvature, which in case of small angle is 

directly proportional to vehicle wheelbase L and inversely proportional to R. 

Like what was done in section 2.3.1, it is possible to evaluate the kinematic 

steering value from the simulation data as: 

 

𝛿0 =
𝐿

𝑅
= 𝐿 ⋅

𝜓̇

𝑉
 

 

Figure 2.8: Steering angle: Compare whit kinematic value. 

 

The following expression is known as understeering gradient.  

 

𝐾𝑢𝑠 =
𝑚

𝑙
 ( 

𝑏

𝐶𝛼,𝑓
−

𝑎

𝐶𝛼,𝑟
) = −0.0367 𝑑𝑒𝑔/(𝑚/𝑠2 ) 

 

Taking the steering ratio 𝑅𝑆 into account, it is possible to express this value in 

terms of degrees at the steering wheel. 

 

𝐾𝑢𝑠𝑠𝑤 =
𝑚

𝑙
 ( 

𝑏

𝐶𝛼,𝑓
−

𝑎

𝐶𝛼,𝑟
) ⋅ 𝑅𝑆 = −0.4769  𝑑𝑒𝑔/(𝑚/𝑠2 ) 
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From the expression of the critical speed in relation to the understeer gradient, 

we obtain: 

𝑉𝑐𝑟𝑖𝑡 = √−
𝐿

𝐾𝑢𝑠
=   229.4    

𝑘𝑚

ℎ
  

 

This value is consistent with what was derived in Figure 2.7: Root-Locus 

dependent on vehicle speed. 

While the sideslip gradient:  

𝐾𝛽 = −
𝑚𝑟𝑒𝑎𝑟

𝐶𝛼,𝑟
  − 0.3245  𝑑𝑒𝑔/(𝑚/𝑠^2   ) 

 

This characteristic of the lateral dynamics of a vehicle is shown in the plane 

[ay,(𝛿 − 𝛿𝑘𝑖𝑛 )], the orange line shows the understeering characteristic of the 

vehicle within the linear field. This in fact overlaps to the characteristic 

obtained from the simulation data for small accelerations (<0.4g). 

 

Figure 2.9: Understeering and Sideslip Characteristics 
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2.3.4. Gain  

The following responses define the more relevant steady-state output-input 

relationships of the vehicle. 

For a constant forward speed 𝑣𝑥  and for a constant input 𝛿 the steady state 

output -input relationships are defined as follows:  

 

 

𝜌

𝛿
  =

1

𝑅𝛿
=

𝑌𝛿𝑁𝛽 − 𝑌𝛽𝑁𝛿

𝑣𝑥( 𝑁𝑟𝑌𝛽 − 𝑌𝑟𝑁𝛽 + 𝑚𝑣𝑥𝑁𝛽)
=

1

𝐿 + 𝐾𝑈𝑆𝑉
2 

 

𝛽

𝛿
=

𝑁𝛿( 𝑌𝑟 − 𝑚𝑣𝑥) − 𝑁𝑟𝑌𝛿

𝑌𝑟𝑁𝛽 − 𝑌𝑟𝑁𝛽 + 𝑚𝑣𝑥𝑌𝛽
=

𝑏 + 𝐾𝛽𝑉2

𝐿 + 𝐾𝑈𝑆𝑉
2
 

 

𝑟

𝛿
=

𝜌

𝛿
 𝑣𝑥 =

𝑌𝛿𝑁𝛽 − 𝑌𝛽𝑁𝛿

( 𝑁𝑟𝑌𝛽 − 𝑌𝑟𝑁𝛽 + 𝑚𝑣𝑥𝑁𝛽)
=

𝑉

𝐿 + 𝐾𝑈𝑆𝑉
2
 

 

𝑎𝑦

𝛿
=

𝜌

𝛿
 𝑣𝑥

2 =
𝑣𝑥(𝑌𝛿𝑁𝛽 − 𝑌𝛽𝑁𝛿)

( 𝑁𝑟𝑌𝛽 − 𝑌𝑟𝑁𝛽 + 𝑚𝑣𝑥𝑁𝛽)
=

𝑉2

𝐿 + 𝐾𝑈𝑆𝑉
2 

 

 

 

 
Figure 2.10: Gain 

Looking at the graph related to the steady state curvature gain it is possible to 

state that the curvature for extremely low speed is coincident whit respect to 

the condition of kinematic steering. Subsequently, the oversteering behaviour 
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becomes evident as the curvature grows up until, for a given vehicle speed 

(critical speed), it reaches infinite value. In this condition for a finite application 

of steering angle the curvature radius trajectory tends to zero and the centre 

of rotation is coincident whit the vehicle centre of gravity: this condition in 

defined as tailspin and must be avoided. Above this value of speed, the 

curvature tends to zero for high value of speed. The critical speed value is 

consistent with what is defined in the graph Figure 2.7: Root-Locus dependent 

on vehicle speed. 

 

The following provides the same information as the previous graph but with 

greater zoom into the stable operating range. 
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2.4. Cornering stiffness linearization around a 

fixed point. 

The results obtained using the method analyzed in 1.1.2  

 

Figure 2.11:Cornering stiffness 

 

Figure 2.12: Real part eigenvalues of matrices 𝐴̅ 
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Figure 2.13: Critical Speed affected by lateral acceleration. 

 

Validation  

To validate the model described above through simulation, several tests were 

conducted for different values of lateral acceleration. The manoeuvre 

considered involves a gradual approach to a given equilibrium condition, 

slow enough to neglect transient effects, followed by the maintenance of the 

desired equilibrium state. At a certain time instant (𝑡𝑠𝑡𝑎𝑟𝑡), a disturbance is 

applied to the system, specifically: an "impulse" on the throttle, starting from 

the initial condition corresponding to the throttle value required to maintain 

the vehicle at the desired constant speed, and increasing to a maximum limit, 

held for 1 second. This induces the rear axle (as the traction axle for the vehicle 

considered) to operate under conditions of higher longitudinal forces through 

the powertrain, which will lead, among other things, to a destabilization of 

the lateral forces relative to the equilibrium conditions. Below is a graph 

showing the throttle input for the simulations performed. 
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Figure 2.14: Input.  

At the time instants when the disturbance is not applied (before 𝑡𝑠𝑡𝑎𝑟𝑡 and 

after 𝑡𝑒𝑛𝑑 ), the position of the throttle pedal is determined by the algorithm 

implemented in the model, which is responsible for maintaining a constant 

speed for that given equilibrium condition. 

Method  

To assess the consistency of the critical speed, values found as a function of 

lateral acceleration using the manoeuvres described above, two vehicle speed 

conditions will be simulated for each given value of lateral acceleration. 

Specifically, one condition will be below the critical speed, and the other will 

be at the critical speed for that value of lateral acceleration. What we expect to 

observe from these simulations is that for a speed below the identified critical 

speed, the application of the disturbance does not lead to divergence of the 

states and thus does not cause instability in the system. However, for a speed 

that coincides (within a sufficiently small range) with the critical speed, 

instability is expected to occur. 

The critical speeds identified through simulation are consistent with those 

reported in Figure 2.13: Critical Speed affected by lateral . 

The following will analyze some of the simulation parameters considered 

important in order to understand which of them are responsible for the 

various instability conditions. These graphs repeat similar trends for the 

different lateral acceleration conditions, and therefore it is deemed 

appropriate not to include them for each of the simulations conducted. 
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Simulation 1 : ay=0.2g. 

-Tyre Forces 

 

Figure 2.15: Longitudinal Rear Forces 

 

 
(a)  

 
(b)  

Figure 2.16: (a) Front Lateral Forces (b) Rear Lateral Forces 

 

- Tyre longitudinal slip and lateral slip  

 

The following presents two of the quantities directly responsible for the 

vehicle's instability. In fact, the slip angles are the first to increase significantly 

in the case of an unstable simulation. Their increase also leads to a reduction 

in the axle's ability to generate not only lateral forces but also longitudinal 

forces, as confirmed by the subsequent rise in longitudinal slip. The vehicle 

reaches the so-called "spin-out" condition when the longitudinal slip reaches 

excessively high values, indicating that the axle is no longer able to exchange 

forces with the ground sufficient to maintain the vehicle in that specific 
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equilibrium state. For lower speeds than the identified critical speeds, the 

increase in slip angles is much more contained, allowing the vehicle to regain 

its equilibrium condition once the disturbance is no longer applied. 

 

.   

 
(a)  

 
(b)  

Figure 2.17 : Slip Angle (a) stable - (b) unstable 

 

 

 
(a)  

 
(b)  

Figure 2.18 : Longitudinal Slip Ratio (a) stable - (b) unstable 
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-Lateral Acceleration and side slip angle 

 
(a)  

 
(b)  

  

Figure 2.19: (a) lateral acceleration (b) side slip angle.  

 

For the subsequent simulations with higher lateral acceleration values, only 

the graphs related to lateral acceleration are shown, as previously mentioned. 

 

Simulation 2: ay=0.3g. 

 
(a)  

 
(b)  

  

Figure 2.20:(a) lateral acceleration (b) side slip angle 
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Simulation 3: ay=0.5g. 

 
(a)  

 

 
(b)  

Figure 2.21:(a) lateral acceleration (b) side slip angle 

Simulation 4: ay=0.8g. 

 
(a)  

 
(b)  

Figure 2.22:(a) lateral acceleration (b) side slip angle 

 

Later in the text these results will be further validated using the phase plane 

method discussed in 1.2.2. 
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2.5. Impact of road inclination on lateral dynamic. 

 

In this section, an additional variable that can affect the vehicle's characteristic 

curves will be considered. This variable is the road inclination, which causes 

a longitudinal load transfer that, in extreme situations, can reduce or even 

increments the vehicle's stability range, particularly by altering its 

understeering coefficient and so its critical speed. 

 

2.5.1. Implementation within the vehicle model. 

The objective is to study the effect of longitudinal load transfer, caused by a 

longitudinal road inclination, on the vehicle's characteristic curves. 

 

 

Figure 2.23: Free body diagram 

 

Whit reference to the Figure 2.23: Free body diagram , the Equations of vertical 

forces are presented below, highlighting the contributions that have been 

added to the vehicle model to account for the road inclination α. 

 

𝐹𝑧1
= 𝑚𝑔 (

𝑏

𝐿
cos α −

ℎ𝑔

L
sin 𝛼 ) −

𝑚𝑥̈ℎ𝐺

𝐿
−

𝐹𝑥𝑎ℎ𝑎

𝐿
 

𝐹𝑧2
 = 𝑚𝑔(

𝑎

𝐿
cos α +

ℎ𝑔

L
sin 𝛼 ) +

𝑚𝑥̈ℎ𝐺

𝐿
+

𝐹𝑥𝑎ℎ𝑎

𝐿
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Defining the road inclination as change in height along the length, we can 

write: 

𝑖 = tan𝛼 

This term can be expressed as a percentage, where 100% corresponds to an 

angle        𝛼 = 45°.  The parameter i will represent the input value of the vehicle 

model: its implementation is provided below. 

 

Figure 2.24:  Normal forces computation, Block diagram 

 

2.5.2. Effects on Critical Speed 

In order to study the effects of road inclination, the same procedure as in the 

previous sections was repeated to identify new values for the cornering 

stiffness, understeer coefficients, and consequently critical speed. The table 

below shows the derived values. 

 

Table 2.3: Cornering stiffness affected by road inclination 

i  

  𝐶𝛼𝑓
[⋅ 105

𝑁

𝑟𝑎𝑑
] 𝐶𝛼𝑟

[⋅ 105
𝑁

𝑟𝑎𝑑
] 𝐾𝑢𝑠 [

𝑑𝑒𝑔
𝑚
𝑠2

] ⋅ 𝑅𝑠 

0% 1.26641 1.69519 −0.4539   

5% 1.23859 1.72154 −0.3048 

-5% 1.30840 1.66690 −0.6463 
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Referring to the work done in 2.3.4, it is possible to visualize the behaviour of 

the critical speed as a function of road inclination on the curvature gain graph. 

 

 

Figure 2.25: Critical Speed affected by road inclination 

 

From this graph, it is evident that the critical condition occurs when the 

vehicle is in a downhill phase, which increases its oversteering tendency. For 

this reason, we have decided to explore this aspect in more detail by 

simulating negative slopes steeper than those typically encountered on 

highways (maximum 5%). This will be the topic of discussion in the next 

section. 
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2.5.3. Effect of negative slopes 

As previously mentioned, the objective of this section is to examine the effect 

of extreme negative slopes. The characterization operations carried out 

previously were repeated over a wide range of inclinations, from 0% to -40%. 

Let us now examine the effects on the cornering stiffness of the axles and their 

percentage variation with reference to the flat road scenario. 

 

 

Figure 2.26: Cornering stiffness affected by negative road inclination 

 

 

Figure 2.27: Cornering stiffness: Effect in terms of percentage variation 
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Similarly to what has been discussed so far, the values of the understeer 

gradient and its percentage variation are obtained as the road inclination 

changes. 

 

 

Figure 2.28:Characteristic curves affected by road inclination 

 

 

Figure 2.29: Understeering gradient: effect in terms of percentage variation 
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Finally, it is possible to show the effects of road inclination on the critical 

speed values calculated, as shown in 2.3.3.1. 

 

 

Figure 2.30: Critical speed affected by road inclination 

 

 

Figure 2.31:Critical speed: effect in terms of percentage variation 
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2.5.4. Effect on an Understeering vehicle  

Based on what is shown in 2.5.3, it can be stated that the road inclination can 

alter the dynamic behaviour of the vehicle: in particular, this does not occur 

only with oversteering vehicles, but it is also possible to make a vehicle that 

is designed to be understeering, and thus asymptotically stable, unstable.  

The objective of this paragraph is to demonstrate this phenomenon of 

instability in an understeering vehicle. Starting from the data in Table 2.1: 

Vehicle Data, by modifying the most relevant parameters, such as the load 

distribution and the percentage distribution of the anti-roll bars on the front 

axle, we can characterize an understeering vehicle when the road inclination 

is zero. In particular, starting from the oversteering vehicle analyzed in this 

text, the following modifications have been made: 

• Weight distribution parameters, specifically with a 60% distribution on 

the front axle. 

• Anti-roll bar distribution parameters between the front and rear, with 

50% allocated to the front bars 

 

Once its characteristic is defined, the objective is to show how a negative road 

inclination can lead to an oversteering behaviour instead. 

 

 

Figure 2.32: understeering vehicle root-locus 

 

 

 

 



63 

 

 

Instead, applying an inclination of i=-5%  

 

Table 2.4:understeering to oversteering 

i  

  𝐶𝛼𝑓
[⋅ 105

𝑁

𝑟𝑎𝑑
] 𝐶𝛼𝑟

[⋅ 105
𝑁

𝑟𝑎𝑑
] 𝐾𝑢𝑠 [

𝑑𝑒𝑔
𝑚
𝑠2

] ⋅ 𝑅𝑠 

0% 1.7684 1.2145 0.1184 

-5% 1.7926 1.1779 −0.0581 

 

 

Figure 2.33:Understeering to oversteering 
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2.6. Impact of longitudinal acceleration on lateral 

dynamic. 

In this section, an additional variable that can affect the vehicle's characteristic 

curves will be considered. This variable is the longitudinal acceleration, which 

causes a longitudinal load transfer that, in extreme situations, can reduce or 

even increments the vehicle's stability range, particularly by altering its 

understeering coefficient and so its critical speed. 

2.6.1. Implementation within the vehicle model. 

As with the study of road inclination, the effects of load transfer due to 

longitudinal acceleration will be analyzed by imposing a longitudinal 

acceleration value as input to the model. This input causes a load transfer to 

the tires, while the actual longitudinal acceleration of the vehicle remains the 

value required to maintain constant speed. It is therefore clear that this 

approach does not account for the effects of a given longitudinal acceleration 

on changes in speed or on the increase in the longitudinal forces transmitted 

from the tire to the road. Consequently, the study is limited to analyzing the 

contribution of longitudinal load transfer in relation to the vehicle's lateral 

dynamics. 

2.6.2. Effect on cornering stiffness 

Let us now examine the effects on the cornering stiffness of the axles and their 

percentage variation with reference to the zero longitudinal acceleration 

scenario. 

 

Figure 2.34: Cornering stiffness affected by ax 
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Figure 2.35: Cornering stiffness percentage variation 

 

 

Figure 2.36:Characteristic curves affected by long. accel. 

 

 

Finally, it is possible to show the effects of road inclination on the critical 

speed values calculated, as shown in 2.3.3.1. 
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Figure 2.37: Critical speed affected by long. accel. 
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2.6.3. Combined effect of negative acceleration and negative 

road inclination 

As can be seen from the sections. 2.5 and 2.6, both the effect of a negative road 

slope and the effect of vehicle deceleration contribute to a progressive increase 

in the vehicle's oversteering behavior. The goal of this section is to highlight 

how the combined effect of these two phenomena can lead to critical driving 

situations. The combined impact of these two factors is likely to occur; for 

example, consider a downhill mountain road. As soon as a hairpin curve 

approaches, the instinctive response is to reduce the vehicle's speed by 

applying the brakes, resulting in deceleration and consequently a load 

transfer to the front axle. In such a situation, where the slope and deceleration 

are not negligible, instability can occur even in a vehicle that is prone to 

understeering. 

 

 

 
(a)  

 
(b)  

Figure 2.38 : Combinate effect of deceleration and negative road inclination. 
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2.7. Impact of friction coefficient on lateral 

dynamic. 

 

A similar analysis to the one conducted in 2.5 is presented in this section, with 

the aim of studying the effects of variations in the tire-road friction coefficient. 

We will specifically examine how this parameter influences the lateral 

behaviour of the vehicle. 

Let us now examine the effects on the cornering stiffness of the axles and their 

percentage variation with reference to the unitary friction coefficient. 

 

 

 

Figure 2.39:Cornering stiffness affected by friction coefficient 
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Figure 2.40:Cornering stiffness: Effect in terms of percentage variation 

 

Similarly to what has been discussed so far, the values of the understeer 

gradient and its percentage variation (around the origin) are obtained as the 

friction coefficient changes. In this case, it is interesting to note how, as the 

lateral acceleration increases, the vehicle's behaviour tends to become more 

understeering. 

 

 

Figure 2.41:Characteristic curves affected by friction coefficient 
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Figure 2.42:Understeering gradient: effect in terms of percentage variation 

 

 

 

Figure 2.43: Yaw rate characteristic affected by friction coefficient 
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The effect on the critical speed, obtained as in 2.5.3 is not significant since the 

cornering stiffness values for small lateral accelerations are not noticeably 

influenced by the adhesion coefficients. 

 

Figure 2.44:Critical speed affected by friction coefficient 

 

         Figure 2.45:Critical speed: effect in terms of percentage variation 
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2.8. Characteristic of the axles through the tire 

model 

With reference to the model discussed in Errore. L'origine riferimento non è 

stata trovata. we present below the results obtained, which will then be 

compared to those obtained by the equations of the single-track model from 

the simulations of ramp steer of the complete vehicle model discussed in 1.1.3. 

In addition, other tire parameters will be analyzed as parameters that could 

alter the characteristics of the vehicle. 

2.8.1. Results 

The following shows the results obtained using the model just described. 

 

 

Figure 2.46 : Single tyre Lateral Front Forces affected by load transfer 

 

Figure 2.47 : Single tyre Lateral Rear Forces affected by load transfer 
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For the method to be valid, there must be a correspondence between the curve 

obtained using the coefficients η_f and η_r, which describe the lateral force 

variation with respect to the load transfer 𝛥𝐹𝑍, and the actual characteristic 

obtained through the simulation of the nonlinear model. In this regard, the 

following figure shows the two overlapping curves. 

 

Figure 2.48 : 𝐹𝑦(Δ𝐹𝑧) compare between nonlinear and tyre model 

 

Once this characteristic has been verified, it is now possible, following the 

steps described in the previous section, to evaluate the axle characterization 

point by point. 
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Figure 2.49 : Computation of the Front Axle characteristic  

 

 

 

Figure 2.50 : Computation of the Rear Axle characteristic 

 

Beyond the maximum lateral acceleration limit, no further increase in load 

transfer occurs, and the intersection considered so far loses its significance. 

Under these conditions, which are no longer of a stationary nature, the 

characteristic curves were obtained by taking as a reference the lateral force 

characteristic at the maximum load transfer limit. Below, the two obtained 

curves are presented in detail. 
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(a)  

 
(b)  

Figure 2.51 :. Front (a) and Rear (b) Tyre characteristic 

 

 

The results obtained in terms of axle characteristics () using the method 

described in this section are now compared with the results obtained through 

the ramp steer maneuver, as presented in section 2.3Figure 2.6, whit respect 

to the nonlinear model. 

 

 

 

Figure 2.52 : Cornering Stiffness compare between non-linear and tyre model 

 

It is interesting to note that through this comparison, it can be affirmed that 

the point-by-point construction method for the axle characteristic is capable 

of accurately describing how the axles behave as the slip angles change. This 

result is very important because it allows the axle characteristics to be 
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described without the need for nonlinear field simulations, thus reducing the 

computational time of the process. Therefore, knowing the geometry of the 

roll centers, roll gradient, vehicle roll stiffness (broken down in terms of 

springs and anti-roll bars), weight distribution, and the Pacejka model 

parameters dependent on tire properties is sufficient to estimate the axle 

characteristics with good approximation. These characteristics are directly 

responsible for the dynamic behavior of the vehicle. 

This method also, as mentioned earlier, allows for a detailed analysis of the 

influence that certain parameters (such as longitudinal slip, camber angles, 

and toe angles) have directly on the tire model. By analyzing the variation in 

cornering stiffness caused by these parameters, it will be possible to estimate 

their influence on the stability region of a vehicle exhibiting oversteer, like the 

one under analysis, but also on the potential to trigger oversteering 

phenomena and, thus, instability, even in vehicles that are typically stable, 

such as understeering vehicles. 

2.8.2. Longitudinal Slip  

By repeating the procedure described in 0 for different values of longitudinal 

slip, it is possible to estimate the effect that this parameter has on the axle 

characteristics and, consequently, on the lateral dynamic capability of the 

vehicle under examination. 

 

 
(a)  

 
(b)  

Figure 2.53 : (a) Front (b) Rear Cornering Stiffness affected by longitudinal slip  
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2.8.3. Toe Angle  

In a manner similar to what was done for longitudinal slip, the results of the 

influence of the toe angle on the characteristics (front and rear) of the axles are 

presented. 

To clarify the sign convention used for the toe angle, reference is made to the 

following image, [11]. 

 

 

Figure 2.54 : Sign convention for toe angle. Left: Toe-in, right: Toe-out 

 

 
(a)  

 
(b)  

Figure 2.55 : (a) Front (b) Rear Cornering Stiffness affected by toe angle 
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2.8.4. Camber Angle  

The following shows the influence of the camber angle on cornering stiffness. 

To clarify the sign convention used for the camber angle, reference is made to 

the following image, [11]. 

 

 

Figure 2.56 : Sign convention for camber angle 

 

 
(a)  

(b)  

Figure 2.57 : (a) Front (b) Rear Cornering Stiffness affected by camber angle 
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2.9. Yaw Moment Control  

2.9.1. Objective  

The objective of this section is to revisit the work presented in a 1993 paper by 

Y. Shibahata [12] which introduces the development of a method called the 

'β-method.' This method aims to determine the potentially available yaw 

moment as a function of the vehicle’s operating conditions. There are several 

techniques that can be employed to control the vehicle’s yaw moment, which 

vary depending on the type of vehicle considered. For example, torque 

vectoring techniques are widely used, particularly in vehicles equipped with 

one or more electric powertrains [13], or active control systems such as the 

Electronic Stability Program (ESP). 

However, in this section, we will focus on control actions for the yaw moment 

using only the steering angle, either by the driver or by a control system 

capable of directly influencing the steering. 

First, a simplified vehicle model, the bicycle model, will be presented to obtain 

the desired maps. After discussing this, further contributions will be 

introduced using a double-track model, equipped with four tires, which takes 

into account the contribution of the track width, traction forces, and self-

aligning torques to estimate the potentially available yaw moment. 

Additionally, with the aim of generalizing these maps, which in the reference 

paper are described on the (M_z, β) plane, a solution will be presented to 

express the potentially available yaw moment as a function of lateral 

acceleration, parameter that provides a more descriptive representation of the 

vehicle’s operating conditions than the sole steering angle. 

 

2.9.2. Method  

 

With reference to [12] to obtain the maps on the 〖(M〗_z, β) plane, it is 

necessary to be able, for a given steering angle, to evaluate the yaw moment 

based on the forces exerted by the tires as the vehicle’s operating conditions 

change, particularly as the sideslip angle β changes. In order to assess the 

magnitude of the lateral forces that can be exerted by the tire, we decided to 

use the axle characteristics previously derived through the method described 

in section 2.8. However, to use these characteristics, it is necessary to know 

the values of the tire slip angles under the given conditions of speed, sideslip 

angle, and yaw rate. For this purpose, the following methodology was 

employed: Starting from the various conditions of u, v, and ψ̇ of the vehicle, 
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the values of u_i and v_i for the i-th wheel are evaluated in order to determine 

the slip angle of each wheel. 

 

 

 

Figure 2.58 : Global Reference frame (X,Y), Vehicle reference frame (x,y) and Tyre 

reference frame (𝑥𝑖, 𝑦𝑖) 

 

𝑉𝐺
⃗⃗⃗⃗ = 𝑉𝑖⃗⃗ + 𝜓̇ ∧ (𝑃𝑖 − 𝐺̅̅ ̅̅ ̅̅ ̅̅ )  

 

Term 𝜓̇ ∧ (𝑃𝑖 − 𝐺̅̅ ̅̅ ̅̅ ̅̅ )  can be expressed as 

  

|

𝒊 𝒋 𝒌

0 0 𝜓̇
𝑥𝑖 𝑦𝑖 0

| =  −𝜓̇𝑦𝑖 ⋅ 𝒊 + 𝜓̇𝑥𝑖 ⋅ 𝒋 + 0 

 

𝑉𝑖⃗⃗ =  (
𝑢𝑖

𝑣𝑖
)  =  (

𝑢

𝑣
) + (

−𝜓̇𝑦𝑖

𝜓̇𝑥𝑖
) 

 

and finally the i-th wheel’s side slip angle can be expressed as  

𝛼𝑖 = arctan (
𝑣 + 𝜓̇𝑥𝑖

𝑢 − 𝜓̇𝑦𝑖

) − 𝛿𝑖 

Further considerations should be made on the term 𝛿𝑖 that in a vehicle with 

toe angles other than zero does not exactly represent the steering angle value 

to the wheels, as  

𝛿𝑖 = 𝛿𝑤 ± 𝛿0 
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where 𝛿0 is the value of static toe angle applied to the wheel, and the sign 

depends instead on which wheel you are considering, that is if this represents 

the curved inner or outer wheel.  

 

The diagram of the model used is given below.  

 

 

Figure 2.59: Simulink 

 

It is important to highlight the recruitment that has been undertaken, 

including:  

• Small side slip  𝛽 in order to define 𝑢 ≃ 𝑉.  

• Steering with parallel wheels so that we can consider the bicycle model, 

therefore a single wheel for each axle, as a first approximation, for 

calculating the moment of yaw potentially expressible.  

• The characteristics of axles are the result of a study on the effect that 

load transfer has, see 2.8. 

• In this first analysis the effects of longitudinal forces are useful to keep 

the vehicle at a constant speed and the effects of moments of self-

alignment of tyres are ignored.  

 

 

 

At this point it is necessary to know what relationship the attitude angle has 

with the vehicle’s yaw speed, which is not a characteristic of the vehicle itself 

and depends on the handling conditions and the speed: in order to establish 

a relationship between these two elements, the ramp steer manoeuvre, 
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previously analyzed, was taken as reference (2.3), driven at the speed of 70
𝑘𝑚

ℎ
, 

As shown in the graph below.  

 

Figure 2.60: (𝛽 , 𝜓̇) 

 

Thus, setting successive values of the flying angle to the wheels and imposing 

on the vehicle these conditions of states (𝛽 , 𝜓̇), the lateral forces expressed at 

the front and rear axles respectively are derived. 

In this first analysis the yaw moment potentially expressible from each of 

these state conditions is derived from the following equation of equilibrium 

at rotation:  

 

𝑀𝑧 = 𝐹𝑦 ,𝑓𝑟𝑜𝑛𝑡⋅ 𝑎 − 𝐹𝑦 ,𝑟𝑒𝑎𝑟⋅ 𝑏 

 

The following is a graph showing the results obtained for steering angle 

values at wheels between [−5∘, 5∘] , alternately steering angles between 

[−65∘, 65∘]. 
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Figure 2.61: 𝑀𝑧 - ( 𝛽 − 𝛽0)  

 

The area between the maximum and minimum curve M_z defines the zone 

within which it is still possible to correct the vehicle’s trajectory by using the 

steering angle. The double arrows in the graph are intended to show how this 

area is progressively reduced as it increases in the form of the term ( 𝛽 − 𝛽0). 

The asymmetry of this graph can be justified by the fact that part of the 

adhesion useful to generate positive moments is already used precisely to 

bring the vehicle in those dates’ conditions (𝛽 , 𝜓̇), while for opposite flying 

angles that generate negative moments you still have full availability of the 

adhesion. 

It is also important to point out that for negative steering angles, there is no 

"bundling" of the curves when varying from 𝛽, what instead happens for 

positive flying angles from the direction of those necessary to bring the vehicle 

in those given states. The above appearance suggests that the maximum 

steering excursion is a very important aspect when trying to stabilize the 

vehicle motion through the action of the steering alone: For example, the cars 

that compete in the drift championships are specially fitted with suspensions 

that have, among other things, the objective of maximizing the range of the 

steering wheels, just for the reasons just described. In the same way, however, 

an increase in steering possibilities does not directly result in an increase in 

the moment of yaw in the case of a positive flying angle, as is evident from 

the graph above, beyond a certain value of ( 𝛽 − 𝛽0) the increase in flying 
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angle even has the effect of reducing the maximum value of Mz due to the fact 

that large values of drift anglers are being applied to the front axle and thus 

result in its saturation. 

 

Term ( 𝛽 − 𝛽0) has a direct correspondence with the lateral acceleration, it is 

therefore possible to express the embarrassing moment also in relation to the 

lateral acceleration. The graph below shows this. 

 

 

Figure 2.62: 𝑀𝑧 − 𝑎𝑦 

 

Again, as was to be expected, there is a reduction in the area between the 

maximum and minimum Mz curves with increasing lateral acceleration. In 

particular, one can notice the aggressive reduction that results from being 

near the lateral acceleration limit: what we defined as an area degenerates at 

a point in correspondence with the maximum value of lateral acceleration, 

which is a symptom of the fact that in this condition no action applied to the 

flying angle is more able to stabilize the vehicle.   

 

As we have already said in the introduction of this paragraph, our intention 

is to show the results of the same analysis, conducted this time taking into 

account a more complete vehicle model: dual track model. In particular, the 
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use of a four-wheel model can eliminate the previously introduced parallel-

wheel steering hypothesis which is much more representative of real road 

vehicle steering systems. The contributions of longitudinal forces and self-

aligning moments of tires are also considered in this analysis.  

Below is a graph useful to understand the model used and its equation of 

balance at rotation.  

 

 

𝑀𝑧 = ∑𝐹𝑥𝑖
𝑐𝑜𝑠𝛿𝑤𝑖

𝑦𝑖 + ∑𝐹𝑥𝑖
𝑠𝑖𝑛𝛿𝑤𝑖

𝑥𝑖 + ∑𝐹𝑦𝑖
𝑐𝑜𝑠𝛿𝑤𝑖

𝑥𝑖 + ∑𝐹𝑦𝑖
𝑠𝑖𝑛𝛿𝑤𝑖

𝑦𝑖 + ∑𝑀𝑍𝑖
 

4

𝑖=1

4

𝑖=1

4

𝑖=1

4

𝑖=1

 

4

𝑖=1

  

 

The results obtained are quite comparable to those obtained with the single-

track model and with the characteristic curves of the axles which consider the 

load transfer. The smallest differences can be attributed to the contribution of 

longitudinal forces and self-alignment moments. In particular, the presence of 

these contributions results in a slight reduction of the area between the two 

curves. The vehicle being considered, as described in previous chapters, has 

an open differential and due to load transfer the curved inner wheel 

undergoes a significant decrease of vertical load in favor of the outer wheel, 

this phenomenon means that the longitudinal forces on the outer wheel are 

modularly greater than those generated by the inner wheel. Due to this 

difference, a moment is generated around the x-axis that has positive 

direction: therefore, for positive flying angles we see, compared to the single-

track model, an increase in the available moment precisely due to the 

contribution just described. Conversely, for negative side slip angles, the 

contribution described above results in a reduction of the available moment.  
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Figure 2.63: Results Comparison between single-track and dual-track 
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3 Phase Plane 

Whit reference to the work presented in 1.1.2, the methodology described in 

1.2.2  allows for the validation of the critical speed graph as a function of 

lateral acceleration, which is shown below. 

 

Figure 3.1: Critical speed affected by lateral acceleration 

 

Each point on this curve is expected to represent an unstable equilibrium 

point, meaning that a small perturbation from the equilibrium condition 

would lead to the divergence of the system states. For example, at 𝑉 =  89
𝑘𝑚

ℎ
 

and 𝛿𝑠𝑤  =  16°, the system is in a condition of 𝑎𝑦 = 0.8𝑔. For this lateral 

acceleration value, the chosen speed corresponds exactly to the identified 

critical speed under this specific acceleration condition. The resulting phase 

plane is shown in Figure 3.2: in particular, the equilibrium condition reached 

corresponds to the steady-state condition of the states identified in 2.4. 

Additionally, a comparison is made with a scenario where the steering angle 

is slightly increased to 𝛿𝑠𝑤  =  18°, which, at the same speed, results in a 

higher lateral acceleration. Under these conditions, it is no longer possible to 

identify any equilibrium points within the phase diagram. The red point in 

the left figure in Figure 3.2 represents the unstable equilibrium point. In 

contrast, the right figure confirms the absence of any equilibrium points, for 

the negative value of side slip angle, with all initial conditions leading to 

diverging trajectories in the phase plane. 
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(a)  

 
(b)  

Figure 3.2 : Phase Portrait at V=89 km/h for two value of steering angle 

The same considerations can be made by selecting another point on the curve 

in Figure 3.1: Critical speed affected by lateral acceleration. For example, 

choosing a speed of 𝑉 =  155
𝑘𝑚

ℎ
 and a steering angle of 𝛿𝑠𝑤 = 2.7°, we find 

ourselves in a condition of 𝑎𝑦 = 0.5𝑔 . For this lateral acceleration value, the 

selected speed corresponds exactly to the identified critical speed under that 

specific acceleration condition. Therefore, as in the previous case, we expect 

the presence of a single unstable equilibrium point for this condition.  

 

 
(a)  

 
(b)  

Figure 3.3 : Phase Portrait at 𝑉 = 155
𝑘𝑚

ℎ
 for two value of steering angle 
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3.1.1. Bifurcation  

The aim of the following discussion is to demonstrate how some of the 

parameters analysed in Chapter 2 affect the stability region of the phase plane 

previously described. The generation of these stability maps, varying with the 

vehicle's operating conditions, will then be introduced in the following 

chapter within a vehicle model equipped with a predictive controller. The 

controller's objective must be to account, among other things, for the vehicle's 

stability limits as the operating conditions change. 

3.1.1.1. Effect of steering angle 

With reference to what has been described so far, it is possible to analyse the 

behaviour of the system's equilibrium points at a given speed as the steering 

angle varies. Specifically, under the described conditions, we expect to find 

the two unstable equilibrium points of the system: one is at a steering angle 

of approximately 𝛿𝑠𝑤 = 16∘. 

 

 
(a)  

 
(b)  

  

Figure 3.4 :bifurcation analysis stable fixed point (black solid line) unstable fixed 

point (red and blue dashed line) 

 

 

The above can be displayed in a three-dimensional graph, by combining the 

results of the bifurcation tool with the phase plane. 
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Figure 3.5 : Steering Angle bifurcation analysis 

The trend of the equilibrium points on the plane of the phases when the 

steering wheel angle varies can be more clearly visualized in Figure 3.6 : 

Equilibrium points affected by steering angle. It is intended to point out that 

within the treatment the points of stable equilibrium will be indicated with 

circles, while the points of unstable equilibrium by means of rhombuses and 

stars.  

 

 

Figure 3.6 : Equilibrium points affected by steering angle 
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3.1.1.2. Effect of longitudinal road inclination  

In order to show the effect of the longitudinal inclination of the road on the 

balance points, the trend of these on the plane of the phases  

 

 
(a)  

 
(b)  

Figure 3.7 : Equilibrium Point affected by road inclination 

 

It is clear that the trend of these points also depends on other parameters such 

as vehicle longitudinal speed and steering angle: looking at figure 3.7 we see 

how the increase (in absolute value) of the value i indicating the percentage 

of longitudinal road inclination for figure (a) does not lead to a coincidence 

between stable equilibrium point (circle) and unstable equilibrium points 

(diamond, star), that is to say for that given value of longitudinal speed it is 

still possible to define an area of stability even if reduced due to the inclination 

of the road. In contrast, for the case (b) where the vehicle speed is higher there 

is an overlap for a value of i = 35%, that is, in correspondence to this value it 

is no longer possible to define a stability area since the point identified is a 

single unstable equilibrium point and even small disturbances around this 

point can lead to the divergence of states and therefore to phenomena of 

instability. The objective of the controller will therefore be in the following 

chapters to be able to detect the reduction of the stability zone and then make 

invalid trajectories that may lead to instability phenomena, before they can 

occur. The above-mentioned points out the importance of defining such maps 

as multidimensional maps which take account of the mutual presence of 

certain operating conditions. 
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3.1.1.3. Effect of longitudinal acceleration  

It is important to clarify that this analysis was conducted by implementing the 

longitudinal acceleration contribution, as done in Chapter 2, solely as a 

contribution to longitudinal load transfer. However, in a future analysis, it 

would be advisable to also consider the causes generating longitudinal 

acceleration, such as traction and braking forces on the vehicle. This would 

allow accounting for the effect these forces have on the tires' ability to generate 

lateral forces. 

Nonetheless, this analysis highlights the significant impact that longitudinal 

load transfers have on the stability region. 

 
(a)  

 
(b)  

Figure 3.8 : Equilibrium points affected by longitudinal acceleration 

 

 

Figure 3.9 :  Equilibrium points affected by longitudinal acceleration 
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3.1.1.4. Effect of adherence coefficient 

 
(a)  

 
(b)  

Figure 3.10: Equilibrium Point affected by adherence coefficient 

 

Unlike the cases analyzed so far, studying the effect of the coefficient of 

adhesion we note from FIG (b) that there is no progressive reduction in the 

stability zone: in particular by changing from a value of .... at a value of ... the 

distance between stable and unstable equilibrium points is drastically 

reduced to zero, leading to the coincidence of stable and unstable equilibrium 

points, thus defining a single unstable equilibrium point. We can see what is 

described above also in the figure below which shows the bifurcation analysis 

conducted to vary the coefficient of adhesion for the two variables of system 

state.  

 

 
(a)  

 
(b)  

Figure 3.11 : Adhesion coefficient Bifurcation Analysis 
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However, what has been described above does not hold true when analyzed 

through the phase plane generation tool. This leads to the conclusion that, 

currently, the bifurcation analysis tool still has some limitations in correctly 

identifying the system's equilibrium points. For future development, it would 

be advisable to analyze the neighborhood of the unstable equilibrium points 

with a finer discretization, possibly starting from the trajectory generation 

tool in the phase plane. 
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3.2. Open-Loop Stability region definition  

 

After obtaining a sufficient number of phase maps and diagrams, a method is 

required to define the stability zone in which the vehicle can operate under 

varying operating conditions. In reference to the work carried out on the 

autonomous driving model preceding this thesis ( ) the stability zone was 

defined as follows.  

 

Figure 3.12 : Example of Stability area previously considered 

 

With reference to Figure 3.11, the area of a rectangle whose vertices were the 

two points of unstable equilibrium of the vehicle was defined as the stability 

zone of the vehicle. This method, while working, considered the trajectories 

of states (when initial conditions vary) that are in fact stable. In addition, 

within the controller model the verification of feasibility of the trajectory in 

terms of stability was implemented by simply verifying that states were 

greater than a maximum value and less than a minimum value (values 

defined by the sides of the green rectangle in the figure)  

With the objective of extending the stability zone considered valid in this 

work, a new method for defining the defined stable area was developed, 

presented below.  

Starting from the bifurcation analysis conducted on the various parameters, 

the defined points of unstable equilibrium are taken as reference for the 

definition of the stability zone. The distance between these two points is taken 

as a reference to define the short diagonal of a rhomboidal figure. Choosing 

the short diagonal and setting the parameters for defining the rhomboidal 

figure, such as, length of the larger diagonal by a gain added to the short 

diagonal previously defined, and angle between the two diagonals identified, 
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it is possible to define a diamond shape in which the states are defined as 

stable. The above is easier to understand by looking at the figure below.  

 

 

Figure 3.13 : Example of stability area definition 

 

Take as reference, by way of example, the bifurcation analysis conducted on 

the flying angle at speed 𝑉 = 130
𝑘𝑚

ℎ
 . Selecting, for example, the unstable 

balance points for a flying angle 𝛿𝑠𝑤 = 4∘ the region marked in green in FIG 

is defined as stable.  

To ensure that this region comprises only and exclusively stable points, it is 

possible to display the identified area directly in the phase plan which also 

shows the vector field. In FIG, the red dotted square represents what was 

defined in the previous work as a stable zone, In green the region of stability 

estimated by the new method is highlighted and in red the remaining part of 

the phase diagram which is called unstable. 

 

 

Figure 3.14 : Example of stability area over vector field 
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In this way we see how now we have as reference a zone of stability much 

larger than the only area of the square dotted in red. This allows us to work 

under conditions which are in fact stable, and which were previously 

discarded.  
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3.3. Closed-Loop Stability region definition 

3.3.1. Method  

The objective is to define a stability region for the vehicle system equipped 

with a model-based predictive controller. Building on previous work [9], the 

stability of the system, including both the vehicle and the driver (or 

controller), is analyzed through the application of an impulse-type 

disturbance. This type of disturbance provides the system with an initial state 

velocity, allowing different initial state conditions to be imposed by varying 

the disturbance magnitude. 

By letting the simulation evolve, it is then possible to evaluate which initial 

state conditions lead to stability or instability. This distinction will certainly 

depend on the vehicle conditions but, more importantly, on the controller 

design and specific parameters such as the actuation delay of the commands, 

and under- or over-steering nature of the vehicle. 

3.3.2. Simulation Scenario  

The implemented simulation scenario consists of a straight trajectory (thus, a 

straight reference trajectory for the controller) traveled at a constant speed of  

𝑉 = 120
𝑘𝑚

ℎ
 .The lane boundaries have been set wide enough to allow the 

vehicle's trajectory to evolve without considering real roadway constraints. 

This is because the objective of this study is not to analyze conditions leading 

to the vehicle running off the road, but rather to ensure sufficient space for 

performing the maneuver. 
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3.3.3. Disturbance Implementation  

A lateral force disturbance and a yaw moment disturbance were applied to 

the vehicle at a given instant t= 1s with a duration of Δt=0.2s during the 

maneuver. This disturbance was implemented by introducing an external 

lateral force contribution into the equation that calculates the vehicle's lateral 

acceleration. The force magnitude progressively increased to start from 

gradually larger initial state conditions, allowing for an analysis of its effects 

on the vehicle-controller system. A similar approach was used to introduce 

the yaw moment disturbance. 

Below, the details of the implemented Simulink block are presented, where 

the blue area represents the added external force contribution. 

.  
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With reference to the models detailed in the first chapter, the geometric 

position in the planes of the disturbance force and disturbance moment 

application points is reported below.  

 

 

 

 

 

The equations highlighting the contribution of the added disturbance 

components are presented below. 

 

𝑎𝑦 =
1

𝑚
[(𝐹𝑥,𝐹𝐿

+ 𝐹𝑥,𝐹𝑅
) 𝑠𝑒𝑛𝛿𝑓 + (𝐹𝑥,𝑅𝐿

+ 𝐹𝑥,𝑅𝑅
) 𝑠𝑒𝑛𝛿𝑅 − (𝐹𝑦,𝐹𝐿

+ 𝐹𝑦,𝐹𝑅
) 𝑐𝑜𝑠𝛿𝐹 − (𝐹𝑦,𝑅𝐿

+ 𝐹𝑦,𝑅𝑅
) cos 𝛿𝑅 + 𝐹𝑦𝑑𝑖𝑠𝑡

]

ψ̈ =
1

𝐽𝑧
[(𝐹𝑥,𝐹𝐿

− 𝐹𝑥,𝐹𝑅
)
𝑡𝑓

2
⋅ 𝑐𝑜𝑠𝛿𝐹 + (𝐹𝑥,𝑅𝐿

− 𝐹𝑥,𝑅𝑅
)
𝑡𝑟
2

⋅ 𝑐𝑜𝑠𝛿𝑅 + (𝐹𝑥,𝐹𝐿
+ 𝐹𝑥,𝐹𝑅

) 𝑎 ⋅ 𝑠𝑒𝑛𝛿𝐹 + (𝐹𝑥,𝑅𝐿
+ 𝐹𝑥,𝑅𝑅

) 𝑎 ⋅ 𝑠𝑒𝑛𝛿𝑅 +

+(𝐹𝑦,𝐹𝐿
+ 𝐹𝑦,𝐹𝑅

) 𝑎 ⋅ 𝑐𝑜𝑠𝛿𝐹 − (𝐹𝑦,𝑅𝐿
+ 𝐹𝑦,𝑅𝑅

) 𝑏 ⋅ 𝑐𝑜𝑠𝛿𝑅 − (𝐹𝑦,𝐹𝐿
− 𝐹𝑦,𝐹𝑅

)
𝑡𝑓

2
⋅ 𝑠𝑒𝑛𝛿𝐹 + (𝐹𝑥,𝑅𝐿

− 𝐹𝑥,𝑅𝑅
)
𝑡𝑟
2

⋅ 𝑠𝑒𝑛𝛿𝑅 + 𝑀𝑧𝑑𝑖𝑠𝑡
] 
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𝜃̈ =
1

(𝐼𝑥𝑔
+ 𝑚ℎ𝑟𝑐

2 )
[ 𝑚𝑎𝑦ℎ𝑟𝑐𝑐𝑜𝑠𝜃 + 𝑚𝑔ℎ𝑟𝑐𝑠𝑒𝑛𝜃 − 𝐾𝑟𝑜𝑙𝑙𝜃 − 𝐶𝑟𝑜𝑙𝑙𝜃̇ +  𝐹𝑦

𝑑𝑖𝑠𝑡
ℎ𝑟𝑐𝑐𝑜𝑠𝜃] 

3.4.  Steering Dynamics  

In order to also study the effect of the controller-actuator system parameters 

on the stability region, a first order transfer function was introduced to 

represent a delay in the actuation of the steering wheel angle. This angle is 

computed by the controller based on errors relative to the reference trajectory. 

 

 

 

Two delay values, τ, were chosen to be displayed, specifically referred to as: 

 

Table 5 . Steering actuation delay 

 𝝉 unit 

Fast Steering 0.2  [s] 

Slow Steering  0.4  [s] 
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3.5. Results: OverSteering Vehicle  

3.5.1. “Fast steering” Results  

Input: Disturbance 

 

 

 

 

 

Steering Angle and Errors 

 

 
(a)  

 
(b)  
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State  

 

Lateral Force 
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Phase Plane  

By performing a series of simulations, like those whose results are shown in 

the previous graphs, it is possible to represent the closed-loop stability region 

of the vehicle in the phase plane. 

 

 

Figure 3.15: Closed loop phase plane 

 

3.5.2. “Slow Steering” Results  

Input: Disturbance 
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Steering Angle and Errors 

 
(a)  

 
(b)  

State  
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Lateral Force 

 

 

Phase Plane  

By performing a series of simulations, like those whose results are shown in 

the previous graphs, it is possible to represent the closed-loop stability region 

of the vehicle in the phase plane. 

 

 

Figure 3.16 : Closed loop phase plane 
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3.5.3. Effect of Steering Actuation Delay  

A particularly relevant analysis is the comparison between the stability region 

obtained in the so-called "fast steering" case and the "slow steering" case. The 

graph presented below shows that, despite the controller receiving the same 

information in both cases, the stability region is significantly influenced by the 

delay τ.  

This highlights the importance of considering this parameter in control 

system design, especially regarding the closed-loop stability of the system. 

 

 

Figure 3.17 : Effect of steering actuation delay 

 

Observing the time behaviour of the state variables in the figure Figure 3.18, 

we notice the differences in the time required to reach the steady-state 

condition in the two cases of steering angle actuation delay. As shown in the 

graph Figure 3.17, the initial points of the states after the disturbance 

application are different. This is due to what was previously demonstrated, 

namely that in the case of faster actuation, to be on the edges of the limit cycle, 

we can shift to higher values of initial conditions. However, as expected, in 

the case of τ=0.2, the settling time is lower compared to the case of τ=0.4, 
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indicating that when the steering dynamics are slower, more time is required 

to reach a steady-state condition. 

 

Figure 3.18 : State behaviour compare between different steering actuation delay 

 

The table reports the obtained settling time values. 

 

 𝝉 [s] State Settling time [s] 

Fast Steering 0.2     

  𝛽 5.42 

  𝜓̇ 6.38 

Slow Steering  0.4    

  𝛽 7.35 [+35%] 

  𝜓̇ 8.61 [+35%] 

 

Having discussed the comparison in terms of stability, it is also interesting 

and necessary to focus on the errors relative to the reference trajectory. 

Excessively large errors, particularly those related to lateral deviation, 

indicate the need for wide spaces to ensure successful stabilization. This 

highlights a critical aspect: the ability of the controller to stabilize the vehicle 

may become secondary in disturbance conditions that lead to excessive 

trajectory errors—not only in terms of controller performance but also in 

terms of safety. 
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Thus, while the controller can stabilize the vehicle, achieving this behavior 

requires a wide lane margin, which is often unavailable in real-world 

scenarios. This consideration can be observed in the following graph. 

 

 

Figure 3.19: Error compare between different steering angle actuation delay 
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3.5.4. Comparison of vehicle stability zone in closed loop and 

open loop 

In the graph below, it is possible to observe the change in the morphology of 

the stability zone for an oversteering vehicle when transitioning from open-

loop conditions to controlled vehicle conditions (i.e., closed-loop). The red 

area represents the instability zone in the open-loop case, while the light green 

area indicates the stability zone. Superimposed on these two zones is the dark 

green area, which represents the stability zone of the vehicle in closed loop 

when  𝜏 = 0.2𝑠. 

 

Figure 3.20 : Open-loop vs Closed-loop stability zone 

 

 

 

From this comparison, it is evident that the change in the stability zone is 

significant. In particular, the controller is able to stabilize parts of the regions 

that were previously unstable for the uncontrolled vehicle. This is of great 

importance in the context of autonomous driving systems. Therefore, it is 

essential to emphasize that, for vehicle stability control, attention should not 

only be given to the vehicle's intrinsic stability characteristics but rather to 

those of the entire vehicle-controller (or driver) system. The maps obtained in 

this phase can thus be used to assess the stability limits of the controlled 

vehicle. 

 

 Closed loop Stability Area 

 Open loop Stability Area 
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3.6. Results: UnderSteering Vehicle  

A further analysis was conducted by testing an understeering vehicle to verify 

the presence of these instability zones in the vehicle-controller system, even 

in a vehicle that is inherently open-loop stable. For the characterization of the 

understeering vehicle, as done in 2.5.4, starting from the oversteering vehicle 

analyzed in this text, the following modifications were made: 

• The weight distribution parameters, specifically with a 60% 

distribution on the front axle. 

• The distribution parameters of the anti-roll bars between the front and 

rear, with 50% allocated to the front bars. 

Consistent with these modifications, the new cornering stiffness maps for the 

understeering vehicle were provided to the controller, following the same 

approach as in the oversteering case. 

3.6.1. “Fast steering” Results  

Input: Disturbance 
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Steering Angle and Errors 

 
(a)  

 
(b)  

State  
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Lateral Force 

 

 

Phase Plane  

By performing a series of simulations, like those whose results are shown in 

the previous graphs, it is possible to represent the closed-loop stability region 

of the vehicle in the phase plane. 
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3.6.2. “Slow Steering” Results  

Input: Disturbance 

 

Steering Angle and Errors 

 
(a)  

 
(b)  
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State  

 

Lateral Force 
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Phase Plane  

By performing a series of simulations, like those whose results are shown in 

the previous graphs, it is possible to represent the closed-loop stability region 

of the vehicle in the phase plane. 

 

3.6.3. Effect of Steering Actuation Delay 

As done for the oversteering case in 3.5.3Effect of Steering Actuation Delay, a 

comparison of the stability region between the two steering actuation 

dynamics has been presented. Like the oversteering case, an increase in 

steering actuation delay results in a reduction of the stability region, as well 

as a longer time to reach the steady-state condition. 

 

Figure 3.21 : Effect of steering actuation delay 
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3.6.4. Comparison of vehicle stability zone in closed loop and 

open loop 

As done for the oversteering case in 3.5.4, the following graph shows the 

comparison between the stability region for an understeering vehicle in open-

loop versus the controlled (closed-loop) case. Like the oversteering scenario, 

the case with τ=0.2 has been selected for visualization. 

 

Figure 3.22 : Open-loop vs Closed loop stability compare 

 

 

 

 

 

 

 

 

 

 

 

 Closed loop Stability Area 

 Open loop Stability Area 
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3.7.  Oversteering vs Understeering  

An important comparison at this stage is between the two stability regions 

identified for the understeering and oversteering vehicle configurations. The 

following graph presents the phase plane comparison. 

 

Figure 3.23 : Oversteering vs Understeering stability zone 

 

As observed in the graph, the size of the stability regions in both cases is quite 

comparable. This leads to an important consideration: the controller plays a 

crucial role in defining the stability region, regardless of the vehicle's inherent 

nature. However, this is true only if the controller has real-time knowledge of 

the vehicle's operating conditions. Specifically, in both cases, the controller 

has updated information on the cornering stiffness, allowing it to better 

manage the plant. 

In conclusion, by studying the stability of the closed-loop system, we can 

affirm that if the controller is well-informed about the vehicle's operating 

conditions and is properly designed, the understeering or oversteering nature 

of the vehicle does not necessarily represent a constraint. That said, it is 

important to remember that the magnitude of disturbances differs between 

the two vehicle types, as do the trajectory tracking errors. 
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3.8. Simulation Scenario: Constant Curved 

trajectory  

 

The implemented simulation scenario involves a curvilinear trajectory (and 

thus a curvilinear reference trajectory for the controller) with a constant 

radius, traveled at a constant speed of V = 120 km/h. The goal of this second 

type of maneuver is to evaluate the stability zone, starting from a condition of 

non-zero lateral acceleration. By maintaining the vehicle at a constant speed 

and testing various turning radius, it is clearly possible to begin with different 

lateral acceleration conditions. 

 

 

 

 

The disturbance was implemented as described earlier, with the precaution 

this time of disturbing the system only once a steady-state condition has been 

reached. Nonetheless, the duration of the disturbance remains the same as in 

the previous cases, equal to Δt = 0.2s. 
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3.8.1. “Slow Steering” Results  

Input: Disturbance  

 

Steering Angle and Errors 

 
(a)  

 
(b)  
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Lateral Acceleration 

 

 

Force  
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Trajectory  

 

A zoom of the trajectory after the disturbance application is reported in the 

following graph. 
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Phase Plane  

By performing a series of simulations, like those whose results are shown in 

the previous graphs, it is possible to represent the closed-loop stability region 

of the vehicle in the phase plane. 

 

 

3.8.2. Comparison of vehicle stability zone in closed loop and 

open loop 
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4 Complete Model performance 

In order to highlight the importance of the analyses carried out in this text, a 

critical simulation scenario for the complete autonomous driving model has 

been analysed. 

First, the simulation scenario under examination will be presented. Secondly, 

the cases examined will be highlighted, and finally, a comparison of the 

controller's performance in the various cases will be conducted. 

4.1. Scenario:  Straight road double overtaking 

4.1.1. Scenario description  

The scenario under consideration consists of a straight trajectory on a 

highway with three lanes. There are three actors: an Ego vehicle, represented 

in blue, which serves as the reference vehicle for the analysis, and two Actor 

vehicles. To better understand the temporal evolution of the maneuver, 

several frames of the maneuver are shown in the following figures. 
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Referring to the previous figures, the Ego vehicle begins its maneuver (t = 0.9s) 

in the right lane at a constant speed of 120 km/h. Along its path, it will 

encounter two vehicles: Actor1, represented in orange, which is in the same 

lane at a speed of 80 km/h, and Actor2, represented in red, positioned in the 

middle lane at a speed of 90 km/h. The third lane is left clear to allow the Ego 

vehicle to perform a double overtaking maneuver by executing two 

consecutive lane changes. 

After overtaking both vehicles (t = 3.4s, t = 7.4s), the Ego vehicle will proceed 

with the maneuver to return to its original right lane (t = 14.4s). 

4.2. Analysed cases 

To evaluate the system's performance, three cases will be analyzed. As widely 

highlighted in the conclusions of the previous chapters, the vehicle's 

operating conditions play a crucial role in stability. In this analysis, we will 

focus on the importance and effect of introducing variable axle characteristic 

maps depending on the examined conditions. 

The parameter that will be varied is the road inclination, and two cases with 

a non-zero inclination will be examined. Specifically: 

• Case 1 (as shown in the table): The controller is unaware of the 

vehicle’s current operating conditions and thus bases its command 
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execution dynamics on nominal axle cornering stiffness values, 

assuming a flat road. 

• Case 2 (as shown in the table): The road still has a non-zero inclination, 

but the controller is assumed to have sensors capable of evaluating the 

road inclination parameter. Additionally, it is considered sufficiently 

fast to update the axle characteristic maps accordingly. 

A summary table of the analyzed cases is presented below. The last column 

of this table also shows the reference colors for each case, which correspond 

to the colors used in the graphs in the next section where the results will be 

presented. 

 

 𝒊 [%] 
Corn. Stiff. 

Update  

Reference 

Color  

Case 0 0  nominal Blue 

Case 1  −30  NO Red 

Case 2 −30  YES Green 

 

4.3. Results  

The results for the three previously described cases are presented in this section. 

Trajectory 
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Steering wheel Angle 

From the steering angle graph for the three cases, it is evident that in Case 1, 

where the controller does not receive an update on the road inclination value, 

the initial steering angle is the same as in Case 0. Since the controller follows 

the same trajectory at the same speed while being unaware of the new 

inclination conditions, it applies the same steering input as in the flat road 

scenario. 

However, in Case 1, a non-zero road inclination is introduced—specifically, 

an inclination that significantly reduces the vehicle's stability zone, as 

previously discussed. As a result, the chosen steering angle induces 

oscillations that are not present in the reference case (Case 0). 

In contrast, in Case 2, where the axle cornering stiffness values are updated 

to match the vehicle's operating conditions, the controller can anticipate the 

increased instability of the vehicle. Given the same reference trajectory and 

speed, it applies a lower steering angle. This approach allows the controller to 

keep the vehicle within a stable operating zone, despite the highly critical 

scenario under consideration. 

 

The L2 norm of the signal is also reported, where the result represents the 

energy of the signal itself. In the case of the steering angle, a lower energy 

value is beneficial both in terms of driver comfort and in terms of the energy 

required for steering actuation. 

By updating the axle stiffness maps, it is possible not only to maintain the 

maneuver within a stable execution range but also to make the required 

energy comparable between the less critical case (with zero road inclination) 

and the more critical case (with a non-zero road inclination). 
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Lateral and Orientation Errors 

Comparing the errors relative to the reference trajectory, we observe that in 

the case of updated maps, maintaining vehicle stability requires accepting a 

higher lateral error relative to the reference trajectory. However, this comes 

with the advantage of a reduced orientation error, as its oscillations remain 

more controlled compared to the instability scenario (Case 1). 

 

 

In this case as well, the energy values of both signals are reported to compare 

the controller's performance in terms of error relative to the reference 

trajectory. 

As seen in the lateral error diagram, the signal energy in Case 2 is still higher 

than in Case 0, but remains lower than in the unstable scenario (Case 1). 
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Regarding the vehicle orientation error, the improvements introduced in Case 

2 result in energy values comparable to the reference case (Case 0) and 

significantly lower than in the unstable case. 

 

 

An additional interesting analysis is presented in the following graph, where 

the energy of the lateral acceleration signal is examined. This signal serves as 

an indicator of passenger comfort during the maneuver. 

. 
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Stability  

It is also interesting to focus on the vehicle's stability zone. Consistent with 

what was discussed in the previous chapter, the phase diagrams obtained in 

Case 1 and Case 2 are presented below. Additionally, the zone defined as the 

vehicle's stability zone in the previous chapter is highlighted. 

 

 
(a)  

 
(b)  

Figure 4.1 : Phase plane Case 1 (a) Case 2 (b) 

 

From this last analysis, updating the axle Cornering stiffness maps input to 

the controller is of relevant importance for the maneuver's stability. It allows 

the controller to implement commands that are consistent with the vehicle's 

stability zone. 

In Case 1, at a certain point during the maneuver, the vehicle's state conditions 

fall outside the closed-loop stability zone. From that moment onward, the 

controller is no longer able to stabilize the vehicle. 
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5 Conclusions  

In this work, a comprehensive analysis of the vehicle’s behavior across its 

entire operating range has been conducted. The importance of characterizing 

vehicle dynamics was further validated through the graphical phase-plane 

method, which proved to be an effective tool for studying nonlinear 

phenomena. 

By combining these two elements, it became possible to better predict the 

vehicle’s response under varying operating conditions. Specifically, by 

generating and updating axle stiffness maps as inputs to a model-based 

predictive controller, significant improvements were achieved in terms of 

stability, passenger comfort, and actuation energy efficiency. 

Additionally, the study emphasized the critical influence of the driver (or 

alternatively, the controller) on the vehicle’s stability zone. It was shown that 

even inherently stable vehicles in open-loop conditions—such as 

understeering vehicles—can exhibit instability depending on the controller’s 

behavior. This finding highlights the crucial role of both controller 

responsiveness and driver skill in ensuring safe operation. A sufficiently fast 

and well-calibrated controller is necessary to compensate for instability 

phenomena, which is fundamental from a safety perspective. 

Summary of the Thesis Contributions: 

• Linearized models remain valuable tools for understanding local 

stability and developing real-time control strategies. 

• Phase-plane analysis provides a graphical representation of vehicle 

stability and instability regions, offering insights into how external 

disturbances or extreme maneuvers push the vehicle beyond safe 

limits. 

• Bifurcation analysis helps identify critical stability thresholds, 

revealing transition points between controllable and uncontrollable 

behavior. 

• The stability of a vehicle in open-loop conditions is significantly 

influenced by the driver or controller, making closed-loop analysis 

essential for realistic stability assessments, particularly in the 

development of autonomous driving systems. 
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5.1. Future developments  

The limitations encountered in this study provide valuable insights into 

potential future developments, including: 

• Refinement of Simulation Models: While the models used in this work 

are expected to provide good approximation compared to multibody 

simulations, conducting the same analyses using more detailed 

simulation models could offer further validation. Comparing the 

results obtained in this study with those from high-fidelity simulations 

would help emphasize the relevance of the proposed methods. 

• Improved Bifurcation Analysis Methodology: A more precise 

methodology for bifurcation analysis could be explored, such as 

dynamically updating the equilibrium search starting point at each 

iteration. This could be guided by the insights gained from phase-plane 

trajectory representations, potentially improving the identification of 

stability transition points. 

• Extension of Closed-Loop Stability Zones: The closed-loop stability 

zones could be further expanded by considering additional phase-

plane representations that incorporate different system states 

alongside those analyzed in this study. Additionally, the validity of 

these stability zones could be strengthened through track tests or high-

fidelity driving simulators, providing real-world validation of the 

theoretical findings. 

• Evaluation of Controller Performance Without V2X Infrastructure: In 

the vehicle simulations with a controller, a V2X infrastructure was 

assumed to enable communication between the vehicle and its 

environment. However, it would be valuable to assess the feasibility 

and effectiveness of the controller performance improvement methods 

presented in this study without this assumption. By integrating 

onboard sensors instead of V2X connectivity, it would be possible to 

evaluate whether real-time map updates for axle cornering stiffness 

adaptation are practically achievable within the system constraints. 
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