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Summary

Stochastic optimization techniques are applied to the framework of hedging exotic
options from the perspective of a bank which sells derivatives and thus is exposed
to potential future liabilities. The objective is to formulate an optimal strategy
that minimizes the impact of potential losses. In practice, hedging involves the
construction of a portfolio, referred to as hedging portfolio, which will be periodically
adjusted in response to market changes that have an impact on the considered
derivative. The optimization process relies on scenario trees generated through
stochastic models. Two methods for simulating underlying stock prices (Geometric
Brownian Motion and Moment Matching) are presented. Several optimization
problems are then developed and compared based on their hedging performance,
associated costs and profit and loss. Self-financing and non-self-financing strategies
are analyzed and compared, exploring also rebalancing frequencies, transaction
costs and their influence on overall hedging performance. Additionally, the scenario
trees structure is carefully analyzed to explore the trade-off between accuracy
of the results and computational time. The analysis focuses on covering exotic
derivatives, such as Asian and Barrier options and Worst Performance derivatives,
whose structural features and valuation models are explained in detail. European
vanilla options are also used and considered as benchmarks to validate the models
and compare stochastic optimization with traditional delta hedging.
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Chapter 1

Introduction

In financial markets, the trading and risk management of derivatives represent a
challenge for financial institutions. In order to mitigate the risks associated with
these products, hedging strategies can be employed. In this context, this thesis
examines the problem of hedging exotic derivatives through stochastic optimiza-
tion models, adopting the point of view of a bank that writes and sells financial
instruments, thus being exposed to potential future losses. Among these, Asian
options, Barrier options and Worst Performance derivatives stand out due to their
non-trivial structures and sensitivity to market movements.
The problem is addressed within the Asset-Liability Management context: the bank
has to fulfill a set of liabilities; to ensure sufficient funds, it allocates its available
wealth in a diversified set of assets, whose future prices are represented by random
variables since they are uncertain. The uncertainty in the model is represented
by a discrete set of sample paths of stochastic processes for each random variable:
here, the uncertainty in the problem results from the uncertainty in stock prices.
Stochastic optimization is a valid approach for dealing with financial decision-
making problems under uncertainty. In the context of hedging exotic derivatives,
stochastic optimization methods allow the bank to determine rebalancing strategies
with the aim of finding a trade-off between the minimization of risk exposure and
the cost of the adopted hedging strategy.
Stochastic optimization provides a versatile framework where various hedging error
metrics can be considered (reflecting different risk aversions) and market frictions,
such as transaction costs, can be easily taken into account. Additionally, since it
is based on simulations, it can work with almost any stochastic model for stock
prices.
The process of generating discrete outcomes for random variables is known as
scenario generation. In this context, scenarios are distinct paths for the prices
of the hedging assets and potential liabilities at each rebalancing time, from the
current time to the end of the hedging horizon. The quality of price scenarios
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Introduction

plays a crucial role in determining the effectiveness of a hedging strategy designed
through stochastic optimization.
More in detail, stochastic programming is performed through scenario trees, where
each node represents a state of the world at a specific time.
The hedging optimization problem is a multi-stage stochastic problem: at the
current time, the first decision, here-and-now, is made. Then, after observing the
realization of the risk factor, a new decision is taken based on the updated infor-
mation: in such stochastic problems, a sample path of the relevant risk factors is
observed and then decisions are adapted along the day. This pattern of alternating
decisions and observations continues throughout the hedging horizon. At each
node of the scenario tree, the stochastic programming approach selects the optimal
decision relying only on the available information at that time.
Since the market evolves in time, the model can be updated by observing the new
market conditions. Thus, a new problem, based on new market conditions, is solved
at each time step. This is what is called dynamic hedging: instead of making a
decision at the current time keeping it unchanged until maturity, the decision is
frequently adjusted through rebalancing to reflect market changes.

Stochastic optimization is therefore applied in this thesis to determine a suit-
able hedging strategy for the considered derivatives, allowing banks to activate
them to prevent significant losses. The various hedging strategies that can be
implemented in the framework of stochastic optimization are described in Chapter
2, along with a more classical approach, delta hedging, used as a benchmark for
stochastic optimization formulations. The stochastic models assumed for simulating
price paths are presented in Chapter 3, with a strong emphasis on the simulations
of scenarios that are free of arbitrage opportunities. A discussion of the derivatives
considered both as hedging instruments and as instruments to be hedged is provided
in Chapter 4: a detailed discussion is dedicated to the structure and valuation
methods of vanilla, Asian options and barrier options and worst-performance deriva-
tives. Since the results supporting this work were obtained through a Python code
implementation, Chapter 5 presents its most relevant aspects. Finally, Chapter 6
summarizes the key findings of the conducted analysis, also comparing stochastic
optimization with the traditional delta hedging approach.
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Chapter 2

Hedging

When a financial institution sells a derivative to a client, it has to address the issue
of risk management: investing in a risky asset may result in periods of losses or
returns that fail to meet expectations. Through hedging, it is possible to limit the
exposure to risk and the impact of price fluctuation.
An ideal hedging (perfect hedging) would eliminate all risks entirely, but in reality
such perfection is rarely achievable. However, several hedging strategies can be
developed to minimize risk as effectively as possible, rather than completely elimi-
nate it. The key approach consists in adjusting the exposure by taking positions in
the underlying assets and, if needed, in related derivatives. In practice, hedging
involves the construction of a portfolio, typically referred to as hedging portfolio,
which will be periodically adjusted in response to market changes that have an
impact on the considered derivative.
In a real-world setting where transaction costs exist, frequent rebalancing is not
practical: a trade-off between risk mitigation and cost efficiency should be found.
The following section explores dynamic hedging techniques using stochastic opti-
mization: the bank aims to hedge the derivative over multiple future scenarios by
planning portfolio rebalancing at specific rebalancing dates. The hedging instru-
ments can include m underlying stocks, vanilla options and a money bank account
(cash), each identified by an index j ∈ A.

2.1 Main hedging problem: symmetric and asym-
metric cases

The main optimization problem considered in determining the portfolio rebalancing
strategy focuses on minimizing the deviation between the hedging portfolio value
at maturity and the actual cash flow (or payoff) at maturity resulting from holding
a short position in the derivative to be hedged. This quantity is referred to as

3
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Figure 2.1: Example of a scenario tree. The orange nodes are the intermediate
nodes, while the violet ones represent scenarios. The first scenario is in fact given
by the path {n0, n1, n3, n7} and has a probability equal to π1|0 · π3|1 · π7|3. The πp|q
denotes the conditional probability of node np given node nq.
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Hedging

hedging error. In a first formulation, both upward and downward deviations are
symmetrically penalized with identical weights (equal to 1). The stochastic nature
of the problem is addressed using scenario trees: consequently, parameters and
decision variables may depend on tree nodes i ∈ N = {n0} ∪ I ∪ S, where {n0}
is the first node (which represents time t = 0) and I and S are, respectively, the
sets of intermediate and leaf nodes; the latter, in fact, corresponds to the set of
scenarios. A visual representation of a scenario tree is provided in Figure 2.1.
Hence, a standard formulation of the hedging problem is given by:

min
e+,e−,x,y,z

Ø
s∈S

πs(es
+ + es

−) (2.1)

s.t. xn0
j = yn0

j − zn0
j ∀j ∈ A (2.2)

xi
j = x

a(i)
j + yi

j − zi
j ∀j ∈ A, i ∈ I (2.3)Ø

j∈A
zn0

j pn0
j (1 − cj) −

Ø
j∈A

yn0
j pn0

j (1 + cj) − ln0 + W0 = 0 (2.4)
Ø
j∈A

zi
jp

i
j(1 − cj) −

Ø
j∈A

yi
jp

i
j(1 + cj) − li = 0 ∀i ∈ I (2.5)

Ø
j∈A

x
a(s)
j ps

j − Ψs = es
+ − es

− ∀s ∈ S (2.6)

xi
j ∈ R ∀j ∈ A, i ∈ N \ S (2.7)

yi
j, zi

j ≥ 0 ∀j ∈ A, i ∈ N \ S (2.8)
es

+, es
− ≥ 0 ∀s ∈ S (2.9)

The decision variables are:

• xi
j ∀j ∈ A, ∀i ∈ {n0} ∪ I: quantity of asset j at node i after rebalancing;

• yi
j ∀j ∈ A, ∀i ∈ {n0} ∪ I: quantity bought of asset j at node i;

• zi
j ∀j ∈ A, ∀i ∈ {no} ∪ I: quantity sold of asset j at node i.

All these quantities interact in inventory balance constraints (2.2) − (2.3), stating
that the quantity hold for an asset after rebalancing must be equal to the hold
quantity before the adjustment, plus the purchased quantity and minus the sold
quantity. Cash balance constraints (2.4) − (2.5) guarantee that cash inflows, derived
from the potential sale of the hedging assets, entirely cover cash outflows resulting
from the purchase of assets and the presence of some liabilities li. Transaction costs
cj ∀j ∈ A are included and handled in a proportional manner; the price of asset j
in node i is denoted by pi

j. At the initial time t = 0, it is assumed that an initial
wealth W0 is available to construct the portfolio and typically corresponds to the
initial price of the target asset to be hedged. Alternatively, the optimization solver
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may be allowed to choose the necessary initial wealth. In this case, constraint (2.4)
should be modified asØ

j∈A
zn0

j pn0
j (1 − cj) −

Ø
j∈A

yn0
j pn0

j (1 + cj) − ln0 ≤ 0. (2.10)

Note that scenarios are not included in the previous variables and constraints, since
no rebalancing happens at maturity. However, there are other decision variables at
maturity, i.e. es

+, es
− ∀s ∈ S, which are expressly defined by constraint (2.6): they

represent the positive and negative part of the difference between the derivative
payoff Ψs in scenario s and the value of the hedging portfolio at maturity, where
the quantities are those chosen at the previous node a(s) and kept until maturity.
An optional penalty coefficient γ may be introduced to regulate the impact of
deviations in the objective function, leading to the asymmetric formulation. For
instance, to emphasize loss penalization, positive errors e+ can be scaled by a
factor γ ∈ [0,1): Ø

s∈S
πs(γ · es

+ + es
−). (2.11)

The objective still remains to replicate the derivative’s payoff at maturity, but posi-
tive deviations (profits) are penalized less than negative ones (losses). Formulation
(2.1) is equivalent to (2.11) when γ = 1. The penalization differences between
symmetric and non-symmetric objective functions are graphically represented in
Figure 2.2.

γ = 1

(a) Symmetric penalization on both positive
and negative deviations.

γ ∈ [0; 1)

(b) Asymmetric penalization: lower penalty
on the positive error.

Figure 2.2: Visual representation of symmetric and asymmetric objective function.

Among all decision variables, only the initial quantities xn0
j ∀j ∈ A have a practical

relevance, since they define the portfolio’s composition at the current time.
Such optimization problem is solved at each rebalancing stage, considering the
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Hedging

evolved market conditions. Thus, constraint (2.2) has to take into account also the
hedging assets holdings x̄j of the previous stage’s portfolio, becoming

xn0
j = x̄j + yn0

j − zn0
j ∀j ∈ A.

Moreover, the cash balance constraint for the initial node (corresponding to the
current time) no longer allows for an additional wealth W0 (wich is specific for
time t = 0, when the portfolio is built for the first time) and thus takes the form of
(2.5), i.e. Ø

j∈A
zn0

j pn0
j (1 − cj) −

Ø
j∈A

yn0
j pn0

j (1 + cj) − ln0 = 0. (2.12)

2.2 Non-self-financing variant
Typically, hedging strategies are self-financing: the portfolio constructed at time t
to be held up to time t + 1 (which has value V t+1

P (t) at time t) has to be entirely
financed by the current wealth V

t

P (t), which represents the current value of the
portfolio constructed at the previous time and kept until t. The self-financing

t

t − 1

t + 1

V t
P (t − 1)

V t
P (t) V t+1

p (t)

V t+1
P (t + 1)

Figure 2.3: Visual representation of what self-financing portfolio means; elements
of the same colour correspond to the same portfolio, but evaluated in different
time instants. The two highlight quantities are those which must be equal in a
self-financing framework and represent two different portfolios, but with the same
value at time t.

aspect is included in the previous optimization problem in constraint (2.5) (and
in (2.12) for subsequent optimization problems). However, a relaxed problem can
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Hedging

be considered by allowing input cash flows at the root node of each scenario tree
used for optimization at each rebalancing time, excluding time t = 0. This strategy
would be not self-financing in the current timestep, but it continues to ensure the
absence of inflows in the simulated future path. Formally, these considerations are
summarized in the following modifications:

• (2.4), i.e. the cash balance constraint for the root node n0, permits to receive
incoming funds:Ø

j∈A
zn0

j pn0
j (1 − cj) −

Ø
j∈A

yn0
j pn0

j (1 + cj) − ln0 ≤ 0;

• for the same scenario tree, cash balance constraints for intermediate nodes
i ∈ I are not modified, i.e. (2.5) is not varied.

All additional costs are referred to as rebalancing costs.
While this variant may seem excessively expensive, the initial formulation of the
problem can, in some cases, be conservative: the only funds available for rebalancing
come from the initial target asset price received by the bank at the time of sale.
If this amount proves to be insufficient to fully finance the hedging strategy, the
resulting performance could be suboptimal. Allowing for portfolio financing along
the way may be an effective solution to improve hedging at maturity. Clearly, this
comes at a cost, but it could be well worth it.
In section 6.3 the self-financing variant and the not self-financing modified version
of the problem are compared in terms of performance metrics.

2.3 Withdrawal-adjusted problem
Having established that the cash balance constraint (2.4) may prove too conservative,
it is possible to relax it in the opposite sense as well. Excluding the initial
rebalancing step, where the portfolio is actually constructed, the constraint can
be modified for the problem solved in the next rebalancing steps in order to allow
for the withdrawal of surplus funds from the hedging strategy. This approach is
consistent with reality: a bank may reallocate the unused funds from one strategy
to support other operations.
Thus, constraint (2.4) when the root node n0 is not the first stage becomesØ

j∈A
zn0

j pn0
j (1 − cj) −

Ø
j∈A

yn0
j pn0

j (1 + cj) − ln0 ≥ 0,

i.e. the total amount of money generated from selling hedging assets is greater than
the cash needed to purchase assets and cover liabilities, making the surplus available
for withdrawal by the bank. This strategy is still considered a sort of self-financing

8



Hedging

one, since no money is added to rebalance the hedging portfolio. Lastly, both
forms of relaxation can be considered together. This yields to a non-self-financing
problem with the possibility to withdraw money, resulting in no constraint for
node n0 (excluding the first time step): if the strategy allows for both adding and
withdrawing funds, cash flows are not subject to any constraints.

2.4 Super-replication
An alternative way to handle the replication problem is through super-replication.
In simple terms, this approach aims to build a portfolio at the lowest possible cost
while guaranteeing that its value at maturity is sufficient to cover the payoff of the
derivative to be hedged. The optimization problem is then

min
x,y,z

Ø
j∈A

yn0
j pn0

j (1 + cj) −
Ø
j∈A

zn0
j pn0

j (1 − cj) (2.13)

s.t.
Ø
j∈A

x
a(s)
j ps

j ≥ Ψs − 𭟋 ∀s ∈ S (2.14)

xn0
j = yn0

j − zn0
j ∀j ∈ A (2.15)

xi
j = x

a(i)
j + yi

j − zi
j ∀j ∈ A, i ∈ I (2.16)Ø

j∈A
zi

jp
i
j(1 − cj) −

Ø
j∈A

yi
jp

i
j(1 + cj) = 0 ∀i ∈ I (2.17)

xi
j ∈ R ∀j ∈ A, i ∈ N \ S (2.18)

yi
j, zi

j ≥ 0 ∀j ∈ A, i ∈ N \ S (2.19)

The objective function aims to minimize the excess cost required to build the
portfolio at time t = 0, which corresponds to the gap between the total outgoing
and incoming cash flows at the beginning of the hedging horizon. The constraint
that should characterize super-replication would beØ

j∈A
x

a(s)
j ps

j ≥ Ψs ∀s ∈ S,

i.e. the portfolio value at maturity, even after rebalancing during the process, is
required to always exceed the payoff of the short position in the derivative to be
hedged. Clearly, this is a highly conservative and rigid condition. To relax the
problem, a liquidity fund 𭟋 can be introduced, allowing for a discrepancy between
the portfolio value and the payoff at maturity, but within a certain limit equal to
𭟋. This results in constraint (2.14).
The problem is still self-financing (constraint (2.17)) and has to satisfy inventory
constraints (2.16) − (2.15).
Ensuring that the hedging strategy never leads to a loss for the bank makes this
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approach very expensive to adopt, forcing the bank to sell the derivative at a higher
price, which would greatly reduce the number of potential buyers. While this may
not be the most practical and applicable hedging method, it can still be a useful
benchmark for comparison with the strategies previously described.

2.5 Benchmarking stochastic optimization: Delta
Hedging

This section explores an alternative approach to hedging, in contrast to stochastic
optimization-based techniques: delta hedging. The key idea under delta hedging is
to construct a proper portfolio that will be insensitive to changes in the underlying
stock price. Considering a stock option, the quantity

∆D

∆S
,

i.e. the ratio of the change in the value of the derivative ∆D to the correspondent
change in the underlying price ∆S, is known as the delta of the stock option and
it is usually denoted by ∆. When considering a small perturbation dS in the
underlying price, the resulting change in the option price is given by the derivative
of its value D with respect to S, i.e.

∆ = dD

dS
.

A portfolio is called delta-neutral when its overall delta is zero.
The delta hedging objective is to maintain a portfolio whose overall value does
not significantly fluctuate when changes in the underlying prices occur. Thus,
the key aspect of this strategy consists in setting the portfolio’s delta to zero and
rebalancing it to maintain delta-neutrality. A typical composition of this portfolio
includes the underlying asset, a short position into the option to be hedged and a
bank account to manage cash flows. If (α, β, −1) represents the holdings vector
of the portfolio, where each entry is referred to the position of, respectively, cash,
stock and the derivative, the portfolio value VP (S) can be formalized as

VP (S) = α + βS − D(S) (2.20)

where a bank account with current value equal to 1 is considered. If a small
perturbation dS occurs, the correspondent change in the portfolio value is given by

dVP (S)
dS

= β − dD(S)
dS

,

10
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i.e. the delta of the considered portfolio. By imposing delta-neutrality, it results
that the position to be taken in the underlying stock is exactly the derivative’s
delta:

∆P = dVP (S)
dS

= 0 =⇒ β = dD(S)
dS

.

This aspect will be better exploited during the implementation of the delta hedging
strategy.1
The critical point of this method is that it requires a well-defined option pricing
model, in order to be able to explicitly compute the derivative with respect to
the underlying price; as an example, the Black-Scholes-Merton model2 will be
considered for European options.
A comparison between the previously discussed stochastic optimization models and
the current analysis leads to the conclusion that, in the case of delta hedging, the
hedging assets consist of cash and the underlying asset, while the hedged position
corresponds to the portfolio (2.20). The primary function of the bank account is to
support all required cash flows during rebalancing.
Delta naturally evolves over time, requiring periodic portfolio adjustments to sustain
a delta-neutral position to hedge the option. Nevertheless, frequent rebalancing
with transaction costs can lead to considerable losses, which is a notable drawback
of delta hedging.

1See Chapter 6.8 for details.
2See Chapter 4 for details.
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Chapter 3

Stochastic models for stock
prices

Stochastic optimization requires a representation of the underlying uncertainty in
order to make decisions: one common approach to modeling uncertainties, particu-
larly in financial applications, is the simulation of stock price paths. In financial
markets, stock prices evolve over time in ways that are uncertain and influenced by
a variety of factors. To address this randomness mathematically, stochastic models
are employed: they account for uncertainty and allow the construction of a valid
method for pricing derivatives.
This chapter shows two stochastic models that can be assumed in order to model
the stock prices process: Geometric Brownian Motion and Moment Matching.
Generally speaking, if the value of a variable changes over time with uncertainty,
the latter is said to follow a stochastic process. In particular, stock prices are
assumed to follow a stochastic process that is:

• continuous-variable: the underlying variable can take any value within a
certain range (and not only some discrete values, as in a discrete-variable
process);

• continuous-time: the value of the considered variable can change at any time
(i.e it is not restricted to a fixed set of discrete time points, like in discrete-time
processes).

Stock prices are modeled using Markov processes, a class of stochastic processes
where the future state depends only on the present state, disregarding the entire
past history: the current value encodes all the relevant information for predicting
the future. In terms of probabilities, this property (called Markov property) reflects
the independence between the probability distribution of the future price at any
future time and the past trajectory followed by prices up to the current state.

12



Stochastic models for stock prices

To be more precise, this means that the past path is irrelevant; nevertheless, the
statistical properties of historical prices can still provide useful information for
determining the characteristics of the stochastic process followed by the stock prices
(e.g. its volatility).

3.1 Geometric Brownian Motion (GBM)
A more specific Markov process will be introduced now, commonly known as Weiner
Process or (standard) Brownian Motion. Formally, the Weiner process W (t) is
characterized by four main properties:

1. it has independent increments, i.e. W (t1) − W (t0), ..., W (tm) − W (tm−1) are
independent random variables for all 0 ≤ t0 < t1 < ...tm−1 < tm and m ≥ 1;

2. increments are normally distributed with zero mean and variance equal to the
time interval length, i.e.

W (t) − W (s) ∼ N (0, t − s);

3. W (0) = 0;

4. W (t), t ≥ 0 are continuous functions of t.

Another key point is that the change ∆W over a small period of time ∆t is
∆W = ε

√
∆t, with ε ∼ N (0,1). This obviously implies that

∆W = ε
√

∆t ∼ N (0, ∆t).

When considering small changes which become closer to zero, the notation dW
represents a Wiener process in the sense that it has the same properties of ∆W in
the limit as ∆t → 0.
The drift rate is the mean change per unit time, while the variance per unit time is
called variance rate.
It is possible to construct a drifted Brownian Motion: a variable B is said to follow
a generalized Wiener process if it can be defined in terms of dW by

dB = µdt + σdW, (3.1)

where µ and σ are constants. Practically speaking, the σdW term adds random
noise to the path followed by B (which would be B = B0 + µt if considering only
the deterministic part of (3.1), i.e. dB = µdt). This concept is better depicted in
Figure 3.1.
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Defining B(t) = x0 + µt + σW (t), the process B(t) has a normal distribution at
each time t:

B(t) ∼ N
1
x0 + µt, σ2t

2
.

t

B

Wiener process dW
dB = µdt
Generalized Wiener process dB = µdt + σdW

Figure 3.1: The drifted Brownian Motion is the result of adding random noise to
the deterministic path described by dB = µdt.

As in the standard case, the change ∆B during a small period of time ∆t is normally
distributed

∆B = µ∆t + σ∆W ∼ N
1
µ∆t, σ2∆t

2
,

so it has an expected drift rate (average drift per unit of time) of µ and a variance
rate of σ2.
However, a generalized Brownian Motion is not a suitable model for stock prices,
since it may take negative values. Moreover, since the expected percentage return
required by investors is independent from the stock’s price, this model fails to
effectively capture the key characteristics of stock prices. For this reason, it is
necessary to introduce the Itô process, an extension of the generalized Brownian
motion where µ and σ depend on both time t and the variable itself B. In formal
notation, an Itô process can be expressed in the following way

dX = µ(X, t)dt + σ(X, t)dW. (3.2)
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A powerful tool for understanding the behaviour of functions of stochastic variables
is the Itô’s lemma. It shows that the process of a function G of t and X, where
the latter follows the process (3.2), is

dG =
A

∂G

∂t
+ µ

∂G

∂X
+ 1

2σ2 ∂2G

∂X2

B
dt + σ

∂G

∂X
dW. (3.3)

Note that in the previous formula, µ and σ generally assume the form that defines
an Itô process, i.e. they are functions (and not necessarily constant parameters).
Now that all the necessary tools are at hand, it is possible to move on to address
the process assumed for stock prices S, meaning that the focus is now on a process
like dS = µ(S, t)dt + σ(S, t)dW . As previously said, the expected drift rate cannot
be assumed constant: a more proper assumption should state that the expected
drift divided by the stock price is constant, resulting in having an expected drift
rate equal to µS, i.e. µ(S, t) = µS, for some constant parameter µ (the stock’s
expected rate of return). In a similar manner, the standard deviation of the change
over a period of time closer to zero is assumed to be proportional to the stock price
S, i.e. σ(S, t) = σS, for some constant parameter σ (the volatility of the stock
price). All these assumptions lead to the most commonly model used to describe
stock prices, known as Geometric Brownian Motion:

dS = µSdt + σSdW. (3.4)

Attention is now shifted to the process followed by Y = ln S, given that S follows
the Geometric Brownian Motion (3.4). Exploiting Itô’s lemma, dY is obtained as
follows:

∂Y

∂t
= 0 ∂Y

∂S
= 1

S

∂2Y

∂S2 = − 1
S2

dY =
A

∂Y

∂t
+ µS

∂Y

∂S
+ 1

2(σS)2 ∂2Y

∂S2

B
dt + σS

∂Y

∂S
dW = (3.5)

=
5
0 + µS

1
S

+ 1
2(σS)2

3
− 1

S2

46
dt + σS

1
S

dW = (3.6)

=
A

µ − σ2

2

B
dt + σdW. (3.7)

In (3.5) Ito’s lemma (3.3) is applied considering the process followed by S that was
previously described; partial derivatives are substituted in (3.6); in the final step,
straightforward algebraic manipulations are executed to derive the final expression.
The process followed by Y = ln S is therefore a generalized Wiener process with
a constant drift rate µ − σ2

2 and a constant variance rate σ2. Rewriting (3.7) in
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terms of S(t) leads to

d (ln S(t)) =
A

µ − σ2

2

B
dt + σdW,

which is equivalent to the integral formÚ t

0
d (ln S(u)) =

Ú t

0

A
µ − σ2

2

B
ds +

Ú t

0
σdW (s).

The solution of the previous s.d.e. is

ln S(t) − ln S(0) =
A

µ − σ2

2

B
t + σW (t). (3.8)

This outcome leads to two significant consequences:

• ln S(t) − ln S(0) ∼ N
AA

µ − σ2

2

B
t, σ2t

B
, i.e. the change in ln S between

any interval time (0, t) has a normal distribution with mean
1
µ − σ2

2

2
t and

variance σ2t. Noting that

ln S(t) − ln S(0) = ln S(t)
S(0) ,

where the latter is the definition of log-return, the previous statement specifi-
cally means that log-return’s distribution is normal.
Equivalently

ln S(t) ∼ N
A

ln S(0) +
A

µ − σ2

2

B
t, σ2t

B
,

i.e. ln S(t) is normally distributed, having mean ln S(0) +
1
µ − σ2

2

2
t and

variance σ2t;

• by rearranging equation (3.8) to express S(t), the price process under the
historical measure µ is found:

S(t) = S(0) exp
IA

µ − σ2

2

B
t + σW (t)

J
. (3.9)

A deeper analysis of the first consequence leads to the conclusion that the stock
price S(t) at time t has a lognormal distribution1.

1A variable is lognormally distributed if the natural logarithm of the variable is normally
distributed.
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3.2 Moment Matching
Moment matching emerges as a valid alternative for scenario generation when
not assuming Geometric Brownian Motion. The purpose of this method is to
maintain statistical consistency between the generated scenarios and historical (real
world) data, by matching some statistical properties. Mean, variance, skewness and
correlation (the latter only in the presence of more than one stock) are specifically
chosen in the current analysis as properties to be aligned. This method relies on a
least-squares minimization approach, where the objective consists in minimizing a
suitable distance between the moments and correlation of the generated values and
their historical counterparts.
A single-stage formulation is used, where probabilities and stock values are generated
for one step, evolving from the parent node to its children nodes. Mathematically
speaking, the decision variables are represented by a vector π of probabilities and
a vector S of stock prices, each of whom has dimension equal to the number of
children nodes K. Clearly, πk denotes the probability that the stock will take the
value Sk in the next step, starting from the current parent node.
As a result, this formulation involves a constrained minimization problem, subject
to the constraints that the probabilities must sum up to one (3.11) and must be
non-negative (3.12):

min
π,S

[d(ν, ν̂)]2 + [d(σ, σ̂)]2 + [d(ς, ς̂)]2 (3.10)

s.t.
Ø

k∈[K]
πk = 1 (3.11)

πk ≥ 0 ∀k ∈ [K] (3.12)

In (3.10), ν, σ, ς are, respectively, the mean, standard deviation and skewness of
stock log-returns, estimated from historical data, and d(·, ·) represents a proper
distance measure. Meanwhile,

ν̂ =
Ø

k∈[K]
πk ln

A
Sk

Sa(k)

B
(3.13)

σ̂ =

öõõõô Ø
k∈[K]

πk

A
ln
A

Sk

Sa(k)

B
− ν̂

B2

(3.14)

ς̂ =
Ø

k∈[K]
πk

CA
ln
A

Sk

Sa(k)

B
− ν̂

B
1
σ̂

D3

, (3.15)

where Sa(k) is the stock value in the parent node (which is known), while Sk is the
stock value in the k-th child node, i.e. the k-th component of S. The single stage
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Sa(k)

S1

...

SK

π1

πK

t + 1t

Figure 3.2: Visual representation of a single stage. Note that the value Sa(k) in
the root node is the same for each child node k. πk is the probability of having Sk

in the next time step, starting from the specific parent node a(k).

is depicted in Figure 3.2.
When simulating multiple stocks, the correlation ρ among them can be incorporated
as an additional property to be matched, resulting in the addition of a term [d(ρ, ρ̂)]2,
with a proper measure of distance, in (3.10). Clearly, with more than one stock,
the properties of all stocks must be considered in the optimization problem, i.e.
(3.13) − (3.14) − (3.15) must hold for all stocks j ∈ [m] as follows:

ν̂j =
Ø

k∈[K]
πk ln

 Sk
j

S
a(k)
j

 ∀j ∈ [m] (3.16)

σ̂j =

öõõõô Ø
k∈[K]

πk

ln
 Sk

j

S
a(k)
j

− ν̂j

2

∀j ∈ [m] (3.17)

ς̂j =
Ø

k∈[K]
πk

ln
 Sk

j

S
a(k)
j

− ν̂j

 1
σ̂j

3

∀j ∈ [m] (3.18)

ρ̂j,l = 1
σ̂jσ̂l

ˆcov
ln

 Sk
j

S
a(k)
j

 , ln
A

Sk
l

S
a(k)
l

B = (3.19)

= 1
σ̂jσ̂l

Ø
k∈[K]

πk

ln
 Sk

j

S
a(k)
j

− ν̂j

 ClnA Sk
l

S
a(k)
l

B
− ν̂l

D
∀j, l ∈ [m] (3.20)
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As a result ν̂, σ̂, ς̂ and their historical counterparts become vectors of dimension
m, whereas ρ̂ and ρ are structured as matrices.
The optimization problem (3.10) is typically non-convex, thus its solution may be
only a local one. Nevertheless, in this context it is sufficient to obtain a solution
whose properties match or closely approximate the provided characteristics, even
if better solutions may exist: an objective value close to zero guarantees that the
match has been done.

3.3 Arbitrage-free scenarios
When generating scenario trees for stock prices, attention must be paid to arbitrage
opportunities. Arbitrage can be mathematically defined in multiple ways, some of
which will be discussed later. In simple terms, an arbitrage strategy is a risk-free
method of generating sure profit without requiring any initial capital. This is
equivalent to asses that a money-making machine exists, which in reality should
not be acceptable. In practice, an arbitrage opportunity could arise, but it would
exist only for a very short time period, as arbitrageurs would exploit it, driving
prices back in line and eliminating the arbitrage opportunity itself. Therefore,
such opportunities are typically assumed to be absent in real markets; thus, it is
crucial to ensure that scenario trees are arbitrage-free, reflecting the real-market
assumption.
Two methods for accounting for arbitrage in scenario tree generation are presented
in detail in the following sections.

3.3.1 First approach: absence of dominant strategies

To better formalize, the concept of a dominant strategy is introduced: a trading
strategy h̃ with value process Ṽ is dominant if there exists another strategy ȟ with
value process V̌ such thatṼ (0) = V̌ (0)

Ṽ (T, ω) > V̌ (T, ω) ∀ω ∈ Ω

i.e. h̃ and ȟ are two strategies that have the same value now (at t = 0) but
the former dominates the latter state by state w in the sample space Ω, in the
future at time T . Note that the values at time t = 0 do not depend on scenarios,
since the initial state is known. Practically speaking, by purchasing the dominant
strategy and selling the dominated one, the initial cash flow is zero, but this ensure
a guaranteed profit in the future; this statement could be written as follows, since
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it is possible to take linear combination of trading strategies:V (0) = 0
V (T, ω) > 0 ∀ω ∈ Ω

. (3.21)

An alternative notion of dominant strategy can be defined, by firstly assuming the
existence of a bank account in the considered financial market (and this is the case,
viewing the cash as a bank account). In this framework, a dominant strategy exists
if and only if there exists a trading strategy which satisfiesV (0) < 0

V (T, ω) ≥ 0 ∀ω ∈ Ω
. (3.22)

It can be shown that formulations (3.21) and (3.22) are equivalent, but only if the
market includes a bank account. For optimization purposes, (3.22) is preferred as
it defines the inequalities V (T, ω) ≥ 0 which characterize a closed set, whereas the
strict inequalities in (3.21) would lead to an open set, which would not guarantee
the existence of minimum or maximum.
Thus, based on formulation (3.22), the following linear programming (LP) problem
can be constructed to find the strategy with the lowest possible initial value while
ensuring a non-negative final value:

min
h

vT h

s.t. Zh ≥ 0

v contains the initial values for each market element (bank account included), while
Z is the matrix of future values of each market element, in each scenario ω ∈ Ω.
This problem is certainly feasible, as it admits the strategy h = 0 as a solution.
However, it might be unbounded below. By recalling the relationships between an
LP problem and its dual, the latter’s feasibility provides useful information about
the primal. In particular, if the dual problem

max
y

0T y (3.23)

s.t. ZT y = v (3.24)
y ≥ 0 (3.25)

is feasible, its objective value is just zero and equal to the primal objective value.
Then, a dominant strategy does not exist: according to (3.22) the initial value has
to be strictly negative.
In the specific case of scenario trees, the problem (3.23) − (3.24) − (3.25) is solved
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at each time step. In particular, it becomes:
max

y

Ø
k∈[K]

0 · yk (3.26)

s.t.
Ø

k∈[K]
ykSk

j = Sj ∀j ∈ [m] (3.27)

er·dt
Ø

k∈[K]
yk = 1 (3.28)

yk ≥ 0 ∀k ∈ [K] (3.29)

For notational convenience, the superscript a(k) has been omitted in S
a(k)
j when

considering the stock value at the root node (which is the same predecessor node
for each child node k). Constraint (3.24) has been split into two constraints, (3.27)
for stock prices and (3.28) for the bank account, where dt represents the time
interval between the parent node and its children. A closer examination of these
constraints reveals that the absence of dominant strategies results in a linear and
non-negative pricing functional, which expresses the current value of an asset as a
linear combination of future values across possible future scenarios. It is essential
to point out that this is purely a feasibility problem: if a solution exists, then
dominant strategies do not arise. The solution itself has no practical relevance.
Technically, y is not a vector of probabilities. However, considering (3.28), it may
be interpreted as a probability measure if it is rescaled:

π = er·dty,

so that Ø
k∈[K]

πk = 1

πk ≥ 0 ∀k ∈ [K].
This rescaling applied to (3.27) yields a relationship involving discounted processes,
i.e. Ø

k∈[K]
πk

Sk
j

er·dt
= Sj ∀j ∈ [m].

Denoting by EQ the expectation under the probability measure defined by π, the
previous equation is equivalent to

Sj = EQ

C
S∗

j

er·dt

D
∀j ∈ [m],

which means that the expected value under Q of the discounted future value
process

S∗
j

er·dt
of stock j is constant (and equal to its current value Sj). This is

known as martingale property. S∗
j contains the children nodes’ prices for each stock

j: S∗
j = (S1

j , ..., SK
j ).
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3.3.2 Second approach: no arbitrage constraints
Arbitrage strategies are, in reality, a less restrictive concept than dominant strategies.
Starting from (3.21) and weakening it by requiring that the future values have to
be strictly positive in at least one future scenario (and not in all of them) and
non-negative in the remaining states, the arbitrage opportunity definition is set up:

V (0) = 0
V (T, ω) ≥ 0 ∀ω ∈ Ω
E [V (T, ω)] > 0

. (3.30)

This formulation can be exploited to construct an optimization problem: if the
latter is infeasible, then arbitrage opportunity cannot arise. This occurs when the
corresponding dual problem is unbounded above; the dual variables, when rescaled
to sum up to one, define a strictly positive probability measure Q, known as the
risk-neutral measure2. In a similar way as in the previous section, it is obtained
that, under this martingale measure, the current value of a trading strategy is just
the discounted expected value of its future value. The key point is that there are no
arbitrage strategies if and only if a strictly positive martingale probability measure
can be found.
All these concepts can be leveraged to formulate constraints that ensure the absence
of arbitrage in scenario trees. Once prices at the children nodes are generated from
the parent node through Geometric Brownian Motion, they can be checked and
adjusted if needed to eliminate arbitrage. A least squares minimization problem can
be employed to find the closest arbitrage-free values S∗

j to those initially generated
by GBM S̃∗

j , for each stock j:

min
S∗

j

Ø
k∈[K]

1
Sk

j − S̃k
j

22
(3.31)

s.t. Sϑ
j e−r·dt ≥ Sj + α (3.32)

Sθ
j e−r·dt ≤ Sj − α (3.33)

having:

• ϑ = arg max
k∈K

S̃k
j ;

• θ = arg min
k∈K

S̃k
j ;

• α is a small strictly positive number.

2Under this measure, the expected return of risky assets is exactly equal to the risk-free rate r.
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According to constraints (3.32) − (3.33), the highest discounted price among the
newly generated values must exceed the parent node price, while the lowest must
fall below it. This ensures that there is at least one value above and one below the
mean (i.e. Sj). The previous optimization problem is shown in [1].
A different way to guarantee that there is at least one value above and one below
the mean, instead of using constraints (3.32) − (3.33), is to impose that the return
of Sϑ

j has to be greater than a small α and that of Sθ
j has to be less than −α, i.e.

Sϑ
j − Sj

Sj

≥ α

Sθ
j − Sj

Sj

≤ −α
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Chapter 4

Options and exotic
derivatives

Derivatives are financial instruments whose value is explicitly defined in a contract
as a function of another variable. If the derivative is written on a stock share with
price S(t) at time t, the latter is called its underlying asset. Derivatives may rely
on multiple underlying variables and they differ in terms of the function defining
the payoff.
In this framework, vanilla options are treated as hedging instruments (although they
will also be subjected to hedging, providing a benchmark to assess the effectiveness of
the adopted strategies), while Asian options, barrier options and worst-performance
derivatives are regarded as exotic instruments requiring hedging.

4.1 Pricing derivatives: risk-neutral valuation

In order to properly address derivatives, it is firstly necessary to present the pricing
principle concerning their valuation, known as risk-neutral valuation. This pricing
tool relies on the assumption that all investors behave like they are risk-neutral,
meaning that they do not require an increasing compensation for bearing an
increased risk: the expected return on all investments is just the risk-free rate r.
In terms of pricing, the key implication is that the present value of any future
cash flow is obtained by discounting its expected value at the risk-free interest
rate. Going into more details, the procedure of valuing a generic derivative which
provides a payoff Ψ(T ) at time T is structured as follows:

1. assume that the expected return from the underlying asset(s) is the risk-free
rate r (practically, this means that µ ≡ r);
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2. compute the derivative expected payoff at T , i.e.

E◗ [Ψ(T )] ,

considering a risk-neutral probability measure ◗;

3. discount the expected payoff at the risk-free rate r from T to the current time
t, obtainig the current value of the considered derivative

Π(t, T ) = E◗ [Ψ(T )]
er·(T −t) . (4.1)

Note that a continuously compounded rate r has been considered.

A risk-neutral world represents the framework where this principle holds. Clearly,
the real world is not risk-neutral, but the assumption underlying this principle
allows for the correct pricing of derivatives in any world, not just in a risk-neutral
setting.

4.2 Vanilla options
Two types of options are considered:

• call options, which give the holder the right, but not the obligation, to buy
the underlying asset from the option writer, in the future and at a fixed strike
price K;

• put options, where the option holder has the right, but not the obligation,
to sell the underlying asset to the option writer, in the future and at a fixed
strike price K.

Unlike the writer, the holder has the right to make a choice. This distinction
introduces an initial cost for options, reflecting the writer’s compensation for the
obligation to comply with the holder’s decision. Thus, options are asymmetric
derivatives and their acquisition entails a cost, unlike linear contracts. As suggested
by the previous explanation, every option contract involves two parties. On one
side, the option writer, who has sold the option, is said to hold the short position;
he/she receives cash up front, but could have potential liabilities later. On the
other side, the option holder, i.e. the one who has bought the option, holds the
long position. For better understanding, the long position is generally linked to the
contract side that profits from an increase in the instrument’s value, whereas the
short position benefits when the instrument loses value.
Options can be distinguished by their exercise date. American options can be
exercised at any time before maturity (early exercise) or at maturity itself. On the
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contrary, European options allow exercise only at maturity. In this context, the
focus is exclusively on European-style options. Having the underlying stock value
ST = S(T ) at maturity T , from the holder viewpoint the payoff of an European
call option is

max{0, ST − K}, (4.2)

which reflects the fact that the option will be exercised if ST > K and will not be
exercised if ST ≤ K. Similarly, the holder of an European put option will have a
payoff given by

max{0, K − ST }, (4.3)

since he will exercise the put option if ST < K. The payoffs for short positions
are the negative counterparts of those for long positions, as the two positions are
fundamentally opposite. As a result, the payoff of a short position into a call is

− max{0, ST − K} = min{0, K − ST },

while a short position into a put has a resulting payoff given by

− max{0, K − ST } = min{0, ST − K}.

All these characteristics are graphically shown in Figure 4.1 by the solid lines.
Due to the presence of an initial price, payoff and profit do not coincide as they
do in linear contracts. Instead, they differ by an amount equal to the initial price.
In a similar manner, as discussed earlier, the short position’s profit or loss is the
reverse of that for the long position. Table 4.1 and Figure 4.1 provide a clearer
illustration of what was just explained. When the option expires worthless, the
holder loses the full option premium, which is the worst possible outcome; on the
other hand, the potential loss for a call writer is unbounded. Generally speaking,
exercising an option does not ensure a positive profit for the holder and a loss
for the short position. The final outcome depends on the underlying’s value at
maturity, as follows:

• a call is exercised if ST > K, but if K < ST < K + C the holder will incur a
loss (Figure 4.1a) and the writer will earn a profit (Figure 4.1b);

• a put is exercised if ST < K, but if K − P < ST < K the holder will incur a
loss (Figure 4.1c) and the writer will earn a profit (Figure 4.1d).

In terms of hedging, it is important to consider that the purchaser of a call option
relies on a potential rise in the stock price, while the holder of a put option is
expecting a decrease in its underlying value.
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K K + C
−C

ST

Payoff / Profit

(a) Long Call (holder)

K K + C

C
ST

Payoff / Profit

(b) Short Call (writer)

KK − P
−P

ST

Payoff / Profit

(c) Long Put (holder)

KK − P

P
ST

Payoff / Profit

(d) Short Put (writer)

Figure 4.1: Payoff (solid lines) and profit (dashed lines) for long and short
positions in call and put options. K is the strike price, ST is the underlying price
at maturity T , C and P are respectively the call and the put initial price. The
blue shaded regions highlight the range where the holder is exercising the option,
but still having a loss. The red shaded regions represent the range where the writer
incurs a profit, even if the counterpart is exercising the option.

Option
type

Position Payoff Profit

Call
Long max{0, ST − K} max{0, ST − K} − C

Short − max{0, ST − K} C − max{0, ST − K}

Put
Long max{0, K − ST } max{0, K − ST } − P

Short − max{0, K − ST } P − max{0, K − ST }

Table 4.1: Payoff and profit for European options.
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4.2.1 Pricing European vanilla options: Black-Scholes-
Merton model

The Black-Scholes-Merton model is a widely used approach for pricing derivatives.
It is based on some assumptions:

1. the underlying stock price follows a lognormal distribution and (3.9), as
described in the previous chapter, considering constant µ and σ;

2. the considered derivative is a tradeable asset;

3. short shelling is permitted;

4. there are no frictions, i.e. transaction costs or taxes;

5. the market is arbitrage free;

6. the risk-free rate r is constant and the same for all maturities.

Note that (3.9) is generally valid in real worlds, whereas in a risk-neutral world
µ must be replaced by the risk-free rate r. To be more precise, from a pricing
point of view the Geometric Brownian Motion followed by stock prices becomes
dS = rSdt + σSdW .
This model is characterized by

∂f

∂t
+ rS

∂f

∂S
+ 1

2σ2S2 ∂2f

∂S2 = rf,

known as Black-Scholes-Merton differential equation, where f = f(S, t) represents
the price of the derivative having S as underlying. By solving this differential
equation, all the different derivatives that can be defined with S as the underlying
stock will be found. The specific derivative obtained as a solution depends on the
boundary condition that is used; generally, a final condition f(S(T ), T ) = Ψ(S(T ))
is given, where Ψ(S(T )) represents the derivative payoff at maturity T .
Furthermore, according to the Feynman-Kac theorem, the solution can be expressed
as

f(s, t) = e−r·(T −t)E◗ [Ψ(S(T ))|S(t) = s] ,

where the expectation is made under a measure such that µ becomes r, i.e. a
risk-neutral measure ◗.
It is important to notice that Black-Scholes-Merton model gives an equation that
must be satisfied by the price of any derivative depending on a non-dividend-paying
stock. In this context, the specific case of European vanilla options is taken into
account, so e.g. the boundary condition for a European call option will be

f(S(T ), T ) = max{S(T ) − K, 0}.
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Consequently, the Black-Scholes-Merton pricing formula which gives the price of a
European vanilla call option at a generic time t < T is the following:

C(t) = S(t)N(d1) − Ke−r·(T −t)N(d2)

with

d1 =
ln
1

S(t)
K

2
+
1
r + σ2

2

2
(T − t)

σ
√

T − t
(4.4)

d2 =
ln
1

S(t)
K

2
+
1
r − σ2

2

2
(T − t)

σ
√

T − t
= d1 − σ

√
T − t

N(·) is the c.d.f of a standard normal distribution N ∼ (0,1).
Clearly, the pricing formula of a vanilla European-style put option

P (t) = Ke−r·(T −t)N(−d2) − S(t)N(−d1)

is found by adopting the same procedure.
Generally speaking, the price of a call option decreases as the strike K increases,
while the price of a put option increases as the strike K increases.

4.3 Asian options
By extending the concept of vanilla options, more complex derivatives can be
created, like the exotic ones, featuring different payoff structures. As a specific
category of exotic options, Asian options provide a modified payoff mechanism by
using the average price of the underlying asset during the life of the option, rather
than only its maturity value. This results in substituting ST with the average
price Savg of the underlying asset from initial time to maturity in the previously
introduced payoff formulas. As an example, the payoff of an European Asian1 call
option, starting from (4.2), becomes

ΨAC(T ) = max{0, Savg − K} with Savg = 1
m

Ø
d∈[D]

S(td), (4.5)

considering td, d ∈ [D] as dates of evaluation and tD ≡ T .
Asian options offer an additional level of complexity by allowing for multiple
underlying assets, an assumption that is usually invalid for vanilla options. As a

1An Asian option could be European or American, since Asian refers only to the payoff form,
whereas European or American define the exercise mechanism of the option.
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consequence, the payoff of an European-style Asian put option with m underlings
is defined by

ΨAP (T ) = max{0, K − Savg}

with Savg = 1
m

Ø
j∈[m]

Savg,j = 1
m

Ø
j∈[m]

 1
D

Ø
d∈[D]

Sj(td)
 ,

reflecting the dependence from both the time-average of its underlying assets’ values
and the average across all its underlying assets.
In the hedging framework, priority will be given to the study of options with more
than one underlying, as they are regarded as more difficult and challenging to
address.
From a pricing perspective, Asian options are priced in a risk-neutral setting by
discounting the expected payoff under a risk-neutral measure ◗. In a nutshell, this
results in computing the price at time t of a derivative with maturity T by using
(4.1).

4.4 Barrier options
More complex and sophisticated derivatives will be now introduced, known as
barrier options. Their payoff depends on whether the underlying asset’s prices
reaches a certain level, the barrier H, during the derivative lifetime. From a
financial standpoint, these options are appealing because they are cheaper than
their vanilla counterpart.
A first classification divides barrier options into two categories:

• knock-out options, which cease to exist when the underlying asset price hits
the barrier H;

• knock-in options, which on contrary come into existence when the underlying
asset price reaches the barrier H.

Barrier options are additionally categorized according to the relationship between
the barrier level H and the initial underlying price S(0):

• if H < S(0), i.e. the barrier lever is below the initial stock price, the option is
said to be of down- type;

• if H > S(0), i.e. the barrier level is above the initial stock price, the option is
an up- barrier option.

Eight barrier options are taken into account as instruments to be hedged, four calls
and four puts, whose pricing formulas are presented below.
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Down-and-out and down-and-in call.

Keeping in mind that the value C(t) of a vanilla call option at time t is equal to the
sum between the values of the corresponding down-and-out Cdo(t) and down-and-in
Cdi(t) options at time t, i.e.

C(t) = Cdi(t) + Cdo(t),

it can be proven that:

• for H ≤ K

Cdi(t) = S(t)
A

H

S(t)

B2λ

N(y) − Ke−r·(T −t)
A

H

S(t)

B2λ−2

N(y − σ
√

T − t)

and
Cdo(t) = C(t) − Cdi(t);

• for H ≥ K

Cdo(t) = S(t)N(x1) − Ke−r·(T −t)N(x1 − σ
√

T − t) − S(t)
A

H

S(t)

B2λ

N(y1)+

+ Ke−r·(T −t)
A

H

S(t)

B2λ−2

N(y1 − σ
√

T − t)

and
Cdi(t) = C(t) − Cdo(t).

The used parameters are

λ = 1
σ2

A
r + σ2

2

B

y = 1
σ

√
T − t

ln
A

H2

S(t)K

B
+ λσ

√
T − t

x1 = 1
σ

√
T − t

ln
A

S(t)
H

B
+ λσ

√
T − t

y1 = 1
σ

√
T − t

ln
A

H

S(t)

B
+ λσ

√
T − t

.

Up-and-out and up-and-in call.

By a similar manner, the main relation is

C(t) = Cui(t) + Cuo(t),
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since an up-and-out call is essentially a regular call option that ceases to exist
when and only if the barrier is reached, an event that simultaneously triggers the
beginning of the existence of the corresponding up-and-in call. Then,

• for H ≤ K

Cuo(t) = 0 and so Cui(t) = C(t);

• for H > K

Cui(t) = S(t)N(x1) − Ke−r·(T −t)N
1
x1 − σ

√
T − t

2
+

− S(t)
A

H

S(t)

B2λ

[N(−y) − N(−y1)] +

+ Ke−r·(T −t)
A

H

S(t)

B2λ−2 è
N
1
−y + σ

√
T − t

2
− N

1
−y1 + σ

√
T − t

2é

and
Cuo(t) = C(t) − Cui(t).

Using the same logic, the following results hold for put options.

Down-and-out and down-and-in put.

P (t) = Pdi(t) + Pdo(t)

• for H ≤ K

Pdi(t) = −S(t)N(−x1) + Ke−r·(T −t)N
1
−x1 + σ

√
T − t

2
+

+ S(t)
A

H

S(t)

B2λ

[N(y) − N(y1)] +

− Ke−r·(T −t)
A

H

S(t)

B2λ−2 è
N
1
y − σ

√
T − t

2
− N

1
y1 − σ

√
T − t

2é

and
Pdo(t) = P (t) − Pdi(t);

• for H > K

Pdo(t) = 0 and so Pdi(t) = P (t).
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Up-and-out and up-and-in put.

P (t) = Pui(t) + Puo(t)

• for H ≥ K

Pui(t) = −S(t)
A

H

S(t)

B2λ

N(−y) + Ke−r·(T −t)
A

H

S(t)

B2λ−2

N(−y + σ
√

T − t)

and
Puo(t) = P (t) − Pui(t);

• for H ≤ K

Puo(t) = − S(t)N(−x1) + Ke−r·(T −t)N(−x1 + σ
√

T − t)+

+ S(t)
A

H

S(t)

B2λ

N(−y1)+

− Ke−r·(T −t)
A

H

S(t)

B2λ−2

N(−y1 + σ
√

T − t)

and
Pui(t) = P (t) − Puo(t).

The previously listed analytic formulas assume that S is continuously observed in
order to determine if the barrier has been hit. In a discrete framework, the barrier
level H should be replaced by He0.582σ

√
T/β for up-options and by He−0.582σ

√
T/β

for down-options, where β is the number of times when the asset price is observed.
From a payoff perspective, when a barrier option exists at maturity, its payoff is
given by the correspondent formula which depends on the type of the option: e.g.,
a barrier call option which is active at maturity will have a payoff given by (4.2).
On the other hand, if it does not exist, its payoff is trivially equal to zero.

4.5 Worst-Performance Derivatives
Some multi-asset exotic derivatives issued by Intesa Sanpaolo bank are taken into
account, representing the most challenging derivatives to hedge considered in this
analysis: Standard Long Barrier Plus Worst of Certificates (4.5.1), Standard Long
Barrier Digital Worst of Certificates (4.5.2) and Standard Long Autocallable Barrier
Digital Worst of Certificates with memory effect (4.5.3). As the name suggests,
they are based on the worst performance of their underlyings during the derivative
lifetime. More formally, consider m underlyings, whose values at a generic time
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instant td are Sj(td) for all j ∈ [m]. The performance at date td of the asset j with
an initial value Sj(t0) can be expressed as

Pj(td) = Sj(td) − Sj(t0)
Sj(t0).

Then, the worst-performing asset (i.e. the one with the lowest performance) at td

is found by
wtd

= arg min
j∈[m]

Pj(td). (4.6)

The objective of such products is to provide additional return in exchange for the
risk of loss of capital. WP derivatives share some common features: an Issue Price
is setted at the beginning of the contract, as well as barrier levels related to how
periodically coupons are paid (if paid) and to the assessment of the maturity payoff.
In particular, the cash flow at maturity depends on worst performance and is given
by

ΨWP(T ) =


I if SwFVD(FVD) ≥ b · SwFVD(t0)

I · SwFVD(FVD)
SwF V D

(t0)
otherwise

(4.7)

where:

• the underlying stocks Sj are those listed in Table 4.2;

• T represents the Expiry Date (maturity);

• FVD corresponds to the Final Valuation Date;

• wFVD follows the definition (4.6), i.e. it is the worst-performing asset at the
Final Valuation Date;

• b is a percentage which defines a Barrier Level when multiplied by the worst
performer value SwF V D

(t0) at the Issue Date t0;

• I is the Issue Price.

From a pricing point of view, the WP derivatives initial price can be determined,
in a risk-neutral world, as the expected discounted payoff under a risk-neutral
probability measure ◗ as previously explained in section 4.1. In the specific context
of pricing, the value of this contract at maturity is given by the sum between the
effective maturity cash flow (i.e. ΨWP(T )) and all the actualized intermediate cash
flows (i.e. coupons):

ΠWP(t0, T ) =
E◗

è
ΨWP(T ) +q

d∈[D] Ctd
er·(T −td)

é
er·(T −t0) . (4.8)
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Derivative Underlyings

WP1 EURO STOXX 50®
FTSE® MIB® IDX

WP2 EURO STOXX® SELECT DIVIDEND 30
FTSE ® MIB® IDX

WP3
RWE AG
ÉLECTRICITÉ DE FRANCE SA
IBERDROLA SA

Table 4.2: Underlyings of each WP derivative.

However, they also have peculiarities, as detailed in what follows. The derivatives
are described as they were originally developed by Intesa Sanpaolo. However, for
the purposes of this work, only their structural framework will be retained for the
analysis phase, without also including their real data.

4.5.1 WP1: Standard Long Barrier Plus Worst of Certifi-
cates

The first considered WP derivative provides periodic payments which are uncondi-
tionally paid since they are not linked to any underlying performance: coupons are
deterministic. The Periodic Amount Ctd

referred to the Periodic Amount Payments
Dates td is fixed and equal to Ctd

= €27.50 = C ∀d ∈ [D].
On the contrary, the payoff at maturity (T = 28 March 2023) depends on worst
performance, following (4.7) and considering the specific characteristics in Table 4.3.

Issue
Price I

Periodic
Amount C

Barrier
percentage b

€1000 €27.50 50%

Table 4.3: WP1 key values.

The price at the Issue Date t0 can be found according to (4.5). Consequently, all
the bank cash flows can be summarized as follows in Figure 4.2.
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+ΠWP1(t0) −C −C −C − (C + ΨWP1(T ))

28/03/19

ID (t0)

30/03/20 29/03/21 28/03/22 21/03/23

FVD

28/03/23

T

Figure 4.2: WP1 cash flows from the bank’s point of view.

4.5.2 WP2: Standard Long Barrier Digital Worst of Cer-
tificates

Moving forward, the second WP derivative also involves worst performance valuation
to determine whether coupons (Digital Amounts) will be paid. It is necessary the
introduction of another percentage g which gives the Digital Level when multiplied
by the worst performer value at t0, i.e. the cash flow Ctd

at time td is

Ctd
=
G if Swtd

(td) ≥ g · Swtd
(t0)

0 otherwise
∀d ∈ [D]. (4.9)

In other words, after finding the underlying with the worst performance at tj , if its
current value is greater than or equal to the Digital Level, the coupon G is paid.
The formula (4.7) also defines the cash flow at maturity for this specific derivative,
without any modifications. The most relevant characteristics of this product are
summarized in Table 4.4. Coupon valuation dates occur quarterly starting from
and including 23 June 2020 to 23 March 2026, which is also the Final Valuation
Date. The contract expires on 30 March 2026.

Issue
Price I

Digital
Amount G

Barrier
percentage b

Digital
percentage g

€1000 €8 50% 75%

Table 4.4: WP2 key values.

4.5.3 WP3: Standard Long Autocallable Barrier Digital
Worst of Certificates with memory effect

The last WP derivative taken into account has a more complex structure. Both
coupon and maturity cash flows depend on the worst performance of its underlyings,

36



Options and exotic derivatives

as in WP2. However, it exhibits two additional and compelling properties that
influence its management:

1. memory effect: as previously described, at each coupon date td the worst-
performer among underlyings determines if the coupon is paid or not at the
current time by comparing its current value with the Digital Level. Addi-
tionally, if the coupon is paid, the bank has to settle all the previous unpaid
coupons; otherwise, if the current value of the underlying with the worst
performance is below the Digital Level, no payment will occur at td;

2. early redemption (autocallability): this product has an additional set of relevant
dates, called Early Redemption Valuation Dates, when early redemption could
happen if the current value of the worst performer is higher than or equal to
its initial value. In this case, the derivative will be redeemed and the bank
will have to pay the Early Redemption Amount ERA to the investor. As a
consequence of this event, no other cash flow will be occur: the contract is
expired.

Taking all these aspects into account, cash flows formula becomes

Ctd
=


G +

Ø
k∈Ud

G + ERA · ✶ER(td) if Swtd
(td) ≥ g · Swtd

(t0) and no early

redemption has occurred in (t0; td−1]
0 otherwise

,

(4.10)
where Ud = {k ∈ [z + 1; d − 1] : Ctk

= 0, Ctz /= 0} refers to the dates of previous
coupons that have not been paid since the last non-zero cash flow. Clearly, if td is
the first cash flow, it is necessary to collect all coupons backwards in time until t0.
Meanwhile ER(td) = {early redemption occurs exactly at td} is related the to early
redemption event: the multiplication by its indicator function is useful according to
the fact that if early redemption takes place at td, the Early Redemption Amount
ERA will also be paid. If the value of the worst performer does not exceed the
Digital Barrier, or if an early redemption event has already occurred before td, the
cash flow Ctd

will be zero: in the latter case, the contract has expired; thus, there
will be no future payments.
Early redemption also affects the cash flow at maturity:

ΨWP3(T ) =
0 if early redemption have occurred until T

ΨWP(T ) otherwise
. (4.11)

WP3’s Digital Valuation Dates are scheduled every six months, starting on 10 May
2022 and ending on 14 November 2024, which is also the Final Valuation Date.
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Moreover, all these dates, excluding the final one, coincide with the Early Redemp-
tion Valuation Dates.
This product’s specific features are shown in Table 4.5. Its Issue Date is 16
November 2021.

Issue
Price I

Periodic
Amount

G

Early Re-
dempition
Amount

ERA

Barrier
percentage

b

Digital
percentage

g

€1000 €36.50 €1000 60% 60%

Table 4.5: WP3 key values.

Practically speaking, the valuation dates of all WP derivatives slightly differ from
the ones when the payments actually take place. For the purposes of this thesis,
however, it can be assumed that the valuation dates coincide with the actual cash
flow dates. As a result, FVD and T are also considered to be the same.
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Chapter 5

Code Structure

A well-structured Python code framework supports all the results obtained in
this thesis. An object-oriented programming approach was implemented for the
construction of market elements. The allowed assets are those described in previous
sections, i.e.

• stocks;

• options: vanilla, Asian, barrier and worst-performance type; calls and puts are
considered, for a total of two European-style, two Asian-style, eight barrier
type options, in addition to the three worst-performance derivatives;

• cash.

An additional class called MultiStock is used to store information about the
correlation among the various stocks present in the market. Since each option can
have one or more underlying assets, the relationship between the option and stocks
classes is essential. In particular, European and barrier options are written on a
single underlying, while Asian options and worst-performance derivatives involve
multiple underlyings, thus they are connected to the MultiStock class rather than
the Stock one.
The Cash class contains the risk-free rate, which is used by each option type.
WP1 is the most abstract class among the three WP derivatives. WP2 inherits its
features and adds the stochastic nature of the coupons. WP3 extends WP2 by adding
the possibility of early redemption. A summary diagram of the asset classes and
their relationships is presented in Figure 5.1.
After selecting the market components, their statistical properties (mean, variance,
correlation, and skewness of log-returns) are estimated based on historical data of
the period from 05/01/2022 to 05/01/2024.
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The hedging horizon is naturally defined by the maturity of the derivative to be
hedged. The rebalancing schedule is established through a branching factors vector,
whose primary role will be explained in the context of scenario trees. However,
the size of this vector sets the time interval dt and, consequently, the dates when
portfolio adjustments are allowed. In particular, if β is the branching factors
vector’s length, then

dt = T

β
,

i.e. the hedging portfolio is constructed at time t = 0 and then potentially
rebalanced at t = n · dt, with n = 1, ..., β − 1. Indeed, the last rebalancing time is
T − 1 = (β − 1) · dt: the portfolio at maturity corresponds to the one set up in the
previous time step. As an example, the tree in Figure 2.1 has a branching factors
vector equal to [2,2,2] and dt = T

3 .
According to the chosen number of replications, Monte Carlo simulations1 are
performed to generate real scenarios for testing the chosen hedging strategies.
Starting from the given initial prices, the values of each market element are
computed until the end of the hedging horizon:

• stock paths are simulated via Geometric Brownian Motion, leveraging the
statistical properties estimated from real data;

• option values at each time step are determined according to their pricing
models, i.e. the Black-Scholes-Merton model for vanilla European options, the
corresponding analytical formulas for barrier options and the Monte Carlo-
based risk-neutral valuation for both Asian options and worst performance
derivatives2. The underlying assets values at each time step are those described
in the previous point.

The framework is now established and ready to determine and apply an hedging
strategy using stochastic optimization.

5.1 Reinforcement Learning Style
The hedging problem was approached following a Reinforcement Learning (RL)
style framework. RL is based on the paradigm of trial and error, so an agent (the
decision maker) learns to perform actions that lead to the highest rewards over time
by interacting with an environment in order to maximize an expected cumulative

1See section 5.2 for a better understanding.
2Details on the derivatives employing Monte Carlo simulations are provided in subsection 5.2.1.
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reward: the agent observes the current state of the environment, takes actions,
receives rewards and updates its knowledge to improve future actions. Typically,
RL methods do not rely on a precise mathematical model and instead employ
heuristic techniques. In this case, however, a well-defined mathematical model is
available. Specifically

1. the hedging agent observes the current state of the environment (the fi-
nancial market), which consists of the present values of the hedging assets
(current_values) and the current time (current_time);

2. based on the current state, the agent selects an action by solving the hedg-
ing problem outlined in Chapter 2. This process involves constructing a
scenario tree from the current time to maturity by appropriately using the
branching factor corresponding to the current step. From the solution of the
hedging problem, only the quantities xn0

j ∀j ∈ A (current_quantities) are
considered, since they are those practically applicable at the current time;

3. after making the decision, the agent moves to a new environment state.
However, unlike typical RL settings, the next state does not depend on the
taken action. The environment’s evolution follows a predefined sequence
of states determined by the simulated financial market values, which was
generated in advance (in Monte Carlo test scenarios, as explained in the
previous section).

Unlike traditional RL, this approach does not rely on a reward function to drive
decision making; instead, decisions follow a well defined model. For this reason,
the approach only follows the style of reinforcement learning rather than fully
leveraging its principles.
The implemented RL algorithm is presented below.

1 f o r current_rep in range ( env . reps ) : # Monte Carlo r e p l i c a t i o n s
2 current_time , current_values = env . r e s t a r t ( ) # Restart the

environment , by s e t t i n g time to zero
3 done = False
4 # Loop in RL s t y l e : the agent obse rves the cur rent s tate , takes

an ac t i on and c o l l e c t s the correspondent reward be f o r e moving to
the next s t a t e .

5 whi le not done :
6 i f current_time != 0 :
7 # When time i s not zero , save the s tock p r i c e s h i s t o r y .
8 i n i t i a l i z e _ p a s t _ v a l u e s ( env , current_rep , current_time )
9
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10 s t a t e = { ’ as se t_va lues ’ : current_values , ’ t ’ : current_time } #
s t a t e o f the environment

11

12 # Branching f a c t o r s are p r o g r e s s i v e l y reduced in r e v e r s e
order ( exc lud ing the l a s t current_time s t ag e s )

13 # to improve the performance when c a l l i n g the hedg ingSo lver
at f u r t h e r s t ag e s .

14 i f current_time == 0 :
15 bf = branch ing_factors
16 e l s e :
17 branch ing_factors [: − current_time ]
18

19 # The agent takes an ac t i on by s o l v i n g the opt imiza t i on
problem and reba lanc ing the ho ld ings ( saved in cu r r en t_quant i t i e s )

20

21 i f i s i n s t a n c e ( env . target_asset , Barr ierOpt ion ) :
22 e x i s t sB a r r i e rO pt i on = env . ta rge t_as s e t . matr ixEx i s t s [

current_rep , current_time ]
23 cur rent_quant i t i e s , reward , reba lanc ing_cost =

stoch_agent . get_act ion ( s tate , bf , e x i s t sB a r r i e r O pt i o n )
24

25 e l s e :
26 cur rent_quant i t i e s , reward , reba lanc ing_cost =

stoch_agent . get_act ion ( s tate , bf )
27

28 r eba lanc ing_cos t s [ current_rep , current_time ] =
reba lanc ing_cost

29

30 # Save the reba lanced p o r t f o l i o
31 update_quant i t i e s ( env , current_rep , current_time ,

cu r r en t_quant i t i e s )
32

33 # The environment step c o n s i s t s in g e t t i n g aware o f the next
a s s e t p r i c e s ( a l r eady s imulated through GetRealValues ( ) )

34 current_time , current_values , done , i n f o = env . s tep (
current_rep , current_time )

35

36 # At maturity the p o r t f o l i o i s not rebalanced , so the f i n a l
ho ld ings correspond to the ones o f the prev ious time .

37 # Cash :
38 env . hedging_assets [ " Cash " ] . q u a n t i t i e s [ : , env . times −1] = env .

hedging_assets [ " Cash " ] . q u a n t i t i e s [ : , env . times −2]
39 # Stocks :
40 f o r s tock in env . hedging_assets [ " Multi_stock " ] . s t o c k _ l i s t :
41 s tock . q u a n t i t i e s [ : , env . times −1] = stock . q u a n t i t i e s [ : , env .

times −2]
42 # Options :
43 f o r opt ion in env . hedging_assets [ " Opt ions_l i s t " ] :
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44 opt ion . q u a n t i t i e s [ : , env . times −1] = opt ion . q u a n t i t i e s [ : , env .
times −2]

The decision-making process slightly differs in the case of barrier options, but this
will be better explained in section 5.4. Furthermore, rebalancing costs, if present,
are recorded, e.g. in non-self-financing strategies or in those allowing for money
withdrawals; if the initial wealth is not fixed, the cost of the portfolio construction
is also included.
The env.step() function simply returns the values of the market components in
the new state, corresponding to the previously computed market values for the
subsequent time step.
The done flag is set to true after the last rebalancing decision at time T − 1.
The reward returned by the stoch_agent.get_action() function3, although not
used in any way, trivially represents the value of the objective function of the
hedging problem solved at that specific step.

5.2 Monte Carlo
Monte Carlo is a technique used to model and analyze problems that involve
uncertainty. In more detail, it relies on repeated random sampling to estimate
numerical results. Mathematically speaking, given a function h which depends on
a random variable X with probability density function p(x), the expected value of
h(X) can be estimated using the Monte Carlo approximation

E[h(X)] =
Ú

h(x)p(x)dx ≈ 1
R

RØ
r=1

h(Xr),

where Xr r = 1, ..., R are independent samples of X and R is the number of Monte
Carlo replications. The method is based on the Law of Large Numbers: as the
number of trials R increases (R → ∞), the empirical result tends to converge
toward the expected theoretical value. Clearly, the estimation accuracy improves as
the number of replications increases, but also computational cost has to be taken
into account, since it may become a limiting factor.
Monte Carlo methods are particularly useful when analytical solutions are not
easily attainable.
In this specific setting, Monte Carlo simulation is primarily used to estimate the
behavior of the adopted hedging strategy. To achieve this, the latter is tested over
a large number of replications R, referred to as Monte Carlo replications. The
outcomes of all real-world simulated scenarios are then used to compute an estimate

3See section 5.3 for details.
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of the average values of the performance metrics (hedging error, P&L), which will
be described in Chapter 6. This approach also provides insight into the robustness
of the implemented hedging strategies in different real-world situations.

5.2.1 Option valuation
Monte Carlo simulations can be used for option pricing, relying on the risk-neutral
principle: paths are sampled, the expected payoff is computed in a risk-neutral
world and then discounted at the risk-free rate to obtain the option value at a
given time. The process for valuing an European-style Asian option with maturity
T at time t is illustrated in the following scheme:

1. sample a random path for each underlying asset in a risk-neutral world;

2. calculate the derivative payoff; for an Asian option written on multiple under-
lying assets, the payoff is given by the average across assets of the time-average
of each asset’s price, as explained in section 4.3;

3. repeat steps 1. and 2. multiple times (e.g. 104) to obtain a large set of payoff
samples for the derivative;

4. compute the mean of the total number of the sample payoffs: this is the
estimate of the expected payoff in a risk-neutral world;

5. discount the estimate from T to t at the risk-free rate: the result represents
an estimate of the value of the derivative at time t.

When an explicit pricing formula is not available, unlike vanilla or barrier options,
the most effective method for option valuation is Monte Carlo simulation. This
method proves to be effective, whether the payoff is based only on the final value
of the underlying assets or influenced by their full price evolution. Thus, Monte
Carlo is used in this thesis to evaluate path-dependent Asian options and worst-
performance derivatives.
Practically speaking, starting from the theoretical result explained in section 3.1,
to simulate the path followed by the underlying stock Sj, the hedging horizon is
divided into β time intervals of length dt and the continuous equation (3.9) is
discretized as follows:

Sj(t + dt) = Sj(t) exp
IA

µj −
σ2

j

2

B
dt + σjZj

√
dt

J
,

where Zj is a one-dimensional random sample from a multivariate (m-dimensional4)
normal distribution, with correlation matrix ρ.

4Recall that m is the considered number of stocks.
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This allows the calculation of stock values at time t + dt using their values at time
t.
The following code represents the Monte Carlo implemented function for the
valuation of European Asian options.

1 de f MonteCarloPrice ( s e l f , S0 , time_to_maturity , reps ,
2 remaining_times , S_past=None ) :
3 ’ ’ ’
4 Compute the Monte Carlo p r i c e f o r the Asian opt ion .
5 S0 : I n i t i a l s t o ck s p r i c e s
6 time_to_maturity : Time remaining u n t i l maturity
7 reps : Number o f Monte Carlo s imu la t i on s
8 remaining_times : Number o f remaining time s t ep s
9 S_past : H i s t o r i c a l s tock p r i c e s (None i f current_time=0)

10 Return the average p r i c e a c r o s s time s t ep s and under ly ing a s s e t s ;
11 t h i s array i s then used by AsianCal l and AsianPut s u b c l a s s e s
12 to compute the f i n a l opt ion p r i c e based on the payo f f type ( c a l l or

put ) .
13 ’ ’ ’
14

15 # Extract under ly ing stocks , c o r r e l a t i o n matrix , and v o l a t i l i t i e s
16 under ly ings = s e l f . mult i_stock . s t o c k _ l i s t
17 rho = s e l f . mult i_stock . rho
18 n_underlyings = len ( under ly ings )
19 sigma = np . array ( [ s tock . sigma f o r s tock in under ly ings ] )
20 mu = np . array ( [ s tock .mu f o r s tock in under ly ings ] )
21 r = s e l f . cash . r i sk_f r e e_ra t e
22

23 # dt = time step l ength
24 dt = time_to_maturity / ( remaining_times −1)
25

26 # I n i t i a l i z e s tock p r i c e matr i ce s
27 S = [ ]
28 f o r n in range ( n_underlyings ) :
29 S . append (np . z e r o s ( ( reps , remaining_times ) ) )
30 S [ n ] [ : , 0 ] = np . repeat ( S0 [ n ] , r eps )
31

32 # Simulate s tock p r i c e paths
33 f o r t in range (1 , remaining_times ) :
34 # In s imu la t i on s s e t t i n g s ( Geometric Brownian Motion ) :
35 # S( t+dt ) = S( t ) ∗ exp ( ( r − 1/2∗ sigma ∗∗2) ∗ dt + sigma ∗ s q r t

( dt ) ∗ Z)
36 # where Z i s a standard normal d i s t r i b u t i o n
37

38 # Generate c o r r e l a t e d Brownian increments
39 Inc = MultiStock . generate_BM_stock_increments (
40 n_underlyings ,
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41 r , mu, sigma , rho ,
42 dt , reps ,
43 s e l f . rnd_state ,
44 r i s k _ f r e e = True )
45

46 f o r n in range ( n_underlyings ) :
47 # Update s tock p r i c e s us ing the geometr ic Brownian motion

formula
48 S [ n ] [ : , t ] = S [ n ] [ : , t −1] ∗ np . exp ( Inc [ n ] ) # S [ n ] . shape

= ( reps , t imes )
49

50 # I f h i s t o r i c a l p r i c e s are provided , concatenate them with
s imulated p r i c e s

51 i f type ( S_past ) == np . ndarray :
52 f o r n in range ( n_underlyings ) :
53 S_past_1asset = S_past [ n , : ] . reshape (1 , −1) # (1 ,

times_past )
54 S_past_1asset = np . t i l e ( S_past_1asset , ( reps , 1) ) # (

reps , times_past )
55 S [ n ] = np . hstack ( ( S_past_1asset , S [ n ] ) ) # ( reps ,

times_past+times )
56

57 # Compute time averages f o r each s imu la t i on path
58 time_means = np . z e ro s ( ( n_underlyings , r eps ) )
59 f o r n in range ( n_underlyings ) :
60 time_means [ n ] = np . mean(S [ n ] , ax i s =1)
61

62 # Compute the average o f the means ac ro s s a l l under ly ing a s s e t s
63 asset_means = np . mean( time_means , ax i s =0) #( reps )
64

65 payo f f s = s e l f . payof f_formula ( asset_means )
66 p r i c e = np . exp(−r ∗ time_to_maturity ) ∗ np . mean( payo f f s ) #

Discounted average payo f f
67

68 re turn p r i c e

5.3 Scenario trees: stochastic models and arbi-
trages

The Geometric Brownian motion approach discussed in section 3.1 focuses only on
generating price paths. Whereas MM simultaneously models prices and node prob-
abilities, the GBM approach requires the probabilities to be computed separately.
Two alternatives are proposed, which involve formulating a Moment Matching
problem to calculate the probabilities πk of the children nodes k ∈ [K], while
maintaining the characteristic moments for the log-returns recalling (3.8), i.e.:
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• first moment of log-returns of stock j:
A

µj −
σ2

j

2

B
dt;

• second moment of log-returns of stock j: σ2
j dt +

CA
µj −

σ2
j

2

B
dt

D2

;

• the expectation of the product between log-returns of two different stocks j

and l: σjσldt · ρj,l +
A

µj −
σ2

j

2

B
dt ·

A
µl − σ2

l

2

B
dt.

The historical statistical properties µ, σ, ρ are those estimated from a set of
historical data, as introduced at the beginning of this chapter.
The previously listed properties of log-returns are matched with those obtained
from one step of the scenario tree, as explained in section 3.2. Note that in this
specific case, only probabilities are decision variables, since stock prices have already
been simulated through GBM. Two Moment Matching formulations have been
implemented to determine the children probabilities πk starting from their parent
node:

1. one variant (BrownianMotionForHedging_Gurobi) involves the minimization
of the squared distance between the first and second moments and the expec-
tations of the product between log-returns of two different stocks (to capture
correlation); the objective function is the sum of the squared difference between
each expected property and its counterpart resulting from the tree. This model
is addressed with the Gurobi Optimizer, since it is a quadratic programming
problem. Indeed, since scenario tree’s statistical properties are computed as
follows

first moment:
Ø

k∈[K]
πk ln

 Sk
j

S
a(k)
j



second moment:
Ø

k∈[K]
πk

ln
 Sk

j

S
a(k)
j

2

expectation of the product:
Ø

k∈[K]
πk

ln
 Sk

j

S
a(k)
j

 ClnA Sk
l

S
a(k)
l

BD
,

and considering that the squared distance is minimized, the objective function
is quadratic with respect to the decision variables πk.

2. the second approach (BrownianMotionForHedging) considers the first and
second moments and the correlations, which however introduces non linearity.
Thus, this Moment Matching minimization problem is solved using SLSQP
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(Sequential Least Squares Programming), since it is suited for non linear
optimization problems.

MM stochastic model (MomentMatchingForHedging) for the generation of stock
prices follows exactly what was described in section 3.2, considering the log-returns
statistical properties (3.16), (3.17), (3.18) and (3.19) which have to be matched
with the historical estimated mean, standard deviation, correlation and skewness.

The stochastic models described above are used by the ScenarioTree class, which
is responsible for the construction of scenario trees. One of the three available
models can be chosen, each offering to ScenarioTree a function to simulate one
time step (simulate_one_time_step()), whose purpose is to generate children
nodes from their parent node. The connection between stochastic models and the
scenario tree’s class is depicted in Figure 5.2 and in the following function:

1 de f _generate_one_time_step ( s e l f , n_scenarios , parent_node ) :
2 ’ ’ ’ Given a parent node and the number o f c h i l d r e n to generate , i t

r e tu rn s the c h i l d r e n with correspond ing p r o b a b i l i t i e s ’ ’ ’
3 prob , obs = s e l f . stoch_model . simulate_one_time_step (
4 parent_node=parent_node ,
5 n_chi ldren=n_scenar ios
6 )
7 re turn prob , obs

Figure 5.2: Relationship between scenario tree and stochastic models classes.

Each simulate_one_time_step() function has to:

1. simulate children stock prices through the chosen stochastic model;

2. assure that the generated values are arbitrage free;

3. compute the children nodes probabilities;
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4. find the new values for the remaining hedging assets: Black-Scholes-Merton
model is employed for vanilla options, while cash follows a deterministic
risk-free dynamics.

To avoid arbitrage opportunities, both stochastic models are combined with one
approach from section 3.3. However, both methods have drawbacks. The absence
of dominant strategies is verified by solving problem (3.26) − (3.29) to ensure
consistency in the computed values, but without generating or modifying them. If
the check fails, new stock values are generated and the check is repeated. As a result,
a while loop is required, along with a proper maximum number of iterations before
concluding that arbitrage-free prices cannot be found in that specific situation.
On the other hand, adjusting the already simulated prices according to problem
(3.33) − (3.31) requires a careful tuning of the α parameter, which is not a trivial
task.

The ScenarioTree class is then employed by the agent. More precisely, in the
get_action() function it generates a scenario tree starting from the current state
until maturity, which is then used to solve the hedging problem (discussed in
Chapter 2) by the HegingSolver class5.
Figure 5.3 shows a schematic representation of how the different classes interact to
compute the optimal portfolio rebalancing decision at each step.

Figure 5.3: Hedging classes scheme.

5Also a SuperReplicationHedgingSolver class is implemented, related to problem described
in section 2.4.
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At this point, the agent get_action() function can be presented in more detail.

1 de f get_act ion ( s e l f , s ta te , branching_factors , e x i s t s = None ) :
2

3 ’ ’ ’ Determine the hedging ac t i on based on the cur rent market s t a t e
. The s t a t e i s a d i c t i o n a r y conta in ing ’ as se t_va lues ’ and cur rent
time ’ t ’ . Based on the cur rent a s s e t values , the agent r eba l ance s
the p o r t f o l i o , keeping in mind the long−term o b j e c t i v e o f hedging
the p o s i t i o n in the t a r g e t a s s e t . ’ ’ ’

4

5 asse t_va lues = np . array ( s t a t e [ ’ a s se t_va lues ’ ] ) # current
va lue s o f a l l a s s e t s

6 t = s t a t e [ ’ t ’ ] # cur rent time step
7 n_assets = len ( as se t_va lues ) # number o f a s s e t s in the

environment
8

9 # I n i t i a l i z e a Scenar ioTree to s imulate fu tu r e s c e n a r i o s f o r
hedging

10 MyTree = Scenar ioTree (
11 name=’ HedgingTree ’ ,
12 branch ing_factors=branching_factors ,
13 l en_vector=n_assets , # number o f a s s e t s
14 i n i t i a l _ v a l u e=asset_values , # i n i t i a l _ v a l u e i s the

i n i t i a l p r i c e o f a l l the a s s e t s in the market .
15 stoch_model=s e l f . env . stochast ic_model # S t o c h a s t i c model

used to generate s c e n a r i o s
16 )
17

18 # Find the optimal hedging s t r a t e g y .
19 # The HedgingSolver ob j e c t w i l l s t o r e in to each hedging

a s s e t s ’ i n i t i a l _ q u a n t i t y a t t r i b u t e i t s ho ld ing a f t e r the
r eba l anc ing d e c i s i o n

20 i f s e l f . s upe r_rep l i c a t i on :
21 MyHedging = SuperRepl i cat ionHedg ingSo lver (
22 # s c e n a r i o t r e e used f o r s imu la t i on s
23 Tree = MyTree ,
24 # t a r g e t a s s e t to hedge
25 ta rge t_as s e t = s e l f . env . target_asset ,
26 # a s s e t s used f o r hedging
27 hedging_assets = s e l f . env . hedging_assets ,
28 e x i s t s = e x i s t s , # u s e f u l only f o r Bar r i e r

Options
29 s e l f _ f i n a n c i n g = s e l f . s e l f _ f i n a n c i n g ,
30 withdraw_poss ib i l i ty = s e l f . w i thdraw_poss ib i l i ty ,
31 l i qu id i ty_fund = s e l f . l i qu id i ty_fund ,
32 current_rebalancing_time = t
33 )
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34 e l s e : # no super−r e p l i c a t i o n , the d e f a u l t hedging problem i s
so lved

35 MyHedging = HedgingSolver (
36 # s c e n a r i o t r e e used f o r s imu la t i on s
37 Tree = MyTree ,
38 # t a r g e t a s s e t to hedge
39 ta rge t_as s e t = s e l f . env . target_asset ,
40 # a s s e t s used f o r hedging
41 hedging_assets =
42 s e l f . env . hedging_assets ,
43 e x i s t s = e x i s t s , # u s e f u l only f o r Bar r i e r

Options
44 gamma = s e l f . gamma,
45 s e l f _ f i n a n c i n g = s e l f . s e l f _ f i n a n c i n g ,
46 withdraw_poss ib i l i ty = s e l f . w i thdraw_poss ib i l i ty ,
47 current_rebalancing_time = t
48 )
49

50 # I n i t i a l i z e the l i s t to s t o r e the q u a n t i t i e s ( ho ld ings ) o f
each hedging a s s e t a f t e r the r eba lanc ing d e c i s i o n .

51 current_quant i ty = [ ]
52

53 # Cash :
54 current_quant i ty . append (
55 s e l f . env . hedging_assets [ " Cash " ] . i n i t i a l _ q u a n t i t y )
56

57 # Stocks :
58 f o r s tock in s e l f . env . hedging_assets [ " Multi_stock " ] .

s t o c k _ l i s t :
59 current_quant i ty . append ( s tock . i n i t i a l _ q u a n t i t y )
60

61 # Options :
62 f o r opt ion in s e l f . env . hedging_assets [ " Opt ions_l i s t " ] :
63 current_quant i ty . append ( opt ion . i n i t i a l _ q u a n t i t y )
64

65 # Object ive va lue o f the opt imiza t i on problem so lved
66 reward = MyHedging .M. ObjVal
67

68 reba lanc ing_cost = MyHedging . r eba lanc ing_cost
69

70 # return the reba lanced p o r t f o l i o ( current_quant i ty )
71 # and the o b j e c t i v e va lue o f the HedgingSolver
72 re turn current_quantity , reward , reba lanc ing_cost
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5.4 Barrier options
Unlike traditional options, the barrier ones present a more complex structure,
since it is necessary to determine if they are active by checking the barrier. This
check is not continuously made, but it takes place only at the rebalancing dates,
when the current underlying price S(t) is observed and compared to the barrier H.
Consequently:

• up-and-in options come into existence in the first time step when S(t) ≤ H is
verified, while up-and-out cease to exists in the same situation;

• down-and-out options are deactivated when S(t) ≥ H occurs for the first time;
down-and-in are instead activated under the same condition.

To handle this structure, a matrix (matrixExists) is used to track step by step the
existence of the barrier option. It is initialized as False for in-options and True for
out-options. Then, through the hitTheBarrier function, this matrix is updated
the first time the barrier event is triggered. As an example, the implemented code
for up-and-in options is presented below.

1 de f i n i t i a l i z e E x i s t s ( s e l f , n_rep , n_times ) : # e x i s t s only i f the
b a r r i e r i s h i t

2 s e l f . e x i s t s = [ Fa l se f o r i in range ( n_rep ) ]
3 s e l f . matr ixEx i s t s = np . f u l l ( ( n_rep , n_times ) , Fa l se )
4

5 de f h i tTheBarr i e r ( s e l f , current_under ly ing_pr ice , current_rep ,
current_time ) :

6

7 i f ( current_under ly ing_pr ice >= s e l f . b a r r i e r ) :
8 s e l f . e x i s t s [ current_rep ] = True #the opt ion comes in to

e x i s t e n c e
9 s e l f . matr ixEx i s t s [ current_rep , current_time : ] = True

The boolean list called exists is useful to compute the final payoff for the simulated
real-world scenarios: each entry could become True when the barrier is hit for the
first time, resulting in a specific payoff formula. Otherwise, if the up-and-in option
is never activated (i.e. at the end of the hedging horizon the correspondent entry
of exists is still False), the payoff will be zero.
From the hedging problem perspective, the agent must know whether the option
exists in the current state to make a proper decision for the hedging of the derivative
at maturity. This is why in the RL-style formulation the code slightly differs for
barrier options, allowing for an additional input in the get_action() function that
informs the agent about the current existence state of the option.
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1 i f i s i n s t a n c e ( env . target_asset , Barr ierOpt ion ) :
2 e x i s t sB a r r i e rO pt i on = env . ta rge t_as s e t . matr ixEx i s t s [ current_rep ,

current_time ]
3 cur rent_quant i t i e s , reward , reba lanc ing_cost = stoch_agent .

get_act ion ( s tate , bf , e x i s t sB a r r i e rO pt i on )

Then, this information will be passed to the hedging solver. At this point, the
payoff that the scenario tree is supposed to replicate is determined as follows:

• for knock-out options: if the option does not exist anymore at the current
decisional step, the payoff will certainly be 0. However, if the option still exists
in real world, the barrier event is checked for the future values simulated by
the tree. If the barrier is hit in a subsequent simulated step, the payoff will be
zero. Otherwise, if the option continues to exist until maturity, the payoff will
follow a specific formula depending on the type of option (call or put);

• for knock-in options: if the derivative already exists at the time of making
the decision, the payoff is given by the corresponding formula (depending on
whether it is a call or put option). If the option has not come into existence
yet, the barrier event has to be checked for the future values simulated by
the tree. If the barrier is hit in any of the future steps, the payoff follows the
formula earlier mentioned. In contrast, if the barrier is never reached until
maturity, the option remains inactive and its payoff is zero.

5.5 WP derivatives

5.5.1 Management of coupons: aggregation function
The critical aspect of worst-performance derivatives is that they involve the periodic
payment of coupons, which represent liabilities for the bank over the investment
horizon. Thus, the hedging strategy must be able to sustain also these cash
outflows. Therefore, the hedging strategy should aim to replicate the maturity
payoff while guaranteeing sufficient funds to meet coupon obligations. Obviously, it
is unsustainable to have as many rebalancing dates as periodic payment dates: each
portfolio adjustment is related to transaction costs and if they are too frequent,
the hedging strategy would require an excessive amount of capital to cover the
target derivative, resulting in losses rather than profits (or, at least, a zero P&L).
Instead, a carefully chosen rebalancing schedule aims to achieve a trade-off between
maintaining a good performance of the hedging and controlling costs, ensuring
that the strategy remains practical and robust over the investment horizon. For
this reason, an aggregation function has been introduced, allowing the rebalancing
at time t to incorporate all coupons scheduled for payment between the previous
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rebalancing date t−1 and t. In the simplest case where the coupons are deterministic,
as in the WP1 derivative, the aggregation results in

lt =
tØ

k=t−1
Ck,

i.e. the liability that can be potentially sustained at time t is the sum of the
coupons whose payment dates are between t − 1 and t.
A more complex situation arises in the WP2 derivative, characterized by stochastic
coupon payments. Although the coupons are aggregated between rebalancing dates,
they are paid only if, at the rebalancing date, the worst-performing underlying
asset Swt has a value higher than its digital barrier. Recalling (4.9), this means

lt =
Ø

tj∈(t−1;t]
Ctj

=


Ø

tj∈(t−1;t]
G if Swt(t) ≥ g · Swt(0)

0 otherwise
.

Note that the digital barrier is checked only at the evaluation time t when coupons
are aggregated and not at every coupon date as stipulated by the derivative’s
contractual terms.
WP3 derivative shares a similar structure: the periodic coupons are aggregated, but
the general liability term lt also accounts for not paid past coupons and, potentially,
the early redemption amount.
When an instance of these derivatives is created, the periodic coupons and their
respective payments dates must be provided. Given the number of time steps in the
hedging horizon, the coupons are immediately aggregated at these specific points
in time, allowing them to be used in both the real-world simulation process and
the hedging problem.
Liability management in scenario trees is not a straightforward task. Each node,
depending on its corresponding time step, has a different liability. The following
code shows the implemented algorithm to associate the right liability to each
non-leaf node in the case of WP1.

1 th r e sho ld = [ ]
2 t = 1
3 f o r j in range ( l en ( s e l f . Tree . branch ing_factors ) ) :
4 t∗= s e l f . Tree . branch ing_factors [ j ]
5 th r e sho ld . append ( t )
6 f o r j in range ( l en ( th r e sho ld ) ) :
7 th r e sho ld [ j ] = thre sho ld [ j ]+ sum( thre sho ld [ : j ] )
8 f o r i in s e l f . non_leaf_nodes [ 1 : ] : # f o r each non l e a f node
9 f o r j in range ( l en ( s e l f . Tree . branch ing_factors ) −1) :

10 i f i <= thre sho ld [ 0 ] :
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11 l i a b i l i t y _ t e r m = s e l f . l i a b i l i t i e s [ 1 ]
12 e l i f th r e sho ld [ j −1] < i <= thre sho ld [ j ] :
13 l i a b i l i t y _ t e r m = s e l f . l i a b i l i t i e s [ j +1]

First of all, the number of nodes that are related to the same time step has to
be found and stored in threshold. For example, with a branching factors vector
[5,4,3], threshold will be equal to [5, 20, 60], meaning that the first 5 nodes are
those at the first time step, the following 20 are related to the second time step,
while the last 60 are leaf nodes. Then, the same list is updated in order to contain
the thresholds for the nodes’ indexes, e.g., in the same example, it becomes [5,25,85].
This means that non-leaf and non-root nodes with index between 1 and 5 are related
to the first step, those with index between 6 and 25 are modelling the second time
step, and so on. Based on this structure, the correct liability is assigned to each
tree node.
The situation becomes even more complex for WP3, as it also requires tracking
unpaid past coupons and verifying the occurrence of an early redemption event.
The next two sections provide a step-by-step explanation of the WP3 implemen-
tation, distinguishing between what is done in the scenario tree hedging problem
and what in real-world simulation. The implementation of WP2, and even more
evidently the one of WP1, are simplified cases of the following.

WP3: Scenario tree simulation

1. Coupons and early redemption are treated as liabilities in the current time t,
specifically in cash balance constraints as discussed in Chapter 2. In each tree
node:

(a) verify if early redemption has not already occurred along the path until
the current node6:
• if ER has already taken place, the liability in the current node is zero
• otherwise, control if the coupon has to be paid in the current node by

checking the digital barrier of the current worst-performer underlying
– if yes, the current liability is given by the aggregated coupons

(following what explained in subsection 5.5.1) at the specific current
time step; additionally, all past coupons that have never been paid
are now considered;

– if no, no coupons of any kind are paid in the current node.
(b) if early redemption occurs at the current node, the early redemption

amount is added to the current liability term.

6This path is made by real observed prices from time 0 to the current time (not included).
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2. The maturity payoff to be considered for replication by the tree is given by
(4.11), i.e. in each leaf node:

• if ER has occurred along the path7, the payoff is equal to zero;
• otherwise, the worst-performer underlying at maturity determines a non-

zero payoff, following (4.7).

WP3: Real-world simulation

1. From a pricing perspective, the derivative’s value at time t = 0 is equal to the
expected discounted payoff, coherently with risk-neutral valuation. In this
case, the "payoff" includes all cash flows realized up to and including maturity
(brought forward in time to T ), rather than being limited to the final maturity
payment. These include the aggregated coupons (accounting for the memory
effect), the potential early redemption amount and the possible non-zero cash
flow at maturity, linked to the worst-performer at T ;

2. the derivative’s values at t = 1, ..., T − 1 are obtained through the risk-neutral
valuation formula, unless early redemption has taken place at an earlier point
in the real-world scenario. In that case, the derivative’s value is zero, reflecting
the fact that it ceases to exist after the early redemption.

3. the derivative’s value at maturity is given by its payoff, i.e. the actual cash
flow which takes place at maturity; this is coherent with what is considered as
payoff to be replicated in the hedging problem solved in scenario trees.

7The complete path (from t = 0 to maturity) on which the check is performed consists entirely
of values simulated by the scenario tree in the tree built at time 0. For the trees constructed at
subsequent time steps, the path is composed by the prices actually observed in real world up to
the current time, while the prices from the current time to maturity are those simulated by the
scenario tree.
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Analysis

Before delving into the description of the conducted analyses, it is important to
clarify the adopted performance metrics: hedging error and profit and loss.
Hedging error is, by definition, the difference at maturity between

• the value of the hedging portfolio lastly rebalanced at T − 1 and kept until
maturity T , i.e.

V T
P (T ) =

Ø
j∈A

xj,T −1pj,T .

Since the risky hedging instruments are assumed to have a maturity that
coincides with the one of the target derivative, their value at maturity is in
fact equal to their payoff, i.e. pj,T = Ψj(T );

• the target asset cash flow at maturity, i.e. its payoff Ψ(T ).

Mathematically,
he = V T

P (T ) − Ψ(T ). (6.1)

For an efficient hedging strategy, this value should be close to zero.
Profit and loss, instead, measures the net financial outcome of a strategy, taking
into account any cash flows Ct generated throughout the holding period. Formally,

P&L =
TØ

t=0
Ct · er(T −t).

Note that all P&L components are brought to time T . For the unhedged position,
this is simply

P&Lunhedged = Π(0)erT − Ψ(T ) −
TØ

t=0
lt · er(T −t),
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i.e. the difference between the cash inflow at time t = 0 (the target asset premium
Π(0)) and the cash outflows, divided between the payoff at maturity Ψ(T ) and the
sum of all potential liabilities lt incurred during the hedging horizon.
Considering a hedging strategy, its payoff must additionally reflect the presence of
a hedging portfolio, which is assumed to be sold at maturity, resulting in a positive
cash flow equal to V T

P (T ). Thus:

P&Lhedged = (Π(0) − W0)erT − Ψ(T ) + V T
P (T ) +

T −1Ø
t=1

qt · er(T −t), (6.2)

where W0 is the portfolio’s initial cost and qt represents the additional cash flow
occurred at time t, which could be either positive or negative. Assuming that the
hedging portfolio fully covers the additional liabilities lt, they are neutralized and
do not appear in the final formula.
If the hedging strategy adopted is self-financing (i.e. there are no negative qt),
without withdrawal possibility (positive qt are absent, too) and with an initial cost
equal to the target asset price, its profit and loss (6.2) coincides with the expression
of the hedging error (6.1).

6.1 Hedging statistics
This section provides a preliminary evaluation of the stochastic hedging strategy’s
performance in terms of hedging error and profit and loss. In order to show the
effectiveness of the proposed algorithm, the classical hedging problem (2.1) − (2.9)
is applied to hedge European vanilla and Asian options. The simulation setting
involves n = 5000 Monte Carlo replications and a branching factors vector [25,3,3],
meaning that there are 4 time instants and 3 rebalancing dates.
Generally speaking, the underlying stocks available in the considered market are
ENEL.MI, MMM, TSLA whose initial prices are, respectively, 102.05, 242.92 and
108.19 $. The historical stock parameters µ, σ, ρ, ς are estimated from a set of
historical data from 05/01/2022 to 05/01/2024. Moreover, in all the following
analyses, the risk free rate is set to be r = 0.0398.
Risky assets present transaction costs that are equal to 1 % of their value.
A self-financing strategy without possibility to withdraw money along the hedging
horizon is considered in this first analysis: all periodic cash flows are fully covered
by the hedging portfolio itself, without any cash inflow or outflow. The only allowed
cash flow occurs at time zero and is used for portfolio construction. In this specific
case, it is set exactly equal to the price of the target asset. As a result, the hedging
error coincides precisely with the P&L.
Regarding the guarantee that scenario trees do not contain arbitrage opportunities,
the choice between the two methods described in section 3.3 was not based on any
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specific reason. Preliminary tests showed that both methods successfully prevent
arbitrage, with comparable computational demands. One approach was more
efficient in some cases, while the other excelled in others, meaning that there is not
a clear rule to justify the selection of one over the other.

6.1.1 Hedging vanilla European options

With a European vanilla option as target asset, the hedging is performed with only
the underlying stock and the bank account as hedging assets. The hedging strategy
is analyzed through two vanilla European style options: one call option with
underlying ENEL.MI and strike price K = 50 and one put option with underlying
TSLA and strike price K = 300. Both options are set to mature in one year (i.e.
T = 1). Results demonstrates that the adopted strategy is able to efficiently hedge
the short position in both vanilla options: as shown in Figure 6.1 and Figure 6.2,
the profit and loss empirical distribution over the 5000 Monte Carlo replications
exhibits significantly lower variance with respect to the unhedged position, resulting
in a highly concentrated distribution around 0.

Figure 6.1: P&L empirical distributions for a European call option: the unhedged
(blue) one is compared to the hedged (green) one.
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Figure 6.2: P&L empirical distributions for a European put option: the unhedged
(blue) one is compared to the hedged (green) one.

6.1.2 Hedging Asian options

The performance is now evaluated for Asian options, in particular for one put with
strike price K = 250 and one call with strike K = 50, both with maturity T = 1
year. A more diversified hedging portfolio is chosen due to their complex payoff
structure, in contrast to vanilla options. First of all, unlike vanilla options, they are
based on a set of underlyings, which are all included as hedging instruments. All
three stocks available in the market are considered and, additionally, one put and
one call option for each stock, whose characteristics are summarized in Table 6.1.
Strategies for both Asian options also include the cash position in the hedging
assets.
Empirical P&L distributions obtained from the simulated Monte Carlo scenarios are
depicted in Figure 6.3 and Figure 6.4. Also these cases confirm the effectiveness of
the adopted hedging strategy. Similarly to the results obtained for vanilla options,
this is evidenced by the lower variance in the P&L with respect to the variance
in the unhedged positions. Also, the hedging error is closer to 0, meaning that
at maturity the hedging portfolio is able to almost perfectly replicate the target
asset’s payoff.
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Underlyings

Target asset Vanilla options ENEL.MI MMM TSLA

Asian call
European Put 130 260 120

European Call 70 200 90

Asian put
European put 170 300 200

European all 100 200 90

Table 6.1: Strike for vanilla options used as hedging instruments.

Figure 6.3: P&L empirical distributions for an Asian call option: the unhedged
(blue) one is compared to the hedged (green) one.

6.1.3 Comparative analysis: European vanilla vs Asian
options

To provide a clearer overview of all the results discussed so far, Table 6.2 sum-
marizes the significant performance metrics. The statistical evidence is clear: the
implemented stochastic optimization algorithm is able to find very effective hedging
strategies for both European and Asian options. Profit and loss means are close
to zero in all cases, while standard deviations slightly differ. In particular, exotic
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Figure 6.4: P&L empirical distributions for an Asian put option: the unhedged
(blue) one is compared to the hedged (green) one.

Target asset P&L hedged P&L unhedged Time
µ σ σ

Vanilla call 0.93 0.98 24.48 1232.20 s

Vanilla put −0.02 0.41 53.79 1084.82 s

Asian call 0.74 5.32 20.79 5647.03 s

Asian put 1.37 5.30 20.55 4328.54 s

Table 6.2: Statistical comparison of performance metrics over 5000 Monte Carlo
simulations.

options exhibit higher values than vanilla ones.
This comparative analysis also reveals differences in the computational time re-
quired to perform the Monte Carlo simulation over 5000 replications, highlighting
that exotic options are more computational demanding. Nevertheless, for Asian
options, both higher standard deviation and computational time may be linked
to the larger set of hedging instruments (for a total of 10 assets, compared to the
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only 2 in vanilla cases), which inevitably causes an increasing in the complexity of
the optimization process.

Until now, the evaluation of performance metrics has been limited to maturity, since
it is the actual moment when it is important to achieve hedging due to the possible
exercise of the option by the holder. This approach is justified by the fact that the
optimization problems solved at each step are designed to minimize the replication
error specifically at maturity. Nevertheless, it can be interesting to examine the
hedging strategy’s behaviour over the entire time horizon by tracking the target
asset (which corresponds to the unhedged position), the replication portfolio and
the resulting hedged position. For this purpose, step-by-step replication plots for
the previously analyzed derivatives are provided. In particular, they show

• a blue line, which corresponds to the hedging portfolio values at each time
step, computed as

V t
P (t) =


Ø
j∈A

xj,tpj,t t = 0, ..., T − 1Ø
j∈A

xj,t−1pj,t t = T
,

i.e. the value V t
P (t) of the hedging portfolio at time t after eventual rebalancing

at time t is given by the sum of all instruments j ∈ A values with holdings
xj,t and values pj,t. Note that risky assets’ value at maturity T is equal to
their payoff, i.e. pj,T = Ψj(T );

• a red line, representing the unhedged position, i.e. simply the value of the
target asset. Its price is considered from t = 0 to t = T − 1, while at maturity
its payoff is provided instead; since the taken position in the target asset is a
short one, the unhedged values are changed in sign;

• a green line for the hedged position, which results from the sum of the previous
two lines.

As illustrated in Figure 6.5, the hedging portfolio is able to accurately replicates
the European option value, ensuring that the hedged position remains near to zero
during the entire hedging horizon.
An Asian option case is depicted in Figure 6.6. While the objective of hedging at
maturity is fully achieved (as already shown by the statistics at maturity, i.e., the
P&L distribution characteristics), some intermediate stages may show less accurate
replication, resulting in a hedged position not exactly equal to zero.
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Figure 6.5: Step-by-step evolution of the hedging strategy for a Monte Carlo
replication for a European call option.

Figure 6.6: Step-by-step evolution of the hedging strategy for a Monte Carlo
replication for an Asian put option.
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Since Asian options are more complex and depend on multiple underlyings and
thus they are subject to a large number of risk factors, the self-financing hedging
portfolio may encounter some difficulties, despite the rebalancing. In a different
Monte Carlo replication, shown in Figure 6.7, the gap between the target asset
and the hedging portfolio values becomes more significant. However, even in this
scenario of not perfect replication along the hedging horizon, the only liability the
bank may face, i.e. the one at maturity, is fully covered by the value of the hedging
portfolio at maturity. It is crucial to remember that the fundamental purpose of
the hedging strategy is to ensure that the bank does not incur substantial losses
at maturity. In the derivatives considered so far, no additional intermediate cash
outflows are required. Thus, an imperfect step-by-step replication does not imply
a worse performance at maturity, which remains unaffected by the absence of
state-by-state replication. Nevertheless, achieving a good intermediate replication
is a positive indicator of the hedging strategy’s progress.

Figure 6.7: Step-by-step evolution of the hedging strategy for a different Monte
Carlo replication for an Asian put option.
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6.2 Branching factors sensitivity
By examining the relationship between branching factors and performance metrics,
it is possible to have an insight into how different configurations affect both compu-
tational demands and solution quality. Table 6.3 presents the conducted sensitivity
analysis of various branching factors (bf) with respect to the number of nodes,
computation time, hedging error, cost of hedging and profit and loss for the hedged
position. All quantities reported in the table are averaged over 1000 Monte Carlo
replications. To provide a comparison with the unhedged position, the unhedged

bf Nodes Time he Cost P&L
µ σ µ σ µ σ

[10,5,4] 260 111.6 −1.688 16.00 93.41 2.06 −2.775 16.08
[25,6,5] 925 804.4 −0.623 5.67 93.22 0.50 −1.511 5.70
[25,15] 400 74.42 0.071 5.54 93.89 0.56 −1.516 5.56
[3,3] 12 3.789 −13.101 150 85.37 33.69 −5.820 151.56

[4,4,4,4] 340 197.36 −0.335 72.16 94.13 7.42 −2.173 72.28
[25,5,5,5] 3900 13540.67 −0.7111 6.92 106.25 25.35 −15.926 27.05
[25,5,4,3] 2150 8039.81 −1.013 7.14 92.12 4.06 −0.713 8.32

Table 6.3: Sensitivity analysis of branching factors in terms of: branching factors
vectors, number of nodes of the first optimization problem’s scenario tree, compu-
tational time, hedging error (mean and std), cost of hedging (mean and std), profit
and loss (mean and std).

P&L with mean −4.281 and standard deviation 21.56 is considered. This distribu-
tion is valid for every branching factors configuration, since the test scenarios are
the same and, consequently, the unhedged performance does not vary. In particular,
to guarantee that all configurations of branching factors vectors are tested on
the same real-world simulated scenarios, market values were simulated using a
time step related to the least common multiple of the time steps of all branching
factors vectors: in the analyzed case, according to Table 6.3, l.c.m(3,2,4,5) = 60,
so dt = T

60 . Each configuration then uses the values corresponding to its actual

time step, e.g. [10,5,4] uses dt = T

3 , and so on.
The number of nodes reported in the table represents the size of the first tree built
during the stochastic optimization process, i.e. the one used to make the portfolio
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construction decision at time t = 0.
Starting from the number of nodes and time resources, it is evident that increas-
ing the branching factor generally leads to a higher number of nodes and longer
computational times. For example, the configuration with the highest number of
nodes (3900) is [25,5,5,5] and it is also the one with the longest computational
time (13540.67 s): this highlights the growth in complexity with deeper trees.
Meanwhile, the simplest structure, i.e. [3,3], has only 12 nodes and requires only
3.789 s to complete the overall hedging problem.
Regarding the hedging error, i.e. the difference between the hedging portfolio value
and the derivative payoff at maturity, smaller values indicate more accurate hedging
strategies. The configuration [25,15] achieves the lowest mean error (0.071) with a
relatively moderate computational time (74.42 s), suggesting an efficient trade-off
between accuracy and resource use. On the other hand, the [3,3] configuration
shows that too simplistic models fail to provide reliable outcomes.
Since the hedging problem chosen for the current analysis is self-financing, the
unique hedging cost should be the one related to the first construction of the
hedging portfolio, that is, at time t = 0. To verify the correctness and consistency
of the strategy obtained from stochastic optimization, the initial wealth was not
constrained to the theoretical Monte Carlo price of the target asset. Instead,
the solver was allowed to choose the quantity it found most suitable. Clearly, if
the price returned by the solver (reported in Table 6.3 as Cost) is similar to the
theoretical one, the hedging strategy can be considered consistent and effective.
Given that the Monte Carlo price of the target put option is $92.367, almost all
configurations of branching factors show satisfactory results, with few exceptions.
The [3,3] case is particularly notable, as the small scenario tree size leads to an
underestimation of the hedging portfolio cost. On the contrary, the [25,5,5,5]
configuration overestimates the price obtained from the Monte Carlo simulation.
This is also reflected in the profit and loss, which is worse compared to the other
cases.
By comparing the performance of [25,15] with that of [3,3], it can be concluded that
the issue does not lie in the low number of rebalancing dates (which, in this case,
are just two — the initial time and the first step), but rather in the limited number
of tree nodes, which should capture a wider range of market conditions: with only
12 nodes (and just 9 scenarios at maturity) the stochastic solver does not have
enough information to make reliable predictions about future market movements.
A further interesting comparison concerns the [10,5,4] and [4,4,4,4] configurations.
Although the latter has a slightly larger number of nodes and one additional time
step, the former achieves better accuracy. This difference arises from the way trees
are constructed beyond the initial time step: starting from an initial branching
factors vector [10,5,4], the second time step employs a new tree with configuration
[10,5] and at the final rebalancing point each node will have exactly 10 children.
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This backward erosion of branching factors ensures that, just before maturity
(i.e. the final rebalancing opportunity) there are enough scenarios for an effective
rebalancing decision. Although this mechanism of erosion is also present in the
[4,4,4,4] configuration, maintaining a constant and low branching factor results in
an insufficiently reliable simulation, which will lead to suboptimal performance.
It can also be observed that the [25,5,5,5] configuration has a computational de-
mand which is not justified by the improvement in results. A slightly less complex
configuration as [25,5,4,3] achieves similarly high-quality outcomes at a lower com-
putational cost.

An alternative method for handling branching factors involves ensuring that all
decision stages have the same number of scenarios available in their scenario tree.
A total of 1000 Monte Carlo replications are performed for the [25,3,3] and [10,5,3]
configurations to analyze this alternative method, whose results are benchmarked
against the previously adopted approach, as reported in Table 6.4. An initial wealth

1st step
scenarios

2nd step
scenarios

3rd step
scenarios

time P&L

mean std

[10,5,3]
150 50 10 100.66 s −0.712 6.57

150 150 150 168.48 s −1.008 3.36

[25,3,3]
225 75 25 236.09 s −0.885 4.59

225 225 225 433.67 s −0.873 3.38

Table 6.4: Comparative overview between the classical method (blue) and the
one with constant number of scenario trees (pink).

equal to the target asset’s price is fixed in the optimization hedging problem: thus,
hedging error and profit and loss coincide.
Starting from [10,5,3] at t = 0, the second scenario tree (i.e. the one constructed at
t = 1) will have [30,5] as branching factors vector, while the last step will handle a
tree with a [150] configuration. By doing so, each tree admits the same number
of scenarios, unlike the classical method where, as time progresses, the number of
scenarios decreases. Surprisingly, this new method does not lead to great improve-
ments in performance, but it results in a significant increased computational time:
this is justified by the fact that each scenario tree in subsequent steps is larger than
in the classical method. Therefore, while this method ensures a consistent number
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of scenarios across all decisional steps, its lack of notable performance improvements
and the increase in computational time may limit its practical application. The
Python implementation code is presented below.

1 # For a constant number o f generated s c e n a r i o s in subsequent t r e e s ,
use t h i s bf :

2 i f current_time == 0 :
3 bf = branch ing_factors
4 e l s e :
5 bf = branch ing_factors [: − current_time ]
6 bf [ 0 ] ∗= np . prod ( branch ing_factors [− current_time : ] )

6.3 Financing analysis
The focus now is shifted to the different types of optimization problems that can be
solved at each rebalancing step, in relation to what discussed in Chapter 2. Thus,
the purpose of this section consists in illustrating the performance of self-financing
and non-self-financing cases, in combination with the possibility or not of with-
drawing money from the strategy. All the four possible financing combinations
are tested over the same 1000 Monte Carlo replications for the case of an Asian
put option with the same characteristics described in subsection 6.1.2. At the
first stage, the initial wealth is fixed, following constraint (2.4). For subsequent
optimization problems, the cash balance for node n0 assumes the different forms
described in Chapter 2.
The considered branching factors vector is [6,4,3,2], which means that four rebal-
ancing times are available until maturity. In this particular case, 144 total scenarios
are maintained constant for each scenario tree generated during the optimization
task.1
Section 6.1 has already overviewed the self-financing case without the possibility of
withdrawing money.

Non-self-financing, without withdrawal possibility

This variant of the optimization problem admits an initial wealth to construct
the portfolio, but moving forward in time, it is possible that the money obtained
from selling assets results to be insufficient to meet all liabilities. Therefore, an
additional capital contribution is required, which is considered a rebalancing cost.
The empirical distribution obtained is depicted in Figure 6.8. To have a look

1See section 6.2 for details on the constant number of scenarios.
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Figure 6.8: Distribution of P&L for the non-self-financing hedging problem
without withdrawal possibility.

on what impact has the non-self-financing strategy, Table 6.5 summarizes some
important statistical properties of rebalancing costs at intermediate time steps.
For each rebalancing date, mean and standard deviation of additional cash flows

decision stages

stage 1 stage 2 stage 3 total

mean cash flow −3.793 −1.797 −0.602 −6.192

std of cash flows 5.020 2.917 1.836 6.512

financing frequency 66.9% 53.3% 45.6%

Table 6.5: Statistics of intermediate rebalancing costs for the non-self-financing
hedging problem without withdrawal possibility.

are computed, as well as their frequency, which is in fact the ratio between the
number of Monte Carlo simulations where funds are required in that specific date
to the total number of replications. What is most interesting is the total additional
cost that the hedger has to sustain if implementing this strategy. The total cost’s
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statistics, derived from the whole hedging horizon, are also provided in Table 6.5.
In terms of pure replication, results are satisfactory: with a mean of −0.001 and
a standard deviation of 0.0323, the hedging error reflects the great effectiveness
of this hedging strategy. However, rebalancing costs have an impact on the P&L
distribution, which presents a larger variability (a standard deviation of 6.68)
compared to the self-financing case. Thus, it can be concluded that through a
non-self-financing strategy is guaranteed that the hedger will not incur significant
losses, but this introduces increased risk in terms of final P&L. To be clear, a
rebalancing cost equal to zero does not imply that no rebalancing has occurred:
rebalancing may have taken place without requiring additional capital.

Self-financing, with withdrawal possibility

Figure 6.9: Distribution of P&L for the self-financing hedging problem with
withdrawal possibility.

This variant of the hedging problem admits that potential surplus money can be
withdrawn by the hedger after rebalancing, resulting in gains along the hedging
horizon that may be reinvested in other activities.2.
Figure 6.9 shows the behaviour of the P&L distribution, which is not the best so

2See section 2.3 for details.
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far: on average, this strategy provides a gain (mean 2.48), but at the cost of a
higher variability (std 9.22).
Additionally, with a mean of −2.046 and a standard deviation of 6.382, the hedging
error is still low but exhibits a certain level of variability, implying a residual risk
of not fully covering the target option’s payoff. This makes this configuration less
accurate than the previous ones.
Meanwhile, Table 6.6 provides an insight into the statistical properties of the
withdrawal operations during the hedging horizon. As in the previous case, attention
should be paid to the total gain’s characteristics: on average, there will be an
additional gain of $4.495 at the end of the time horizon due to the possibility of
withdrawing excess cash from the strategy.

decision stages

stage 1 stage 2 stage 3 total

mean cash flow 3.083 0.945 0.466 4.495

std of cash flows 5.263 2.527 2.233 6.487

withdrawal frequency 52.33% 30.97% 16.70%

Table 6.6: Statistics of intermediate gains for the self-financing hedging problem
with withdrawal possibility.

Non-self-financing, with withdrawal possibility

The last configuration to be analyzed allows for additional cash flows, both inflows
and outflows, at the rebalancing steps (excluding the initial time). Table 6.7
presents the most relevant properties of the intermediate steps’ additional cash
flows. Due to the fact that all kinds of cash flows are allowed, both negative and

decision stages

stage 1 stage 2 stage 3 total

mean cash flow −3.238 −3.158 −0.769 6.993

std of cash flows 9.586 7.536 4.576 12.641

cash flows frequency 100% 100% 100%

Table 6.7: Statistics of cash flows at intermediate stages for the non-self-financing
hedging problem with withdrawal possibility.
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positive, this strategy leads to the worst empirical distribution for the P&L, which
presents mean −7.95 and standard deviation 14.40. By contrast, the hedging error
shows outstanding results, confirming that the strategy can hedge the short position
in the target asset, with mean 0.002 and standard deviation 0.248.

Examining the rebalancing frequencies of the discussed strategies, it is clear that
additional cash flows are more common in the initial steps and gradually decrease as
maturity approaches. Similarly, the involved cash flow amounts are typically higher
at the beginning of the hedging horizon and decline over time. Such behaviour is
encouraging: while the strategy may require some adjustments just after the initial
time, subsequently it is able to track the target asset sufficiently well using only
portfolio’s internal funds.
To provide a comprehensive overview of both the hedging error and the profit and
loss, Table 6.8 is presented. In conclusion, while allowing for additional interme-
diate cash flows may offer advantages in terms of replication, it may not yield
significant benefits from a P&L perspective. In fact, the strategy without any
external cash flows during the intermediate steps, i.e. the self-financing strategy
without withdrawal possibility, achieves the best P&L outcome (which coincides
with the hedging error) and ensures a good hedging at maturity. On contrast,
the best hedging error distribution, provided by the non-self-financing without
withdrawal possibility variant, is actually associated with a higher profit and loss.
The key objective remains minimizing the P&L variance with respect to the un-
hedged case: incurring a minor loss is acceptable if it leads to lower risk by a
reduced variance.

self-financing withdraw mean he std he mean P&L std P&L

✓ ✘ 1.37 5.30 1.37 5.30

✘ ✘ −0.001 0.03 −6.35 6.68

✓ ✓ −2.05 6.38 2.48 9.22

✘ ✓ 0.002 0.248 −7.95 14.40

Table 6.8: Statistical overview of hedging error (he) and profit and loss (P&L)
for the considered financing strategies. The highlighted values represent the best
distributions.
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6.4 Risk aversion
Recalling what was discussed in section 2.1, attention is now shifted to the risk
aversion parameter γ, which enables the adjustment of the weight assigned to the
positive hedging error, thus generating an asymmetric objective function. The
maximum penalty allowed is 1 and remains fixed for the negative error, reflecting the
priority of avoiding losses. Meanwhile, the gamma parameter is varied within the
set {0, 10−13, 10−12, 10−11, ..., 10−3, 10−2, 10−1, 1}. The aim is to show how hedging
results can vary when negative and positive deviations are penalized differently.
The evaluation begins at the extreme case where γ is set to zero, resulting in
penalizing only the shortfall, and extends to γ = 1, which leads to the symmetric
case. The simulation setting consists of 1000 Monte Carlo replications to perform
a self-financing hedging of an Asian put option, with no opportunity to withdraw
money and a fixed initial wealth equal to the target asset premium. For each γ, P&L
empirical distribution’s mean and standard deviation over the 1000 replications
are computed and illustrated in Figure 6.10.

Figure 6.10: Comparison between P&L distributions for different risk aversion
parameter γ, based on 1000 replications.

An additional information that can be inferred from the plot is the skewness
of the empirical distributions, which becomes evident through the distribution’s
asymmetry with respect to the expected value.
As expected, for decreasing values of γ the profit and loss distribution tends
to shift towards positive values; in contrast to the symmetric case, assigning a
larger penalization coefficient to the shortfall allows for the possibility of positive
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deviations, which, as gamma decreases, are less penalized. This results in an overall
gain in terms of P&L; thus, the distribution is shifted towards positive values rather
than being centered around zero. Clearly, this also impacts variability, leading to
a higher standard deviation. However, the increased variance is associated with
positive values, which implies that the risk of losses is still reduced.
The obtained statistical properties for some analyzed γ are listed in Table 6.9: they
numerically show that, for small values of surplus penalization, profit and losses
present asymmetrical distributions, more centered and shifted towards positive
values. The skewness values are particularly interesting, since they confirm the
previous observations: increasing positive skewness values point out that P&L
distributions exhibit heavier upper tails.

γ values 1 10−2 10−4 10−6 10−8 10−10 10−12 0

mean −0.79 −0.22 −0.09 −0.27 2.06 5.82 5.93 5.95

P&L std 4.55 6.86 8.79 13.33 14.46 16.89 18.06 20.76

skew −4.47 0.99 2.36 5.84 4.48 2.56 4.52 6.60

Table 6.9: Statistical properties (mean, standard deviation and skewness) of P&L
empirical distribution for different values of the risk aversion parameter γ.

An interesting aspect to consider when giving less importance to the surplus is
the initial cost required by the hedging strategy to construct the portfolio. In the
absence of a fixed initial wealth, the strategy may choose a surprisingly high capital
in order to be able to better mitigate negative errors at maturity. This is justified
by the fact that, as γ decreases, the objective at maturity progressively becomes
the avoidance of only losses, thus allowing for the possibility of net profit. This
aspect is illustrated in Figure 6.11, generated under the same setting conditions as
before, but with the optimizer free to select the portfolio’s initial cost. In this plot,
the empirical distribution of the initial capital required by the strategy is compared
with two benchmark prices: the theoretical initial price of the target asset and the
price of the super-replication strategy.3 As shown in Figure 6.11 and Table 6.10,
when the objective function is symmetric (i.e. when γ = 1) the initial investment
required by the hedging strategy is comparable to the initial price of the target
asset. As γ decreases, the initial wealth increases, converging towards the price
provided by the super-replication strategy, which represents the theoretical upper
bound of the cost for constructing the hedging portfolio.

3See section 2.4 for theoretical details.
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Figure 6.11: Empirical distributions of the initial wealth W0 required by the
hedging strategy, represented by their mean and standard deviation, for different
values of the risk-aversion parameter γ.

γ values 1 10−2 10−4 10−6 10−8 10−10 10−12 0

mean 92.54 92.76 92.79 92.50 97.31 111.17 110.72 109.91

W0 std 2.57 2.88 2.62 2.81 4.17 6.18 7.81 4,40

skew 0.01 −0.39 0.27 −0.09 0.66 2.11 8.21 0.83

Table 6.10: Statistical properties (mean, standard deviation and skewness) of W0
empirical distribution for different values of the risk aversion parameter γ.

6.5 Pricing through hedging
It can be interesting to analyze what would be the initial price required by the
hedging strategy if the solver of the hedging optimization problem is allowed to
choose the initial wealth W0 to construct the portfolio at time t = 0. To analyze
this aspect, a series of Monte Carlo real-world simulations is performed, considering
the formulation (2.10). In most of them, the hedging strategy requires an initial
capital that is very close to the price of the target asset at the beginning of the
hedging horizon. This demonstrates that, in majority of cases, the premium of the
derivative to be hedged is sufficient to construct a valid strategy. In contrast, a
too-low estimate reflects insufficient hedging, while an overestimated value suggests
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that the hedging is more than necessary. In both cases, a potential loss occurs: in
the former because the hedge is inadequate and the short position remains exposed;
in the latter because the strategy is unnecessarily expensive.
The detailed analysis conducted in this section focuses on the comparison between
the initial wealth required by hedging and the theoretical initial price of the target
asset, which is computed through

• Black-Scholes-Merton model for European vanilla options;

• 104 Monte Carlo replications to apply the risk-neutral valuation principle,
averaging the discounted payoff, for Asian options.

Through a self-financing problem, where funds cannot be withdrawn and the initial
wealth is not fixed, the W0 distribution and its comparison with the theoretical
price can be studied.
Figure 6.12 shows the results of this analysis made on a European vanilla call
option, whose Black-Scholes price at t = 0 is $26.013, illustrating how the hedging
strategy prices are distributed over 1000 Monte Carlo test replications.

Figure 6.12: Distribution of the hedging strategy’s prices required for a European
vanilla call option and its comparison with the target asset theoretical price (dotted
red lines).

An interval with a radius of $1 centered around the Black-Scholes price (vertical
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red line) is marked by gray dotted lines. In this specific case, 86.50% of the prices
required to hedge the target asset fall within this interval. The chart confirms that,
if the W0 distribution’s mean (26.681) is regarded as an estimator of the theoretical
price of the derivative, the implemented optimization problem successfully estimates
it in the case of European options: taking into account the standard deviation of
0.29, the mean falls within a very narrow range around the Black-Scholes price.
The small gap between the compared prices can be explained by the fact that the
Black-Scholes-Merton model assumes a frictionless market, which does not account
for transaction costs. In contrast, the implemented stochastic optimization method
incorporates them into the model. Their impact proves to be minimal, since they
amount to just 1%.

To present the same analysis in the case of an Asian put option, whose Monte
Carlo risk-neutral price is $92.362., Figure 6.13 is provided below. In this case as

Figure 6.13: Distribution of the hedging strategy’s prices required for an Asian
put option and its comparison with the target asset theoretical price (dotted red
lines).

well, the strategy requires an initial cost similar to the theoretical price in order to
effectively hedge the derivative under consideration. As the Asian option is based
on multiple underlying assets, this may be reflected in a greater variability in the
initial capital required to construct the portfolio, making the estimate less precise:
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the standard deviation of the distribution, in this case, is 2.587, which is higher
than the vanilla call one, but still acceptable. Nevertheless, in 30% of the cases,
the strategy’s cost is only $1 apart from the theoretical price, and in the other 70%
the difference is still within acceptable limits.

Table 6.11 provides a comprehensive overview of the analysis conducted in this
section.

Target asset Premium Price estimator Prices within $1
µ σ

Vanilla call 26.01 26.68 0.29 86.50%
Asian put 92.362 92.752 2.587 30.40%

Table 6.11: Key values for the pricing through hedging analysis: the estimate
obtained from stochastic optimization is compared to the theoretical premium of
the target asset.

6.6 Transaction costs analysis
Since trading financial instruments entails transaction costs, the stochastic opti-
mization problems outlined in Chapter 2 include the costs cj for each hedging asset
j ∈ A to better capture real-world conditions. Transaction costs are assumed to
be proportional to the amount of money involved, i.e. if a quantity xj,t of assets
of type j is traded at time t with price pj,t, the cost related to the transaction is
equal to cjxj,tpj,t, which yields to a total cost of

• (1 − cj)xj,tpj,t if assets j are purchased;

• (1 + cj)xj,tpj,t if assets j are sold.

This section investigates how the optimizer responds to changes in transaction
costs, starting from zero and reaching up to 10%. The chosen optimization
setting is (2.1) − (2.9): self-financing, with fixed initial wealth and no withdrawals
allowed. An Asian put option is used as target asset, with strike K = 250
and maturity T = 1 year. The selected transaction costs, assumed to be the
same for all hedging assets (except for the bank account, which has no cost), are
{0,10−10, 10−8, 10−6, 10−4, 10−2, 10−1}.
The resulting P&L’s means and standard deviations are depicted in Figure 6.14.
The plot shows a stable behaviour and highlights the robustness of the stochastic
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Figure 6.14: Impact of transaction costs on profit and loss, represented by mean
and standard deviation.

optimization approach in the presence of transaction costs as well as in their
absence. In particular, it demonstrates that stochastic optimization remains stable
under transaction costs: the P&L distribution is centered around zero for all cases;
more importantly, it exhibits a low variance, ensuring a successful reduction of
risk despite higher costs. Moreover, the increase in transaction costs does not
influence the computational time required to resolve the hedging problem. This
makes the stochastic approach one of the most effective methods for addressing
hedging problems.

6.7 Stochastic models comparison: GBM vs MM
Chapter 3 presented two alternative stochastic models for the simulation of stock
paths in scenario trees. A comparative analysis is now conducted to assess their
performance in terms of both computational time and hedging effectiveness, con-
sidering the three different implementation discussed in section 5.3. To avoid
arbitrage opportunities, the absence of dominant strategies approach is chosen for
this analysis.
An Asian put option with strike K = 250 and T = 1 year is selected to asses the
solution quality of the same hedging strategy (self-financing, without withdrawal
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possibility, with fixed initial wealth) performed with the three previously described
stochastic model variants.
As shown in Figure 6.15, Figure 6.16 and Figure 6.17, all three cases result in
satisfactory performance, successful hedging of the short position in the target asset
and improvement of variability over the unhedged case (with a standard deviation
of 11.26). However, some differences can still be observed. Moment Matching
stochastic model proves to be the most time-consuming, requiring 4423.73 s to
complete the overall hedging problem. The Gurobi-based approach is instead the
fastest one, highlighting Gurobi’s efficiency as an optimizer. Comparing the two
GBM alternatives, although they exhibit similar P&L, the model using Gurobi
outperforms the other in terms of computational demand.

Figure 6.15: P&L with GBM − SLSQP: 746.18 s required; outliers detected and
discarded: 1.8%.

Despite the higher computational burden, the Moment Matching method achieves a
superior level of accuracy that through the GBM model can be reached, in general,
with a more complex branching factors configuration (in this analysis, [15,5,4] is
considered). What seems to contribute to the success of MM is its effort to align
not only the first and second moments and the correlations, but also the skewnesses,
resulting in better overall outcomes.
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Figure 6.16: P&L with GBM − Gurobi: 277.85 s required; outliers detected and
discarded: 1.8%.

Figure 6.17: P&L with MM: 4423.73 s required; outliers detected and discarded:
0.4%.
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In conclusion, while achieving great P&L performance is important, computational
efficiency becomes equally essential when the problem complexity increases (due
to more time steps or to a less trivial target asset). Thus, GBM stochastic model
solved with Gurobi demonstrates to be the best choice: it achieves satisfactory
P&L distribution, while requiring minimal computational time.

6.8 Benchmark: Delta hedging
This section will specifically focus on the comparison between the two hedging
approaches introduced in Chapter 2. In particular, stochastic optimization and
delta hedging will be analyzed in the specific case of a European-style vanilla put
option. The benchmarking framework involves a comparison of self-financing strate-
gies, using branching factors typical of the binomial model (e.g. [2,2,2,2,2,2,2,2]).
Assuming the Black-Scholes-Merton model, the delta of a European vanilla put
option at time t is given by ∆t = N(d1) − 1, considering d1 as defined in (4.4).
Under the implemented delta hedging strategy4, the positions in the hedging assets
(xc,t, xs,t), respectively for cash and the underlying, are updated at each time t
according to the following procedure:

xs,t =
∆t t = 0, ..., T − 1

∆T −1 t = T
(6.3)

xc,t =



w0 − xs,1S(1)(1 + c)
B(0) t = 0

xc,t−1B(t) + xs,t−1S(t) − xs,tS(t) − |xs,t − xs,t−1|S(t)c
B(t) t = 1, ..., T − 1

xc,T −1 t = T

,

(6.4)

where

• the stock and cash values are identified by S(t) and B(t);

• w0 is a certain initial wealth used to construct the portfolio at time t = 0;

• c represents the transaction cost of the unique put option’s underlying.

As previously explained, the delta expresses how many shares are required to hedge
the option in a delta neutral manner. Positions are adjusted up to the time T − 1
preceding maturity, after which no further rebalancing takes place and the hedging

4From [1].
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strategy’s effectiveness is evaluated through the P&L.
In this section, the considered derivative to hedge is a European put option with
strike K = 300, maturity T = 1 year and TSLA as underlying. Transaction costs
are included in the analysis.

Several rebalancing times.

An initial comparison is made in a framework that permits a larger number of
rebalancings, based on a branching factors vector with 9 time steps. Regarding
the stochastic optimization trees, each node will have two children nodes. From a
computational time perspective, a significant difference can be highlighted when
comparing stochastic optimization and delta hedging: the computational time
for the former amounts to 2219.05216 seconds, whereas the latter requires only
0.00303 seconds. This difference essentially reflects the complexity of the two
methods. Stochastic optimization is a more advanced technique that involves
solving multiple optimization problems and relies on a range of different scenarios,
which naturally increases the computational cost. In contrast, delta hedging is
a more straightforward strategy, as it avoids optimization problems and simply
adjusts the positions at each time t, based on the current values of the hedging
assets, following the deterministic procedure (6.3) −(6.4). Clearly, this results in a
minimal computational effort, particularly because scenario trees simulation is not
required to maintain a delta-neutral position.
Figure 6.18 and 6.19 show the P&L for both cases taken into account. Outliers
were filtered out in the post-processing stage.
Comparing the two strategies, they both have successfully hedged the risky position.
However, delta hedging has a lower average performance and a smaller standard
deviation compared to stochastic optimization. This suggests that delta hedging
provides a more stable outcome, with more limited changes around the mean:
more controlled outcomes are ensured since delta hedging follows a deterministic
rebalancing rule. On the other hand, stochastic optimization exhibits greater
variability, due to the fact that its objective consists in minimizing the mean: this
results in a larger standard deviation, meaning that this approach is able to adapt
to different market conditions but at the cost of increased risk.
Shifting the focus to the adaptability to various market conditions, stochastic opti-
mization clearly outperforms delta hedging, especially in complex market conditions.
Thus, the choice between the two methods depends not only on computational
resources but also on the level of precision and adaptability expected from the
hedging strategy. Furthermore, as detailed in Chapter 2, delta hedging requires a
specific pricing model for the derivative to be hedged, while stochastic optimization
does not rely on this, further confirming its adaptability.
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Figure 6.18: Profit and loss resulting from stochastic optimization for a European
vanilla put option with strike K = 300 and maturity T = 1 year, with 9 time steps.

Figure 6.19: Profit and loss resulting from delta hedging for a European vanilla
put option with strike K = 300 and maturity T = 1 year, with 9 time steps.
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Less rebalancing times.

Figure 6.20: Profit and loss resulting from stochastic optimization for a European
vanilla put option with strike K = 300 and maturity T = 1 year, with 4 time steps.

Figure 6.21: Profit and loss resulting from delta hedging for a European vanilla
put option with strike K = 300 and maturity T = 1 year, with 4 time steps.
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Figure 6.20 and 6.21 compare the empirical P&L distributions of the two hedg-
ing methods under the constraint of having only three rebalancing times, e.g. a
branching factors vector [25,3,3]. It is evident that, even with just few time steps,
the stochastic optimization approach provides an optimal outcome in terms of
distribution, having both the mean and standard deviation very close to zero. On
the other hand, delta hedging fails to fully mitigate price fluctuations between
rebalancing dates. It is essential to keep in mind that delta hedging is a first-order
approximation, which effectively hedges only against small price movements in the
underlying asset. However, with a 12-month horizon and quarterly rebalancing,
significant stock price variations may compromise delta-hedging performance.
In conclusion, while delta hedging remains a viable strategy, the stochastic opti-
mization approach proves to be a more robust method.

6.9 Barrier Options
A selection of barrier options has been analyzed to highlight interesting behaviours
and distinctive features in their valuation and risk profiles. A self-financing, without
withdrawal possibility and with initial fixed cost strategy is implemented and tested
over 5000 Monte Carlo replications.

Up-and-in call: P&L and pricing through hedging

Firstly, the focus is on illustrating the capability of stochastic optimization to
deal with the hedging of these relatively intricate and non-trivial exotic options.
An up-and-in call written on AMZN is chosen, with strike K = 240 and barrier
H = 250. Other two stocks are considered as hedging assets, for a total of three
stocks and nine vanilla options (one call and one put on each stock); also a bank
account is used as hedging instrument. All their details are listed in Table 6.12.
Also in this case, the adoption of the stochastic optimization strategy yields
impressive outcomes in terms of P&L. Figure 6.22 clearly illustrates that in the
case of a short position in a call there is no limit to the potential losses that an
unhedged position could face: if the underlying asset price increases unexpectedly,
the option holder will exercise the option, resulting in great losses for the bank. In
contrast, a hedged position not only ensures a smaller average loss (−0.64 versus
−43.09), but it also significantly reduces the variability of the potential outcomes.
In the unhedged case, the most frequent outcome is approximately $43.4, which
corresponds to the premium the bank received at t = 0 for selling the target asset.
This value slightly grown at the risk-free rate since it is held until maturity. This
gain can occur in the following cases:

1. the underlying asset price never exceeded the barrier level, meaning the option
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(a) Overall P&L distributions, showing the complete range of outcomes.

(b) Zoomed-in section of P&L curves to better show the hedged distribution’s shape.

Figure 6.22: Empirical distribution of P&L for an up-and-in call option: unhedged
(blue) vs hedged (green) positions.

was never activated, resulting in no loss for the short position;

2. the barrier was hit during the option’s lifetime, but at maturity the underlying
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stocks strike barrier

AMZN META GOOGL 240 250

initial price 242.92 102.05 107.19

put strike 250 110 120

call strike 230 100 100

Table 6.12: Up-and-in call features: underlying (the highlighted one), risky
hedging instruments, strike, barrier.

price caused the active option to not be exercised, leading to a zero payoff.

It is evident that the selected hedging strategy removes the opportunity to realize
this profit. However, it is important to look at the bigger picture: although it may
limit net gains in certain scenarios, it definitely reduce the risk of substantial losses.
To analyze the initial costs required by the strategy to hedge this type of barrier
option, the results of 2000 Monte Carlo replications solving a self-financing problem
with an unfixed initial wealth are shown Figure 6.23.

Figure 6.23: Initial wealth distribution W0 chosen by the optimization solver,
compared to the theoretical Monte Carlo price of the considered up-and-in call
option.

Also in this non-trivial case, setting up an efficient hedging portfolio requires an
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initial investment that is very similar to the initial price of the risky derivative to
be hedged.

Down-and-in call: strategy’s behaviour in different maturity situations

A second type of barrier option, a down-and-in call, is now implemented, with
characteristics shown in Table 6.13.

stocks strike barrier

AMZN META GOOGL 200 240

initial price 242.92 102.05 107.19

put strike 250 110 120

call strike 230 100 100

Table 6.13: Down-and-in call features: underlying (the highlighted one), risky
hedging instruments, strike, barrier.

Figure 6.24: Evolution in time of a down-and-in call option which has come into
existence and is exercised at maturity by its holder.
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This option is used to illustrate the behaviour of the strategy across the three
possible situations that may arise at maturity:

• the option has been activated and then exercised at maturity, resulting in
a loss for the bank. However, if a stochastic optimization-based hedging
strategy is adopted, it is possible to fully offset the short position at maturity
T through a proper hedging portfolio, rebalanced until time T − 1, as depicted
in Figure 6.24. This is not surprising: when active, barrier options behave
like standard vanilla options at maturity and previous sections have already
demonstrated the good performance of stochastic optimization in such cases;

• the option comes into existence, but at maturity it is not exercised because
the spot price does not exceed the strike price.

Figure 6.25: Evolution in time of a down-and-in call option which has come into
existence but is not exercised at maturity by its holder.

Once again, the rebalanced portfolio is able to follow and replicate the target
asset, resulting in an overall net-zero position for the hedged strategy at
maturity. Figure 6.25 shows a Monte Carlo replication in which this situation
happens: in particular, the option comes into existence at the second time
instant.

• the option remains inactive since the barrier is never reached, resulting in a
zero payoff. An example of such cases is depicted in Figure 6.26; the portfolio
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is hedging a short position that in fact never comes into effect. Clearly this
cannot be known a priori, thus the strategy still manages to replicate the
target asset behaviour and once again it does it successfully, leading to a total
P&L equal to zero.

Figure 6.26: Evolution in time of a down-and-in call option which never becomes
active.

Down-and-out put: numerical evidence

To numerically verify the solutions derived from the applied hedging strategy, a
down-and-out put option was employed. Its main features are summarized in
Table 6.14. The hedging portfolio is constructed using the initial capital obtained
from the sale of the option. As its value evolves over time, it is rebalanced until
the time step before maturity. Attention is now shifted to the last rebalancing step
to illustrate the mechanics of the adopted strategy. The hedging portfolio at time
T − 1 before rebalancing is composed as shown in Table 6.15, which in fact is the
same composition that comes from time T − 2 after the adjustment. Imagining to
be at T − 1, by observing the current prices the value of the portfolio is determined
and then used to finance any necessary rebalancing, resulting in the final portfolio
holdings, which will no longer be adjusted and will be held until maturity. After
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stocks strike barrier

MMM STOXX50E TESLA 300 180

initial price 242.92 102.05 107.19

put strike 250 110 120

call strike 230 100 100

Table 6.14: Down-and-out put features: underlying (the highlighted one), risky
hedging instruments, strike, barrier.

solving the problem using a single-period scenario tree, the optimizer returns the
solution in Table 6.16.

MMM STOXX50E TSLA CASH

0.34525 −0.25828 0 29.33589

PUT CALL PUT CALL PUT CALL

0.20770 −0.76797 0 −4.71034 0 0.0791

Table 6.15: Portfolio composition at T − 1 before rebalancing.

MMM STOXX50E TSLA CASH

−0.43084 0 0 151.5571

PUT CALL PUT CALL PUT CALL

0.56915 0 0 −0.61901 0 0

Table 6.16: Portfolio composition at T −1 after rebalancing, which also corresponds
to the portfolio composition at maturity.

As can be seen, the final portfolio composition includes only the underlying asset,
vanilla put options on it, call options on STOXX50E and cash. Comparing it to the
previous portfolio, the adjustments involved, for example, selling a certain amount
of the underlying asset, shifting the position from 0.34525 to −0.43084, buying
0.56915 − 0.20770 = 0.36145 put options on it, selling all 0.07591 call options on
TSLA, and so on. At this point, the process simply requires waiting until maturity,
when the new market prices will be observed and the final portfolio value will
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be computed. In this specific real-world scenario, the barrier option exists and is
exercised by its holder, resulting in a payoff equal to $97.321. Then, having the
following maturity values

pcash,T = 1.0406
pMMM,T = 202.67875
pput MMM,T = 47.321
pcall ST OXX50E,T = 0

the hedging portfolio at maturity will be

V T
P (T ) =151.5571 · 1.0406 − 0.43084 · 202.67875 + 0.56915 · 47.321+

− 0.61901 · 0 = $97.321

It becomes evident that the hedged position holds a final value of zero, while the
unhedged will incur a loss equal to the option payoff. This example also provides
numerical validation of the chosen hedging strategy.
Looking at the entire history of the strategy from the beginning of the hedging
horizon in this specific real-world simulation, it can be noticed that the optimizer
never selects certain instruments, such as TSLA stock, put options on it or put
options on the STOXX50E. This highlights a key aspect of the strategy’s mechanism:
despite having access to a broad set of hedging assets, it only includes those deemed
necessary to hedge the target asset at maturity. This is an encouraging result in
terms of transaction costs, as it prevents the inclusion of redundant instruments in
the portfolio and avoids trades that are not efficient for the final hedging objective.

Up-and-out put: practical application

This subsection aims to assess ex post the hedging strategy proposed by the
stochastic optimization approach. The analysis is made through an up-and-out
put option, whose characteristics are detailed in Table 6.17. Given that knock-out
options may expire before maturity during the hedging horizon, resulting in a
guaranteed zero payoff, the unhedged position benefits from preserving the whole
sale price of the derivative, which remains unused. On the other hand, the hedged
position employs this amount to build the hedging portfolio. Noting that once a
barrier option ceases to exist it becomes certain that there is no longer a need to
hedge future cash flows at maturity, the following strategy can be adopted:

1. rebalance the portfolio as long as the option remains active, ensuring that any
potential exercise is properly hedged;

2. once market conditions confirm that the option ceases to exist, rebalancing
stops and the portfolio is immediately liquidated. The resulting capital is then
invested at the risk-free rate until maturity.
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stocks strike barrier

MMM STOXX50E TESLA 300 330

initial price 242.92 102.05 107.19

put strike 250 110 120

call strike 230 100 90

Table 6.17: Up-and-Out put features: underlying (the highlighted one), risky
hedging instruments, strike, barrier.

This approach ensures that the portfolio is not unnecessarily rebalanced to replicate
a derivative that will certainly yield a zero payoff, allowing a gain rather than a 0
payoff for the hedged position. A numerical example is presented below.
For the considered Monte Carlo replication, when observing the actual value of the
underlying asset at the second time step, i.e. $349.954, the option is deactivated
since the barrier 330 is hit. The portfolio is composed as shown in Table 6.18, which
is the result of the rebalancing at the previous time step. Instead of rebalancing it
again, the portfolio is sold at the current time, yielding a total of $21.1648. If this
quantity is invested until maturity at the risk-free rate, it will become $21.4476
(holdings and values are shown, respectively, in Table 6.18 and Table 6.19).

MMM STOXX50E TSLA CASH

0 −0.001338 0 71.81847

PUT CALL PUT CALL PUT CALL

0.62418 −0.23796 0.02354 1.81408 −0.06428 −0.80561

Table 6.18: Portfolio composition when the barrier option ceases to exist.

MMM STOXX50E TSLA CASH

349.95397 41.07357 119.65852 1.02689

PUT CALL PUT CALL PUT CALL

0.31246 123.05254 67.49202 0.03616 3.84203 30.84648

Table 6.19: Hedging assets values when the barrier option ceases to exist.
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This represents a notable positive result, especially when compared to the zero
payoff that would be obtained by rebalancing the portfolio one more time. Clearly,
compared to what would be obtained from an unhedged strategy, i.e. the initial
price of the derivative invested until maturity at the risk-free rate

54.67197 · e0.0389(1−0.6̄) = $55.40212,

there is a loss. However, it is worth it, since the hedging strategy allows to cover a
derivative whose existence at maturity is uncertain. It is important to note that the
analyzed scenario is a specific one: the hedging strategy ensures risk minimization,
as demonstrated in the previous sections.

6.10 WP derivatives
Unlike the derivatives analyzed so far, which may not be exercised at maturity, the
first two worst-performance derivatives guarantee a certain loss for the bank. What
remains uncertain is the actual cash outflow, but it will occur in every scenario.
Therefore, this highlights the advantage of adopting a hedging strategy.
To facilitate numerical analysis, a simplified test setting has been implemented,
ensuring that the structure and mechanism of the derivatives are preserved. In
particular, worst-performance derivatives share the following features:

• AMZN, META and GOOGL are their underlyings, respectively with initial
values 242.92, 102.05, 107.19;

• their maturity is one year;

• coupons are considered with the following occurrence:

−4 −4 −4 −4 −4 −4

0 1 2 3 4 6 8 T = 12 months

• the issue price is 100;

• they have a percentage barrier of 0.95;

• two vanilla options are considered on each underlying:

– three vanilla put options are taken into account, respectively with strike
250, 110 and 120;
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– three vanilla call options are also considered, respectively with strike 230,
100 and 100.

All of them expire in one year, matching the derivative maturity.

• a bank account which evolves at the risk-free rate is also considered as hedging
asset;

• quarterly rebalancing is admitted, thanks to a branching factors vector with
configuration [35,5,3] and similar. Note that a more complex configuration is
required for these derivatives, in order to allow scenario trees to better capture
their behaviour. Moreover, coupons are aggregated in these three time steps.

For each WP derivative, a self-financing with fixed initial wealth and without
withdrawal possibility is chosen.
Starting from the simplest derivative, WP1, which is characterized by deterministic
coupons, the comparison between the P&L of the hedged and unhedged positions
is shown in the Figure 6.27. The fact that these derivatives have a piecewise payoff

Figure 6.27: P&L empirical distributions of the unhedged (blue) and hedged
(green) positions: WP1 case.

function is reflected in the distribution of the unhedged position. From the bank’s
perspective, the worst-case scenario occurs when, at maturity, the worst-performing
underlying exceeds the barrier. In these cases, the payoff corresponds to the issue
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price. By subtracting it from the initial premium (carried to maturity) and ac-
counting for the guaranteed coupon payments, the final outcome is −$23.498. This
worst-case situation is represented by the high bar in the above histogram.
The limited-risk nature of this derivative from the holder point of view is evident:
in 3500 over 6000 simulations, the highest possible payoff is obtained, in addition to
the scheduled coupon payments over the investment horizon. Clearly, on the other
hand, it is quite risky for the bank, fact that justifies the adoption of a hedging
strategy. Its application leads to an excellent risk reduction, with an average P&L
of −0.70 and a standard deviation of 4.59.
To verify that the actual cost of risk mitigation for this type of derivative is not
excessive, an analysis of pricing via hedging is conducted. The results are shown in
Figure 6.28. As can be observed, the prices required by a self-financing strategy
are within reasonable bounds around the theoretical price. This highlights the
reliability and practical applicability of the stochastic optimization approach, even
when applied to worst-performance derivatives.

Figure 6.28: Initial wealth distribution W0 chosen by the optimization solver,
compared to the theoretical Monte Carlo price of WP1.

The focus now shifts to WP2, which still guarantees a loss at maturity, but
adds an extra degree of uncertainty since coupons may not be paid (this depending
on whether the worst-performing asset on coupon dates exceeds the digital barrier
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of 75% or not). The more complex structure of WP2 results in longer computational
time: adding a barrier check at each step to determine whether coupons will be
paid increases the time required to complete the simulation. This effect is amplified
in scenario trees with a complex configuration and higher number of scenarios.
Figure 6.29 is provided to better illustrate the cash flow that the bank has to
sustain at maturity. As can be observed, in 100% of the cases the bank incurs
a loss at maturity, which is important to be managed through a proper hedging
strategy. These losses are not negligible, averaging around $90. At least, there is
a lower bound which avoids the risk of unlimited losses. At the same time, the
variance of the unhedged position for this type of derivative is lower compared to
the earlier analyzed options. This results from the fact that the maturity cash flow
is determined as a percentage of the issue price: 100% in the worst case, but lower
in more advantageous situations where is given by the worst-performance among
underlying assets at maturity. This implies that losses are constrained within a
defined range.

Figure 6.29: Distribution of the cash flow that the bank has to sustain at maturity
in a short position on a WP2 derivative.

In this case as well, adopting a self-financing strategy without the possibility to
withdraw money leads to a positive result, reducing the P&L variance from 20.56
to 7.46. A comparison between the unhedged and hedged position resulting from
Monte Carlo replications is depicted in Figure 6.30.
The inclusion of coupons to obtain the overall P&L adds variability. In WP1, the
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Figure 6.30: P&L empirical distributions of the unhedged (blue) and hedged
(green) positions: WP2 case.

unhedged P&L is determined by simply subtracting the total coupons received and
the payoff from the initial price: excluding the final outflow, the others are merely
constants, thus the payoff distribution’s standard deviation coincides with the one
of the P&L. However, in WP2 the fact that coupon payments are not guaranteed
introduces an additional source of variability, leading to a higher variance in the
profit and loss distribution rather than in the final payoff distribution.

The last and most challenging worst-performance derivative is now analyzed. Its
complexity is due not only to the stochastic nature of the coupon payments, but also
to the potential early redemption, which deactivates the derivative before maturity.
In summary, this derivative is subject to three main sources of uncertainty:

1. whether coupons will be paid or not;

2. whether the derivative still exists until maturity or not;

3. the final cash flow at maturity.

The discontinuity of the payoff function of this short position is shown in Figure 6.31.
Here, the upper and lower bounds of the loss are clearly visible. Like WP2, it
exhibits a negative region that corresponds to scenarios where the contract reaches
maturity and the bank is required to fulfill payment obligations. However, there is
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a key difference from the previous worst-performance derivatives: a zero payoff can
also arise, introducing another source of discontinuity. Even in this more challenging

Figure 6.31: Distribution of the cash flow that the bank has to sustain at maturity
in a short position on a WP3 derivative.

case, the implemented optimizer mitigates the key risk factors associated with
WP3, once again confirming the power and robustness of stochastic optimization
applied to the hedging framework. Figure 6.32 shows the benefits from a P&L
perspective.
Since this derivative may cease to exist, as observed with out-barrier options, a
more advantageous approach could be to stop rebalancing the portfolio when it
becomes inactive and instead liquidate it and reinvest the obtained funds at the
risk-free rate for the remaining time until maturity. This approach allows for a
gain at maturity rather than a zero-value position resulting from replicating the
target asset’s value. Although the profit will be lower than the premium received
at t = 0, hedging remains essential, even more than with standard barrier options.
This arises not only from the potential liabilities associated with coupon payments
during the hedging horizon (which are absent in standard barrier options, where
the only cash flow to hedge is the final payoff), but also from the possibility of
early redemption. This event entails the payment of a large amount of money
(much greater than coupons) before maturity. For this reason, adopting a hedging
strategy is worthwhile even in scenarios where the derivative may cease to exist in
the future. Additionally, the unhedged position remains highly risky regardless of
the contract’s inactivity: in fact, if the early redemption takes place at time t = τ ,
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Figure 6.32: P&L empirical distributions of the unhedged (blue) and hedged
(green) positions: WP3 case.

the overall P&L for the unhedged will be

P&Lunhedged = Π(0)erT − 0 −
τØ

t=0
lt · er(T −t) (6.5)

since Ψ(T ) = 0. The quantity lτ will also contain the early redemption amount.
Considering that the latter is similar to the issue price, (6.5) proves to be surely
negative. On the contrary,

P&Lhedged = he = 0 (6.6)

as all kinds of intermediate liabilities (the early redemption amount, too) are
assumed to be fully covered by the self-financing strategy which starts with an
initial wealth equal to Π(0). As previously said, it is possible to interrupt the
rebalancing and obtain a net profit at maturity by investing the capital gained
from liquidating the last rebalanced portfolio.
One drawback of using stochastic optimization for this type of derivative is the
computational time required. A solid branching factor configuration is necessary to
obtain applicable results, but frequent checks for the three barriers (for coupons, for
early redemption and, eventually, for the payoff), inevitably increase computational
time.

103



Bibliography

[1] Michael Villaverde. «Hedging European and Barrier options using stochastic
optimization». In: Quantitative Finance (2004), pp. 549–557 (cit. on pp. 23,
84).

[2] G. Amici, P. Brandimarte, F. Messeri, and P. Semeraro. Multivariate Lévy
Models: Calibration and Pricing. July 2023. doi: 10.48550/arXiv.2303.
13346.

[3] John C. Hull. Options, Futures and Other Derivatives. Pearson, 2021.
[4] M. Capinski and T. Zastawniak. Mathematics for Finance: An Introduction

to Financial Engineering. Springer, 2010.
[5] Intesa Sanpaolo. Key Information Document: Standard Long Barrier Plus

Worst of Certificates. 30 March 2022.
[6] Intesa Sanpaolo. Key Information Document: Standard Long Barrier Digital

Worst of Certificates. 6 April 2022.
[7] Intesa Sanpaolo. Key Information Document: Standard Long Autocallable

Barrier Digital Worst of Certificates with Memory Effect. 28 October 2022.
[8] K. Høyland, M. Kaut, and S. W. Wallace. «A Heuristic for Moment-Matching

Scenario Generation». In: Computational Optimization and Applications
(2003). doi: 10.1023/A:1021853807313.

[9] Roy Kouwenberg. «Scenario generation and stochastic programming models
for asset liability management». In: European Journal of Operational Research
134 (2001), pp. 279–292.

[10] K. Høyland and S. W. Wallace. «Generating Scenario Trees for Multistage
Decision Problems». In: Management Science (2001), pp. 295–307. doi: 10.
1287/mnsc.47.2.295.9834.

[11] J. Gondzio, R. Kouwenbergb, and T. Vorst. «Hedging options under trans-
action costs and stochastic volatility». In: Journal of Economic Dynamics
Control 27 (2003), pp. 1045–1068.

104

https://doi.org/10.48550/arXiv.2303.13346
https://doi.org/10.48550/arXiv.2303.13346
https://doi.org/10.1023/A:1021853807313
https://doi.org/10.1287/mnsc.47.2.295.9834
https://doi.org/10.1287/mnsc.47.2.295.9834

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Hedging
	Main hedging problem: symmetric and asymmetric cases
	Non-self-financing variant
	Withdrawal-adjusted problem
	Super-replication
	Benchmarking stochastic optimization: Delta Hedging

	Stochastic models for stock prices
	Geometric Brownian Motion (GBM)
	Moment Matching
	Arbitrage-free scenarios
	First approach: absence of dominant strategies
	Second approach: no arbitrage constraints


	Options and exotic derivatives
	Pricing derivatives: risk-neutral valuation
	Vanilla options
	Pricing European vanilla options: Black-Scholes- Merton model

	Asian options
	Barrier options
	Worst-Performance Derivatives
	WP1: Standard Long Barrier Plus Worst of Certificates
	WP2: Standard Long Barrier Digital Worst of Certificates
	WP3: Standard Long Autocallable Barrier Digital Worst of Certificates with memory effect


	Code Structure
	Reinforcement Learning Style
	Monte Carlo
	Option valuation

	Scenario trees: stochastic models and arbitrages
	Barrier options
	WP derivatives
	Management of coupons: aggregation function


	Analysis
	Hedging statistics
	Hedging vanilla European options
	Hedging Asian options
	Comparative analysis: European vanilla vs Asian options

	Branching factors sensitivity
	Financing analysis
	Risk aversion
	Pricing through hedging
	Transaction costs analysis
	Stochastic models comparison: GBM vs MM
	Benchmark: Delta hedging
	Barrier Options
	WP derivatives

	Bibliography

