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Summary

Phase separation is a fundamental physical mechanism that drives the organization of
many complex systems. Specifically, in biology cells are thought to exploit this mechanism
to organize their internal structure and to compartmentalize biochemical processes within
membraneless organelles. Nucleoli—one of such organelles in eukaryotes—are known to
form hierarchical subcompartments dedicated to ribosomal RNA (rRNA) transcription,
processing, and ribosome assembly. The underlying mechanism of these processes and
their biological significance remain unknown. Perturbations of rRNA transcription, e.g.
in laboratory experiments, reorganises the nucleolar structure. Perturbations of rRNA
transcription, e.g. in laboratory experiments, reorganises the nucleolar structure. Quanti-
tative live-cell imaging after inhibition of rRNA transcription reveals two steps of reorga-
nization consisting in, first, fusion of individual subunits, then followed by, second stage,
their exposure to the nucleolar surface. To model the formation of nucleolar subcom-
partments, we develop a theoretical framework based on Flory-Huggins theory of phase
separation in multicomponent solutions and Cahn-Hilliard dynamics. To fit this family
of models to experimental observations, we design several estimation techniques, which
help identify the plausible values of key physical parameters from high-resolution imaging
data. By applying this technique we test whether the phenomenology of phase separation
in liquid solutions is sufficient to explain formation of the nucleolar structure.
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Chapter 1

Introduction

A homogeneous mixture of components, that spontaneously demixes into distinct phases
with different compositions, undergoes a physical process called phase separation. This
phenomenon encompasses a natural formation of distinct compartments with different
macroscopic characteristics. Phase separation occurs in liquid solution when molecular in-
teractions favor the segregation of specific components, overcoming the entropic tendency
of the system to remain mixed [4, 8, 14, 15, 31]. One example that we can experience in
our everyday life is the separation of water and oil. When these two liquids are combined,
they initially form a heterogeneous mixture. Over time hydrophobic oil molecules and
water repel each other forming two separate phases.

Phase separation typically starts with nucleation, which is the process where small
unstable clusters of molecules aggregate forming small droplets. These droplets are then
increasing in size through their fusion or growth at the expense of smaller droplets—the
phenomenon called Ostwald ripening [23]. The droplets’ coarsening process continues
until the system reaches a steady state.

The dynamics of spontaneous phase separation phenomena have been studied in var-
ious research fields and developed applications especially in material science [20, 26].
Applications of broad interest include design of polymer mixtures for electronic devices,
such as organic solar cells [7] and organic memory diodes [1], and assembly of synthetic
membranes for electro-optical devices [18, 19].

The principles of phase separation, developed for material science, directly apply to
biological systems [22]. These principles shed light on the important questions in biol-
ogy: how do the cells organize distinct intracellular compartments to facilitate complex
biochemical reactions? Many biological processes require isolated chemical microenviron-
ments that are physically separated from their surroundings, but capable to exchange
signaling molecules and reaction products with the environment.

One example ubiquitously found in cells is the formation of membrane-bound or-
ganelles, physically isolating compartments by lipid membrane. In addition, cells contain
diverse membraneless organelles that form without physical barriers. Recent studies sug-
gest that most membraneless organelles exhibit liquid-like properties and can be treated
as droplets of a liquid-liquid phase separation phenomenon [12, 27, 29, 30, 32]. A notable
example of membraneless organelles is the nucleolus—the largest structure in the nucleus
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Introduction

of eukaryotic cell—playing a crucial role in ribosome biogenesis and known to behave as
a liquid [2].

Nucleoli exhibit a nested multiphase organisation, which is crucial for separating dis-
tinct steps of ribosome biogenesis. Structurally, the nucleolus is subdivided into three
subcompartments: the fibrillar center (FC), the dense fibrillar component (DFC), and
the granular component (GC). The FC comprises of RNA polymerase I and its transcrip-
tion factors, serving as the primary site of rRNA transcription. The DFC surrounds the
FC and is responsible for maturation of rRNA by processing and modification of newly
transcribed rRNA. The outermost GC is the site of the final stages of pre-ribosomal sub-
unit assembly, where pre-ribosomal particles undergo maturation before being exported
to the cytoplasm for protein synthesis. Thus, subcompartmentalization of the nucleolus
is tightly coupled to the production of ribosomes, and loss of its structural integrity can
impair protein synthesis, leading to cellular dysfunction.

Pursuing the hypothesis that the liquid-liquid phase separation drives formation of
the nucleoli structure, in this work we seek to build a quantitative model for our imag-
ing data [11], which would provide further physical insights into understanding of nu-
cleolar organization. To achieve this, we develop a theoretical framework grounded on
Flory-Huggins theory of phase separation in multicomponent solutions and Cahn-Hilliard
dynamics to describe to describe the system’s evolution in time.

By integrating theoretical modeling with data-driven parameter estimation, this work
aims to bridge the gap between experimental observations and the underlying physical
mechanisms governing nucleolar organization. To this end we explore various inference
techniques for the key modeling parameters under the assumption, that the imaging data
present an equilibrium state. We validate our approach by applying the estimation pro-
cedure to equilibrium states generated from known parameter values. Finally, we apply
our framework to experimental imaging data from [11], assessing its ability to accurately
capture nucleolar phase behavior.

Our analysis reveals that the equilibrium model of a four-component protein solution
is not sufficient to explain the formation of the nucleolar structures. This result suggests
that additional mechanisms are necessary to stabilize them. Such mechanism may include:
(i) rRNA transcription, in which ribosomal RNA (rRNA) is transcribed from ribosomal
DNA (rDNA) by RNA polymerase I at the boundary between FC and DFC region [13]; (ii)
rRNA processing, which correspond to the maturation of transcribed rRNA, called pre-
rRNA, this process cleaves and add post-transcriptional modification of rRNA, generating
flow of RNA molecules from nucleolar interior (FC) to exterior (GC and far beyond to the
nucleoplasm); (iii) ribosome assembly, where pre-RNA and ribosomial proteins interact to
make pre-ribosome particles, that subsequently translocate to the cytoplasm for protein
synthesis. Importantly, these nucleolar activities consume cellular energy such as ATP.
As rRNA transcription is the most active transcription and subsequent processing and
ribosome assembly are a vital for cellular homeostasis, it is believed that nucleolar activity
is most energy consuming process. Although we do not explore these extensions of the
underlying model and strictly focus on the equilibrium mechanisms, our theoretical and
computational toolbox can serve as foundations for further research.
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Chapter 2

Modeling liquid-liquid phase
separation

A common approach to modeling the dynamics of phase separating liquids is the so called
Cahn-Hilliard equations [3, 20, 26, 31]. Given a suitable definition of the system’s free
energy, these equations are formulated by using a linear constitutive relation and the
gradients of the components’ chemical potentials.

This Chapter provides an overview of the theoretical framework for liquid-liquid phase
separation in mixtures of C components in d-dimensional physical space. The approach
that we follow relies on the Flory-Huggins theory of protein solutions [6, 8, 14], which
accounts for both local and nonlocal contributions of the system’s free energy. A particular
attention is dedicated to the spectral formulation of the theory, which provides foundation
for the inference method developed and applied in the later chapters.

To model equilibrium states, we describe two complementary approaches. First, we
evolve the system by numerically integrating its dynamic equations based on the Cahn-
Hilliard framework. Second, we employ Metropolis-Hastings sampling, a Markov chain
Monte Carlo method, to generate equilibrium configurations by directly sampling from the
Boltzmann distribution of the system. These methods provide two distinct yet intercon-
nected perspectives on equilibrium phase separation systems, one based on deterministic
evolution and the other on stochastic sampling. This Chapter lays the groundwork for
understanding the mathematical modeling of liquid-liquid phase separation and provides
the necessary tools for generating equilibrium states, which will be central for testing the
inference techniques explored in subsequent chapters.

2.1 Flory-Huggins theory of phase separation in mul-
ticomponent solutions

In general we consider an incompressible mixture of C components distributed over a
rectangular spatial domain Ω ⊂ Rd, with d = 1,2,3. The particles of each component,
labeled by A = {1, . . . , C}, collectively occupy the volume of the entire domain—without
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Modeling liquid-liquid phase separation

leaving empty spaces. An extension of the theory, in which empty space is modeled as an
additional component is also possible.

Following the Flory-Huggins theory [8, 14], we assume that each molecule occupies a
constant volume va. Here we adopt the convention that the solvent is labeled by a = C.
Sizes of the other molecules can then be expressed by a dimensionless number Na = va/vC .

With the above assumption we can describe the system’s state by volume fractions
ϕa(x), which ath component occupies in the neighborhood of a point x ∈ Ω. The dis-
tribution of molecules in the form of concentrations can thus be obtained from ca(x) =
ϕa(x)/(NavC). In addition the volume fractions of all components must satisfyØ

a∈A
ϕa(x) = 1, (2.1)

which reduces by one the number of fields required to specify a unique state of the system.
Hence at each instant of time t the system’s configuration is uniquely identified by

the vector of C − 1 scalar fields ϕa=1,2,...,C−1(x, t), whereas the distribution of solvent is
determined from Eq. (2.1):

ϕC(x, t) = 1−
Ø

a∈AC

ϕa(x, t), (2.2)

where AC = A \ {C} denotes the set of all labels except C.
The Flory-Huggins free energy F of a multicomponent mixture can then be cast in

reduced energy units of kBT , with Boltzmann constant kB and temperature T , as a func-
tional of the volume fractions’ vector ϕ = {ϕa}a∈AC

:

F [ϕ] =
Ú

Ω
f
1
ϕ(x),∇ϕ(x)

2
dx, (2.3)

where the spatial integration spans the whole domain Ω, and ∇ϕ denotes the component-
wise gradient of ϕ, so that (∇ϕ)a = ∇ϕa. The energy-density is further split into local
and nonlocal contributions, respectively:

f(ϕ,∇ϕ) = floc(ϕ) + fnonloc(∇ϕ).

The local term of the Flory-Huggins free energy takes the form

floc(ϕ) =
Ø

a∈AC

ϕa

Na
log ϕa +

1−
q

a∈AC
ϕa

NC
log

1−
Ø

a∈AC

ϕa


+ 1

2
Ø

a,b∈AC

χabϕaϕb +
Ø

a∈AC

χaCϕa

1−
Ø

a∈AC

ϕa

 ,
(2.4)

in which NC = 1 and Eq. (2.2) are used, whereas the coefficients χab form a symmetric
matrix χab = χba such that χaa = 0. The nonlocal contribution of the energy density
f(ϕ) is given by

fnonloc(∇ϕ) = 1
2
Ø

a,b∈A
λab∇ϕa · ∇ϕb.
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in which the symmetric coefficients λab = λba penalizes spatial inhomogeneities [31]. With
help of Eq. (2.2) the nonlocal term can be further simplified as follows

fnonloc(∇ϕ) = 1
2
Ø

a,b∈AC

λab∇ϕa · ∇ϕb +
Ø

a∈AC

λaC∇ϕa · ∇

1−
Ø

b∈AC

ϕb


+ 1

2λCC

------∇
1−

Ø
b∈AC

ϕb

------
2

= 1
2
Ø

a,b∈AC

λab∇ϕa · ∇ϕb −
Ø

a,b∈AC

λaC∇ϕa · ∇ϕb

+ 1
2λCC

Ø
a,b∈AC

∇ϕa · ∇ϕb

= 1
2
Ø

a,b∈AC

κab∇ϕa · ∇ϕb,

(2.5)

in which we introduced
κab := λab + λCC − λaC − λbC .

Note that the coefficients κab form a symmetric matrix κab = κba, with (C − 1)(C − 1)
elements for a, b ∈ AC .

Hence the free energy depends on C − 1 constants Na /=C , and C(C − 1)/2 coefficients
χa<b (a, b ∈ A) and C(C − 1)/2 coefficients κa≤b (a, b ∈ AC). Moreover, substituting the
local contribution (2.4) and the nonlocal contribution (2.5) into Eq. (2.3), the free energy
can be explicitly written as

F [ϕ] =
Ú

Ω
dx

 Ø
a∈AC

ϕa

Na
log ϕa +

1−
q

a∈AC
ϕa

NC
log

1−
Ø

a∈AC

ϕa


+ 1

2
Ø

a,b∈AC

(χabϕaϕb + κab∇ϕa · ∇ϕb) +
Ø

a∈AC

χaCϕa

1−
Ø

a∈AC

ϕa

 .
(2.6)

2.2 Cahn-Hilliard dynamics
Phase-separating systems, such as those modeled by Cahn-Hilliard dynamics [3, 26, 31],
describe the evolution of volume fraction fields in multicomponent mixtures. These sys-
tems evolve towards equilibrium through diffusive transport, driven by chemical potential
gradients.

The evolution of the volume fractions ϕ = {ϕa}a∈AC
is governed by the continuity

equations for a ∈ AC

∂tϕa = −∇ · ja (2.7)

where ja = ja(ϕ) represent the flux of component a.
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We assume a linear constitutive relation where the flux ja is proportional to the gra-
dient of the chemical potential µa = µa(ϕ):

ja = −Λa∇µa, (2.8)

where Λa = Λa(ϕ) > 0 is the diffusion coefficient, which, in general, is a function of the
volume fractions ϕ and may be different for each component a ∈ AC .

As a specific example, if Λa = Λ is constant and identical for each component a ∈ A,
the flux simplifies to ja = −Λ∇µa, leading to the equation

∂tϕa = Λ∇2µa.

Alternatively, if we consider a diffusion coefficient proportional to the corresponding vol-
ume fraction, such that Λa(ϕ) = Dϕa with D constant, the flux becomes ja = −Dϕa∇µa

and the evolution equation takes the form

∂tϕa = D∇ · (ϕa∇µa) .

On the other hand, the chemical potential is the variation of the free energy func-
tional (2.6), which here is borrowed from the Flory-Huggins theory. In this context,
we define the chemical potential for the component a ∈ AC as the functional derivative
of the free energy F with respect to the volume fraction ϕa, such that

µa = δF

δϕa
: = ∂ϕaf −∇ · ∂∇ϕaf

= ∂ϕafloc −∇ · ∂∇ϕafnonloc.

Together the continuity equation (2.7) and the constitutive relation (2.8) yield a system
of equations for Cahn-Hilliard dynamics. Assuming that χab, κab and Na are constants,
independent of space and volume fractions, one can directly compute each term of the
expression. For each a ∈ AC , the local term gives

∂ϕafloc(ϕ) = ∂ϕa

I Ø
b∈AC

ϕb

Nb
log ϕb +

1−
q

b∈AC
ϕb

NC
log

1−
Ø

b∈AC

ϕb


+ 1

2
Ø

b,c∈AC

χbcϕbϕc +
Ø

b∈AC

χbCϕb

1−
Ø

c∈AC

ϕc

J

= 1 + log ϕa

Na
−

1 + log
!
1−

q
b∈AC

ϕb

"
NC

+
Ø

b∈AC

χabϕb + χaC

1−
Ø

b∈AC

ϕb

− Ø
b∈AC

χbCϕb

= 1 + log ϕa

Na
−

1 + log
!
1−

q
b∈AC

ϕb

"
NC

+
Ø

b∈AC

(χab − χbC − χaC)ϕb + χaC .
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Similarly, for the nonlocal term, we get

∂∇ϕafnonloc(∇ϕ) = ∂∇ϕa

1
2
Ø

b,c∈AC

κbc∇ϕb · ∇ϕc


=
Ø

b∈AC

κab∇ϕb.

Finally, we write the dynamic equations for a ∈ AC as

∂tϕa = ∇ ·
I

Λ∇
C

log ϕa

Na
−

log
!
1−

q
b∈AC

ϕb

"
NC

+
Ø

b∈AC

(χab − χbC − χaC)ϕb −
Ø

b∈AC

κab∇2ϕb

DJ
.

(2.9)

This set of equations describes the evolution of the first C − 1 volume fractions of the
system in time. However, once the scalar fields ϕa(x, t) at time t for each a ∈ AC are
determined, then the configuration of the mixture is completely known, since we can
directly compute the volume fraction of the Cth component at the same time t, through
the constraint (2.2).

To verify that this formulation generalizes the binary and ternary mixture cases and
is consistent with equations found in the literature [20, 26, 31], we examine the specific
cases C = 2 and C = 3 and confirm that they reproduce the known results.

Binary mixtures Let us consider A = {1,2} with C = 2, which implies AC = {1}. In
this case, the local free energy density simplifies to

floc(ϕ1) = ϕ1

N1
log ϕ1 + 1− ϕ1

N2
log (1− ϕ1) + 1

2χ11ϕ1ϕ1 + χ12ϕ1 (1− ϕ1)

= ϕ1

N1
log ϕ1 + 1− ϕ1

N2
log (1− ϕ1) + χ12ϕ1 (1− ϕ1) ,

where we used the fact that χaa = 0 and the symmetry of χab, so that χ12 = χ21.
Moreover, the nonlocal contribution reduces to

fnonloc(∇ϕ1) = ∇ϕ1 · κ11∇ϕ1 = κ11|∇ϕ1|2,

where κ11 reduces to a scalar. Similarly, the dynamic equations also coincide with the
expectations, as we obtain

∂tϕ1 = ∇ ·
;

Λ∇
5 log ϕ1

N1
− log (1− ϕ1)

N2
+ (χ11 − χ12 − χ12)ϕ1 − κ11∇2ϕ1

6<
= ∇ ·

;
Λ∇

5 log ϕ1

N1
− log (1− ϕ1)

N2
− 2χ12ϕ1 − κ11∇2ϕ1

6<
,

that matches equations in literature [31], so this confirms the consistency of our general
formulation with the binary mixture case.
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Ternary mixtures For a ternary mixture, we set A = {1,2,3} and C = 3. Then, for
a ∈ AC = {1,2}, dynamical equations (2.9) reduce to

∂tϕ1 = ∇ ·
I

Λ∇
C

log ϕ1

N1
− log(1− ϕ1 − ϕ2)

N3

− 2χ13ϕ1 + (χ12 − χ13 − χ23)ϕ2 − κ11∇2ϕ1 − κ12∇2ϕ2

DJ
,

∂tϕ2 = ∇ ·
I

Λ∇
C

log ϕ2

N2
− log(1− ϕ1 − ϕ2)

N3

− 2χ23ϕ2 + (χ12 − χ13 − χ23)ϕ1 − κ12∇2ϕ1 − κ22∇2ϕ2

DJ
,

(2.10)

as expected from literature [26].

2.3 Pseudo-spectral methods
The dynamic equations written in the form of (2.9) can be analysed in the spectral
representation [28], which describes the problem in the Fourier space.This representation
is particularly convenient on a periodic domain, as adopted in our study.

Specifically, we can consider basis functions for square-integrable real-valued functions
in L2(Ω). Periodic boundary conditions provide a convenient means to model systems
with conservation laws, e.g. of components’ concentrations. Therefore, we can consider
an orthonormal basis {ej}j∈Zd for periodic functions defined on the domain Ω. Let us
denote with ⟨·, ·⟩ the standard inner product in L2(Ω), i.e. the map such that for each
g, h ∈ L2(Ω)

⟨g, h⟩ =
Ú

Ω
gh.

For any scalar field ϕ(x, t) defined on the periodic domain Ω and parametrized by the
temporal variable, there exist some functions âϕj : R+ → R taking values on the time
interval R+, such that

ϕ(x, t) =
Ø

j∈Zd

âϕj(t)ej(x) ∀(x, t) ∈ Ω× R+.

In other words, ϕ can be decomposed in terms of some coefficients, with respect to a
fixed, time-independent basis {ej}j∈Zd . Moreover, the functions âϕj represent the volume
fraction ϕ in Fourier space and are uniquely determined by

âϕj = ⟨ϕ, ej⟩.

Indeed, to prove that such functions represent ϕ, let us recall that by orthonormality of
the basis {ej}j∈Zd we have ⟨ej , ek⟩ = δjk, where δjk is a multidimensional Kronecker
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symbol such that

δjk = δj1k1 · · · δjdkd
=
I

1 if j1 = k1, . . . , jd = kd,

0 otherwise.

Then, by linearity of the inner product, we get an explicit form for the coefficients âϕj , as

⟨ϕ, ej⟩ =
Ø

k∈Zd

âϕk⟨ek, ej⟩ =
Ø

k∈Zd

âϕkδjk = âϕj .

The representation of a volume fraction ϕ in Fourier space involves a countably infinite
number of degrees of freedom, meaning that a full specification of ϕ requires infinitely
many degrees of freedom.

However, in this context, experimental data provide only the average volume fraction ϕ
evaluated over a finite number of identical d-dimensional hyperrectangular elements, that
collectively cover the domain Ω. These average values ϕm can be also considered as the
value of ϕ at the center (x1,m1 , . . . , xd,md

) of each element, i.e. ϕm = ϕ(x1,m1 , . . . , xd,md
, t)

at a certain time t. Therefore, to get an approximation of ϕ, we need to interpolate
between these points {(x1,m1 , . . . , xd,md

), ϕm}m∈M , where M denotes the set of indices
that identifies the center of each element.

Spectral approximation on a one-dimensional domain In order to clarify the idea
of function approximation by its truncated Fourier series on in a d-dimensional domain, we
illustrate here the simplest case—L2(I)-integrable one-dimensional functions on a finite
interval I = [0, L] ⊂ R. For any periodic square-integrable function g there exist some
coefficients âgi such that

g(x) =
Ø
i∈Z

âgiei(x),

where {ei}i∈Z is the orthonormal basis set for periodic functions in L2(I).
Suppose now that we have limited information about g and seek to reconstruct an

approximation åg. Specifically, we assume that the available information consists of the
values gm of g at certain points xm, for m = 1, . . . ,M , meaning that we know gm = g(xm).
Furthermore, we assume that the nodes xm correspond to the centers of the cells in an
equidistant grid over the interval I, such that

x1 ≡
1
2dx < x2 ≡

3
2dx < · · · < xM ≡

2M − 1
2 dx,

where dx = L
M and, in general, xm = 2m−1

2 dx for m = 1, . . . ,M . A possible approach
to define the approximation åg is to project g onto a subspace of span{ei}i∈Z. To achieve
this, we can choose a suitable basis {ei}i∈Z so that most of the information about g is
concentrated in a few modes. Then, we can apply a low-pass filter to eliminate the modes
associated with higher frequencies, so that the approximation of g can be written as a
finite sum of M terms, defining the set I ⊂ Z of the retained indices, associated with M
modes that focus the information.
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For instance, let us consider the following orthonormal basis

ei(x) =


1√
L

if i = 0ñ
2
L cos

!2π
L ix

"
if i > 0

−
ñ

2
L sin

!2π
L ix

"
if i < 0

Let I =
î
−
ê

M
2

ë
, −

ê
M
2

ë
+ 1, . . . ,

ê
M−1

2

ëï
be the set of M retained indices, associated

with the modes that focus the information. Consider now the truncated basis function
set {ei}i∈I . This new set of functions is a basis for the subspace span{ei}i∈I where the
higher order modes are eliminated, but the construction procedure used to define this set
does not ensure orthonormality. However, we can construct an orthonormal basis for the
subspace span{ei}i∈I , for instance by applying the Gram-Schmidt algorithm. The process
of building an orthonormal basis for span{ei}i∈I reduces to slightly modify of the basis
functions ei for i ∈ I. For the sake of simplicity, we redefine ei with a little abuse of
notation, so that in the following they denote the modified orthonormal basis functions
for the subspace span{ei}i∈I , where

ei(x) =


1√
L

if i = 0ñ
2
L cos

!2π
L ix

"
if i > 0

−
ñ

2
L sin

!2π
L ix

"
ζiM if i < 0

where ζiM =
I 1√

2 if M even, i = −M
2

1 o/w

Finally, the spectral approximation of g is given by

åg(x) :=
Ø
i∈I

âgiei(x),

where the coefficients âgi are computed as an approximation of the inner product

⟨g, ei⟩ =
Ú

I
g(x)ei(x) dx.

Under the assumption that g is periodic and noting that, by definition, ei is also periodic
on the interval I, the integrand remains periodic. Consequently, following the spectral
collocation approach [28], Fourier periodic integration simplifies to the periodic trapezoidal
rule. Therefore, we define the coefficients as

âgi := dx
MØ

m=1
g(xm)ei(xm).

Spectral approximation on a two-dimensional domain The generalization of the
spectral approximation procedure for a space Ω ⊂ R2 is straightforward and will help to
clarify the most general case of a d-dimensional domain. Let us assume that the space
domain Ω can be written as a Cartesian product of two intervals Ir = [0, Lr] for r = 1,2,

18



Modeling liquid-liquid phase separation

so that Ω = [0, L1]× [0, L2]. Then, consider for each dimension r = 1,2 the orthonormal
basis {e(r)

i }i∈Z for periodic functions on Ir, such that

e
(r)
i (x) =


1√
Lr

if i = 0ñ
2

Lr
cos

1
2π
Lr
ix
2

if i > 0
−
ñ

2
Lr

sin
1

2π
Lr
ix
2

if i < 0

Therefore, an orthonormal basis for periodic functions on Ω is given by {eij}(i,j)∈Z2 , where
the functions are defined as tensor products of all the combinations of e(r)

i for r = 1,2 and
i ∈ Z. In other words, we have eij = e

(1)
i ⊗ e

(2)
j or equivalently

eij(x, y) = ei(x)ej(y) ∀(x, y) ∈ Ω = I1 × I2.

Indeed, one can easily see that orthonormality holds, performing a direct computation

⟨eij , ekl⟩ =
Ú

Ω
eijekl =

AÚ L1

0
e

(1)
i e

(1)
k

BAÚ L2

0
e

(2)
j e

(2)
l

B
= δikδjl.

Consider now a Cartesian grid on Ω made up of M = M1M2 identical rectangular
elements of area v. Each element in the grid can be identified with the corresponding
center xmn such that xmn = (xm, yn), with xm = 2m−1

2 for m = 1, . . . ,M1 and yn = 2n−1
2

for n = 1, . . . ,M2. In a similar way with respect to the one-dimensional case, we introduce
the set J , that contains multi-indices j = (i, j) associated with low frequencies modes of
the basis {eij}(i,j)∈Z2 . A possible way to easily define J is by considering the sets

Ir =
;
−
7
Mr

2

8
, −

7
Mr

2

8
+ 1, . . . ,

7
Mr − 1

2

8<
r = 1,2. (2.11)

Then, the set of multi-indices J can be written as the Cartesian product J := I1 × I2.
Moreover, for simplicity, we redefine the set {eij}(i,j)∈J so that it is an orthonormal basis
for the subspace span{eij}(i,j)∈J , resulting in eij = e

(1)
i ⊗ e

(2)
j with

e
(r)
i (x) =


1√
Lr

if i = 0ñ
2

Lr
cos

1
2π
Lr
ix
2

if i > 0
−
ñ

2
Lr

sin
1

2π
Lr
ix
2
ζ

(r)
iM if i < 0

(2.12)

where

ζ
(r)
iM =

I 1√
2 if Mr even, i = −Mr

2
1 o/w

for r = 1,2 and i ∈ Ir.
Finally, we can define the spectral approximation of a periodic function g on Ω as

åg(x) =
Ø

(i,j)∈J

âgijeij(x),
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where the coefficients âgij are computed as approximation of the inner product

⟨g, eij⟩ =
Ú

Ω
g(x)eij(x) dx.

Once again using the spectral collocation approach, we define these coefficients as

âgij : = v
M1Ø

m=1

M2Ø
n=1

g(xm, yn)eij(xm, yn)

= dx dy
M1Ø

m=1

M2Ø
n=1

g(xm, yn)e(1)
i (xm)e(2)

j (yn).

For the sake of simplicity, in the following we assume that each function g considered
belongs to the subspace span{eij}(i,j)∈J , so that its approximation exactly coincide with
itself, i.e. åg = g. Furthermore, we denote with F the analysis operator that maps functions
in span{eij}(i,j)∈J to their coefficients in the spectral approximation, such that

F : g ∈ span{eij}(i,j)∈J → {âgij = ⟨g, eij⟩}(i,j)∈J .

Then, the synthesis operator is defined as

F∗ : {âgij}(i,j)∈J → g =
Ø

(i,j)∈J

âgijeij

and coincides with the inverse of F, i.e. F∗ = F−1, since by hypothesis g ∈ span{eij}(i,j)∈J .

2.4 Numerical methods
The procedure illustrated in Section 2.3 provides us a way to describe the field ϕ(x, t) of
any volume fraction at a time t in an approximation subspace. The dynamic equations
(2.9) can then be written in terms of the spectral approximation by substituting the
approximated fields ϕa into the equations or, equivalently, by projecting such equations
onto the approximation subspace.

Let Ω ⊂ Rd be the space domain and suppose to divide into identical elementary
volumes ω(x) uniquely identified by their center x. Inside each element ω(x) the pres-
ence of the mixture can be interpreted with the coexistence of C regions of space, each
one uniquely associated with one component of the system. Since we assumed that the
mixture occupies the entire domain, each element ω(x) can be written as the disjoint
union of the regions ωa(x) for a ∈ A, that correspond to the portions of space in ω(x)
uniquely associated with the component a, so that ω(x) =

g
a∈A ωa(x, t). The underlying

assumption in this interpretation is the impossibility for the components to overlap and
the presence of harsh bounds between them. However, this has to happen inside an ele-
ment ω(x), therefore, assuming that the available information on the system is averaged
on each element, what we really observe is a coarser picture where the hypothesis on the
overlapping of components can be relaxed and volume fractions can be well defined.
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The volume occupied by the component a ∈ A in the element ω(x) is

|ωa(x, t)| =
Ú

ω(x)
✶ωa(x,t)(y) dy =

Ú
ωa(x,t)

dy,

where ✶ωa(x,t) denotes the indicator function of the set ωa(x, t). On the other hand,
assuming that the elements ω(x) are identical, the total volume of each element is

ω := |ω(x)| =
Ø
a∈A
|ωa(x, t)|.

Therefore, the volume fraction [9] of the component a ∈ A can be defined as functions
ϕa : Ω× R+ → [0,1] such that

ϕa(x, t) = ωa(x, t)
ω

.

Specifically, in what follows, we assume that the domain Ω is partitioned by an equidis-
tant grid into M identical elements ω(x) ∈ Rd—intervals, pixels, or voxels for d = 1,2,3
respectively—identified by the positions of their centroids x. Fluctuations of empty space
between individual molecules are assumed negligible relative to the volume ω.

2.4.1 Configuration of the system in the spectral space
Inspired by the approach followed in Section 2.3 for one and two-dimensional domains, we
construct an approximation for each volume fraction field ϕa(x, t) with a ∈ AC at a time t.
In order to do so, let us recall that the space domain Ω is assumed to be subdivided into M
identical elements ω(x) of volume ω and suppose that Ω is a d-dimensional hyperrectangle
that can be expressed as a Cartesian product

Ω =
dÙ

r=1
Ir,

of d intervals Ir := [0, Lr] for r = 1, . . . , d. Furthermore, let us consider a midpoint
discretization in Mr nodes of each interval Ir such that

xr,mr = 2mr − 1
2 dxr for mr = 1, . . . ,Mr,

where dxr = Lr

Mr
, while the first index of xr,mr denotes the interval associated with the

node and the second index denotes the point in the one-dimensional discretization.
Then, we can easily define a decomposition of the domain Ω into identical elements,

by taking the points (x1,m1 , . . . , xd,md
) ∈ Ω as their centers. Notice that we have M =rd

r=1 Mr points and, for sake of simplicity, we can denote one with xm1,...,md
the point

(x1,m1 , . . . , xd,md
). Moreover, for a shorter notation, we can introduce M multi-indices

m = (m1, . . . ,md) ∈M :=
A

dÙ
r=1
{1, . . . ,Mr}

B
,
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given by all the possible ordered combinations of mr, so that xm = xm1,...,md
1.

In other words, the domain Ω is subdivided into M identical smaller hyperrectangles
ω(xm), with m ∈M , where xm is the center of the element ω(xm) and coincides with
one of the points of the midpoint grid.

Consider the orthonormal basis {e(r)
i }i∈Ir for approximated periodic functions on the

interval Ir for each r = 1 . . . , d, where Ir is given by (2.11), while e(r)
i is defined as in

(2.12) and denotes the basis function of the subspace where we have already cut the modes
associated with higher frequencies.

Then, let us define the set J of multi-indices as the Cartesian product J =
rd

r=1 Ir,
so that elements of J are multi-indices j = (j1, . . . , jd) with jr ∈ Ir for r = 1, . . . , d.
Therefore, we can define a basis for approximated periodic functions on Ω as {ej}j∈J ,
where

ej = e
(1)
j1
⊗ · · · ⊗ e(d)

jd
. (2.13)

Finally, at each fixed time t, volume fraction fields ϕa(x, t) of each component a ∈ AC

can be approximated in the subspace span{ej}j∈J as

ϕa(x, t) ≃ åϕa(x, t) =
Ø
j∈J

âϕa, j(t)ej(x)

=
Ø
j∈J

Câϕa, j(t)
dÙ

r=1
e

(r)
jr

(xr)
D
,

(2.14)

where xr denotes a the rth component of a vector variable x ∈ Ω ⊂ Rd and the coeffi-
cients of the decomposition are given by the approximation of the inner product ⟨ϕa, ej⟩,
according to the spectral collocation approach

âϕa, j : = ω
Ø

m∈M

ϕa(xm, t)ej(xm)

= ω
M1Ø

m1=1
· · ·

MdØ
md=1

C
ϕa(x1,m1 , . . . , xd,md

, t)
dÙ

r=1
e

(r)
jr

(xr,mr )
D
,

where ω = |ω(xm)| is the measure of the element ω(xm), independent of the center xm

and given by ω =
rd

r=1 dxr.
Notice that, in general the approximation åϕa(x, t) is well distinct from the real scalar

field ϕa(x, t). However, for the sake of simplicity, in the following we identify the approx-
imation åϕa(x, t) with the original field, assuming that only small errors are introduced
through the projection onto the Fourier space and the cut of higher order frequencies. In
other words, we imagine that each field ϕ(x, t) is a function in span{ej}j∈J so that the
approximation coincides with the real field.

1An alternative approach would be to introduce an ordering rule over the set of points of the
discretization {(x1,m1 , . . . , xd,md

)}mr∈{1,...,Mr}, r∈{1,...,d}. In such manner, we can denote with xm

the mth center for m = 1, . . . , M . Specifically, we are introducing a bijection ρ : {1, . . . , M} →
{1, . . . , d} × {1, . . . , Md} and denoting xm = (xρ(m), . . . , xd,ρ(m)).
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Moreover, we introduce the analysis F operator such that

Fϕa =
îâϕa, j = ⟨ϕa, ej⟩

ï
j∈J

.

On the other hand, by hypothesis on the domain of F, the synthesis operator F∗ coincides
with the inverse of F, so that F∗ = F−1 and

F∗{âϕa, j}j∈J =
Ø
j∈J

âϕa, jej .

2.4.2 Projection of the dynamical equations

Let us consider the dynamic equations (2.9) and assume for simplicity that the coefficient
Λ is a positive constant. In order to project these onto the approximation subspace
span{ej}j∈J , let us first denote the derivative of âϕij with respect to the time variable, asâ̇ϕj for j ∈ J . On the other hand, we denote the derivative of e(d)

i with respect to the
space variable as

1
e

(r)
i

2′
. Notice that for each one-dimensional basis function e(r)

i we have

1
e

(r)
i

2′
= −2πi

Lr
e

(r)
−i ,1

e
(r)
i

2′′
= −(2π)2

3
i

Lr

42
e

(r)
i .

Therefore, it also holds

∇2ej = −(2π)2
A

dØ
r=1

j2
r

L2
r

B
ej ,

where we can denote for simplicity the coefficient that appears from the derivation as
gj = −(2π)2

1qd
r=1

j2
r

L2
r

2
for (i, j) ∈ J , so that the laplacian of the basis functions can be

also written as ∇2ej = gjej .
Projecting the dynamic equations term by term onto the approximation subspace, we

have that, by linearity of the inner product, the left hand side of the dynamical equation
becomes

⟨∂tϕa, ej⟩ =
KØ

k∈J

â̇ϕa,kek, ej

L
=
Ø
k∈J

â̇ϕa,k⟨ek, ej⟩

=
Ø
k∈J

â̇ϕa,kδjk = â̇ϕa, j .

On the other hand, recalling that by definition of gj , we have ∇2ej = gjej , the last two
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terms of the right hand side give

⟨∇2ϕa, ej⟩ =
Ø
k∈J

âϕa,k⟨∇2ek, ej⟩ =
Ø
k∈J

gk
âϕa,k⟨ek, ej⟩

=
Ø
k∈J

gk
âϕa,kδjk = gj

âϕa, j ,

⟨∇4ϕa, ej⟩ =
Ø
k∈J

âϕa,k⟨∇4ek, ej⟩ =
Ø
k∈J

âϕa,k

e
∇2
1
∇2ek

2
, ej

f
=
Ø
k∈J

gk
âϕa,k

e
∇2ek, ej

f
=
Ø
k∈J

g2
k
âϕa,k⟨ek, ej⟩ =

=
Ø
k∈J

g2
k
âϕa,kδjk = g2

j
âϕa, j .

Finally, the logarithmic terms can be treated through Green’s identities and using periodic
boundary conditions to get rid of boundary terms. Introducing the outward pointing unit
normal N to the surface element, we have

⟨∇2 log ϕa, ej⟩ =
Ú

Ω
∇2 (log ϕa) ej =

Ú
∂Ω
∇ (log ϕa) ej ·N −

Ú
Ω
∇ log ϕa · ∇ej

= −
Ú

Ω
∇ log ϕa · ∇ej = −

Ú
∂Ω

(log ϕa)∇ej ·N +
Ú

Ω
(log ϕa)∇2ej

=
Ú

Ω
(log ϕa)∇2ej = ⟨log ϕa,∇2ej⟩ = gj⟨log ϕa, ej⟩.

The projections of the dynamic equations can now be written as a set of (C − 1)M
ordinary differential equations in terms of the sets of functions âϕa =

îâϕa, j = âϕa, j(t)
ï

j∈J

for a ∈ AC , that are the coefficients of the spectral approximation (2.14). Therefore, we
have that the evolution of âϕa for a ∈ AC is described for each j ∈ J , by

â̇ϕa, j = Λ
C
gj

K log
1
F∗ âϕa

2
Na

−
log
1
1−

q
b∈AC

F∗ âϕb

2
NB

, ej

L

+
Ø

b∈AC

(χab − χbC − χaC) gj
âϕb, j −

Ø
b∈AC

κabg
2
j
âϕb, j

D
.

(2.15)

2.5 Numerical integration scheme
To simulate the dynamics of the system, specifically the evolution of volume fractions,
we numerically integrate the governing partial differential equations over time. The goal
is to obtain phase separated configurations, which represent equilibrium states, when
appropriate parameters are chosen.

In this Section, we explore two possible approaches. The first method relies on the
open-source Python module py-pde [34], which provides tools for solving partial differ-
ential equations using the method of lines. This method discretizes spatial derivatives
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using a finite difference scheme while employing standard numerical methods for time in-
tegration of the resulting system of ordinary differential equations. The second approach
focuses on solving the system of differential equations derived from the application of
spectral methods, as formulated in (2.15). In this case, the evolution equations are in-
tegrated directly in spectral space using a simple explicit Euler scheme, which offers a
straightforward way to advance the system in time.

2.5.1 Finite difference discretization
The py-pde module is an open-source Python library deigned for solving partial differ-
ential equations, using the method of lines. The principles behind this technique is the
discretization of all spatial dimensions, that are integrated using finite difference methods
to write differential operators. This reduces a partial differential equation to a system of
ordinary differential equation, that can be solved applying of standard methods, such as
forward Euler, Crank-Nicolson or explicit Adams-Bashforth.

As before, let us suppose for simplicity that the domain Ω is a d-dimensional hyper-
rectangle, that can be expressed as a Cartesian product of d intervals Ir = [0, Lr] for
r = 1, . . . , d, such that Ω =

rd
r=1 Ir.

Moreover, we assume that the volume fractions ϕa satisfy periodic boundary conditions,
so that the mathematical problem for the evolution of ϕa can be written combining the
set of C − 1 equations (2.9) in Ω× R+ for a ∈ AC , along with the following conditionsI

ϕa|xr=0 = ϕa|xr=Lr for r = 1, . . . , d
ϕa(x,0) = ϕ

(0)
a (x) ∀x ∈ Ω

where ϕ(0) is the initial state of the system and satisfies

0 ≤ ϕ(0)
a ≤ 1,Ø

a∈AC

ϕ(0)
a ≤ 1,

so that it represents a proper volume fraction for the first C−1 components of the mixture
and it is possible to define the scalar field associated with the volume fraction of the last
component as ϕ(0)

C = 1−
q

a∈AC
ϕ

(0)
a , so that it satisfies as well the constraint 0 ≤ ϕ

(0)
C ≤ 1.

Introducing discretization of the space as described in Sec. 2.4.1, the generation of
the initial state can proceed as follows. Suppose that the initial state of the component
a ∈ AC can be decomposed as

ϕ(0)
a (xm) = ⟨ϕ(0)

a ⟩+ åϕ(0)
a (xm) ∀m ∈M ,

where ⟨ϕ(0)
a ⟩ is the average volume fraction of a across the domain Ω and åϕ(0)

a (xm) is some
Gaussian noise depending on the position xm ∈ Ω. Such noise can be seen at each point
xm with m ∈M , as a realization of a Gaussian random variable distributed according to
a normal distribution N (0, σa), with mean zero and arbitrary standard deviation σa > 0,
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such that ϕ(0)
a (xm) ≥ 0 and for which the mean of åϕ(0)

a over the domain Ω is equal to
zero, i.e.

1
M

Ø
m∈M

åϕ(0)
a (xm) = 0,

so that the average volume fraction is not influenced by different realizations. In other
words, for each realization of the noise, it holds

1
M

Ø
m∈M

ϕ(0)
a (xm) = ⟨ϕ(0)

a ⟩.

To generate the state ϕ0
a(xm), we initially set a fixed value for the average volume

fraction ⟨ϕ(0)
a ⟩ of component a ∈ AC . Then, we generate a Gaussian noise ξ from a

random variable N (0, σa) and we set
ψ(0)

a (xm) = ⟨ϕ(0)
a ⟩+ ξ.

Now, we check that ψ(0)
a (xm) ≥ 0 for each m ∈ M , otherwise we need to resample or

choose a smaller σa. If the condition holds, we rescale the generated value to satisfy the
constraint on the average volume fraction, by setting for a ∈ AC

ϕ(0)
a (xm) = ⟨ϕ(0)

a ⟩
ω
M

q
n∈M ϕ

(0)
a (xn)

ψ(0)
a (xm).

Finally, we define ϕ(0)
C (xm) = 1−

q
m∈M ϕ(0)(xm) and we can verify that possible states

are generated by checking that
0 ≤ ϕ

(0)
a (xm) ≤ 1 ∀a ∈ A, m ∈Mq

a∈A ϕ
(0)
a (xm) = 1 ∀m ∈M

1
M

q
m∈M ϕ

(0)
a (xm) = ⟨ϕ(0)

a ⟩ ∀a ∈ A

Once a numerical scheme for solving the dynamic equations is defined, the system can
be evolved until it stabilizes. The system will evolve minimizing its free energy, leading to
phase separated configurations when appropriate parameters are chosen. In this context, a
key aspect is determining when equilibrium has been reached. One way to assess this is by
monitoring the time evolution of the free energy. Equilibrium is typically identified when
the free energy stabilizes within a predefined tolerance, indicating that further evolution
no longer significantly alters the system.

Binary mixture in a two-dimensional domain For the simple case of a thin film of
a binary mixture, the problem reduces to the study of a two dimensional domain Ω ⊂ R2.
Assuming that Ω is a rectangle in the Euclidean space expressed as Ω = [0, L1] × [0, L2]
and that the diffusion coefficient Λ is a constant, the mathematical problem becomes

∂tϕ = Λ∇2
è

log ϕ
N1
− log(1−ϕ)

N2
− 2χϕ− κ∇2ϕ

é
in Ω× R+

ϕ(x,0, t) = ϕ(x, L2, t) ∀(x, t) ∈ [0, L1]× R+

ϕ(0, y, t) = ϕ(L1, y, t) ∀(y, t) ∈ [0, L2]× R+

ϕ(x, y,0) = ϕ(0)(x, y) ∀(x, y) ∈ Ω

(2.16)
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where we set ϕ := ϕ1, χ := χ12 = χ21 and κ := κ11.
To illustrate the arise of phase separation in a binary mixture, we numerically solve

the problem with a finite difference discretization in a square domain Ω = [0,10]× [0,10]
using parameters that promote phase separation. The evolution of the volume fractions
is visualized in Figure 2.1, which shows snapshots of the system at different times. Each
snapshot represents the spatial distribution of the mixture components using a colormap.

The simulation is performed over the time interval [0, T ] = [0, 106] with a time step
of dt = 0.1 on a uniform grid of 150 × 150 square cells. The diffusion coefficient is set
as Λ = 10−5. The dynamics is generated for relative sizes N1 = N2 = 1, interaction
parameter χ = 4 and gradient coefficient κ = 0.5. The initial condition is randomly
generated with mean volume fractions ⟨ϕ(0)

1 ⟩ = ⟨ϕ(0)
2 ⟩ = 0.5.

The corresponding free energy evolution, shown in Figure 2.3a, confirms that the sys-
tem gradually stabilizes as it approaches equilibrium.

Ternary mixtures in a three-dimensional domain For a ternary mixture in a two-
dimensional domain Ω, the evolution of volume fractions ϕa for a ∈ AC = {1,2} is governed
by (2.10). To validate the model, we aim to reproduce the results described in [20].

Figure 2.2 visualizes the initial and equilibrium states of the volume fractions, obtained
by solving the dynamic equations using a finite difference discretization. The parameters
are chosen to induce phase separation in a concentric pattern. Each image represents the
spatial distribution of the mixture components at a given time, where the volume fractions
are mapped to RGB channels, producing an RGB visualization.

The simulation is performed on a uniform 150× 150 grid of square cells over the time
interval [0, T ] = [0, 107] with a time step of dt = 0.1. The diffusion coefficient Λ is set to
10−6, with relative sizes N1 = N2 = N3 = 1, interaction parameters χ12 = 3, χ13 = 6,
χ23 = 3 and gradient coefficients κ11 = κ22 = 0.5, κ12 = 0.1. The initial condition is
randomly generated with mean volume fractions ⟨ϕ(0)

1 ⟩ = 0.7, ⟨ϕ(0)
2 ⟩ = 0.2, ⟨ϕ(0)

3 ⟩ = 0.1.
In Figure 2.3b, the corresponding free energy evolution confirms the gradual stabiliza-

tion of the system, providing a quantitative measure of the relaxation process.

2.5.2 Integration in spectral space
A direct consequence of the reduction of the dynamic equations to a set of ordinary
differential equations is the possibility to derive the evolution of the volume fraction ϕa

through a simple numerical integration scheme.
Indeed, for example in the case of binary mixtures on a two-dimensional domain the

mathematical problem (2.16) reduces to the following
â̇ϕij = Λ

5=
log
!
F∗âϕ"

N1
− log

!
1−F∗âϕ"
N2

, eij

>
− 2χgij

âϕij − κg2
ij
âϕij

6
in R+âϕij(0) =

1
Fϕ(0)

2
ij

(2.17)

where the periodic boundary conditions are implicitly taken into account in the spectral
decomposition and the initial condition

1
Fϕ(0)

2
ij

is defined through the initial volume
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fraction distribution ϕ(0) such that

ϕ(0)(x) =
Ø

(i,j)∈J

äϕ(0)
ijeij(x).

Furthermore, one can notice that the first term on the right hand side can also be written
in terms of the analysis operator F as

K log
1
F∗ âϕ2
N1

−
log
1
1− F∗ âϕ2
N2

, eij

L
(i,j)∈J

= F

 log
1
F∗ âϕ2
N1

−
log
1
1− F∗ âϕ2
N2

 .
The problem (2.17) can be written in a more compact form by introducing an operator

G that acts on the set of modes âϕ and gives a set of modes, where each mode âϕij is
multiplied by the corresponding factor gij , so that

G : âϕ→ {gij
âϕij}(i,j)∈J .

Then, the compact form is
â̇ϕ = Λ

5
F

3
log
!
F∗âϕ"

N1
− log

!
1−F∗âϕ"
N2

4
− 2χGâϕ− κG2 âϕ6 in R+âϕ(0) = Fϕ(0)

One of the most straightforward integration schemes to numerically solve a set of
differential equations is the Euler method. For instance, consider an temporal interval
[0, T ] ⊂ R+ and a discretization of such interval, with time step dt. In other words, we
consider the set of instants t0 ≡ 0 < t1 < · · · < tN ≡ T , with tn+1 = tn + dt. Let us
denote with h = h

!
t; âϕ(t)

"
the right hand side of the differential equations in the compact

form, such that

h(t; âϕ(t)) := Λ

F
 log

1
F∗ âϕ2
N1

−
log
1
1− F∗ âϕ2
N2

− 2χGâϕ− κG2 âϕ
 .

Let âϕ(n) and h(n) be respectively the approximation of the volume fraction coefficients âϕ
and the approximation of the right hand side h at a time t = tn, so that âϕ(n) ≃ âϕ(tn) and
h(n) ≃ h

!
tn; âϕ(tn)

"
. Choosing the approximation h(n) to be h(n) := h

1
tn; âϕ(n)

2
, through

the Euler method we have Iâϕ(n+1) = âϕ(n) + dt h(n)âϕ(0) = Fϕ(0)

that describes the evolution of the coefficients âϕ and, therefore, of the volume fraction
ϕ(x) =

q
(i,j)∈J

âϕij(t)eij(x).
The case binary mixtures can be easily extended to numerically integrate the system of

dynamic equations that describe the evolution of a mixture of C components. We denote
with âϕ = {âϕa, j}a∈AC , j∈J the set of modes and define h = h(t; âϕ(t)) the right hand side
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of the dynamic equations (2.15) written in vector form. Introducing an initial state ϕ(0)
a ,

such that ϕa(x,0) = ϕ
(0)
a (x) for a ∈ AC . Then, the initial condition for the system in

Fourier space can be defined projecting the ϕ(0) onto the approximation space, so that we
can set âϕ(0) = Fϕ(0) and apply the preferred numerical integration scheme to determine
the evolution of volume fractions.

2.6 Metropolis-Hastings for equilibrium sampling
While numerical solution of dynamic equations provides the macroscopic evolution of the
system from an initial state toward equilibrium, in small systems fluctuations may play
important role and perturb the system’s state. One may account for such fluctuations by
introducing noise terms into the equation [5, 26, 33]. An alternative approach relies on
the Metropolis-Hastings algorithm [10], which produces statistical samples directly from
an equilibrium ensemble, thereby profiting on principles of statistical mechanics.

Here, we assume that that the system follows the canonical ensemble, where the prob-
ability density of observing a particular configuration ϕ, given the vector of parameters
θ, is given by the Boltzmann distribution

p(ϕ|θ) ∝ e−βF (ϕ|θ), (2.18)

where F (ϕ|θ) is the free energy of the system, as expressed in Eq. (2.6) for fixed parameters
θ and β = 1/(kBT ) expresses the inverse thermal energy. The parameter vector θ, consists
of the interaction parameters χab, the gradient coefficients κab and molecular sizes Na

arranged in a predefined order. This formulation reflects the thermodynamic principle
that lower energy states are more likely to occur in equilibrium while still allowing for
fluctuations due to thermal effects.

The Metropolis-Hastings algorithm is based on a Markov chain Monte Carlo sampling
process and ensures that the generated configurations correctly follow the objective prob-
ability distribution, without the need to explicitly know the normalizing factor, which can
be difficult to compute. The algorithm begins with an initial configuration ϕ(0), which
may be randomly generated or selected from a precomputed equilibrium state. At each
step, a candidate configuration ϕ′ is proposed by applying a small random perturbation
to the current configuration ϕ(i). The choice of the proposal distribution q(ϕ′|ϕ(i)) plays
a crucial role in determining the efficiency of sampling and convergence to equilibrium.

The proposed state is accepted or rejected according to the based on the Metropolis
acceptance criterion, which depends on the change in free energy

∆F = F (ϕ′|θ)− F (ϕ(i)|θ).

Then, the acceptance probability is given by

paccept(ϕ′|ϕ(i)) = min
I

1, q(ϕ
(i)|ϕ′)

q(ϕ′|ϕ(i))e
−β∆F

J
. (2.19)

If the move is accepted, the configuration is updated as ϕ(i+1) = ϕ′; otherwise the sys-
tem remains in the previous state and ϕ(i+1) = ϕ(i). By iterating this process over a
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sufficiently large number of steps, the algorithm explores the configuration space, even-
tually producing an ensemble of equilibrium states that correctly sample the Boltzmann
distribution (2.18).

2.6.1 Choosing a reversible proposal distribution
The efficiency of the Metropolis-Hastings sampling depends strongly on the choice of the
proposal distribution q(ϕ′|ϕ), which determines how new configurations are generated.
To ensure proper sampling, the Markov chain must satisfy detailed balance, meaning
that, in equilibrium, the probability of transitioning from ϕ to ϕ′ must be the same as
transitioning from ϕ′ to ϕ, so that

p(ϕ|θ)q(ϕ′|ϕ)paccept(ϕ′|ϕ) = p(ϕ′|θ)q(ϕ|ϕ′)paccept(ϕ|ϕ′).

A reversible proposal distribution, which inherently satisfies detailed balance, can be
defined using a symmetric proposal, where the probability of proposing a move from ϕ to
ϕ′ is equal to the reverse move, so that

q(ϕ′|ϕ) = q(ϕ|ϕ′). (2.20)

This choice cancels out the proposal ratio cancels out in the general acceptance probabil-
ity (2.19), that is reduced to the simpler form

paccept(ϕ′|ϕ(i)) = min
î

1, e−β∆F
ï
.

In this work, we adopt the proposal scheme described in Algorithm 1. To build the
candidate configuration, at each step a single site m̄ of the discretized domain is selected
and all volume fractions at that site are updated. Then, to preserve the average volume
fraction of each component across the domain, a global rescaling factor is applied to all
other sites.

Algorithm 1 Proposal scheme
Require: ϕ current vector of C − 1 volume fractions
Require: ϕ̄a average volume fractions in Ω for a ∈ AC

Ensure: ϕ̄a = 1
M

q
m∈M ϕa(xm)

Select a random site m̄ ∈M from the domain
Sample C new volume fractions ua ∼ Dir(1, . . . ,1) that ensures

q
a∈A ua = 1

Set: ϕ′
a(xm̄)← ua

Set: ϕ′
a(xm)← ϕa(xm)

αa
, with αa scaling factor, ensuring the preservation of ϕ̄a

The updated values ua for a ∈ A are sampled from a Dirichlet distribution Dir(1, . . . ,1).
In the special case where all parameters are equal to 1, this distribution reduces to a
uniform distribution over the space where ua ≥ 0 and

q
a∈A ua = 1, with probability

density
qDir(u1, . . . , uC) = (C − 1)!. (2.21)
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A practical procedure, for generating Dirichlet distributed samples ua, involves trans-
forming independent uniform samples. Specifically, we draw C − 1 independent points ya

for a ∈ AC from the uniform distribution U [0,1], sort them in ascending order and set
yC = 1, so that

0 ≤ y1 ≤ y2 ≤ · · · ≤ yC−1 ≤ yC ≡ 1.
Finally, the updated volume fraction values are computed asI

u1 = y1

ua+1 = ya+1 − ya for a = 1, . . . , C − 1

To ensure that the average volume fraction

ϕ̄a = 1
|Ω|

Ú
Ω
ϕa(x) dx

remains unchanged by the sampling procedure, the proposed configuration is rescaled as
follows for a ∈ AC as I

ϕ′
a(xm̄) = ua

ϕ′
a(xm) = ϕ(xm)

αa
∀m /= m̄

The scaling factor αa is chosen such that

ϕ̄a = 1
M

Ø
m∈M

ϕ′
a(xm).

Substituting the expression for ϕ′
a in terms of ϕa, we obtain

ϕ̄a = 1
M

Ø
m∈M

ϕ′
a(xm) = 1

M

ua +
Ø

m∈M\{m̄}

ϕa(xm)
αa


= 1
M

C
ua + 1

αa

Ø
m∈M

ϕa(xm)− 1
αa
ϕa(xm̄)

D

= 1
M

5
ua + 1

αa
Mϕ̄a −

1
αa
ϕa(xm̄)

6
.

Then, the scaling factor αa can be written as

αa = Mϕ̄a − ϕa(xm̄)
Mϕ̄a − ua

.

This ensures that the average volume fraction remains unchanged after the proposal step,
maintaining consistency with the original system constraints.

To prove the the proposal scheme described in Algorithm 1 is reversible, we will prove
that the proposal distribution is symmetric, meaning that (2.20) holds. In the scheme, a
site m̄ is selected randomly from a set M of M discrete sites, with each site selected with
equal probability

qsite(m̄) = 1
M
.
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Since the reverse move also selects a site with uniform probability, this part of the proposal
is symmetric. At a chosen site, new volume fractions ua are sampled from a Dirichlet
distribution. As can be seen in Eq. (2.21), this distribution is invariant under permutation
of its inputs and thus provides a symmetric sampling rule.

However, this does not guarantee reversibility because the rescaling step modifies all
other components. To prove reversibility, we can check that if the transformation ϕa → ϕ′

a

rescales all ϕa(xm) except for ϕa(xm̄), then the reverse transformation ϕ′
a → ϕa rescales

using α′
a = 1/αa, meaning that the original field ϕa can be reconstructed by applying

the same rule in reverse. Indeed, in the reverse transformation ϕ′
a → ϕ′′

a, the probability
to select the same site m̄ and the probability to sample new volume fraction values
u′

a = ϕa(xm) equal to the ones of the original fields in xm are the same to the probabilities
in the direct transformation. On the other hand, given the site m̄ and the values u′

a the
rescaling is a deterministic procedure, that impose

ϕ̄a = 1
M

Ø
m∈M

ϕ′′
a(xm),

where we have I
ϕ′′

a(xm̄) = u′
a = ϕa(xm̄)

ϕ′′
a(xm) = ϕ′

a(xm)
α′

a
= ϕa(xm)

αaα′
a
∀m /= m̄

Therefore, we have

ϕ̄a = 1
M

Ø
m∈M

ϕ′′
a(xm) = 1

M

ϕa(xm) +
Ø

m∈M\{m}

ϕa(xm)
αaα′

a


= 1
M

C
ϕa(xm) + 1

αaα′
a

Ø
m∈M

ϕa(xm)− 1
αaα′

a

ϕa(xm̄)
D

= 1
M

5
ϕa(xm) + 1

αaα′
a

Mϕ̄a −
1

αaα′
a

ϕa(xm̄)
6
.

Then, it is immediate to see that the scaling factor of the reverse transformation α′
a

satisfies
α′

a = 1
αa
.

Therefore, the transformation ϕa → ϕ′
a is invertible, as with a proper choice of the per-

turbed site m̄ and of the new volume fractions, the transformation ϕ′
a → ϕ′′

a completely
recovers the original fields, meaning that ϕ′′

a = ϕa.
This proves that the proposal is symmetric and reversible. Since reversibility ensures

that detailed balance holds, the Metropolis-Hastings Algorithm 2 correctly samples from
the equilibrium distribution.

2.6.2 Equilibrium sampling results
To evaluate the effect of thermal fluctuations on an equilibrium phase-separated sys-
tem, we applied the Metropolis-Hastings algorithm to generate equilibrium configura-
tions. While the Metropolis-Hastings method, in principle, allows direct sampling from
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Algorithm 2 Metropolis-Hastings
Require: ϕ(0) initial state
Require: θ vector of parameters
Require: β inverse thermal energy
Require: NMC number of Monte Carlo steps

for i = 1 to NMC do
Propose a new configuration ϕ′ using Algorithm 1
Compute the free energy difference ∆F = F (ϕ′|θ)− F (ϕ(i)|θ)
Compute the acceptance probability

paccept = min
î

1, e−β∆F
ï

Sample a uniform random number r ∼ U [0,1]
if r < paccept then

Accept the move: ϕ(i+1) ← ϕ′

else
Reject the move: ϕ(i+1) ← ϕ(i)

end if
end for
Return equilibrium configuration ϕ(NMC)

the Boltzmann distribution, achieving full convergence starting from a homogeneous or
random initial condition requires an impractically long simulation time. To go around
this limitation, we first evolved the system using the Cahn-Hilliard model until it reached
a near-equilibrium state as described in Section 2.5.1. The Metropolis-Hastings algorithm
was then applied to introduce fluctuations while preserving the equilibrium structure. This
approach allows us to explore the effects of introducing microscopic noise to an already
equilibrated system, mimicking the presence of thermal fluctuations in a real environment.

The sampling was performed only for the binary mixture case and we initialized the
Metropolis-Hastings algorithm using the final configuration obtained from the Cahn-
Hilliard simulation represented in Figure 2.1c, where the system had already reached
a well-defined phase-separated state. By varying the interaction parameter χ and the gra-
dient coefficient κ, we explored how fluctuations influence the equilibrium configuration.

For interaction parameters χ = 500 and κ = 50, the introduction of thermal fluctua-
tions significantly disrupted the equilibrium structure. Despite these values being much
larger than those used in the Cahn-Hilliard simulation, the equilibrium pattern was not
preserved, menaing that even minimal levels of fluctuations were sufficient to disrupt the
established equilibrium structure. This suggests that at these parameter values, the sys-
tem is not sufficiently stabilized by thermodynamic forces, allowing fluctuations to drive
it toward a more mixed state. Figure 2.4 shows the last state of the Metropolis sampling
process, along with the evolution of the free energy over the course of the simulation.

Increasing the interaction parameters to χ = 1000 and κ = 100, we observed that the
overall phase-separated pattern was preserved, but noise was introduced throughout the
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interface regions. The fluctuations perturb the boundaries between phases but do not
fully dissolve the existing domains, as showed in Figure 2.5. This suggests that stronger
interactions provide greater resistance to perturbations, allowing the system to retain its
phase-separated organization despite thermal fluctuations.

For even higher interaction strengths, the phase-separated structure remains robust,
and fluctuations primarily sharpen the boundaries between the coexisting phases. This
behavior suggests that at sufficiently strong interactions, the system exhibits a high re-
sistance to thermal perturbations, reinforcing the sharp interfaces characteristic of phase
separation.

34



Modeling liquid-liquid phase separation

(a) Initial state at time t = 0.

(b) State at time t = 105.

(c) Final state at time t = 106.

Figure 2.1: Numerical solution of the Cahn-Hilliard equation for volume fractions of a
binary mixture on a two-dimensional domain.
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(a) Initial state at time t = 0 (b) Final state at time t = 107

Figure 2.2: Numerical solutions of Cahn-Hilliard equations for volume fractions of a
ternary mixture on a two-dimensional domain.

(a) Binary mixture. (b) Ternary mixture.

Figure 2.3: Evolution of free energy over time for the binary (Figure 2.1) and ternary
(Figure 2.2) mixtures simulated using the Cahn-Hilliard dynamics, as described in Sec-
tion 2.5.1.
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(a) Final equilibrium state obtained using the Metropolis-Hastings algorithm, showing disruption
of the initial phase-separated pattern.

(b) Evolution of the free energy over the course of the simulation, illustrating the destabilization
of the equilibrium configuration.

Figure 2.4: Effect of thermal fluctuations on phase separation stability for χ = 500 and
κ = 50.

37



Modeling liquid-liquid phase separation

(a) Final equilibrium state obtained using the Metropolis-Hastings algorithm, showing that
phase-separated pattern is largely preserved, but thermal fluctuations introduce noise within
the domains.

(b) Evolution of the free energy over the course of the simulation.

Figure 2.5: Effect of thermal fluctuations on phase separation stability for χ = 1000 and
κ = 100.
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Chapter 3

Estimation of parameters for
equilibrium systems

The assumption of equilibrium is a convenient starting point of modeling, because it al-
lows characterizing static snapshot data. Reaching equilibrium, phase-separating systems
present coexisting droplets of different components. Their spatial organization reflects
the underlying thermodynamic parameters. A fundamental question arises: can we infer
the parameters governing equilibrium configurations from a single snapshot? If so, this
would provide a powerful approach for understanding phase separation without requiring
full dynamical tracking.

In this Chapter, we explore how to estimate equilibrium parameters using both the least
squares method and Bayesian inference, two widely used approaches for fitting models
to data. The least squares method provides a deterministic estimation technique by
solving an overdetermined system of equations that arise from the equilibrium conditions.
Bayesian inference, on the other hand, offers a probabilistic framework that can be useful
in dealing with noise in experimental data and exploring parameter distributions.

We will discuss a range of possible implementations tailored for different estimation
purposes and illustrate its effectiveness through case studies. Exploiting the procedures
for generating equilibrium states established in Sections 2.5 and 2.6, we generate reference
configurations and design tests for validating the estimation techniques. These equilib-
rium states provide a controlled environment, where the accuracy and robustness of the
estimation methods can be assessed.

3.1 Least squares method

The least squares estimation procedure relies on the fundamental assumption that at
equilibrium, the system satisfies the stationarity condition of the dynamic equations.
Specifically, under equilibrium conditions, the net fluxes of all components must vanish.
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Given the continuity equation (2.7), the equilibrium condition simplifies to the require-
ment that the flux must be identically zero for each a ∈ AC , so that

ja = 0.

By definition of the flux (2.8) and assuming that the mobility function Λa is strictly
positive, the equilibrium condition reduces to

∇µa = ∇
3
δF

δϕa

4
= 0.

Expanding this expression using the functional derivative of the free energy, we obtain
the equilibrium condition

∂r

 log ϕa

Na
−

log
!
1−

q
b∈AC

ϕb

"
NC

+
Ø

b∈AC

(χab − χbC − χaC)ϕb −
Ø

b∈AC

κab∇2ϕb

 = 0,

(3.1)
for a ∈ AC and r = 1, . . . , d.

It is important to note that this equilibrium condition only requires Λa > 0, mean-
ing that the specific choice of diffusion coefficient does not impact the final equilibrium
configuration. Consequently, in numerical simulations where the primary interest lies in
the final equilibrium state, Λ can be treated as a computational parameter rather than
a physically constrained quantity. This flexibility allows us to define Λ in the most con-
venient way as a function of volume fractions, to optimize computational efficiency while
preserving the system’s fundamental behavior.

3.1.1 Formulating the least squares problem
The equilibrium condition can be expressed in terms of the spectral modes. Consider the
basis functions of the spectral approximation defined according to (2.13), then we can
project the Eq. (3.1) onto the approximation subspace, obtaining for a ∈ AC , j ∈ J and
r = 1, . . . , d

⟨∂rµa, ej⟩ = 0.

The application of pseudo-spectral methods leads to a linear system in terms of the
unknown thermodynamic parameters χab, κab and Na. This system is typically overdeter-
mined, meaning that there are more equations than unknowns. The least squares method
provides a way to minimize the residual error and extract an estimation of the parameters
that describe the equilibrium configuration. Thus, given an equilibrium state {ϕa}a∈AC

,
we compute the Fourier modes {âϕa = Fϕa}a∈AC

and recast the equilibrium condition as
a linear least squares problem

arg min
θ
∥b− Aθ∥ ,

where A encodes the equilibrium condition, θ represents the unknown interaction param-
eters and b is the known term of the linear system.
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To introduce some explicit forms of the linear system, depending on the available
information, let us notice that we can write the partial derivative of the basis function ej

as

∂rej = ∂rej1,...,jd
= −2πjr

Lr
ej1,...,−jr,...,jd

. (3.2)

Then, we project term by term the equation (3.1) onto the spectral approximation space.
Last two terms give

⟨∂rϕa, ej⟩ =
Ø
k∈J

âϕa,k⟨∂rek, ej⟩ =
Ø
k∈J

âϕa,k
2π
Lr

(−kr)⟨ek1,...,−kr,...,kd
, ej⟩

=
Ø
k∈J

âϕa,k
2π
Lr

(−kr)δ(k1,...,−kr,...,kd),j

=
Ø
k∈J

âϕa,k
2π
Lr

(−kr)δk1,j1 · · · δ−kr,jrδkd,jd

= âϕa,(j1,...,−jr,...,jd)
2πjr

Lr
,

⟨∂r∇2ϕa, ej⟩ =
Ø
k∈J

gk
âϕa,k⟨∂rek, ej⟩ =

Ø
k∈J

gk
âϕa,k

2π
Lr

(−kr)⟨ek1,...,−kr,...,kd
, ej⟩

=
Ø
k∈J

gk
âϕa,k

2π
Lr

(−kr)δ(k1,...,−kr,...,kd),j

= gj1,...,−jr,...,jd
âϕa,(j1,...,−jr,...,jd)

2πjr

Lr
.

On the other hand, for the logarithmic term integrating by parts and applying periodic
boundary conditions, we get

⟨∂r log ϕa, ej⟩ =
Ú

Ω
∂r [log (ϕa(x))] ej(x) dx

=
Ú Ld

0
· · ·
Ú L1

0
∂r [log (ϕa(x))] ej(x) dx1 · · · dxd

=
Ú Ld

0
· · ·
Ú Lr+1

0

Ú Lr−1

0
· · ·
Ú L1

0

I
log (ϕa(x)) ej(x)

---Lr

0

−
Ú Lr

0
log (ϕa(x)) ∂rej(x) dxr

J
dx1 · · · dxr−1 dxr+1 · · · dxd

= −
Ú

Ω
log (ϕa(x)) ∂rej(x) dx

= −⟨log ϕa, ∂rej⟩ = −2π
Lr

(−jr)⟨log ϕa, ej1,...,−jr,...,jd
⟩

= 2πjr

Lr
⟨log ϕa, ej1,...,−jr,...,jd

⟩.
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Therefore, the equilibrium condition translates to

2πjr

Lr

K log
1
F∗ âϕa

2
Na

, ej1,...,−jr,...,jd

L
− 2πjr

Lr

K log
1
1−

q
b∈AC

F∗ âϕb

2
NC

, ej1,...,−jr,...,jd

L

+
Ø

b∈AC

(χab − χbC − χaC) 2πjr

Lr

âϕb,(j1,...,−jr,...,jd)

−
Ø

b∈AC

κab
2πjr

Lr
gj1,...,−jr,...,jd

âϕb,(j1,...,−jr,...,jd) = 0,

(3.3)

for each a ∈ AC , r = 1 . . . , d and j ∈ J .
In the framework of Flory-Huggins solution theory, by definition of Na is a relative

size of the molecules of component a normalized with respect to the size of component
C, therefore NC is known and unitary. Given an equilibrium state {ϕa}a∈AC

, the modes
{âϕa}a∈AC

can be computed. Looking at the set of equations (3.3) as an overdetermined
linear system, where the variables are the (C− 1)(C+ 1) parameters of the Cahn-Hilliard
model, i.e. C − 1 molecular sizes Na for a ∈ AC , C(C − 1)/2 interaction parameters
χab = χba for a /= b, a, b ∈ AC and C(C − 1)/2 gradient coefficients κab for a, b ∈ AC .
This interpretation allows us to apply linear least squares method to infer the set of
parameters that generated such equilibrium state.

First, let us suppose that the only information on the system that we have are the
equilibrium state ϕa for a ∈ AC and an estimate of the size vC of the particles of component
C. Then, we can define the known term for a ∈ AC and j ∈ J

b
(1)
a, j := −2πjr

Lr

K log
1
1−

q
b∈AC

F∗ âϕb

2
NC

, ej1,...,−jr,...,jd

L
.

Moreover, we define the vector of variables θ(1) such that θ(1)
k for k = 1, . . . , (C−1)(C+1)

corresponds to one of the (C − 1)(C + 1) variables Na, χab, κab of the linear system,
according to some ordering map. Once the order on the variables has been established, it
is possible to introduce a tensor A(1)

a, j, k for a ∈ AC , j ∈ J and k ∈ {1, . . . , (C−1)(C+ 1)}
such that the equilibrium condition can be written component-wise as

(C−1)(C+1)Ø
k=1

A
(1)
a, j,kθ

(1)
k = b

(1)
a, j .

Finally, an estimation of the parameters θ(1)
k can be found solving the problem in the least

squares sense. Namely, we solve the following problem

arg min
θ(1)

...b(1) − A(1)θ(1)
...

2
.

However, the presence of noise in the equilibrium state can impact the accuracy of
this inference technique. Additionally, in some cases, supplementary information about
the system may be available. For instance, we might have access to the relative sizes Na
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from existing literature. In such scenarios, incorporating this additional data alongside
the information on NC can improve the accuracy of parameter estimation, leading to more
reliable predictions. In this case the definition of the known term would be

b
(2)
a, j := 2πjr

Lr

K log
1
F∗ âϕa

2
Na

, ej1,...,−jr,...,jd

L
− 2πjr

Lr

K log
1
1−

q
b∈AC

F∗ âϕb

2
NC

, ej1,...,−jr,...,jd

L
.

Then, we can accordingly define the vector θ(2) of C(C − 1) components containing the
parameters χab and κab and the corresponding tensor A(2) such that A(2)

a, j,kθ
(2)
k = b

(2)
a j .

Finally, we proceed as before solving the problem in the leas squares sense to get an
estimation of parameters θ(2).

Another common scenario involves the assumption that there exists some linear relation
between κab and χcd. For instance, we can express each κab in terms of χcd referring
to [20, 21, 25] as

κab = 1
6
è
(R2

a +R2
C)χaC + (R2

b +R2
C)χbC − (R2

a +R2
a)χab

é
, (3.4)

for a, b ∈ AC , where Ra are the radii of gyration for each component.
By selecting a specific form for the known term b(i) and substituting the expressions

for κab into the equilibrium condition, we can now define the vector of variables θ̄(i). The
dimension of θ̄(i) depends on whether the relative sizes Na are included as variables. If we
use b(1), the sizes Na are considered as variables and θ̄(1) has (C−1)(C+2)

2 . If we use b(1),
then Na are supposed to be known and θ̄(2) has C(C−1)

2 components. Consequently, we
can introduce the tensor Ā(i) such that Āθ̄(i) = b(i) and get and estimate of θ̄(i) solving
the corresponding problem in least squares sense.

3.1.2 Consistency of the estimations
To validate the robustness and reliability of the parameter estimation framework, we
test its consistency by applying it to equilibrium states generated from known parameter
values. The objective is to verify whether the inferred parameters åθk closely match the
expected ones åθk within a small relative error. This step ensures that the least squares
approach effectively recovers the thermodynamic parameters governing phase separation.
The accuracy of the estimation is assessed by comparing the inferred parameter values åθk

with the expected ones θk and is quantified through the relative error, which is computed
for each parameter as -----θk − åθk

θk

----- .
A low relative error indicates that the estimation framework accurately retrieves the un-
derlying model parameters from the equilibrium state.

Additionally, we assess the uncertainty of the inferred parameters by computing their
standard errors. The standard error for each parameter åθk is obtained from the covariance
matrix of the least squares estimates, as

SE(åθk) =
ñ

Cov(åθ)kk,

43



Estimation of parameters for equilibrium systems

where the covariance matrix is given by Cov(åθ) = åσ2(A⊤A)−1 and the residual variance
σ̂2 is estimated as åσ2 = 1

n−K

nØ
i=1

ri

where K is the number of estimated parameters, n is the number of observations given
by n = (C − 1)Md and ri = bi − (Aθ)i are the residuals. The standard errors provide a
measure of the uncertainty in each parameter estimate and a low value of SE(åθk) confirms
the reliability of the inferred parameters. In the following, report the relative standard
error, computed as SE(åθk)/åθk.

Validation for a binary mixture We first consider the binary mixture represented in
Figure 2.1, whose equilibrium state is known to be generated by specific values of χ, κ and
N1. The least squares method is applied on the equilibrium state to infer these parameters
and the results are summarized in Table 3.1. The inferred values show agreement with
the expected values, within a relative errors of 1%, corroborating the effectiveness of the
method.

Parameter Expected Inferred Relative Error (%) Standard Error (%)

χ 4 3.9955 0.11 0.016
κ 0.5 0.4966 0.69 0.023
N1 1 1.0001 0.02 0.026

Table 3.1: Comparison between expected and inferred parameter values for a binary
mixture, using the least squares method.

Next, we assume that additional prior information about the system is available.
Specifically we assume that the molecular size ratio N1 is known and apply the least
squares method to infer only χ and κ. The results, presented in Table 3.2, indicate a fur-
ther reduction in relative errors, confirming that incorporating prior knowledge enhances
the accuracy of the parameter estimation.

Parameter Expected Inferred Relative Error (%) Standard Error (%)

χ 4 3.9959 0.10 0.009
κ 0.5 0.4966 0.68 0.018

Table 3.2: Comparison between expected and inferred parameter values for a binary
mixture, when the molecular size ratio N1 is known, using the least squares method.

Similarly, we examine cases where κ or both κ and N1. are known, allowing us to
infer only the remaining parameters. The results, displayed in Tables 3.3 and 3.4, show a
consistent reduction in relative errors, reinforcing the idea that incorporating additional
constraints improves the reliability of the inference.
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Parameter Expected Inferred Relative Error (%) Standard Error (%)

χ 4 3.9971 0.07 0.018
N1 1 1.0002 0.02 0.030

Table 3.3: Comparison between expected and inferred parameter values, when κ is known,
using the least squares method.

Parameter Expected Inferred Relative Error (%) Standard Error (%)

χ 4 3.998 0.06 0.010

Table 3.4: Comparison between expected and inferred parameter values, when both κ and
N1 are known, using the least squares method.

Validation for a ternary mixture To further validate the robustness of the approach,
we extend the analysis to a ternary mixture, illustrated in Figure 2.2. In this case, multiple
interaction parameters χab, gradient parameters κab and molecular size ratios Na need to
be inferred. Table 3.5 show that most inferred values closely match the expected ones,
though slightly higher relative errors are observed for χ12, χ23 and N2, suggesting that
additional constraints could further improve accuracy.

When prior knowledge of the molecular size ratios N1 and N2 is available, the estima-
tion accuracy improves significantly, as shown in Table 3.6.

Next, we refine the estimations assuming that the gradient parameters κab are known
and we infer only the interaction parameters χab and the molecular size ratios Na. The
results, shown in Table 3.7, demonstrate a noticeable improvement in accuracy compared
to the unconstrained case. The relative errors for χ12 and χ23, which were previously
higher, have been significantly reduced. Moreover, the inferred values for N1 and N2
are now closer to their expected values, indicating that fixing κab improves parameter
estimation.

Finally, we test the estimation accuracy when both the gradient parameters κab and
the molecular size ratios N1 and N2 are known. This represents the most constrained
scenario, where only the interaction parameters χab are inferred. The results, presented
in Table 3.8, show further reductions in relative errors, with all parameters inferred with
high precision.

These results confirm the reliability and consistency of the least squares estimation
framework, demonstrating improved accuracy when prior information is incorporated. In
cases where all parameters are inferred, small deviations can arise, particularly in complex
multicomponent systems. However, incorporating additional constraints, such as known
gradient energy parameters or molecular size ratios, significantly improves the accuracy
of the inferred values, reinforcing the robustness of the method.
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Parameter Expected Inferred Relative Error (%) Standard Error (%)

χ12 3 2.683 10.6 1.127
χ13 6 5.960 0.7 0.112
χ23 3 2.735 8.8 1.114

κ11 0.5 0.487 2.6 0.344
κ12 0.1 0.103 3.4 1.104
κ22 0.5 0.464 7.1 0.841

N1 1 1.007 0.7 0.214
N2 1 1.107 10.7 1.08

Table 3.5: Comparison between expected and inferred parameter values for a ternary
mixture, using the least squares method.

Parameter Expected Inferred Relative Error (%) Standard Error (%)

χ12 3 2.924 2.5 0.094
χ13 6 5.980 0.3 0.021
χ23 3 2.979 0.7 0.072

κ11 0.5 0.490 2.0 0.099
κ12 0.1 0.102 2.5 0.351
κ22 0.5 0.493 1.4 0.123

Table 3.6: Comparison between expected and inferred parameter values for a ternary
mixture, when molecular size ratios N1 and N2 are known, using the least squares method.

3.2 Bayesian inference
Bayesian inference provides a probabilistic framework for estimating the parameters of a
model given observed data. Unlike standard least squares estimation, which finds a single
set of parameters that minimizes the residual error, Bayesian inference explicitly treats
the parameters as random variables and constructs a posterior probability distribution
over possible parameter values, offering direct quantification of uncertainty.

In this framework, parameters θ are treated as random variables with an associated
probability distribution, rather than fixed values to be optimized. The central idea of
Bayesian inference is to update our beliefs about the parameters given observed configu-
ration ϕ, using Bayes’ theorem, which states

p(θ|ϕ) = p(ϕ|θ)p(θ)
p(ϕ) . (3.5)

Here, the posterior distribution p(θ|ϕ) represents the updated belief about the parameters
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Parameter Expected Inferred Relative Error (%) Standard Error (%)

χ12 3 2.907 3.0 0.201
χ13 6 5.978 0.4 0.039
χ23 3 2.947 1.8 0.198

N1 1 0.995 0.5 0.075
N2 1 0.987 1.3 0.203

Table 3.7: Comparison between expected and inferred parameter values for a ternary
mixture, when gradient parameters κab are known, using the least squares method.

Parameter Expected Inferred Relative Error (%) Standard Error (%)

χ12 3 2.946 1.8 0.089
χ13 6 5.988 0.2 0.020
χ23 3 2.985 0.5 0.072

Table 3.8: Comparison between expected and inferred parameter values for a ternary
mixture, when both gradient parameters κab and molecular size ratios N1 and N2 are
known, using the least squares method.

after observing the data; the likelihood p(ϕ|θ) models how probable the observed data
ϕ are, given a specific choice of parameters θ; the prior distribution p(θ) encodes any
prior knowledge or assumptions about the parameters before observing the data; while
the evidence p(ϕ) serves as a normalization factor.

An important aspect to clarify in Bayesian inference is the treatment of the configu-
ration ϕ. In a general probabilistic setting, under the canonical ensemble as discussed in
Section 2.6, the state ϕ is a random variable follows the Boltzmann distribution (2.18),
which describes the probability of observing a particular state ϕ given a fixed set of ther-
modynamic parameters. However, in the context of parameter estimation, we assume
that ϕ is already observed, meaning that we treat it as a fixed dataset rather than a
true random variable. Mathematically, however, Bayes’ theorem still treats ϕ as random
because the likelihood function p(ϕ|θ) is defined over possible states.

The inference problem reduces to estimating the parameters θ that best explain a given
an observed equilibrium configuration ϕ. In this framework, the Bayes’ theorem reduces
to

p(θ|ϕ) ∝ p(ϕ|θ)p(θ),

which can be further simplified if a non-informative prior p(θ) is chosen. Indeed, if we
consider a uniform distribution, the probability p(θ) can be treated as a normalization
factor, leading to

p(θ|ϕ) ∝ p(ϕ|θ).
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3.2.1 Reformulating the free energy
Since the likelihood p(ϕ|θ) follows the Boltzmann distribution (2.18), the free energy
F (ϕ|θ) plays a central role in parameter estimation. Furthermore, it is important to
notice that for a fixed state ϕ, the free energy reduces to a linear function with respect
to the vector of parameters θ.

To make this explicit, consider that in Flory-Huggins framework, the molecular size
of the solvent is set to NC = 1. Given a fixed configuration ϕ the free energy can
then be rewritten by eliminating the constant term associated with NC . Throughout the
remainder of this section, we adopt this adjusted form of the free energy, corresponding
to Eq. (2.6) with the term related to NC removed.

This simplification is justified by by two key observations. First, in thermodynamics,
energy is defined up to an arbitrary additive constant, meaning that removing a constant
term does not affect the physical predictions of the model.Second, within the Bayesian
framework, this constant appears in the likelihood function purely as a normalization fac-
tor, which does not influence parameter estimation. Furthermore, as will become evident
in the following analysis, the estimation of individual parameters remains independent.
This implies that incorporating prior knowledge about specific parameters does not nec-
essarily enhance the accuracy of the inference for the others, reinforcing the validity of
treating the free energy in this adjusted form.

To express the free energy in a form that clearly shows its linearity in the parameters
θ, we introduce an explicit form of parameter vector

θ =
A
{N−1

a }a∈AC
, {χab}a,b∈A

a<b
, {κab}a,b∈AC

a≤b

B
,

which is a vector of K := (C−1)(C+1) elements, where the first C−1 components contain
the inverse of molecular sizes N−1

a , then the C(C − 1)/2 next components represent the
distinct interaction parameters χab and the last C(C − 1)/2 components are the distinct
gradient coefficients κab according to some ordering rule.

Using this definition, we can express the free energy as

F (ϕ|θ) =
KØ

k=1
θkΣk(ϕ), (3.6)

where Σk(ϕ) are functions that only depend on the state ϕ but not on the parameters θ.
Specifically, we have

Σk(ϕ) =



s
Ω ϕa log ϕa for θk = N−1

as
Ω ϕaϕb for θk = χab, a /= b, a, b /= Cs
Ω ϕa

!
1−

q
a∈AC

ϕa

"
for θk = χaC , a /= C

1
2
s

Ω∇ϕa · ∇ϕa for θk = κaas
Ω∇ϕa · ∇ϕb for θk = κab, a /= b

(3.7)

Since the state of the system is known at discrete points on a Cartesian grid, as described
in Section 2.4, the evaluation of these integrals can be efficiently performed using numerical
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approximations. The logarithmic and interaction terms are computed using the midpoint
rule, which provides a straightforward method for numerical integration. On the other
hand, the gradient term can be integrated through different numerical schemes. A finite
difference scheme can be applied, approximating derivatives using discrete grid-based
differences, while a spectral collocation approach allows for a more precise evaluation by
exploiting the Fourier representation of ϕ. In particular, the spectral approach gives

Ú
Ω
∇ϕa · ∇ϕb =

dØ
r=1

Ú
Ω

(∂rϕa)(∂rϕb)

≃
dØ

r=1

Ú
Ω

Ø
j∈J

âϕa, j∂rej

AØ
k∈J

âϕb,k∂rek

B

=
dØ

r=1

Ø
j∈J

32πjr

Lr

42 âϕa,(j1,...,−jr,...,jd)
âϕb,(j1,...,−jr,...,jd)

Ú
Ω
e2

j1,...,−jr,...,jd

=
dØ

r=1

Ø
j∈J

32πjr

Lr

42 âϕa,(j1,...,−jr,...,jd)
âϕb,(j1,...,−jr,...,jd).

3.2.2 Posterior distribution of parameters
The form of the free energy presented in Eq. (3.6) suggests that we can reformulate the
Bayesian inference problem in terms of the summary statistics Σ(ϕ) = {Σk(ϕ)}K

k=1.
First, let us consider the free energy F as a functional of Σ ∈ RK . In other words, we

introduce the free energy
âF (Σ|θ) =

KØ
k=1

θkΣk,

that is equivalent to the free energy of the system, as if we set Σ := {Σk}K
k=1 with Σk the

function defined in (3.7), then we have âF ◦Σ = F . Indeed, it holds

F (ϕ|θ) =
KØ

k=1
θkΣk(ϕ) = âF (Σ(ϕ)|θ) =

è âF ◦Σ
é

(ϕ|θ),

where Σ(ϕ) = {Σk(ϕ)}K
k=1.

We assume the prior distribution of θ ∈ RK to be a uniform on the K-dimensional
hyperrectangle in the space of parameters, meaning that it can be written as the Cartesian
product of intervals

Θ := supp(θ) =
KÙ

k=1
[θmin

k , θmax
k ],

where each interval is denoted by Θk := [θmin
k , θmax

k ] and we assume these intervals to be
compact, ensuring the integrability of the posterior distribution.

Furthermore, the introduction of Σ allows to rewrite the posterior probability with a
little abuse of notation as p(ϕ|θ) = p(Σ(ϕ)|θ). This combined with the assumptions on
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the prior distribution of θ let us rewrite the posterior probability as

p(θ|Σ) ∝ p(Σ|θ).

Now, we introduce the normalization factor for the probability density p(θ|Σ):

Z(Σ) =
Ú

Θ
p(θ|Σ) dθ,

so that we can express the probability density as

p(θ|Σ) = e−âF (Σ|θ)

Z(Σ) .

If we write the free energy explicitly in terms of Σk and θk, we immediately see that it
can be factorized with products of exponential functions, each depending only on a single
Σk and the respective parameter θk. In other words, parameters θk are independent and
their likelihood is only effected by the respective Σk. Indeed, we have that

p(θ|Σ) = e−âF (Σ|θ)

Z(Σ) = e−
qK

k=1 θkΣks
Θ e

−
qK

k=1 θkΣk dθ
=

KÙ
k=1

e−θkΣks
Θk
e−θkΣk dθk

. (3.8)

Therefore, we can introduce the probabilities of each parameter θk as

pk(θk|Σk) = e−θkΣk

Zk(Σk) ,
(3.9)

where the normalization factor Zk(Σk) can be explicitly computed as

Zk(Σk) =
Ú

Θk

e−θkΣk dθk = −e
−θkΣk

Σk

-----
θmax

k

θmin
k

= e−θmin
k Σk − e−θmax

k Σk

Σk
. (3.10)

Finally, the independence of parameters θk is clear, as

p(θ|Σ) =
KÙ

k=1
pk(θk|Σk)

3.2.3 Parameter estimation and uncertainty quantification

Bayesian inference provide an explicit probability distribution of the parameters θ in
terms of the summary statistics Σ(ϕ), that can be computed from the observed configu-
ration. This provides not only a point estimate for each parameter, but also a measure of
uncertainty associated with the estimation.

50



Estimation of parameters for equilibrium systems

The expected value of θk, conditioned on the observed summary statistic Σk, serves a
natural estimator and can be computed explicitly, as

E [θk|Σk] =
Ú θmax

k

θmin
k

θkpk(θk|Σk) dθk =
Ú θmax

k

θmin
k

θk
e−θkΣk

Zk(Σk) dθk

= 1
Zk(Σk)

Ú θmax
k

θmin
k

θke
−θkΣk dθk = 1

Zk(Σk)

C
−e

−Σkθk(Σkθk + 1)
Σ2

k

Dθmax
k

θmin
k

= e−Σkθmin
k (Σkθ

min
k + 1)− e−Σkθmax

k (Σkθ
max
k + 1)

Zk(Σk)Σ2
k

To gain insight into the numerical behavior of the integral, we can rewrite the expected
value in a more convenient form, expressing the normalization factor Zk(θk) through
Eq. (3.10)

E[θk|Σk] = e−θmin
k Σk − e−θmax

k Σk + Σk(θmin
k e−θmin

k Σk − θmax
k e−θmax

k Σk)
(e−θmin

k
Σk − e−θmax

k
Σk)Σk

= 1
Σk

+ θmin
k e−θmin

k Σk − θmax
k e−θmax

k Σk

e−θmin
k

Σk − e−θmax
k

Σk

= 1
Σk

+ θmin
k − θmax

k e−Σk∆θk

1− e−Σk∆θk
,

(3.11)

where we introduced ∆θk := θmax
k − θmin

k .
We consider now two limiting cases: Σk∆θk ≪ 0 and Σk∆θk ≫ 0. For Σk∆θk ≪ 0,

we have that Σk is negative and large in magnitude, meaning that the state summary
statistic Σk favors larger values of θk, as approximating the conditional expected value in
this regime, we get

E [θk|Σk] ≈ 1
Σk

+ θmax
k .

Thus, in the case where Σk is is strongly negative, the expected value of θk is primarily
influenced by the upper bound of the prior interval θmax

k , which can result in an artificial
skew toward large parameter values. Conversely, for Σk∆θk ≫ 0, the summary statistic
Σk is positive and large, leading to the simplified expectation

E [θk|Σk] ≈ 1
Σk

+ θmin
k .

Here, the inferred value of θk are biased toward the lower bound θmin
k , which can lead to

an underestimation of the parameter in cases where the likelihood suggests large values.
These limiting cases illustrate that the choice of prior intervals Θk significantly influ-

ences parameter inference, especially in cases where the summary statistic Σk has a large
magnitude.

Finally, the Bayesian framework also allows us to quantify the uncertainty of each
estimated parameter by computing its posterior variance. The variance of θk, conditioned
on Σk, is given by

Var(θk|Σk) = E
è
θ2

k|Σk

é
− E [θk|Σk]2 ,
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where E [θk|Σk] has been already computed and

E
è
θ2

k|Σk

é
=
Ú θmax

k

θmin
k

θ2
kpk(θk|Σk) dθk = 1

Zk(Σk)
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which can also be written expressing the normalization factor Zk(θk) through Eq. (3.10)
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Therefore, putting together Eq. (3.12) and (3.11), the variance can be expressed as
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(3.13)
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Chapter 4

Experiments

Modern techniques of microscopy allow us to obtain high-resolution imaging data of nu-
cleoli structures. In particular, AiryScan confocal microscopy is a super-resolution optical
imaging method, that allows to visualize morphological features beyond the diffraction
limit of light [24].

Here, we analyze three-dimensional fluorescence microscopy images of HeLa cells, a
well-established human cell line widely used in biological research. The images are col-
lected using AiryScan technology on a three-dimensional rectangular domain discretized
into 372× 372× 42 voxels, with a voxel size of 42.5× 42.5× 170 nm. Due to the optical
properties of fluorescence microscopy, resolution is higher in the xy plane than along the
z-axis, leading to an anisotropic scaling in the reconstructed images. As a result, nucleolar
structures often appear elongated along the z-axis when visualized in three dimensions,
requiring a proper scaling for accurate representation.

(a) Dense Fibrillar Component (b) Fibrillar Center (c) Granular Component

Figure 4.1: Three-dimensional fluorescence microscopy images of nucleolar components in
HeLa cells, acquired using AiryScan confocal microscopy.

The available dataset [11] consists of fluorescence intensity fields for the three primary
nucleolar components, as shown in Figure 4.1. However, these images do not contain
explicit information on the distribution of the surrounding nucleoplasm. Since our phase
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separation model is based on volume fraction fields, we must convert fluorescence intensi-
ties into estimates of volume fractions for each nucleolar component.

4.1 Conversion of intensities to volume fractions
The three-dimensional microscopy snapshot represents an equilibrium state of a four-
component system consisting of the three nucleolar components and the surrounding nu-
cleoplasm. To estimate volume fractions, we start denoting the available intensity fields
with Ia(x) for each nucleolar components a ∈ AC = {1,2,3}. The imaging data are dis-
cretized over a domain Ω of volume |Ω| and voxel size ω and the field of intensities is
sampled in the centers of each voxel, so that x ∈ {xm}m∈M .

To convert fluorescence intensities into volume fractions, we utilize biophysical prop-
erties of nucleolar and nucleoplasmic proteins reported in the literature. Specifically, we
extract values for the radius of gyration Ra [16] of the proteins and their average concen-
trations ζa [17].

The proteins that constitute the three main nucleolar substructures, labeled in AC ,
have distinct sizes and concentrations in the nucleolus. In Table 4.1 we report their
experimental estimates.

Protein UniprotID Rg (Å) ζ (nM)

NPM1 (GC) P06748 37.57 26740.4
FBL (DFC) P22087 27.06 2150.7
UBF (FC) P17480 46.09 600.8

Table 4.1: Radius of gyration and concentration of proteins associated with the three
nucleolar components.

In addition to nucleolar components, the nucleoplasm contains a variety of proteins.
Table 4.2 summarizes the radius of gyration and concentrations for a choice of the three
most abundant nucleoplasmic proteins.

Protein UniprotID Rg (Å) ζ (nM)

HNRNP A2/B1 P22626 37.42 15292.5
HNRNP C1/C2 P07910 42.07 11598.6
HNRNP H1 P31943 37.00 4792.5

Table 4.2: Radius of gyration and concentration of three of the most abundant nucleo-
plasmic proteins.

The volume of an individual protein molecule of each component can be estimated
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using the standard formula for the volume of a sphere, so that for a ∈ AC we have

va = 4
3πR

3
a.

Similarly, the nucleoplasm is characterized by an average protein radius of gyration RC

and an effective concentration ζC , that can be computed averaging the values reported
in Table4.2. Likewise, we denote the estimate of the volume of proteins in the nucleoplasm
as vC .

Using these parameters, the expected total volume occupied by proteins in the system
(both nucleolar and nucleoplasmic) can be estimated as

U = NA
Ø
a∈A

vaζa,

where NA denotes the Avogadro constant. From this, the total number of molecules in
the domain can be estimated as NAζa|Ω|/U . Multiplying by the molecular volume va, we
get the total volume occupied by each component

ra = NAζa
|Ω|
U
va.

Since fluorescence intensities do not directly correspond to volume fractions, we first
normalize the intensity fields for each component a ∈ AC as

Inorm
a (x) = Ia(x)q

y∈{xm} Ia(y) ,

for xm ∈ {xm}m∈M .
Using these normalized intensities, we define an initial estimate of the volume fraction

field as åϕa(x) = Inorm
a (x)ra

ω
.

Since the fluorescence intensity of the nucleoplasm is not explicitly available, we need
to apply a rescaling procedure to ensure that the volume fractions sum to unity. Assuming
that there exists at least one voxel in the domain where the nucleoplasm volume fraction
is zero, we define the final corrected volume fraction field for a ∈ AC as

ϕa(x) =
åϕa(x)

maxy∈{xm}

èq
b∈AC

åϕb(y)
é .

Finally, the volume fraction of the nucleoplasm can be computed using the constraint (2.1).

4.2 Estimation results
After converting fluorescence intensities into volume fraction fields, we applied the least
squares method to infer the interaction parameters χab, which characterize the thermody-
namic interactions between the nucleolar components and the surrounding nucleoplasm.
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The estimation was performed under two different modeling assumptions: a quaternary
mixture, where the system was treated as a four-component mixture consisting of the three
nucleolar components and the surrounding nucleoplasm, and a binary approximation,
where the nucleolar components were combined into a single phase distinct from the
nucleoplasm, reducing the system to a binary mixture.

In both models, values for the molecular size ratios Na and and gradient coefficients κab

were not inferred, but defined based on literature knowledge, to reduce the number of free
parameters and improve the reliability of the least squares estimation. The molecular size
ratios Na were derived from the radii of gyration Ra reported in Table 4.1 and Table 4.2.
Since the Flory-Huggins theory defines Na as as the volume ratio relative to the solvent
phase, they were computed using the relation

Na = va

vC
= R3

a

R3
C

,

where va represents the estimated volume of the protein species a ∈ AC and vC corre-
sponds to the average volume of the most abundant nucleoplasmic proteins.

For the gradient coefficients κab, we assumed a relationship with interaction parameters
χab and radii of gyration Ra, as described in Eq. (3.4), following a model previously
proposed in the literature.

4.2.1 Quaternary model
The first approach considered a four-component system, where each nucleolar substructure
was treated as a distinct phase. Using the converted volume fraction fields, predefined
values of Na and the relation of κab in terms of χab, we applied the least squares method
to infer the interaction parameters χab.

The inferred values are summarized in Table 4.3, while the values of the predefined
parameters κab and Na are reported in Table 4.4

Parameter Estimate Standard Error (%)

χ12 55.88 4.05
χ13 214.13 1.27
χ14 4.72 2.15
χ23 188.61 3.11
χ24 53.82 4.19
χ34 214.76 1.25

Table 4.3: Inferred interaction parameters, applying the least squares method to a flu-
orescence microscopy image of nucleolar component and interpreting the system as a
quaternary mixture.
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Parameter Value

κ11 7.66× 10−6

κ12 3.25× 10−6

κ13 9.95× 10−6

κ22 1.09× 10−4

κ23 3.83× 10−5

κ33 2.67× 10−4

N1 0.90
N2 1.65
N3 0.33

Table 4.4: Defined values of the gradient coefficients κab and the molecular size ratios Na

used in the quaternary mixture model to infer χab applying least squares method. The
values of κab are computed using an empirical relation in terms of the inferred interaction
parameters χab, while Na is estimated from the molecular radii of gyration extracted from
literature data.

4.2.2 Binary model

To explore a simplified description of nucleolar organization, we also tested a binary ap-
proximation, where the three nucleolar components were treated as a single phase distinct
from the nucleoplasm. This reduced the number of inferred parameters to a single inter-
action parameter χ, simplifying the model significantly.

To construct the binary volume fraction fields, the nucleolar components were combined
into a single phase

ϕbin
1 =

Ø
a∈AC

ϕa.

The volume fraction of the nucleoplasm remains unchanged, defined as ϕbin
2 = 1− ϕbin

1 .
The effective molecular size ratio Nbin

1 for the nucleolar phase was computed as the
average of the sizes of nucleolar components:

Nbin
1 = 1

3
Ø

a∈AC

Na.

Similarly, the gradient coefficient κ was determined using the relation (3.4).
Using the volume fraction fields ϕbin

a for a ∈ {1,2}, the relative size Nbin
1 and the form

of the gradient coefficient κ, we used the least squares method to estimate the interaction
parameter χ. The inferred interaction parameter χ for the binary model is reported in
Table 4.5, while the predefined values of the relative size Nbin

1 and the gradient coefficient
κ are reported in Table 4.6.
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Parameter Estimate Standard Error (%)

χ 3.79 0.72

Table 4.5: Inferred interaction parameters, applying the least squares method to a fluores-
cence microscopy image of nucleolar component and interpreting the system as a binary
mixture.

Parameter Value

κ 6.05× 10−6

Nbin
1 0.96

Table 4.6: Defined values of the gradient coefficients κ and the molecular size ratios N1
used in the binary mixture model to infer χ applying least squares method. The value of
κ is computed using an empirical relation in terms of the inferred interaction parameters
χ, while N1 is estimated from the molecular radii of gyration extracted from literature
data.

4.3 Interpretation and limitations
Our findings suggest that an equilibrium Cahn-Hilliard model based solely on the inferred
interaction parameters does not fully capture the complexity of nucleolar phase separation.

To assess whether the inferred parameters could reproduce experimental observations,
we performed numerical simulations of the quaternary and binary mixtures using the
Cahn-Hilliard model. The system was evolved both from the volume fraction fields com-
puted from microscopy data—assuming they represent an equilibrium state—and from a
uniform initial condition with small random noise.

When initialized from a homogeneous state with added noise, the system does not
evolve into large, well-defined compartments. Instead, the components segregate at the
voxel scale, forming a pattern where each voxel is dominated by a single component with-
out significant aggregation of the nucleolar phase. This outcome suggests that the inferred
interaction parameters, while consistent with the least squares estimation framework, do
not lead to spontaneous phase separation under the Cahn-Hilliard dynamics. Figure 4.2
illustrates the final state binary mixture model when evolved from a uniform initial con-
dition with Gaussian noise. The lack of clear domain formation in these simulations
indicates that thermodynamic interactions alone may not be sufficient to drive nucleolar
phase separation.

When the simulations are instead initialized from the volume fraction fields inferred
from microscopy images, the system evolves differently. Components tend to contract into
smaller, more localized regions, sharpening the boundaries between different phases. The
evolution leads to configurations that are more strongly segregated than in the experi-
mental data, where interfaces are more diffuse and components remain partially mixed.
This effect is particularly evident in Figure 4.3, where the nucleolar compartments become
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(a) Initial state at time t = 0.

(b) Final state at time t = 10000000

Figure 4.2: Evolution of volume fractions in a binary mixture within a three-dimensional
domain, according to Cahn-Hilliard model. Simulation start from an initial uniform state
with Gaussian noise and parameters are inferred from experimental data, using least
square method. In the images are reported the maximum intensity slices of initial and
final state.

more confined compared to the initial state.
This behavior suggests that either the inferred interaction parameters overestimate the
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(a) Initial state at time t = 0.

(b) Final state at time t = 10000000

Figure 4.3: Evolution of volume fractions in a binary mixture within a three-dimensional
domain, according to Cahn-Hilliard model. Simulation start from the state defined by
experimental data and parameters are inferred using least square method from the same
state. In the images are reported the maximum intensity slices of initial and final state.

strength of phase separation or that the experimental volume fraction fields do not truly
represent an equilibrium state, but rather a transient or locally stabilized configuration.

A key observation from the gradient coefficients is that the values of κab are around
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five order of magnitude smaller than other parameters χab and Na. Such small κ values
indicate that the cost of creating interfaces is low, meaning that many small regions of
different phases can coexist with minimal energetic penalty. This translates to a system
with weak surface tension, leading to suppressed domain coarsening and an overall lack
of Ostwald ripening. As a result, even if the system initially forms small nucleolar-like
structures, they do not grow or coalesce over time into well defined domains, as one would
expect in classical phase separation.

Another critical observation from the computed volume fractions is that, when consid-
ering only the three nucleolar component, they do not seem to separate from one another.
Instead they appear to mix, with the GC being predominant throughout the nucleolus and
the other components—FC and DFC— present only in smaller amounts. This suggest
that the phase separation between nucleolar component is either weak or absent. The
lack of distinct subdomains within the nucleolus challenges the assumption that phase
separation alone is sufficient to explain its internal organization. This observation also
motivated the alternative approach of modeling nucleolar organization as a binary phase
separation between nucleolus and nucleoplasm, rather than as a fully quaternary system.
By treating the nucleolus as a single effective phase rather than a mixture of three coex-
isting components, the binary model aims to capture the dominant separation between
nucleolar and nucleoplasmic regions.

These results indicate two main possibilities. First, the simulated evolution from a uni-
form initial condition may lead to a local equilibrium that is different from the experimen-
tally observed configuration, meaning that the system could be trapped in a metastable
state rather than reaching a global thermodynamic equilibrium. Alternatively, the flu-
orescence data themselves might not represent an equilibrium state but rather a steady
state configuration maintained by active cellular processes. This interpretation aligns with
biological evidence suggesting that nucleolar structures are stabilized by ATP-dependent
processes such as RNA transcription, processing, and ribosome assembly.

Overall, our findings demonstrate that while the inferred parameters provide a math-
ematically consistent equilibrium description, the resulting Cahn–Hilliard simulations do
not fully reproduce the experimentally observed nucleolar morphology. This discrepancy
suggests that nucleolar organization may be governed by active processes beyond simple
phase separation.
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In this work, we developed a theoretical and computational framework to model liquid-
liquid phase separation in multicomponent systems, applying it to the organization of nu-
cleolar compartments. We combined Flory-Huggins thermodynamics and Cahn-Hilliard
dynamics to describe phase separation phenomena and employed both deterministic nu-
merical methods and stochastic sampling techniques to investigate equilibrium configu-
rations. Our approach integrated theoretical modeling with data-driven parameter in-
ference, bridging the gap between experimental data and physical mechanisms governing
liquid-liquid phase separation.

Incorporating stochastic fluctuations through the Metropolis-Hastings algorithm al-
lowed us to explore equilibrium sampling and assess the role of thermal noise in the
system. However, full convergence of the Metropolis-Hastings method proved computa-
tionally demanding when starting from a homogeneous state, hinting the need to use a
Cahn-Hilliard pre-equilibrated state as a reference.

To validate our parameter estimation techniques, we first applied them to synthetic
equilibrium states generated with known parameters. The methods proved effective in
recovering these values, confirming their robustness. We then applied the same approach
to experimental microscopy data, converting fluorescence intensities into volume fractions
and inferring the interaction parameters. A key challenge in this process was the absence
of explicit nucleoplasmic intensity measurements, which required rescaling procedures and
careful interpretation of volume fraction distributions.

Our results suggest that the equilibrium model of a four-component protein solution
is not sufficient to fully explain the observed nucleolar structures. Using the developed
estimation techniques, we inferred the interaction parameters governing equilibrium con-
figurations. These values suggest that molecular interactions alone may not account for
the stability and organization of nucleolar subcompartments. Our findings indicate that
additional mechanisms, such as RNA transcription, processing, and ribosome assembly,
likely contribute to maintaining the spatial organization of the nucleolus beyond what is
predicted by equilibrium thermodynamics. The small values of the gradient coefficients
κ obtained from our inference suggest that the nucleolar components exhibit a weak ten-
dency for droplet coarsening, limiting Ostwald ripening and stabilizing small-scale struc-
tures. This observation further supports the hypothesis that active biological processes
play a crucial role in nucleolar organization.

While our study has provided insights into the equilibrium properties of nucleolar phase
separation, several important questions remain open. Future research could extend this
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framework to incorporate active processes, such as ATP-dependent reactions and RNA
fluxes, which are essential for understanding the full dynamics of nucleolar formation.
Additionally, incorporating more detailed molecular interactions may refine our model’s
accuracy. Experimental validation through perturbation studies, where key molecular
components are selectively inhibited or enhanced, could further test the predictive power
of our approach.

In conclusion, this work has contributed to the understanding of biomolecular phase
separation by integrating thermodynamic modeling, computational simulations, and data-
driven inference methods. While equilibrium models alone may not fully capture the
complexity of nucleolar structure, they provide a solid foundation for future research
incorporating active biological processes. Beyond nucleolar organization, we have laid the
groundwork for further studies, building a framework that is broadly applicable to various
phase separation phenomena in both biological and non-biological contexts. The insights
gained from this study have implications not only for cellular organization but also for
fields such as materials science and biomedical engineering, where phase separation plays a
crucial role in designing functional materials and understanding self-assembling systems.
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