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Abstract

Optimization plays a fundamental role in solving real-world decision-making problems,
in which the objective is to maximize efficiency while minimizing costs. The Traveling
Salesman Problem (TSP) is a classical combinatorial optimization problem that results
in numerous applications in logistics, manufacturing, and network design. Extending this
to multiple agents, the Multiple Traveling Salesman Problem (mTSP) assigns a set of
destinations (nodes of a graph) to multiple salesmen, introducing additional complexity
in terms of workload distribution and coordination.

A critical variant is the Min-Max mTSP, where the objective is not only to construct
good feasible tours, but to minimize the length of the longest one. This formulation is
particularly relevant in scenarios that require balanced task allocations, such as vehicle
routing, robotics, and job allocation. Unlike the classical TSP, where minimizing total
travel cost leads to well-established heuristics, the Min-Max objective requires specialized
techniques to ensure fairness across tours while maintaining computational efficiency.

This thesis explores new neighborhood search based approaches for tackling the Min-
Max m-TSP, focusing on two key aspects: the initial distribution of nodes among subtours
and the iterative refinement of solutions towards convergence. Traditional partitioning
methods, such as clustering, do not fit this problem well, leading to highly unbalanced
initial solutions. To address this issue, novel strategies will be introduced to build more
structured node configurations. Furthermore, new ideas will be developed to iteratively
explore and refine solutions, balancing the trade-off between exploration and exploitation
in the solution search space.

In conclusion, by combining theoretical analysis with computational experimentation,
this work aims to provide innovative methodologies and ideas for solving Min-Max m-
TSP efficiently. The proposed techniques will be evaluated in terms of solution quality,
stability, and scalability.
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Chapter 1

Introduction

This thesis aims to explore the role of heuristic algorithms in solving the Min-Max Multiple
Traveling Salesman Problem, a well-known combinatorial optimization challenge. By
analyzing both the theoretical and practical aspects, this work attempts to offer insight
into some approaches for solving such problem in a new way.

After a brief introduction on the role of optimization and its importance, we will
discuss the algorithms and tests of this problem.

1.1 The concepts behind optimization

Optimization problems and models can be applied in many different areas of modern
society. Whether we are looking for the shortest route between two or more locations, de-
termining the optimal pricing strategy for a product, solving puzzles, or making decisions
based on multiple criteria, optimization theory can provide the mathematical framework
to address these challenges. The field spans various disciplines, including engineering,
economics, operations research, and computer science.

The goal of optimization is to make the best possible decision given a set of con-
straints, resources, and objectives. This is represented by the objective function, where
the criterion that needs to be optimized is expressed in different terms based on the ob-
jective to be achieved. For example: maximize efficiency, minimize cost, or find the most
balanced configuration.

Mathematically the objective function to be optimized can be described as f(x),
where x is a vector of decision variables: x are the unknowns to be determined and
represent the possible solutions to the problem. They could be continuous, discrete, or a
combination of both.

For instance, in the traveling salesman problem (TSP), the variables represent the
order in which cities are visited, while in a mixed-integer programming problem, some
variables might represent binary decisions, and others could take continuous values.

The function lies on a domain Ω, which is the set of feasible solutions, bounded by
constraints that may arise from real-world limitations or operational requirements. Con-
straints are essential in defining this domain and they can be either equality or inequalities.
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Introduction

Definition: Optimization Problem

An optimization problem consists of an objective function f(x), a set of decision
variables x, and a feasible region Ω defined by constraints. The goal is to find
x∗ ∈ Ω such that:

max
x∈Ω

f(x).

It is important to note that, when applying the operators max and min, the result
is the optimal value of the objective function, denoted f∗ = f(x∗), corresponding to a
specific point x∗ within the domain.

However, these operators do not return the point x∗ itself. If the goal is to identify
the point where the objective function reaches its optimum, one should instead use the
argmax or argmin operators. These operators yield the set of points in the domain where
the function achieves its optimal value.

Additionally, note that, when the objective function is linear, the problem can be
framed as a minimization without loss of generality. This is because minimizing a function
f(x) is equivalent to maximizing its negation, that is,

min
x∈Ω

f(x) = max
x∈Ω
−f(x).

This provides flexibility in how optimization problems are expressed and solved.

1.2 Challenges in Solving Optimization Problems

You can see that, while optimization provides a powerful framework for decision-making,
many real-world problems are difficult to solve. Some of the main challenges include:

• Scalability: as the size of the problem increases, the complexity of solving it grows.
This is especially true for combinatorial problems such as the TSP, where the number
of possible solutions grows factorially with the number of cities.

• Constraints: incorporating complex constraints increases the difficulty of solving
the problem, requiring specialized algorithms or relaxation techniques.

• Computational Resources: even with advancements in computing power, solving
large-scale optimization problems often requires significant computational resources
and time.

1.3 Computational Complexity

As said above, some problems can be efficiently solved to optimality using specific algo-
rithms. Other problems are computationally impractical, hence they cannot be solved
efficiently. Here, computationally impractical means that, if the input is large enough,
the expected running time quickly becomes unmanageable.
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1.3 – Computational Complexity

For this reason, computational complexity is fundamental in theoretical computer
science and optimization. It refers to the amount of computational resources required
to solve a problem, typically measured in terms of time (time complexity) and memory
space (space complexity) used. The complexity of an algorithm is commonly expressed
as a function of the input size n, using notation such as O(n), O(n2), or O(log n), which
describes the algorithm’s behavior as n grows. See [10].

1.3.1 Decision Problems

A decision problem is a problem with a binary answer (yes or no). For instance, while
the problem "How long is the shortest path from A to B?" is an optimization problem, it
can be reformulated as a decision problem: "Does there exist a path from A to B shorter
than 5 units?" In this form, it becomes a yes/no question. Formally, decision problems
can be represented as sets of binary strings that satisfy certain properties.

1.3.2 Algorithms and Complexity

An algorithm A can be described as a computational procedure that transforms an input
binary string x into an output binary string y. Given a decision problem Π, the algorithm
A solves Π if the set of inputs for which A(x) = 1 corresponds to the set Π. Impor-
tantly, an algorithm must follow a finite sequence of well-defined operations to achieve
this transformation.

The complexity of an algorithm A is denoted by f(n), where n is the length of the
input string, and f(n) is the maximum number of operations needed to transform the
input x into the output y. This complexity is thus a function of the input size rather than
the specific input values.

1.3.3 The Classes P and NP

Two fundamental classes of computational complexity are:

• P (Polynomial Time)

Definition: Class P

A decision problem Π belongs to the class P if there exists an algorithm A
that solves it in polynomial time. This means that the complexity function
f(n) of the algorithm is bounded by a polynomial function of input size n,
i.e., f(n) = O(nk) for some constant k. The problems in P are considered
tractable, as they can be solved efficiently even for large inputs.

• NP (Nondeterministic Polynomial Time)

9



Introduction

Definition: Class NP

A decision problem Π belongs to the class NP if there exists an algorithm V
(called a verifier) and a polynomial function p(n) such that:

– If x ∈ Π, then there exists a binary string y ∈ {0,1}p(n) (called a
certificate) such that V (x, y) = 1, meaning that y verifies that x is a
valid solution.

– If x /∈ Π, then for every possible certificate y ∈ {0,1}p(n), the verifier
returns V (x, y) = 0.

In other words, problems in NP are those for which a proposed solution can be verified
in polynomial time, but finding the solution may take longer.

An open problem in computational complexity is the P vs. NP question, one of the
"Millennium Problems". Informally, it asks whether every problem for which a solution
can be verified efficiently (i.e., in polynomial time) can also be solved efficiently (again, in
polynomial time), or if there exist problems that are inherently difficult to solve but easy
to verify. If P = NP, then all these problems would be solvable in polynomial time, but
if P /= NP, then some problems may require much more time to solve, but their solutions
could still be verified quickly. Right now, it is formally said that P ⊆ NP. This remains
one of the most important open questions in computer science.

Now, what can be said about those problems that are commonly called difficult?

1.3.4 NP-Complete and NP-Hard Problems

Definition: NP-complete problem

A decision problem Π is said to be NP-complete if it satisfies two conditions:

1. Π ∈ NP, i.e., the problem can be verified in polynomial time by a determin-
istic algorithm, given a solution (a certificate).

2. Every problem in NP can be reduced to Π in polynomial time. This means
that for any problem Π′ ∈ NP, there exists a polynomial-time computable
function f that transforms an instance of Π′ into an instance of Π such that
the answer to Π′ is "yes" if and only if the answer to Π is "yes".

This second condition is known as polynomial-time reduction and ensures that NP-
complete problems are at least as difficult to solve as any other problem in NP.

An important theorem regarding NP-complete problems is Cook’s Theorem:

Cook’s Theorem

The Boolean satisfiability problem (SAT) is NP-complete.

Cook’s Theorem was the first to demonstrate the existence of an NP-complete problem,
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1.3 – Computational Complexity

providing a foundation for identifying other NP-complete problems via polynomial-time
reductions.

Definition: NP-hard problem

A problem is classified as NP-hard if it is at least as hard as any problem in NP,
but it is not necessarily a decision problem or may not belong to NP.

In other words, NP-hard problems may not be verifiable in polynomial time. However,
any problem in NP can still be reduced to an NP-hard problem in polynomial time.

To better understand this concept, here is an example:
the decision version of TSP is NP-complete because it is in NP (a candidate solution
can be verified in polynomial time) and any instance of the Hamiltonian Cycle Problem
(which is NP-complete) can be reduced to an instance of TSP. Therefore, TSP is at least
as difficult as any problem in NP.
The optimization version of TSP, which seeks to minimize the total distance of the tour,
is NP-hard because it is not a decision problem, but is still at least as difficult as solving
the decision version.

1.3.5 Algorithmic Complexity and Examples of Running Times

Definition: Time Complexity

Time complexity describes how the running time of an algorithm increases with
the size of the input. This is expressed using the asymptotic notation O(f(n)),
which gives an upper bound on the growth rate of the algorithm’s running time as
a function of the input size n.
We are considering the worst case, for example: f(n) ∈ O(g(n)) means there exist
constants n̂ and c > 0 such that f(n) ≤ c · g(n) for all n ≥ n̂.

The table illustrates some common algorithmic complexities and provides examples of
their expected running times for different input sizes:

Algorithm Complexity n=10 n=20 n=30 ... n=60
f(n) ∈ O(n) 0.001 sec 0.002 sec 0.003 sec ... 0.006 sec
f(n) ∈ O(n2) 0.001 sec 0.004 sec 0.009 sec ... 0.36 sec
f(n) ∈ O(2n) 0.001 sec 1.0 sec 17.9 min ... centuries

Table 1.1: Algorithms Computational Complexity

The complexity class O(n) grows linearly with the input size, O(n2) follows a square
trend, while O(2n) grows exponentially, quickly becoming infeasible even for relatively
small inputs. This distinction underlines the importance of designing algorithms with
efficient time complexity, especially for large-scale problems.
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Example of Sorting Algorithms

To clarify the concept of time complexity, consider the example of sorting a list of n real
numbers in ascending order. Different algorithms can solve this problem with varying
levels of efficiency:

• A trivial way to solve this problem is to iterate through all possible permuta-
tions of the list and check if any permutation is sorted. Since there are n! permu-
tations of n elements, and checking if a permutation is sorted takes O(n) time, the
total number of operations would be O(n! · n). This approach is clearly inefficient
and results in a non-polynomial time complexity, it is impractical even for small
values of n.

• More practical sorting algorithms include, for example, the Insertion Sort. This
algorithm iteratively inserts each element in its correct position in a sorted sub-list.
Its time complexity is O(n2), which means that its execution time grows quadrat-
ically with the input size. Although better than O(n!), it is still not optimal for
large inputs.

• There are even more efficient algorithms, for example the Heapsort, which has a
time complexity of O(n log n). This is in practice the best possible time complexity
for comparison-based sorting algorithms, as it can be shown that no comparison-
based sorting algorithm can achieve better than O(n log n) in the worst case.

This shows how different algorithms can solve the same problem with significantly
different time complexities, making it crucial to choose efficient algorithms, especially
when dealing with large data sets.

Why Complexity Matters in Optimization

In optimization, computational complexity is critical because many real-world problems
involve large input sizes, and the time it takes to compute solutions can grow rapidly with
the problem size.

For example, combinatorial optimization problems, such as the traveling salesman
problem, are NP-hard, meaning they are at least as difficult as the hardest problems in
NP. As a result, exact solutions are often impractical for large instances, inducing the
use of heuristic algorithms that that can provide near-optimal solutions in a reasonable
amount of time.

12
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1.4 Exact vs approximate approaches

1.4.1 Exact Optimization Algorithms

Exact optimization algorithms are those that guarantee finding the global optimal solution
of an optimization problem, provided that sufficient computational resources are available.
These algorithms ensure that the computed solution is the best available satisfying all
problem constraints.

Definition: Exact Optimization Algorithm

An exact optimization algorithm is a procedure that, for a given optimization prob-
lem P with an objective function f(x) and feasible region Ω, finds the solution x∗

such that:
x∗ = argmin

x∈Ω
f(x) or x∗ = argmax

x∈Ω
f(x)

where f(x∗) represents the globally optimal value of the objective function within
the feasible region.

Formally, consider a minimization problem of the form:

min
x∈Ω

f(x)

An exact optimization algorithm will always produce a solution x∗ such that f(x∗) ≤
f(x) for all x ∈ Ω. For maximization problems, the algorithm produces x∗ such that
f(x∗) ≥ f(x) for all x ∈ Ω.

Exact algorithms are typically applicable to problems where the structure of the feasi-
ble region or the properties of the objective function allow for efficient exploration of the
solution space. Common exact optimization algorithms include:

• Brute-force Search: this approach, while being conceptually simple, involves enu-
merating every possible solution within the feasible region Ω and selecting the best
one according to the objective function. This method guarantees finding the exact
solution, since it exhaustively explores the solution space.

For example, consider a simple minimization problem where Ω = {x1, x2, . . . , xn}
is finite and small. The brute-force algorithm evaluates the objective function at
every point:

f(x1), f(x2), . . . , f(xn)

and chooses x∗ such that f(x∗) = min{f(x1), f(x2), . . . , f(xn)}.
While this method is guaranteed to be exact, it is obviously computationally imprac-
tical for large problems because the number of possible solutions grows exponentially
with the size of the problem. For instance, the brute-force solution to the Traveling
Salesman Problem (TSP) would require evaluating all (n−1)! possible tours, which
becomes infeasible for even moderately sized n.

13
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• Branch and Bound: Branch and Bound (B&B) is a widely used exact algorithm
for solving combinatorial optimization problems and is especially effective in solving
mixed-integer and integer programming problems.

The basic idea behind B&B is to divide the original problem into smaller subprob-
lems (branching) and evaluate bounds on the objective function for these subprob-
lems.

Consider a minimization problem. The algorithm proceeds as follows:

1. Start with the original problem and compute a lower bound on the optimal
solution.

2. Divide (branch) the problem into subproblems by adding constraints that sim-
plify the problem.

3. For each subproblem, compute lower bounds on the objective function. If the
lower bound is worse than the current best feasible solution, discard (prune)
the subproblem.

4. Continue branching and bounding until all subproblems are either solved or
pruned.

Formally, let the original problem be denoted as P0 with objective function f(x)
and feasible region Ω. The algorithm creates a tree of subproblems P1, P2, . . . where
each node in the tree corresponds to a subproblem. Then evaluates a lower bound
on each subproblem.

Example: Solving an Integer Programming Problem with Branch and Bound.

Consider the integer programming problem:

min 3x1 + 4x2 subject to x1 + x2 ≥ 5, x1, x2 ∈ Z+

The B&B algorithm divides this problem into subproblems by branching on inte-
ger values of x1 and x2, computes lower bounds on each subproblem, and prunes
subproblems where the bounds exceed the current best solution. This approach re-
duces the search space dramatically, making the problem tractable, even for larger
instances.

• Branch and Cut: is an exact algorithm that extends the Branch and Bound
(B&B) method by integrating additional techniques from cutting-plane methods. It
is particularly well-suited for solving mixed integer programming (MIP) problems,
where the goal is to optimize a linear objective function subject to both integer and
continuous variables constrained by linear inequalities.

The idea behind Branch and Cut is to start with a linear programming (LP) re-
laxation of the integer programming problem (where the integer constraints are
temporarily ignored). If the LP solution is not feasible for the original integer prob-
lem (i.e., it produces fractional values for integer variables), the algorithm generates
additional cutting planes. These are inequalities that "cut off" the fractional so-
lution, tightening the feasible region of the LP relaxation without removing any

14
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feasible integer points. The process continues, alternating between branching (as in
B&B) and adding cutting planes, until the optimal integer solution is found.

Steps of Branch and Cut:

1. Relaxation: Solve the LP relaxation of the original problem (correspondingly
obtaining a lower bound for the problem).

2. Cutting Planes: If the LP solution is fractional, generate and add cutting
planes that exclude the current solution while maintaining all integer solutions.

3. Branching: If no further cuts are effective, branch the problem into smaller
subproblems by imposing constraints on the integer variables (as in Branch
and Bound).

4. Iteration: Repeat the process of solving subproblems, adding cuts, and branch-
ing until the integer solution is obtained.

• Dynamic Programming (DP): is a method that solves complex problems by
breaking them down into simpler subproblems, solving each subproblem only once
and storing its solution for future use. The idea is to exploit subproblems and opti-
mal substructure, which means that the global optimal solution can be constructed
from the optimal solutions of its subproblems.

The Bellman equation, a recursive relation, characterizes dynamic programming.
For instance, consider the shortest path problem where we need to minimize the
cost C(i) of reaching the destination from node i.

The Bellman equation for this problem is:

C(i) = min
j∈N(i)

{c(i, j) + C(j)}

where N(i) is the set of neighbors of node i, and c(i, j) is the cost of traveling from
node i to node j. This is also called Value Function for Dynamic Programming.

Example: Knapsack Problem (KP)

The knapsack problem can be efficiently solved using dynamic programming. The
objective is to maximize the value of items placed in a knapsack of fixed and limitated
capacity W . Let vi be the value and wi be the weight of the i-th item. The recursive
equation for this problem is:

V (i, w) = max{V (i− 1, w), V (i− 1, w − wi) + vi}

where V (i, w) represents the maximum value that can be obtained with i items and
capacity w.
Using such strategy, we can represent our value function in a tabular form and solve
KP.
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• Simplex Algorithm for Linear Programming: is a well-known exact optimiza-
tion algorithm for solving linear programming (PL) problems. Given, for example,
a linear problem in standard form:

min cTx subject to Ax = b, x ≥ 0

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The simplex algorithm moves along the
edges of the feasible region, defined by the polyhedron Ax ≤ b, to find the optimal
vertex, corresponding to the minimum value of the objective function. Despite its
exponential worst-case time complexity, the simplex algorithm performs efficiently
in practice.

Each exact algorithm has its advantages and limitations, depending on the structure
and size of the optimization problem. The table below summarizes and makes a compar-
ison of the key features of the exact algorithms discussed:

Algorithm Strengths Weaknesses
Brute-force approach Guaranteed to find opti-

mal solution
Exponential time com-
plexity for large problems

Branch and Bound (B&B) Efficient for certain in-
teger and combinatorial
problems

May still require exponen-
tial time in worst case

Branch and Cut Combines B&B and cut-
ting for MIP problems;
handles large instances ef-
fectively

Complex to implement,
may still require exponen-
tial time in worst case

Dynamic Programming (DP) Solves problems with
overlapping subproblems
optimally

Requires problem-specific
recursive formulation

Simplex algorithm Efficient for LP problems
with thousands of con-
straints

Exponential worst-case
time complexity

Table 1.2: Comparison of some Exact Optimization Algorithms

1.4.2 Approximate Optimization Algorithms

In many real-world optimization problems, especially those classified as NP-hard, finding
the optimal solution is often computationally infeasible for large input sizes. Even if an
optimal solution could be found, proving its optimality may be impractical in a reasonable
time.

This forces us to relax our requirements for exact solutions and instead aim for subop-
timal, yet computationally efficient, solutions. These suboptimal solutions are obtained
through the use of heuristics and approximation algorithms. They are approaches
designed to find solutions that are "good enough" in situations where exact algorithms
fail to scale.
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1.4.3 Heuristics

Heuristics are algorithms designed to be effective in practice. They are generally based on
intuitive strategies that work well in most real-life instances but come without guarantees
on solution quality or running time. Famous examples include greedy algorithms, local
search based approaches (such as, for instance, simulated annealing, tabu search and greedy
randomized adaptive search procedures) and population based approaches (such as, for
instance, ant colony optimization and genetic algorithms).

• Greedy Algorithms: they build a solution iteratively by selecting the locally
optimal choice at each step (make the most profitable decision at each step, without
considering the future impact of these decisions). Although the greedy strategy
can fail to find the global optimum in some cases, it is often efficient and yields
good results for certain types of problems, in particular if it is combined with other
strategies.

• Beam Search: considered as an extension of the greedy algorithm, where the
key difference is its ability to account for a fixed amount of foresight. While a
greedy algorithm makes decisions based solely on the immediate state, Beam Search
expands this by exploring a limited number of future possibilities, allowing it to
avoid short-sighted choices that could lead to suboptimal solutions.

This implementation provides a more informed choice than a purely greedy ap-
proach, yet it remains computationally feasible by restricting the search to a fixed
number of alternatives, rather than exploring the entire decision tree.

Despite this additional foresight, Beam Search still does not guarantee finding the
optimal solution, as the fixed beam width may miss promising paths.

• Local Search: this method begin with an initial feasible solution and iteratively
improves it by exploring neighbor solutions. In particular it explores a neighborhood
N(x) of the current solution x and moves to a better solution if one exists.

While local search may converge to a local optimum rather than the global optimum,
it is often used in practice because of its simplicity and effectiveness.

Formally, let x1, x2, . . . be a sequence of solutions such that:

xi+1 = arg min
x∈N(xi)

f(x),

where f(x) is the objective function. The search terminates when no better solution
is found in the neighborhood.
The general framework for local search can be described as follows:

1. Initialization: start with an initial feasible solution x1.

2. Neighborhood generation: build a neighborhood N(xi) of the current so-
lution xi and select a candidate solution x̃ ∈ N(xi).

17



Introduction

It is a set of solutions that can be reached from xi by making small changes to
it. A simple example for TSP is the 2-exchange neighborhood, where two cities
in the tour are swapped to create a new tour.

3. Acceptance test: check if the candidate solution x̃ should replace xi as the
current solution. If accepted, set xi+1 = x̃; otherwise, keep xi+1 = xi.

4. Stopping test: if a termination criterion is met (e.g., no improvement in the
neighborhood), stop the search and return the best solution found.

It is often combined with other methods in order to explore different neighborhoods
and improve its performance, such as tabu search and simulated annealing, to avoid
local optima by introducing randomness or memory-based techniques.

• Simulated Annealing (SA): is a probabilistic technique used to avoid local optima
by allowing moves to worse solutions. It can be seen as an extension of Local Search
that introduces randomness, mimicking the process of annealing in metallurgy.

The main idea behind Simulated Annealing is that it explores the solution space by
allowing the algorithm to accept worse solutions with a certain probability, which
decreases as the algorithm progresses. The probability of accepting a worse solution
depends on a parameter called the temperature, which gradually decreases over time.

Formally, let xi be the current solution and xnew ∈ N(xi) a candidate solution in
the neighborhood of xi. The acceptance probability P (xi, xnew) is given by:

P (xi, xnew) =

{︄
1 if f(xnew) < f(xi),

exp
(︂
f(xi)−f(xnew)

T

)︂
if f(xnew) ≥ f(xi),

where T is the current temperature and f(x) is the objective function.

The general framework for Simulated Annealing can be described as follows:

1. Initialization: start with an initial feasible solution x0 and an initial temper-
ature T0.

2. Neighborhood generation: at each iteration, generate a candidate solution
xnew ∈ N(xi), where N(xi) represents the neighborhood of the current solution.

3. Acceptance test: compute the acceptance probability P (xi, xnew). If the new
solution is better than or equal to, accept it. If it is worse, accept it with a
probability given by the Boltzmann distribution.

4. Cooling schedule: decrease the temperature T according to a predefined
cooling schedule (e.g., T = αT for some 0 < α < 1).

5. Stopping test: the algorithm terminates when the temperature reaches a
predefined threshold or no improvement is seen after a number of iterations.

• Tabu Search (TS): is an iterative algorithm designed to maintain a memory struc-
ture, known as a tabu list, which restricts certain moves. With this approach it is
possible to explore a wide solution space.
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The main idea behind Tabu Search is that it avoids cycling back to recently visited
solutions by marking certain moves as tabu (forbidden) for a fixed number of itera-
tions. This encourages the algorithm to search in unexplored regions of the solution
space, potentially finding or getting close to global optima.

Formally, let xi denote the current solution and N(xi) the set of feasible candidate
solutions in its neighborhood. The selection of the next candidate xnew ∈ N(xi)
follows a specific rule:

xnew = arg min
x′∈N(xi)\Tabu List

f(x′),

where f(x) is the objective function and the Tabu List restricts moves by tracking
recently altered solution attributes.

• Greedy Randomized Adaptive Search Procedure (GRASP): is a multi-
start or iterative process metaheuristic for combinatorial optimization. The method
consists of two phases: construction (generating a solution) and local search (finding
a local minimum). The construction phase builds a feasible solution by adding
the best available component according to a greedy function that is randomized
by limiting the choice to those components within the best candidates (Restricted
Candidate List). The local search phase then attempts to improve the solution by
exploring its neighborhood until a local optimum is achieved.

The key to GRASP’s effectiveness lies in its combination of greedy and random
construction of solutions, providing a balance between exploration (diversity) and
exploitation (intensity). Here is a brief overview of the steps involved in GRASP:

1. Initialization: set parameters, including the number of iterations and the size
of the Restricted Candidate List.

2. Iterative Process:

– Construction: build a randomized solution by greedily selecting compo-
nents from a restricted list.

– Local Search: apply a local search algorithm to improve the solution.
– Update: if the new solution is better than the best found so far, update

the best solution.

• Genetic Algorithms (GA): they are a class of population based optimization
algorithms inspired by the process of natural selection, in particular simulating the
evolutionary process.

The key components of a Genetic Algorithm are as follows:

– Population: a GA operates on a population of candidate solutions, each of
which is encoded as a string, or chromosome, that represents a potential solu-
tion to the problem.
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– Chromosome: each individual in the population is referred to as a chromo-
some. It represents the encoding of a candidate solution using a data structure
that is problem-specific. For example, in the case of the TSP, a chromosome
could be a permutation of cities.

– Fitness Function: it evaluates the quality of each chromosome. For optimiza-
tion problems such as TSP, the fitness function could be the total distance of
the tour. The fitness function serves as the driving force for evolution, promot-
ing better solutions over worse ones.

– Selection: individuals are selected from the population for reproduction based
on their fitness. Chromosomes with higher fitness have a greater probability
of being selected, if the principle of survival of the fittest is followed. Various
selection methods can be used, such as roulette wheel selection, tournament
selection, or rank-based selection.

• Ant Colony Optimization (ACO): it is inspired by the foraging behavior of ants
and is effective in solving combinatorial optimization problems. Ants communicate
via pheromones to indirectly coordinate their actions, a mechanism that ACO sim-
ulates, for example, to find good paths through graphs. It is particularly effective
for problems where the solution can be constructed step by step and can benefit
from a collective learning process, as done by ants in nature. This algorithm has
proven successful in different applications, including the Traveling Salesman Prob-
lem, scheduling, and network routing problems.

The ACO algorithm involves several key components and steps:

1. Initialization: initialize pheromone levels on all edges, typically to a small
positive value. Set parameters such as the number of ants, number of iterations,
pheromone evaporation rate ρ, and pheromone deposit coefficient τ .

2. Construct Ant Solutions: each ant constructs a complete solution based on
the pheromone trails and a heuristic value (e.g. inverse of the distance in the
Traveling Salesman Problem).

– The probability pkij that ant k moves from city i to city j is given by:

pkij =
ταij · η

β
ij∑︁

l∈Ak
ταil · η

β
il

where τij is the amount of pheromone on edge (i, j), ηij is the heuristic
value (e.g., 1

distanceij ), α and β control the influence of pheromone and
heuristic value respectively, and Ak is the set of cities yet to be visited by
ant k.

3. Update Pheromones:

– After all ants have completed their tours, update the pheromones on all
edges. This involves evaporating existing pheromones and depositing new
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pheromones based on the quality of the tours found:

τij = (1− ρ) · τij +
m∑︂
k=1

∆τkij

where ρ is the pheromone evaporation rate, m is the number of ants, and
∆τkij is the amount of pheromone deposited by ant k, typically given by:

∆τkij =
Q

Lk

if ant k uses edge (i, j) in its tour, and 0 otherwise. Here, Q is a constant,
and Lk is the length of the tour of ant k.

4. Termination: the algorithm terminates when a stopping criterion is met,
which could be a set number of iterations, or a satisfactory solution quality.

1.4.4 Approximation Algorithms

Approximation algorithms come with formal performance guarantees. These algorithms
are designed to provide solutions that are provably close to the optimal solution, usually
quantified using an approximation ratio. In particular, it quantifies how far the solution
provided by the algorithm is from the optimal solution. Formally, let I represent an
instance of an optimization problem, and let OPT (I) be the value of the optimal solution.
If H(I) is the value of the solution provided by an approximation algorithm H, the
approximation ratio ρ is defined as:

ρ = max
I

(︃
H(I)

OPT (I)

)︃
for minimization problems.

An approximation algorithm with an approximation ratio ρ guarantees that the so-
lution will be at most ρ times worse than the optimal solution. If ρ = 1, the algorithm
is said to be optimal. In general, a lower approximation ratio indicates a solution that is
closer to the optimum.

1.5 The Concepts Behind the Traveling Salesman Problem
(TSP)

The Traveling Salesman Problem (TSP, see [2]) is one of the most famous and studied
problems in combinatorial optimization. The TSP asks: given a set of cities and the
distances between each pair of cities, what is the shortest possible route that visits each
city exactly once and returns to the starting point? This simple question has a lot of
implications for optimization, computational complexity, and many practical applications
in logistics and transportation (optimizing delivery routes for trucks, planes, or drones),
routing, and also scheduling. These real-world applications highlight the importance
of solving or well-approximating TSP, as it directly impacts cost, time, and resource
management.
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Given n cities, there are (n− 1)! possible tours, which makes the problem grow expo-
nentially in size. This rapid growth in complexity places TSP in the class of NP-hard
problems, meaning that there is no known polynomial-time algorithm to solve all instances
of TSP efficiently. Consequently, TSP represents a crucial challenge in optimization the-
ory, serving as a benchmark for exact and heuristic algorithms.

1.5.1 Multiple Traveling Salesman Problem (mTSP)

A generalization of the classical TSP is the Multiple Traveling Salesman Problem (mTSP),
where multiple salesmen are involved, instead of only one. The mTSP can be described
as follows:

• A common depot serves as the starting and ending point for all salesmen.

• Each salesman is assigned a subset of cities, and each city must be visited exactly
once by one of the salesmen.

• The goal is to minimize an objective function such as the total distance traveled or,
in the case of Min-Max mTSP, the longest distance traveled by any salesman.

The mTSP is similarly NP-hard and inherits the complexity of the classical TSP. It
is relevant in contexts where multiple agents, such as delivery trucks or service vehicles,
are deployed from a central location to serve multiple destinations.

Challenges and Complexity

Both TSP and mTSP are challenging due to the exponential growth of possible solutions
with the number of cities or salesmen, making the exact algorithms infeasible for large
instances.
For these reasons, heuristic and approximation methods, such as local search, and tabu
search and others are often used to find near-optimal solutions in a reasonable amount
of time.
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Chapter 2

Variants of the Traveling Salesman
Problem

2.1 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) can be formulated as follows: given a set of
cities and the distances between each pair of cities, the goal is to determine the shortest
possible route that visits each city exactly once and returns to the starting city. This
route is known as a Hamiltonian cycle.

Formally [17], TSP is defined on a complete weighted graph G = (V,E), where:

• V is the set of vertices, each vertex representing a city or a destination to be visited
by the salesman;

• E is the set of edges, each edge corresponding to a direct route between two cities
(destinations);

• cij is the weight (or cost) assigned to each edge (i, j), representing the travel cost or
distance between city i and city j. These costs can be represented as a cost matrix
C = {cij}, where each element cij denotes the distance between cities i and j.

The goal is to find a permutation σ of the cities that minimizes the total travel distance.
The mathematical (integer) programming formulation of the TSP is presented below:
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Mathematical Model for the TSP

Objective Function:

min
n∑︂

i=1

n∑︂
j=1, j /=i

dij xij

Subject to:

n∑︂
j=1, j /=i

xij = 1 ∀i = 1, 2, . . . , n (2.1)

n∑︂
i=1, i /=j

xij = 1 ∀j = 1, 2, . . . , n (2.2)

∑︂
i∈S

∑︂
j∈S, j /=i

xij ≤ |S| − 1 ∀S ⊂ V, 2 ≤ |S| ≤ n− 1 (2.3)

xij ∈ {0, 1} ∀i, j = 1, 2, . . . , n, i /= j (2.4)

Here is an explanation of the model:

• Decision Variables: xij ∈ {0, 1} is a binary decision variable, indicating whether
the salesman travels directly from city i to city j. Specifically:

– xij = 1 if the route from city i to city j is part of the tour.

– xij = 0 if the route is not included in the tour.

• Objective Function: minimize the total travel distance, where dij represents the
distance (or cost) between city i and city j.

• Constraint 1: exactly one outgoing edge is selected for each city, i.e., the salesman
departs from each city exactly once.

• Constraint 2: exactly one incoming edge is selected for each city, i.e., the salesman
enters each city exactly once.

• Constraint 3: the subtour elimination constraint. This is crucial to make sure
that only a single Hamiltonian cycle is formed.

• Constraint 4: binary constraint on the decision variables xij , specifying that the
route between city i and city j is either included in the solution or not.

TSP is classified as an NP-hard problem, meaning that there is no known algorithm
capable of solving all instances of TSP in polynomial time. As the number of cities n
increases, the number of possible routes grows factorially (n!), due to the combinatorial
nature of the problem, making brute-force approaches computationally impractical for
large-scale instances.

To get a near-optimal solution fast, a greedy algorithm can be used, that just goes
to the nearest unvisited city in each step. Solving the TSP in that way means that, at
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each step, the distances from the current city to all other unvisited cities are compared:
correspondingly an O(n2) complexity holds for that approach.

But finding the shortest route among all possible routes requires a lot more operations,
and the time complexity for that is O(n!). Which means that, in the case of 4 cities, there
are 4! possible routes, which is the same as 4! = 4 · 3 · 2 · 1 = 24. And, for just 12 cities
for example, there are 12! = 12 · 11 · 10... · 2 · 1 = 479001600 possible routes!

Depot

A

B

CD

Figure 2.1: Graph Representation of a TSP

In Figure 2.1, an example of the TSP with one salesman is illustrated. It is an
Hamiltonian tour, starting and ending at the depot.

2.2 Multiple Traveling Salesman Problem (mTSP)

The Multiple Traveling Salesman Problem (mTSP) is a generalization of the classical TSP.
Instead of a single salesman visiting all cities, the problem involves multiple salesmen.
Each of them must visit a subset of cities, starting and ending at a common depot (or
home city).

Formally [9], mTSP can be defined on a complete weighted graph G = (V,E) as before
for the TSP, with a cost matrix C = {cij} associated to each pair of nodes.
Now there are m salesmen available to cover the set of cities and the objective of the
mTSP is to find m distinct tours, one for each salesman, such that:

• Each city is visited exactly once by one of the salesmen;

• each salesman starts and ends at the depot d;

• the objective is optimized according to a specific criterion.

One common objective is to minimize the total distance traveled by all salesmen, but
other objectives, such as balancing the workload among salesmen, may also be considered.
Similar to TSP, mTSP is also an NP-hard problem, and exact solutions become compu-
tationally impractical for large-scale instances. As a result, heuristic and metaheuristic
methods are frequently used.

In Figure 2.2, an instance of the mTSP with two salesmen is illustrate. Each salesman
is assigned a distinct subset of cities, starting and ending at the depot.
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Depot

A

B

CD

Salesman 1

Salesman 2

Figure 2.2: Graph Representation of a 2-Salesman mTSP

2.3 Min-Max Multiple Traveling Salesman Problem (Min-
Max mTSP)

Min-Max optimization problems focus on minimizing the maximum value of a set of
objective functions or decisions. They are particularly useful in scenarios where the worst-
case performance must be optimized.

Definition: Min-Max Optimization

Let f(x, y) be a bivariate objective function that depends on two variables x ∈ X
and y ∈ Y, where X and Y are feasible regions.
The goal is to find a decision x∗ ∈ X that minimizes the worst-case value of the
objective function, that is, the maximum value of f(x∗, y) over all possible y ∈ Y.
Formally, the problem can be written as:

min
x∈X

max
y∈Y

f(x, y)

A specific variant of the mTSP is the Min-Max Multiple Traveling Salesman Problem
(Min-Max mTSP). In this version, the objective is to minimize the maximum length tour
among the m salesmen, rather than the sum of total distance traveled.

This problem is particularly relevant in cases where it is important to balance the
workload among multiple agents, to make sure that no salesman has a disproportionately
long route compared to the others. They are also used in work management models to
optimize resources and fuel consumption in delivery by various operators.

Formally, let Ti denote the tour assigned to salesman i, and let the length of the
tour be defined as the total travel cost of the cities visited by salesman i. The objective
function could be expressed as:

min

(︃
m

max
i=1

length(Ti)

)︃
The challenge here is to distribute the cities among the salesmen in such a way that
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the workload is balanced and that no salesman is assigned an excessively long tour. Like
TSP and mTSP, min max mTSP is NP-hard and requires heuristic and metaheuristic
approaches to find near-optimal solutions.
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Chapter 3

Related Work

3.1 Benchmark Datasets

Before starting with the various approaches and algorithms developed over time for this
problem, it is important to mention the datasets defined in the literature and taken into
account to evaluate the different solutions. They will also be used in this thesis to evaluate
the solutions and make a comparison with other state of the art algorithms.

3.1.1 Dataset I

A total of eight instances are included in this set. It consists of a pair of TSP instances:
berlin52 (52 cities, included depot) and eil76 (76 cities) from TSPLIB (1991) [1] that are
solved with m = 2, 3, 5 and 7 salesmen for a total of 8 instances.

3.1.2 Dataset II

A widely studied set of instances defined by Carter and Ragsdale (2006) [5], which includes
three Euclidean two-dimensional TSP instances with 51, 100, and 150 cities. Solving each
instance for different numbers of salesmen (from m = 3, 5, 10 and 20) gives us 11 instances
in total. In particular, MTSP-51 is solved with m = 3, 5 and 10 salesmen, MTSP- 100
and MTSP-150 are solved with m = 3, 5, 10 and 20 salesmen.

3.1.3 Dataset III

A set of 20 instances defined by Wang et al. (2017) [14] that consists of five larger TSP
instances: rand100, ch150, kroA200, lin318 and rat783 from TSPLIB. In this set, m = 3,
5, 10 and 20 salesmen are used.

3.2 Different Tour Representations Proposed for mTSP

For mTSP, another challenge is to represent multiple salesmen, each with their own route,
in a way that allows the algorithm to manipulate and evolve the solution efficiently.
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In the literature several different encodings are proposed for mTSP. These represen-
tations differ in how they encode the sequence of cities visited by each salesman and how
they allow for operations like shifts and swaps between nodes. In fact, for each variant,
the operations’ formulation carried out is different.

1. Delimiter-based Encoding (Tang et al., 2000): cities are listed sequentially,
and delimiters (such as the value "-1") are used to separate the cities assigned to
different salesmen, for example:

4 1 3 5 −1 6 2 10 −1 8 9 7

in this case, the sequence of cities is assigned to salesmen based on where the delim-
iter occurs. Each substring between two delimiters represents a separate salesman
tour.

2. Two-Way Encoding (Park, 2001) [3]: this encoding uses two arrays, the first
one encodes the sequence of cities and the second represents the salesman assigned
to each city. For example: array 1 (cities):

6 4 1 8 2 3 9 5 7 10

array 2 (salesman):
2 1 1 3 2 1 3 1 3 2

here, city 6 is visited by salesman 2, city 4 is visited by salesman 1, and so on.

• Advantages: allows flexibility in city assignment.
• Disadvantages: complexity increases with the need to handle two separate

structures.

3. General Grouping Encoding (Brown et al., 2007) [6]: the array carries infor-
mation about which salesman is assigned to each city and the order in which the
salesman visits the cities. Each slot represents a city, and its value encodes both
the salesman and the position of the city in the route. For example:

1.2 2.2 1.3 1.1 1.4 2.1 3.3 3.1 3.2 2.3

here, 1.2 in position one means that city 1 is visited by salesman 2 and is the second
city on the salesmanâs route. 2.2 in position two means that salesperson two visits
city two, that is the second on the route and so on.

4. Simple Tour Representation (Mahmoudinazlou and Kwon, 2024) [19]: the
authors propose a simpler representation to address the challenges posed by the
previous methods. The encoding used here is a single array that represents the
sequence of all cities (a simple list of cities, without any delimiters or extra informa-
tion). Here each salesman has a separate array that encodes the sequence of cities
visited. An example is:

4 6 1 9 2 3 8 5 7 10

which is a sequence of all cities.
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3.3 Different Approaches Proposed for mTSP

3.3.1 Genetic Algorithms for mTSP

1. An early work by Tang et al. (2000) introduced a chromosome encoding scheme
for mTSP as part of a rolling scheduling system. Similarly, Park (2001) [3] pro-
posed a two-chromosome GA for the Vehicle Routing Problem with Time Windows
(VRPTW), incorporating partially mapped crossover (PMX) and various mutation
functions.

2. Carter and Ragsdale (2006) [5] and Chen and Chen (2011) [11] developed two-part
chromosome representations for encoding mTSP solutions, focusing on evaluating
different genetic operators for performance improvement. Brown et al. (2007) [6]
and Singh and Baghel (2009) [8] further explored novel encoding techniques, such
as the Grouping Genetic Algorithm (GGA) and many-chromosome representations,
to optimize mTSP solutions.

3. Innovative hybrid approaches have also been proposed. Wang et al. (2017) [14]
introduced a Memetic Algorithm with Sequential Variable Neighborhood Descent
(MASVND) for the Min-Max mTSP, demonstrating significant improvements in
solution quality. S. Mahmoudinazlou and C. Kwon (2024) [19] proposed a hybrid
genetic algorithm (HGA) to solve the Min-Max mTSP. The genetic algorithm uses
a unique TSP sequence to represent each individual and a dynamic programming
algorithm is employed to evaluate the individual subtours and find the optimal
mTSP solution for the given sequence of cities.

3.3.2 Other Heuristic for mTSP

1. Junjie and Dingwei (2006) [4] and Liu et al. (2009) [7] applied Ant Colony Opti-
mization (ACO) algorithms to solve different variations of mTSP, including multi-
objective versions. Metaheuristic algorithms such as Artificial Bee Colony (ABC)
and Invasive Weed Optimization (IWO), introduced by Venkatesh and Singh (2015)
[12], have also been combined with Local Search techniques to improve performance.

2. Soylu (2015) [13] proposed a General Variable Neighborhood Search (GVNS) for
mTSP, employing multiple local search functions to explore the solution space ef-
ficiently. More recent approaches, such as the Hybrid Search with Neighborhood
Reduction (HSNR) algorithm by He and Hao (2022) [16], utilize Tabu Search and
TSP-specific heuristics to optimize mTSP solutions.

3. Zheng et al. (2022) [15] introduced an Iterated Two-Stage Heuristic Algorithm
(ITSHA), which generates initial solutions using clustering techniques and then
refines them through variable neighborhood searches. Their approach has yielded
some of the best-known results on benchmark datasets.
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Chapter 4

Methodology

This chapter presents the methodology for solving different instances of the Multiple
Traveling Salesman Problem (mTSP). At first, the structure of the algorithm relied on
clustering to assign nodes to subtours (initialization), as developed in the literature by
Zheng et al. (2022) [15].

Then a new strategy was tried. In particular, following the intuition of Sasan Mah-
moudinazlou and Changhyun Kwon (2024) [19] about the importance of removing the
intersection in order to obtain optimal subtours, an algorithm has been developed that
can divide the points into sectors based on their spatial and angular position, so as to
obtain a strong initialization of the tours, but which at the same time allows an ade-
quate exploration of the neighborhood. This and other developments will be discussed
specifically.

After initialization, other algorithms iteratively explore neighborhoods to refine the
solution, using a heuristic transfer strategy and a TSP exact solver for optimal tour
calculations. It is made up of a mix of node movements between the tours of the various
salesmen.

In all these cases, a common algorithm is used to solve the TSP related to the subtours,
and it will be presented in this section.

4.1 Solving TSP for Each Salesman

In this section, we describe the mathematical formulation and computational approach
used to solve the Traveling Salesman Problem (TSP) for the nodes within each salesman’s
tour.

The problem is tackled using the Google OR-Tools framework [18], which implements
advanced algorithms to solve combinatorial optimization problems. The goal is to deter-
mine an optimal tour for each sector, that minimizes the total distance traveled while
returning to the depot.
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4.1.1 Formulation of TSP

As seen before, TSP can be defined as follows: given a set of N nodes (locations) and
a distance matrix D = [dij ], where dij represents the distance between node i and node
j, find a permutation σ of the nodes such that the total distance traveled is minimized.
Mathematically, the problem can be formulated as:

min
σ∈SN

N∑︂
i=1

dσ(i),σ(i+1),

where SN is the set of all possible permutations of the N nodes, and σ(N + 1) = σ(1)
ensures that the tour returns to the starting node (depot).

4.1.2 Distance Matrix Computation

To solve TSP, a key input is the distance matrix D, which encodes the pairwise distances
between all locations, including the depot. Let the coordinates of the depot be D =
(xd, yd), and the coordinates of the i-th node be Pi = (xi, yi). The distance dij between
any two points Pi and Pj is computed using the Euclidean distance metric:

dij =
√︂
(xj − xi)2 + (yj − yi)2.

The distance matrix is constructed as:

D =

⎡⎢⎢⎢⎣
0 d01 . . . d0N
d10 0 . . . d1N
...

...
. . .

...
dN0 dN1 . . . 0

⎤⎥⎥⎥⎦ ,

where dii = 0 for all i, as the distance from a point to itself is zero.

4.1.3 Routing Optimization Using OR-Tools

The OR-Tools library, developed by Google, is used to solve the TSP for each salesman.
The key steps in the optimization process are as follows:

Model Construction

The problem is modeled using the following components:

• Nodes: the depot and the nodes in the current sector are represented as indices in
the distance matrix.

• Distance Callback: a callback function is defined to retrieve the distance dij
between any two nodes i and j from the distance matrix.

• Objective Function: the total cost of the tour is defined as the sum of the distances
between consecutive nodes in the tour. OR-Tools minimizes this cost using built-in
optimization methods.
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Search Parameters

The optimization process is guided by the following search parameters:

• First Solution Strategy: a Cheapest Arc heuristic is used to generate an initial
solution. This heuristic selects the arc (edge) with the smallest cost at each step,
building a tour incrementally.

• Local Search: it applies local search techniques to improve the initial solution by
exploring neighboring solutions in the solution space.

Solution Extraction

Once the optimization is complete, the solution consists of:

• Tour: an ordered sequence of node indices representing the optimal tour. The tour
starts and ends at the depot.

• Tour Length: the total distance of the optimal tour, computed as the sum of the
distances between consecutive nodes in the tour.

Mathematically, the tour is represented as:

Tour = {σ(1), σ(2), . . . , σ(N), σ(1)},

where σ(1) represents the depot.
In conclusion, the use of OR-Tools ensures that high-quality solutions are obtained

for each salesman, leveraging state-of-the-art optimization techniques.
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4.2 Data Clustering and mTSP

As mentioned above, the first attempt involves clustering the cities into groups, with each
cluster representing a separate subtour. Let N denote the set of cities to be visited and
n the number of clusters (salesmen). Clustering is defined as:

Definition: Clustering

Clustering is a technique for partitioning a set of objects X = {x1, x2, . . . , xn}
into k groups (clusters) C1, C2, . . . , Ck so that the objects in each cluster are more
similar to each other than to those in other clusters.

The objective could be to minimize the variance within the clusters, often formulated
as

min
C1,C2,...,Ck

k∑︂
j=1

∑︂
xi∈Cj

∥xi − µj∥2,

where µj is the centroid of the cluster Cj .
In this case, given a set of nodes N and a desired number of clusters n, each node

i ∈ N is assigned to a cluster Ck where k = 1, . . . , n, such that each cluster forms a
distinct subproblem for the TSP.

4.2.1 The k-Means Algorithm

The k-means algorithm is one of the most widely used clustering methods, aiming to
partition a set of n data points X = {x1, x2, . . . , xn} in Rd into k clusters C1, C2, . . . , Ck.
The algorithm iteratively assigns points to clusters and updates the cluster centroids to
minimize the within-cluster variance.

Objective Function

The objective function of k-means is to minimize the sum of squared Euclidean distances
between points and their respective cluster centroids µj :

min
C1,C2,...,Ck

k∑︂
j=1

∑︂
xi∈Cj

∥xi − µj∥2.

This objective encourages compact clusters, with points close to the cluster centroid.
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Algorithm Steps

k-means Algorithm

1. Initialization: Randomly select k points as the initial centroids
µ1, µ2, . . . , µk.

2. Assignment Step: For each data point xi, assign it to the nearest cluster
Cj based on the centroid distance:

Cj = {xi : ∥xi − µj∥ ≤ ∥xi − µℓ∥ ∀ ℓ = 1, . . . , k}.

3. Update Step: Recalculate each centroid µj as the mean of all points in Cj :

µj =
1

|Cj |
∑︂
xi∈Cj

xi.

4. Repeat: Alternate between the assignment and update steps until conver-
gence (i.e., no changes in assignments or minimal decrease in the objective
function).

As we can see from the example below (3 operators, 51 cities), k-mean gives a starting
point for our algorithm, based on the clusters found.

Figure 4.1: Initial State of Data Points and
Depot

Figure 4.2: 3-Means Clustering with Final
Centroids

We will now show benefits and critical issues of this approach, as well as why different
paths have been tried.

37



Methodology

4.2.2 Benefits and critical issues of the Clustering approach

Benefits of the Clustering Approach

Immediate advantages in the initial node separation (initial solution) for the Min-Max
m-TSP:

1. Proximity-Based Grouping:
Clustering methods, particularly those based on spatial metrics (like k-means), are
effective in grouping closely located nodes together. This ensures that nodes within
the same cluster are geographically near one another, which can reduce intra-cluster
distances. Consequently, subtours formed within a cluster are likely to exhibit better
local compactness.

2. Capability to Identify Point Structures:
Clustering algorithms perform well in recognizing spatial structures, such as dense
regions of points. In practice, clusters can be formed around cities that are part of
a metropolitan area or a geographically isolated region. This capability aligns with
the idea of creating simple and geographically intuitive subtours, which simplifies
problem visualization and allows for more interpretable solutions.

Critical issues of the Clustering approach

Despite its advantages, this approach encounters several critical issues when applied to the
Min-Max m-TSP. These limitations arise from the inherent characteristics of clustering
algorithms:

1. Ignoring Depot Proximity:
Clustering algorithms do not inherently consider the distance between the depot
(the starting and end point for all salesmen) and the formed groups. This results
in clusters that may be located arbitrarily far from the depot, leading to highly
imbalanced subtour lengths.

For example, a cluster positioned near the depot might result in a short tour, while
a distant cluster would lead to a much longer one. This imbalance contradicts the
goal of minimizing the maximum tour length and makes it difficult to achieve the
optimum through genetic operators on the various subtours.

2. Imbalanced Cluster Sizes:
These algorithms often produce clusters with significantly varying sizes. This is
particularly problematic in the Min-Max m-TSP, as it leads to subtours with highly
unequal numbers of nodes. A cluster with too many nodes can create a dispropor-
tionately long tour for one salesman, while a cluster with too few nodes results in
underutilization of other salesmen. This undermines the principle of equity in the
workload distribution across salesmen, which is crucial to solving the problem.

3. Disregard for Inter-Cluster Intersection:
Clustering algorithms obviously operate independently of the interactions between
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clusters and the tours they form. Specifically, the placement of clusters does not ac-
count for how the resulting subtours interact with one another, particularly in terms
of overlaps or shared boundaries. This leads to the presence of many intersections
between the subtours, which could increase a lot the overall maximum length.

4. Distance Imbalance Across Tours:
Clustering algorithms do not optimize for the overall distribution of distances among
subtours. While they may minimize intra-cluster distances, the inter-cluster dis-
tances and the resulting subtour lengths can vary widely and without control. This
discrepancy may contradict the primary objective, which seeks to minimize the
longest tour.

Conclusion: Limitations Outweigh Benefits

While the clustering approach provides an intuitive method for initial node separation
and offers advantages such as local compactness and spatial structure recognition, its lim-
itations significantly outweigh these benefits in the context of the Min-Max m-TSP. The
neglect of depot proximity, imbalanced cluster sizes, disregard for inter-cluster interac-
tions, and distance imbalances across subtours collectively hinder its effectiveness. These
shortcomings lead to solutions that are suboptimal in terms of minimizing the maximum
tour length.

Given the critical nature of these limitations, it is evident that alternative approaches
must be explored to achieve more balanced and efficient initial solutions for the Min-Max
m-TSP. Although clustering may provide a useful starting point for exploring the solution
space, it is insufficient to address the complexities of this problem.

4.3 A New Proposal: Nodes Division into Angular Sectors

We now introduce a novel approach for partitioning nodes. The main idea is to divide
them into different and separated angular sectors, providing an initialization strategy for
solving Min-Max m-TSP.

The method dynamically allocates nodes into sectors based on their spatial orientation
and position relative to a central reference point, in this case it is strategically the depot.

This strategy leverages geometric properties of the node distribution to organize the
solution space effectively and provide a structured starting point for optimization.

4.3.1 Mathematical Framework

The core principle of the proposed method is the calculation of angular positions for all
nodes relative to the depot. Let the coordinates of the depot be defined as:

D = (xd, yd),

and the coordinates of a generic node Pi be:

Pi = (xi, yi), i = 1, 2, . . . , N,
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where N represents the total number of nodes in the dataset.
The angular position θi of node Pi with respect to the depot D is given by:

θi = arctan(yi − yd, xi − xd) ·
180

π
,

where the arctan function is used to compute the angle in the standard Cartesian co-
ordinate system. The output of arctan lies in the range (−180◦, 180◦], which is then
normalized to the interval [0◦, 360◦) using the following transformation:

θi =

{︄
θi if θi ≥ 0,

360 + θi if θi < 0.

This ensures that all angular measurements are positive and comparable within a single
360-degree framework.

4.3.2 Dynamic Allocation within an Angular Plane

To create an organized partitioning of the nodes, we define an angular plane limited by
two boundaries: a minimum angle θmin and a maximum angle θmax. This allows for
robustness in handling different instances (datasets) and cases (numbers of operators),
with the most diverse point distributions compared to the depot.

The range of this angular plane is:

∆θ = θmax − θmin,

where ∆θ represents the span of the plane in degrees. This plane is further subdivided
into nsectors. They are n equally sized angular regions or sectors, with each sector having
an angular width of:

∆θsector =
∆θ

nsectors
.

The boundaries of each sector are defined as:

θk = θmin + k ·∆θsector, k = 0, 1, . . . , nsectors,

where k denotes the sector index. Nodes whose angular positions θi lie within the bounds
of a sector are assigned to that sector. Formally, the sector assignment for a node is
determined as:

Sector ID = max{k : θk ≤ θi < θk+1}.

It is important to handle boundary cases carefully. If a node’s angle θi lies exactly on
the upper boundary of a sector θk+1, it is assigned to the next sector, ensuring that no
node remains unclassified.
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4.3.3 Handling Points Outside the Angular Plane

Nodes with angular positions outside the defined plane [θmin, θmax] require special han-
dling. In particular, these nodes are assigned to the closest sector based on angular
proximity.

To achieve this, we compute the centroid of each sector within the angular plane. The
angular centroid of sector k is calculated as:

θ̄k =

∑︁
i∈Sector k θi

|k|
,

where |k| represents the number of nodes assigned to sector k, and θi are the angular
positions of nodes in that sector.

For each node outside the plane, its angular distance to each sector centroid is com-
puted as:

∆θi,k = min
(︁
|θi − θ̄k|, 360− |θi − θ̄k|

)︁
,

which accounts for the circular nature of angular measurements. The node is assigned to
the sector with the smallest angular distance:

Assigned Sector = argmin
k

∆θi,k.

4.3.4 Algorithm Description

The overall process for partitioning nodes into angular sectors can be summarized as
follows:

Angular Allocation Algorithm Description

1. Compute the angular position θi of each node relative to the depot:

θi = arctan(yi − yd, xi − xd) ·
180

π
,

.

2. Normalize all angular positions to the range [0◦, 360◦).

3. Define the angular plane [θmin, θmax] and divide it into nsectors equal sectors.

4. Assign nodes within the angular plane to sectors based on their angular po-
sitions and the sector boundaries.

5. Compute the angular centroids of all sectors within the plane.

6. For nodes outside the angular plane, compute their angular distances to all
sector centroids and assign them to the nearest sector.

7. Return the final sector assignments for all nodes.
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4.3.5 Advantages of the Angular Sector Division Approach

The proposed method offers several advantages for initializing the Min-Max m-TSP solu-
tion:

• Spatial Organization: nodes are partitioned into geometrically meaningful sec-
tors, which simplifies the initial solution space and reduces computational complex-
ity in subsequent optimization phases.

• Depot-Centric Division: by using the depot as the reference point, the method
ensures that the partitioning reflects the practical constraints of the problem, such
as proximity to the starting point of each tour.

• Possibility of Different Initializations: by modifying the minimum and maxi-
mum angle parameters, various assignments in sectors (and therefore initializations)
can be obtained. This allows to test both more promising solutions and to start from
a worse conformation.

• Scalability: the method is computationally efficient and can handle large datasets
due to its reliance on angular calculations and straightforward sector assignments.

• Absence of Subtour Intersections: by assigning nodes to distinct angular sec-
tors, the method ensures that there are no intersections between arcs from different
operators. In fact, each sector contains arcs between nodes that are spatially well
grouped and non-overlapping with arcs in adjacent sectors subtours. This organiza-
tion ensures that the initial solution is cleaner, simplifying the subsequent optimiza-
tion process, as the initial solution is already well-structured and reflects a good
layout of the problem space.

4.3.6 Preliminary testing: A Numerical and Graphical Comparison Be-
tween Clustering and Angular Sector Division

Below are reported preliminary results on the Angular Sector Division approach on the
three considered datasets. Indeed, the approach provides a robust, structured and efficient
method for initializing Min-Max m-TSP solutions. By leveraging the geometric properties
of the nodes distribution, this strategy ensures an organized partitioning of the problem
space. As seen in the comparison with the initialization via k-means (which does not
take into account the position of the points with respect to the depot), Angular Sector
algorithm obtain already limited gaps with respect to the best known solution available in
literature (BKS) in every instance, and correspondingly represents a strong starting point
for optimization algorithms. Also, the best results reached between the two initialization
algorithms are highlighted.
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Initialization results on Dataset I instances

Instance m BKS Clustering Angular Gap (BKS-Cl) Gap (BKS-Ang)
berlin52 2 4110.2 5471.0 4201.0 33.11 % 2.21 %

berlin52 3 3191.0 4689.0 3222.0 46.94 % 0.97 %

berlin52 5 2441.4 4689.0 2662.0 92.06 % 9.04 %

berlin52 7 2440.9 3495.0 2440.0 43.18 % -0.04 %

eil76 2 280.9 308.0 290.0 9.65 % 3.24 %

eil76 3 197.3 223.0 200.0 13.03 % 1.37 %

eil76 5 143.4 163.0 154.0 13.67 % 7.39 %

eil76 7 127.6 148.0 154.0 15.99 % 20.69 %

Table 4.1: Clustering-Angular Initialization Comparison on Dataset I

(a) Berlin52, m=2, Cl (b) Berlin52, m=3, Cl

(c) Berlin52, m=5, Cl (d) Berlin52, m=7, Cl
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(a) Berlin52, m=2, Ang (b) Berlin52, m=3, Ang

(c) Berlin52, m=5, Ang (d) Berlin52, m=7, Ang

(a) eil76, m=2, Cl (b) eil76, m=3, Cl

(c) eil76, m=5, Cl (d) eil76, m=7, Cl
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(a) eil76, m=2, Ang (b) eil76, m=3, Ang

(c) eil76, m=5, Ang (d) eil76, m=7, Ang

Initialization results on Dataset II instances

Instance m BKS Clustering Angular Gap (BKS-Cl) Gap (BKS-Ang)
mtsp51 3 159.0 175.0 183.0 10.06 % 15.09 %

mtsp51 5 118.0 132.0 136.0 11.86 % 15.25 %

mtsp51 10 112.0 112.0 112.0 0.00 % 0.00 %

mtsp100 3 8507.0 11161.0 8648.0 31.20 % 1.66 %

mtsp100 5 6766.0 7584 7371.0 12.09 % 8.94 %

mtsp100 10 6358.0 6842.0 6602.0 7.61 % 3.84 %

mtsp100 20 6358.0 6878.0 6379.0 8.18 % 0.33 %

mtsp150 3 13039.0 18260.0 13675.0 40.04 % 4.88 %

mtsp150 5 8416.0 15148.0 9968.0 79.99 % 18.44 %

mtsp150 10 5557.0 8761.0 7082.0 57.66 % 27.44 %

mtsp150 20 5246.0 6470.0 5606.0 23.33 % 6.86 %

Table 4.2: Clustering-Angular Initialization Comparison on Dataset II
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Salesman division obtained via Angular Initialization in Dataset II:

(a) mtsp100, m=3, Ang (b) mtsp100, m=5, Ang

(c) mtsp100, m=10, Ang (d) mtsp100, m=20, Ang

(a) mtsp150, m=3, Ang (b) mtsp150, m=5, Ang

(c) mtsp150, m=10, Ang (d) mtsp150, m=20, Ang
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Initialization results on Dataset III instances

Instance m BKS Clustering Angular Gap (BKS-Cl) Gap (BKS-Ang)
rand100 3 3031.95 4203.0 3162.0 38.62 % 4.29 %

rand100 5 2409.63 2678.0 2545.0 11.14 % 5.60 %

rand100 10 2299.16 2391.0 2322.0 3.99 % 0.96 %

rand100 20 2299.16 2298.0 2299.0 -0.05 % -0.01 %

ch150 3 2401.63 3101.0 2477.0 29.12 % 3.14 %

ch150 5 1740.63 2274.0 1805.0 30.64 % 3.70 %

ch150 10 1554.64 1705.0 1690.0 9.67 % 8.71 %

ch150 20 1554.64 1554.0 1690.0 -0.04 % 8.71 %

kroa200 3 10691.0 14246.0 11048.0 33.25 % 3.34 %

kroa200 5 7412.12 12361 9239.0 66.77 % 24.63 %

kroa200 10 6223.22 6453.0 6724.0 3.69 % 8.03 %

kroa200 20 6223.22 7429.0 6279.0 19.38 % 0.88 %

lin318 3 15663.5 18328.0 16974.0 17.01 % 8.37 %

lin318 5 11276.8 15475.0 12688.0 37.23 % 12.60 %

lin318 10 9731.17 10947.0 10433.0 12.49 % 7.21 %

lin318 20 9731.17 9740.0 9843.0 0.09 % 1.15 %

rat783 3 3052.41 4278.0 3194.0 40.15 % 4.63 %

rat783 5 1961.12 2524.0 2225.0 28.70 % 13.40 %

rat783 10 1313.01 1664.0 1574 26.73 % 19.88 %

rat783 20 1231.69 1337.0 1263.0 8.55 % 2.54 %

Table 4.3: Clustering-Angular Initialization Comparison on Dataset III
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Salesman division obtained via Angular Initialization in Dataset III:

(a) rand100, m=3, Ang (b) rand100, m=5, Ang

(c) rand100, m=10, Ang (d) rand100, m=20, Ang

(a) ch150, m=3, Ang (b) ch150, m=5, Ang

(c) ch150, m=10, Ang (d) ch150, m=20, Ang
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(a) kroa200, m=3, Ang (b) kroa200, m=5, Ang

(c) kroa200, m=10, Ang (d) kroa200, m=20, Ang

(a) lin318, m=3, Ang (b) lin318, m=5, Ang

(c) lin318, m=10, Ang (d) lin318, m=20, Ang
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(a) rat783, m=3, Ang (b) rat783, m=5, Ang

(c) rat783, m=10, Ang (d) rat783, m=20, Ang
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Chapter 5

Developed Algorithms

This chapter presents the three optimization algorithms developed to address the Min-
Max m-TSP. Each algorithm focuses on redistributing nodes between subtours to balance
workloads and minimize the length of the longest subtour. Although the fundamental goal
is shared, the strategies for node selection, transfer, and optimization differ significantly
among the approaches and this is also a reason of why they perform well combined.

In particular,the first algorithm employs a tabu-based heuristic to iteratively adjust
the assignment of nodes between neighboring sectors. At each iteration it identifies the
sector with the longest tour and analyzes its nodes to find a candidate for relocation. This
algorithm is specially suitable for scenarios with minor imbalances, as it relies on direct
swapping nodes from the worst subtour and focuses on short-term improvements.

The second algorithm introduces a more structured redistribution of nodes. Unlike
the first algorithm, which focuses only on the longest sector, this method Simultaneously
considers donor sectors (those with the longest tours) and receiver sectors (those with the
shortest tours). So it moves nodes from the donor sectors to its neighboring sectors to
reduce the longest tourand transfers nodes from adjacent sectors into the receiver sectors
to balance the workload and improve the shortest tour. By addressing both the longest
and the shortest tours, this algorithm provides a more stable approach to balancing the
sector assignments.

Finally, the third algorithm refines the redistribution process by evaluating the overall
improvement in tour length before finalizing a move. It is useful in the exploitation phase.

The chapter details the key steps of each of them.

5.1 Single Shift Algorithm

The first algorithm, referred to as the Single Shift algorithm, employs a tabu-based heuris-
tic to iteratively adjust node assignments between subtours. The primary focus of this
method is to identify the sector (or subtour) with the longest length (the worst one), find
a candidate node within it, and reassign the node to a neighboring sector. By doing so,
the algorithm aims to minimize the length of the longest subtour in the current solution.

The choice of the candidate node uses a greedy criterion (minimum distance) that
locally reduces the cost, making maximum use of the precomputed distance matrix. This
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approach is based on the theory of nearest neighbors, which is often effective in TSP
problems.

The main steps of the algorithm are the following:

1. Preprocessing (Distance Matrix Calculation): at the beginning of the algo-
rithm, the distance matrix is computed for all nodes in the problem space, including
the depot. This matrix is used throughout the optimization process to efficiently
calculate distances between nodes and sectors, ensuring that the algorithm remains
computationally efficient.

2. Sector Tours Calculation: at the first iteration, the current sector tours are
calculated using the OR-Tool algorithm presented before. Then, at each iteration,
tours of sectors that have been changed by a shift are recalculated. This step ensures
that the current solution reflects the best possible arrangement of nodes within
each sector, given the current assignments. The sector with the longest subtour is
identified as:

Longest Tour Sector = arg max
k∈{1,...,nsectors}

length(Tk),

where Tk denotes the tour of sector k.

3. Gap Percentage Calculation: the gap percentage relative to the best available
tour length (Best Length) is computed to evaluate the quality of the current solution:

Gap Percentage =
max(length(Tk))− Best Length

Best Length
· 100.

This metric is used to monitor progress and compare the solution with the known
benchmarks.

4. Candidate Node Selection: once the sector with the longest subtour is identified,
the algorithm evaluates all nodes within it as potential candidates for reassignment.
For each candidate node:

• The neighboring sectors (i.e., the two adjacent sectors k − 2 and k + 2) are
considered as potential targets for reassignment.

• The Euclidean distance between the candidate node and all nodes in the adja-
cent sector is found by exploiting the pre-computed distance matrix.

• The candidate node that minimizes the distance to the neighboring sector and
is not currently restricted by the tabu list is selected for reassignment. This
selection ensures that the reassignment minimizes the disruption to the solution
while promoting balance across sectors.

5. Node Reassignment: the selected node is reassigned to the neighboring sector.
The tabu list is updated to include the reassigned node, preventing it from being
moved for a fixed number of iterations (e.g., 5 iterations). The tabu list promotes
exploration of new solutions by avoiding repetitive moves and cycling.
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6. Iteration and Stopping Criteria: the process is repeated for a fixed number of
iterations or until no movement between nodes is possible. At each iteration:

• If a candidate node is successfully reassigned, the algorithm updates the solu-
tion and marks the iteration as an improvement.

• If no candidate node can be reassigned, the algorithm terminates early, indicat-
ing that no further improvement is possible within the current configuration.

7. Best Solution Tracking: throughout the process, the algorithm tracks the best
solution found, defined as the solution with the smallest longest subtour length. The
time required to achieve this solution is also recorded to evaluate the efficiency of
the algorithm.

A recap of the algorithm is shown below:
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Double / Multiple Shift Algorithm

Input: Set of nodes with their coordinates
Output: Best sector tours with their lengths, percentage gap, and iteration details

1. Initialize the Parameters and Precompute the distance matrix:

• Initialize distanceMatrix, iterationCounter, tabuList and tabuResetFre-
quency

• Compute current sector tours lengths using OR-Tools

2. Iterative process:

• While (iterationCounter < maxIterations and not convergence):

– Identify sector with the longest tour
– for each node in the longest sector:

∗ for each neighboring sector:
· Calculate distance to nodes in this sector using distanceMa-

trix
∗ Select node that minimizes the distance and is not in tabuList

and reassign the selected node to this sector
– Recompute sector tours if any sector has changed
– Update tabuList with recent move, remove old entries based on

permanence
– Track the best solution:

∗ if (current solution better than bestSolution):
· bestSolution = current solution

– iterationCounter + = 1

3. Stopping criteria:

• If (iterationCounter == maxIterations or no nodes reassigned):

• Stop the algorithm

4. Return the best solution:

• Output best sector tours, their lengths and the percentage gap to the
optimal solution.

Performance Analysis: The Single Shift algorithm’s performance was studied with
respect to the permanence parameter of the tabu list, which controls how long a node
remains restricted from being moved again. This parameter influences the algorithm’s
exploration capabilities and convergence rate:

• Low Permanence: when the tabu list allows nodes to be reassigned after a short
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number of iterations, the algorithm explores the solution space more rapidly. How-
ever, this can lead to cycling, where nodes oscillate between sectors without improv-
ing the solution.

• High Permanence: a longer permanence of the tabu list prevents cycling and
allows the algorithm to focus on exploring new solutions. However, it may slow
down convergence as the search space is more constrained.

5.2 Double / Multiple Shift Algorithm

The second algorithm, referred to as the Double / Multiple Shift algorithm, extends the
concept of the Single Shift approach by introducing a more structured redistribution pro-
cess. Instead of focusing solely on the longest subtour, this algorithm simultaneously
considers both the longest and shortest subtours in the current solution (and also, if
requested, the second-longest and shortest, and so on). By redistributing nodes from
overburdened sectors (donors) to underutilized ones (receivers) the algorithm also mini-
mizes the variance of subtour lengths, bringing the system closer to a uniform distribution
and equity in workloads.

The steps of the algorithm are as follows:

1. Preprocessing (Distance Matrix Calculation): As done before, at the be-
ginning of the algorithm, a distance matrix is computed for all nodes using the
Euclidean distance.

2. Initialization:

• Set the iteration counter to 0 and define the maximum number of iterations.
• Initialize an empty tabu list to track recently moved nodes, preventing them

from being reassigned too quickly.
• Define a reset mechanism for the tabu list, which clears its contents every fixed

number of iterations.
• Initialize variables to store the best solution found during the process.

3. Iterative Redistribution Process: Repeat the following steps for each iteration:

(a) Reset Tabu List: Periodically reset the tabu list, as done before, to allow
previously restricted moves to be reconsidered. This mechanism avoids exces-
sive exploitation of the same solution space and promotes exploration of new
solutions.

(b) Sector Tours Calculation: Compute the current sector tours and their re-
spective lengths using OR-Tools. Identify:

• The donor sector, which is the sector with the longest subtour:

Donor Sector = argmax
k

length(Tk),

where Tk denotes the tour of sector k.
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• The receiver sector, which is the sector with the shortest subtour:

Receiver Sector = argmin
k

length(Tk).

(c) Phase 1: Node Transfer from Donor Sector.

• Evaluate all nodes in the donor sector as potential candidates for transfer
to neighboring sectors (e.g., sectors k − 2 and k + 2, as done before).

• For each candidate node:

– Check its distance to nodes in the neighboring sector using the distance
matrix.

– Select the candidate node that minimizes the distance to the neigh-
boring sector, ensuring it is not restricted by the tabu list.

• Reassign the selected node to the neighboring sector and update the tabu
list with the move.

(d) Phase 2: Node Transfer to Receiver Sector.

• Evaluate nodes from neighboring sectors as candidates for transfer to the
receiver sector.

• For each candidate node:

– Compute its distance to nodes in the receiver sector using the distance
matrix.

– Select the candidate node that minimizes the distance and satisfies the
tabu list constraints.

• Reassign the selected node to the receiver sector and update the tabu list.

(e) Gap Percentage Calculation and Best Solution Tracking: After both
phases, compute the gap percentage of the current solution and, if the current
solution improves upon the best solution found so far (i.e., has a smaller gap
percentage), update the best solution variables, including the time to achieve
it and the iteration number.

(f) Stopping Criteria: The iterative process stops when:

• The maximum number of iterations is reached, or

• No improvement is observed for a certain number of iterations (i.e., no
nodes are reassigned).

4. Return the Best Solution: After the iterations, the algorithm outputs the best
sector tours, their lengths, and the percentage gap relative to the optimal solution.

A recap of the algorithm is shown below:
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5.2 – Double / Multiple Shift Algorithm

Double / Multiple Shift Algorithm

Input: Set of nodes with their coordinates
Output: Best sector tours with their lengths, percentage gap, and iteration details

1. Initialize the Parameters and Precompute the distance matrix:

• Initialize distanceMatrix, iterationCounter, tabuList and tabuResetFre-
quency

2. Iterative process:

• While (iterationCounter < maxIterations and not convergence):

– If (iterationCounter mod tabuResetFrequency == 0):
∗ Reset tabuList

– Recompute sector tours if any sector has changed
– Identify donor sector (longest tour)
– Identify receiver sector (shortest tour)
– Phase 1: Node transfer from donor sector

∗ For each node in donor sector:
· For each neighbor sector:
· Compute distances using distanceMatrix
· Select node minimizing the distance not in tabuList
· Reassign node to neighboring sector

– Phase 2: Node transfer to receiver sector
∗ For each node in neighboring sectors:

· Compute distances to receiver sector using distanceMatrix
· Select node minimizing the distance not in tabuList
· Reassign node to receiver sector

– Track the best solution:
∗ Compute gap percentage relative to optimal solution
∗ If (current solution better than best solution):
∗ bestSolution ← current solution

– iterationCounter + = 1

3. Stopping criteria:

• If (iterationCounter == maxIterations or no nodes reassigned):

• Stop the algorithm

4. Return the best solution:

• Output best sector tours, their lengths, and the percentage gap to the
optimal solution.
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Performance Analysis: Similar to the Single Shift algorithm, the effect of the tabu
list’s permanence was analyzed:

• Exploration: The use of the tabu list ensures that repetitive moves are avoided
within a certain time window, preventing cycling.

• Exploitation: By periodically resetting the tabu list, the algorithm allows previ-
ously restricted moves to be revisited, after other shifts have been made.

This combination enables the algorithm to maintain a balance between improving the
current solution and exploring new areas of the solution space.

5.3 Convergence Phase Algorithm

The third algorithm, referred to as the Convergence Phase algorithm, takes an exploitation
approach to node reassignment. Rather than relying solely on local criteria, such as
minimum distance between nodes, this algorithm evaluates the overall improvement in
the solution before finalizing the transfer. By simulating the impact of each potential
move on the longest subtour length, it ensures that only improving moves are executed.
This focus on solution improvement emphasizes convergence and stability. To make this
process faster, at each iteration the iteration with the greatest impact on the worst tour
is selected and executed (mixed greedy approach).

Due to its complexity, this was tested and used on a solution already reworked by the
first two algorithms. In particular, it was useful for bringing an already stable system
towards convergence and to evaluate the contribution of every possible move within the
worst sectors.

The steps of the algorithm are as follows (Steps 1 and 2 are the same as before):

1. Preprocessing: Distance Matrix Calculation.

2. Sector Tours Calculation.

3. Simulated Node Reassignment. For each node in the longest sector:

• All potential moves to other sectors are simulated. This includes:

– Temporarily reassigning the node to a target sector.
– Recomputing the sector tours and their lengths after reassignment.

• The improvement is calculated as the reduction in the longest subtour length:

Improvement = Length of Current Longest Tour−Length of New Longest Tour.

• The move that results in the greatest improvement (i.e., the largest reduc-
tion in the longest subtour length) is selected. Only moves that produce an
improvement are considered valid.

4. Execution of the Best Move. Once the best move is identified the node is
permanently reassigned to the target sector.
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5. Stopping Criteria. The algorithm terminates when one of the following conditions
is met:

• The maximum number of iterations is reached.

• No improving moves can be found during an iteration, indicating that the
solution has converged.

Focus on Convergence: This algorithm places a strong emphasis on ensuring con-
vergence by evaluating the impact of each move before execution. This approach avoids
unnecessary or non-improving moves and ensures that the solution improves steadily over
time. While this strategy may result in longer computation times per iteration with re-
spect to the others (that are really fast), due to the simulation of potential moves, it
provides reliable solutions in some cases where the other two had stopped.

5.4 Further considerations

This section investigates computational complexities of the algorithms developed to solve
the Min-Max Multiple Traveling Salesman Problem. Each algorithm leverages specific
strategies for the problem’s characteristics, notably its combinatorial nature and the re-
quirement to minimize the maximum tour length among multiple salesmen.

5.4.1 Tabu Search and Local Search

Complexity Analysis

The computational complexity of these algorithms primarily arises from the local search
steps involved in exploring the neighborhood of solutions. Each iteration involves calcu-
lating moves within the neighborhood, governed by:

O(n×m),

where n represents the number of nodes, m the number of salesmen (sectors) involved.

Algorithm Suitability

The application of local search combined with tabu search fits well with Min-Max m-
TSP due to its ability to continuously improve the worst-case scenario (maximum tour
length) and also explore many different solution possibilities. By iteratively shifting nodes
between tours and reassessing the maximum tour length, the algorithm effectively reduces
the imbalance among the salesmen’s workload, aligning with the objective of the problem.

5.4.2 Mixed Global Search

Complexity Analysis

The complexity of the Convergence Phase algorithm is higher due to the necessity to
simulate each potential move’s effect on the entire system. The computational demand is
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characterized by:
O(n2 ×m),

This comprehensive approach ensures that only beneficial reassignments are made unlike
in previous cases, where pure exploration moves were also allowed.

Algorithm Suitability

The global search strategy is effective for Min-Max mTSP as it addresses the optimization
of the maximum tour directly by considering the systemic impact of each reassignment.
This is crucial in ensuring that the solution not only improves locally, but also moves to-
wards a globally optimized configuration, minimizing the maximum tour length across all
salesmen. Furthermore, the Convergence Phase algorithm is typically deployed after the
refinement steps, carried out by the Single Shift and Double/Multiple Shift algorithms.
This sequential application leverages the already substantially good solutions, which meet
or exceed, in some cases, the optimal configurations with the preliminary phases alone. In
some cases, the improvements achieved at the Double/Multiple Shift phase are sufficient
to either reach the best solutions, rendering the activation of the more global search phase
unnecessary, unless further refinement is required. This strategy not only improves the
efficiency of the optimization process, but also ensures that computational resources are
used only when needed, thus optimizing both solution quality and algorithmic perfor-
mance.

Conclusions

The mathematical strategies employed by the Single Shift, Double/Multiple Shift, and
Convergence Phase algorithms are designed to address the challenges presented by the
Min-Max m-TSP. The combination of solution search methodologies within a tabu search
framework provides a robust solution, reducing the maximum tour length effectively,
demonstrating their suitability in handling complex combinatorial optimization problems
and also different data distributions, as we will see in the next chapter.
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Chapter 6

Results and Tables

In this chapter we will present the results obtained from this thesis.
To ensure an effective comparison with our results, the tables contain, in addition to

the results of the state-of-the-art algorithms, the best known solution (BKS, previously
presented), the gap between the thesis and the best current solution (Gap Th-Best, in
case some recent algorithm has surpassed the BKS) and the time taken by the thesis to
reach the solution (Time Th).

6.1 Results on Dataset I instances

Instance m BKS HGA [19] Thesis Gap Th-Best Time HGA (sec) Time Th
berlin52 2 4110.2 4110.2 4116.0 0.14 % 4.10 s 3.55 s
berlin52 3 3069.6 3069.6 3145.0 2.44 % 3.30 s 1.02 s
berlin52 5 2440.9 2440.9 2465.0 0.97 % 2.90 s 2.34 s
berlin52 7 2440.9 2440.9 2440.0 -0.04 % 2.80 s 1.21 s

eil76 2 280.9 280.9 279.0 -0.68 % 5.20 s 5.02 s
eil76 3 196.7 196.7 197.0 0.15 % 5.00 s 2.44 s
eil76 5 142.9 142.9 142.0 -0.63 % 6.40 s 3.13 s
eil76 7 127.6 127.6 127.0 -0.47 % 4.70 s 6.42 s

Table 6.1: Results on Dataset I
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Figure 6.1: berlin52, m=2 after initializa-
tion

Figure 6.2: berlin52, m=2, after optimiza-
tion process

Figure 6.3: eil76, m=2 after initialization Figure 6.4: eil76, m=2, after optimization
process

6.2 Results on Dataset II instances

For these instances and for those of Dataset III the comparison will be made between
the best known solution (BKS, presented before), HGA [19], ITSHA [15] and HSNR [16]
algorithms (the most recent and best in the literature) and the thesis. The results obtained
with the thesis will also be compared in percentage with the best current solution (as seen
in the previous table, some research has exceeded the BKS so far).

Note that these algorithms use the following cut-off times on these instances (they
are the same also for Dataset III): n

5 for HGA and ITSHA, where n represents number of
cities in the current dataset and 1.36∗n

5 for HSNR.
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6.3 – Results on Dataset III instances

Instance m BKS HGA [19] ITSHA [15] HSNR [16] Thesis Gap Th-Best Time Th
mtsp51 3 159.0 159.0 159.0 159.0 159.0 0.00 % 3.87 s
mtsp51 5 118.0 118.0 118.0 118.0 118.0 0.00 % 3.83 s
mtsp51 10 112.0 112.0 112.0 112.0 112.0 0.00 % 0.90 s
mtsp100 3 8507.0 8507.0 8507.0 8509.0 8623.0 1.36 % 10.95 s
mtsp100 5 6760.0 6760.0 6777.0 6766.0 7012.0 3.64 % 16.16 s
mtsp100 10 6358.0 6358.0 6358.0 6358.0 6472.0 1.79 % 11.21 s
mtsp100 20 6358.0 6358.0 6358.0 6358.0 6358.0 0.00 % 1.98 s
mtsp150 3 13039.0 13039.0 13084.0 13174.0 13442.0 3.09 % 10.65 s
mtsp150 5 8416.0 8416.0 8466.0 8479.0 8715.0 3.55 % 8.41 s
mtsp150 10 5557.0 5564.0 5557.0 5616.0 5937.0 6.84 % 19.52 s
mtsp150 20 5246.0 5246.0 5246.0 5246.0 5246.0 0.00 % 9.62 s

Table 6.2: Results on Dataset II

Figure 6.5: mtsp51, m=3 after initializa-
tion

Figure 6.6: mtsp51, m=3, after optimiza-
tion process

6.3 Results on Dataset III instances
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Figure 6.7: mtsp150, m=3 after initializa-
tion

Figure 6.8: mtsp150, m=3, after optimiza-
tion process

Instance m BKS HGA [19] ITSHA [15] HSNR [16] Thesis Gap Th-Best Time Th
rand100 3 3031.95 3031.95 3031.95 3031.95 3077.0 1.48 % 2.40 s
rand100 5 2409.63 2409.63 2411.68 2411.68 2428.0 0.75 % 13.51 s
rand100 10 2299.16 2299.16 2299.16 2299.16 2298.0 -0.05 % 3.79 s
rand100 20 2299.16 2299.16 2299.16 2299.16 2298.0 -0.05 % 1.21 s
ch150 3 2401.63 2405.94 2425.87 2407.34 2397.0 -0.19 % 29.08 s
ch150 5 1740.63 1741.13 1740.63 1744.26 1791.0 2.89 % 2.11 s
ch150 10 1554.64 1554.64 1554.33 1554.64 1593.0 2.47 % 9.26 s
ch150 20 1554.64 1554.64 1554.33 1554.64 1554.0 -0.04 % 2.54 s

kroa200 3 10691.0 10691.0 10760.69 10801.80 11014.0 3.02 % 33.71 s
kroa200 5 7412.12 7421.01 7470.78 7418.87 7818.0 5.85 % 40.24 s
kroa200 10 6223.22 6223.22 6223.22 6223.22 6375.0 2.43 % 29.48 s
kroa200 20 6223.22 6223.22 6223.22 6223.22 6277.0 0.85 % 3.72 s
lin318 3 15663.5 15698.61 15918.24 15918.24 16369.0 4.50 % 78.64 s
lin318 5 11276.8 11289.26 11548.44 11458.20 11609.0 3.03 % 65.71 s
lin318 10 9731.17 9731.17 9731.17 9731.17 9880.0 1.53 % 76.59 s
lin318 20 9731.17 9731.17 9731.17 9731.17 9729.0 -0.02 % 12.54 s
rat783 3 3052.41 3128.69 3158.34 3262.52 3119.0 2.18 % 487.33 s
rat783 5 1961.12 1996.33 2024.27 2076.38 2081.0 6.07 % 487.89 s
rat783 10 1313.01 1393.77 1367.98 1358.06 1509.0 14.93 % 168.60 s
rat783 20 1231.69 1231.69 1231.69 1231.69 1259.0 2.22 % 252.53 s

Table 6.3: Results on Dataset III

6.4 Results comments and analysis

As can be seen from the numerical and graphical results, the presented algorithms are able
to, in a short time, fix and improve our already good initialization basis results. The times
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Figure 6.9: rand100, m=5, after initializa-
tion

Figure 6.10: rand100, m=5, after optimiza-
tion process

are better, in almost all cases, than the cut-off times applied by the algorithms in the lit-
erature for the various instances. This is possible thanks to a very good initialization, fast
calculation of the subtours using OR-Tools and the application of the heuristic algorithms
presented above. In particular, note that the spatial properties are well maintained even
by the final assignments of points among the various salesmen.

In the analysis of the results it is also important to underline that, using this solution
tool for every salesmen TSP, integer values are always obtained. It should therefore be
kept in mind when comparing with other algorithms which, for various instances, use
solvers that return floating-point values.

6.4.1 Fair Workloads: Final Tours’ Length Analysis

In addition to reducing the maximum tour length as much as possible, another fundamen-
tal objective of this problem is fair assignment of work (distance to be covered by each
operator).

The difference between the "best" (minimum distance) and "worst" (maximum dis-
tance) tours in the solutions obtained for the various instances will now be analyzed in
detail.

For Dataset I instances:
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Instance m Min Dist Max Dist Mean
berlin52 2 4095.0 4116.0 4105.5
berlin52 3 3123.0 3145.0 3136.67
berlin52 5 2443.0 2465.0 2451.8
berlin52 7 1960.0 2440.0 2205.86

eil76 2 277.0 279.0 278.0
eil76 3 185.0 197.0 192.0
eil76 5 137.0 143.0 140.0
eil76 7 124.0 127.0 125.71

Table 6.4: Analysis on Dataset I

Figure 6.11: Average Gap vs. Number of Operators in Dataset I

For Dataset II instances:

Figure 6.12: Average Gap vs. Number of Operators in Dataset II
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Instance m Min Dist Max Dist Mean
mtsp51 3 153.0 159.0 156.33
mtsp51 5 111.0 118.0 116.0
mtsp51 10 79.0 112.0 90.6
mtsp100 3 8554.0 8623.0 8583.0
mtsp100 5 6304.0 7012.0 6819.6
mtsp100 10 4022.0 6472.0 5481.33
mtsp100 20 2552.0 6358.0 4702.63
mtsp150 3 13377.0 13442.0 13408.0
mtsp150 5 8538.0 8715.0 8664.2
mtsp150 10 5824.0 5937.0 5893.61
mtsp150 20 3752.0 5246.0 4723.42

Table 6.5: Analysis on Dataset II

For Dataset III Instances:

Instance m Min Dist Max Dist Mean
rand100 3 3064.0 3077.0 3071.0
rand100 5 2307.0 2428.0 2381.2
rand100 10 1746.0 2298.0 2012.4
rand100 20 1639.0 2298.0 1895.78
ch150 3 2388.0 2397.0 2393.33
ch150 5 1749.0 1791.0 1780.6
ch150 10 1541.0 1593.0 1562.3
ch150 20 803.0 1554.0 1255.65

kroa200 3 10920.0 11014.0 11032.33
kroa200 5 7671.0 7818.0 7785.6
kroa200 10 6017.0 6375.0 6231.5
kroa200 20 3661.0 6277.0 5327.4
lin318 3 16296.0 16369.0 16324.67
lin318 5 11518.0 11609.0 11578.4
lin318 10 7703.0 9880.0 9048.4
lin318 20 6214.0 9729.0 8258.84
rat783 3 3118.0 3119.0 3118.67
rat783 5 2052.0 2081.0 2063.6
rat783 10 891.0 1509.0 1262.0
rat783 20 707.0 1259.0 996.75

Table 6.6: Analysis on Dataset III

From this analysis, it is clear that, for a lower number of operators, balanced solutions
are always generated, with the work being very well distributed. In instances with more
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Figure 6.13: Average Gap vs. Number of Operators in Dataset III

salesmen (7, 10 and 20), the presence of many operators causes a more unbalanced distri-
bution. It should also be taken into account that the algorithm stops when it reaches an
optimal conformity. In some cases, for example, the optimum is reached and the solution
is not handled further. Also, in cases with few cities, it is not always possible to reach the
optimum with a different configuration from the one already found. However, in those
with a greater number of nodes, a proposal could be to proceed with further refinement
of the subtours. This operation should be performed with particular care, making sure
not to cause a worsening of the currently longest tour.
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Chapter 7

Conclusions

This thesis focused on the search for heuristic and innovative solutions for the Min-Max
mTSP, a variant of the classical Traveling Salesman Problem that introduces the com-
plexity of multiple agents and the objective of minimizing the maximum route length.

At the beginning, the steps taken were those towards a theoretical understanding and
the reading of various papers in the literature, to better catch both the nature of the
problem and the strategies used up to this point. This phase was very useful and led to
the development of various scenarios and ideas.

The first practical attempts thus were those regarding the initialization algorithm. As
shown in the thesis, initially we were focusing on the separation of nodes in space through
clustering (in particular k-means, so as to be able to control the number of clusters, and
therefore salesmen, generated). The problems encountered with this development were
multiple: from the imprecise assignment of points to salesmen, to the complexity linked
to the excess of intersections in the tours generated. So, after further reasoning, it was
decided to try an alternative and completely new path.

The main inspiration here were the studies made by Sasan Mahmoudinazlou and
Changhyun Kwon (2024) [19] on the detection and removal (via specific algorithms) of
subtour intersections. Hence, the idea of an initialization algorithm capable of simplifying
the creation of subtours, dividing the nodes among the salesmen following a simple but
effective principle: their spatial position and angle with respect to the depot. This intu-
ition, then developed through the Angular Sector Division algorithm, proved not only to
be very effective in creating particularly advantageous initial subtours, but also extremely
robust to different datasets and therefore different spatial distributions of points with
respect to the depot.

For the optimization algorithms, the reasoning was to test various heuristic strategies
aimed at improving, step by step, the longest tour (following the main objective of the
problem) and at the same time thinking about the fairness of the distribution of work
between the various operators. The very first attempt was to iteratively lighten the worst
subtour of a node, as shown in the Single Shift algorithm. This was soon incorporated
with that of Double/Multiple Shift, which instead allows manipulating multiple tours at
the same time, removing nodes from the worst tours and adding ones to the best ones.
Finally, a last attempt towards the analysis and convergence of tours was made with the
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Convergence Phase, which combines a global approach with a greedy choice of the node
to transfer.

In this work, even if in some cases we produced results dominated by the state of the
art algorithms available in literature, still, by exploiting heuristic techniques and reasoning
related to the nature of the problem, we were able to develop a robust and interesting
solution for the Min-Max mTSP. This opens the door to possible future developments.
In particular, towards algorithms that increasingly take more into account the spatial
properties of the problem and exchange nodes in the most effective way possible.
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