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Abstract

Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tu-
mors, characterized by rapid progression, high heterogeneity, and resistance to stan-
dard treatments. Understanding its evolution under different therapeutic strategies
is crucial to improving patient outcomes. This thesis focuses on the development of
an analysis pipeline for longitudinal radiomics applied to MRI data obtained from a
study on immunotherapy treatments for glioblastoma in murine models. Radiomics
enables the extraction of quantitative information from medical images, allowing for
a more detailed assessment of tumor progression. In this work, MRI scans were ac-
quired weekly for four groups of mice subjected to different therapeutic approaches.
The main objective of this study is to exploit radiomics to evaluate disease evolution
in relation to treatment response and to assess the consistency of tumor progression
trends within each group. To achieve this, we developed models to estimate the ODE
governing the evolution of some key radiomic features. By analyzing the trends of the
most relevant radiomic features, we aim to determine whether different therapeutic
strategies lead to distinct tumor evolution patterns and to quantify the variability of
responses within each treatment group solely based on imaging exams.
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Introduction

Glioblastoma, also known as glioblastoma multiforme or grade IV astrocytoma, is
an extremely aggressive form of cancer that affects the central nervous system. It
accounts for approximately 45% of brain-originating tumors. According to the ISS
(Istituto Superiore di Sanità), it is most commonly diagnosed in individuals between
the ages of 45 and 75; however, cases have also been reported in pediatric patients.
A higher incidence has been recorded in men compared to women. 1

This thesis builds upon a research project conducted by the University of Genoa
in collaboration with the IRCCS Ospedale Policlinico San Martino in Genoa and the
Italian Ministry of Health. The primary objective of this study is to comprehensively
investigate glioblastoma progression under different treatment conditions by integrat-
ing multimodal data sources. These include MRI-based radiomic features, tumor
biopsies, and antibody titration analyses. To achieve this goal, four groups of murine
models were injected with the tumor and subjected to different treatment protocols:
the first group received no treatment (control group), the second group was treated
with an epigenetic drug, the third group received a combination of the same epigenetic
drug and an immunotherapy drug, and the fourth group was treated exclusively with
immunotherapy. Throughout the study, biological assays were performed to assess
the efficacy of these treatments and identify potential side effects, while MRI scans
were acquired at regular intervals to monitor tumor progression. Additionally, tumor
biopsies will be conducted post-mortem to obtain molecular data for further analysis.

A key focus of this thesis is the establishment of robust analytical pipelines for
longitudinal radiomic analysis derived from MRI scans. Radiomics enables the ex-
traction of quantitative imaging biomarkers, allowing for in-depth characterization
of tumor evolution. These features include fundamental parameters such as tumor
volume, diameter, and morphology, as well as more advanced textural attributes that
capture gray-level intensity distributions and structural heterogeneity. By systemat-
ically comparing these radiomic descriptors with antibody titration data and biopsy-
derived molecular markers, future research aims to determine potential concordances
between imaging-based assessments and histopathological findings. This multimodal
approach could provide critical insights into tumor dynamics, potentially identifying
novel imaging biomarkers that predict response to treatment.

1https://www.issalute.it
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As a first step in this thesis, we perform some basic Exploratory Data Analy-
sis (EDA) techniques. We conducted simple survival studies to establish baseline
differences between treatment groups. Following this, Principal Component Analysis
(PCA) was applied to assess whether the extracted radiomic features could effectively
differentiate among the four subject groups.

Since the ultimate goal is to identify specific correlations between imaging and
other collected data, we aimed to extract radiomic features that are easily inter-
pretable and analyze their longitudinal trends in both individual subjects and groups
to determine whether significant intra- and inter-group differences exist. Longitudi-
nal tracking of these features over time provides valuable insights into the progression
of glioblastoma under different treatments. To achieve this, we attempted to model
the longitudinal trends of these values using the Sparse Identification of Nonlinear
Dynamical Systems (SINDy) algorithm. However, as will be discussed later, this
approach was not effective for this particular dataset due to the complexity and vari-
ability of tumor progression: as a matter of facts, for each subject we collected at most
three MRIs. Consequently, we adopted an ad hoc pipeline implementation exploiting
Least Absolute Shrinkage and Selection Operator (LASSO) regression, which allowed
us to approximate the data more effectively. This method facilitated the identification
of key radiomic features that exhibit meaningful changes over time, ultimately offering
a clearer understanding of the temporal evolution of the studied features and provid-
ing deeper insights into the efficacy of the different treatments across experimental
groups.

By integrating survival analysis, radiomic feature extraction, and statistical mod-
eling, this study aims to develop a framework for assessing glioblastoma progression
in a more holistic manner. The insights gained from this research could contribute to
the refinement of imaging-based monitoring techniques, potentially informing future
preclinical and clinical investigations on glioblastoma treatment efficacy.

This thesis is structured as follows. In Chapter 1 we introduce the essential math-
ematical instruments used to build the analysis pipeline. An overview of the key
aspects of radiomics and a detailed description of the pipeline implemented are pro-
vided in Chapter 2. Finally, in Chapter 3 the biological framework of the experiment
will be discussed, along with the obtained results and their corresponding conclusions.
The preliminary results of these pipelines will be presented, confirming the con-
cordance with the quantitative imaging evaluation and preliminary survival analy-
sis. These results indicate that groups treated with the epigenetic drug exhibited a
stronger immune response compared to the others.



Chapter 1

Estimating the evolution of
the features along time

The purpose of this chapter is to describe the mathematical background used for the
elaboration of the pipeline.

1.1 Dataset exploration

In the following Section will be described tools used for dataset exploration.
Kaplan-Meier curve are employed to analyze the probability of survival over time in
clinical trials.
Secondly, Principal Component Analysis (PCA) will be presented; in our context, it
is used to analyze the variance structure of features extracted from medical images,
helping to identify which components best describe the variability in the data and
may be relevant for understanding the processes undertaken during the trial.

1.1.1 Kaplan-Meier survival curve

Kaplan-Meier survival analysis is a non-parametric statistical method widely used
in medical research to estimate the survival probabilities of patients or experimental
subjects over time.
It provides crucial insights into disease progression and treatment effectiveness by
analyzing time-to-event data, where the event of interest is typically death or disease
recurrence. The Kaplan-Meier estimator calculates the probability of surviving in a
given time interval while accounting for censored data, which occurs when a subject’s
outcome is unknown due to loss of follow-up or the study ending before the event
occurs.
This method enables researchers to compare survival distributions across different
treatment groups and assess median survival times, providing valuable information
for evaluating therapeutic interventions
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Estimating the evolution of the features along time

For each time instant, it is possible to evaluate the survival probability [4]; let
nt be the number of subjects living at the beginning of the selected moment of time
and dt the amount of those who died. Then, the probability of surviving at time t is
defined as

Pt = nt − dt

nt
(1.1)

Thus, the survival probability function that indicates the probability of survival in a
given time interval, is defined as:

S(t) =
Ù
ti≤t

Pti (1.2)

The usual picturing of the computed probabilities consists in constant trait function
whose traits are connected by vertical lines indicating the probability drop [12]. In
detail, time is represented on the X-axis and can be expressed in various units such
as years, months, or days, depending on the duration of the trial. The cumulative
survival is represented on the Y-axis, thus it belongs to the interval [0,1] or as in
percentage [0%,100%]. Since the probability is estimated, it is possible to evaluate
the confidence interval (CI) for each survival function. This means that for each time
point, the estimated probability is joined by a range, known as the confidence interval,
in which the true survival probability is expected to lie.

1.1.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique used to reduce the
dimensionality of high-dimensional datasets while preserving essential information.
It achieves this by transforming the original set of variables into a new set of uncorre-
lated ones, called principal components, which are linear combinations of the original
variables.
One of its main applications in data analysis is to obtain a graphical representation
of the joint distribution of numerical variables when the number of variables exceeds
two. This technique allows researchers to visualize correlations between variables and
identify patterns that facilitate data interpretation. The goal is to retain the greatest
dispersion of points in a lower-dimensional space, ensuring a more effective classifica-
tion and understanding of the dataset.
Dimensionality reduction is performed by replacing the original set of variables with
a new one called principal components, which capture the maximum variance of the
data. This process involves translating the coordinate axes by aligning the new origin
with the centroid of the dataset. Subsequently, new axes are determined such that
the variance of the data projections onto the first principal component is maximized,
followed by the second, and so forth. The principal components are ordered accord-
ing to the eigenvalues of the covariance (or correlation) matrix, with each component
capturing a progressively smaller portion of the total variance.
PCA allows to reduce data complexity while maintaining essential features, making

7



Estimating the evolution of the features along time

it a valuable tool in exploratory data analysis.
In survival analysis, principal component analysis can be particularly useful in iden-
tifying key features that distinguish different patient groups and contribute to a more
comprehensive understanding of disease progression and treatment response. In math-
ematical terms, defined X ∈ Rn×m, matrix with the numerical data, where m are the
variables and n are the features. Given a generic row of X, denoted by x, with his
variance and covariance matrix Σ, the purpose is to compute the linear combination

z = aT x

such that V ar(z) is maximized.
However, the solution is not unique, and therefore it is necessary to restrict the
problem with the constraint that a has unitary norm, aT a = 1.
Using the variance property, it can be shown that

V ar(z) = V ar(aT x) = aT V ar(x)a = aT Σa

where each component of Σ is given by

σij = 1
n

nØ
k=1

(xki − µi) (xkj − µj)

The problem described above, i.e maximizing principal component variance, can be
expressed as a maximum problem with constraint

max
a

s.t aT a=1

aT Σa

The solution of the problem is given by

(Σ − λI)a = 0

i.e. the solution is expressed by the orthonormal eigenvector of Σ.
Set of vectors a can be considered as the eigenvectors associated to the nonzero
eigenvalues λ of the matrix Σ.
The solution of the previous diagonalization is

Σ = ΓΛΓT

where Γ is a matrix of dimension m × p, with p = rank(Γ) ≤ m, corresponding to the
number of non zero eigenvalues, build from the eigenvector a. Λ is a diagonal matrix
of dimension p × p; the diagonal of Γ contains the p eigenvalues λ in ascending order.
Therefore, if there are m eigenvalues which are non zero, there are m distinct eigen-
vectors z, one for each solution; for this reason, z can be written with the following
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Estimating the evolution of the features along time

formula
z = ΓT x

That implies that the variance of z can be rewritten as follows

V ar(z) = V ar(ΓT x) = ΓT V ar(x)Γ = ΓT ΓΛΓT Γ = Λ

This brings to the definition of the components; for the first one, recalling the opti-
mization problem and using the fact that the eigenvalues are in ascending order, the
best result is the eigenvector v = (1,0,0,...) since it has to have unitary norm.
As a consequence a = u1, where u1 is the eigenvector associated with the largest
eigenvalue.
The other components are defined with the optimization problem, adding an addi-
tional condition[10][15]

max
a

s.t aT a=1, aT v=0

aT Σa.

In Python there are multiple libraries that help with the implementation of PCA. One
of the most used is scikit-learn; from it, it is possible to import two main functions,
StandardScaler and PCA [9].
The former is used in order to standardized the dataset column by column. It nor-
malizes the matrix, subtracting his mean x̄ and dividing it by his standard deviation
s

z = x − u
s

.

The latter is applied for the PCA implementation; this method gives the possibility
to define a priori the number of components or to evaluate them lately. Indeed, it
is possible to set a threshold value, in order to quantify the number of components
necessary to reach the established threshold [9].
The threshold value is determined by specifying a predefined level of variance that
should be preserved in the dimensionality reduction process

1.2 Machine learning based techniques for ODE
fitting

In the following Section there will be explained two techniques for ODE fitting: Lasso
regression and SINDy.
These techniques are used in order to solve systems of ODEs like

ẋ = f(x(t)) (1.3)

where x(t) ∈ Rn defines the system at time t, and f(x(t)) defines the dynamic restric-
tion that determine the equations of motion of the system.
The function f usually has few terms due to the sparsity of the physical models.
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Estimating the evolution of the features along time

1.2.1 Lasso regression

In statistics and machine learning, a regression analysis refers to a set of statistical
methods used to estimate the relationship between a dependent variable and other
independent variables.
Given N cases each with an outcome y ∈ RN and n covariates, X = {x1, x2, ..., xn}
∈ RN×n, the aim of Lasso regression is to solve the following minimization problem:

min
β0,β

I
NØ

i=1
(yi − β0 − xi

T β)2
J

(1.4)

constrained by
nØ

j=1
|βj | ≤ t,

where β0 is a constant coefficient, β ∈ Rn is the coefficient vector and t ∈ R is a
constant used to define the degree of penalization.
Using the ℓq norm definition

∥x∥q =
A

NØ
i=1

|xi|q
B1/q

the minimization problem (1.4), can be written as

min
β0,β

î
∥y − β0 − Xβ∥2

2

ï
subject to ∥β∥1 ≤ 1 (1.5)

It is feasible to define with x̄ the mean of xi and with ȳ the mean of yi; thus, the
estimator for β0, β̂, can be defined as β̂0 = ȳ-x̄T β, and so:

yi − β̂0 − xi
T β = yi − (ȳ − x̄T β) − xi

T β = (yi − ȳ) − (xi − x̄)T β

The previous approximations allows to rewrite (1.5) as:

min
β∈Rn

; 1
N

∥y − Xβ∥2
2

<
subject to ∥β∥1 ≤ 1 (1.6)

that is commonly used in the Lagrangian form:

min
β∈Rn

; 1
N

∥y − Xβ∥2
2 + λ∥β∥1

<
(1.7)

where the parameter λ has to be optimized in order to obtain the best value for the
coefficient β [14].
The penalty term involving ℓ1 is the key point of Lasso regression as it favors sparse
solutions. The same structured is recalled in another algorithm, SINDy, presented in
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Estimating the evolution of the features along time

the next subsection.

1.2.2 SINDy

Sparse Identification of Nonlinear Dynamics (SINDy) leverages that most physical
systems have few relevant terms used to define the dynamical equations leading to
sparse equations in a high-dimensional nonlinear function space.
Recalling Equation 1.3, the aim of the method is to estimate f close form with a data
driven approach. To do so, it is necessary to collect some observations x(t), that can
be features values, covering the role of a sampling of the domain of f . In addition, it
is required to have the corresponding values of ˙x(t). This can be either collected as
x(t) or numerically approximated.
In order to solve (1.3), SINDy requires to set a library, with functions that belong
to polynomial, trigonometric or constant class Θ(x). This library must be defined in
order to build a base, necessary to approximate data and it has to be multiplied to a
coefficient β, that guaranties the following approximation:

Ẋ = Θ(X)β (1.8)

which has a similar structure as the regression term in Equation (1.7) in Lasso regres-
sion. In order to solve the dynamical system, both x(t) and ẋ(t), have to be collected
at several times t1, t2, ..., tn and structured into two matrices as follows:

X =


xT (t1)
xT (t2)

...

xT (tn)

 =


x1(t1) x2(t1) ... xn(t1)
x1(t2) x2(t2) ... xn(t2)

...
...

. . .
...

x1(tn) x2(tn) ... xn(tn)

 (1.9)

Ẋ =


ẋT (t1)
ẋT (t2)

...

ẋT (tn)

 =


ẋ1(t1) ẋ2(t1) ... ẋn(t1)
ẋ1(t2) ẋ2(t2) ... ẋn(t2)

...
...

. . .
...

ẋ1(tn) ẋ2(tn) ... ẋn(tn)

 (1.10)

Consequently, Θ(x), is a matrix too; each column consists of linear or non liner
functions.
In order to implement this algorithm, there exist Python package such as PySindy
[7], that contain some prebuilt library; alternatively, a library of arbitrary functions
can be constructed as follows:

Θ(X) =


...

...
...

...
...

...

... α X X2 X3 ... sin(X) cos(X) ...
...

...
...

...
...

...

 (1.11)
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where α ∈ R and X, X2, X3 are polynomials and each column is composed by the
transformation of the vector X with the corresponding function.
The polynomials with degree higher than 1 can be constructed by the product of
multiple linear functions, such as the degree is equal to the chosen one; for instance,
given the polynomial function Xn, it can be written as:

Xn =


xn

1 (t1) xn−1
1 (t1)x2(t1) ... x1(t1)x2(t1)...xn(t1) xn

2 (t1) ... xn
k(t1)

xn
1 (t2) xn−1

1 (t2)x2(t2) ... x1(t2)x2(t2)...xn(t2) xn
2 (t2) ... xn

k(t2)
...

...
. . .

...
...

. . .
...

xn
1 (tm) xn−1

1 (tm)x2(tm) ... x1(tm)x2(tm)...xn(tm) xn
2 (tm) ... xn

k(tm)


where all the xi with i ∈ [1, . . . , k] are linear functions.
Consequently β is a vector with n components

β = {β1, β2, . . . , βn}

Each component is referred to a function of the base Θ(x).
Since not all base functions are enrolled in the approximation, this vector will regu-
larize their status in the dynamic system, causing the system sparsity.
Feasibly, this approach could be improved with the introduction of the matrix Z, built
with i.i.d Gaussian entries with zero mean and noise magnitude λ:

Ẋ = Θ(X)β + λZ (1.12)

1.3 How to choose the regularization parameter

For each minimization problem, it is crucial to optimize the regularization parameter.
Indeed, it is an open question for almost all minimization problems, since it strongly
depends on the data analyzed.
In this study, to find the best parameter λ, in order to define the best coefficient
vector β, Pareto curve Method or Elbow method was involved.
A point x∗ ∈ X is defined as Pareto optimal if and only if there is no other point
x ∈ X, such that Fi(x) ≤ Fi(x∗) and Fî(x) < Fî(x∗), for at least one î, where F is
vector of functions F(x) = {F1(x), F2(x), . . . , Fk(x)} [8].
The Pareto Front is defined as the set of all points in the parameter space that are
Pareto optimal; each point that builds a Pareto Front corresponds to a solution where
no others in the parameter space can improve one objective without deteriorating an-
other
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Estimating the evolution of the features along time

Figure 1.1: Picturing of the Pareto front with reference to a generic curve and a random
set of points

Figure 1.1 illustrates the functioning of the Pareto frontier in relation to a general
curve and a set of points. The set of points that belong to the Pareto Front, and
therefore are Pareto optimal, are colored in orange.
In the case study that will be presented, it was not used the entire set of the Pareto
Front, since it is supposed continuous and therefore infinite.
Indeed, this method was employed by estimating some values of the front for each
fitted problem. Generally, since the problem that has to be solved is in the form 1.7,
the two involved norms are represented on the axis. On the X-axis ∥β∥1 and on the
Y-axis ∥y − Xβ∥2

2.
Hence, the optimal λ, and consequently the best β vector, is obtained when the
distance from the origin (0,0) is minimum.

13



Chapter 2

Design and implementation
of analysis pipelines

The present chapter explores the fundamental principles of radiomics, which are es-
sential for any study involving medical imaging.
Subsequently, the chapter presents the analytical pipeline, outlining the key steps
undertaken in the study. To provide a clearer overview, a schematic representation is
given in Figure 2.1, summarizing the sequential steps of the entire methodology.

Figure 2.1: Schematic overview of the analysis pipeline

14



Design and implementation of analysis pipelines

2.1 Radiomics features extraction

Radiomics is an emerging discipline of medicine and oncology that uses machine learn-
ing and artificial intelligence to analyze and extract quantitative data from medical
images, including CT scans, MRI and PET.
In order to develop the radiomic pipeline extraction, three steps are required:

1. Image segmentation
Image segmentation is widely used across various fields of research. It refers to
the process of identifying and extracting some specific regions from an image.
Some of the extracted regions are usually called Region of Interest (ROI), be-
cause they indicate the areas subject to the subsequent analysis. When dealing
with three-dimensional images, the equivalent is the Volume of Interest (VOI).
The most common shapes for ROIs and VOIs are circular and spherical respec-
tively but in many case a manual definition is mandatory.
Image segmentation can be performed manually, semi-automatically, or fully
automatically. The first two methods are the most commonly used; however,
they come with several limitations, such as being time-consuming and prone to
human error.
There is no single approach to performing image segmentation. Various meth-
ods have been developed, such as clustering techniques, graph-based approaches,
random walks, and deep learning models, for instance Convolutional Neural Net-
works (CNNs). These represent just a few of the many strategies that researchers
can adopt, depending on the specific requirements of their applications [19].

2. Image processing
In the second step, attention is given to homogenize images used for the evalu-
ation of radiomic features. In this step, interpolation to isotropic voxel spacing
is commonly used for almost all features sets, in order to generalize them for
multiple datasets. Secondly, range segmentation and intensity outlier filtering
are performed. The aim of that process is to remove pixels or voxels from the
ROI or VOI that fall outside of a particular range of gray level [20]. The fi-
nal stage of image processing is the discretization of the image intensity inside
the ROI/VOI. It consists in clustering the original values following a particular
range intervals.

3. Feature extraction
This step involves evaluating the features within the Region of Interest (ROI)
or Volume of Interest (VOI). There are various types of radiomic features; the
most commonly used include intensity-based (histogram) features, shape fea-
tures, texture features, transform-based features, and radial features.
These features are typically classified as original; however, they can also be ana-
lyzed after applying specific filters, such as wavelet and logarithmic transforma-
tions, to enhance particular characteristics and extract additional information.
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Design and implementation of analysis pipelines

These filters are not always helpful. In fact, their usefulness also depends on the
type of image studied and the type of analysis performed.

Once these three steps are completed, the output is a matrix where the number of rows
corresponds to the number of the image series and the number of columns corresponds
to the extracted features.
In Figure 2.2 a MRI obtained during the trial is presented . The tumor zone, which
is outlined in green, will be the center of the region of interest (ROI) studied in the
radiomics pipeline.

Figure 2.2: MRI of mouse with glioblastoma multiforme. The tumor zone, which will
later be the center of the ROI studied during radiomics, is highlighted in green.

Furthermore, the number of extractable features might be extremely high. For
this reason, dimensionality reduction techniques are often applied before implement-
ing machine learning or deep learning techniques.
In the following case study, radiomic feature extraction was performed using PyRa-
diomics [16] Python package.
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2.2 Pipeline for fitting ODE models to longitudi-
nal radiomic data

Initially, the Exploratory Data Analysis (EDA) was crucial to understand the dataset
obtained from radiomics. From now on we will generally refer to a study in which
subjects are divided in different groups
The purpose of the pipeline is to establish a method for assessing the temporal evo-
lution of radiomic feature analysis. In our application contest, it is important to note
that each subject has its own set of values over time, but the number of observations
for each subject varies depending on the group to which it belongs, as this is linked
to the survival rate.
Given that the number of observations differs for each mouse and, in some cases, is
fewer than three, the decision was made to evaluate the behavior of the groups, rather
than focusing on individual mice.
To achieve this, a new dataset was constructed, containing the average value for each
time point. Since the experiment involved three distinct cohorts of subjects and the
time intervals between MRIs were not uniform, the inoculation day was set as day 0
for all three cohorts.
Once the new dataset was established, the aim was to investigate the temporal evo-
lution of feature values by fitting an Ordinary Differential Equation (ODE) for each
group and each feature using Lasso regression. Initially, an attempt was made to
implement SINDy using Python library PySINDy [3][7]. However, this algorithm re-
quires a larger number of time points, which made it unsuitable for our dataset.
For that reason it was decided to manually implement Lasso regression. Recalling
Section 1.2.1; the following steps were performed

1. Base definition: it was necessary to define a library, as in SINDy, used to
approximate data. Due to the large number or features involved, a base with
ten column was used, constructed as:

Θ =


| | | | | | | | | |
x x2 x3 x4 sin(x) cos(x) sin(2x) cos(2x) sin(3x) cos(3x)
| | | | | | | | | |


(2.1)

2. Derivative evaluation: as the derivative of the observations are not in the
dataset, we used used two function of the Python library SciPy [18] (splrep and
splev) to retrieve ẋ(t) values.
The former, requires as input two sets of nodes x,y and as output gives the vector
of knots, the B-spline coefficients and the degree of the spline. That output, with
the vector x, are used as input for the latter function, that evaluate the derivative
of the given spline.
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The combination of these two functions gives the left hand side of the ode: Ẋ.
Python code is provided below:

1 from scipy import interpolate

3 tck = interpolate . splrep (t, X, s=5)
4 X_dot = interpolate .splev(t, tck , der =1)

3. Lasso Regeression: Lasso function of the library sklearn.linear_model [9] has
been used. Firstly, it is necessary to define the model, choosing the parameter
λ, that is given as input; thereafter, the model has to be fitted, and it requires
y (Ẋ) and X (Θ), obtaining the following minimization problem:

min
β∈Rn

; 1
N

∥Ẋ − Θβ∥2
2 + λ∥β∥1

<

Python code is provided as below:

1 from import sklearn . linear_model as lm

3 #This function use alpha insted of gamma , c belong to R
4 model = lm.Lasso(alpha=c)
5 model.fit(Theta , X_dot)

4. Approximation definition: Lasso model returns the coefficients β, that en-
sure the solution to the minimization problem. To obtain them it was used
model.coef_, which recalls the model defined and fitted in the previous step. It
gives as output a vector containing the n values of β.
Additionally, model.intercept_ gives the independent coefficients, previously de-
noted as β0.
With this two set of parameter it is possible to compute an approximation of Ẋ:

X̃ = Θβ + β0 = Θ ∗ model.coef_ + model.intercept_ (2.2)

The main structure of the pipeline has been described; however, some enhance-
ments were necessary.
Lasso regression was selected over other methods because the aim of regularization
was to emphasize the sparsity of the matrix that contains all the βs. In fact, the
penalty function

λ
nØ

i=1
|βi| = λ∥β∥1

which is based on the l1 norm, enhances sparsity more effectively compared to other
lq norms with q ≥ 2 .
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The studied dataset has few observations with respect the number of features, es-
pecially considering the group subdivision. This has led to a high degree of data
variability; in fact, the metrics exhibit different orders of magnitude, which made it
difficult to identify a unique parameter λ for each considered feature. To address the
parameter choice issue, Pareto curve method, described in the Section 1.3, has been
applied.
In detail, the points of the front are defined as the couples (∥β∥1, ∥X̃ − Ẋ∥2

2) for each
feature and each value of parameter. Thus, a set of λ has been defined for each feature
to be modeled. Subsequently for each feature and for each value of λ, the model is
fitted and a point of the front is determined. Then, the optimal value of λ is chosen
by computing the following distance for each point

d =
ñ

(∥X̃ − Ẋ∥2
2 − 0)2 + (∥β∥1 − 0)2) =

ñ
(∥X̃ − Ẋ∥2

2)2 + (∥β∥1)2 (2.3)

and selecting the minima one. Taking into account the features have different orders
of magnitude, three intervals for sampling possible λ values are defined:

• I1 = [10−5,103];

• I2 = [10−8,10−3]

• I3 = [10−16,10−8]

This division was necessary because using interval I1 for features with lower order of
magnitude, lead to unacceptable fit of the model, giving trivial or null solutions. In
order to avoid having to define too wide intervals increasing significantly the compu-
tational time, the partition into 3 intervals was used.
Each interval was then sampled into 5000 equispaced point; for each feature, I1 was
tested first, with a for loop, defining the model and fitting it with λi with i = 1 : 5000;
for each iteration the distance defined in (2.3) was evaluated and for i ≥ 2. If the
distance is lower than the previous one, the best λ value was updated.
If, at the end of the for loop, the β vector corresponding to the best value of λ is
null, the same algorithm is implemented with I2 and later on, if it was given the same
output, the same process was done with I3.
The following is the applied Python:

1 import numpy as np
2 from numpy import linalg as LA
3 import sklearn . linear_model as lm

5 def def_parameter (X,t,Theta ,a,b):
6 #a and b are the extremes of the interval
7 tck = interpolate . splrep (t, X, s=5)
8 X_dot = interpolate .splev(t, tck , der =1)
9 Lambda = np. linspace (a,b ,5000)

10 for i in range( Lambda .shape [0]):
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11 model = lm.Lasso(alpha= Lambda [i])
12 model.fit(Theta , X_dot)
13 X_tilde = Theta@model .coef_ + model. intercept_
14 asseY = LA.norm(X_tilde -X_dot ,2) **2
15 asseX = LA.norm(model.coef_ ,1)
16 dist = math.sqrt (( asseX[i]**2) +( asseY[i]**2))
17 if i == 0:
18 beta = model.coef_
19 intercept = model. intercept_
20 opt_dist = dist
21 opt_alpha = Alpha
22 elif i > 0 and opt_dist >dist:
23 beta = model.coef_
24 intercept = model. intercept_
25 opt_dist = dist
26 opt_alpha = Alpha
27 return (c, opt_alpha )

1 [beta , best_lambda ] = def_parameter (X,t,1e-5,1e3)
2 if sum(beta >1e -10) == 0:
3 [beta , best_lambda ] = def_parameter (X,t,1e-8,1e -3)
4 if sum(beta >1e -10) == 0:
5 [beta , best_lambda ] = def_parameter (X,t,1e -16 ,1e -8)

As shown in the Python code, not only the cases when the vector of coefficients is null
were discarded, but also those in which all βi, with i = 1 : n, are lower than 10−10,
leading to the next interval. This is because it was observed that a coefficient vector
where all values have an order of magnitude smaller than 10−10, yet are nonzero, does
not properly approximate the studied curve and can be approximately considered
trivial .
As previously mentioned, the features had different order of magnitude, leading to dif-
ficulties in visually representing the results, thus complicating the comparison among
groups and features.
To easy the clinical interpretation of the results, a normalization of the data with
respect to the norm of the vector containing the analyzed feature value was used. In
this way, all the values belong to the range [−1,1] and can be compared more easily.
A further analysis was done by comparing the Week_Dataset with Onset_Dataset

and Last_Dataset; the former contains the values extracted from the first tumor
image of each subject, while the latter includes the values from the last image before
death.
In cases where a mouse has only one image, the two datasets will display identical
values in the corresponding row.
These dataset will be represented as dots overlapped on the curves generated by Ẋ
and X̃. These scatter plot also need to be normalized, and to do so the norm of the
vector containing the value of the corresponding feature in the Week_Dataset was
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used.
Python code for the normalization is provided as below:

1 import numpy as np
2 from numpy import linalg as LA

4 def norm_feature ( feature_vect ):
5 vect_norm = LA.norm( feature_vect ,2)
6 return feature_vect / vect_norm

8 def norm_scatter ( feature_vect , scatter_value ):
9 vect_norm = LA.norm( feature_vect ,2)

10 return scatter_value / vect_norm

At the end, we evaluate the intra-group variance by computing the distance be-
tween the interpolated curve X̃ and the values present in datasets Onset_Dataset
and Last_Dataset separately.
In order to do so Matlab symbolic computation is adopted.
Using the syms tool, a generic x was defined and consequently the base Θ was set as
explained in (2.1).
Since X̃ has been defined through the choice of Θ (2.2) and the fit of β, it is possible
to define the distance as:

dist =
ñ

(x − Px)2 + (g(x) − Py)2 (2.4)

where g(x) is the symbolic X̃ and (Px, Py) are the coordinates of the generic points
in the dataset Onset_Dataset or Last_Dataset.
However, in order to find the minimum distance, it was necessary to solve the mini-
mization problem:

min
x

ñ
(x − Px)2 + (g(x) − Py)2 (2.5)

where the set of points that minimize the distance are given by solving:

d
èñ

(x − Px)2 + (g(x) − Py)2
é

dx
= 0 (2.6)

By differentiation, the following equation is obtained:

d
èñ

(x − Px)2 + (g(x) − Py)2
é

dx
= [2(x − Px) + 2(g(x) − Py)g′(x)]

2
ñ

(x − Px)2 + (g(x) − Py)2
= 0

⇒ (x − Px) + (g(x) − Py)g′(x) = 0 (2.7)

Once find the set of point (x, g(x)) that nullify Equation (2.7); these were replaced

21



Design and implementation of analysis pipelines

in the Equation (2.5), allowing the minimum distance to be found. Thus the corre-
sponding orthogonal projection of the point (Px, Py) onto the curve generated by the
interpolation of the vector X̃ is given.
Once the distances were computed using the MATLAB pipeline, they were re-imported
into Python to analyze their trends across different groups.
For each group, the mean was calculated for every relevant feature. In fact, since
that kind of symbolic computation is highly demanding in terms of computational
resources, a selection of the most significant features was made. These key features,
chosen for their greater relevance, will be presented in the following chapter with
the corresponding results. Figure 2.3 illustrates the fundamental concept used for
distance computation.

Figure 2.3: Picturing of how the distance is computed. The light blue curve is the symbolic
representation of X̃; the red and green segments are the distances. The red one is the lower
and chosen one.

The light blue curve is the symbolic representation of X̃. The light green point
corresponds to a data point from Onset_Dataset or Last_Dataset. Orange and brown
dots are its orthogonal projections and the red and light green segments are the relative
distances between these points and the light green one.
The red distance is provided as output by the MATLAB pipeline, since it is the
smaller.

The following code contains the procedure for distance computing (the data import
and export sections have been omitted). At lines 20 and 35 it can be observed that
a check was done on the solutions found; this is caused by the fact that, given the
complexity of the function g(x), due to the chosen base Θ, some solutions might
belong to the complex space C. These solutions were automatically discarded.

22



Design and implementation of analysis pipelines

1 syms x
2 base =[x;x^2;x^3;x^4; sin (2*x);cos (2*x);...
3 ... sin(x);cos(x);sin (3*x);cos (3*x)];
4 g = coef*base+ intercept ;
5 gd = diff(g,x);
6 % b_values = vector containing data extracted from Onset_Dataset
7 % l_values = vector containing data extracted from Last_Dataset
8 Theta_o = double (subs(base ,x, table2array ( b_values (1))));
9 Theta_l = double (subs(base ,x, table2array ( l_values (1))));

10 P_o = [ onset_time (k) ,(coef(j ,:) *( Theta_o ))+ intercept (j)];
11 P_l = [ last_time (k) ,(coef(j ,:) *( Theta_l ))+ intercept (j)];
12 dist_onset = ((x-P_o (1))^2+(g-P_o (2))^2) ^(0.5) ;
13 dist_onset_min = (x-P_o (1))+(g-P_o (2))*gd;
14 dist_last = ((x-P_l (1))^2+(g-P_l (2))^2) ^(0.5) ;
15 dist_last_min = (x-P_l (1))+(g-P_l (2))*gd;
16 sol_onset = double (solve( dist_onset_min ,x));
17 sol_last = double (solve( dist_last_min ,x));
18 for p = 1: length ( sol_onset )
19 if imag( sol_onset (p)) == 0
20 eval_o = double (subs(dist_onset ,x, sol_onset (p)));
21 if p == 1
22 opt_dist_onset = eval_o ;
23 y_onset = double (subs(g,x, sol_onset (p)));
24 x_onset = double ( sol_onset (p));
25 elseif eval_o < opt_dist_onset
26 opt_dist_onset = eval_o ;
27 y_onset = double (subs(g,x, sol_onset (p)));
28 x_onset = double ( sol_onset (p));
29 end
30 end
31 end
32 PO_onset = [x_o ,y_o ];
33 for p = 1: length ( sol_last )
34 if imag( sol_last (p)) == 0
35 eval_l = double (subs(dist_last ,x, sol_last (p)));
36 if p == 1
37 opt_dist_last = eval_l ;
38 y_last = double (subs(g,x, sol_last (p)));
39 x_last = double ( sol_last (p));
40 elseif eval_l < opt_dist_last
41 opt_dist_last = eval_l ;
42 y_last = double (subs(g,x, sol_last (p)));
43 x_last = double ( sol_last (p));
44 end
45 end
46 end
47 PO_last = [x_last , y_last ];
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Chapter 3

Biological settings and
results

Glioblastoma is one of the most aggressive brain tumors, characterized histologically
by necrosis and/or microvascular proliferation. Nowadays, with molecular studies,
it is possible to make diagnosis of Isocitrate dehydrogenase wildtype (IDH-wildtype)
GBM on the basis of mutations alone. In addition, a very important marker in the
prognostic (but not diagnostic) definition of glioblastoma is methylation of the O6-
methylguanine-DNA methyltransferase (MGMT) gene promoter, which encodes an
enzyme responsible for DNA repair. After methylation, the MGMT gene is silenced,
thus increasing drug efficacy.
The experiment was carried three times, with three groups of 32 mice. These subjects
were eight-week-old C57black/6J mice, housed in pathogen-free colony [1].
Subjects were injected with tumor cells in their brain (from now on that day will
be called baseline) and they underwent MRI after approximately 20 days after the
baseline.
After the injection mice were divided in four groups, one per therapeutic process.
However, some mice died before the first MRI, and were discarded from the trial.
Comprehensively 60 mice were analyzed, divided as follows:

• A: it is the control group, no treatment has been used. It consist of 16 mice;

• B: it is composed of 15 mice, treated with an epigenetic drug;

• C: it is composed of 15 mice. They receive both epigenetic drug and im-
munotherapy;

• D: it is the smallest group, with 14 mice, treated with immunotherapy only.

After the first MRI, another exam is performed once a week to monitor the develop-
ment of the tumor. At the end of the experiment, almost all mice died due to the
tumor; the few who survived were sacrificed.
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In this chapter we describe some preliminary results obtained by processing the tu-
moral MRI images acquired during the trial.
The trial timeline is summarized in Figure 3.1.

Figure 3.1: Principal steps of the trial: Tumor cell inoculation and tumor growth; four
groups treatment with two different drugs; Data analysis with Python and Matlab

3.1 Dataset exploration

In this Section are reported the first descriptive results on radiomics data extracted
from MRI scans.
Since performing MRI on mice is a complex and time-consuming process—requiring
anesthesia followed by the imaging procedure some mice underwent MRI one or two
days before or after the preset seven-day interval. Therefore, although MRIs were
performed weekly, they were not always exactly seven days apart.
For this reason, we added a column to the dataset containing the difference between
the date of the MRI and the baseline date for each performed MRI. We take in account
three radiomics datasets:

• Onset_Dataset: it contains data from the first MRI for each mouse;

• Last_Dataset: it contains data from the last MRI for each mouse

• Main_Dataset: it contains data from all the MRI for each mouse

3.1.1 Survival analysis

Firstly, survival rate among the groups has been studied using Kaplan-Meier curve,
set with a confidence interval of 0.1. Results are reported in Figures 3.2 and 3.3.
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Figure 3.2: Kaplan-Meier curve from baseline day to the end of the trial. Each group has
been reported according to the legend. A: control group; B: epigenetic drug; C: epigenetic
drug and immunotherapy; D: immunotherapy

Figure 3.3: Kaplan-Meier curve from onset day to the end of the trial. Each group has
been reported according to the legend. A: control group; B: epigenetic drug; C: epigenetic
drug and immunotherapy; D: immunotherapy

It is remarkable that the two simulations present different behavior for each curve
as the probability of survival at instant t is influenced by the previous values for ti ≤ t

(Section 1.1.1).
Figure 3.2 represents the effective survival from the baseline. It can been observed
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that, for groups B and C, the probability at the last time point has approximately the
same value, which is not zero. Instead, the control group A ends with no possibility
of survival, and group C has a similar behavior.
In Figure 3.3, which represents the survival probability taking the tumor onset as the
first time point for each mouse, we can observe a different behavior. Group C is the
only one that starts with the maximum probability, instead, in according to the plot,
the other three at the onset has less possibility to survive. However, group C and B
has a similar trend for all the simulation, while D after one week deviates from the
other lines.
The combination of these results led to the conclusion that groups B and C start the
tumor evolution lately compared to A and D; accordingly, further analysis is needed
to understand whether a correlation can be found between this result and the com-
position of the GBM.
This observation is one of the main reasons for undertaking a radiomic analysis to
determine whether MRI data can be used to describe tumor growth and its response
to different treatments.

3.1.2 Radiomics extraction and dataset evaluation

Using the Python package PyRadiomics we extracted all the 1130 features. A list of
all the original ones can be found in Appendix A; the total amount of 1130 features is
obtained by extracting the same features with logarithmic and wavelet filters applied
to the image. Due to the wide number of extrapolated features, PCA is employed to
understand if we can reduce the dimensionality of the database by exploiting corre-
lation between features.
In Figure 3.4, it is shown the results of the PCA respectively for Onset_Dataset,
Last_Dataset and Main_Dataset, with their matrix of correlation related to the ex-
trapolated features.
Since the amount of features is extremely high, it is easier to find group of features
correlated with each other. In this case study, despite the implementation of the
PCA, pictured with the principal and the second component, no set of features can
be found that can be said to be uncorrelated.
This could lead to the conclusion that radiomics is not useful in order to differentiate
groups and so that it might not fit for dealing with these kinds of problems.
However, since the main goal of the experiment is to observe and study the evolution
over time an attempt was made by studying only the interpretable features and see
if there are longitudinal differences in the values.
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Figure 3.4: PCA analysis and Correlation matrix for the three datasets: Onset Dataset,
Last Dataset and Main Dataset

3.2 Longitudinal radiomic features analysis

In this Section the main selected features, in their original form, are presented along
with the performed preprocessing to fit properly the corresponding ODEs.
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3.2.1 Features selection

Among all the interpretable features, we selected the ones we consider the most rele-
vant in describing the texture of the tumor in MRI:

• First Order

– 10th and 90th Percentile: these features return, respectively, the 10th and
the 90th percentile of the studied image. In medical imaging, they represent,
respectively, the amount of black and white pixel. The former color goes to
indicate the presence of blood or dead tissue, which has begun, or is already
in a state of necrosis. The latter, represents that in the analyzed zone cysts
or other kind of fluid collections there were detected.

– Mean: this features return the mean of the matrix I that contains values of
the pixel in the ROI. So, the results is given by:

Ī = Mean = 1
N

NØ
i=1

I(i) where I is a set of N voxels included in the ROI

In our case a change of this value should indicate a change in the composi-
tion of the tumor.

– Kurtosis: this features is computed as follows:

Kurtosis =
1
N

qN
i=1

1
I(i) − Ī

24

3
1
N

qN
i=1

1
I(i) − Ī

22
42

where N is the number of voxels in the ROI and Ī is their mean. It repre-
sents how far the values deviates from the mean. A higher value of Kurtosis
means that values are concentrated around the mean value, otherwise they
are sparser.

– Skewness: this feature represents values asymmetry with reference to the
mean value. It is computed as:

Skewness =
1
N

qN
i=1

1
I(i) − Ī

23

Aò
1
N

qN
i=1

1
I(i) − Ī

22
B3

– Uniformity: it represent the homogeneity of the image, and it is a useful
marker for the tissue uniformity. It is calculated as

Uniformity =
NØ

i=1
J(i)2
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where J(i)s are the normalized probability of intensity level i. It indicates
how frequently a specific intensity level appears in the ROI.

• Shape 2D

– Elongation: in medical imaging values around 1 represents that shape of
the studied ROI, in this case the tumor, is closer to a circle.
This features returns the square root of the ratio between the length of the
smallest and largest principal component, which respectively refers to the
smallest and larger eigenvalue of the covariance matrix

Elongation =
ó

λmin

λmax

– SurfaceArea: this features returns the value of the area, calculated as the
sum of the area of all the triangle that compose the mesh used to extract
the ROI. It helps to understand the shape, and consequently the complexity
of the tumor.

• GLCM
Define P ∈ RM×M the co-occurrence matrix, which is a square matrix that
describes the second-order joint probability function of a ROI constrained by a
mask and p ∈ RM×M its normalization.
Called µx, µy, σx and σy respectively the mean and the standard deviation of
the marginal row and column probability. Then, we consider:

– Autocorrelation: it is a indicator of how pixels are correlated. Indeed, it
helps to understand image homogeneity and it is evaluated as

Autocorrelation =
MØ

i=1

MØ
j=1

p(i, j)ij

– Cluster Shade: represents pixel discrepancy from the mean value; a higher
value implies greater asymmetry about the mean. It is evaluated as follows

Cluster_Shade =
MØ

i=1

MØ
j=1

(i + j − µx − µy)3 p(i, j)

– Cluster Tendency: it is computed as

Cluster_Tendency =
MØ

i=1

MØ
j=1

(i + j − µx − µy)2 p(i, j)

This feature shows the extent to which voxels are grouped with similar gray
scales.
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– Contrast: It quantifies the variation in intensity between adjacent voxel.

Contrast =
MØ

i=1

MØ
j=1

(i − j)2 p(i, j)

Lower values mean an higher homogeneity.

– Correlation:

Correlation =
qM

i=1
qM

j=1 p(i, j)ij − µxµy

σx(i)σy(j)

His value shows the linear dependency of gray level values to their respective
voxel. It belongs to the interval 0, which means that they are uncorrelated
and 1, which means that they are highly correlated.

– Difference Entropy: it estimates the texture inhomogeneity of a medical
image and it is evaluated as follows

DE =
MØ

k=1
px−y(k) log2 (px−y(k) + ε)

where px−y(k) =
MØ

i=1

MØ
j=1

p(i, j) with |i − j| = k

ε a fixed small positive number

• NGTDM:
This acronym stands for Neighboring Gray Tone Difference Matrix. This matrix
quantifies the difference between a gray value and the average gray value of its
neighbors within a fixed distance δ. NGDTM contains the sum of absolute
differences for gray level i.

– Complexity: it assesses how complex the distribution of intensities in the
region of interest (ROI) is, and it is calculated as

Complexity = 1
Mv,p

MØ
i=1

MØ
j=1

|i − j|pisi + pjsj

pi + pj
where pi , 0, pj , 0

pi and pj are the gray level probabilities; si and sj are the sum of absolute
difference for gray level i and j. Ng is the number of considered voxel, while
Nv,p is the total number of voxel.

3.2.2 Dataset Manipulation

Before pipeline implementation, some changes had to be made to the dataset. In fact,
during the EDA, it was noticed that many mice, either died too early or presented no
more than two MRIs with tumor.
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Figure 3.5: Mice distribution related to days of life and MRIs obtained, presented for each
group

Figure 3.5 shows the distribution of mice versus the day of life (top row) and the
number of MRIs obtained for each group (bottom row). It is evident that in the
control group A mice live less days compared to the other; in addition, that group is
the only one in which no mouse has three MRIs.
Both pySINDy and LASSO need at least three time points, and so it was necessary
to manipulate the dataset before setting up the analysis pipeline.
A new dataset, called Dataset_Week, was built by mediating values over time for
each group. For each features, at each time-point values were summed and divided
by the number of MRIs performed; this resulted a dataset based on the four groups
and not mice with more values to be studied

• Group A: 7 time-points;

• Group B: 14 time-points;

• Group C: 9 time-points;

• Group D: 10 time-points

The obtained dataset, containing the mean values computed from Main_Dataset,
has the same features as this one. The aim, by studying this dataset, is to estimate
the average behavior of a group with respect to the treatment to which it is subjected.
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3.2.3 ODE fitting

A preliminary attempt was made using SINDy, implemented with the Python pack-
age PySindy. However, although the Dataset_Week contains more than three points
for each group, they are not evenly distributed along the timeline. This prevents the
algorithm from precisely approximating the curve, leading to poor approximations
when the time interval between the two curves is larger.
For that reason, Lasso regression has been implemented manually, in order to solve
Equation (1.8).
One of the most crucial steps in this type of analysis is to build a suitable base for the
available data. First, we have made some attempts exploiting SINDy’s preconstructed
base.
These libraries consist of Fourier series or, more simply, polynomial functions. How-
ever, these type of base do not allow adequate data approximation. Therefore, a
custom library was built with multiple functions so that it could be possible to study
which ones were the most useful.
Initially, a base was defined, such as the one presented below.

Θ(X) =


| | | | | | | | | |
x x2 log x log(2x) exp(x) exp(2x) sin(x) cos(x) sin(2x) cos(2x)
| | | | | | | | | |


(3.1)

It was tested, and its coefficients were saved in order to analyze which functions were
more efficient compared to the others.
As a result, it was obtained that the logarithmic and exponential functions were quite
ineffective since their coefficient in almost all features were null. In addition, it was
tested that despite the absence of these functions the approximations were too close
to each other. Another reason for ignoring logarithmic and exponential functions is
that the former, due to the fact that many features have values around zero, cannot
be evaluated with this type of transformation. Exponential functions don’t encounter
the same problem; however, their coefficients play no significant role in relation to
almost all features. The only features for which these functions are relevant are those
that have previously been subjected to a logarithmic transformation; nevertheless,
the selected features express data without any transformation being taken necessary.
All these considerations led to the definition of the library defined in Equation (2.1).

33



Biological settings and results

3.3 Results

Lasso regression was implemented as explained in Section 2.2.
Once the approximation of Ẋ has been evaluated with splrep and splev from the li-
brary SciPy [18], and X̃ has been calculated Lasso from sklearn.linear_model library
[9], results have been plotted.

3.3.1 Group behavior evaluation

First, we want to investigate whether there are significative differences between groups.
Figures 3.6 and 3.7 show some plots representing the fit of the ODE with our pipeline.
In each box which represents each group, the darker color (Black for A, Blue for B,
Red for C and Dark Green for D) indicates the curve X̃, while the lighter color (Grey
for A, light blue for B, orange for C and light green for D) indicates the curve Ẋ.
Plots are shown for features Complexity, Surface Area, Autocorrelation, Contrast,
Cluster Tendency and Cluster Shade.
Appendix B presents the order of magnitude related to the estimated β coefficients,
which are used to define X̃.
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Figure 3.6: Graphical representation of the curve Ẋ and its approximation X̃ for the
features Complexity, Surface Area and Autocorrelation. The four groups have been studied
and their curves have been plotted as reported in each legend.
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Figure 3.7: Graphical representation of the curve Ẋ and its approximation X̃ for the
features Contrast, Cluster Tendency and Cluster Shade. The four groups have been studied
and their curves have been plotted as reported in each legend.
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Curves shown in Figures 3.6 and 3.7 represent groups behavior along time-line;
they do not provide any information regarding the individual mouse’s response.
Table 3.3.1 presents MSEs (Mean Square Error) evaluated as reported in Equation
(3.2)

MSE = 1
n

nØ
i=1

1
Ẋi − X̃i

22
(3.2)

Group A Group B Group C Group D
10th Percentile 2.603 ·10−1 5.889·10−2 4.239 ·10−1 1.235·10−1

90th Percentile 1.285 · 10−2 4.503 ·10−2 7.894 ·10−3 7.052· 10−2

Autocorrelation 1.544· 10−5 3.423 ·10−2 2.161 ·10−5 2.003 ·10−4

Cluster Shade 3.859 ·10−7 2.479 ·10−2 1.271 ·10−6 2.896· 10−7

Cluster Tendency 4.763· 10−5 4.3· 10−2 1.130· 10−5 4.225· 10−5

Complexity 1.188· 10−5 4.051· 10−3 1.59· 10−2 1.259· 10−5

Contrast 6.477· 10−4 1.986· 10−2 8.741· 10−4 1.252· 10−2

Correlation 6.991· 10−3 8.075· 10−2 2.451· 10−2 1.365· 10−1

Difference Entropy 3.973· 10−2 9.451· 10−2 1.574· 10−2 1.31· 10−1

Elongation 7.342· 10−2 1.41· 10−1 1.469· 10−1 1.75· 10−1

Kurtosis 1.563· 10−1 4.654· 10−2 6.971· 10−2 3.759· 10−2

Mean 4.62· 10−3 9.336· 10−2 3.072· 10−2 1.74· 10−1

Skewness 9.881· 10−2 4.455· 10−2 1.310· 10−1 1.951· 10−2

Surface Area 9.6· 10−4 6.004· 10−2 4.442· 10−4 2.452· 10−3

Uniformity 3.519· 10−2 3.21· 10−2 9.618· 10−2 3.124· 10−2

Table 3.1: Mean Square Error of the selected features presented in Section 3.2. It has
been evaluated to evaluate the discrepancy between the curve X̃ and Ẋ

Clear agreement can be seen between the errors reported in Table 3.2 and the
graphical representations shown in Figures 3.6 and 3.7.
In most cases, the approximation error between the two curves results negligible,
which serves to indicate that the method is appropriate for the available data.
However, it is important to note that Group B has higher errors on average than the
other groups. This discrepancy can be attributed to the fact that Group B, despite
having the largest number of time points, also has a higher degree of heterogeneity in
the distribution of the data; in fact, by analyzing Dataset_Week, a greater variability
in timeline is observed.
Dataset_Week was built in order to study groups average behavior; nonetheless, it
might happen that some measures are more mouse dependent than others.
In group B there are more time-points than in the other groups for two reasons:
First, as shown in Figure 3.5, group B has the highest number of MRIs, and conse-
quently, this group has the greatest disparities in days of image acquisition.
As a result, its values reported in Dataset_Week, are much more mouse dependent,
causing this heterogeneity in the data and therefore higher error in data approxima-
tion.
A second analysis was conducted to further investigate the distribution of individual
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mice compared with the mean calculated for the each group. Unfortunately, given
that almost all mice have only two MRIs, and in group A none of them have three
measurements, it was not possible to follow the previous pipeline. Thus, we decide to
find at least a way to measure the discrepancy between our group models and each
single subject.

3.3.2 Intra group variability estimation

As a result, the initial and final distributions, respectively taken from Onset_Dataset
and Last_Datset, were analyzed for each mouse with respect to the curve X̃.
In Figures 3.8 and 3.9, scatter plots for Onset_Dataset are shown in pink, while those
for the Last_Dataset are colored in gray, for the same features displayed in Figures
3.6 and 3.7.
The plots of the same features presented in Figures 3.6 and 3.7 are shown.
In each plot, the first row represents the curve X̃ with the distribution of onset values
colored in pink.
Instead, the second row, represents the curve X̃ with the distribution of last values
colored in gray.
It is important to note that these plots have been limited to the interval [−1,1], within
which the curve exists, as it has been normalized with respect to its Euclidean norm.
However, the scatter plots, also normalized with respect to the same norm, do not
always fall within this range. These point so are considered as outliers.
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Figure 3.8: Graphical representation of the curve X̃ and onset and last values distribution
for the features Complexity, Surface Area, Autocorrelation. Pink scatters represent onset
values; gray scatters indicates last values.
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Figure 3.9: Graphical representation of the curve X̃ and onset and last values distribution
for the features Contrast, Cluster Tendency, Cluster Shade. Pink scatters represent onset
values; gray scatters indicates last values.
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We report in Table 3.2 the number of outlier for each feature and each group.

Onset_Dataset Last_Dataset
A B C D A B C D

10th Percentile 1 3 1 0 1 0 2 0
90th Percentile 0 0 0 2 0 0 0 2
Autocorrelation 3 0 0 7 6 0 9 8
Cluster Shade 0 1 5 5 0 1 5 6

Cluster Tendency 0 1 3 0 1 0 2 0
Complexity 11 0 4 0 9 0 9 2

Contrast 8 0 6 7 7 0 6 9
Correlation 0 0 0 3 0 0 0 4

Difference Entropy 4 0 0 1 2 0 0 0
Elongation 0 0 0 0 0 0 0 0
Kurtosis 0 1 3 2 0 0 1 0

Mean 3 0 0 2 3 0 1 0
Skewness 0 0 0 0 0 0 0 0

Surface Area 6 0 0 4 11 3 2 6
Uniformity 0 0 0 0 0 0 0 0

Table 3.2: Outlier distribution among features and groups. For each group, the number
of outlier has been evaluated and reported in the table, to obtain a general overview of the
number of points that are not represented in Figures 3.8 and 3.9

Combining information presented in Table 3.2, Figures 3.8 and 3.9, it can be con-
cluded that some features, e.g Complexity, despite being interpolated with a small
approximation error, present limitations in drawing conclusions about the behavior
of individual mice.
Whereas, features as Cluster Tendency, has smaller number of outlier, both in
Onset_Dataset and Last_Dataset; that helps in order to understand data distribution
for the fist and last MRI. It can be observed that for the first MRI data are focused
in a neighborhood of the initial time values; on the other side, for the last MRI values
are grouped around final time points.
Graphically it is complex to observe that the pink and gray values match, but it may
happen. That means that the corresponding mouse at the end of the trial, exhibited
only one MRI with tumor; numerically it is easier to be observed from the datasets.
Figures 3.6, 3.7, 3.8 and 3.9 partially validate arguments made with the Kaplan-Meier
curves, and presented in Figures 3.2 and 3.3.
In fact, group A, has a shorter time interval compared to the other three, which means
that mice who belong to the control group have a briefer prospectus of life. Groups B,
C and D show similar behavior, since both B and C are cured with epigenetic drug,
and both C and D with immunotherapy.
Hence, the last analysis performed is the evaluation of the distance between values
of individual mice in Onset_Dataset and Last_Dataset and the X̃, as presented in
Section 2.2 using Matlab.
A change of software was chosen, since Python presented computational difficulties.
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However, Matlab, despite its high capacity in symbolic computation, also suffered dif-
ficulties; in fact, some values were computed with the symbolic function syms [6], but
using a numerical approximation throught vpasolve [5]. This process is automatically
implemented by Matlab, when the equation to be solved is particularly complex as
the one in this study, presented in Equation (3.3).

min_dist = (x − Px) + (βΘ + β0 − Py) β
dΘ
dx

(3.3)

where Px and Py are the values taken from the dataset.
Average distances values are reported in Table 3.3.

Onset_Dataset Last_Dataset
A B C D A B C D

10thPercentile 0.239 0.242 0.256 0.249 0.243 0.251 0.261 0.243
90thPercentile 0.249 0.258 0.267 0.249 0.25 0.258 0.267 0.25

Autocorrelation 0.179 0.238 0.244 0.179 0.187 0.218 0.263 0.187
Cluster Shade 0.146 0.161 0.108 0.146 0.112 0.12 0.127 0.112

Cluster Tendency 0.214 0.243 0.142 0.214 0.222 0.258 0.169 0.222
Complexity 0.244 0.255 0.263 0.244 0.246 0.257 0.218 0.246

Contrast 0.239 0.25 0.172 0.239 0.239 0.244 0.155 0.239
Correlation 0.207 0.209 0.216 0.207 0.214 0.219 0.228 0.214

Difference Entropy 0.246 0.232 0.25 0.246 0.247 0.236 0.259 0.247
Elongation 0.206 0.204 0.201 0.206 0.203 0.219 0.228 0.203
Kurtosis 0.242 0.24 0.252 0.242 0.245 0.25 0.26 0.245

Mean 0.245 0.239 0.26 0.245 0.246 0.249 0.267 0.246
Skewness 0.245 0.245 0.225 0.246 0.247 0.251 0.241 0.247

Surface Area 0.246 0.243 0.263 0.246 0.118 0.152 0.241 0.118
Uniformity 0.226 0.239 0.245 0.226 0.22 0.222 0.246 0.22

Table 3.3: Distance between X̃ and data in Onset_Dataset and Last_Dataset. For each
group, the distance has been evaluated and normalized, in order to be compared with Figures
3.8 and 3.9

These distances have been evaluated symbolically and subsequently normalized
with respect to their norm, in order to have a data that can be compared with Figures
3.8 and 3.9.
Since they are normalized, their maximum value is equal to 2, when for instance, the
curve value is -1 and the point values is 1 at the same time point. Instead, their
minimum is equal to 0, when the curve and the point have the same value at the
same time point.
They were normalized to have a data that can be comparable with Figures 3.8 and
3.9.
It can be said that all reported values in Table 3.3 agree each other and show, in
general, a good approximation between the average trend of the groups and individual
mice.
However, it is pointed out that the distance of some features, e.g. Surface Area and
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Cluster Shade (except for group C), has a decreasing trend; in fact, in these cases
their value in the Onset_Dataset is higher than that present in the Last_Dataset.
This shows a greater heterogeneity in the data at the beginning of the trial, while at
the end all mice, on average, have a more uniform treatment response.
On the contrary, for instance Cluster Tendency, shows the opposite behavior; in fact,
it presents more data homogeneity at onset than in last time instant.
It has to be specified that these distances have been evaluated including outliers; these
points have not been removed from the dataset in order not to alter the dataset and
have a total view of the studied group.
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Conclusion

The aim of this study is to analyze longitudinal radiomic features, obtained from a
mice population, subject to injection of glioblastoma multiforme (GBM) cells.
These mice, divided in four groups, were cured with three different therapy: the first
groups was the control one, the second with epigenetic drugs, the third with both
epigenetic drugs and immunotherapy, and the fourth with immunotherapy only.
The former analysis, implemented with Kaplan-Meier curves and presented in Figures
3.2 and 3.3, was made with the aim to understand the survival probability of each
groups, so that it can be compared to the further radiomic analysis.
Subsequently, using Lasso regression, an ODE (1.8) for each selected radiomic feature
was studied and estimated in order to investigate the existence of differences between
groups. Plots of this preliminary study are reported in Figures 3.6 and 3.7.
These curves were studied and compared to the values of the features for single sub-
jects contained in Onset_Dataset and Last_Dataset. The former includes values of
the first MRI for each mouse, the latter contains values of the last MRI for each
mouse. These analysis were useful in order to understand intra-group variability. Re-
sults are presented in Figure 3.8 and 3.9
To explore this further, distances between these points and the estimated curve were
calculated and reported in Table 3.3.
In conclusion, starting from results obtained from Kaplan-Meier curves, group B and
C seems to have the highest survival probability along timeline, followed by group D,
while group A has the lowest one.
Those results have been partially validated by the radiomics analysis. In fact, Group
A has a shorter temporal interval compared to the other three, indicating that sub-
jects in the control group have a shorter follow-up period rather than a difference
in survival. Groups B, C, and D exhibit similar patterns, as both B and C receive
epigenetic drug treatment, while both C and D undergo immunotherapy and seems to
develop the tumor later in time. A set of relevant features has been chosen among all
the 1130 available, in order to observe and to study the tumor growth and behavior
for each group. We have selected non filtered features to ease the future biological
interpretation of the results.
These features study not only tumor growth, but also its composition, since glioblas-
toma multifome (GBM) is characterized by the growth of cysts and necrotic areas
inside of it.
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Conclusion

Results, shown in Section 3.3 seems to confirm that groups B and C had the best
response to treatment. More precisely, the use of the epigenetic drug has a clear
impact on the survival of the subjects while the combination of the drug and the
immunotherapy appears to further delay the onset of cancer. By comparing the ap-
proximate curves shown in Figures 3.6 and 3.7, but also the distribution of data at
the onset and last time as presented in Figures 3.8 and 3.9, it can be confirmed that
groups B and C have a similar behavior. In fact comparing the curves, it can be
noticed that in almost all the analyzed features the respective X̃ have a similar trend.
Distances and number of outliers reported in Tables 3.3 and 3.2, respectively, were
helpful in order to understand mice performance compared with the average perfor-
mance estimated by Ẋ and X̃.
Summing up all this information, it can be stated that epigenetic drug, to which both
groups were subjected, causes a better response than immunotherapy.
The next step, which will be implemented in the coming months, will involve a more
in-depth study of the subjects’ internal organs so that biologists can understand, if
they are present, what side effects the treatments have on the mice body.
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Appendix A

Features considered

[2]

Category Feature Name

First Order

Energy
Total Energy

Entropy
10th percentile
90th percentile

Mean
Median

Interquartile Range
Robust Mean Absolute Deviation

Root Mean Squared
Skewness
Kurtosis
Variance

Uniformity

Neighboring Gray Tone Difference Matrix (NGTDM)
Coarness
Contrast
Busyness

Complexity
Strength

Shaped-based (2D)

Mesh Surface
Pixel Surface

Perimeter
Perimeter Surface Ratio

Sphericity
Maximum Diameter
Major Axis Length
Minor Axis Length

Elongation
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Features considered

Category Feature Name

Gray Level Co-Occurence Matrix (GLCM)

Autocorrelation
Joint Average

Cluster Prominence
Cluster Shade

Cluster Tendency
Contrast

Difference Average
Difference Entropy
Difference Variance

Joint Energy
Joint Entropy

Informational Measure of Correlation (Imc1)
Maximal Correlation Coefficient (MCC)

Inverse Difference Moment Normalized (Idn)
Inverse Variance

Maximum Probabilty
Sum Entropy
Sum Squares

Gray Level Size Zone Matrix (GLSZM)

Small Area Empashis
Large Area Emphasis

Gray Level Non Uniformity
Gray Level Non Uniformity Normalized

Size Zone Non Uniformity
Size Zone Non Uniformity Normalized

Zone Percentage
Gray Level Variance

Zone Variance
Zone Entropy

Low Gray Level Zone Emphasis
High Gray Level Zone Emphasis

Small Area Low Gray Level Emphasis
Small Area High Gray Level Emphasis
Large Area Low Gray Level Emphasis
Large Area High Gray Level Emphasis
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Features considered

Category Feature Name

Gray Level Dependence Matrix (GLDM)

Small Dependence Emphasis
Large Dependence Emphasis
Gray Level Non Uniformity
Dependence Non Uniformity

Dependence Non Uniformity Normalized
Gray Level Variance
Dependence Variance
Dependence Entropy

Low Gray Level Emphasis
High Gray Level Emphasis

Small Dependence Low Gray Level Emphasis
Small Dependence High Gray Level Emphasis
Large Dependence Low Gray Level Emphasis
Large Dependence High Gray Level Emphasis

Gray Level Run Length Matrix (GLRLM)

Short Run Emphasis
Long Run Emphasis

Gray Level Non Uniformity
Gray Level Non Uniformity

Gray Level Non Uniformity Normalized
Run Length Non Uniformity

Run Length Non Uniformity Normalized
Run Percentage

Gray Level Variance
Run Variance
Run Entropy

Low Gray Level Run Emphasis
High Gray Level Run Emphasis

Short Run Low Gray Level Emphasis
Short Run High Gray Level Emphasis
Long Run Low Gray Level Emphasis
Long Run High Gray Level Emphasis
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Estimated coefficients

Denoted the functions that form the basis as follows:

• f0 = model.intercept_

• f1(x) = x

• f2(x) = x2

• f3(x) = x3

• f4(x) = x4

• f5(x) = sin(x)

• f6(x) = cos(x)

• f7(x) = sin(2x)

• f8(x) = cos(2x)

• f9(x) = sin(3x)

• f10(x) = cos(3x)

B.1 Group A

Base Functions f0 f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x) f10(x)
10th Percentile 10−3 0 0 0 10−5 0 0 0 0 0 0
90th Percentile 10−1 0 0 −10−3 104 0 0 0 0 0 0
Autocorrelation 104 −100 10−4 10−8 10−12 −103 103 102 0 −103 103

Cluster Shade 104 10−2 10−5 10−10 −10−14 −10−4 −10−4 −10−4 −10−4 −10−4 −10−4

Cluster Tendency 100 10−1 10−4 10−7 10−10 −101 102 0 0 −101 102

Complexity 105 −101 10−4 10−9 10−13 −103 103 0 103 103 0
Contrast −102 100 −10−3 −10−6 −10−9 −102 0 101 −102 101 −103

Correlation 10−2 0 0 0 0 0 0 0 0 0 10−3

Difference Entropy 100 −10−1 −10−4 −10−4 −10−5 −100 10−1 −10−1 −10−1 −10−1 −10−1

Elongation 10−2 0 0 0 0 0 0 0 0 0 10−2

Kurtosis −10−2 0 0 0 10−4 0 0 0 0 0 0
Mean 10−1 0 0 −10−3 −10−4 0 0 0 0 10−1 10−2

Skewness 10−2 0 0 0 10−2 0 0 0 0 −10−2 −10−2

Surface Area 102 −10−1 −10−2 10−5 10−6 0 −101 −102 101 −101 −100

Uniformity −10−3 0 0 0 0 0 0 0 0 10−2 0
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B.2 Group B

Base Functions f0 f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x) f10(x)
10th Percentile −10−2 0 0 −10−3 10−3 0 0 −10−2 −10−1 10−2 10−3

90th Percentile 100 0 0 −10−2 103 0 0 0 0 0 0
Autocorrelation 102 −100 10−5 10−8 10−12 103 −103 103 −103 103 −103

Cluster Shade 104 100 −10−3 −10−8 10−12 104 −104 104 104 −104 104

Cluster Tendency 103 −100 10−3 10−7 −10−9 −101 −100 −10−1 101 101 −102

Complexity 104 −100 10−4 10−10 −10−14 −103 103 −103 103 103 103

Contrast −103 101 −10−2 −10−6 10−8 −102 101 102 102 −102 102

Correlation 10−3 0 0 0 0 0 0 0 0 0 10−6

Difference Entropy 10−4 0 0 10−5 −10−7 0 0 0 0 0 0
Elongation −10−4 0 0 0 0 0 0 0 0 10−6 0
Kurtosis −10−1 0 −10−3 10−4 10−4 0 0 10−1 10−1 10−1 10−2

Mean 10−1 0 −10−2 −10−4 10−4 0 0 0 10−2 10−3 10−2

Skewness 10−2 0 0 0 −10−3 0 0 10−3 0 10−3 0
Surface Area −101 100 −10−2 −10−7 10−6 −101 101 100 −101 −101 −101

Uniformity 10−5 0 0 0 0 0 0 0 0 −10−3 0

B.3 Group C

Base Functions f0 f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x) f10(x)
10th Percentile 10−1 0 −10−1 10−4 10−3 0 0 10−1 0 0 −10−2

90th Percentile 100 0 0 −10−2 10−3 0 0 0 0 0 0
Autocorrelation 104 −101 10−4 10−7 10−11 −102 −102 103 103 103 103

Cluster Shade 103 10−1 10−4 10−8 −10−13 103 104 −104 −104 −104 104

Cluster Tendency 103 −100 10−4 10−8 10−11 −102 −102 0 −102 −102 101

Complexity −105 100 −10−5 −1010 10−14 −104 −105 −104 −105 −104 −104

Contrast −102 100 10−3 −10−6 −10−9 102 −101 −102 102 102 −102

Correlation 10−2 0 0 0 0 0 0 0 0 −10−2 10−2

Difference Entropy −10−2 0 0 10−3 −10−4 0 0 0 0 10−2 0
Elongation −10−3 0 0 0 0 0 0 0 0 0 10−6

Kurtosis 10−1 0 0 −10−3 −10−4 0 0 0 0 −10−2 10−2

Mean 10−1 0 0 −10−2 10−3 0 0 0 0 0 0
Skewness 10−3 0 0 0 0 0 0 0 0 10−3 0

Surface Area 101 −100 10−2 10−5 −10−7 −10−1 0 −101 −101 100 −101

Uniformity 10−3 0 0 0 0 0 0 −10−3 0 −10−2 0
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B.4 Group D

Base Functions f0 f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x) f10(x)
10th Percentile −10−1 0 0 10−3 −10−3 0 0 0 0 0 10
90th Percentile −10−1 0 10−3 10−4 10−5 0 0 10−1 −10−1 −10−1 10−2

Autocorrelation −103 100 10−4 −10−8 −10−11 −104 −103 −103 −103 103 103

Cluster Shade 104 −100 −10−4 10−9 −10−13 −104 −104 −104 104 103 −104

Cluster Tendency 103 −100 −10−4 −10−7 −10−10 −102 101 101 102 100 −102

Correlation −10−1 10−1 −10−2 10−1 10−1 10−1 10−1 10−1 10−2 10−1 10−2

Complexity −104 100 −10−5 −10−9 −10−14 104 −104 −104 104 104 −102

Contrast −103 100 −10−2 −10−5 10−7 103 −103 103 −103 103 103

Difference Entropy 10−2 0 0 −10−3 10−4 0 0 0 0 −10−2 0
Elongation −10−3 0 0 0 0 0 0 0 0 0 10−5

Kurtosis 10−1 0 −10−2 0 10−4 0 0 −10−1 −10−1 −10−1 0
Mean −10−2 0 0 0 10−5 0 0 0 0 0 0

Skewness 10−2 0 0 −10−2 −10−2 0 0 0 10−3 10−2 0
Surface Area 102 −100 10−2 −10−5 −10−7 −102 102 101 102 102 −102

Uniformity 10−3 0 0 0 0 0 0 −10−3 0 −10−2 0
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