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Abstract 
Vegetation plays a fundamental role in the climate system, influencing energy exchange, the 

hydrological cycle and atmospheric composition. At the same time, vegetation dynamics are strongly 

influenced by climatic conditions, creating complex feedback mechanisms that regulate the Earth’s 

climate. Representing these interactions between climate and vegetation is essential in numerical 

climate models, which must realistically simulate vegetation to improve the representation of the 

climate system. This thesis focuses on the Planet Simulator (PlaSim), an Earth system Model of 

Intermediate Complexity, and on the Simulator for Biospheric Aspects (SimBA), its embedded simple 

dynamic vegetation model. SimBA can operate in two modes: in the non-interactive vegetation mode 

simulated vegetation does not influence the climate, while in the interactive mode vegetation 

influences the climate through four land surface variables: surface albedo, surface roughness, surface 

conductance and soil water holding capacity. 

The work begins with an introduction on the role of vegetation in the climate system, with a focus on 

Leaf Area Index (LAI), a variable used as an indicator of vegetation characteristics, followed by a 

detailed description of SimBA parametrizations. A significant part of the research focused on the 

tuning of SimBA parametrizations in the interactive vegetation mode, specifically the snow-free 

albedo and soil water holding capacity, allowing for a more realistic representation of the climate 

system. Subsequently, an analysis of the climate simulated using SimBA was carried out to evaluate 

the changes induced by an interactive vegetation compared to a non-interactive one, and to assess 

biases with observations, obtained from the ERA5 reanalysis. 

An analysis was conducted to evaluate how well PlaSim simulates vegetation at both global and 

regional scales. The LAI simulated by PlaSim was compared to benchmarks (GIMMS LAI4g and 

ERA5 reanalysis datasets) and to four Earth System Models from the sixth phase of the Coupled 

Model Intercomparison Project (CMIP6), with the aim of contextualizing the performance of PlaSim 

within the framework of more complex models. The analysis revealed that PlaSim struggles to 

represent seasonal cycles both in the mid-latitudes and the tropics, while it performs relatively well 

in replicating the global spatial distribution and mean global value, remaining within the range of 

CMIP6 models. Lastly, a simulation with increasing atmospheric CO2 concentration was run using 

PlaSim in the tuned interactive vegetation mode. The goal was to investigate how vegetation 

responded to rising atmospheric CO2. Specifically, regional vegetation tipping was analysed in 

Europe and the Amazon rainforest. The simulation revealed instances of regional vegetation tipping, 

occurring both in mid-latitudes and the tropics, driven by non-linear feedbacks between changes in 

hydrological cycle and shifts in vegetation patterns. 
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Introduction 

Vegetation is an essential component of the climate system, as it influences the climate through 

various physical and chemical feedbacks. Therefore, it should be appropriately represented in 

numerical climate models, which are complex numerical representations of the climate system (IPCC, 

2012). Earth system Models of Intermediate Complexity (EMICs) are numerical climate model of 

particular interest, as they bridge the gap between simple conceptual models and more comprehensive 

Global Climate Models (GCMs). These models replicate the Earth system, along with almost all Earth 

components and their interactions rather completely, but in a simplified way compared to more 

complex models (Shi et al., 2019). EMICs are particularly interesting due to their coarser resolution 

and simpler parametrizations, which allows for long-term simulations with relatively low 

computational costs (Angeloni et al., 2020). Given the critical role of vegetation in the climate system, 

EMICs should contain a reasonably accurate representation of dynamic vegetation and its feedback 

on the climate system.  

This thesis focuses on the Planet Simulator (PlaSim), an Earth-system Model of Intermediate 

complexity developed at the University of Hamburg, and particularly on its dynamic vegetation 

module, the Simulator for Biospheric Aspects (SimBA) (Lunkeit et al., 2011). The simple dynamic 

vegetation model embedded in PlaSim can operate in two modes: in the non-interactive vegetation 

mode, simulated vegetation does not influence the climate, while in the interactive mode, vegetation 

influences the climate through four land-surface variables. SimBA had rarely been used before, since 

its interactive vegetation mode had not yet been tuned prior to this work. The first objective of the 

present work was to tune the dynamic vegetation module in its interactive mode, allowing for a more 

realistic representation of the climate system. This step enabled the use of an interactive vegetation 

in climate simulations.  

The intrinsic characteristics of EMICs, coupled with a dynamic vegetation module that can influence 

the climate system, allow for the study of topics such as vegetation tipping points. This is made 

possible by the ability of EMICs to simulate long time scales, coupled with their rather complete 

representation of Earth components. The introduction of a tuned interactive vegetation in PlaSim, 

which was carried out as part of this thesis, enables the study of vegetation response to increasing 

atmospheric CO2, particularly in relation to vegetation tipping points. One of the possible tipping 

elements of the climate system is the Amazon dieback (Chen et al., 2021), which was the focus of the 

final part of this work.  
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To summarize, this work had various objectives. First, the tuning of SimBA parametrizations in the 

interactive vegetation mode was carried out to improve the representation of the simulated climate. 

Second, the simulated vegetation was compared to both observations and CMIP6 model, to assess 

how well PlaSim could represent vegetation dynamics. Finally, the tuned vegetation mode was used 

to investigate vegetation tipping in two regions: Europe and the Amazon rainforest.  

An outline of the chapters and their respective topics is provided below. While the first two chapters 

provide general background information, each chapter after that builds upon the key findings of the 

previous one. 

Chapter one provides an introduction to the importance of vegetation in the climate system, focusing 

on biogeochemical and biogeophysical feedbacks. It introduces the Leaf Area Index (LAI), a key 

variable throughout this work, as it serves as an indicator of vegetation characteristics. This chapter 

provides an explanation on how LAI is measured, and it discusses the available LAI datasets. Finally, 

it addresses how LAI is expected to change in the future and it provides a brief introduction on the 

role of LAI in numerical climate models.  

Chapter two introduces the Planet Simulator (PlaSim), and it provides an in depth explanation of 

SimBA parametrizations, which serve as an important background for the topics addressed in the 

following chapter. 

Chapter three explains the tuning process applied to both the snow-free albedo and soil water 

holding capacity parametrizations, which improved the representation of the climate system. Lastly 

it provides an analysis of the simulated climate, comparing observations with the results of two 

PlaSim simulations, one in the non-interactive and one in the tuned interactive vegetation mode. This 

analysis is aimed at understanding how an interactive vegetation affects the climate compared to non-

interactive vegetation, and assessing the biases with observations. 

Chapter four focuses on evaluating how the LAI simulated in PlaSim compares to observations, and 

it contextualizes its performance in the framework of more complex Earth System Model from the 

CMIP6 project. The analysis was carried out at both global and regional scales, with a focus on both 

Europe and the Amazon. Specifically, spatial patterns, seasonality, mean global value and interannual 

variability are examined. This evaluation of vegetation in PlaSim is essential to highlight its strengths 

and limitations and to validate its use for the analysis presented in the last chapter.  

Chapter five presents the results of the analysis aimed at identifying vegetation tipping in both 

Europe and the Amazon rainforest. First, it provides a description of the experimental setup used to 

run the PlaSim simulation, followed by an introduction to the two regions considered, their 

significance within the climate system and the risk of Amazon dieback, which is considered a possible 
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tipping element of the climate system. Then, the results of the analysis are presented, detailing where 

abrupt changes are observed in the two regions and how they are linked to changes in the hydrological 

cycle. 

The most important findings are summarized in the Conclusions. 
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1. General background on the interaction between vegetation and 

the climate system 
 

1.1. The role of the biosphere in the climate system 

The biosphere is an essential part of the climate system, and it influences many aspect of the Earth 

climate, including atmospheric composition, surface temperature and the hydrological cycle. Energy 

exchange, hydrological cycle and atmospheric composition are influenced through chemical, physical 

and biological processes such as radiation, evapotranspiration, photosynthesis, precipitation 

interception and carbon uptake (Bonan, 2008). Living organisms, both on land and in the ocean, are 

responsible for the composition of the atmosphere on Earth, which differs from that of other planets 

for its high concentration of oxygen and relatively low carbon dioxide levels. Moreover, forests and 

vegetation influence surface albedo and transfer soil water to the leaf surface, where it is evaporated. 

Changes in the climate affect both the biosphere and vegetation, which in turn can influence the 

climate system through different feedbacks. These processes regulate the interactions between the 

biosphere and the Earth climate system. They are divided into two categories: biogeochemical and 

biogeophysical feedbacks (Prentice et al., 2015).  

Biogeochemical feedbacks involve the exchange of greenhouse gases and aerosols between the 

ecosystems and the atmosphere, which are mediated by biological organisms. They include processes 

such as: 

- The CO2 fertilization effect, which refers to the increase in primary production as a 

consequence of rising atmospheric CO2. This mechanism generally causes an increases in 

carbon uptake. 

- Increasing emission of biogenic volatile organic compounds (BVOCs) from plants, due to 

increasing leaves temperature. BVOCs are responsible for increased production of secondary 

organic aerosols, which have a cooling effect on the climate. 

- Changes in fire regimes, which release carbon to the atmosphere more rapidly than it would 

happen through decomposition, thus decreasing the total carbon storage on land. Fires also 

emit black carbon, which reduces snow albedo, the fraction of solar radiation reflected into 

space, and leads to warming. On the other hand, organic compounds released by fire lead to 

cooling.  
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Biogeophysical feedbacks arise from the influence of vegetation on physical properties of ecosystems 

(e.g. surface albedo). Biogeoophysical feedbacks include changes in surface albedo and changes in 

transpiration rates, which can impact the hydrological cycle. For example, different vegetation types 

have different albedo values, and as vegetative cover changes due to warming, surface temperatures 

likely change as well. 

The influence of vegetation on the climate system is quite different for different biomes and forest 

types. Tropical forests, which represent 45% of forest area on Earth, display high rates of 

evapotranspiration, producing a decrease in temperature and an increase in precipitation compared to 

pastureland. In Amazonia, tropical Asia and Africa, cooling due to evapotranspiration offsets the 

decreasing albedo of forests compared to non-forested areas. Tropical forests also contribute to global 

warming mitigation through carbon sequestration, but they are quite vulnerable to dryer, warmer 

climates, which can lead to forest dieback. Boreal forests, located at high altitudes in the northern 

hemisphere, account for 27% of the world’s total forested area. The lower surface albedo during the 

snow season, due to the presence of trees, leads to warming of the climate compared to their absence, 

influencing the global average temperature. Moreover, compared to tropical forests, they show 

weaker evaporation rates (and subsequently lower evaporative cooling) and more moderate carbon 

storage. Lastly, temperate forests, which account for 16% of the global forest area, show moderate 

evaporative cooling (lower than that of tropical forests and higher than that of boreal forests), lower 

albedo compared to cropland, and strong carbon storage (Bonan, 2008; FAO (Food and Agriculture 

Organization of the United Nations), 2020). The spatial distribution of different forest biomes is 

shown in Figure 1. 

This thesis focuses on biogeophysical feedbacks, as the carbon cycle is not represented in the climate 

model used in this work. Moreover, vegetation characteristics will be examined through the leaf area 

index (LAI). This parameter is used in many Earth System Models to depict vegetation structure and 

canopy (Bonan, 2008). LAI influences climate variables such as albedo and it is relatively easy to 

measure compared to other quantities that describe vegetation. Additionally, it is available in many 

satellite products.  
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Figure 1: Distribution of forests with tree cover of at least 30 percent in 2015, according to the Copernicus 

moderate resolution (100m) land-cover map (FAO (Food and Agriculture Organization of the United Nations), 

2020). 

 

 

1.2. Leaf Area Index: definition and measurements 

The Leaf Area Index (LAI) quantifies the amount of leaf material present in an ecosystem. It is defined 

as half of the total green area per unit horizontal ground surface area, it is a dimensionless variable 

that generally varies between 0 and 10, depending on local environmental conditions (Global Climate 

Observing System, s.d.). 

The Leaf Area Index in a region can be estimated either through field measurements or through 

remote sensing methods (Fang et al., 2019). Field measurements of LAI are generally obtained using: 

- Direct methods, which mainly consist of harvesting leaves (destructing sampling) or 

collecting leaf litters, the plant material that has fallen to the ground, which is then sorted by 

species. The leaf surface is then measured using scanners or through laboratory tests, during 

which the leaf area per unit of dry leaf mass (SLA) is assessed for each age class and then 

multiplied by the dry mass to obtain the Leaf Area Index. 

Direct methods are generally quite time-consuming and labour-intensive, and they may 

conflict with the principle of nature conservation. Nonetheless, they allow a good estimate of  

the true LAI value, thus providing reference values for indirect and satellite measurements. 

- Indirect methods, which are either based on the use of allometric equations or optical methods. 

The latter involves different available devices that measure the transmission of radiation 
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through canopy to estimate the LAI, while allometric equations link the Leaf Area Index to 

other readily measurable biophysical variables, such as the diameter at breast height (DBH). 

Allometric equations vary based on taxonomy, locations and other factors (Yan et al., 2019). 

Compared to direct methods, indirect methods are non-destructive, and they are widely used 

for remote sensing validation (Yan et al., 2019). Direct methods are faster than indirect 

methods and they are generally used to survey large areas. 

There are primarily two approaches used in remote sensing LAI estimation: 

- Empirical relationships with canopy reflectance or with Vegetation Indices (VIs), which are 

spectral transformations of two or more bands used to assess various vegetation properties, 

such as photosynthetic activity and canopy structural variations (Huete et al., 2002).  

Existing empirical relationships still show limitations due to their sensitivity to external 

factors, such as vegetation type, atmospheric quality, leaf chlorophyl content and background 

reflectance. New Vegetation Indices that are robust to these factors while remaining sensitive 

to LAI must be developed in the future to improve the estimation ability. Furthermore, the 

accuracy of the empirical relationship method depends on the used ground measurement 

datasets and their representativeness (Yang et al., 2022). 

- Model inversion methods. The LAI is estimated from canopy reflectance using available 

canopy reflectance models, which define the interaction between canopy and radiation (Yang 

et al., 2022). The LAI estimation is performed through a model inversion method, in which 

canopy biophysical variables are determined by finding the best fit between the remote 

sensing reflectance and the computed reflectance (Fang et al., 2019). However, the problem 

is usually ill-posed, as the number of unknowns is often higher than the number of reflectance 

bands supplied by observations, which can lead to inaccurate inversion results. Different 

regularization strategies have been proposed to solve this issue and increase the robustness of 

estimation, including the use of prior parameter constraints and multi-source observations 

(Yan et al., 2019). 

The data used for the measurement mainly derives from passive optical sensors, LiDAR (Light 

Detection and Ranging), and microwave sensors. 

Passive optical sensors have been widely used since the 1980s to measure LAI at different spatial 

scales, thanks to their cost-effectiveness and their ability to acquire observations regularly. Currently, 

numerous LAI datasets are available from different sensors, including MODIS, LANDSAT and 

CYCLOPES. The main issue linked to the use of passive optical sensors is their saturation over 
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canopies with high LAI. Moreover, unlike active sensors, passive sensors can only be used in daylight 

(Tang et al., 2014). 

LiDAR sensors, which are active optical sensors, can be employed to estimate LAI. Different 

approaches may be used: 

- LiDAR sensors measure the canopy gap fraction, which is the fraction of the canopy layer 

that is not blocked by wood and foliage. The gap fraction is then correlated with the Leaf Area 

Index.  

- LiDAR sensors provide estimates of biophysical parameters such as foliage density and 

canopy cover, which are used in allometric equations to estimate the LAI.  

Their main advantages are their cost effectiveness and their ability to measure the vertical LAI profile 

at different heights. Different LiDAR platforms can be used: ground-based, airborne and spaceborne. 

Passive optical sensors can be used in combination with LiDAR sensors either to improve the 

biophysical parameters estimation or to perform quality assessment of the LiDAR-derived LAI.  

Finally, microwave sensors have the potential to bridge the information gaps from optical sensors 

acquisitions caused by cloud cover, therefore the combination of these two sensors may allow 

improvement in LAI estimations. The use of microwave sensors still poses challenges caused by 

observational conditions, sensor configuration, and the underlying soil (Fang et al., 2019). 

 

 

1.3. Global LAI products 

Different moderate resolution (250 m to 7 km) global LAI datasets have been made available over 

the past decades, such as GIMMS (Global Inventory Modelling and Mapping Studies), GLASS 

(Global Land Surface Satellite) and GLOBMAP LAI. Most of these products were derived from 

MODIS (Moderate Resolution Imaging Spectroradiometer) and AVHRR (Advanced Very High 

Resolution Radiometer) sensors, using different methodologies (Song et al., 2021). 

MODIS sensors are aboard the Terra and Aqua satellites, launched by NASA in 1999 and 20002 

respectively. They acquire data in 36 spectral bands, and they image the Earth every 1 to 2 days. The 

spatial resolution varies from 250 m to 1 km, depending on the band. They allow to understand and 

monitor both global dynamics and processes occurring in oceans, land, and lower atmosphere 

(National Aeronautics and Space Administration, s.d.). They provide a spatial and radiometric 

resolution that is superior to the one of AVHRR sensors, therefore ensuring better spatial, radiometric 

and spectral representation of vegetation (Lu et al., 2015). 
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The AVHRR is a scanning system aboard the National Oceanic and Atmospheric Administration 

(NOAA) family of polar orbiting platforms and European MetOp satellites. They are equipped with 

five spectral bands, with a resolution of 1.1 km, scanning the Earth twice per day. The AVHRR was 

designed to provide radiance data to analyse clouds distribution, land-water boundaries, sea surface 

temperatures and vegetation classification and greenness through passively measured visible, near 

infrared and thermal infrared radiation bands. The AVHRR instruments have been used since the early 

1980’s to generate global LAI measures, offering the longest available time record of data (National 

Oceanic and Atmospheric Administration (NOAA), s.d.). However, AVHRR sensor degradation and 

orbital drift are two significant sources of inconsistency to build robust LAI models, as well as 

insufficient reference data prior to the late 1990’s. The reprocessing of AVHRR historical data is 

therefore crucial to ensure consistency with current records (Fang et al., 2019). 

Uncertainties in LAI estimations from indirect methods are generally higher in areas where LAI is 

high, this is because the value can be measured when light reaches the soil and it is scattered back in 

a measurable amount (Gobron & Verstraete, 2009). Some studies showed that uncertainties in LAI 

estimations from MODIS data, calculated from the standard deviation and the error layers, are higher 

in the boreal and tropical regions and during summer, due to high LAI values (Fang et al., 2019). 

 

 

1.4. Importance of LAI in the climate system 

The Leaf area index is an essential climate variable, which is a physical, chemical or biological 

variable or a group of linked variables that critically contribute to the characterization of the climate 

on Earth (Global Climate Observing System, s.d.). LAI is used as an indicator of the state of 

vegetation development, to characterize its physical properties, and to describe the vegetation 

feedback to the climate system (Boussetta et al, 2013; Fang et al., 2019).  

As previously mentioned, vegetation influences albedo. In snow free areas, an increase in LAI 

generally reduces surface albedo, since grass and crops have higher albedo than other plant functional 

types, as shown in Figure 2. Similarly, the presence of forests in snow-covered areas causes lower 

albedo values compared to crops and grass. The decrease in albedo due to the presence of forests 

increases the heating of land, contributing to its warming (Bonan, 2008). 

Forests impact the hydrological cycle by releasing water vapor in the atmosphere through 

evapotranspiration, which further contributes to cooling by increasing cloud formation. Cloud 

formation, in turn, determines positive feedback on precipitations, whose increase generally benefits 
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the ecosystem (Bonan, 2008). An increase in LAI generally enhances canopy evapotranspiration. 

Global modelling studies revealed that the rise in global LAI has led to an increase in land 

evapotranspiration, contributing to half of the observed rise in evapotranspiration over the past 30 

years (Fang et al., 2019). 

 

 
Figure 2: Satellite derived values of albedo for snow-covered and snow-free non forest and forest biomes 

(Bonan, 2008). 

 

To conclude, LAI links biogeochemical and biogeophysical processes (carbon cycle, albedo and 

evapotranspiration) at different spatial and temporal scales and is a key variable for understanding 

how vegetation influences the climate (Song et al., 2021). 

 

 

1.5. Past and future changes in LAI  

The Leaf Area Index influences the climate, but it is also subject to change. Global satellite LAI 

products show an increase in global average growing season (April to October) between 2001 and 

2017, with higher positive trends in Eurasia, particularly in China. Satellite data shows positive trends 

in most of the world, especially in Europe and Asia, as shown in Figure 3. 

The mean global LAI has been increasing since the preindustrial period, consistently with the increase 

in global temperatures, and it is projected to increase during the 21st century. However, the trend is 

projected to be different in different regions: a study using different models showed that the increase 

is projected to be larger in high and mid-latitude regions, the Tibetan plateau and the tropics, while 

LAI is projected to decrease in Australia, due to a decrease in precipitation. Studies showed that LAI 
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variations are more heavily impacted by temperatures at high and mid-latitudes, while in tropical 

regions they are mainly influenced by moisture levels (Fang et al., 2019).  

 

 
Figure 3: Maps of linear trends of LAI calculated from Moderate Resolution Imaging Spectroradiometer 

(MCD15A2H, C6) between 2001 and 2017. (a) shows yearly average. (b) growing season April to October, (c) 

December-January-February and (d) June-July-August. Histograms show the percentage of pixels for different 

trend values. Pixels with p 0.1 were excluded. Source: (Fang et al., 2019). 

 

These changes in vegetation are caused by different drivers, which can be grouped under two 

categories: biogeochemical drivers and land-use related drivers. The biogeochemical drivers include 

regional effects of climate change (changes in precipitations, temperature and radiation), and 

fertilization effects due to increasing CO2 concentration. Land-use related drivers include changes in 

land cover and land management, for example changes in irrigation and cultivation practices or 

changes in fertilization. Biogeochemical drivers are mainly responsible for the observed LAI increase 

at the global scale, while land-use drivers play a significant role at the regional scale. The vegetation 

change is the result of different interacting factors, but CO2 fertilization and climate change are the 

dominant ones. The former gives the biggest contribution to observed LAI trends, and it is the 

dominant driver over 23.2% of the global vegetated area, while the latter gives the main contribution 

to the greening trend over 28.4% of the area. The contribution of climate change to the change in LAI 

varies across different regions: at high latitudes and in the Tibetan plateau, the temperature increase 

contributes to enhanced photosynthetic activity and an increase in length of the growing season, while 

increasing precipitations are responsible for the greening in South America and in the Sahel region. 

Climate change can contribute to negative trends in LAI in some region, and its effects are not always 

consistent between models (Zhu et al., 2016).  
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1.6. LAI in numerical climate models 

Numerical climate models are crucial for understanding and simulating the climate dynamics of 

Earth. They are used to investigate the response of the climate system to different forcing, to predict 

climate patterns over seasonal and decadal time scales and to forecast future climate changes. Many 

types of models are employed in climate science, ranging from more complex Earth System Models, 

which are the most advanced tool to simulate climate, to Regional Climate Models and simple 

conceptual models (Flato et al., 2013). Many climate models rely on parametrizations, which are 

simplified representations of chemical and physical processes, typically used to incorporate complex 

small-scale processes into the models. 

Land Surface Models (LSMs) are key components of climate models, as they simulate fluxes of 

energy and water exchanged between Earth surface and atmosphere. In some land surface models, 

vegetation is parametrized using a LAI that does not vary seasonally, which causes an overestimation 

of LAI and soil moisture during atypically dry seasons. Overall, seasonally varying LAI presents a 

more realistic climatology.  

In land surface models, the simulation of processes such as transpiration, energy absorption, and 

ecosystem productivity at interannual and seasonal scales can be improved with the integration of 

LAI observations from remote sensing datasets. The integration can be performed either through a 

simple direct forcing mode or through a more complex data assimilation mode. 

In the direct forcing mode, remote sensing data is used as input data or as initial condition, to ensure 

more realistic model runs. On the other hand, the direct assimilation mode bounds the model to the 

satellite observations to improve the estimated variables, thus enhancing the modelling of water, 

energy and vegetation dynamics. The assimilation can be performed in different ways, but generally 

the best constraint is obtained from the estimated measurement errors and model forecast errors 

through an assimilation approach. This mode is based on the assumption that remotely sensed LAI 

has greater accuracy than the simulated one, and that uncertainties can be quantified. Errors in LAI 

products can however potentially propagate in model simulations (Fang et al., 2019). 
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2. The Planet Simulator and its dynamical vegetation module 

(SimBA) 
 

2.1. Planet Simulator: an Earth system Model of Intermediate Complexity 

The Planet Simulator (PlaSim) is a model of intermediate complexity that can be used to simulate the 

climate on Earth, Mars, and other planets (Universitat Hamburg, 2022). 

As Global Climate Models are becoming increasingly more complex, Earth-system Models of 

Intermediate Complexity (EMICs) remain more attractive, given their ability to represent the climate 

system in a simplified way.  EMICs allow to bridge the gap between simple conceptual models and 

more complex Global Climate Models, as they replicate the Earth system, along with almost all Earth 

components and their interactions, rather completely. With the increase in computational power, this 

class of models will advance in terms of resolution and complexity in the future (Shi et al., 2019).  

Earth-system Models of Intermediate Complexity include many Earth system components, such as 

land, atmosphere, ocean, vegetation and cryosphere. Compared to numerical Global Climate Models 

(GCMs), Earth-system Models of Intermediate Complexity describe the interactions between climate 

component in a more simplified, parametrized form. Moreover, Earth-system Models of Intermediate 

Complexity have coarser resolution which allows to simulate longer time scales with significantly 

lower computational time. For these reasons, they have been used for methodological studies and to 

support scientists in understanding how specific processes work. For instance, PlaSim has been used 

for a wide variety of applications: it has been used to simulate exoplanetary atmospheres, to study 

past climatic conditions, such as the snowball Earth, and to investigate the global entropy budget 

(Angeloni et al., 2020; Lunkeit et al., 2011; Angeloni, 2022). 

All EMICs include an atmosphere and an ocean module (either three-dimensional or zonally 

averaged), and a representation of sea ice in various degrees of complexity. Some EMICs may also 

include vegetation dynamics, an inland ice sheet module, carbon dynamics and atmospheric and 

oceanic chemistry  (Angeloni, 2022). 

The conceptual scheme of PlaSim and all its sub-components is shown in Figure 4. The core is a 

General Circulation Model: The Portable University Model of Atmosphere (PUMA). PUMA 

exchanges surface data with both sea components and land surface. It is based on moist primitive 

equations, namely divergence, vorticity, thermodynamic, continuity and hydrostatic equation, which 

represent the conservation of momentum, mass and energy. These equations are numerically solved 
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in PlaSim using spectral methods. Along the vertical direction, terrain-following coordinates are used, 

and the equations are solved using finite-differences method (Angeloni et al., 2020; Fraedrich et al., 

2009).  

All the unresolved subgrid-scale processes and their impacts are incorporated in the model through 

different parametrizations, which are used in many models, from weather prediction to Earth system 

models (Gettelman, 2023).  The parametrized processes in PlaSim are surface fluxes, shortwave and 

longwave radiations, clouds, oceanic vertical and horizontal diffusion among many others (Angeloni 

et al., 2020). 

 

 
Figure 4: Scheme of PlaSim and all its sub-components. Source: (Andres & Tarasov, 2019). 

 

In PlaSim, sea surface temperatures are simulated through a Mixed-Layer ocean model (ML) with 

constant thickness. This model is comprised of an equation that allows to calculate the oceanic 

temperature in each grid point, determined by the net atmospheric heat flux into the ocean. The 

oceanic transport and deep-water exchange are represented by the heat convergence at the base of the 

mixed layer, derived from climatology. Additionally, the horizontal and vertical diffusion terms in the 

temperature equation can be optionally switched on. The sea-ice is also present, and it can either be 

prescribed by climatology or simulated with a thermodynamic sea-ice module. The ice model allows 

to reduce incoming radiation from the atmosphere based on sea ice thickness, the resulting heat flux 

and wind stresses are then passed to the mixed-layer ocean model (Andres & Tarasov, 2019; Angeloni 

et al., 2020; Lunkeit et al., 2011).  
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The Large Scale Geostrophic (LSG) ocean circulation model was later implemented into PlaSim to 

introduce a representation of ocean circulation (Maier-Reimer et al., 1993). The model is built upon 

primitive equations in a three-dimensional system, including the continuity equation to depict 

conservation of water and salinity, the momentum equation and thermodynamic equation with 

salinity. PlaSim and LSG are coupled via exchange of surface fluxes for momentum, heat and 

freshwater, and the interpolation between atmospheric and ocean grid maintains the global 

conservation of water and energy (Angeloni et al., 2020). 

Lastly, the land component allows to estimate land surface temperatures in 5 soil layers, using local 

energy balance. The runoff is included through a bucket depth approach. The bucket depth depends 

on vegetation; the excess water exits the cell through runoff and is transported to the ocean  (Andres 

& Tarasov, 2019). A simple terrestrial global vegetation model, the Simulator for Biospheric Aspects 

(SimBA), is used in PlaSim. SimBA estimates changes in vegetation induced by surface atmospheric 

conditions, shortwave radiation, carbon dioxide concentration and other factors. The changes in 

vegetation, in turn, affect the climate (Lunkeit et al., 2011; Andres & Tarasov, 2019). 

All physical processes are calculated in PlaSim on reduced Gaussian grids with resolutions of 5.6º 

and 2.8º, which correspond to T21 and T42 horizontal spectral resolutions. On the vertical dimension, 

the model is typically configured with 10 layers (Angeloni et al., 2020). The work in this thesis was 

carried out using a T21 resolution. 

 

 

2.2. SimBA and its parametrization in PlaSim 

As previously said, SimBA, which is derived from Kleidon (2006), is the simplified dynamic 

parametrization of terrestrial vegetation used in PlaSim. It allows to predict land surface properties 

that are impacted by dynamically changing vegetation, which is estimated from climatic conditions. 

The climate model simulates atmospheric and land surface conditions, which define the constraints 

for the Gross Primary Productivity (GPP) of vegetation. GPP is the rate of carbon absorbed by 

terrestrial vegetation through photosynthesis, also called gross carbon uptake, and it gives an 

indication of the amount of energy available for ecosystem functioning (Pandey et al., 2024; Xu & 

Chen, 2024; Kleidon, 2006). Gross Primary Productivity is the cause of biomass growth, and it 

defines the SimBA variable called Vegetative Biomass (GM), which is quite significant as it 

represents the amount of plant material present. The other three SimBA variables that define 

vegetation are forest cover, vegetation cover and leaf area index; these three variables depend on 
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vegetation biomass and on other two global variables: soil moisture content (Wsoil) and snow depth 

(zsnow) (Kleidon, 2006) (Lunkeit et al., 2011). The vegetation variables influence the climate through 

four land surface variables for non-glaciated grid cells, which are surface albedo (A), roughness 

length (z0), surface conductance for the latent heat flux (Cw) and bucket depth for the soil (Wmax) 

(Lunkeit et al., 2011). These consequently affect energy and mass exchanges with land surface in the 

climate model, which are calculated at every PlaSim time step (Kleidon, 2006). 

The following subsections will give a description of the above-mentioned variables and their 

respective equations.  

 

2.2.1. Vegetation Biomass (BM) 

Vegetation Biomass, the main state variable in SimBA, is produced from the balance between carbon 

deposited through photosynthesis, which converts sunlight into sugars (Qin et al., 2018), and carbon 

released by respiration, which breaks down sugars to release energy used for plant growth and 

maintenance (Golovko & Garmash, 2022). The vegetative biomass (BM) in SimBA depends on the 

Net Primary Productivity (NPP) through Equation 1, which is a fundamental governing equation in 

the vegetation model.  

 

𝜕𝐵𝑀

𝜕𝑡
= 𝑁𝑃𝑃 −

𝐵𝑀

𝜏𝑣𝑒𝑔
  

 

The Net Primary Productivity (NPP) is defined as the difference between GPP and the carbon lost by 

autotrophic respiration, and it is equal to the increment in biomass per unit surface and time (Chapin 

& Eviner, 2007). The model assumes NPP to be equal to 0.5 ∗ 𝐺𝑃𝑃, as 50% of GPP is used though 

respiration for maintenance. The biomass evolution is thus obtained from the balance between NPP 

and litter production, which is proportional to BM and characterized by a residence time (𝜏𝑣𝑒𝑔) of 10 

years (Lunkeit et al., 2011; Kleidon, 2006). 

 

2.2.2. Gross Primary Production (GPP) 

The Gross Primary Production is defined as the minimum between light-limited (𝐺𝑃𝑃𝑙𝑖𝑔ℎ𝑡−𝑙𝑖𝑚𝑖𝑡𝑒𝑑) 

and water-limited (𝐺𝑃𝑃𝑤𝑎𝑡𝑒𝑟−𝑙𝑖𝑚𝑖𝑡𝑒𝑑) rate, as shown in Equation 2 (Lunkeit et al., 2011; Kleidon, 

2006). Its unit of measure is generally mass per unit surface and time (Xu & Chen, 2024). 

 (1) 
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𝐺𝑃𝑃 = min(𝐺𝑃𝑃𝑙𝑖𝑔ℎ𝑡−𝑙𝑖𝑚𝑖𝑡𝑒𝑑, 𝐺𝑃𝑃𝑤𝑎𝑡𝑒𝑟−𝑙𝑖𝑚𝑖𝑡𝑒𝑑) 

 

The light-limited rate, shown in Equation 3, is defined using a light-use efficiency approach. 

 

𝐺𝑃𝑃𝑙𝑖𝑔ℎ𝑡−𝑙𝑖𝑚𝑖𝑡𝑒𝑑 = ϵluemax ∗ β(CO2) ∗ 𝑓(Tsfc) ∗ 𝑓PAR ∗ 𝑆𝑊 ↓ 

 

The light-limited rate depends on different variables: 

- ϵluemax, the maximum light-use efficiency parameter, which is globally constant. It represents 

the light-use efficiency compared to the total shortwave radiation absorbed by the plant 

(𝑓PAR ∗ 𝑆𝑊 ↓). It is equal to 3.4 ∗ 10−10 𝑘𝑔𝐶/𝐽 . 

- β(CO2) links productivity to CO2 concentration in the atmosphere, and it accounts for the 

deviation from 360ppm. The rate of carbon dioxide assimilation is directly linked to its 

atmospheric concentration, and an increase in atmospheric concentration has been linked to 

an increase in plant and forest growth (Franks et al., 2012). This parameter accounts for the 

increase in productivity for increasing CO2 concentration. 

- 𝑓(Ts), where Ts is the surface temperature in degrees Celsius. This function accounts for the 

decrease in plant productivity for cold temperatures: its value is 0 when temperature decreases 

below 0°C, thus bringing the light-limited GPP to zero, while it is equal to 1 when temperature 

increases above 5°C, as shown in Equation 4. 

 

𝑓(Ts) = {

0                     𝑖𝑓 𝑇𝑠 ≤ 0°𝐶
𝑇𝑠

5°𝐶
       𝑖𝑓  0°𝐶 ≤ 𝑇𝑠 ≤ 5°𝐶

1                    𝑖𝑓 𝑇𝑠 ≥ 0°𝐶

 

 

- 𝑓PAR is the fraction of Photosynthetically Active Radiation (PAR) absorbed by the 

photosynthesizing parts of vegetation (the green leaves), where PAR is the fraction of solar 

radiation, between 400 and 700 nm, that can be used in photosynthesis (Qin et al., 2018). 

𝑓PAR is a dimensionless number that varies between 0 and 1, based on how much PAR is 

absorbed by the vegetation. It is also referred to as vegetation cover (fveg) and it can be 

approximated as a function of Leaf Area Index, as shown in Equation 5, where kveg is the light 

extinction coefficient, equal to 0.5. 

(2) 

 

(3) 

(4) 
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𝑓𝑃𝐴𝑅 = 1 − 𝑒−𝑘𝑣𝑒𝑔∗𝐿𝐴𝐼 

 

- 𝑆𝑊 ↓, which is the downward flux of shortwave solar radiation absorbed at the surface. Its 

unit of measure is 𝑊/𝑚2. 

 

The water-limited rate is defined through Equation 6. It follows a “big leaf” diffusivity approach, in 

which the canopy is treated as if it were a large single leaf coupled to the atmosphere, to neglect 

conductance at the leaf boundary layer. 

 

𝐺𝑃𝑃𝑤𝑎𝑡𝑒𝑟−𝑙𝑖𝑚𝑖𝑡𝑒𝑑 =
8.3 ∗ 10−4 ∗ 𝑃 ∗ 𝑓𝑣𝑒𝑔 ∗ 𝐸𝑇 ∗ 0.3 ∗ 𝑐𝑜2

𝑉𝑃𝐷
 

 

The water-limited rate depends on different variables: 

- P, which is atmospheric pressure in Pa. 

- 𝑐𝑜2, the atmospheric carbon dioxide concentration in ppmv. 

- 𝑓𝑣𝑒𝑔, the vegetation cover. 

- 𝐸𝑇, which is evapotranspiration in 𝑚3 ∗ 𝑚−2 ∗ 𝑠−1. Evaporation from both intercept water in 

the canopy and dry soil is neglected in the model, which assumes the evaporative flux on land 

to be strictly governed by vegetation. 

- 𝑉𝑃𝐷, the water vapor pressure deficit between saturated leaf surface and atmosphere, in Pa. 

The water limited rate increases with an increasing CO2 concentration in the atmosphere, this is 

because high carbon dioxide availability causes the plant stomata (where carbon absorption happens) 

to partially close, thus limiting water losses (Franks et al., 2012). This consequently increases the 

plant water-use efficiency. On the other hand, the water limited rate decreases with the increase in the 

specific humidity gradient at the leaf-air boundary; an increase in VPD has been linked to a decrease 

in plant growth and photosynthetic rate, due to a decrease in stomata aperture to limit water losses 

(Du et al., 2018). 

Table 1 summarizes the dependency of water and light limited rates. 

 

(5)  

(6) 
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Table 1: Summary of GPP dependency on different variables. 

 Variable it depends 

upon 
Brief description of the 

variable 

𝐺𝑃𝑃𝑙𝑖𝑔ℎ𝑡−𝑙𝑖𝑚𝑖𝑡𝑒𝑑 

β(CO2) Function of atmospheric 

CO2 concentration 

𝑓(Tsfc) Function of surface 

temperature 

𝑓𝑃𝐴𝑅 Fraction of PAR absorbed 

by leaves, equal to 𝑓𝑣𝑒𝑔 

𝑆𝑊 ↓ 
Shortwave radiation 

absorbed at surface 

𝐺𝑃𝑃𝑤𝑎𝑡𝑒𝑟−𝑙𝑖𝑚𝑖𝑡𝑒𝑑 

𝑓𝑣𝑒𝑔 Vegetation cover 

𝐸𝑇 Evapotranspiration  

𝑐𝑜2 Atmospheric CO2 

concentration 

𝑉𝑃𝐷 
Vapor pressure deficit 

between leaf surface and 

atmosphere 
 

 

Both water and light limited rate depend on the vegetation cover or 𝑓𝑃𝐴𝑅, which is a function of 

LAI, as shown in Equation 5.  

 

2.2.3. Vegetation in SimBA: LAI, forest cover and vegetation cover 

Vegetation in PlaSim is described by different variables: vegetation biomass (BM), leaf area index 

(LAI), vegetation cover (𝑓𝑣𝑒𝑔) and forest cover (F) (Kleidon, 2006; Lunkeit et al., 2011). 

Vegetation biomass is used to define both vegetation structure and Leaf Area Index, which accounts 

for the leaf display on land, and it is computed as a function of both biomass and soil water availability 

(Kleidon, 2006). The Leaf Area Index is also linked to vegetation cover through Equation 5. It is 

worth noting that changes in LAI produce changes in vegetation cover and vice versa. 

LAI follows a drought-deciduous phenology. The term ‘phenology’ refers to intra-annual variations 

in LAI. Therefore, a drought-deciduous phenology indicates that the seasonal variations in LAI are 

exclusively controlled by water availability (Dahlin et al., 2015). Plants leaves desiccate under water-

stress conditions; in plants adapted to droughts the leaf loss is a way to avoid water stress, as it reduces 
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the transpiring surface on plants (Estiarte & Peñuelas, 2015). LAI does not follow a winter-deciduous 

phenology, which is the seasonal variation in LAI characterized by leaf fall in the winter, a process 

mainly controlled by temperature changes and light availability (Estiarte & Peñuelas, 2015; Fadón et 

al., 2020). The lack of multiple phenological patterns is a clear limitation of the LAI parametrization 

in SimBA. However, it allows to simplify the representation of vegetation and to neglect Plant 

Functional Types, which are not included in the model to represent vegetation. Leaf Area Index and 

Vegetation Biomass are used to compute vegetation cover and forest cover. 

Vegetation cover (𝑓𝑣𝑒𝑔) is the fraction of land covered by green biomass i.e. leaves. It is a 

dimensionless variable, and it varies between 0 and 1. Vegetation cover is determined as the minimum 

between a water-limited value (𝑓𝑣𝑒𝑔,𝑤) and a structurally limited value (𝑓𝑣𝑒𝑔,𝑠). 

The water-limited value depends on soil moisture content (𝑊𝑠𝑜𝑖𝑙) and the biomass-dependent soil 

bucket depth (𝑊𝑚𝑎𝑥) as shown in Equation 7.  

 

𝑓𝑣𝑒𝑔,𝑤 = min (1, 𝑚𝑎𝑥 (0,
𝑊𝑠𝑜𝑖𝑙/𝑊𝑚𝑎𝑥

0.25 
) 

 

The structurally limited vegetation cover is derived from a structurally limited maximum leaf area 

index (𝐿𝐴𝐼m ), as shown in Equation 8.  

 

𝑓𝑣𝑒𝑔,𝑠 = 1 − 𝑒−𝑘𝑣𝑒𝑔∗𝐿𝐴𝐼𝑚  

 

𝐿𝐴𝐼m  depends on the amount of biomass (BM) available to sustain the leaves, as shown in Equation 

9.   

𝐿𝐴𝐼𝑚 = 0.1 +
18

𝜋
∗ arctan (0.25 ∗ 𝐵𝑀) 

 

Forest cover (F) is fraction of soil covered by non-prostrate woody vegetation, which indicates the 

woody vegetation characterized by an upright structure, sticking out above the snowpack. Its 

parametrization depends both on biomass and on a biomass threshold above which the forest cover 

begins to rise above zero (1 𝑘𝑔 ∗ 𝑚−2). 

 

(7) 

 

(8) 

(9) 

10 
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2.2.4. Land surface variables: Surface roughness, albedo, conductance and soil water 

holding capacity 

In PlaSim, simulations can be run with either an interactive or a non-interactive vegetation. In the 

interactive mode, the vegetation simulated through SimBA influences the climate via four land 

surface variables mentioned in section 2.2: surface roughness, surface albedo, surface conductance 

and soil water holding capacity. Conversely, when the non-interactive mode is used, the simulated 

vegetation does not influence the climate. This chapter will provide a description of the 

aforementioned land-surface variables. 

Soil water holding capacity (𝑊𝑚𝑎𝑥), also called soil bucket depth, is a measure of how much water 

can be held in soil at total saturation, and it is measured in meters (Koviessen et al., 2023; Lunkeit et 

al., 2011). The soil bucket depth is determined through a non-linear relationship with biomass, due to 

the non-liner dependence of an intermediate variable (𝑉𝑠𝑜𝑖𝑙) on biomass. The underlying idea is that 

the bucket depth increases with an increase in root biomass.  

The linear relationship of soil water holding capacity with the intermediate variable is shown in 

Equation 10. As biomass increases, the 𝑉𝑠𝑜𝑖𝑙 increases and 𝑊𝑚𝑎𝑥 increases as well. For interactive 

vegetation, the soil water holding capacity is a value that varies between 0.05 m and 0.5 m. 

 

𝑊𝑚𝑎𝑥 = 0.5 ∗ 𝑉𝑠𝑜𝑖𝑙 + 0.05 ∗ (1 − 𝑉𝑠𝑜𝑖𝑙)  

 

The soil water holding capacity is linked to the soil water reservoir 𝑊𝑚𝑎𝑥, which is a variable that 

defines the quantity of water in the soil, measured in meters. The water in the soil is represented by a 

bucket model, a simplified description of the most important processes in the water cycle. The soil is 

represented by a bucket, which retains the water until its maximum capacity is reached. This model 

does not consider the precipitation intensity and how it influences infiltration rates (Romano et al., 

2011). Soil water is increased by precipitations (P) and snow melt (M), and it decreases with surface 

evaporation (𝐸𝑠𝑢𝑟𝑓), as shown in Equation 11. 

 

𝜕𝑊𝑠𝑜𝑖𝑙

𝜕𝑡
= 𝑃 + 𝑀 + 𝐸𝑠𝑢𝑟𝑓 

 

Soil water is limited by the soil water holding capacity. In the non-interactive mode, soil water holding 

capacity has a fixed value at each grid point, which is given to the model as a boundary condition 

(10) 

 

(11) 
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(Lunkeit et al., 2011). If the soil water exceeds the soil water holding capacity, the excess is converted 

into runoff, which is carried by rivers to the ocean. 

The surface wetness, or surface conductance for the latent heat flux (𝐶𝑤), is used to compute surface 

evaporation; it can be defined as the rate at which water vapor is transferred from the land surface to 

the atmosphere, measured in 𝑚/𝑠 (Kelliher et al., 1995). It depends on both soil water holding 

capacity and soil water reservoir through Equation 12. 

 

𝐶𝑤 =
𝑊𝑠𝑜𝑖𝑙

0.25 ∗ 𝑊𝑚𝑎𝑥
 

 

In the SimBA parametrization, Surface conductance is directly proportional to: 

- A water stress factor (𝑓𝑣𝑒𝑔,𝑤), which accounts for low soil moisture content. This factor 

depends on the soil water holding capacity, as shown in Equation 7. 

- A parameter accounting for surface conductance in non-water stress conditions, which is set 

to 1.  

Surface conductance can vary between 0 and 1m; it is set to 1 when snow is present. 

Surface roughness (𝑧0)  is a measure of roughness at the surface and it is measured in meters. Surface 

roughness in SimBA is a non-linear combination between roughness due to orography (𝑧0,𝑜𝑟𝑜) and 

roughness due to vegetation (𝑧0,𝑣𝑒𝑔), which is a function of forest cover (F). The parametrization of 

𝑧0,𝑣𝑒𝑔 is shown in Equation 13. 

 

𝑧0,𝑣𝑒𝑔 = 2 ∗ 𝐹 + 0.05 ∗ (1 − 𝐹)  

 

As forest cover increases, roughness increases as well. The vegetation roughness varies between 

0.05 𝑚 in the absence of forest, and 2 𝑚 in fully forested areas. In the non-interactive mode, 

vegetation roughness has a fixed value at each grid point, which is given to the model as a boundary 

condition. 

Surface roughness for a grid cell is defined through Equation 14. 

 

𝑧0 = √𝑧0,𝑣𝑒𝑔
2 + 𝑧0,𝑜𝑟𝑜

2  

 

(12) 

 

(13) 

 

(14) 
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Lastly, surface albedo is computed differently based on the presence of snow. In its parametrization, 

some dependencies are neglected; for example, its dependency on solar zenith angle and the 

dependence of bare soil albedo on moisture content are overlooked. 

Snow-free albedo (𝐴𝑠𝑛𝑜𝑤−𝑓𝑟𝑒𝑒) is calculated through Equation 15. 

 

𝐴𝑠𝑛𝑜𝑤−𝑓𝑟𝑒𝑒 = 𝐴𝑓𝑢𝑙𝑙𝑦−𝑙𝑒𝑎𝑣𝑒𝑑 ∗ 𝑓𝑣𝑒𝑔 + 𝐴𝑏𝑎𝑟𝑒 ∗ (1 − 𝑓𝑣𝑒𝑔) 

 

The snow free albedo is linearly dependent on vegetation cover (𝑓𝑣𝑒𝑔), which in turn depends on LAI 

through . In the non-interactive mode, when vegetation does not influence the climate, snow-free 

albedo is defined using the Leaf Area Index data that comes from observations, specifically the Land 

Surface Parameter dataset of the US Geological Survey (Lunkeit et al., 2011; Hagemann, 2002). The 

dataset provides 12 monthly mean fields of LAI, which means that albedo does not display 

interannual variability as vegetation changes in time, it only shows intra-annual monthly variations. 

On the other hand, albedo in the interactive mode is calculated from the SimBA simulated LAI, 

therefore it changes both seasonally and interannually, following the change in LAI. 

Snow free albedo also depends on 𝐴𝑓𝑢𝑙𝑙𝑦−𝑙𝑒𝑎𝑣𝑒𝑑 and 𝐴𝑏𝑎𝑟𝑒, which are two constant fields. The first 

stands for conditions of infinite LAI, while the second corresponds to zero LAI. Since snow-free 

albedo is solely dependent on vegetation cover and it is independent from forest cover, branches and 

stems are considered to have the same albedo as bare soil. 

To parametrize albedo in the presence of snow, the grid cell is divided into a forest-covered and non-

forest covered part. This reflects the decrease in albedo in snow covered areas due to the presence of 

forests (Bonan, 2008). As shown in Equation 16, albedo in snow covered areas is a linear combination 

of forest-covered albedo (𝐴𝑠𝑛𝑜𝑤,𝑓) and non-forest covered albedo (𝐴𝑠𝑛𝑜𝑤,𝑛𝑓), and it depends on 

forest cover (F). When snow is present, non-forested but vegetated land acts the same as bare soil in 

terms of albedo. 

 

𝐴𝑠𝑛𝑜𝑤−𝑐𝑜𝑣𝑒𝑟𝑒𝑑 = 𝐴𝑠𝑛𝑜𝑤,𝑓 ∗ 𝐹 + 𝐴𝑠𝑛𝑜𝑤,𝑛𝑓 ∗ (1 − 𝐹) 

 

The forest-covered albedo is given a constant value (𝐴𝑠𝑛𝑜𝑤,𝑓 = 0.2), which is independent from both 

surface temperatures and snow accumulation. The non-forest covered albedo is linearly dependent on 

deep snow albedo, function of temperature and snow depth, and non-forest covered snow-free albedo. 

(15) 

 

(16) 
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To summarize, Figure 5 shows the dependency of the four land surface variables on vegetation 

variables (in dark green), global variables (blue), Gross Primary Production (in light green) and on 

other variables (grey).  

 

 
Figure 5: PlaSim dependency of land surface variables, which influence climate in the interactive vegetation 

mode. 

 

 

2.3. Concluding remarks 

This chapter describes the Planet Simulator, an Earth system Model of Intermediate Complexity, and 

SimBA, the simple terrestrial dynamic vegetation model embedded within the model. This 

description is necessary to provide the foundations necessary to explain the tuning applied to SimBA 

in the interactive vegetation mode, which is explained in detail in the following chapter. Tuning was 
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necessary, as activating vegetation in the interactive mode with the default setup produced important 

biases compared to observations.   
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3. Tuning and validation of SimBA 
 

In climate models, parametrizations are used to represent small-scale processes, either to reduce 

computational costs or, more importantly, because they are needed to simplify complex multi-scale 

processes. Parametrizations in SimBA have been extensively explained in Chapter 2.2. Each one 

consists of a set of equations that depend on parameters whose values are often poorly constrained 

by observations. Tuning is the process of estimating these parameters to reduce discrepancies between 

the real world, represented by observations, and the modelled one.  

The classical definition of tuning, reported in (Hourdin et al., 2017) is the process of selecting 

parameter values to minimize, within an acceptable range, the deviation of the modelled climate from 

observations or theory.  

The tuning process is often poorly detailed in literature; this is because it is often considered not worth 

recording, an unavoidable but flawed component of climate modelling, closer to the domain of 

engineering than to science, a way to compensates for errors in the model. Nonetheless, tuning is a 

significant part of the modelling process as it can be considered a scientifically based optimization 

procedure. It is also a way to improve the understanding of certain climate mechanisms. Moreover, 

tuning can compensate for errors or deficiencies in model formulations, which otherwise could 

remain unknown. 

Climate model tuning is characterized by a certain degree of subjectivity, due to model complexity 

and to the different priorities each climate model has, for example groups focused on European 

climate may tune the model to prioritize a better representation of heat transport in the North Atlantic. 

Priorities and targets often vary based on the group objectives (Hourdin et al., 2017).  

A survey was carried out in 2014 on 23 modelling groups involved in the Coupled Model 

Intercomparison Project (CMIP) to provide insights on how the tuning process was carried out 

(Hourdin et al., 2017). Tuning was generally performed by minimizing the bias of a decisive metric, 

which was generally either the globally averaged net top of the atmosphere flux or the mean global 

surface temperature. It often involved specific parametrizations, the most common were clouds in the 

atmosphere, snow and ice albedo, soil and vegetation properties. Atmospheric convection and cloud 

physics were thought to produce the largest biases. 

Different tuning methods can be used, the simplest approach is the trial-and-error method, which 

consists of tuning one or two parameters at a time. The other option is the use of more complex 

objective methods, which fall under two categories: 
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- Optimization of a cost function, which quantifies the distance between model and 

observations to minimize the bias. 

- A Bayesian approach, based on quantification of uncertainty sources. 

These complex methods help make the tuning process reproducible, as they require the modeler to 

translate subjective judgment into formulas and numerical values, therefore creating an objective 

algorithm. 

In this work, tuning was performed on the interactive vegetation mode of SimBA to improve the 

modelled climate. This procedure was necessary, since PlaSim was tuned to reproduce present day 

climate only with vegetation in the non-interactive mode. Activating vegetation in the interactive 

mode with the default setup produced a significantly lower mean global temperature compared to 

both observations and to the non-interactive vegetation mode. The biases will be explained further in 

Chapter 3.1. 

The tuning method used in this work was relatively simple; it consisted of running six different 

simulations with changes in the snow-free albedo and in the soil water holding capacity 

parametrization. Some modelled variables were then compared to observations, specifically the 

ECMWF Reanalysis v5 (ERA5) dataset (European Centre for Medium-Range Weather Forecasts 

(ECMWF)). The variables considered were two-meter air temperature, precipitation, evaporation and 

leaf area index. 

The simulations were performed with constant atmospheric CO2 concentrations, equal to 354 ppm, 

while the reanalysis data considered were between the years 2005-2015. This choice aligns with the 

work carried out in (Angeloni, 2022), which focused on tuning the PlaSim-ML and the PlaSim-LSG 

configurations. A CO2 concentration of 354 ppm was measured in 1990, while the concentrations 

between 2005 and 2015, were 380 ppm and 401 ppm respectively, with a value of 389 ppm in 2010 

(Lan & Keeling). This discrepancy in CO2 concentrations between simulations and observations was 

necessary to ensure a valid comparison.  

The current climate is characterized by a net radiative flux at the top of the atmosphere equal to 0.5 

𝑊/𝑚2 (Forster et al., 2021). To reach equilibrium, if the forcing is assumed to be constant, the surface 

temperature will increase, and energy will be released through longwave radiation (von Schuckmann 

et al., 2023); the net flux at the top of the atmosphere will eventually tend to zero. The increase in 

temperature due to current CO2 concentrations will be observed in the future, and if present levels of 

CO2 concentration were to be used in the simulations, the final simulated global temperature would 

be higher than observations of the same year. 
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The CO2 concentration used in the simulations was determined through Equation 17, which expresses 

the change in forcing (F) as a function of the change in atmospheric CO2 concentration. In the 

equation, C0 represents the initial atmospheric concentration in ppm, to be used in the simulations, 

while C represents the final concentration that causes the increase in forcing (Myhre et al., 1998; 

Intergovernmental Panel on Climate Change (IPCC), 1990). 

 

∆𝐹 = 5.35 ∗ ln (
𝐶

𝐶0
) 

 

The radiative forcing was set to 0.5 𝑊/𝑚2, to correct the imbalance in the total heat flux at TOA. 

The considered value for C was 389 ppm, corresponding to the year 2010 (the central year of the 

observation interval); the resulting C0 was equal to 354 ppm. 

 

 

3.1. Need for tuning: bias between modelled and observed climate 

Two 500-year simulations were initially run using SimBA in the interactive and in the non-interactive 

vegetation mode. The time series of globally averaged annual near-surface air temperature are shown 

in Figure 6. The blue line represents the non-interactive vegetation, while the orange line represents 

the interactive vegetation. These values are compared to the mean global temperature from ERA5 

reanalysis averaged between 2005 and 2015, represented by the dashed black line. In both the 

interactive and non-interactive run, the globally average near-surface temperature stabilizes after 

about 300 years, when the system reaches equilibrium. 

In the interactive mode, the simulated globally averaged temperature is colder than the temperature 

simulated in the non-interactive mode, which instead aligns with observations. The average 

temperature for non-interactive vegetation stabilizes around 287.5 K, whereas interactive vegetation 

stabilizes around 286.5 K, resulting in a 1 K difference between the two. This bias was corrected by 

tuning the snow-free albedo parametrization, as will be explained in Chapter 3.2. 

A comparison between the modelled climate in the interactive and non-interactive modes was carried 

out to evaluate further discrepancies. Apart from the global average temperature, the climate in the 

two simulations was found to be qualitatively similar. However, two significant discrepancies were 

observed in the values of soil water holding capacity and in the collapses of LAI in specific grid 

points.  

(17) 
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Figure 6: Time series of near-surface air temperature for simulations run with interactive (orange line) and 

non-interactive vegetation (blue line). The dotted black line represents near-surface air temperature from the 

ERA5 reanalysis dataset averaged between 2005 and 2015. 

 

The difference in soil water holding capacity between interactive (VEG2) and non-interactive 

(VEG1) vegetation is shown in Figure 7. The map was obtained by averaging the last 50 years of 

simulations, after equilibrium had been reached. Except for limited areas in North America, the soil 

water holding capacity in the interactive vegetation mode was found to be lower everywhere. This 

bias was corrected by tuning the soil water holding capacity parametrization, which will be explained 

in Chapter 3.3.  

 

 
Figure 7: Anomaly in soil water holding capacity between Interactive (VEG2) and non-interacting vegetation 

(VEG1), both averaged over the last 50 years of simulations.  

 

Moreover, the time series of LAI in the interactive vegetation mode shows collapses in specific grid 

points located in Europe and Amazonia, which in the non-interactive mode either do not happen or 
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they are not as frequent. An example is shown in Figure 8, which represents the time series of yearly 

average LAI in two grid points: one in Europe, specifically in Poland, and one in Amazonia, 

specifically in Brazil. The LAI simulated in the interactive mode (orange line) displays collapses 

throughout the time series in both locations. These collapses do not happen in the non-interactive 

mode (blue line). This behaviour will be partially improved by tuning the soil water holding capacity 

parametrization. 

 

 
Figure 8: Time series of yearly average Leaf Area Index in two grid points. The coordinates are latitude 52.6º, 

longitude 16.9º in Europe and latitude -2.8º, longitude 298.1º in Amazonia. 

 

 

3.2. Tuning of Snow-free albedo 

As previously mentioned, tuning was performed by running six 500-year simulations with changes 

in parametrization of snow-free albedo and soil water holding capacity. The first parametrization 

considered was snow-free albedo. 

Snow-free albedo is computed differently in the interactive and non-interactive vegetation mode: 

- In the non-interactive mode, snow-free albedo varies between a minimum of 0.12 and a 

maximum of 0.2. The parametrization is shown in Equation 18. 

 

𝐴𝑠𝑛𝑜𝑤−𝑓𝑟𝑒𝑒(𝑥, 𝑦) = 𝐴𝑓𝑢𝑙𝑙𝑦−𝑙𝑒𝑎𝑣𝑒𝑑(𝑥, 𝑦) ∗ 𝑓𝑣𝑒𝑔(𝑥, 𝑦) + 𝐴𝑏𝑎𝑟𝑒(𝑥, 𝑦) ∗ (1 − 𝑓𝑣𝑒𝑔(𝑥, 𝑦)) 

 

(18) 

 



33 
 

In the non-interactive mode, the bare soil albedo and fully-leaved albedo are two fields that 

were obtained from MODIS satellite data between 2001 and 2004. Moreover, the value of 

albedo changes in space with vegetation cover (𝑓𝑣𝑒𝑔), which changes with the location. As 

explained in Chapter 2.2.4, snow free albedo in the non-interactive mode does not display 

interannual variability: since vegetation cover is estimated from a dataset of 12 LAI fields, 

albedo varies only with the simulated month.  

- In the interactive mode, snow-free albedo varies between 0.12 and 0.3, which are the values 

of fully leaved and bare soil albedo, respectively. The parametrization is shown in Equation 

19, with its dependency on space and time. 

 

𝐴𝑠𝑛𝑜𝑤−𝑓𝑟𝑒𝑒(𝑥, 𝑦, 𝑡) = 0.12 ∗ 𝑓𝑣𝑒𝑔(𝑥, 𝑦, 𝑡) + 0.3 ∗ (1 − 𝑓𝑣𝑒𝑔(𝑥, 𝑦, 𝑡)) 

 

Snow-free albedo is a function of vegetation cover, which changes with simulated LAI. As 

opposed to non-interactive mode, interactive albedo displays both seasonal and interannual 

variation. 

The discrepancy between the two albedo ranges explains why the globally averaged temperature in 

the interactive mode is lower compared to the non-interactive simulation (shown in Figure 6). Since 

the range of snow-free albedo in the interactive simulation is higher, the near-surface air temperature 

is lower.  

Three 500-year simulations were run with lower values of bare soil albedo (𝐴𝑏𝑎𝑟𝑒) for interactive 

vegetation: 0.2, 0.23 and 0.25. The fourth 500-year simulation was run by replacing the fixed values 

with two spatially variable fields of bare soil albedo and fully-leaved albedo. This new 

parametrization of snow-free albedo, with explicit dependencies on space and time, is shown in 

Equation 20. 

 

𝐴𝑠𝑛𝑜𝑤−𝑓𝑟𝑒𝑒(𝑥, 𝑦, 𝑡) = 𝐴𝑓𝑢𝑙𝑙𝑦−𝑙𝑒𝑎𝑣𝑒𝑑(𝑥, 𝑦) ∗ 𝑓𝑣𝑒𝑔(𝑥, 𝑦, 𝑡) + 𝐴𝑏𝑎𝑟𝑒(𝑥, 𝑦) ∗ (1 − 𝑓𝑣𝑒𝑔(𝑥, 𝑦, 𝑡)) 

 

The bare soil albedo and fully-leaved albedo fields used in this parametrization were retrieved from 

a set of data available in PlaSim (listed with codes 1740 and 1741 respectively), which were obtained 

from MODIS satellite data of the years 2001-2004 (Lunkeit et al., 2011). 

The time series of globally averaged annual snow-free albedo for the different simulations are shown 

in  Figure 9, with a summary of the simulations provided in Table 2. 

(19) 

 

(20) 
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Figure 9: Time series for globally average albedo for simulations run with original interactive (orange) and 

non-interactive vegetation (blue), compared to simulations run with changes in parametrization of snow free 

albedo, explained in Table 2. The dotted black line is near surface temperature from the ERA5 reanalysis 

dataset. 

 

Table 2: Description of simulations for tuning of snow-free albedo parametrization. 

Simulation name Description 

Trial 1 𝐴𝑏𝑎𝑟𝑒 = 0.23 

Trial 2 𝐴𝑏𝑎𝑟𝑒 = 0.20 

Trial 3 𝐴𝑏𝑎𝑟𝑒 = 0.25 

Trial 4 
𝐴𝑓𝑢𝑙𝑙𝑦−𝑙𝑒𝑎𝑣𝑒𝑑 and 𝐴𝑏𝑎𝑟𝑒 are 

fields 
 

 

Globally average albedo for the interactive original simulation (orange line) is higher than the non-

interactive albedo (blue line). The first and fourth trials show a globally averaged albedo at 

equilibrium similar to the non-interactive value. The second trial shows lower values, while the third 

shows higher ones.  

The time series of globally averaged near-surface air temperatures for the simulations, summarized 

in Table 2, are shown in Figure 10. The black dotted line represents the mean global temperature from 

observations. 
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Figure 10: Time series for globally average yearly near surface temperature for simulations run with original 

interactive (orange) and non-interactive vegetation (blue), compared to simulations run with changes in 

parametrization of snow free albedo, explained in Table 2. The dotted black line is near surface temperature 

from the ERA5 reanalysis dataset. 

 

The average near-surface air temperatures at equilibrium in the first and fourth trials are similar to 

both the observations and the non-interactive value. The second simulation run exhibits a temperature 

that is 0.5 K higher, while the third shows a temperature that is 0.25 K lower. These results are 

consistent with the remarks made on average global albedo. 

Among all the runs, the first and fourth trials showed improved values for both average global 

temperature and albedo. Ultimately, the parametrization used in the fourth trial was the one selected, 

as it improved the simulated global average temperature, by improving the representation of albedo, 

while also implementing field values of bare soil and fully vegetated albedo, rather than reducing 

them to a single constant value for the whole domain.  

 

 

3.3. Tuning of soil water holding capacity 

The second parametrization to be tuned was the soil water holding capacity for interactive vegetation, 

which is the focus of this chapter. The goal was to obtain more realistic soil water holding capacity 

values compared to observations, while simultaneously improving the simulation of the climate.  

The soil water holding capacity has different value ranges in the interactive and non-interactive 

modes: 
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- In the non-interactive mode, it varies between 0.001 m and 1 m, and it is derived from 

observations. Specifically, it is part of the Land Surface Parameter dataset of the US 

Geological Survey, identified by code 229 on the reference manual (Lunkeit et al., 2011; 

Hagemann, 2002). 

- In the interactive mode, it ranges between 0.05 m and 0.5 m. 

The parametrization in the interactive mode causes the soil water holding capacity to be lower 

compared to the observational data in most areas of the world, as shown in Figure 7. The interactive 

parametrization, shown in Equation 21, was therefore changed.  

 

𝑊𝑚𝑎𝑥 = 𝑊𝑚𝑎𝑥,𝑚𝑎𝑥 ∗ 𝑉𝑠𝑜𝑖𝑙 + 0.05 ∗ (1 − 𝑉𝑠𝑜𝑖𝑙)  

 

𝑊𝑚𝑎𝑥,𝑚𝑎𝑥, which is the theoretical soil water holding capacity as biomass becomes infinitely large, 

was raised from the original value of 0.5 m to 1 m, and then to 1.5 m in two 500-year simulations. 

Both simulations were run with the tuned parametrization of snow free albedo. The ranges of soil 

water holding capacity used in the different simulations are summarized in Table 3. 

 

Table 3: Soil water holding capacity ranges for different experimental configurations. The non-interactive 

range comes from observations, while the remaining three ranges are a result of different parametrizations. 

Simulation Range of soil water holding 

capacity values 

Non - interactive 𝑊𝑚𝑎𝑥 = (0.001 𝑚 − 1 𝑚) 

Interactive, original 

parametrization of 𝑊𝑚𝑎𝑥 𝑊𝑚𝑎𝑥 = (0.05 𝑚 − 0.5 𝑚) 

Trial 1 𝑊𝑚𝑎𝑥 = (0.05 𝑚 − 1 𝑚) 

Trial 2 𝑊𝑚𝑎𝑥 = (0.05 𝑚 − 1.5 𝑚) 

 

 

Table 4 shows the mean global value of soil water holding capacity, averaged over the last 50 years 

of simulations, after reaching equilibrium. The second trial simulates a mean global value closer to 

observations, while the first trial simulates a slightly lower value. 

 

(21) 
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Table 4: Average global values of soil water holding capacity for the different simulations. 

Simulation Average global soil water 

holding capacity 

Non interactive 𝑊𝑚𝑎𝑥 = 0.522 𝑚 

Trial 1 𝑊𝑚𝑎𝑥 = 0.474 𝑚 

Trial 2 𝑊𝑚𝑎𝑥 = 0.527 𝑚 

 

 

Figure 11 shows the anomaly in soil water holding capacity between the trials and the non-interactive 

simulation. Compared to the original parametrization, shown in Figure 7, both trials indicate an 

increase in soil water holding capacity in various places (mainly Europe, South-East Asia, the 

Amazon region and Canada). Moreover, while the first trial (map on the left) exhibits moderate 

regional anomalies, the second trial (map on the right) shows more pronounced anomalies in the same 

areas.  

 

  

Figure 11: Anomaly in soil water holding capacity between interactive and non-interacting mode for Trial 1 

(on the left) and Trial 2 (on the right), explained in Table 3. The values were averaged over the last 50 years 

of the simulation, after equilibrium was reached. 

 

To choose the best soil water holding capacity parametrization, the bias between modelled climate 

and observations was evaluated as well. Overall, the change in parametrization did not significantly 

impact the simulated climatology.  

The Root Mean Square Error (RMSE) was calculated for four climate variables on land: leaf area 

index, near-surface air temperature, evaporation and precipitation. The variables were evaluated on 

land because the changes in soil water holding capacity did not significantly influence their values on 

the ocean. The Root Mean Square Error was calculated using Equation 22, where 𝑦𝑘 represents the 
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observed values and �̂�𝑘 represents the simulated values at the position in space defined by k. The 

results are shown in Table 5. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑘 − �̂�𝑘)2

𝑛

𝑘=1

 

 

Table 5: Root Mean Squar Error on land for temperature, evaporation, precipitation and LAI, calculated for 

the two trials (see Table 3). The RMSE was calculated by considering the last 50 years of simulation, after 

equilibrium was reached. 

Variable RMSE 

Temperature 
𝑅𝑀𝑆𝐸𝑡𝑟𝑖𝑎𝑙 1 =2.75 

𝑅𝑀𝑆𝐸𝑡𝑟𝑖𝑎𝑙 2 =2.72 

Evaporation 
𝑅𝑀𝑆𝐸𝑡𝑟𝑖𝑎𝑙 1 =0.59 

𝑅𝑀𝑆𝐸𝑡𝑟𝑖𝑎𝑙 2 =0.60 

Precipitation 
𝑅𝑀𝑆𝐸𝑡𝑟𝑖𝑎𝑙 1 =0.79 

𝑅𝑀𝑆𝐸𝑡𝑟𝑖𝑎𝑙 2 =0.80 

Leaf Area Index 
𝑅𝑀𝑆𝐸𝑡𝑟𝑖𝑎𝑙 1 =1.03 

𝑅𝑀𝑆𝐸𝑡𝑟𝑖𝑎𝑙 2 =1.04 

 

 

The RMSE for the first trial is lower than that of the second trial across all variables, except 

temperature. The difference in RMSE between the two trials is around 1% for all evaluated variables, 

meaning that the global difference between the two is minimal. Nonetheless, there are some regional 

differences between the two configurations; the most noticeable is a slight change in evaporation, 

temperature and precipitation over Russia, particularly during summer. 

The chosen parametrization was the one used in trial 1, with the maximum value of soil water holding 

capacity set to 1 m. In this case, the regional variations of soil water holding capacity, shown in in 

Figure 11, are less extreme, although the mean global value is slightly smaller than observations. 

Overall, the difference in simulated climate variables did not significantly influence the decision, as 

the RMSE differences between the two trials was negligible. 

(22)  
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It is interesting to note that, with tuning of the soil water holding capacity, the collapses in LAI in 

specific grid points discussed in Chapter 3.1. either do not occur or they are less frequent. This could 

be due to the changes in soil moisture caused by changes in soil water holding capacity. When the 

soil water holding capacity increases, which happens in both Amazonia and Europe (see Figure 11), 

the amount of water in the soil available for plants increases as well, since more water can be stored 

in the soil.  

The plot in Figure 12 shows the yearly LAI in two grid points, one in Europe and one in Amazonia, 

for the non-interactive (blue line), the original interactive (orange line) and the tuned interactive 

simulation (green line). In the tuned simulation, the collapses are not observed. 

 

 

 

Figure 12: Time series of yearly average Leaf Area Index in two grid points. The coordinates are lat 52.6º, lon 

16.9º in Europe and lat -2.8º, lon 298.1º in Amazonia 
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3.4. Modelled climate with tuned interactive vegetation and non-

interactive vegetation  

After tuning the model, the climate simulated with interactive vegetation was compared to both the 

non-interactive version and observations. The objective was to understand how the interactive 

vegetation affects the climate, and to analyse biases with observations. This section begins with a 

brief description of the data used for the analysis, followed by a comparison of the simulated climate 

at global and regional scales. 

 

3.4.1. Description of the data 

As previously mentioned, the observation data were retrieved from ECMWF Reanalysis v5 (ERA5), 

the dataset used was the monthly averaged data on single levels (Hersbach et al., 2023). Reanalysis 

combines data from models with observations from around the world, to create a comprehensive and 

consistent dataset that describes the state of the climate throughout the years. 

The downloaded data consisted of the monthly average values of three variables: 

- Two-meter temperature, which is the air temperature 2m above the surface. 

- Total precipitation, which is the rate of precipitation on the Earth surface obtained as a sum 

of large-scale and convective precipitation. 

- Evaporation, which is the water evaporated from Earth surface, including a simplified 

representation of plant transpiration. 

The data was downloaded on a regular lat-lon grid with a resolution of 0.25 degrees. The datasets 

were then regridded to the PlaSim T21 grid, in order to produce meridional profiles and maps. As 

explained at the beginning of Chapter 3, the years considered for observations were 2005-2015. 

The simulated climate from PlaSim was obtained by running two 500-year simulations: one with 

tuned interactive vegetation and one with non-interactive vegetation. As explained at the beginning 

of this chapter, the CO2 concentration in the atmosphere was set to 354 ppm. The output, given as 

monthly averaged values, was produced on a T21 grid. The variables considered were two-meter 

temperature (var 167), convective precipitation (var 143), large scale precipitation (var 142), 

evaporation (var 182) and leaf area index (var 200). 
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3.4.2. Global simulated climate 

Table 6 shows the global integral of total precipitation, evaporation and of the difference between 

total precipitation and evaporation. 

 

Table 6: Global integral of total precipitation, evaporation, and of the difference between total precipitation 

and evaporation, averaged over the last 50 years of simulations, after stabilization was reached. The global 

integral for observations was calculated considering the years 2005-2015. 

Dataset / Model Precipitation (𝑚3/

𝑑𝑎𝑦) 
Evaporation (𝑚3/𝑑𝑎𝑦) 

Precipitation-

Evaporation (𝑚3/𝑑𝑎𝑦) 

ERA 5 1.51 ∗ 1012 1.50 ∗ 1012 4.07 ∗ 109 

PlaSim, non-

interactive 1.43 ∗ 1012 1.43 ∗ 1012 −3.36 ∗ 107 

PlaSim, interactive 

tuned 1.44 ∗ 1012 1.44 ∗ 1012 −2.65 ∗ 107 

 
 
 
In terms of global integral, the interactive vegetation does not produce significant changes compared 

to non-interactive vegetation: the discrepancies in both evaporation and precipitation between the two 

configurations (second and third row in the table) are lower than 1%.  

The water cycle is the main source of uncertainties in both observations and climate models, therefore 

an accurate representation of the water cycle is crucial (Liepert & Previdi, 2012). The global integral 

of precipitation and evaporation is an important indicator of how well the model simulates the global 

water balance. At equilibrium, precipitation must be approximately equal to evaporation, as water 

cannot continuously accumulate in the atmosphere. Likewise, there cannot be a persistent excess of 

precipitation over evaporation. As shown in Table 6, the differences between total precipitation and 

evaporation (last column on the right) are small compared to the global integral of precipitation. 

Specifically, this difference is less than 1% of total precipitation in PlaSim simulations and about 

0.27% in observations. This suggests that the model simulates the water cycle reasonably well, as the 

quantities are largely balanced. Moreover, the simulated global integrals of total precipitation and 

evaporation, in both interactive and non-interactive modes closely match observed estimates, 

reinforcing PlaSim ability to represent the large-scale hydrological cycle effectively.  

The meridional profiles of total precipitation, evaporation, temperature and the difference between 

precipitation and evaporation over both land and ocean are shown in Figure 13. 



42 
 

 

 

 

 
Figure 13: Meridional profiles of evaporation, precipitation, the difference between precipitation and 

evaporation, and near-surface air temperature. The black dotted lines represent observations, the blue lines 

represent the non-interactive simulation, orange lines represent the original interactive simulation, and the 
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green lines represent the tuned interactive simulation. They were all obtained by averaging the last 50 years 

of simulation, while observations were averaged over the years 2005-2015. 

 

The plot shows meridional profile of observations (black lines) and simulations for non-interactive 

vegetation (blue lines), original interactive vegetation (orange lines) and tuned interactive vegetation 

(green lines). 

As previously said, the tuning of interactive parametrization did not significantly change the global 

simulated climate: there is no significant difference between the tuned and original interactive 

parametrization (green and orange lines). Moreover, an interactive vegetation does not significantly 

alter the global simulated climate, although there are some differences in precipitation and 

evaporation in specific regions, which will be better discussed in the next chapter. The meridional 

profiles on the ocean are not significantly altered by an interactive vegetation, as vegetation mainly 

influence precipitation and evaporation on land. 

It is important to note that between latitudes of -60 and -40, oceans dominate over land, which could 

explain the high bias over land in this region for precipitation and evaporation.  

The biases of the modelled climate compared to observations vary across different variables: 

- Evaporation over land is overestimated, with the highest bias below the equator, in the tropical 

regions of the Southern Hemisphere, and another lower bias at mid-latitudes in the Northern 

Hemisphere. Conversely, evaporation on the ocean is underestimated. 

- The meridional profile of simulated precipitation matches observations, especially over land, 

where a slight positive bias can be observed at mid and high latitudes in the Northern 

Hemisphere. Over the ocean, precipitation is slightly underestimated, but the general 

behaviour is as expected, with the highest peak at the equator and two smaller peaks at mid 

latitudes, due to global atmospheric circulation.  

- The difference between precipitation and evaporation is generally consistent with 

observations. The simulated climate shows a similar profile to observations: there is a positive 

peak over the ocean at the equator, where precipitation exceeds evaporation, and negative 

values in subtropical regions, where evaporation prevails.  

- Meridional profile of near-surface air temperature is generally well represented, although 

there are biases up to 5 K over the ocean at high latitudes, where the simulated temperature is 

underestimated in the Northern Hemisphere and overestimated in the Southern Hemisphere. 
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3.4.3. Regional changes in the simulated climate 

Regional changes in LAI, near-surface air temperature, precipitation and evaporation due to 

interactive vegetation will be discussed in this section, through different maps. Figure 14 shows the 

average annual, summer (June-July-August) and winter (December-January-February) anomaly 

between the tuned interactive vegetation and the non-interactive vegetation. 
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Figure 14: Annual, winter and summer anomalies between tuned interactive vegetation and non-interactive 

vegetation for leaf area index, evaporation, precipitation and near-surface air temperature. The maps were 

obtained by averaging the last 50 years of simulation, after equilibrium was reached. 

 
 
Interactive vegetation produces regional changes in LAI. These changes are localized in specific 

areas: North-East Asia, mainly Russia, and South America experience the highest decrease in LAI, 

around 70% of the non-interactive value. A moderate increase is observed in North and Central 

America, as well as in the eastern parts of South America. The variation is mostly constant throughout 

the seasons, especially in the Southern Hemisphere; in the Northern Hemisphere, seasonal variations 

are slightly higher, although still modest, with greater negative variations. The moderate seasonal 

variation in LAI is due to the absence of winter deciduous phenology, and to the dependency of LAI 

on biomass, which is characterized by a long response time (the residence time is 10 years, as shown 

in Equation 1).  

Overall, most regions show moderate to low anomalies in evaporation. The anomalies are mostly 

localized in specific regions, and they mainly happen on land. Moreover, the highest variation in 

evaporation happens during the summer months, while winter months show weaker anomalies. 

A reduction in evaporation is observed in regions where LAI shows a decrease, this phenomenon can 

be observed especially in South America, central Africa and Central Asia, with the highest 

evaporation anomaly observed in Central Asia during summer.  

Variations in precipitation due to interactive vegetation have a strong seasonality, and anomalies on 

the ocean are higher for precipitation than for evaporation. Moreover, the anomalies on land are 

localized in the same regions of evaporation anomalies, and they generally increase were evaporation 

increases and decrease where evaporation decreases. Similarly to evaporation, the largest anomaly 

occurs is in Central Asia during the summer, where a decrease in precipitation is observed. Overall, 

precipitation and evaporation are strongly linked to leaf area index, and where leaf area index 

changes, evaporation and precipitation change as well. We can conclude that an interactive vegetation 
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induces changes in the hydrological cycle, which are linked to changes in LAI. Areas where 

precipitation decreases are characterized by a reduction in evaporation, and the lower amount of water 

in the soil likely produces a decrease in leaf area index. It is also important to note that changes in 

LAI also affect the Gross Primary Production, which in turn affects the climate through the four land 

surface variables explained in Chapter 2.2.4. Therefore, precipitation and evaporation are influenced 

by LAI changes in return. 

The last row in Figure 14 shows anomalies in temperature, the highest variations are observed in the 

Northern Hemisphere. Temperature decreases at high latitudes especially during the winter. A strong 

positive anomaly is observed during the summer in central Asia, where LAI shows a decrease. It can 

be noted that the locations with a negative anomaly in LAI generally experience a positive anomaly 

in temperature, and vice versa. 

Figure 15 shows the bias between non-interactive vegetation and observations. Using these maps, we 

can assess whether the interactive vegetation (in Figure 14) improves or worsens the original bias. 

The variables in both Figure 14 and Figure 15 use the same scale, to allow visual comparison. 
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Figure 15: Annual, winter and summer bias between non-interactive vegetation and observations for 

evaporation, precipitation and near-surface air temperature. The values of non-interactive vegetation were 

obtained by averaging the last 50 years of simulation, after equilibrium was reached, while observations were 

averaged between 2005 and 2015. 

 

The anomalies in evaporation, precipitation and near-surface temperature induced by interactive 

vegetation are much lower than the bias with observations. Therefore, an interactive vegetation cannot 

significantly impact these biases. In Figure 15, evaporation, precipitation and near-surface 

temperature present important regional bias with observations, while at the global scale the biases are 

quite low, as shown in Chapter 3.4.2. 

Evaporation, shown in the first row of Figure 15, exhibits a systematic overestimation over land, 

particularly in the tropical regions south of the equator and at high latitudes in the Northern 

Hemisphere. Conversely, underestimations are prominent over oceans, as observed in Figure 13. 

By comparing evaporation in Figure 14 and Figure 15, it is evident that interactive vegetation slightly 

reduces the bias in some areas, such as Central Asia, Australia, and the western parts of South 

America, while it slightly increases the bias in North America. 

Precipitation, in the second row, shows the highest negative bias in the intertropical convergence 

zone, a low-pressure band located around the equator, where trade winds converge. The bias is 

particularly high during summer. A negative bias is also observed at mid-latitudes, especially over the 

ocean. Interactive vegetation improves the bias over Australia and Central Asia, while it generally 

exacerbates biases at the tropics, particularly in South America and Africa. 

Near surface air temperature show generally cold biases over the ocean, and warm biases over land 

areas, with strong seasonal variations. These biases are higher in polar regions at high latitudes, with 

a cold bias in the Northern Hemisphere and a warm bias in the Southern Hemisphere. Interactive 

vegetation mainly influences biases over land, while near-surface temperature over the ocean remains 

mostly unchanged. In general, the interactive vegetation reduces biases over land by decreasing the 

warm bias in Canada and Australia and mitigating the bias over the Sahara Desert. However, some 
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exceptions are observed: interactive vegetation exacerbates the warm bias over Central Asia, 

particularly during the winter, and the cold bias over Northern Europe and Russia. 

Overall, interactive vegetation leads to slightly lower biases in evaporation and temperature, 

particularly in certain regions of the Earth, although some areas experience worse bias. The main 

changes in evaporation, precipitation and temperature were observed in Russia, where an interacting 

vegetation, which led to a decrease in LAI, increases the warm temperature bias and corrects the 

precipitation bias, particularly during summer. The interactive vegetation improved the evaporation 

bias on the eastern areas of Asia, while worsening it in the west. 

 
 

3.5. Concluding remarks 

This chapter provided an in-depth explanation of the tuning process applied to the interactive 

vegetation mode. The parametrizations of both snow-free albedo and soil water holding capacity were 

adjusted. Specifically, the snow-free albedo parametrization was modified to substitute Afully-leaved and 

Abare with two fields retrieved from MODIS observations, instead of using constants. Tuning 

improved the representation of the climate system, particularly global average temperature and soil 

moisture, which in turn mainly affects the water cycle, precipitation and evaporation.  

An analysis of the simulated climate was then carried out to evaluate the changes in the climate 

induced by an interactive vegetation, compared to a non-interactive one, and to assess the bias with 

observations. To summarize, compared to a non-interactive vegetation, an interactive one: 

- Does not significantly alter global climatology, as meridional profiles (Figure 13), global 

average near-surface air temperature and global integrals of evaporation and precipitation 

(Table 6) remain nearly unchanged. 

- Induces regional changes in leaf area index, evaporation, precipitation and near-surface 

temperature (Figure 14). The changes in temperature, precipitation and evaporation are 

primarily observed in specific regions of the Earth, mainly on land, where the LAI is also 

varying. The highest variations were observed in Central Asia, where a decrease in LAI is 

accompanied by a decrease in precipitation and evaporation, which indicates a change in the 

water cycle, and an increase in temperature, especially during the summer. Changes in 

temperature are also noticeable over the North Pole, especially in winter. 

The biases of the simulated climate with observations can be summarized as follows: 

- At the global scale, the global average temperature is well represented. The water balance is 

also represented reasonably well, as the global integrals of evaporation and precipitation 
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match (Table 6). The meridional profiles (Figure 13) are generally similar to observations, 

although evaporation is overestimated over land and consequently underestimated over ocean. 

Precipitation is also underestimated over the ocean, while the meridional profile of 

temperature aligns with observations, except for biases at high latitudes. 

- Regional biases in evaporation, precipitation and near-surface temperature exhibit complex 

patterns. As previously mentioned, evaporation is underestimated over the ocean and 

overestimated over land, although negative biases are observed in some land regions, like 

Central Asia. A negative precipitation bias is observed over the ocean in the intertropical 

convergence zone, especially in the summer, and at mid latitudes. The most pronounced 

temperature bias is observed at high latitudes, with strong cold bias at the Northern 

Hemisphere, which is exacerbated by interactive vegetation, and a strong warm bias in the 

Southern Hemisphere. Overall, interactive vegetation does not significantly alter the biases, 

as the changes are significantly lower than the biases.  
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4. Comparison of LAI simulated by PlaSim-SimBA with CMIP6 

ensemble and observational benchmarks 
 

Evaluating the vegetation simulated in PlaSim is essential to assess potential shortcomings and 

limitations of the model. For this reason, the vegetation simulated through PlaSim was compared to 

that of more complex models, specifically four Earth System Models (ESMs) involved in the sixth 

phase of the Coupled Model Intercomparison Project (CMIP6). Additionally, these simulated 

vegetation outputs were compared to observations derived from both satellite data and ECMWF 

Reanalysis v5, which served as a benchmarks. The goal of this comparison was to assess the ability 

of PlaSim to simulate vegetation in comparison to observation and to evaluate its performance against 

more complex models. The analysis was carried out both at global level and in two specific regions: 

Europe and Amazonia.  

As previously mentioned, vegetation in PlaSim is represented through different variables (leaf area 

index, forest cover, vegetation cover and biomass). However, the variable considered in the 

comparison was the leaf area index (LAI) which, as explained in the first chapter, is a key indicator 

for vegetation. It is one of the main variables used for modelling forest growth and it is used in many 

ESMs to represent both canopy and vegetation structures.  

In this chapter, the LAI was evaluated by comparing the global average, spatial distribution, 

interannual variability and seasonal cycle. The interannual variability was assessed in the two regions, 

while seasonal cycle was analysed both in these regions and at the hemispheric levels. 

 

 

4.1. Data description 

This section will provide a brief description of the datasets used for the analysis, including how 

vegetation, evaluated through LAI, is simulated in different CMIP6 models, with a focus on 

phonology and plant functional types. 

 

4.1.1. Satellite data 

The satellite dataset used in this analysis is the fourth generation GIMMS Leaf Area Index product 

(GIMMS LAI4g), version 1.2 (Cao et al., 2023). The dataset was derived from Advanced Very High 
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Resolution Radiometer (AVHRR), which offers the longest available time record of data, starting in 

the early 1980’s. This database was produced using machine learning models built upon NDVI 

product and high-quality Landsat LAI samples, while the data consolidation method was based on 

reprocessed MODIS data. This allowed to solve major uncertainties in global LAI products: AVHRR 

sensor degradation, orbital drift and insufficient LAI reference to build robust LAI data, particularly 

prior to the late 1990’s. 

The dataset exhibits overall high accuracy and minimal underestimation, compared to its predecessor 

(GIMMS LAI3g) and the other two mainstream datasets (GLASS and GLOBMAP). It also ensures 

consistent trends before and after the year 2000, allowing long-term assessment (Cao et al., 2023).  

The dataset provides LAI values with 15-day temporal frequency and 1/12º spatial resolution. These 

data were averaged monthly and converted to 1º spatial resolution through bilinear interpolation, to 

match the other datasets. The time period considered for the analysis was 1980-2014. 

 

4.1.2. Reanalysis data 

A second benchmark for the comparison was obtained from ECMWF Reanalysis v5 (ERA5), the 

dataset consists of monthly averaged data on single levels (Hersbach et al., 2023). Since LAI is not 

directly provided, it was derived from four variables: 

- Leaf area index for high vegetation (𝐿𝐴𝐼ℎ𝑖𝑔ℎ), which represents half the total leaf surface area 

present over an area of land classified as high. High vegetation consists of evergreen trees, 

forests and deciduous trees. These values were estimated from daily satellite data.  

- Leaf area index for low vegetation (𝐿𝐴𝐼𝑙𝑜𝑤), which represents half the total leaf surface 

present over an area of land classified as low. Low vegetation consists of crops, short and tall 

grass, tundra, evergreen and deciduous shrubs. These values were estimated from daily 

satellite data. 

- High vegetation cover (𝑓𝑣𝑒𝑔,ℎ𝑖𝑔ℎ), which is the fraction of the grid box covered with high 

vegetation. It varies from 0 to 1 and it is constant in time. 

- Low vegetation cover (𝑓𝑣𝑒𝑔,𝑙𝑜𝑤), which is the fraction of the grid box covered with low 

vegetation. It varies from 0 to 1 and it is constant in time. 

The total LAI was estimated using Equation 23 as a function of the aforementioned variables 

(Duveiller et al., 2023). 
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𝐿𝐴𝐼 = 𝐿𝐴𝐼𝑙𝑜𝑤 ∗ 𝑓𝑣𝑒𝑔,𝑙𝑜𝑤 + 𝐿𝐴𝐼ℎ𝑖𝑔ℎ ∗ 𝑓𝑣𝑒𝑔,ℎ𝑖𝑔ℎ 

 

The main issue with the reanalysis dataset is that LAI is prescribed at the grid cell level, following a 

fixed seasonal cycle based on satellite information. As a result, since high and low vegetation cover 

are fixed in time, LAI exclusively represents the monthly climatology. Inter-annual variability is not 

captured, while seasonal variability is (European Centre for Medium-Range Weather Forecasts 

(ECMWF), 2025). This justifies the need to use satellite data as an additional benchmark. 

The data were downloaded as daily values and then averaged to obtain monthly means. The original 

regular lat-lon grid with a resolution of 0.25 degrees was regridded to a 1º spatial resolution using 

bilinear interpolation. 

 

4.1.3. CMIP6 models 

The Coupled Model Intercomparison Project (CMIP) is an international scientific collaboration 

created by the United Nations World Climate Research Programme. It was established to facilitate 

the realization of experiments on past and future climate among different modelling teams. This 

ensures that differences in simulated climate are ascribed to model differences rather than variations 

in the experimental setup. CMIP provides a framework for performing experiments, allowing 

different climate modelling centres to produce standardized outputs, and it offers scientists a 

comprehensive database of model simulations. The sixth phase of the Coupled Model 

Intercomparison Project includes 53 climate modelling centres that run over 100 climate models 

(Miller et al., 2021; European Centre for Medium-Range Weather Forecasts (ECMWF), 2023). CMIP 

includes different scenarios for climate model experiments. In this analysis, the historical scenario 

(between 1850 and 2014) was used, and the output of this experiment was compared to both PlaSim 

and observations.  

The four CMIP6 models considered in this analysis are listed in Table 7. Two of them, the AWI-

ESM1-1-LR and MPI-ESM1-2-LR, use the same land model to simulate vegetation, while the other 

two employ different ones.  

 

Table 7: Description of the four CMIP6 models used in the comparison and general characteristics of their 

implemented vegetation models. 

(23) 
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Model Institute Land Surface 

Model 
Plant functional 

types 

Number of 

phenological 

types 

AWI-ESM1-1-LR AWI (Germany) JSBACH 3.2 12 5 

EC-Earth3-Veg 
EC-Earth-

Consortium 

(Europe) 
LPJ-GUESS 10 3 

MPI-ESM1-2-LR MPI (Germany) JSBACH 3.2 12 5 

UKESM1-0-LL MOHC (UK) JULES-ES-1.0 9 2 

 

 

All the chosen models simulate the plant type distribution dynamically, rather than using prescribed 

distributions based on land use and land cover change, which is the case in many other CMIP6 models 

(Song et al., 2021). Unlike PlaSim, these four models include Plant Functional Types (PFTs) to 

describe vegetation, which allow to represent the wide variety of plant species present in the world in 

a simplified way. Plant functional types account for different responses based on vegetation type. 

Each PFT is characterized by distinct properties, which vary depending on the model, such as 

photosynthetic pathway type (C3 or C4), parameters of the photosynthesis models, type of phenology 

(e.g. grass, raingreen). For example, they can account for different responses in albedo and surface 

conductance based on morphological differences in leaf types (Duveiller et al., 2023; Reick et al., 

2021). 

Both the AWI-ESM1-1-LR and MPI-ESM1-2-LR models use the same land surface model, called 

JSBATCH. The model represents the vegetation using 12 Plant Functional Types, whose spatial 

distribution is dynamic, and changes with the climate (Shi et al., 2020). The phenology model present 

in JSBATCH is directly linked to the climate, requiring climatic variables as input, specifically 

temperature, soil moisture, and Net Primary Productivity (NPP). It distinguishes between five 

phenological types: evergreen, summergreen, raingreen, grasses and crops. Evergreen and 

summergreen phenologies depend on temperature, which changes with season, while raingreen 

phenology depends on soil moisture, with higher soil moisture levels linked to lower shredding rates. 

Grass phenology depends on temperature, soil moisture and NPP, as grasses grow in all types of 

climates only when certain conditions (fPAR, CO2 concentration etc.) are within a suitable range, 
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these conditions are reflected by NPP. Finally, crop phenology depends on temperature, soil moisture 

and NPP as well. Each PFT is linked to one of these phenological types (Reick et al., 2021).  

EC-Earth3-Veg uses the LPJ-GUESS model for dynamic vegetation, which simulates the size, age, 

structure, temporal dynamic and spatial heterogeneity of vegetation (Döscher et al., 2021). It 

comprises 10 Plant Functional Types, which categorize vegetation based on climatic conditions, 

growth form (tree or herb), photosynthetic pathway and leaf phenology type (Smith, 2007). The 

model defines three types of phenologies, which are similar to the previous vegetation model. These 

phenologies are:  

- Drought deciduous (raingreeen), common in drier parts of the tropics, where plants shed their 

leaves during dry season. This phenology depends on soil moisture and transpirative demand. 

- Winter deciduous (summergreen), for plants that shed the leaves in winter; these plants are 

characteristic of cool temperate and boreal biomes. Winter deciduous phenology depends on 

temperature. 

- Evergreen, the plants with this phenology do not shed their leaves, and this phenology does 

not depend on climate variables. 

Lastly, UKESM1-0-LL uses 9 Plant functional Types, which are competing for space and change 

dynamically (Sellar et al., 2019; Clark et al., 2011). These PFTs include two phenological types: 

-  Cold deciduous, which depends on temperature. The leaves start dying when temperature 

drops below a threshold, which varies for different PFTs.  

- Drought deciduous, which is simulated as the cold-deciduous, but it depends on soil moisture 

instead of temperature.  

 

As already mentioned, the LAI for the four models was obtained from historical simulations, which 

span from 1850 to 2014. The historical simulations cover years in which observations are available, 

these observations are used to represent the historical variability of external forcing. The historical 

forcing data includes GHG concentrations, stratospheric aerosol concentrations, emission of aerosol 

and GHGs, sea surface temperatures and sea-ice concentrations, solar forcing, time varying gridded 

ozone concentrations and time varying gridded land-use forcing datasets. Some models may need 

additional forcing datasets (Eyring et al., 2016). For the comparison presented in this chapter, the 

years between 1980 and 2014 were considered. The data was downloaded in 1º spatial resolution. 
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4.1.4. PlaSim 

The LAI data were obtained from the simulations explained in Chapter 3.4.1 for both interactive and 

non-interactive vegetation modes. The data were transformed from a T21 grid into a to 1º spatial 

resolution, using bilinear interpolation. As opposed to CMIP6 models, SimBA does not use PFTs, and 

its phenology is exclusively drought deciduous, which results in a considerably simpler model in 

comparison. Its characteristics are summarized in Table 8. 

 

Table 8: Description of PlaSim and summary of SimBA characteristics, as opposed to CMIP6 models reported 

in Table 7. 

Model Institute Land Surface 

Model 
Plant functional 

types 

Number of 

phenological 

types 

PlaSim University of 

Hamburg SimBA 0 1 

 

 

 

4.2. Spatial pattern and global average 

The global distribution of LAI for all the datasets considered is shown in Figure 16. The time intervals 

considered for the analysis were 1980-2014 for both satellite observations and CMIP6 models. This 

interval allows to consider long-term vegetation dynamics and their interaction with the climate. 

These data were then compared to the LAI simulated by PlaSim, which was obtained from a 

simulation with constant CO2 concentration of 354 ppm, a value that corresponds to the observed 

concentration within the time interval considered. Additionally, only the last 50 years of PlaSim data 

were considered, after equilibrium was reached. 

All models are generally able to replicate the global distribution of LAI. They successfully represent 

high values in tropical forests in Central Africa, in the Amazon and in Southeast Asia. Moderate 

values of LAI can be observed in boreal and temperate forests in Europe, Asia and North America as 

well as in the tropical savannas of Africa and South America. Low LAI values are found over deserts, 

in shrublands and sparsely vegetated regions, such as North Africa, Middle East and Australia. 

Both AWI-ESM1-1-LR and MPI-ESM1-2-LR models accurately capture the spatial distribution of 

LAI across the world, without significantly overestimating LAI in specific regions. In contrast, 
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PlaSim, EC-Earth3-Veg and UKESM1-0-LL tend to overestimate vegetation in the tropical regions 

of Central Africa, the Amazon and Southeast Asia compared to the benchmarks, as well as in boreal 

and temperate forests. Notably, the vegetation model used in AWI-ESM1-1-LR and MPI-ESM1-2-

LR features the highest number of PFTs and types of phenology out of all the models, as shown in 

Table 7. 

  

 

Figure 16: Global distribution of multi-year averaged LAI. The first row represents PlaSim results in the non-

interactive (VEG1) and interactive tuned (VEG2) vegetation modes. The second and third row represent the 

LAI simulated in four CMIP6 models (see Table 7), while the last row shows spatial distribution of LAI from 

satellite (GIMMS) and ERA5 reanalysis. 
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The maps in Figure 17 show the bias in simulated LAI from the models compared to the satellite-

derived (GIMMS) observations. It is evident that different models exhibit distinct biases in different 

locations. EC-Earth3-Veg and UKESM1-0-LL show an overall positive bias over most land areas, 

with stronger overestimations in tropical regions in South America, Africa and Asia and in boreal and 

temperate regions in North America, Europe and Asia. EC-Earth3-Veg shows an underestimation of 

LAI in Eastern Amazonia and Russia, while UKESM1-0-LL shows low underestimation. Both AWI-

ESM1-1-LR and MPI-ESM1-2-LR models tend to underestimate LAI in equatorial regions, but their 

overall bias is lower compared to the other models. 

In PlaSim, the areas affected by biases exhibit significantly higher values compared to other models, 

where biases are more uniformly distributed on land. On the other hand, PlaSim accurately represents 

LAI in some regions characterized by low LAI, such as Australia, North Africa and parts of Asia, 

where biases are not observed, as opposed to other models. In PlaSim, LAI is overestimated in 

Europe, Southeast Asia and Canada, while it is underestimated in some regions of Central Africa and 

South America. Overall, while models can capture broad spatial patterns, discrepancies are present in 

specific regions. These regional biases are more pronounced in PlaSim compared to other models. 

 

 
Figure 17: Global distribution of biases in multi-year averaged LAI compared to satellite data (GIMMS). The 

first column represents PlaSim simulations in the non-interactive (VEG1) and interactive tuned (VEG2) 

vegetation modes. The second and third column represent LAI simulated in four CMIP6 models (see Table 7). 

 

The globally averaged LAI is shown in Figure 18. Compared to observation, PlaSim overestimates 

the global mean in both interactive and non-interactive modes, which are show similar values. Both 

AWI-ESM1-1-LR and MPI-ESM1-2-LR underestimate this value, while the remaining models 
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overestimate it. EC-Earth3-Veg shows the closer values to benchmarks. Notably, the values estimated 

by PlaSim fall within the range of globally averaged LAI from the CMIP6 models, which are 1.18 

𝑚2𝑚−2 and 2.46 𝑚2𝑚−2, respectively. 

 

 
Figure 18: Globally averaged LAI of multi-year mean for the observations (in dark blue), PlaSim (in grey), 

and the four CMIP6 models (in light blue). The dotted lines represent the range of global average LAI across 

the CMIP6 models, from minimum to maximum. 

 

 

4.3. Seasonality  

4.3.1. Areas considered for the analysis  

The seasonality in LAI was evaluated over different regions of the world: Europe, Amazonia, and at 

the hemispheric level. The first two regions considered are represented within the red boxes in Figure 

19. Specifically, the European region is represented by an area located in Germany, while the 

Amazonian region is divided into two areas: Eastern and Western Amazonia. The former is located 

between Peru, Colombia and Brazil, while the latter is located in Brazil. This selection allows to focus 

on seasonal variability in two different climate zones: tropical regions near the equator and temperate 

areas in mid-latitudes. These are typically associated with different phenological patterns, with 

drought-deciduous vegetation common in tropical regions and winter-deciduous vegetation 

predominantly present in temperate and boreal areas. The boxes were chosen in areas exhibiting 

homogeneous LAI. 
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Figure 19: Map of multi-year averaged LAI from satellite observations (GIMMS). The three red squares 

represent the areas considered to evaluate the seasonal cycle of LAI.  

  

 

4.3.2. Results 

The seasonal cycle of LAI normalized by mean is shown in Figure 20 for the three different areas. In 

Europe, the seasonality of CMIP6 models follows the seasonality of the benchmark datasets. Both 

CMIP6 and observations exhibit high values of LAI in June-September and lower values in 

December-February. However, CMIP6 models show a 1-2 month delay in the LAI peak compared to 

observations, which could cause biases in energy and water cycle (Song et al., 2021). On the other 

hand, PlaSim shows opposite seasonality to both benchmark and CMIP6 models, with high values of 

LAI in December-February and lower values in June-September. The seasonal cycle without 

normalization is shown in Figure 21, clearly indicating that PlaSim overestimates LAI in every month 

compared to both observations and CMIP6 models. Moreover, the amplitude in LAI seasonal variance 

is lower in PlaSim compared to benchmarks and observations, as values only slightly vary throughout 

the year. CMIP6 models show similar amplitude compared to satellite observations. 
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Figure 20: Seasonal cycle of LAI normalized by mean averaged over the years. The plots show values for 

CMIP6 models, PlaSim, satellite (GIMMS) and ERA5 reanalysis in the three different regions. The benchmarks 

are represented by dotted lines. 

 

 
Figure 21: Seasonal cycle of LAI averaged over the years. The plots show values for CMIP6 models, PlaSim, 

satellite (GIMMS) and ERA5 reanalysis in the three different regions. The benchmarks are represented by 

dotted lines. 

 

Observations indicate similar seasonality patterns in Eastern and Western Amazonia, with peaks 

during July-September. Both regions are characterized by lower amplitude and higher average values 

compared to Europe. However, models show significant variations between the Eastern and Western 

regions. Moreover, in all regions, the interactive mode of PlaSim shows higher amplitude of 

seasonality compared to the non-interactive mode. 

In Eastern Amazonia, both PlaSim and CMIP6 models fail to capture the seasonality, which is weaker 

than in Europe, as shown in Figure 20. Both AWI-ESM1-1-LR and MPI-ESM1-2-LR exhibit seasonal 

cycle that is opposite to that of the benchmark datasets, and they overestimate the amplitude of 

seasonality, while the other models exhibit a nearly constant LAI throughout the seasons. When 

models exhibit a negative peak, the peak happens in October, while benchmark data show maximum 

values in August-September and lower values in December-February. The plot in Figure 21 for 
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Eastern Amazonia reveals that different models produce varying mean LAI; both interactive and non-

interactive PlaSim modes overestimate the mean LAI compared to benchmark datasets. 

In Western Amazonia PlaSim, AWI-ESM1-1-LR and MPI-ESM1-2-LR show opposite seasonality 

patterns compared to benchmark datasets, with lowest values in August-October, whereas 

observations show a peak during this period. UKESM1-0-LL and EC-Earth3-Veg do not exhibit 

seasonal variations. Moreover, PlaSim overestimates the amplitude of seasonality compared to 

observations, while CMIP6 models exhibit similar values to the benchmark. As shown in Figure 21, 

PlaSim shows different seasonal patterns compared to the rest of the models, with a general 

underestimation of mean LAI.  

Overall, PlaSim does not represent the seasonal cycle well in the three regions analysed. In 

comparison, CMIP6 models are good at capturing the seasonal cycle in Europe, although they delay 

the time of maximum LAI by 1-2 months. The inability of PlaSim to represent seasonal variations in 

Europe is likely due to the lack of winter-deciduous phenology in SimBA, which can only model 

drought-deciduous phenology. This absence prevents PlaSim from capturing seasonal vegetation 

dynamics accurately in temperate and boreal regions.  

Both CMIP6 models and PlaSim significantly struggle in depicting the seasonal cycle in the Amazon. 

This could be due to the dependency of phenology on solar radiation in this region, which is not 

represented in most models, as many of them primarily rely on soil moisture and temperature to 

represent phenology. The main abiotic factors driving plant phenology in tropical regions are 

irradiance and water stress. Cloudiness near the equator can greatly reduce available light, while peak 

in radiation is registered during the dry season, when cloud cover is lower. Furthermore, evidence 

suggests that both understory plants and canopy trees in tropical regions may be light-limited (Schaik 

et al., 2003). Therefore, a drought-deciduous phenology may not be sufficient to replicate observed 

phenological patterns. 

While CMIP6 models can capture the seasonal dynamics in certain regions, their ability to reproduce 

seasonality in tropical climates remains limited, highlighting the need of improved phenology. 

The seasonal cycle of temperature, evaporation and precipitation in PlaSim was analysed in Europe 

and Amazonia and compared to ERA5 observations between 2005 and 2015. The result is shown in 

Figure 22.  
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Figure 22: Seasonal cycle for temperature, evaporation and precipitation in Northern Europe, Eastern 

Amazonia and Western Amazonia. The plots show values PlaSim, in both interactive (VEG2) and non-

interactive (VEG1) vegetation mode and ERA5 reanalysis. The ERA5 data was averaged between the years 

2005 and 2015.  

 

Temperature and evaporation in Northern Europe exhibit similar seasonal variability to observations, 

while precipitation shows slightly different patterns, with an underestimation of precipitation during 

July-September. In all areas, the model overestimates evaporation on land, while temperature is 

slightly underestimated. In Amazonia, PlaSim cannot exactly reproduce the seasonal patterns, 

particularly in Western Amazonia, although average yearly values remain comparable. This highlights 
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that the issue in reproducing seasonal variations in LAI is likely due to how vegetation is modelled 

in PlaSim and to an incomplete phenology in the model, which does not consider temperatures. 

The seasonal cycle was also analysed in the Northern and Southern Hemispheres at large. Figure 23 

and Figure 24 show the seasonal cycles of LAI for both hemispheres.  

 

 
Figure 23: Seasonal cycle of LAI normalized by mean averaged over the years. The plots show values for 

CMIP6 models, PlaSim, satellite (GIMMS) and ERA5 reanalysis in two hemispheres. The benchmarks are 

represented by dotted lines. 

 

 
Figure 24: Seasonal cycle of LAI averaged over the years. The plots show values for CMIP6 models, PlaSim, 

satellite (GIMMS) and ERA5 reanalysis in the three different regions. The benchmarks are represented by 

dotted lines. 

 

The comments previously made for seasonality in Europe also apply to the Northern Hemisphere. 

This could be explained by the large spatial extent of boreal and temperate zones in the Northern 

Hemisphere. In this region, CMIP6 models depict seasonality reasonably well, with a shift in the peak 

LAI of 1-2 months, while PlaSim does not accurately represent the seasonality, and overestimates the 

mean value of LAI (see Figure 24).  
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In the Southern Hemisphere, the behaviour differs from that observed in Eastern and Western 

Amazonia, as the minimum in LAI from satellite observations occurs during June-September. 

Moreover, the average value for observations, shown in Figure 24 is significantly lower than the one 

observed in Amazonia. This difference can be explained by the fact that only a fraction of the Southern 

Hemisphere is covered by tropical forest, while a substantial portion is composed of shrublands, 

deserts and semi-arid lands (Olson et al., 2001). All the models, except UKESM1-0-LL, have similar 

amplitude, which is comparable to ERA5, but the peaks are shifted by 2-3 months. PlaSim can 

represent the average value of LAI in this hemisphere surprisingly well, even compared to the other 

CMIP6 models, as shown in Figure 24. While PlaSim fails to capture the seasonal cycle in the 

Northern Hemisphere, its behaviour in the Southern Hemisphere is fairly similar to observations, 

although it exhibits 2-3 months shift in the timing of the peak value, a pattern also observed in other 

CMIP6 models. 

To conclude, PlaSim cannot accurately represent the seasonality in Europe and in the Northern 

Hemisphere at large, compared to CMIP6 models. The behaviour is likely due to the absence of a 

winter-deciduous phenology in PlaSim, which is included in the other four CMIP6 models. In the 

Amazon rainforest, PlaSim also fails to accurately represent seasonality. However, CMIP6 models 

struggle with seasonality in this region as well. This highlights the complexity of representing the 

phenology in the Amazon, which remains challenging even for more complex models. In the Southern 

Hemisphere, PlaSim behaviour is more similar to that of other models and observations, but it still 

does not fully capture seasonality due to a time shift in the peak LAI value.  

 

 

4.4. Interannual variability 

The coefficient of variation (CV) for detrended data was calculated for the three areas considered in 

Chapter 4.3. This metric is used to assess the spatial variance and the interannual variability of LAI, 

and it is calculated as the ratio of standard deviation over mean LAI for each year, then averaged over 

time. The formula is shown in Equation 24. 

 

𝐶𝑉 =
𝜎

𝜇
 

 

(24) 
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This value provides an indication of interannual variability in LAI due to natural oscillations of the 

system, as it was calculated for detrended data. The results are shown in Figure 25. 

 

 
Figure 25: Coefficient of variation calculated over three different areas: Northern Europe, Eastern Amazonia, 

and Western Amazonia. The plots show values for PlaSim in non-interactive (VEG1) and interactive (VEG2) 

vegetation mode, the four CMIP6 models and satellite observations (GIMMS).  

 

PlaSim overestimates interannual variability in Europe and Western Amazonia compared to satellite 

data. In Eastern Amazonia, the interactive vegetation mode reduces interannual variability compared 

to the non-interactive mode. Conversely, in the other two regions, the opposite is observed, suggesting 

that the feedback mechanisms in the interactive mode can either dampen or amplify variability 

depending on the local climatic conditions and vegetation responses.  

In both Eastern and Western Amazonia, CMIP6 models struggle to capture the observed interannual 

variability, except for UKESM1-0-LL, which shows similar values to observations. This suggests the 

complexity in modelling the interannual variability in this regions, likely due to complex interaction 

between soil moisture, precipitation and vegetation. In Northern Europe, all CMIP6 models 

outperform PlaSim in reproducing observed values, which indicates better representation of higher-

latitude systems in CMIP6 models. 

Overall, a study showed that most CMIP6 models cannot reproduce the interannual variability of LAI 

at the global scale. Most models cannot capture interannual variability in the Amazon rainforest, 

where CV is underestimated compared to satellite data (Song et al., 2021). Although PlaSim fails in 

capturing the interannual variability, CMIP6 models also struggle, particularly in certain regions. 
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4.5. Concluding remarks 

This chapter aimed at evaluating how LAI is simulated in PlaSim compared to observations, and to 

contextualize its performance in the framework of more complex Earth System Models in the CMIP6 

project. The main conclusions are summarized in the following points: 

- PlaSim successfully reproduces the global spatial pattern of annual mean LAI, with the spatial 

distribution of high medium and low LAI generally comparable to observations.  

- The average global LAI in PlaSim is higher than observations, but it falls within the range of 

values in CMIP6 models. 

- PlaSim does not accurately reproduce seasonality in Europe, Amazonia or the Northern 

Hemisphere at large. CMIP6 models can reproduce seasonality in Europe and in the Northern 

Hemisphere, although they delay the time of maximum LAI by approximately 1-2 months. 

However, they struggle to represent seasonal patterns in Amazonia. This highlights the need 

for all models to improve the parametrization of phenology, potentially including its 

dependency on light. 

- PlaSim fails in capturing interannual variability of LAI, although CMIP6 models also 

struggle, particularly in certain regions. 

Overall, the issue of reproducing seasonality in PlaSim is likely due to the absence of winter-

deciduous phenology, as the model can exclusively represent drought-deciduous phenology, which 

depends on soil moisture. To improve PlaSim performance and its ability to reproduce seasonality at 

mid-latitudes, phenology should be incorporated as a function of both soil moisture and temperature. 

However, the model must remain simple enough to align with medium complexity-models. 

The results presented in this chapter show that PlaSim can be used to investigate variability in 

vegetation properties, and how they interact with the climate system over long time scales (decades 

and beyond), where seasonal changes play a minor role. 
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5. Climate tipping of vegetation at the regional scale 
 

This chapter explores the effects of increasing atmospheric CO2 concentration on vegetation, using a 

PlaSim simulation run with the tuned interactive vegetation mode. The goal is to understand how 

vegetation responds to rising CO2 concentrations, and how, in turn, vegetation might influence 

regional climate. Specifically, this chapter explores the interdependencies between vegetation and the 

local hydrological cycle, by analysing the time series of LAI, evaporation, precipitation, soil moisture 

and other variables. The focus will be on two locations: Europe and the Amazon rainforest. The 

analysis aims to detect abrupt changes in LAI within these regions and assess their relationship with 

the hydrological cycle. 

 

 

5.1. Experimental setup 

The simulation was performed using PlaSim with the tuned interactive vegetation mode for a 3000-

year run. The simulation was performed with all modules enabled, including the Large-Scale 

Geostrophic Ocean model (LSG). The atmospheric CO2 concentration was increased from an initial 

value of 354 ppm, starting from the final conditions of the previous simulations, which ensured that 

the climate had already reached stability at the beginning of the simulation. The atmospheric CO2 

concentration was increased by 0.2 ppm each year, a rate lower than the current rate (an increase of 

2.8 ppm was observed between 2022 and 2023) (Lan & Keeling). By the end of the simulation, the 

CO2 concentration reached 954 ppm. 

The gradual increase in atmospheric carbon dioxide concentration helped maintain near-equilibrium 

conditions for vegetation. An abrupt change in forcing, caused by a steep increase in CO2 

concentration, would cause a transient state, requiring time for the system to adjust to a new 

equilibrium, as explained in Chapter 3. Different components of the climate system respond in 

different time scales. Vegetation has a response time of 10 years in PlaSim, as defined in Equation 1. 

Ideally, after each increase in CO2, the new equilibrium would have to be reached before further 

increasing the CO2. However, given the impracticability of this approach, the slow increase in 

atmospheric CO2 allows the vegetation to continuously adapt, reaching a new equilibrium state within 

the year, preventing it from lagging behind the forcing. 

The model outputs were provided as monthly averaged values, produced on a T21 horizontal grid. 

The variables considered for the analysis were two-meter air temperature (var 167), convective 
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precipitation (var 143), large scale precipitation (var 142), evaporation (var 182), leaf area index (var 

200), soil water holding capacity (var 229), soil moisture (var 140) and runoff (var 160). 

 

  

5.2. Regions considered 

This subsection will provide a brief analysis on the two regions considered for the analysis of 

vegetation tipping, focusing on their key characteristics and significance within the climate system. 

 

5.2.1. Amazon 

The Amazon rainforest is the largest tropical forest on Earth, covering an area of 7 million km2 across 

nine countries: Colombia, Peru, Brazil, Venezuela, Ecuador, Bolivia, Guyana, Surinam, and French 

Guaina. The majority of the forest, around 60%, expands over Brazil. (Siqueira Silva et al., 2010). It 

is a key component of the Earth system, given its importance as a biodiversity hotspot and as a carbon 

sink, storing approximately 120 Pg (1.2 ∗ 1017𝑔) of carbon within its biomass. For this reason, even 

relatively limited changes in the forest dynamics can affect the atmospheric CO2 concentration and 

influence climate change (Phillips et al., 2009). 

Tropical forests play a crucial role in regulating the globate climate, and their disappearance could 

trigger widespread consequences across the Earth system (Staal et al., 2020). The Amazon rainforest 

has a significant impact in both South America and global climate by regulating hydrological 

feedback processes. Moisture is transported in Amazonia from the Atlantic Ocean through trade 

winds. At the regional scale (between 100 and 1000 km), tropical forests enhance rainfall, as trees 

absorb moisture from the ground, and they release it in the atmosphere during photosynthesis. This 

process allows trees to photosynthesise even during droughts, up to a certain limit, while 

simultaneously mitigating the drought conditions themselves (Staal et al., 2020). 

In the Amazon rainforest, between 30-50% of the rainfall in the area is returned to the atmosphere 

through plant evapotranspiration (Marengo et al., 2009). In some parts of the basin, especially during 

dry season, up to 70% of precipitation is recycled through vegetation-driven transpiration fluxes 

(Armstrong McKay et al., 2022). Additionally, moisture originated from the basin is transported to 

other regions within the continent, influencing rainfall in distant regions from the rainforest itself 

(Marengo et al., 2011).  
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The recycling of atmospheric moisture in the Amazon is driven by various feedback mechanisms, 

acting at different scales, that both influence and depend on the presence of the tropical forest. At the 

local level, these feedback processes lead to two possible stable states for vegetation: either a forested 

landscape or a savanna. In this bistable system, the current distribution of tropical forest is not solely 

a consequence of the present climate, but it is also determined by the past forest extent. This reflects 

the hysteresis of tropical forests (Staal et al., 2020). 

The amazon rainforest is one of the possible tipping elements of the climate system, as it is at risk of 

crossing a tipping point, defined by the IPCC as “a critical threshold beyond which a system 

reorganizes, often abruptly and/or irreversibly”. Due to rising global temperatures, the rainforest 

could pass the tipping point, leading to vegetation loss (Chen et al., 2021). Moreover, this forest 

dieback could act as a positive feedback, as it would release carbon dioxide into the atmosphere, 

leading to further increase in temperature (Parry et al., 2022).  

Several factors can contribute to the Amazon dieback, the main ones being a prolonged dry season, 

increased fire frequency and reduced rainfall. With global warming, the number of extreme hot and 

dry days is expected to increase, along with an intensification of both severity and duration of the dry 

season. This is expected to produce an increase in tree mortality. Moreover, as the rainforest becomes 

dryer, its vulnerability to fire will increase. Human-driven deforestation exacerbates these changes 

by reducing evapotranspiration, which is critical for maintaining moisture levels in the region, thereby 

reducing rainfall during dry season and weakening the forest resilience to climate change. The loss 

of resilience is more pronounced in regions with lower precipitation and higher deforestation due to 

human activity (OECD, 2022; Parry et al., 2022). To summarize, the main cause of vegetation dieback 

are the mechanisms which produce the drying of the Amazon rainforest (Parry et al., 2022). The shift 

into a savanna-like state could be irreversible even when the climate forcing is reversed (Nian et al., 

2023).  

The southeastern region of the Amazon is expected to be particularly vulnerable to a transition toward 

a non-forest-covered state. This is because the southern and eastern regions are expected to face 

precipitation decrease and more frequent extreme drought events as a consequence of climate change. 

Additionally, these regions are strongly affected by other important drivers such as deforestation (and 

extensive agriculture), road infrastructure projects and the lack of environmental policies, which 

contribute to reduced forest resilience (Wunderling et al., 2022). 

The consequences of the shift into a savanna state in the Amazon would be widespread and severe, 

impacting biodiversity, which is mostly endemic to the region, causing the loss of ecosystem 

functions. Moreover, it would negatively impact local communities, specifically indigenous 
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populations, by reducing food availability and increasing exposure to air pollution and diseases. 

Finally, as previously mentioned, forest dieback would release carbon into the atmosphere, further 

exacerbating global warming (OECD, 2022). 

As demonstrated in Chapter 4, PlaSim can capture the annul vegetation dynamics surprisingly well, 

when compared to CMIP6 models and observation. Moreover, the LAI in SimBA has a direct 

dependency on water availability, which is one of the main factors driving tropical forest dieback. For 

these reasons, PlaSim was used to study vegetation tipping in this area through the 3000-year 

simulation explained in Chapter 5.1.  

 

5.2.2. Europe 

While the Amazon rainforest is considered a tipping element of the climate system, vegetation in 

Europe is not. However, the simulation performed with increasing CO2 shows that Europe 

experiences an important decrease in leaf area index, similar to what is observed in South America. 

Therefore, in addition to this tropical region, a mid-latitude area in Europe, characterized by different 

climatic and hydrological conditions, was analysed to explore the dynamics behind abrupt changes 

in vegetation. 

Increased atmospheric CO2 leads to increasing plant productivity and water-use efficiency, up to a 

saturation point. This fertilization effect promotes plant growth by increasing the gross primary 

productivity (GPP) and tree cover in regions with favourable climatic conditions (e.g. high latitudes 

and Central Asia). Nevertheless, in areas where water stress occurs due to higher temperature and 

reduced precipitation, the benefits of CO2 fertilization are diminished, as water becomes a limiting 

factor for plant growth (Port et al., 2012). 

The response of vegetation is not expected to be uniform in Europe. Higher temperatures in Northern 

Europe are expected to produce longer growing seasons, as plant growth in this region is primarily 

limited by temperature (Port et al., 2012). In contrast, rising temperature and increased drought events 

in Southern Europe could lead to increased tree mortality and to lower nutrient availability and uptake 

(Penuelas et al., 2020). In these areas, low soil water availability produced by droughts could 

outweigh the fertilization effect. Moreover, the increase in frequency and intensity of heatwaves has 

been exacerbating fire risk in southern and central Europe, contributing to further vegetation loss 

(Bednar-Friedl et al., 2022). Although vegetation in Europe is not classified as a tipping element of 

the climate system, abrupt changes in vegetation could lead to important consequences in the region. 
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5.3. Results 

5.3.1. Average global values 

Both the mean global temperature and the mean global LAI are shown in Figure 26. The graph shows 

an increase of approximately 0.25 m2 m-2 in the mean global LAI over the simulated years, which is 

consistent with the increase in CO2 fertilization at the global level. Nonetheless, regional variations 

include both positive and negative changes. An increase in the global average forest cover is also 

observed throughout the years. 

 

 
Figure 26: Time series of yearly mean global LAI and yearly mean global temperature. 

 

The temperature shows an increases from 287.5 K to 293.6 K, with a rise of 6.1 K. The mean global 

temperature shows oscillations after the first 1500 years of oscillations. These coincide with 

oscillations in the Atlantic Meridional Overturning Circulation (AMOC), which is plotted in red in 

Figure 27. 

 
Figure 27: Time series of yearly mean global temperature, measured in K, and AMOC, measured in Sv. 
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After the first collapse, which occurs around year 1300, the AMOC seems to restart. This is followed 

by a sequence of oscillations between weak and strong state over the next 1000 years, with a 

periodicity of approximately a century. 

The AMOC is a large-scale circulation pattern in the ocean that transports heath toward the northern 

regions of the Atlantic Ocean (OECD, 2022). It is a bistable system, meaning that, in addition to the 

current strong state, a second, weaker circulation mode likely exists. A shift toward this weaker state 

would influence global temperatures and precipitation patterns (Nian et al., 2023). In the simulation, 

the AMOC does not stay in a single equilibrium state, but instead it undergoes a series of transitions 

with a characteristic periodicity. This behaviour suggests that throughout the simulation the system 

undergoes a series of tipping points, which involve interactions between different climate subsystems. 

The AMOC oscillations have been observed in models other than PlaSim, such as EC-Earth3.3. The 

cause of these periodic AMOC oscillations has been attributed to different feedbacks, such as sea ice 

melt and increased precipitation over the Artic during strong AMOC states. These produce a decrease 

in Arctic salinity and a positive freshwater anomaly during strong AMOC conditions, eventually 

triggering a transition to the weaker AMOC state. Conversely, the weak AMOC state leads to an 

increase in salinity and to negative freshwater anomaly, shifting the system towards a stronger state. 

The strong AMOC state is associated to warming in the Northern Hemisphere, and changes in 

precipitation patterns compared to a weaker state (Jiang et al., 2020). 

Finally, in Figure 27, the AMOC seems to transition into a persistently weak state during the last 300 

years of simulation. A weaker AMOC significantly affects the climate system, causing weaker heath 

transport towards the north, with a cooling effect over the Northern Hemisphere and a warming effect 

over the Southern Hemisphere. In most scenarios, the cooling effect prevails, leading to a decrease in 

global mean temperature, with strong regional cooling over Europe and North America (OECD, 

2022). Moreover, an AMOC collapse would cause an important disruption of precipitation patterns, 

specifically in the tropics, with a southward shift of the Intertropical Convergence Zone (ITCZ) 

(OECD, 2022). As a consequence, significant impacts are to be expected over the Amazon rainforest 

(Nian et al., 2023). 

 

5.3.2. Maps 

Figure 28 shows the difference in LAI and forest cover between the average of the last 50 years of 

simulation and the last 50 years of the present-day simulation. The leaf area index generally increases 

at high latitudes in the Northern Hemisphere, across North America, Europe and Asia. This increase 

can be attributed to rising temperatures, coupled with the CO2 fertilization effect, which enhances the 
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Gross Primary Production, as explained in Chapter 5.2.2. In specific regions in Canada, which is one 

of the region with higher positive anomaly, the LAI increases from an average of 1 m2 m-2 in the 

present-day simulation to 6 m2 m-2 in the last simulated years. On the other hand, the leaf area index 

decreases in the tropics, specifically in the Amazon rainforest, central America, Africa, southeast Asia 

and Australia, as well as in central and southern Europe and parts of North America. In regions with 

negative LAI anomaly located in South America, the LAI decreases from an average of 7 m2 m-2 in 

the present-day simulation to 4 m2 m-2 during the last simulated year. In Europe, it declines from an 

average of 6 m2 m-2 to 2 m2 m-2. Forest cover shows similar behaviour, decreasing in the same areas 

where LAI declines and increasing where a positive LAI anomaly is observed. 

 

      
Figure 28: Annual, winter and summer anomaly between the last 50 years of simulation of the 3000-year run 

and the last 50 years of simulation, after equilibrium was reached, for the 354 ppm run. The figure shows both 

Leaf Area Index (LAI) and forest cover.  

 

The anomaly in precipitation and evaporation compared to the present-day simulation is shown in 

Figure 29, while the anomaly in temperature is shown in Figure 30. 
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Figure 29: Annual, winter and summer anomaly between the last 50 years of simulation of the 3000-year run 

and the last 50 years of simulation, after equilibrium was reached, for the 354 ppm run. The figure shows both 

evaporation and precipitation, measured in mm/day. 

 

Evaporation increases almost everywhere over the ocean and most land areas, except in certain 

regions. A decrease in evaporation over land is observed over the west coast of North America, over 

the Labrador Sea, and in tropical regions such as the Amazon rainforest, Africa and parts of southeast 

Asia and Australia. Apart from the decrease observed over the Labrador Sea, evaporation decreases 

in regions that also experience a decline in LAI. An exception is Europe, where LAI is decreasing but 

evaporation shows only a very slight decrease. This behaviour highlights the interdependency 

between evaporation and vegetation: a decrease in LAI in the Amazon rainforest is linked to a 

decrease in evapotranspiration, as explained in Chapter 5.2.1. Moreover, the observed anomaly in 

evaporation is higher during June-July-August in America and Africa. 

The decrease in evaporation over the Labrador Sea is likely due to the weaker AMOC state, as it only 

occurs over the last 300 years of simulation and during period of weaker AMOC, when periodic 

oscillations are observed. Lower temperatures in the area are observed in conjunction to a weaker 

AMOC, which could explain the decrease in evaporation. 
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Precipitation anomalies exhibit more complex patterns compared to evaporation. While precipitation 

increases over most of the surface of Earth, it decreases over mid-latitude oceans and in regions where 

evaporation and LAI are decreasing as well. A decrease in precipitation is also observed over the 

Labrador Sea as well, especially during the winter, which coincides with the period of maximum 

evaporation decline. This behaviour is likely associated to a weaker AMOC state. 

In conclusion, regions on land that show a decrease in LAI concurrently show a decrease in 

evaporation and precipitation, underlining the regional feedback between vegetation and regional 

hydrological cycle. 

 

 
Figure 30: Annual, winter and summer temperature anomaly between the last 50 years of simulation of the 

3000-year run and the last 50 years of simulation, after equilibrium was reached, for the 354 ppm run.  

 

As shown in Figure 30, temperature increases across all regions of Earth, with higher positive 

anomalies observed the Arctic during the Winter. However, temperature do not rise in northern 

latitudes, such as Asia and Canada, during the summer, where an increase in LAI is also observed. 

Additionally, an increase in evaporation is observed over the same regions in June-July-August, 
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where LAI is rising. The LAI increase could explain the temperature behaviour, as higher 

evapotranspiration rates in the area, linked to higher LAI, would absorb latent heat.  

 

 

5.4. Vegetation tipping 

The time series of different variables (LAI, evaporation, precipitation, soil moisture, soil water 

holding capacity and runoff) were analysed in both Europe and the Amazon rainforest, to examine 

abrupt changes in LAI and its feedback with the hydrological cycle.  

 

5.4.1. Amazon  

The time series of LAI was analysed in the grid points shown in black in Figure 31. The red points 

in figure mark locations where abrupt changes were observed. 

 

 
Figure 31: Grid points analysed to identify abrupt changes in LAI, with red points marking locations where 

such changes were found. The map represents the LAI anomaly, calculated as the difference between the 

average of the last 50 years of simulation for the 3000-year run and the average over the last 50 years for the 

354 ppm run.  

 

The yearly time series of the variables in grid points with abrupt changes are shown in Figure 32. The 

series were plotted using a 25 year running mean, which consists of replacing each value with the 

average value over a window of 25 years, centred on the year considered. This operation helps reduce 

noise and attenuate oscillations with a periodicity shorter than 25 years. 
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Figure 32: Time series of average yearly values with a 25-year running mean for different grid points. The 

coordinates, in terms of longitude and latitude, are displayed above each plot. The first column shows LAI, 
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evaporation and precipitation. The second column shows LAI and the difference between precipitation and 

evaporation. The third column shows LAI, soil moisture and soil water holding capacity. 

 

Four grid points show a decrease in LAI: one (in the first row) is located in Colombia, two (in the 

second and third rows) are located in Brazil, close to where the rainforest currently transitions into a 

savanna, while the fourth grid point (in the fourth row) is centred in Bolivia, near the Brazilian border. 

Only one grid point (in the last row), centred over the Andes between Bolivia and Chile, shows an 

abrupt increase in LAI. 

The decrease in LAI does not occur simultaneously in all four locations. In the first two points to 

show a decrease, it happens after approximately 1000 years of simulation, while in the last grid point 

exhibiting the change, it occurs after about 2500 years. 

In the four locations where LAI decreases, before the abrupt change the difference between 

precipitation and evaporation, shown in the second column, decreases to 0 mm/day. This behaviour 

is driven by a decline in precipitation and an increase in evaporation, as shown in the first column in 

Figure 32. When precipitation exceeds evaporation, soil moisture increases. when the soil moisture 

reaches the maximum soil water holding capacity, any water excess produces runoff, which is higher 

at the beginning of the time series. As shown in the third column, soil water holding capacity on 

average is higher than soil moisture. As the difference between precipitation and evaporation 

decreases, water availability is lower, and soil moisture will start to decline. In this case, most of the 

precipitation is lost to evaporation. The plots clearly show that the reduction in precipitation and the 

increase in evaporation, which decreases soil moisture, precede the abrupt decline in LAI. Therefore, 

we can identify the decrease in water availability, caused by changing climatic conditions, as the main 

cause of the abrupt LAI decrease. A change in climatic conditions, which produces lower precipitation 

and higher evaporation causes an abrupt decrease in LAI.  

In most cases, a delay of several centuries is observed between the initial decrease in soil moisture 

and the abrupt decline in LAI. As explained in Chapter 2.2.3, LAI is a function of vegetation cover. 

Equation 25 defines vegetation cover as the minimum between a water-limited parameter, which 

depends on both soil moisture and soil water holding capacity, and a structurally-limited factor, which 

depends on biomass. Biomass is derived from Gross Primary Production (GPP), which, as explained 

in Chapter 2.2.2, depends on different variables. The water-limited factor is defined in Equation 26, 

while the structurally limited factor is calculated through Equation 27. 

 

𝑓𝑣𝑒𝑔 = min (𝑓𝑣𝑒𝑔,𝑤,  𝑓𝑣𝑒𝑔,𝑠) (25) 
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𝑓𝑣𝑒𝑔,𝑤 = min (1, 𝑚𝑎𝑥 (0,
𝑊𝑠𝑜𝑖𝑙/𝑊𝑚𝑎𝑥

0.25 
) 

 

𝑓𝑣𝑒𝑔,𝑠 = 1 − 𝑒−0.5∗𝐿𝐴𝐼𝑚 

 

When enough water is available for plants, biomass is the limiting factor for LAI. However, as soil 

moisture decreases, water availability eventually becomes limiting, triggering a steep decline in LAI. 

The LAI from the water-limited factor was calculated using Equation 28. The resulting plots are 

shown in Figure 33. 

 

𝐿𝐴𝐼 = −
ln (1 − 𝑓𝑣𝑒𝑔)

0.5
 

  

From this equation, it is clear that when 𝑓𝑣𝑒𝑔,𝑤 equals 1, LAI cannot be calculated. In this case, the 

limiting factor is the structurally-limited one, which asymptotically goes to 1 for infinite biomass. To 

produce the plots in Figure 33, the 𝑓𝑣𝑒𝑔,𝑤 was set to 0.98 for all values exceeding this threshold, thus 

limiting the estimated LAI to a maximum value of 8 m2 m-2. 

Figure 33 shows that LAI from the water-limited factor starts decreasing concurrently with the 

decline in simulated LAI. At the beginning, the water-limited LAI is higher than the simulated one, 

indicating that biomass is likely the limiting factor. After soil moisture decreases, water availability 

eventually becomes limiting. This transition happens several centuries after the simulation begins, 

when the water-limited LAI becomes similar in values to the simulated LAI. 

In some locations, the water-limited LAI remains significantly higher than the simulated LAI, even 

after the vegetation decline occurs. This is likely due to instances where the water-limiting factor 

increases to 1 as a result of changes in precipitation and evaporation. In such cases, biomass is the 

limiting factor. Moreover, following the LAI decline, biomass likely adjusts to lower values due to 

reduced vegetation cover, which decreases GPP, causing the two limiting factors to alternate over 

time. It is important to note that the non-linear relationships between LAI, biomass, soil moisture and 

evaporation complicates the interpretation of relationship between cause and effect. 

 

(26) 

(27) 

(28) 
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Figure 33: Time series of average yearly values with a 25-year running mean for different grid points. The 

coordinates, in terms of longitude and latitude, are displayed above each plot. The plots show LAI obtained 

from PlaSim and the LAI calculated from water-limited factor. 

 

After the decrease in LAI, both evaporation and precipitation decline as well. The response of 

evaporation to the CO2 increase is not monotonic. Before the decline in LAI, evaporation increases, 

which is likely due the growing difference in specific humidity between air and soil, as precipitation 

decreases. After the LAI declines, evaporation decreases, which can be explained by the lower value 

of water in soil, which limits evaporation. After the collapse, the variations in evaporation closely 

follow the variations in both soil moisture and LAI. The soil water holding capacity, shown in Figure 

33, remains almost constant throughout the years, with values that close to 1 m and a slight decrease 

for lower LAI values.  

In the grid point where an abrupt increase in LAI is observed, the difference between precipitation 

and evaporation increases from 0 mm/day, the initial value, to a higher value. After the abrupt LAI 

increase, precipitation shows an increment while evaporation shows a decrease. The soil moisture is 

continuously increasing throughout the simulation. After the first few centuries, slightly higher 

precipitation compared to evaporation causes soil moisture to begin rising. After about 750 years the 

difference between precipitation and evaporation shows a peak, which corresponds to a peak in soil 

moisture as well. Then, after 1500 years, LAI reaches a higher value, likely driven by higher soil 

moisture and to the fertilization effect. With the increase in LAI, precipitation and evaporation are 
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decoupled, and the difference increases, thus increasing water availability. As for the other grid points, 

the change in evaporation is not constant. It increases at the beginning with increasing LAI, but it 

starts decreasing afterwards, likely due to the decline in the difference in specific humidity between 

air and soil, as air humidity is increasing. 

The abrupt decrease in LAI observed in grid points located in the Amazon rainforest can be explained 

by a change in the hydrological cycle, which produces a decrease in soil moisture, thus triggering the 

LAI collapse. This is consistent with what was discussed in Chapter 5.2.1. On the other hand, in the 

location where LAI increases abruptly, the increase precedes the decoupling between precipitation 

and evaporation. Specifically, precipitation rises while the evaporation decreases, leading to higher 

water availability. 

 

5.4.2. Europe 

As for the Amazon, the time series of LAI was evaluated in Europe as well, and the grid points 

considered are shown in black in Figure 34. The red points in figure mark locations where abrupt 

changes were observed. 

 

 
Figure 34: Grid points analysed to identify abrupt changes in LAI, with red points marking locations where 

such changes were found. The map represents the LAI anomaly, calculated as the difference between the 

average of the last 50 years of simulation for the 3000-year run and the average over the last 50 years for the 

354 ppm run. Some points appear to be over water due to the low resolution of the grid. 

 

The time series of the variables in grid points with abrupt changes are shown in Figure 32. In this 

case as well, the time series were plotted using a 25 year running mean. 
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Figure 35: Time series of average yearly values with a 25-year running mean for different grid points. The 

coordinates, in terms of longitude and latitude, are displayed above each plot. The first column shows LAI, 

evaporation and precipitation. The second column shows LAI and the difference between precipitation and 

evaporation. The third column shows LAI, soil moisture and soil water holding capacity. 
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Three grid points show a decrease in LAI: one (in the second row) is centred in France, close to the 

border with Switzerland, the second (in the third row) is centred in Austria, while the last one (in the 

fourth row) is centred in the Mediterranean Sea, near the south of France. Only one grid point, shown 

in the first row, shows a decrease in LAI. This point is located in Poland. 

The decline in LAI does not occur at the same time in the three point, the first point shows a decline 

after 500 years, while the last experiences an abrupt changes after 1500 years. The time difference is 

therefore smaller than the one observed in South America. In the point where LAI increases, the fist 

rise is observed after 500 years, reaching a higher value after around 1500 years of simulation. 

In the three locations where LAI decreases, the difference between precipitation and evaporation 

drops to 0 mm/day, leading to a decline in soil moisture. This behaviour is driven by an increase in 

evaporation, which starts rising before the abrupt change. The increase in evaporation is likely due to 

an increase in the difference between soil and atmospheric humidity, included in the evaporation 

parametrization. On the other hand, precipitation does not show significant changes initially, 

remaining mostly constant during the first centuries. 

Similarly to the Amazon rainforest, the increase in evaporation precedes the abrupt decline in LAI, 

and it is likely its main cause, as it leads to a reduction in soil moisture, which is one of the limiting 

factors for LAI. Water availability is therefore the key driver for the LAI decline.  

The LAI calculated from the water-limiting factor is plotted in Figure 36, and it decreases when the 

decline begins. However, compared to the Amazon, the water-limited factor is more frequently the 

limiting factor after the decline, as the water-limited LAI is similar to the simulated one. Still, the two 

are not completely overlapped, meaning that biomass remains the limiting factor in some instances, 

even after the decline.  
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Figure 36: Time series of average yearly values with a 25-year running mean for different grid points. The 

coordinates, in terms of longitude and latitude, are displayed above each plot. The plots show LAI obtained 

from PlaSim and the LAI calculated from water-limited factor. 

 

After the LAI decline, both evaporation and precipitation decline as well. The decrease in evaporation 

is likely due to lower soil moisture, since in PlaSim parametrization evaporation is directly 

proportional to soil moisture. Moreover, the maximum soil water holding capacity decreases after the 

decline, due to a reduced biomass, which is a result of both LAI decrease and lower water availability.  

As opposed to the Amazon rainforest, the grid points in Europe show a shorter delay between the 

decrease in soil moisture and the decline in LAI. This may be due to the steeper decline in soil 

moisture in Europe compared to the Amazon, where it becomes a limiting factor later. As shown in 

Figure 33 and Figure 36, the water-limiting factor reaches lower values in Europe compared to the 

grid points in South America. 

In the grid point where an abrupt increase in LAI is observed, the difference between precipitation 

and evaporation increases from 0 mm/day, which is the initial value, to a value close to 0.5 mm/day. 

Similarly to the pattern seen in South America, after LAI increases, precipitation rises while 

evaporation declines. Initially, slightly higher precipitation compared to evaporation causes soil 

moisture to begin rising, then, as LAI reaches a higher value, likely driven by an increase in soil 

moisture and to the fertilization effect, evaporation begins to decline, while precipitation continues to 

rise. At higher LAI values, precipitation and evaporation become decoupled, with evaporation 

decreasing as precipitation increases. The decrease in evaporation is likely due to a reduced difference 

in specific humidity between air and soil, as air humidity is increasing.  

Similarly to what was observed in South America, the abrupt decrease in LAI observed in specific 

grid points in Europe can be attributed to a change in the hydrological cycle, which leads to a decrease 

in soil moisture. This aligns with the discussion in Chapter 5.2.2, which highlighted that the decrease 

in LAI is to be expected in southern Europe, where soil moisture decreases, while an increase is to be 

expected in northern latitudes, where the fertilization effect prevails. Additionally, rising temperatures 
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at higher latitudes, accounted in the GPP parametrization, which goes to zero when temperatures drop 

below 0ºC, may have further contributed to the LAI increase. 

 

 

5.5. Concluding Remarks 

This chapter explored the feedback between interactive vegetation and regional climate, with a focus 

on vegetation tipping. By comparing two regions such as the Amazon and Europe, the analysis 

revealed that the hydrological cycle exerts a strong control on vegetation dynamics. 

As observed in Chapter 5.3.2, regions that experience a decrease in LAI and in forest cover also show 

a decrease in evaporation. Conversely, in regions where LAI and forest cover increase, evaporation 

also rises. Precipitation follows more complex patterns, but generally, where LAI decreases, 

precipitation decreases as well, while it increases where LAI rises. By analysing the grid points in 

both Europe and South America, it is evident that where LAI abruptly declines both evaporation and 

precipitation decline as well. In contrast, in the two grid points where LAI abruptly increases, both 

precipitation and evaporation initially increase, but evaporation begins to decline after the LAI 

increase. 

In South America, a steep decline in LAI was observed in four grid points. The decrease was preceded 

by a decrease in soil moisture, caused by reduced precipitation and increased evaporation. The 

decrease in soil moisture subsequently triggered the LAI collapse. The dieback in the analysed region 

occurred between 1000 and 2500 years after the beginning of the simulation. Only one grid point in 

the analysed area showed an abrupt increase in LAI, initially accompanied by an increase in both 

evaporation and precipitation. The abrupt increase of LAI was followed by the decoupling of the two 

variables from that point onward. This suggests a positive feedback on water availability, which is 

increased when the two variables are decoupled.  

As explained in Chapter 5.2.1, the Amazon rainforest is a tipping element of the climate system, as 

it is at risk of forest dieback, an event associated to an abrupt decrease in LAI. This dieback is driven 

by several contributing factors, including reduced rainfall, which lead to the regional drying. Patterns 

that align with this dieback were observed in four of the analysed grid points, all located in the south-

east region of the Amazon, the area most vulnerable to vegetation tipping due to precipitation 

decrease, among other factors. In this region, a decrease in precipitation combined with an increase 

in evaporation led to a decline in soil moisture, ultimately triggering a sudden drop in LAI.  



86 
 

It is important to note that the results discussed in this chapter primarily consider changes in water 

availability as the driver of vegetation tipping. Nonetheless, this alone was sufficient to drive the three 

grid points toward lower LAI values. Other key factors, such as forest fires and human-driven 

deforestation, which could contribute to Amazon rainforest dieback, were not considered. 

In Europe, an abrupt decline in LAI was observed in three grid points, located in central and southern 

Europe. In these points, the decline was driven by a reduction soil moisture, as a time-invariant 

precipitation failed to compensate for increasing evaporation. These abrupt decreases occurred 

between 500 and 1500 years after the simulation began, depending on the grid point. Only one grid 

point, located in Poland, showed an abrupt increase in LAI, similarly to what was observed in the 

Amazon. The increase in LAI was followed by a decoupling between precipitation and evaporation, 

resulting in increased water availability in the region. This suggests a positive feedback on water 

availability, which is increased when the two variables are decoupled. 

As mentioned in Chapter 5.2.2, the decrease in water availability in the southern areas of Europe is 

expected to cause a decrease in vegetation. The analysis carried out in this chapter is consistent with 

this, as in three grid points reduced water availability resulted in lower soil moisture, which caused 

an abrupt decrease in LAI. As for the Amazon, the increase in fire risk is also expected to contribute 

to vegetation loss in southern Europe, which was not considered in this analysis. Conversely, the 

vegetation is expected to increase in northern latitudes, where an abrupt increase in LAI was observed 

in one grid point. 

Although vegetation does not significantly alter global climatology, it induces significant regional 

changes. The findings in this chapter highlight the interaction between vegetation and climate, 

emphasizing the importance of incorporating interactive vegetation in climate models. This allows to 

improve the representation of regional hydrological response and to better understand the conditions 

leading to local vegetation tipping. 
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Conclusions 

The Planet Simulator (PlaSim) is an Earth system Model of Intermediate Complexity (EMIC) 

developed by the University of Hamburg. EMICs bridge the gap between conceptual models, which 

are simple approximation of the Earth system, and more comprehensive Global Climate Models. They 

are particularly interesting because they represent the climate system rather completely, while 

simplifying processes through parametrizations. Moreover, their coarser resolution compared to more 

complex models allows to simulate longer time scales with significantly lower computational time. 

In PlaSim, vegetation is introduced through the Simulator for Biospheric Aspects (SimBA), a simple 

dynamic global vegetation model. The model can function in two modes: the non-interactive and the 

interactive vegetation mode. In the non-interactive vegetation mode, the simulated vegetation does 

not influence the climate, whereas in the interactive mode, vegetation influences the climate through 

four land-surface variables, representing certain biogeophysical feedbacks. The dynamic vegetation 

module had rarely been used before, since its interactive vegetation had not yet been tuned. 

As a first step, the tuning of SimBA in the interactive vegetation mode was performed by modifying 

the parametrizations of snow-free albedo and soil water holding capacity. This allowed to represent 

the climate system as realistically as in the non-interactive version, but with a dynamic vegetation 

that actively influences the climate system. The tuning allowed to solve biases that the interactive 

vegetation exhibited prior to tuning, such as a global average temperature lower than observations. 

The tuned interactive vegetation was then compared to the non-interactive version. Results showed 

that interactive vegetation does not alter global climatology, but it does cause regional changes, 

particularly in the hydrological cycle. 

The vegetation simulated by PlaSim in the tuned interactive mode was comparable to that simulated 

by more complex Earth System Models belonging to the CMIP6 project, in terms of both the average 

global Leaf Area Index (LAI) and the global spatial pattern of annual mean LAI. However, the 

representation of seasonal patterns in mid-latitude regions, specifically Europe, was not satisfactory 

compared to CMIP6 models due to the lack of a winter-deciduous phenology in PlaSim, which 

exclusively represents drought deciduous phenology, based on soil moisture. In tropical regions, 

specifically the Amazon, the representation of seasonal patterns is as unsatisfactory as the CMIP6 

models evaluated. To improve PlaSim performance in reproducing seasonal patterns, a temperature-

dependent phenology should be introduced in SimBA.  

The vegetation response to extreme global warming was evaluated, revealing two different responses. 

First, an increase in global average vegetation, assessed through an increase in LAI, due to enhanced 
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fertilization effect and increasing temperatures. This aligns with the projected increase in mean global 

LAI during the 21st century (Fang et al., 2019). As the atmospheric CO2 concentration increases, after 

centuries of simulation, rising temperatures led to changes in the hydrological cycle and to potential 

crossing of tipping points in oceanic circulation. These changes resulted in lower water availability 

in some locations in Europe and the Amazon. In these locations, water became the limiting factor for 

LAI, leading to a sudden decrease in vegetation. Specifically, these events were observed in grid 

points located both in Southern Europe and in the south-east region of the Amazon rainforest. These 

results are consistent with the risk of dieback in the Amazon rainforest, which is one of the possible 

tipping elements of the climate system (Chen et al., 2021), and with the expected decrease in 

vegetation in Southern Europe (Penuelas et al., 2020; Bednar-Friedl et al., 2022).  

Despite the insight provided by this work, some limitations must be addressed. One of the issues is 

the low resolution of the T21 grid, which limits the tipping analysis to only a few grid points over the 

two regions considered. Moreover, the analysis is made particularly challenging by the complex 

phenomenology and the intrinsic complexity of regional vegetation tipping, which remains 

challenging to be analysed using more comprehensive CMIP6 models, due to their inherent 

complexity. Additionally, the lack of a sufficient phenological representation in PlaSim further 

complicates the assessment. Overall, PlaSim-SimBA provides a reasonably adequate climatological 

representation, allowing to study regional vegetation tipping. However, introducing the dependency 

of vegetation on temperature would be a necessary improvement to pursue a more accurate 

assessment of the phenomenon. 
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