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Abstract

Landslides, especially rockfalls, present a major threat to the safety of infrastruc-
ture and communities, making it crucial to develop effective protective measures.
Hybrid rockfall barriers, known as attenuators, present an intriguing option in this
context as they merge the capacity to absorb impact energy with the regulation of
block trajectories. However, many factors, such as geomorphological, topographical
and vegetation characteristics, as well as dynamic effects, such dynamic responce of
the net and stress distribution at the block impact, influence the design of such sys-
tems, making it complex. In order to simplify and generalize the design parameters,
this thesis aims to identify the most important parameters for attenuators analysis.
The block volume, velocity and direction of impact were selected through a litera-
ture review. Subsequently, combining these variables, a parametric analysis was
conducted using Abaqus/CAE software. The results showed that some parameters
have a greater impact than others, suggesting the need for a more sophisticated
method to find correlations. For this reason, a machine learning algorithm was
used, which enabled a global parametric analysis to be performed. In particular,
the algorithm includes detecting correlations between parameters using Pearson’s
coefficient and studying interactions at the moment of impact. By using the results
extrapolated from Abaqus/CAE, the output values of the simulations were modelled
with a deep learning model based on LSTM networks. In this context, incorporating
artificial intelligence represents a significant innovation as it enhances predictive
abilities and streamlines design processes, decreasing the number of necessary
simulations and yielding more dependable outcomes. This ultimately facilitating
the creation of more effective guidelines for rockfall protection. Additional research
efforts could focus on improving the machine learning algorithm and expanding the
dataset with more complex simulations and experimental verifications, to further
enhance the reliability of predictive models.
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Chapter 1

Introduction

1.1 Background and motivations

The phenomenon of rockfalls is widespread both in Italy and worldwide, especially
in hilly and mountainous areas. It involves the detachment of blocks of rock of
varying size that can fall down the slope following different trajectories. Preventing
and mitigating these events is crucial to minimizing damage in populated areas
and in locations with critical infrastructure.
Although the phenomenon cannot always be predicted with certainty, investi-
gations can still be carried out to understand the susceptibility of the slope to
fracturing, through, for example, hazard analyses. The definition of the hazard of
the phenomenon takes place on the basis of the invasion area, the probability of
occurrence and the energy involved. In addition to the hazard, the definition of
the vulnerability and the value of the exposed elements are also necessary to study
the degree of risk.
Thanks to this analysis, a general view of the hazard affecting the studied zone
can be obtained and the need to introduce protective structures can be derived.
As will be illustrated in the thesis, structures that provide protection against
rockfalls come in various type; Traditional mitigation techniques, such as rigid
barriers and embankments, have long been used to address rockfall hazards. How-
ever, recent advancements have led to the development of hybrid barriers and
attenuators, which combine flexibility and energy dissipation to enhance protection
while optimizing design efficiency. The latter will be modeled in this thesis.
The objective of this study is to further investigate the variation of the barrier’s
response as a function of the different possible impacts, through different sensitivity
analysis: local and global sensitivity analysis carried out through the application
of machine learning.
The thesis is set out in six chapters: after a brief introduction on the main purpose
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Introduction

of this work and general reflections on the completion of the thesis, in the second
chapters an overview of the rockfall phenomena is shown with reference also to the
current regulations and how to overcome its limitations. In the following chapter,
it is deemed necessary to investigate the model realized in Abaqus/CAE without
going into specific detail as it is not the subject of this study, but only for the sake
of clarity. Subsequently, in the chapter four, the sensitivity analysis is introduced,
describing its individual steps; starting with the choice of input parameters, and
ending with the definition of the correlation between input and output parameters.
In the fifth chapters will be explained the machine learning implementation, about
global sensitivity analysis. Once the results of the analysis have been investigated,
conclusions are drawn regarding the effectiveness of the completed study and any
suggestions for future researchers wishing to further the study carried out in this
thesis, in Chapter 6.
Therefore, as will be further explored in the following chapter, what spurs the
drafting of this work is the need for greater protection of structures, infrastructures
and individuals against rockfall hazards. To date, these structures have always
been designed according to European standards, which, unfortunately, are not very
thorough and in need of revision. In fact, current European standards, such as
[1], focus mainly on the energy assessment of rockfall barriers, without providing
detailed guidelines for the specific design of these structures. Furthermore, National
Technical Standards often do not comprehensively address rockfall barriers, leaving
a legal vacuum that can lead to different interpretations and a lack of uniformity
in design criteria.
The goal of this thesis is to define a faster approach for evaluating influential
parameters in rockfall phenomena in order to obtain a simplified model useful for
the design of attenuators, incorporating the innovative machine learning system.

1.2 Objectives

This thesis focuses on a sensitivity analysis of the variables affecting the impact of
rock blocks on rockfall barriers, aiming to better understand their interrelationships
and streamline the design process for new types of barriers, such as attenuators.
The present study is distinguished by the application of advanced machine learning
techniques in the design of rockfall barriers, a field in which this approach is still little
explored, except by means of classification algorithms useful for defining rockfall
susceptibility [2]. Although machine learning has been employed in other engineering
fields to optimize the design of structures, its application in the context of evaluating
the responses of rockfall barriers is relatively recent. What makes this study
innovative is the use of algorithms for global sensitivity analysis, which allows a
wide range of scenarios to be explored quickly and efficiently, avoiding the traditional
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manual approach. The implementation of such techniques could significantly reduce
design time, improve the accuracy of simulations and contribute to a more informed
decision-making process. In the long term, the proposed approach could also
facilitate the integration of new protection technologies, optimizing the use of
resources and increasing the safety of infrastructure in areas with a high risk of
landslides.

The work is conducted as follows:

• Assumption of input parameters and their variation range from a scientific
literature analysis. Additionally, the sampling method of the parameters is
derived so that the combinations are exhaustive of the possible natural impact
conditions of the blocks on the attenuators;

• Simulation of the model with the previous parameters using Abaqus/CAE
software;

• Extrapolation of the analysis results for the implementation of local sensitivity
analyses;

• Global sensitivity analysis is conducted to confirm previous results and improve
the methodology.

• Using machine learning, a path was set to realize an algorithm capable of
predicting the trend of the parameters extracted from Abaqus/CAE more
quickly.

All this processes are described in the following chapters.

1.3 Limitations
Current status
The study presents several strengths as well as limitations. Its main strength
lies in the simplification of certain time-consuming steps in the design of rockfall
barriers. The innovative aspect of this work is the ability to automatically derive
correlations between parameters influencing the rockfall process by dynamically
inputting relevant variables into the machine learning algorithm, eliminating the
need for manual data extrapolation and processing.

However, the current study primarily focuses on analyzing parameters related to
the rock block, rather than the barrier itself, which is only superficially addressed.
A deeper investigation of the interception system’s parameters would require
modifications to the Abaqus model, which is not part of this study.

A primary limitation stems from the limited set of parameters used, driven by
the intention to simplify the model. Consequently, the findings are not entirely
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exhaustive and may introduce some uncertainty. It is important to note that the
aim of this thesis is not only to provide valid design results (achieved through
sensitivity analysis), but also to present an algorithm capable of speeding up the
design process by dynamically entering the parameters of interest, without needing
to run simulations for every possible input.

Another limitation is that the simulations were conducted using a model with
fixed parameters, such as slope inclination, interception net length, and net elastic-
ity. This constraint restricts the calculations to this specific combination. However,
the model remains a valuable tool that can be further improved, particularly by
making result extraction from the software more versatile and less time-consuming.

Future developments
Expanding the model to include aspects of the barrier geometry and environmental
parameters would make this study more comprehensive. Another crucial step
would be adding dynamic variables such as seismic and climatic activity to further
enhance the model’s strength and flexibility. Additionally, their comparison against
experimental data from the field would serve as a further step towards validating
and fine-tuning the machine learning algorithms.

The model is still useful as it stands and proposes innovative approaches for
expediting the design processes for rockfall barriers in well-known geological and
morphological regions. It is quite evident that this type of machine learning would
result in substantial time savings in the design and simulation phases, which would
allow for quicker consideration of alternative treatments. It can also be used for
managing risks and formulating interventions in vulnerable regions in the primary
local and regional levels.

4



Chapter 2

Rockfall phenomena

2.1 Landslide phenomena

The professional vocabulary of geosciences defines a landslide as the distinct mass
movement of slope forming materials such as natural rocks, soils, and artificial
fills, among others [3]. Landslides are complex phenomena that can be categorized
based on various factors. Each phenomenon is unique due to the difference in
factors such as genesis and physical attributes that aid in differentiating them
which makes the classification quite difficult. Eventually, geologists and researchers
realize the need to establish a standard classification system. This system should
include the material involved, the speed of movement, and type of movement. The
classification of Cruden & Varnes presented in figure 2.1, provides for the distinction
of materials into rock, debris and soil that can generate different types of movement
such as falling, toppling, sliding, spreading, flow or complex movements. Each of
these movements has different consequences, so it is important to analyze them
individually.
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Figure 2.1: Table of landslides classification [4]

Furthermore, the Cruden & Varnes classification [4] categorizes landslides into
seven speed classes, ranging from extremely slow to extremely rapid, visible in
figure 2.2. The rate of movement significantly influences the destructiveness of the
event, and this classification helps to assess risk levels.

In Italy, landslides are a widespread phenomenon due to the country’s geological
and morphological characteristics, with 75% of the territory being mountainous
or hilly. Of the approximately 900,000 landslides recorded in European databases
[5], nearly two-thirds are in the Inventory of Landslide Phenomena in Italy (IFFI
project [6]), developed by ISPRA and the autonomous regions and provinces. This
inventory shows that approximately 625,000 landslides are present in Italy, affecting
7.9% of the national territory.In Italy, 60,481 km2, equal to 20% of the country’s
area, are affected by landslide warning and hazard zones.

Collapse and debris flow rapid kinematic events account for 28% of Italian
landslides. Such high-speed (up to several meters per second) events are highly
destructive and have a tendency to result in high loss of life, infrastructure damage,
and economic disruption [7]

According to the 2021 ISPRA report on hydro-geological instability, approxi-
mately 5.7 million people live in landslide-risk zones in Italy, and almost 500,000
in very high-risk areas (P4), see figure 2.3.
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Figure 2.2: Table of landslides classification basing on rate of movement [4]

Figure 2.3: Population at risk resident in areas with high landslide hazard P3
and P4 PAI on a municipal basis (no. of inhabitants) - processing 2021 [7]
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Landslide hazard is defined as the probability of occurrence of a potentially
destructive event of a certain intensity within a specific area and time frame [8].
Analyzing past events is crucial for assessing hazard, but challenges arise due to
the lack of detailed data on the timing of landslide triggers, making recurrence
times difficult to determine. For this reason, the spatial occurrence of landslides,
known as susceptibility, is often assessed.

Several Landslide Hazard Zonation (LHZ) methods exist, such as heuristic,
semi-quantitative, quantitative, probabilistic, and multi-criteria decision processes
[9]. These methods typically rely on landslide inventories and associated parameters.
The qualitative matrix method was applied to the IFFI inventory, resulting in the
following hazard mapping, reported in the following figure 2.4:

Figure 2.4: Percentage landslide index (IFFI Inventory landslide area/cell area ×
100) on mesh of side 1 km [7]

Given that the majority of Italy’s territory is classified as medium to high-
risk for landslides, mitigating these risks is crucial for protecting populations and
infrastructure: this is possible introducing rockfall barrier protection of various
types, as described in follwing paragraph 2.3.
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2.2 Rockfall phenomena
Rockfall phenomena are widespread in many areas, including inhabited areas, which
are particularly vulnerable. In these areas, the analysis of rockfall risks becomes
crucial for the design of effective protection solutions.
They generally originate with the detachment of rock from a particularly steep
slope along a surface with little or no shear resistance. The slopes on which they
occur, in addition to being characterized by a high gradient, might be affected by
the presence of structural discontinuities, such as faults and stratification planes,
which may also be of neoformation. Rockfall risk analysis is a complex, multi-scale
process involving several disciplines and techniques.

Figure 2.5: Rockfall events in Treviso along the provincial road 422 [TREVISO-
TODAY]

The size of the blocks that can be detached is highly variable, but generally falls
within the wide range of 0.01m3 to 100m3.
Thus, the possible effects on structures and infrastructures must be investigated
carefully because it could be dangerous [10]. Furthermore, in the process of falling,
the boulder may fragment due to the interaction between block and substrate [11].
Among the causes of detachment are all those phenomena that contribute to rock
fracturing, including:

• Erosion by rainfall and chemical weathering;
• Vibration or shaking due to anthropogenic factors: explosions, roads, con-

struction and trains;
• Fires that destroy stabilizing vegetation;
• Increased interstitial pressures due to water infiltration;
• Growth of the plant root system;
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Rockfall phenomena

• Thawing of permafrost [12];

As well as the causes of detachment, it is essential to define the lithology
and tectonics to which the survey area is subjected by observing the density of
discontinuities. Sometimes the analysis starts from precursors that can define the
susceptibility of the area at risk, but without being able to define the extent of the
phenomenon in terms of the detachment magnitude-volume-frequency ratio, for
which there are insufficient and possibly standardized historical data.
The first step to take in order to understand the phenomenon and find appropriate
engineering solutions is to identify the trajectory of the blockage. It varies according
to the mechanism of movement: rolling, free fall, bouncing or sliding, visible in
figure 2.6.

Figure 2.6: Rockfall mechanism [Neil B.]

Once the kind of movement is defined, it starts a series of simulation that aimed
at knowing the possible trajectory of the block on the slope, in order to understand
which point is most affected by block bounce and therefore where the most energy
is manifested.

2.3 Rockfall protection structures
Rockfalls happen in rural and urban regions alike, making them the subject of
interest for numerous professionals. While numerically modeling the rockfall or
landslide for engineering and planning measures can be done, their spatial variability
and the three-dimensional nature of the topography make it increasingly more
difficult to attain an accurate risk assessment.

10

https://www.researchgate.net/publication/325818809_Predicting_primary_impact_and_total_rollout_distances_for_rock_falls


Rockfall phenomena

There are a range of approaches that have been developed to manage land
and the threats it possesses. That said, the methods differ greatly in the level of
research or analysis detail required, the objective of the study, and the scale of the
analysis. One common classification of various types of rockfall protective measures
attempts to categorize them in two broad groups:

• Active structures
They intervene at the origin of the problem by preventing the detachment of
stone elements from the slope:

– Interventions that modify the rock mass mechanical resistance;
– Interventions that act on the surface of the rock mass;

• Passive structures
They intercept or deflect boulders that have been mobilized with structures
mainly located at the base of slopes or rock faces. The main kinds are listed
here and shown below in figure 2.7 :

– Installation of rockfall barriers;
– Earth embankments (reinforced or not);
– Adhesion nets and cortical reinforcements.

The choice between these types of countermeasure is mainly governed by the
kinetic energy of the block and the topographic constraints [13].

Rockfall slides are unique to each location and therefore pose a challenge when
trying to understand and analyze them. Using a variety of methods, geologists
need to determine the equilibrium of the rocks and foresee the movement of the
rocks.

In scenes of uncontrolled rockfall, the most frequently undampened measures
applied to prevent rockfalls are net fences. These measures were detailed in Chapter
2, for explanation of these fences as barriers see Chapter 3].

2.4 New types of protection structures
Although many traditional solutions exist, new types of barriers have emerged
over the past decade that combine efficiency and practicality, reducing costs and
increasing durability. Among these, hybrid barriers and attenuators are proving
to be among the most promising. These systems are advantageous compared to
their predecessors, because they combine the energy absorption typical of classic
barriers with the reduced maintenance typical of inadherence nets [14].
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Figure 2.7: Rockfall protection barriers:
(a) Net Fence [IncofilTech]
(b) Earth embankment [Tenax]
(c) Inhaderence net [BorghiAzio]

Hybrid barriers and attenuators can be classified as passive, flexible barriers;
they are characterized by a wire mesh with a ring or cable weave, suspended from
an upper horizontal support cable raised from the surface of the slope by posts or
suspended from anchors through a chute. It is often preferred to limit the presence
of lateral anchors in order to increase the flexibility of the barrier.
What differentiates a hybrid barrier from an attenuator (example in 4.13 is their
performance in relation to the impacting block’s kinetic energy dissipation [14].

The advantage over the use of classical barriers is mainly in the simplicity of
installation and maintenance: these are ‘self-cleaning’ barriers, as already described,
they simply accompany the boulder to the foot of the slope. Installation, on the
other hand, can also take place further up the slope, not increasing maintenance
costs, but rather giving the opportunity to capture boulders with greater energy
by means of less robust, and therefore cheaper, barriers.

Although often collectively referred to as "hybrid barriers," attenuators and
hybrid barriers are distinct and should be differentiated.

Hybrid barriers resemble classical rockfall barriers but feature a larger net that
is not flat but rather draped. Their primary function is to completely reduce the
kinetic energy of a falling boulder and guide the block down slope to a collector.
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Figure 2.8: View of prototype attenuator system installed in Stanwell Park by
Geobrugg [13] [GeoBrugg]

Hybrid barriers are strategically placed close to storage areas so that the draped
tails direct the boulders toward the intended location.

Attenuators, as analyzed in this study, feature an opening at the bottom. Their
purpose is not to stop the block entirely, but to reduce its kinetic energy so that
it reaches the foot of the slope with reduced speed and different trajectory. The
rocks are collected in specific trenches. Typically, these barriers are installed in
series to protect a larger area, thus preventing material accumulation at the foot
of the slope from becoming localized. The attenuators are located away from in-
frastructure, with the panel length being variable, and this is part of the study focus.

2.4.1 Essential elements of innovative rockfall barriers

The structure of hybrid barriers and attenuators is similar to that of classical rockfall
barriers, which are described in detail in this chapter. However, the innovative
systems consist of three distinct zones, shown in figure 4.13:

• Interception Area [A]

• Rock Bounce Control [B]

• Collecting Area [C]
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Figure 2.9: Attenuator main zone [14]

The first zone, Interception Area [A], consists of the barrier itself, which inter-
cepts the boulder and absorbs much of its kinetic energy, deforming elastically or
plastically. This phase, along with the second phase, reduces the rebound height of
the block, ensuring more contact with the slope for better conveyance.

The second zone, Rock Bounce Control [B], is responsible for guiding the block
down the slope while dissipating its energy to overcome friction with both the
ground and the net. The effectiveness of this phase depends not only on the type
of barrier and the size of the detached rocks but also on the nature of the soil on
the slope. The length of the drape in this area is sized according to the expected
energy to be dissipated.

Finally, the third zone, Collecting Area [C], is where the block, now with mini-
mal kinetic energy, comes to rest. This can be achieved by using a ditch, trench,
embankment, or another barrier, preventing the material from encroaching upon
the protected infrastructure.

There are two main categories of rockfall barriers:

• Barriers with limited deformability: the rock impacts on the net, which
dissipates energy by deforming. They are generally made of reinforced concrete
or metal gabions, often supported by buttresses and anchored to the ground.

• Highly deformable barriers: they use energy dissipators, such as steel rope
rings with friction blocks, to absorb higher impacts. They are easy to install
and maintain and represent the type of barrier studied in this thesis.
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The following figure illustrates the reference model:

Figure 2.10: Model to be implemented in Abaqus/CAE [Courtesy of Carriero
MariaTeresa from her PhD thesis (in submission)]

The characteristic elements of elastic rockfall barriers are:

• interception structure;

• posts;

• cables;

• dissipation elements;

• connection elements;

• foundations;

The interception net (see figure2.11) must withstand the impact of the block
by deforming first elastically and then plastically. It is made of galvanized steel
and can be reinforced with vertical or horizontal ropes. The net configuration is
representative of structural strength and is modelled in Abaqus/CAE as a four-node
shell with finite membrane deformations.

The posts are steel structures (tubular or metal profiles) connected to the foun-
dation by hinges to dissipate part of the impact, as shown in figure 2.12. They
are rigid elements that must resist in the event of a direct impact, even if the
probability is small. The connection between uprights and the net occurs through
special elements capable of dissipating part of the energy generated in the impact.
They are modelled in Abaqus/CAE with non-linear elastic-plastic behaviour, con-
sidering isotropic behaviour.

Concerning cables, there are different types of them, for clarity, in this work,
they will be called:

• Single upslope cable: to keep in the rigth position the net;
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Figure 2.11: Detailed representation of interceprion structure [risp-rockfall pro-
tection]

Figure 2.12: Detailed representation of posts [Geoflum]

• Double side cable: to connect the net with the foundaion;

• Single upper cable: to keep stretch the net.

The second ones transfer the impact forces to the ground and therefore must be
sized taking into account the maximum load for which the barrier is designed. It is
denoted that these elements were constructed as two-dimensional elements steel
made.
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The cables are generally connected to energy dissipation devices, represented in
figure 2.13, activated when the mesh exhausts its absorption capacity, they trans-
form impact energy into plastic work through deformation. These are positioned
both in the anchor ropes and in the longitudinal ones; they are essential for energy
dissipation even in non-perpendicular impacts. There are many types and therefore
careful analysis is necessary case-by-case evaluation.

Figure 2.13: Detailed representation of dissipation elements [Maccaferri]

Connecting elements and foundations: they transmit stresses to the base struc-
ture, which generally consists of concrete micropiles connected by steel plates. The
figures represent hybrid barriers, but the constituent elements are the same as those
used for attenuators, with the difference already shown in 2.11, which concerns the
stiffness imparted to the interception system.

2.4.2 Hybrid barrier and attenuator design
Despite these are two fundamentally different systems, there are common steps in
their design. In general, what needs to be considered is:

• Definition of input data for the design;

• Calculation of the dynamic impact on the barrier and selection of the barrier;

• Evaluation of the static load on the barrier.

The modelling of the phenomenon begins with the investigation of the morphol-
ogy and topography of the slope that have an influence on the block trajectory
and rebound heights. From this analysis, input data are extracted regarding the
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characteristics of the block; it is the objective of this study to understand the
influence of the input parameters on the response of the barrier (see chapter 4).
In addition to geological data, it is needed to carry out the study of the trajectories
by means of special software and finally a back analysis on the previous data
concerning rockfall phenomena. The study of trajectories is fundamental to define
the point of arrival of the block in situ or the area where it is most likely to pass,
in order to establish the most efficient position of the barrier.
There are different methods used to analyze rockfall energies and trajectories whose
objective is to quantify block velocity, impact energy and impact height, which
are key input parameters of this analysis. All these approaches are based on, to
differing degrees, actual field rock rolling data, and are used as tools to assist in
the design and the assessment of mitigation measures. Where possible, all these
methods should be used to analyze the rockfall trajectories at the site [15].

To achieve this goal, over time, many full-scale in-situ tests have been realized,
although expensive, provide real data that are crucial for barrier design. However,
the evolution of technology and software has made it possible to simulate these
scenarios, cutting costs and allowing a faster and more detailed evaluation of various
parameters. A further advantage of using software is the possibility of investigating
a higher number of parameters such as speed, energy and plasticity of the tested
structures. It is precisely this saving of time and money that is the focus of this
thesis, the ultimate goal of which is to obtain a machine learning algorithm that
can predict the variables at play under conditions of block impact on rock and
consequently speed up design time.
The models to be implemented can be structured in various ways, choosing to use
a rigid-body model such as the "lumped-mass" model, or hybrid models. The study
carried out in this thesis involves the first type of model, which will be explained
in detail in chapter 3. After that it is necessary to investigate the kinetic energy
with which the block moves. In particular, it has formulation:

Ek = 1
2mv2

knowing that m is the mass of the block and v its velocity defined at a specific
point in its trajectory.
To define the correct type of network to use, it is necessary to equalize the kinetic
energy found with the work done by a constant force F to blocking it. Based on
the displacement s, given by the path of the blockage, it will be possible to identify
the F and thus the most suitable barrier.

Ek = 1
2mv2 = F ∗ s
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By getting a time interval, established by [1], and comparing the force required to
capture blockage by flexible and hybrid barriers, it was concluded that the force
required by hybrid barriers is always lower than by flexible barriers. Despite these
conclusions, it is noted that it is impossible to know exactly the loads applied on the
barrier. Therefore, it is recommended to always use additional energy dissipation
tools, characteristic of flexible barriers, even for hybrid barriers, to be conservative
[14].

Having identified the type of barrier, it is essential to make sure that it can
withstand the static loads following the landslide phenomenon, characterized, for
example, by debris accumulation, snow accumulation, and net weight. Static
loading is generally lower than dynamic loading, unless one is in special situations
such as:

• very long net tail, greater than 50 m;

• steep slopes, sloping more than 70°;

• high amount of debris under the drapery.

So, through this analysis it is possible to make sure that the tensile strength of
the main mesh is sufficient to bear the static load and to choose the number of
longitudinal ropes required, and their sag, to avoid the static loads activating the
energy dissipater device.

2.5 Rockfall barriers legislation
Currently, design of rockfall barrier systems largely focuses on the certification
of barriers with respect to their ability to resist a target energy, as put forward
by the requirements stipulated for the certification in the European Assessment
Documents [1]. The principal design is simply ensuring that barriers have the
ability to absorb and dissipate target expected impact energy so as to safeguard
road users without being over the existing regulation.

However, despite the increasing popularity of new technologies for rockfall pro-
tection, there is still a general lack of information and consensus on the design
specifications of certain systems, particularly attenuators. Unlike traditional barri-
ers that merely stop rockfall, rockfall attenuators are designed to reduce the energy
transferred to the barrier and underlying infrastructure, typically by utilizing
mesh or netting systems combined with damping devices. While empirical testing
protocols—such as those used by the Colorado Department of Transportation,
"Colorado’s full-scale field testing of rockfall attenuator systems"[16]—have been
developed to guide designers, an overall, internationally accepted methodology for
the entire design process of attenuators is in the process of being developed [14].
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Within this chapter, the current regulatory framework and the method of defining
the safety factor for rockfall protection systems will be examined, examining the
innovations that reliability analysis could take to attenuator design.

2.5.1 European Normative
Designing rockfall protection barriers, such as attenuators, is heavily governed by
European standards that provide the safety and performance criteria. The most
suitable regulation in this context is EAD 340059-00-0106, which was introduced in
2009 wiht name (ETAG027) and provides the methods for the inspection of rockfall
barriers as protective systems. According to this document, their performance
needs to be checked based on key properties such as the energy-absorbing capacity,
height, and maximum elongation of nets. But this specification is only dealing with
traditional rockfall barriers, and attenuators may require special considerations,
since they contain elements specifically designed to absorb impact energy rather
than just intercepting material.

ETAG 027 was replaced in 2018 by the European Assessment Document [1],
which combines the findings of field tests and provides a new way of determining
the performance of protective systems. The transition to EAD represents a coming
together of the findings gained through intensive testing conducted from 2009 to
2018, despite the fact that there remain a few gaps in research, particularly in terms
of rockfall attenuators’ performance in specific circumstances. The guidelines of
EAD [1] mention energy dissipation mechanisms but do not have specific method-
ologies for attenuators that might require investigation through more fine-tuning of
available test methods. The complete evolution of the standardization of rockfall
barrier testing is described in [17].

Another important regulatory system is the Eurocode 7 (EN 1997-1:2004) [18],
addressing the geotechnical design of structures. As part of the overall Eurocodes, it
provides guidelines to ensure stability and safety in geotechnical systems, including
those used for protecting against rockfall. While Eurocode 7 is based on the Limit
State Design (LSD) philosophy, a semi-probabilistic method where partial factors
have been employed to capture uncertainties in loads and resistance, the main
focus is laid on traditional barriers, with attenuators typically deserving special
consideration.

Italian design aim to validate the safety and effectiveness of rockfall defense
equipment: UNI 11211 standard of UNI in 2012 [UNI-11211], currently revised,
addresses all types of rockfall defense works, including attenuators. The standard
specifies the design philosophies to be utilized, even if remain practical aspects and
open issues in the application of these standards [17].
For instance, EN 1990:2002 outlines the general rules for the design of structures,
but some challenges in the design of rockfall net fences have recently been addressed
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using a time-integrated, reliability-based approach [19]. In addition, novel design
techniques like the Finite Element Method (FEM) and the Discrete Element
Method (DEM) have proved useful in the analysis of the rockfall impact-interaction
with the protection systems. These advanced methods are essential to attenuator
design since they allow for more accurate modeling of the energy absorption and
dissipation by netting systems and damping elements [20]. These software packages
are increasingly being incorporated into rockfall protection designs in an effort to
refine both the accuracy of energy transfer calculations and the functioning of the
protection systems as a whole.

However, a key challenge remains: the vast amount of data generated by these
simulations. To address this issue, artificial intelligence (AI) has been employed to
mimic the behavior of complex models and account for multiple variables—such as
impact angle and point of impact—that are not currently considered in traditional
evaluation procedures. These mathematical tools, although effective, are typically
constructed for specific types of barriers and do not fully incorporate site specificity,
which is essential for a more accurate and tailored design approach [21].

2.5.2 Current and future design methods
The deterministic approach used today in Limit State Design (LSD) is constrained,
especially with regard to the uncertainties of the inherent rockfall event—such as
size, velocity, and impact angles of boulders. Due to these difficulties, reliability
analysis, a probabilistic approach that allows for further consideration of such
uncertainties and better quantification of the risks of rockfall impact, is gaining
greater attention.

The fundamental assumption of LSD, that the action values(forces transferred
by rockfall on the barrier) must be less than the resistance values of the structure,
remains valid. It is now better understood that the deterministic method of LSD
may not be fully adequate for structures like attenuators. The action value Ed

and the resistance one Rd must be evaluated in a probabilistic framework where
safety factors and uncertainties on both the action (rockfall impact) and resistance
(barrier capacity) are taken into account. This gives a more robust and flexible
procedure, especially for attenuators under highly variable impact loads.

In the last decade, an increasing number of studies have investigated integrating
reliability analysis in rockfall barrier design, specifically in the response of attenua-
tors under different types of rockfall events. Although partial safety factors are
able to compensate for uncertainties in conventional designs, they cannot deliver
detailed information regarding the likelihood of failure, particularly for attenuators
that use energy dissipation via intricate mechanisms. Therefore, the application of
reliability-based design methods is becoming more significant for attenuators since
they are better able to deal with material property and environmental condition
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uncertainty [22].
In addition to reliability analysis, advanced computational methods, such as

numerical modeling, need to be incorporated to optimize the design of rockfall
attenuators. Finite Element Analysis (FEA) and Discrete Element Modeling (DEM)
can simulate the performance of rockfall interaction with attenuators in greater
detail, which gives a better prediction of energy absorption and dissipation [20].

Despite these advances, there are still difficulties in applying these methods to
all site-specific conditions. One of the directions for resolving these difficulties is
the use of artificial intelligence (AI), as AI can be employed to refine attenuator
designs by analyzing vast amounts of simulation data and considering site-specific
parameters, such as terrain and rock type, which are typically difficult to incorporate
in traditional methods.

Overall, while rockfall attenuator design remains in an evolving phase, a combi-
nation of probabilistic reliability analysis, computational modeling, and AI-based
methods will significantly enhance the effectiveness and safety of the systems in
the future times.
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Chapter 3

Numerical Modelling in
Abaqus/CAE

3.1 Software introduction
Abaqus/CAE is an advanced finite element analysis (FEA) software designed to
simulate complex problems in various engineering fields. It can perform both simple
linear analyses and advanced nonlinear analyses, making it suitable for the study
conducted. It is therefore possible to model any physically reasonable combination
of elements, materials - also able to simulate geotechnical materials such as soils and
rocks - procedures and loading sequences. Abaqus/CAE is the Complete Abaqus
Environment that provides a simple interface for model creation. The software is
structured in modules that manage the different phases of the modelling process:
pre-processing, simulation and post-processing, as illustrated in the figure below:

Figure 3.1: Example of flowchart in Abaqus/CAE

Model Implementation: From Concept to Simulation on Abaqus/CAE
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In accordance with the previous section, the flowchart designed for the imple-
mentation of the model under study, is here shown:

Figure 3.2: Implemented flowchart in Abaqus/CAE [Courtesy of Carriero Mari-
aTeresa from her PhD thesis (in submission)]

Knowing all the physical aspects of the problem to be analyzed, it is possible to
implement them within the chosen program. In order to optimize the computational
costs, it was decided to work in the Python language. The drafting of the codes
used is not the subject of this thesis, but reference is made to [23] for more details.

In this study, the same procedure was followed, using the codes provided already
compiled, in order to carry out further analysis on the simulation’s results.

3.2 Model geometry
An Abaqus/CAE model consists of a collection of elements that, when assembled,
represent the physical problem to be solved and the solution to the analysis. The
basic components of the analysis are: geometry, section properties, elements and
materials, loads and boundary conditions, analysis type and output requirements.
To implement the model, all the elements described in 2.4.1.

The basic geometry is defined using finite elements and nodes. Each element is
a separate component of the structure, connected with others by nodes, forming
the mesh, which is the discretization of the actual geometry of the system analyzed.
The density of the mesh directly affects the accuracy of the simulation: a denser
mesh improves the accuracy of the results but increases the time of calculation.
In general, the solution obtained is an approximation of physical reality and the
quality of the model determines its reliability.
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The structure employed is the model presented in 2.4.1 with all its components,
placed on a slope inclined of 45°. To examine different deformation shapes of the
network, the slope’s inclination was changed in this analysis. The actual model
consist in 60° inclination angle. The terrain profile is demonstrated in the following
figure 3.3.

Figure 3.3: chosen geometry of ground surface in Abaqus/CAE

All the net elements are mounted in reproducible modules to form a barrier
adapted to external conditions, capable of effectively opposing rock collapse phe-
nomena. An example of a complete structure is illustrated in the figure below:

Figure 3.4: rockfall barriers [Geostru]

The model creation also requires identifying the shape and geometry of the
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rock block. Since the block morphology evolves with numerous parameters with
respect to detachment, we assume an rigid body with elongated shape and square
cross-section similar to a gyroscope, as shown by the figure below.

Figure 3.5: selected rock block geometry in Abaqus/CAE

For the purpose of a realistic analysis, isotropic material behavior is presumed
and the rhombicuboctahedron shape was chosen to correct the unrealistic spherical
shape.

Abaqus/CAE is a powerful software that has been used in different studies
to simulate complex geotechnical processes like mechanisms of rockfalls. It was
used, for example, for evaluating the performance of rockfall barriers in different
geological contexts and investigating the dynamic impact response of protection
structures. The finite element approach allows simulating in detail the interaction
between rock blocks and barriers, providing useful results to design and optimize
hazard mitigation systems [24].

The final result of the model, with all the parts described, is presented in figure
3.6.
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Figure 3.6: Side section of the entire structure in Abaqus/CAE

Further details on the model can be found in [23].
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Chapter 4

Sensitivity analysis

In sensitivity analysis, various methodologies exist, all aiming to assess the influence
of input variables on each other. These methods help identify critical factors,
enhance model understanding, and improve confidence in the results. The most
common approaches include:

• One-at-a-Time Analysis (OAT) or Local Analysis: Varies one input at a
time while keeping all others constant, recording its effect on the final result.

• Morris Method: A systematic extension of OAT, selecting multiple input
combinations to evaluate individual variable effects.

• Global Analysis: Varies all inputs simultaneously within defined limits to
assess their combined impact.

• Sobol Method: A global analysis technique that decomposes output variance
to quantify each input’s influence and interactions.

• Analysis of Variance (ANOVA): Assesses the significance of each input
and their interrelationships by decomposing output variance.

• Scenario Analysis: Studies specific input combinations rather than system-
atically varying them, often used in ‘best-case – worst-case’ evaluations.

This thesis applies two of these methodologies:

• The One-at-a-Time Analysis, described in this chapter.

• The Global Analysis, implemented through a Python-based machine learning
algorithm (see Chapter5).
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4.1 Selection of input parameters
The analysis of the model described in the previous chapter can be carried out
in visual mode, through the Abaqus/CAE interface with which one can observe
the evolution of the blocking process on the network via the ‘result’ command.
However, considering the large amount of data taken into account for this study,
it was preferred to carry out an analysis using Python codes. Following this way,
time can be reduced considerably.

From literature research and because of past experience, the following parameters
were identified as fundamental to be given as input to the system:

• Block volume [m3], determines the mass and inertia of the falling rock;

• Translational velocity of the block [m/s], represents the linear speed at which
the block impacts the net;

• Rotational velocity [rad/s], accounts for the block’s angular motion, which
influences impact dynamics.

• Impact angle on the net [°], the inclination at which the block strikes the net,
affecting energy dissipation;

• Impact position along the vertical and transverse direction of the network,
influencing load distribution.

Volume, shape and unit weight of the block are derived from analyses of the degree
of fracturing of the rock mass.

Using previous studies and practical experience, appropriate value ranges were
established for each parameter. These ranges define the variability of inputs used
in the simulations and are summarized in the following table. 4.1:

Volume Translational velocity Rotational velocity Impact angle Impact position (Y) Impact position (Z)
1.21m3 25m/s 0rad/s 20◦ 0m 3m

Table 4.1: Basic set up for parametric analysis

These values were set and then individually one parameter at a time was
changed in order to understand the effect each parameter had on the others. On
the other hand, the following values were established and set for slope and network
characteristics: At this point the sensitivity analysis was started.

4.2 Local sensitivity analysis
Sensitivity analysis is a valuable tool for assessing how input parameters influence
the behavior of a studied system. In this research, it plays a crucial role in
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Elasticity Slope inclination Panel length
1.01 ∗ 106 Pa 60◦ 6m

Table 4.2: Slope and net characteristics

developing an algorithm capable of simulating the response of a highly complex
model—specifically, a rockfall barrier—where multiple interdependent variables
must be considered. Unlike assuming predefined parameter distributions, this study
takes an empirical approach, complementing a parallel thesis [23].

To begin, a local sensitivity analysis was performed by systematically modifying
individual parameters and evaluating the corresponding changes in the simulation
outputs generated in Abaqus/CAE. This analysis was initially conducted using
thirteen different parameter combinations, where each parameter from Table 4.1
was varied one at a time.

Subsequently, an additional six combinations were introduced, incorporating
modifications to the parameters listed in Table 4.2.

The final set of parameter combinations used in the sensitivity analysis is
summarized below:

Figure 4.1: Variation of chosen parameters

The need to understand the influence of some parameters on others stems from
the desire to create a simplified model of the rockfall barrier to make design more
effective and less wasteful. Therefore, once the simulations were carried out on the
Abaqus/CAE software, the results were extrapolated, during time, in terms of:

• Block acceleration during time to define the maximum deceleration value amax

(see figure 4.2);
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Figure 4.2: Schematic definition of amax [Courtesy of Carriero MariaTeresa from
her PhD thesis (in submission)]

• Displacement of the central point of the upper cable to define the maximum
deflection value fmax;

Figure 4.3: Abaqus representation of interception net, view from above

Carefully looking at the figure 4.3, one can see a deflection of the upper cable,
which is shown schematically in the following diagram (figure 4.4), in which
the black line represent the upper cable and the maximum displacement is
called fmax:
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Figure 4.4: Analysis diagram for the upper cable [Courtesy of Carriero Mari-
aTeresa from her PhD thesis (in submission)]

From the analysis diagram shown, it can be seen that the upper cable is rep-
resented by a suspended inextensible rope, stressed by a uniformly distributed
load q, according to the diagram below. The maximum deflection fmax in the
centre is plausibly useful for determining the tensile action in the upper cable
Tcavo and its inclination θ in the panel plane in the impact condition.

• Temporal variation of the kinematic conditions of the block (ax, ay, az, vx, vy, vz, ux, uy

and uz);

• Energy variation starting from the kinetic energy of the block;

• The angle α indicating the portion of the block that contacts the panel, as
shown in figure 4.6

Figure 4.5: Diagram of the portion of the sphere in contact with the barrier during
impact [Courtesy of Carriero Maria Teresa from her PhD thesis (in submission)]
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The force Fd is considered to be transmitted to the contacting portion of the
panel as a uniform pressure normal to the membrane (see Figure 4.5). The
pressure (p) distribution induces tensile stresses tangent to the sphere in the
membrane along the boundary of the block-panel contact zone (t), clear in
figure 4.6, where it is possible to observe the α angle searched:

Figure 4.6: Scheme for α representation [Courtesy of Carriero Maria Teresa from
her PhD thesis (in submission)]

• Net stresses (but it is not the main focus of this thesis).

The extracted results are presented graphically over time. As an example, the
basic setup is illustrated below in Figure 4.7 and the following ones.

Figure 4.7: Block acceleration VS Upper cable deformation
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Figure 4.8: Block acceleration VS Kinetic energy during time

Figure 4.9: Net stresses during time

Based on the graphs, the impact instant was set at 0.15 s, as it corresponds to
the highest acceleration value and aligns with the peaks observed across different
graphs. The key correlations between each parameter and the obtained results
were then analyzed.

To streamline the analysis, these comparisons were integrated into a machine
learning algorithm. Once the findings from the local sensitivity analysis are
presented, they will be compared with the results of the global sensitivity analysis
conducted using machine learning.
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4.2.1 Volume
At that fixed time, different combinations were compared and the following results
were extracted:

Acceleration

To estimate the maximum transmitted deceleration force, the condition of
maximum deceleration amax is considered. The analysis reveals an inverse propor-
tionality between volume and impact acceleration: as volume increases, acceleration
decreases.

For simplification, external influences such as slope morphology are neglected,
focusing solely on the intrinsic relationship between these parameters.

Figure 4.10: Relation between Impact acceleration and Volume of the block

During the impact phase, the purpose of the intercepting panel is to dissipate
the energy of the block by deformation. The block undergoes deceleration by
transferring an action to the portion of the panel that comes into contact with it.
So, according to the second law of Dynamics expressed by Newton, the decelerating
force experienced by the block upon impact will be:

Fd = m ∗ a

It is known that the relationship that binds volume (V ) and mass (m), by means
of density (ρ) is:

ρ = m

V

This means that, for the same braking force, volume and acceleration must be
inversely proportional, as the graph shows the relation is V ∝ 1

a
.

35



Sensitivity analysis

Upper cable arrow

Figure 4.11: Relation between Deformation of the upper cable and Volume of
the block

In contrast to acceleration, the change in the magnitude of the displacement of
the top wire of the net (see 3.2) they are directly proportional (V ∝ fmax). The
greater the volume of the block, the greater its size, so it is to be expected that
greater net deformation will result.

Kinetic energy

Figure 4.12: Relation between Energy variation during the impact and volume of
the block

To understand the variation of energy as a function of volume, consider the
relationship:

Ek = 1
2mv2
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For which the same relation in 4.2.1 is valid, thus energy and volume grow together
(V ∝ Ek). Shown in the figure is the change in energy (∆E), calclulated as Kinetic
energy at time equal to 0.5 seconds minus its value at time 0, i.e. initial. Always
neglecting secondary effects related to, for example, the interaction of the block
with the ground, it must be taken into account that a greater volume implies less
rotation and therefore less energy waste. In addition, an important consideration
must be made with regard to the size of the block, so that the contact surface
of the block on the mesh increases with volume, density being equal, so that the
kinetic energy of the block has more space to distribute, reducing the localization
of stress and therefore its dissipation in the form of mechanical energy.

Stresses on net cables

Figure 4.13: Relation between stresses on the cables and the volume of the block

The kinetic energy of the block (5.1) determines the force transmitted to the
barrier during impact, which can be calculated as:

F = ∆p

∆t

if ∆p = mv is momentum change and ∆t is the contact time with the barrier.
So there is a direct proportionality between the applied force and the mass, hence
the volume of the block (V ∝ F ): larger blocks correspond to a greater force that
can be translated in stresses so (V ∝ σ2). The stress relief that is noticeable for
larger volumes depends on the fact that the greater the block, the greater the
distribution of the impact force on the various cables, consequently decreasing
the impact on the individual. However, this is only a hint at the reaction of the
structure to impact because it is not the subject of this discussion; the study is
mainly concerned with the parameters related to rock block. Therefore, for the
sake of completeness of the discussion, it has been mentioned, but will be omitted
in subsequent discussions of the remaining parameters to be compared.
From what has been analyzed so far, it can be seen that volume has a certain effect
on all the parameters extracted from the Abaqus/CAE software simulation, so it is

37



Sensitivity analysis

a parameter that will not be neglected. This relationship will be confirmed by the
machine learning algorithm subsequently implemented.

4.2.2 Traslational velocity

Acceleration

The impact acceleration of the block on the barrier depends on how the kinetic
energy is dissipated by the net. The relation between the decelerating force of the
block F and the acceleration of the block itself is already known:

Fd = ma

The impact force depends on the initial speed of the block (v), the stopping
distance (∆s), and the response of the barrier. The energy of the block related to
its movement will be:

Ek = 1
2mv2

This energy must be dissipated during impact, mainly in the form of barrier
deformation, heat and vibration. If the block comes to a complete stop, the work
done by the barrier (force stopping distance) is equal to the initial kinetic energy:

Fd∆s = 1
2mv2

Dividing by ∆s:

Fd =
1
2mv2

∆s

From which, substituting the acceleration with the formula 4.2.1, it will be:

a = Fd

m
=

1
2v2

∆s

This means that v2 ∝ a, and this is what the following graph shows:
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Figure 4.14: Relation between Impact acceleration and traslational velocity of
the block

Upper cable arrow

Always starting from the relation 5.1 , this will be partly dissipated and partly
absorbed by the barrier in the form of cable deformation. The work performed by
the cable will therefore be:

W = Eabsorbed = 1
2mv2

The work done by the cables is derived from the impact force and can be calculated
as follows:

W =
Ú

Fdx

If we consider an elastic response of the net, it is possible to write:

F = k∆x

where:

• k is the cable elastic constant;

• ∆x is the cable deformation.

Then substituting in 4.2.2 and solving the integral:

W = 1
2k(∆x)2

Balancing with the dissipated energy gives:

1
2mv2 = 1

2k(∆x)2
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Isolating displacement:
∆x =

ò
m

k
· v

Thus it is clear that displacement is directly proportional to traslational velocity (
v ∝ ∆x), as it is confirmed by the following figure.

Figure 4.15: Relation between deformation of the upper cable and traslational
velocity of the block

The displacement is also influenced by the mass of the block and the stiffness of
the cable:

• A stiffer cable offers more resistance, reducing deformation.

• A heavier block amplifies the deformation.

In practice, the effect of block speed on the network, briefly described here in
terms of cable deformation, results in greater deformation the greater the speed.
In order to reduce the effects of velocity, which are not adjustable at the level of
the block, one can act on the number of cables in order to distribute the energy
and reduce the effects of impact.

Kinetic energy

As already defined so far, the reference relationship is the previous 5.1, which
we need to elaborate on by defining the energy variation between:

• Eimpact;

• Einitial;

40



Sensitivity analysis

Following this scheme is it possible to write:

∆E = 1
2m(v2

impact − v2
initial)

From which the relationship v2 ∝ ∆E , namely a parabolic relationship.

Figure 4.16: Relation between Energy variation during the impact and rotational
velocity of the block

As with volume, speed is also of considerable importance, so this parameter will
not be neglected but will be an integral part of the model realized.

4.2.3 Rotational velocity
Acceleration

The relationship between the acceleration of the block and its rotational velocity
( ω ) is related to the conservation of angular momentum and how the forces
are distributed during impact. Given the initial speed of the block, its angular
momentum will be:

L = Iω

if I is the moment of inertia with respect to the rotational axis. During impact,
the angular momentum may be partially transferred to the network or modified by
external forces, which, however, are neglected due to simplification of the model
sought. The angular velocity of the block could generate tangential reaction forces
from the mesh, because the mesh contact point could generate a moment due to the
rotation of the block. The angular velocity of the block could generate tangential
reaction forces from the mesh, because the mesh contact point could generate a
torque moment due to the rotation of the block. The resulting moment can be
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calculated as:
τ = rFt

in which:

• r is the block radium;

• Ft is the tangential force.

It will influence angular velocity. As for the translational acceleration (a) of the
block, it is related to the normal force (Fn) according to 4.2.2. This latter force
can be related to the rotational velocity if there are interactions between the block
and the mesh such as adhesion. Therefore, combining the effects of translational
and rotational velocity, we obtain that:

a = Fn

m
+ τ

I
= Fn

m
+ τ

L
ω

a high rotational speed (ω) can increase the tangential acceleration through (τ)
provided there is adequate interaction with the network (e.g. friction or deforma-
tion).

Figure 4.17: Relation between Impact acceleration and rotational velocity of the
block

The fact that for a higher rotational velocity, the acceleration values decrease
probably means that the interactions between the block and the mesh were not
sufficient to establish the torque and therefore all previous considerations fell.
However, it can be seen that the variations in the acceleration value do not appear
to be exaggeratedly high, which will lead to the choice of neglecting this parameter.
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Upper cable arrow

In this case, we no longer speak of translational energy, which was discussed in
the previous subsections, but the rotational energy equal to:

Erot = 1
2Iω2

During impact, some of this energy can be transferred to the upper cable in the
form of elastic deformation, if there is an effective interaction between the rotation
of the block and the cable. The interaction between the block and the network
manifests itself in the form of elastic deformation, which we can physically describe
using Hooke’s law:

∆y = F

k
considering that:

• F is the applied force to the cable;

• k is the elastic constant of the net

• ∆y is the vertical deformation of the cable, directly proportional to the
horizontal displacement.

This relation is valid considering an ideal composition of the cable, without
dissipation. If F includes a tangential component induced by rotation, then:

∆y ∝ rω

From which we derive a direct proportionality between cable deformation and
angular velocity, as shown in the following graph.

Figure 4.18: Relation between deformation of the upper cable and rotational
velocity of the block
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Kinetic energy

The change in total kinetic energy is related to the change in rotational velocity
through the moment of inertia, as expressed in the relation 4.2.3, for which Erot ∝ ω2.
The exact relationship, however, depends on the physical context (e.g. whether the
motion is purely rotational or combined with translation).

Figure 4.19: Relation between Energy variation during the impact and rotational
velocity of the block

However, despite the theoretically identified relationships, there is little influence
of the rotational component of the block velocity on the extrapolated parameters.
For this reason it is excluded from the general discussion.

4.2.4 Impact angle
Acceleration

Observing the chosen reference system, one must emphasize the transition
between the Cartesian system in which the valid components were vx, vy, vz, and
the reference system of the block moving with accelerated parabolic motion, for
which a conversion from one system to the other is necessary, to obtain:

• Normal component vn = vcos(α);

• Tangential component vt = vsen(α) .

The reference system is shown below:
At this point one can speak of normal speed and tangential speed with respect

to the barrier, considering the angle of inclination with respect to the normal to
the plane of the barrier as the angle of impact. The normal component of the force
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Figure 4.20: Structure diagram with reference system considered [Courtesy of
Carriero MariaTeresa from her PhD thesis (in submission)]

is what causes the net to deform and slows down the blockage along vn; Deriving
the acceleration by the velocity it is obvious that:

an ∝ −vcos(α)
∆t

with ∆t, time of impact.
The normal acceleration depends on the energy associated with it and the stiffness of
the net, i.e. how quickly it can elastically dissipate the impact. Like the rotational
speed, the tangential acceleration is also affected by possible friction with the
network and local deformations that dissipate energy. The existing relationship is:

at ∝ −µsen(α)

if µ is the friction coefficient with the net. The acceleration to be considered is the
resultant of the two, i.e:

a =
ñ

a2
t + a2

n

What is of interest for this study is the direct proportionality between α and
acceleration, as is well demonstrated by the graph below.
The increasing trend depends on the predominance of the tangential acceleration,
proportional to the sine of α, over the normal acceleration, proportional to the
cosine of the angle, which would have led to a decrease in acceleration as the angle
increased.
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Figure 4.21: Relation between Impact acceleration and impact angle of the block

Upper cable arrow

To understand the relationship between the maximum displacement of the cable
(fmax) and the angle of impact of the block on the net, it is essential to refer to the
impact force. The latter can be divided into two components:

• Normal component Fn = Fcos(α)

• Tangential component Ft = Fsen(α).
Considering the elastic behavior of the barrier, Hooke’s law 4.2.3 is valid and allows
to define proportionality ∆x ∝ F . In this case it is about normal component,
as the impacts are predominantly perpendicular to the net, so it is expected a
cosinoidal curve ∆x ∝ cos(α).

Figure 4.22: Relation between deformation of the upper cable and impact angle
of the block

Kinetic energy
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It is always necessary to decompose the normal and tangential components
of the velocity, from which the normal and tangential energy component can be
obtained. Taking up the speed decomposition already shown for the acceleration
subparagraph (4.2.4), the resultant energy is:

Ek = En
k + Et

k

where:

• En
k = 1

2mv2
n = 1

2m (v cos(α))2

• Et
k = 1

2mv2
t = 1

2m (v sin(α))2

Figure 4.23: Relation between Energy variation during the impact and impact
angle of the block

From the increasing sinusoidal graph we can see the prevalence of tangential
energy Et

k ∝ sin2 α.

4.2.5 Impact position along Y
The impact position (Y ) directly influences:

• The distribution of forces on the network.

• The load that is transmitted to the upper and lateral posts.

Acceleration

The acceleration is directly related to force (see 4.2.2). The latter has a different
influence considering the distance between the impact and the cables to which
tension is generated.

47



Sensitivity analysis

• Impacts close to the supports generate greater tension in the cables due to
less space for deformation.

• Impacts at the center of the barrier lead to greater global deformation, reducing
the peak acceleration of the block.

In quantitative terms is true that: a ∝ Fnet, knowing that Fnet ∼ 1
∆y

.

Figure 4.24: Relation between Impact acceleration and impact position along Y
axis

Upper cable arrow

As the acceleration, even the cable deformation is influenced by the impact
position:

• Impacts close to the supports generate a little deformation of the upper cable
due to the dissipation along the supports.

• Impacts at the center of the net determine maximum since the cable must
withstand a greater stretch to dissipate the energy of the block.

Fnet ∝ 1
∆ycable
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Figure 4.25: Relation between deformation of the upper cable and impact position
along Y axis

Kinetic energy

As regard the kinetic energy:

• For lateral impacts the load is concentrated on the supports, with less overall
dissipation;

• For central impacts, the mesh can better absorb the kinetic energy.

Figure 4.26: Relation between Energy variation during the impact and impact
position along Y axis

However, despite the theoretically identified relationships, there is little influ-
ence of the impact position on the extrapolated parameters. For this reason it is
neglected from the general discussion.
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4.2.6 Impact position along Z
The impact position along the vertical axis can have an influence on:

• Upper cable if it is closer to it;

• Along the steel net, dissipating the energy above the whole interception net;

Acceleration

Block acceleration after the impact depends on the net reaction force, which
varies according to the vertical position.

• Near the upper cable, the elasticity of the network is greater because the
upper cable is less constrained than near the ground.

• Near the ground, it is possible that the block interact more with the slope,
leading to lower acceleration.

The same relation of ∆Y is still valid for ∆Z 4.2.5.

Figure 4.27: Relation between Impact acceleration and impact position along Z
axis

Upper cable arrow

Logically, the deformation of the upper cable is directly proportional to the
impact position along the vertical axis, ∆x ∝ Z. The closer the impact is to the
upper cable, the greater its deformation. The further away it occurs, the less it
will deform, thanks to the energy dissipation that has occurred along the lateral
supports.

50



Sensitivity analysis

Figure 4.28: Relation between deformation of the upper cable and impact position
along Z axis

Kinetic energy

The variation in energy in this case depends less on the impact position along
the z axis, but rather is relative to the mode of dissipation that occurs. As already
discussed:

• Near the upper cable, the rigidity of the net is higher, than the dissipation is
higher.

• Near the ground, the block has more freedom of movement, so energy dissipa-
tion will be lower.

Figure 4.29: Relation between Energy variation during the impact and impact
position along Z axis

Considering that the variation of the results is not negligible, this parameter is
considered in the following analysis.
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This sensitivity analysis was used to define the essential correlations between
the parameters chosen in order to create a simplifying model for the design of the
attenuator-type barrier, but also to initialize a machine learning algorithm which
will be described in more detail in the following chapter and whose results will
be set out, comparing them where possible with what emerged from the previous
analysis.

From the analysis conducted, it emerged the importance of variables such as
volume and translational speed in the design process of the interception system. In
addition, an influence, albeit a minor one, was observed of the impact angle, which
represents the direction of arrival of the block on the net, as well as the vertical
position of the block itself. On the contrary, the rotational speed and the distance
from the uprights of the block to the impact were found to have little influence,
probably due to the panel width being insufficient to generate significant differences
in the results. Consequently, it was decided to neglect these last two variables. A
table summarising the choices made is presented below, in figure 4.30):

Figure 4.30: Influential parameters chosen for subsequent analysis
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Machine learning

Machine learning as we know it today originated with Arthur Samuel, an IBM
researcher and pioneer of artificial intelligence, in 1959. However, its conceptual
foundation dates back earlier, focusing on enabling computers to learn relation-
ships between parameters without explicit programming [25]. Another key figure,
Frank Rosenblatt, pioneered artificial neural networks with the development of the
perceptron.

Figure 5.1: Machine learning applications [Bluewind]

Before getting to the heart of the realized model, a few words on the vast world
of artificial intelligence to provide clarity.
Very often, there is confusion between artificial intelligence, machine learning and
deep learning;

Artificial intelligence (AI)
AI represents a broad field of computer science that aims to endow machines
with typically human capabilities, such as learning, reasoning and problem solving.
The goal is to create systems capable of performing complex tasks autonomously,
mimicking human intelligence.

Machine learning (ML)
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Machine learning represents a subset of AI. It focuses on the ability of machines
to learn from data. Through sophisticated algorithms, ML systems can analyze
large amounts of data, identify patterns and relationships, and use this informa-
tion to make decisions or perform tasks without being explicitly programmed.
This capability is intended to be exploited in the present study in order to lay the
foundations for more rapid future analysis for the complex design of rockfall barriers.

Artificial Neural networks (ANN)
They are positioned somewhere between ML and DL because they share functions
with both, in some cases being absorbed into DL considering only their origin (in-
spired by the human mind) and their primary function: recognition of relationships
for large amounts of data. Their characteritics will be explained in the following
paragraph.

Deep learning (DL)
Deep learning represents a subset of ML. It is inspired by the workings of the
human brain, is particularly suited to solving generalized problems requiring the
understanding of large amounts of unstructured data: image recognition, natural
language, text and image generation, etc.

Figure 5.2: Relationship between AI, ML, Neural networks and DL [Machine
Learning]
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5.1 Machine learning
Machine learning (ML) can be categorized based on the training process into three
main types: supervised learning, unsupervised learning, and reinforcement learning.

Figure 5.3: Different types of machine learning algorithm [25]

The main differences between these types of MLs are that:

• The supervised model is trained to recognize and trace data (inputs) to
predefined classes (outputs). The data must be labeled for the training phase,
as the outputs must be known a priori. The main algorithms used here are
classification and regression.

• In the case of unsupervised learning, one does not have labeled data, but uses
techniques such as clustering and associative analyses to model the data by
creating homogeneous groups on the basis of their characteristics, based on
concepts such as similarity or distance, even though the expected outputs are
not known a priori.

• Reinforcement learning is particularly used in deep learning, it involves a series
of sequential steps in which the analysis depends on both the characteristics
of the data used for training and the current state of the system. These
conditions allow the algorithm to make a prediction that will constitute
the current state for the next cycle. Each cycle includes a reinforcement, a
numerical reward signal, which is useful in encouraging the system to seek out
the most favourable conditions. Otherwise, a penalty is applied.
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This study examines the relationship between known input parameters (rock
block impact conditions) and known output results (Abaqus/CAE simulations).
Given that both input and output values are available, the study focused on
supervised learning methods, specifically:

• Support Vector Machine (SVM)

• Artificial Neural Networks (ANN)

In collaboration with NTNU University, ANN was selected due to its capability
to handle complex temporal predictions. The chosen approach involves Long
Short-Term Memory (LSTM) networks to forecast system responses over time.

This chapter demonstrates how ANN can model the dynamic interaction between
a rockfall and an interception system. By identifying hidden relationships in data,
ANN facilitates the prediction of system behavior during impact. The process
includes:

• Defining performance criteria

• Splitting and pre-processing data

• Selecting model inputs and architecture

• Training the network

• Validating the model

Ultimately, ANN is used to automate the extraction of impact-related parameters,
eliminating the need for repeated individual simulations. These models can be
used as a forecasting tool, complementing the process-based model and standard
analyses such as those described in the previous chapter.

5.1.1 How it works - ML
The ML process involves several essential steps:

• Data Collection

– Identifying relevant data sources
– Evaluating dataset consistency for analysis

• Data Preparation

– Data discovery and profiling
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– Cleaning, transformation, and structuring
– Data enrichment for improved model performance

• Model Training

– Selecting the appropriate algorithm
– Processing training data to develop predictive models

• Model Evaluation

– Testing accuracy with a validation dataset
– Re-training if results fall below an acceptable threshold

• Optimization and Tuning

– Enhancing accuracy while minimizing resource use
– Techniques include feature engineering, hyperparameter tuning, and regu-

larization

• Implementation and Monitoring

– Deploying the model in real applications
– Continuous monitoring to detect biases and update with new training

data

By following this structured approach, the ANN model ensures robust, efficient,
and scalable predictions for rockfall barrier impact analysis.

5.2 Artificial neural networks
Artificial neural networks (ANNs) are mathematical models designed to emulate
the behavior of neurons in the human brain. They consist of interconnected
nodes, called artificial neurons, which process and transmit information similarly
to biological neurons.

The human brain is composed by more than 10 billion interconnected neurons:
cells that uses biochemical reactions to receive, process and transmit information.
Networks are formed by nerve fibres that create a sort of tree-like shape, called
dendrites, connected to the cell body or soma, where the nucleus of the cell is
located. From the cell body extends a single long fibre, called an axon, which
eventually branches into filaments and subfilaments, and are connected to other
neurons through synaptic terminals or synapses. The transmission of signals from
one neuron to another at synapses is a complex chemical process, in which specific
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Figure 5.4: Similarity between neurons in the human body and neural networks
[Dreams]

transmitter substances are released from the sending end of the junction. The
effect is to raise or lower the electrical potential within the body of the receiving
cell. If the potential reaches a threshold, an impulse is sent along the axon and the
cell is ‘fired’ [26].
ANNs generalize these biological processes into artificial models where neurons
receive inputs, process them using an activation function, and propagate outputs
to subsequent layers. The activation function introduces non-linearity, allowing
the network to learn complex patterns. This characteristic makes ANNs highly
effective for tasks such as time-series forecasting, as demonstrated in applications
like predicting the quantitative characteristics of water bodies [27]

5.2.1 How it works - ANN

The concept of artificial neurons was first introduced in 1943 [28]. The basic
architecture consists of three types of neuron layers: input, hidden, and output
layers [26]. The input layer takes input. The hidden layer processes the input.
Finally, the output layer sends the calculated output [25].
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Figure 5.5: Multilayered artificial neural network [CNN]

Each connection between neurons has a weight that determines its importance.
The learning process involves adjusting these weights based on training data using
optimization techniques. Key functions in ANN training include:

Activation Functions
They determine whether a neuron should “fire” in response to an input. The most
commonly used Functions are:

• Sigmoid: useful for outputs between 0 and 1.

• ReLU (Rectified Linear Unit): widely used in deep networks because of its
computational simplicity, which is why it was chosen in this discussion.

• Softmax : used for probability in multiclass classifications.

Optimization
The learning process involves optimization algorithms that minimize a loss function
(loss function). Popular algorithms include Stochastic Gradient Descent (SGD) and
variants such as Adam.
The latter has been used due to satisfactory results from the first implementation.

Regularization
To prevent overfitting, techniques such as L1/L2 regularization, dropout (random
exclusion of neurons during training) or data augmentation (expansion of the
dataset with variations in the data) are used.
Initially, regularization was underestimated, but improvements in results confirmed
its importance.
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Initialization of weights
Proper initialization is crucial to accelerate convergence and prevent problems like
vanishing gradient. Techniques such as Xavier Initialization is commonly used.

Evaluation and Validation
Network performance is evaluated using appropriate metrics, such as accuracy.
Techniques such as cross-validation are used to ensure that the model does not
over-fit training data.

Once initialized, input data propagates through the network in a forward pass,
generating an output. The error between predicted and actual results is then
computed and back-propagated through the network to adjust weights, iterating
over multiple epochs to refine predictions.

5.2.2 Feedforward vs. Recurrent Neural Networks
Feedforward networks allow information to flow only in one direction, making them
effective for classification and regression tasks. However, sequential data requires a
different approach.

Figure 5.6: How recurrent neural network works [Deep learning]

Recurrent Neural Network introduce memory by maintaining connections
across previous states. They process sequences like text and time-series data by
incorporating prior inputs into current processing. Standard RNNs, however, suffer
from the vanishing gradient problem, limiting their ability to capture long-term
dependencies.

To address this, advanced architectures like Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRU) were developed. LSTMs, used in this study,
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efficiently capture temporal dependencies, making them ideal for modeling dynamic
processes such as rockfall barrier impact analysis.

5.2.3 Benefits of ANNs

Traditional physics-based models are widely used to analyze complex systems, but
they often require numerous parameters and extensive calibration, which can be
time-consuming and may introduce inaccuracies due to necessary approximations.

In contrast, data-driven methods like machine learning (ML) offer efficient
alternatives by reducing dependency on predefined parameters and leveraging vast
datasets for pattern recognition. Among ML techniques, ANNs stand out for their
ability to model non-linear relationships and uncover hidden dependencies with
high accuracy.

Despite their advantages, ANNs are not universally applied across all domains
due to training complexity. However, once trained, an ANN simplifies into a
computationally efficient algebraic model with fixed coefficients, enabling rapid
predictions. This makes them particularly useful for iterative and real-time applica-
tions. Additionally, ANNs are highly adaptable, allowing integration with evolving
system constraints and new data.

The increasing adoption of data-driven techniques highlights their value in
modern engineering and scientific workflows. By efficiently handling complex
datasets and minimizing dependency on predefined assumptions, ANNs provide
scalable, dynamic, and highly accurate predictive modeling solutions [27].

5.3 Global sensitivity analysis

Below is a graphic diagram of the process followed for clarity of exposition; the
individual steps will be detailed later.
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START

Input parameters selection and combination creation

Machine learning dataset creation

Machine learning deployment

Results extraction and comment

END

5.3.1 Input Parameter Selection
As discussed in Chapter 4, the second sensitivity analysis was performed using
Python scripts to implement a machine learning algorithm. The initial parameter
definitions remained consistent across both analyses. However, while the previous
approach examined variations in a single parameter at a time, this analysis utilized
a Python script to generate all possible combinations of input parameters.

Notably, the number of input parameters was reduced from six to four. During
the local analysis, it was observed that the impact position of the block on the
panel’s vertical axis and its rotational speed had minimal influence on the results.
Consequently, these parameters were omitted. The setup configuration remains
the same as described in Section 4.1.

The elasticity, panel length, and slope inclination parameters remained un-
changed, as modifying them required manual adjustments in Abaqus. The model
setup, as defined in Chapter 3, was adopted from [23].

Each set of input parameters was paired with Abaqus/CAE simulation. 576 sets
were formed using Python but were removed due to the inclusion of invalid results.
The errors were caused by Abaqus simulation errors that prevented the system from
generating output correctly, while some variables never had values assigned to them.
As there was such a large amount of valid data left, it was decided to disregard the
invalid combinations and deal with the proper ones, rather than having to begin
again from scratch in the software. The final dataset included 568 valid simulations,
which provided sufficient data for machine learning implementation. The extracted
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Figure 5.7: Input parameter combinations: local analysis (left) and global analysis
(right).

results, stored in a dedicated folder, included:

• Block acceleration over time to determine the maximum deceleration (amax).

• Displacement of the central point of the upper cable to determine the maximum
deflection (fmax).

• Temporal evolution of block kinematic conditions (ax, ay, az, vx, vy, vz, ux, uy, uz).

• Energy variations, starting from the block’s initial kinetic energy.

• Contact angle α, indicating the portion of the block in contact with the panel.

• Net stresses (though not the primary focus of this thesis).

This dataset provided a comprehensive basis for training the machine learning
model, ensuring robust predictive capabilities.

5.3.2 Machine Learning Dataset Creation
Each parameter was stored in a dedicated file. Given that each combination
generated thirty-five files, manual file processing was impractical. Python scripts
were used to aggregate and structure the data into a single table.

To optimize the dataset, only the time interval from 0.00s to 0.30s—corresponding
to the impact phase—was considered, reducing the original 5-second analysis win-
dow.

The input values, originally stored as text files, were combined with the output
data into a single structured table, named "merged output.xlsx". Additionally,
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Figure 5.8: Python scripts used to create the machine learning dataset.

several key variables were computed using the Pythagorean sum of extracted
components, as shown in the following Python code snippet:

1 expected_groups = {
2 "FRECCIA_MAX_CAVOSUP": ["U1_CAVOSUP", "U2_CAVOSUP", "U3_CAVOSUP"],
3 "A_T_Block": ["A1_T_Block", "A2_T_Block", "A3_T_Block"],
4 "V_T_Block": ["V1_T_Block", "V2_T_Block", "V3_T_Block"],
5 "V_R_Block": ["V1_R_Block", "V2_R_Block", "V3_R_Block"],
6 "RF_MDX": ["RF1_MDX", "RF2_MDX", "RF3_MDX"],
7 "RF_MSX": ["RF1_MSX", "RF2_MSX", "RF3_MSX"],
8 "RM_MDX": ["RM1_MDX", "RM2_MDX", "RM3_MDX"],
9 "RM_MSX": ["RM1_MSX", "RM2_MSX", "RM3_MSX"],

10 }

On the left, the names of the summed variables are listed, while the bracketed
values represent their respective components. Both the individual components and
the computed sums were included in the final dataset.

Computed Variables

Additional key values were computed as follows:

• Translational Kinetic Energy, computed as:

Ek = 1
2mv2 (5.1)

• Rotational Kinetic Energy, computed as the difference between the total
kinetic energy extracted from Abaqus/CAE ("KE Block") and the translational
kinetic energy:
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• Block Acceleration, computed as the derivative of translational velocity:

atot =
A

dvx

dt
,
dvy

dt
,
dvz

dt

B
(5.2)

Final Dataset and Machine Learning Integration

The final dataset, structured as described above, was ready for machine learning
implementation. All processing steps were executed through a single command in
"main.py", which also included the execution of the LSTM algorithm, described in
the next section.

5.3.3 Machine Learning Deployment
This problem involves multivariate forecasting with static input dependencies. Four
constant input parameters act as additional features influencing the prediction
of twenty time-dependent outputs. Given the complexity and sequential nature
of the data, an LSTM (Long Short-Term Memory) model was chosen. LSTM
networks effectively capture long-term dependencies, and constant inputs were
concatenated as additional features during training. Regularization techniques,
including dropout, were applied to enhance generalization due to the limited number
of input combinations.

While the LSTM model learns time dependencies, it does not inherently compute
statistical correlations. Therefore, correlation analysis was performed separately.
Initially, correlations were calculated based on statistical measures such as mean,
covariance, and standard deviation across entire columns. To refine this, correlations
were also evaluated at the moment of impact (when a key variable reached its peak)
and in adjacent time frames for greater precision. Both methods were implemented
and later implemented.

The model processes the preformatted dataset row by row. In failure cases,
the algorithm logs the issue and returns a "Failure" status. In successful cases,
simulation data are stored and used for both correlation analysis and predictive
modeling.

Correlation Matrix

Correlation analysis was conducted to compare relationships with local sensitivity
analysis, monitor model performance, and serve as an additional validation metric.
A key objective was to simplify rock block design by automating the search for
parameter relationships, reducing reliance on manual analyses. The algorithm is
trained to identify the maximum acceleration value of the block, calculated as a
derivative of the velocity, and then extrapolate from the dataset the previous two
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Figure 5.9: Flowchart of machine learning algorithm

rows and the next two rows and, for each combination, apply Pearson’s correlation
to these values. The Pearson correlation coefficient was computed using pandas
(DataFrame.corr()) to quantify linear relationships between variables:

r =
qn

i=1(xi − x)(yi − y)ñqn
i=1(xi − x)2

ñqn
i=1(yi − y)2

(5.3)

where:

• xi, yi: observed values of variables x and y;

• x, y: mean values of x and y.

A positive product (xi − x)(yi − y) indicates that both variables tend to be
above or below their mean simultaneously, while a negative product suggests an
inverse relationship. The denominator normalizes covariance, yielding a correla-
tion coefficient between -1 (strong negative correlation) and +1 (strong positive
correlation), while values near zero indicating little or no correlation.

To visualize correlations, heat maps were generated using seaborn (sns.heatmap).
Correlations were examined for the following groups:

• Input parameters;

• Output parameters carried out at impact time ( velocity, acceleration, upper
cable displacement, net forces, and moments );

• Output parameters after the impact (trajectory and energy dissipation).
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This separation as a function of time is linked to the need to extrapolate the results
as meaningful as possible; in fact, as far as velocity and acceleration are concerned,
it is important to know their maximum value because this is what determines the
deformation of the network. Whereas with regard to trajectory and energy, it is
important to consider their final variation, i.e. how much energy is dissipated in
the entire process.

Figure 5.10: Correlation between input parameters.

As shown in Figure 5.10, input parameters are largely uncorrelated, with corre-
lation values close to zero. Concerning non-parametric analyses, it is possible to
define distributions of values without having to make assumptions about the shape
of the distributions themselves. In particular, instead of assuming a specific model,
one can proceed by analysing the correlation between the input parameters. In
this approach, it is not necessary to make a priori assumptions about the nature
of this correlation, but is sufficient to calculate its actual degree. Based on this
calculation, the variables with the lowest correlation between them can be selected,
thus reducing the risk of multicollinearity and improving the robustness of the
analysis.
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Figure 5.11: Correlation between input parameters and outputs at impact time

In the graph above, all the correlations between the values used as input and
output values extrapolated at the impact time, set as 0.15 seconds were analyzed.
In particular, it was identified the velocity where present ‘V’, the acceleration or
rather, deceleration of the block ‘A’ and, finally, the barriers parameters.
For each of these quantities, there are several terms; in the case of translational
velocity, it was chosen to define both the Cartesian components individually and
the resultant as it can give us a global indication of the intensity.

The values obtained confirm what was observed with the local sensitivity analysis,
e.g. volume is inversely proportional to acceleration, as also shown in figure 4.27.
As regards the maximum displacement of the upper cable of the interception system
("frecciamax−cavosup" in the correlation matrix 5.11), which gives an idea of the
maximum elongation undergone by the net during impact. Fourth and third last
columns refer to the reaction forces of the right and left posts respectively. The
penultimate and last columns finally refer to the reaction torque when the uprights
react to the impact of the block.
These results should be interpreted carefully and critically: they have been included
for the sake of completeness but do not provide an exhaustive analysis. In fact, to
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have a more detailed knowledge of what is happening to the net, the stress in the
cables should be extracted, but this requires a more specific and in-depth study
that can be implemented in the future.
What can be extracted from this matrix is that the velocity of the block and the
impact position seem to have a greater influence than the other two variables
involved, on the deformation of the upper cable; which is plausible because v ∝ ∆x,
as exposed in figure 4.28. Similarly, the impact position plays a significant role; it
is intuitive to consider that the closer the block impacts the cable, the greater the
resulting deformation will be. In contrast, the impact angle appears to have only
a minimal correlation with all observed variables. It can be said that this table
best summarizes the core of the thesis whose aim was to know the relationships
between the input values and the variation of the output parameters.

Figure 5.12: Correlation between output parameters at time of the impact

The graph presented in figure 5.12 simply represents how output values affect
others, again extrapolated at the moment of impact. It is well known that the
quantities referring to the interception system have a higher correlation with each
other.
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Figure 5.13: Correlation between inputs and outputs after impact time

Figure 5.13 presents the output values associated with the block, including its
trajectory (U1T , U2T , U3T ) and total kinetic energy (KEBlock) which refers to the
energy extrapolated from the Abaqus/CAE simulations, while the components
‘ET RASL’ and ‘EROT ’ were calculated during the preparation of the database as
described in the previous section.

The trajectory of the block extracted from the software was compared to the
components U1,CL and U3,CL which represent the trajectory that the block would
have if it was not intercepted by the barrier. In particular, U1 indicates the
trajectory along the x-axis, U2 along the y-axis transverse to the slope and finally
U3 represents the vertical trajectory. We note the particular influence of the angle
of impact on the trajectory along the vertical axis. This is related to the effect
of gravity, which not only defines the speed, but also helps to establish the angle
of incidence relative to the surface of the barrier. The variables that interest us
most, however, are ‘∆DT ’ and ‘∆DT%’, which represent the difference between
the free-fall trajectory and the trajectory with interception of the block by the
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barrier, respectively, calculated as:

DeltaDT = U1T,block − U1CL

i.e. the trajectories with respect to the horizontal x-axis. And the relative per-
centual value given by ∆DT divided by U1CL. The fact that there is a slightly
marked negative correlation between the velocity and the trajectory suggests that
as the velocity increases, the variation between the trajectories decreases, so there
is less slowing down of the blockage by the barrier. These values are compared
with the input variables.

Figure 5.14: Correlation between outputs after impact time

As far as the influence that the output values have on the respective results
is concerned, there is no particularly interesting evidence: it was already known
that the difference between trajectories is certainly correlated with the trajectories
themselves. What can be observed is rather the influence that the trajectory has
on the energy variation. In particular, it can be seen that the trajectory along
the x-axis is more correlated with the various forms of energy, unlike the others
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trajectories. This leads one to think that as the trajectory increases, i.e. the further
away the block arrives, the greater the energy associated with it, which is plausible.
If an object is in motion, its kinetic energy is a function of its velocity, and if there
is acceleration, its velocity is a function of the distance travelled. In this case we
have an object subjected to a constant force, that of gravity and it is travelling
along a trajectory: as its velocity increases as it moves, its kinetic energy (which is
a function of velocity) increases.

It can be concluded that some parameters have a greater influence on others, so
future analyses may take this as a starting point to focus on certain relationships
rather than others. For example, the translational velocity and the angle of impact
have importance with regard to the directionality of the block.
A further key aspect concerns the confirmation of results from the local analysis.
This implies that both analytical approaches possess validity and can be selected
as reference methods for subsequent simulations.

Predictive model

The Long Short-Term Memory (LSTM) network is a type of recurrent neural
network (RNN) that combines short-term memory with long-term memory through
gating, which solves the problem of gradient disappearance [29].
This is possible introducing a memory cell and gating mechanisms that regulate
the flow of information and determine which information to forget, retain, and
output at each time step, enabling the network to capture both short-term and
long-term dependencies.

At each time step, the LSTM operates as follows:

1. Forget Gate: The forget gate determines which parts of the previous cell
state Ct−1 should be forgotten. It takes the previous hidden state ht−1 and
the current input xt as inputs and applies a sigmoid activation:

ft = σ(Wf [ht1, xt] + bf )

Here, ft ∈ [0,1]d represents the forget gate’s output, where d is the dimension-
ality of the cell state. Values close to 0 indicate forgetting, while values close
to 1 indicate retaining.

2. Input Gate: The input gate decides which new information to add to the cell
state. It has two components: a sigmoid layer that controls what to update
and a tanh layer that generates candidate values:

it = σ(Wi · [ht−1, xt] + bi)
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C̃t = tanh(WC · [ht−1, xt] + bC)

Here, it ∈ [0,1]d represents the input gate, and C̃t ∈ [−1, 1]d are the candidate
values for the cell state.

3. Cell State Update: The cell state Ct is updated by combining the previous
cell state Ct−1 (scaled by the forget gate) with the candidate values C̃t (scaled
by the input gate):

C̃t = tanh(WC · [ht−1, xt] + bC)

Here, denotes element-wise multiplication.

4. Output Gate: The output gate determines the information to output from
the current cell state as the hidden state ht. It uses a sigmoid activation to
control the output. The output gate equation is given by:

ot = σ(Wo · [ht−1, xt] + bo)

And the hidden state update equation is:

ht = ot ⊙ tanh(Ct)

In these equations:

• xt: Input vector at time step t.
• ht−1: Hidden state from the previous time step.
• ft, it, ot: Outputs of the forget, input, and output gates, respectively.
• Ct, Ct−1: Current and previous cell states, respectively.
• σ: Sigmoid activation function.
• tanh: Hyperbolic tangent activation function.
• Wf , Wi, WC , Wo: Weight matrices for the gates.
• bf , bi, bC , bo: Bias terms for the gates.

Model Architecture and Training Process

The LSTM-based predictive model is designed to include time dependencies and
physical constraints in the training process. The model has the following key steps:

• Data Initialization: Providing values from extracted software reflecting the
physical nature of the problem.
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• Data Pre-processing: Normalization, missing data treatment, and train/test
split.

• Architecture Definition: The architecture is composed of an LSTM layer to
capture temporal relationships, followed by a fully connected (Dense) layer
projecting latent features to output values. A ReLU activation function is
employed, and dropout is included to avoid overfitting.

• Model Training: Weight optimization with backpropagation through time
(BPTT) and Adam optimizer. Loss function is Mean Squared Error (MSELoss)
with an additional physical loss term to ensure physical consistency. Model is
trained for 50 epochs to minimize error on training and validation sets.

• Validation and Testing: Validation of the model’s capacity to generalize to
new data.

• Prediction and Interpretation: The training model predicts for dynamic inputs,
scaling and normalizing back to their original scale for interpretation.

In order to judge the performance of the model, it is necessary to examine
these stages and find out what is the most appropriate stage to include physical
relationships. The total kinetic energy, quantified as the sum of its translational
and rotational parts, and the two parts separately, has been incorporated at two
different stages, and their impacts on model performance will be examined.
For the sake of clarity, the speed trend over time is shown, comparing the values
extrapolated by the software and the values simulated by the trained model. First
of all, it is shown its trend referred to the physical model in figure 5.15:
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Figure 5.15: Traslational velocity extrapolated by Abaqus simulation

From this image, one should note the trend of the translational velocity - taken
as an example to show the potential and criticality of the implemented model -
which appears to be linear, decreasing as assumed due to the presence of the barrier
that contributed to this reduction.

To compare the results of the model with simulations, three separate approaches
were developed, each with specific peculiarities. Each model was tested on one
or more iterations in order to assess the effect of training on the quality of the
predictions.

Modification of the Training Function In the first trial, an additional
polynomial regression was initially introduced during training, to allow the model
to learn not only the numerical values, but also their time course, variable by
variable. The physical relationships were incorporated in the data pre-processing
phase, ensuring that they were already known during training.

The model was first trained for a single epoch (trend shown in blue) and
subsequently for 25 epochs (trend in dark green, see figure 5.16).
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Figure 5.16: Velocity trend considering polynomial regression

The analysis of the results shows that, compared to the simulated data, the
speed is initially overestimated after only one iteration, with a more stable trend,
not visible decreasing. With more iterations, the trend remains similar to the
physical one, but an greater overestimation of the values is observed.
To improve accuracy, it would be necessary to introduce a relationship between the
translational velocity provided as input and that extracted from the simulation.

Modification of Training function - Velocity only After 25 epochs, the
loss function showed an increasing tendency, indicating that prolonging training
was not beneficial. To improve learning, it was decided to reduce the dataset to
the velocity and trajectory components only, from which acceleration and energy
information could be derived.

76



Machine learning

Figure 5.17: Velocity trend training the model only on speed values

Again, after only one iteration, the simulated velocity is underestimated (see
ligth orange line in 5.17), but maintains time course more similar to the expected
one. However, by increasing the number of iterations, both numerical consistency
and the correct trend are lost, as seen trough the green line in the above figure.
This analysis suggests that the exclusive use of polynomial regression in the training
phase is not sufficient for the model to correctly learn the physical relationships
between variables over time.

Modification of simulation phase In light of the previous results, a different
strategy was tried: letting the model train on the data from the dataset without ad-
ditional constraints, and then correcting the simulated values in the post-processing
phase by integrating the physical information of the problem.

It was observed that although the model manages to capture some implicit
relationships between variables, it loses key information in the long run. For this
reason, a regression-based correction of the simulated data was introduced.

• Without physical correction:
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Figure 5.18: Combinations of simulated velocity extrapolated

• With physical corrections ("CALC" that means "calculated"):

Figure 5.19: Combinations of calculated velocity extrapolated

Starting from the analysis of the simulated velocity values (listed in figure 5.18),
i.e. following the same procedure as in the two previous cases, we obtain the results
presented in figure 5.20:

Figure 5.20: Simulated velocity without physical correction
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Starting from the bottom in figure 5.20, the simulated velocity values corre-
sponding to different batch sizes are depicted in orange and green for batch sizes
of 32 and 64, respectively, after a single iteration. It is evident that in both cases,
the velocity is significantly underestimated.

Upon increasing the number of epochs to twenty-five, the predicted curves exceed
the target red reference curve. Moreover, a slight divergence is observed between
the predictions for batch size 32 (yellow line) and 64 (light green line), with neither
case accurately capturing the linear trend of the physical simulation.

Given the theoretical expectation that increasing the number of iterations should
enhance the model’s ability to capture latent relationships, the number of epochs
was further increased to one hundred, maintaining a batch size of 32. However,
the results were unsatisfactory, as both the numerical accuracy and the underlying
trend of the system were lost.

Since these outcomes remained inconsistent with the desired behavior, a post-
simulation correction was introduced by incorporating physical constraints. Specifi-
cally, the model was explicitly informed of the relationship between the translational
velocity of the dynamically inserted block (used as input), while the energy and
acceleration formulations—computed as the derivative of velocity—were iteratively
updated.

The resulting predictions, incorporating these physical constraints, are presented
in figure 5.21:

Figure 5.21: Calculated velocity without physical correction

From here it is much quicker to observe that the values are more consistent with
the physical simulation to be obtained. The line that most underestimates the
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velocity value, as in the previous cases, is the one derived from the simulation with
a single iteration. For the remaining ones, there is not much difference between the
various configurations, but the values all stabilize around 7.5 m/s. This suggests
that the physical correction influences the simulation more, although the simulation
from which the result is derived must also play a role. This approach ensured
greater stability in the results. Although graphs of all the quantities analyzed are
not shown to avoid excessive complexity, the observed behaviour for speed is also
representative of the other variables.

In conclusion, it can be seen that in none of the different combinations is a
perfect match with the velocity trend derived from Abaqus. The closest possibility
is the addition of post-simulation physical relationships that force the model to be
compatible with the reference physical trend.
The application of machine learning (ML) in geotechnical engineering for the
design of rockfall barriers has demonstrated significant potential in enhancing
predictive capabilities and optimizing structural performance. A key contribution
of this study is the construction of correlation matrices, which not only
provide insight into the relationships between existing parameters but also serve as
a foundation for the integration of additional parameters in future analyses.

Furthermore, the implementation of a predictive model based on Long Short-
Term Memory (LSTM) networks allowed for the simulation of system behavior.
However, the results indicate that the trained model did not achieve a precise
correspondence between the numerical simulations conducted in Abaqus and the
ML-based predictions. This highlights the complexity of capturing highly nonlinear
interactions in geotechnical systems solely through data-driven approaches, empha-
sizing the need for further refinement and the possible integration of additional
physical constraints to improve model reliability.
All Python codes used in this thesis are collected in the following QR code (5.22).

Figure 5.22: QR code redirecting to the code’s folder [link: GitHub]

aa
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Chapter 6

Epilogue

6.1 Conclusion

Attenuators play a primary role in risk reduction and safeguarding of infrastructure
and natural scenery in rockfall barrier design. They reduce the energy of rock
falls and lower their impact force, safely redirecting them to designated locations.
One challenge is the lack of comprehensive and specific legislation, as standardized
laws are required to ensure their optimal performance under different geological
and environmental conditions. This gap highlight the necessity of conducting
targeted analyses and developing advanced design methodologies to enhance the
safety, efficacy, and versatility of rockfall attenuators. To conclude this thesis,
we can highlight some key points regarding the three main areas of development:
local sensitivity analysis, global sensitivity analysis and the implementation of the
predictive model.

First, the local sensitivity analysis helped identify the most influential parameters
in the design of rockfall barriers, such as the volume and speed of the block.
Understanding these details is crucial optimizing barriers design so that they can
more effectively counter diverse impact scenarios.
Global analysis, on the other hand, captured the complex interplay between
variables, offering a broader view of the phenomenon.

Secondly, the application of a machine learning model demonstrated the potential
capacity of the technology to support engineering development. Although the data
is promising, further development is needed to refine the approximation of parameter
relationships and improve the accuracy of prediction models. This work, however, is
the first significant step toward integrating advanced techniques into infrastructure
design and safety engineering.

The results obtained contribute filling a gap in the literature and provide
concrete insights for practical application, proposing new tools to improve land
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protection against rockfall risk. At the same time, the work paves the way for future
developments, including the optimization of forecasting models, the expansion of
the reference database and the integration of new artificial intelligence techniques
to further refine the analyses.

In conclusion, this research not only addresses the topic from a theoretical per-
spective, but also from a real-world application standpoint, providing a foundation
for the design of increasingly safe and high-performance protection systems.

6.2 Suggestion
The task undertaken in this research considered the parameters that, according to
current legislation as well as literature reviews, are critical for rockfall barrier design.
Nevertheless, the realized model can be seen as a starting point, meaning that there
is potential for additional parameters be included and tested in the future. For
example, beside the mass and velocity of the rock, variables on the retaining net
might be considered in terms of its characteristics, such as its strength and capacity
for energy dissipation. It would also be useful to consider other variables, such as
the terrain type and topography of the area, which could significantly affect the
effectiveness of the barriers. One other possible development concerns the coupling
of parameters associated with the trigger causes of the phenomenon, e.g., seismicity
or severe weather, that could modulate the boulder’s behavior and response to the
barriers.
One highly relevant following development could be creating more advanced predic-
tive models, considering dynamic events such as the translation of blocks in several
phases, instead of only impact moment.
As regards the machine learning-based predictive model, there is a requirement
to keep it even more sophisticated. One of the ways it could be enhanced is by
going deeper into the computer method so that the model can more accurately find
correlations among parameters. To start with, it would be beneficial to train the
model with fewer data and parameters, so as not to risk overfitting and to test it on
a large dataset, but it is important knowing which parameters, this thesis will be
helpful. Subsequently, only after the model has been shown to be stable, it will be
feasible to implement it with more parameters and to optimize the predictions for
various contexts. Finally, another suggestion for future work would be to include a
physical simulation module, in order to compare the outcome of the model with
actual simulations under some circumstances, making it even more credible.
It might also be beneficial to collect experimental data in the field, in order to
make the model’s predictions even more robust and increase its applicability.
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