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Abstract

The transition to electric vehicles (EVs) is a critical step in sustainable urban mo-
bility, addressing environmental concerns such as carbon emissions and air pollution.
Despite rapid EV market growth, challenges like costs, range limitations, and insuffi-
cient charging infrastructure persist. This thesis uses real-world driving data from 1,000
insurance customers to assess EV adoption feasibility, focusing on user-specific trip pat-
terns.

A custom-designed simulator forms the core of the study, evaluating EV feasibility by
processing inputs: trip data, user parameters (e.g., anxiety thresholds, minimum park-
ing durations), vehicle parameters (e.g., battery capacity, consumption per road type,
maximum charging power), and grid parameters (e.g., AC and DC charging powers).
The simulator replicates trips through two main steps:

1. Simulating the Trip: Calculates energy consumption, checks SoC sufficiency,
and flags trips with low or insufficient SoC.

2. Charging Process: Manages charging events during parking intervals to replen-
ish energy.

Key outputs include SoC before and after trips, trip energy consumption, energy gained
during parking, and metrics like feasible trip percentages, distances under anxiety, and
days with anxiety or unsatisfied trips, offering detailed insights into EV adoption for
varying user behaviors and vehicle specifications.

The study applies the simulator in three phases, each increasing in complexity:

1. Abstract Scenarios: Establishes baseline feasibility using generalized EV char-
acteristics.

2. Behavioral Variations: Models nine user profiles with diverse charging prefer-
ences such as time-of-day effects, weekday variations, and state-of-charge thresh-
olds.

3. Real Market Vehicles: Incorporates specifications of 50 EV models, including
vehicle prices, to deliver realistic, user-focused results and cost analysis.

A two-level cost analysis enriches the findings:

1. Aggregated Cost Analysis: Evaluates daily charging costs and costs per kilo-
meter under different scenarios, considering both home and public street charging
with price bounds to reflect variations.

2. Monthly Cost Tracking: Examines how costs evolve over time, comparing them
with other performance metrics to identify user behaviors.



Key findings show that larger battery capacities and faster charging reduce range anx-
iety and improve trip satisfaction. However, among slow AC charging options, higher
power rates (e.g., 11 kW vs. 22 kW) have little impact during overnight charging, as
extended charging times compensate for lower power output. Notably, based on the
sample analyzed in this study, even with slow AC charging, a casual driver with 28%
utilization can achieve over 70% feasibility using the most affordable EV (Dacia Spring
Electric 45). Drivers dependent on public charging or with irregular travel patterns
require targeted infrastructure enhancements. While home charging remains the most
cost-effective, public DC fast charging offers flexibility for long-distance travel. Be-
havioral trends and performance metrics tracked over time further highlight adoption
challenges and opportunities.

In conclusion, tailored charging strategies are vital for diverse user needs and op-
timal EV adoption. EV feasibility heavily depends on user travel patterns; in some
cases, behavioral adjustments are necessary for effective transitions. By offering action-
able insights, this study supports sustainable urban mobility and provides guidance for
policymakers, EV manufacturers, and infrastructure developers.
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Chapter 1

Introduction

1.1 Context and Motivation

Combustion engine vehicles significantly contribute to carbon emissions, air pollution,
and climate change. Electric vehicles (EVs), especially those powered by renewable en-
ergy, offer an eco-friendly alternative by producing almost zero operational emissions.
This shift benefits both the environment and public health through reduced urban pol-
lution [20].

In recent years, the global EV market has expanded considerably, propelled by tech-
nological advancements and increasing environmental awareness. Car manufacturers
regularly introduce new EV models, driving adoption worldwide. For instance, the
number of EVs in operation rose from around 100,000 in 2012 to over 1 million in 2016,
exceeding 10 million by 2020. Notably, more than 3 million EVs were sold globally in
2020 alone [22].

Despite this rapid growth, EVs still face challenges such as higher purchase costs,
limited driving range, and insufficient charging infrastructure. Among these issues, the
fear of depleting the battery before reaching a charging station often termed "range
anxiety" remains a notable psychological barrier. Overcoming these hurdles is critical
to broadening EV adoption and achieving more substantial environmental and public
health benefits.

Charging infrastructure development is essential to address range anxiety. Govern-
ments and private companies are increasingly promoting the establishment of public
charging networks. For example, China has seen a substantial rise in public charging
facilities, and the United Kingdom has observed an almost fivefold increase since 2015.
Globally, the EV charging station market is projected to reach $29.7 billion by 2027.
Nonetheless, accurate forecasting of charging demand and proper infrastructure plan-
ning pose significant challenges [32].

Beyond issues of infrastructure, charging times can also deter potential users. These
charging durations vary based on the charger type and battery technology, ranging from
minutes to hours. Although ongoing technological breakthroughs are reducing these
durations, battery costs remain high and continue to influence EV pricing. However,
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growing governmental incentives and innovations in battery design are helping to lower
these costs, making models such as the Tesla Model 3 more attainable [31].

Modeling and predicting charging behavior is vital for resolving these challenges.
External influences such as the structure of the charging network and individual travel
needs combine with socio-economic and psychological factors to affect user decisions.
Considerations like power demand, charging duration, and the spatial and temporal
clustering of charging events all inform how charging stations are used, how they impact
overall grid stability, and how they shape emissions from electricity generation [1].

Nonetheless, modern EVs now rival their combustion engine counterparts in terms
of comfort, range, and performance. This progress makes EVs particularly attractive
for those seeking to reduce their environmental impact without drastically altering their
transportation habits, a shift especially pertinent in heavily car-dependent urban envi-
ronments [17].

1.2 Problem Definition

This thesis is part of a collaborative effort between UnipolTech and the Polytechnic Uni-
versity of Turin. Its main objective is to utilize real-world travel data from combustion
engine vehicles to simulate these same trips using various electric vehicle (EV) models.
By examining the results of these simulations, the research aims to identify which EV
models best suit different users’ driving routines and requirements.

Put simply, the core problem is determining how seamlessly electric vehicles can re-
place traditional internal combustion engine vehicles. This entails assessing whether EVs
can manage the typical journeys of diverse user groups, considering factors like range,
charging behavior, and daily travel demands. Achieving this goal requires accurately
simulating EV use cases, carefully accounting for battery capacities, roadway environ-
ments (e.g., highway vs. urban), charging power, and real-world charging patterns.

1.2.1 Research Questions

To address the core problem, this thesis seeks to answer the following research questions:

1. What are the key factors influencing the feasibility of EV adoption
among diverse user groups based on real-world trip data?

2. How do different EV models perform in replicating the driving routines
of traditional combustion engine vehicles?

3. What is the impact of battery capacity and charging power on range
anxiety and trip satisfaction?

4. How do various charging strategies (e.g., home charging, public DC
fast charging) affect the economic viability and operational efficiency of
EVs?

10



1.3 – Approach and Thesis Overview

Question 1 aims to identify and analyze the primary determinants that affect
whether different user segments are likely to adopt EVs. This includes examining trip
patterns, user preferences, and behavioral factors that influence EV feasibility.

Question 2 focuses on evaluating the performance of various EV models in meeting
the driving needs that are currently satisfied by combustion engine vehicles. This com-
parison will help in understanding which EV models are most suitable for specific user
profiles.

Question 3 investigates how variations in battery capacity and charging power
influence users’ experiences, particularly concerning range anxiety and overall trip sat-
isfaction. Understanding these impacts is crucial for optimizing EV specifications and
user support mechanisms.

Question 4 explores the economic aspects of different charging strategies, assessing
how they contribute to the cost-effectiveness and operational sustainability of EVs. This
includes analyzing the costs associated with home charging versus public fast charging
options.

This thesis aims to answer these research questions and provide a clear assessment
of how feasible EV adoption is. The findings will help policymakers, EV manufacturers,
and infrastructure developers make informed decisions to support sustainable urban
mobility.

1.3 Approach and Thesis Overview
To achieve the research objectives, this thesis employs a comprehensive multi-level simu-
lation strategy designed to analyze diverse electric vehicle (EV) charging behaviors and
vehicle specifications. This approach integrates real-world trip data with advanced sim-
ulation models to accurately assess EV adoption feasibility. The key components of the
methodology are outlined below:

• Data Collection and Preparation: The foundation of the simulation is built
upon real trip records from traditional combustion engine vehicles. Each trip
entry includes detailed information such as trip start and end times, distance
traveled, and road categories (e.g., urban, highway). This real-world data ensures
that the simulation accurately reflects actual driving patterns and usage scenarios,
providing a realistic basis for evaluating EV performance and charging needs.

• Simulation Parameters and Assumptions: Critical parameters such as bat-
tery capacities, energy consumption rates, and charging power ratings are inte-
grated into the simulation model. Additionally, behavioral models are developed
to represent how users interact with the charging infrastructure, including factors
like minimum parking durations, time-of-day charging preferences, and state-of-
charge (SoC) thresholds that trigger charging events. A core assumption of this
study is that charging is accessible anywhere a user parks, compensating for the
absence of exact location data. These parameters and assumptions are essential
for creating a realistic simulation environment that mirrors real-world conditions.
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• Progressive Simulation Levels: The methodology is divided into multiple sim-
ulation levels, each increasing in complexity to model real EV charging behaviors
using the provided dataset. This progressive approach allows for a nuanced under-
standing of different factors influencing EV feasibility.

– Level One establishes a foundational charging model by assuming that vehi-
cles charge during any parking event longer than a preset minimum duration.
This level does not consider the time of day, battery state, or weekday/week-
end effects. Simulations span ten different battery capacities and ten charging
power outputs (both AC and DC). Additionally, eight energy consumption
rates covering urban, highway, and mixed driving scenarios are used to repre-
sent varying levels of efficiency. At this initial level, the simulation replicates
trips by sequentially processing each recorded trip, calculating energy con-
sumption based on predefined vehicle parameters, and determining whether
the EV can complete the trip without recharging. This helps identify baseline
feasibility and fundamental trends in EV usage. This level can be considered
as an upper bound of measured performance metrics.

– Level Two builds upon the first approach by introducing nine distinct charg-
ing behaviors. These behaviors incorporate variables such as SoC triggers,
day-of-week differences, and time-of-day effects. The same ten battery capac-
ities and ten power outputs from Level One remain, along with the eight con-
sumption patterns, enabling a more detailed understanding of user-specific
charging patterns. In this level, the simulation not only replicates the se-
quence of trips but also dynamically adjusts charging events based on real-
time SoC data and temporal factors, providing deeper insights into how dif-
ferent factors influence charging needs and vehicle availability.

– Level Three integrates real-world data from 50 top-selling EV models in
Europe as of 2024. The analysis uses each vehicle’s actual battery capac-
ity, charging rates (AC/DC), and energy consumption for different driving
environments (urban, highway, mixed). This realism allows the simulation
to replicate trips with specific vehicle characteristics, enabling direct com-
parisons of performance across diverse EV models under realistic charging
scenarios defined in Level Two. This detailed replication ensures that the
simulation outcomes are highly representative of real-world EV performance.

• Cost Analysis: The study conducts a thorough two-part cost analysis to evaluate
the economic viability of EV adoption:

1. Aggregated Cost Analysis: This phase assesses daily charging expenses
and costs per kilometer under various scenarios, considering both home and
public street charging with different pricing tiers. It provides a macro-level
view of the financial implications associated with different charging strategies.

2. Monthly Cost Tracking: This phase examines how charging costs evolve
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1.4 – Thesis Organization

over time, correlating them with user behaviors and vehicle performance met-
rics. It offers a micro-level perspective, highlighting trends and patterns in
charging expenses that can inform long-term economic assessments.

• Interactive Dashboard: An online dashboard is developed to dynamically visu-
alize the simulation outcomes. This tool displays key performance metrics, includ-
ing range feasibility, the percentage of feasible trips, and estimated costs across
different scenarios. The interactive nature of the dashboard allows stakeholders to
explore and interpret results in real-time, facilitating informed decision-making.

Simulating and Replicating Trips: Central to this methodology is the process
of simulating and replicating trips based on the collected real-world data. Simulating
trips involves recreating each recorded trip within the simulation environment by se-
quentially processing trip data, calculating energy consumption based on specific vehicle
parameters, and determining the resulting state of charge (SoC) after each trip. This
simulation accounts for various factors such as driving speed, road type, and vehicle
efficiency to accurately model energy usage.

Replicating trips ensures that the sequence, timing, and conditions of the simu-
lated trips closely mirror those observed in the actual trip data. This replication involves
maintaining the integrity of trip start and end times, distances traveled, and usage pat-
terns to create a realistic and reliable simulation environment. By faithfully replicating
these trips, the simulation can provide accurate assessments of EV feasibility, identify
potential issues like range anxiety, and evaluate the effectiveness of different charging
strategies under conditions that reflect real-world usage.

Pre-simulation steps emphasize thorough dataset characterization. This involves
meticulous preprocessing and cleaning to transform raw trip data into a structured
format, eliminating errors and inconsistencies. By ensuring high data quality, the simu-
lations can accurately replicate real world driving conditions and user behaviors, thereby
enhancing the reliability and validity of the study’s findings.

1.4 Thesis Organization

The structure of this thesis is divided into five chapters, offering a logical progression
from background theory to methodology and results:

• Chapter 1: Introduction
Provides the context, motivation, and overarching research questions. It also de-
tails the problem statement and introduces the simulation-based methodology.

• Chapter 2: Background
Explores foundational concepts and key literature that support the current re-
search, including EV technologies, charging standards, and relevant studies in
charging behavior.
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• Chapter 3: Dataset Management
Presents the dataset used in this research, outlines its characteristics, and describes
the cleaning and preprocessing steps that prepare the data for simulation.

• Chapter 4: Methodology
Delves into the multi-level simulation strategy and the parameters that shape each
scenario. It also explains the metrics used to evaluate outcomes and concludes
with a financial analysis of various EV adoption cases.

• Chapter 5: Results
Shows the findings from the simulations, featuring detailed data visualizations
that compare multiple EV models and highlight how each configuration meets
user demands.

• Chapter 6: Conclusions
Summarizes key insights drawn from the research, discusses practical implications,
and suggests future research directions.
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Chapter 2

Background

2.1 Overview of Electric Vehicles (EVs):

Electric vehicles (EVs) represent a broad category of transportation technologies de-
signed to address various mobility needs while supporting the transition to sustainable
transportation. These vehicles use different methods of propulsion, each suited to specific
driving requirements and environmental goals.

Battery Electric Vehicles (BEVs) are fully electric, relying entirely on batteries
as their power source. These vehicles produce zero emissions during operation, making
them highly environmentally friendly. However, their driving range is limited by the
capacity of the battery, which can vary depending on the model.

On the other hand, Hybrid Electric Vehicles (HEVs) combine an internal com-
bustion engine (ICE) with an electric motor. The electric motor helps enhance fuel
efficiency and reduce emissions, particularly during low-speed driving, allowing for a
more sustainable driving experience without the need for frequent charging.

Plug-in Hybrid Electric Vehicles (PHEVs) take the hybrid concept a step
further by incorporating larger batteries that can be recharged directly from the grid.
This enables PHEVs to drive longer distances on electric power alone, offering more
flexibility for users who want to rely on electric driving for short trips while still having
the option of using the internal combustion engine for longer journeys.

Finally, Fuel Cell Electric Vehicles (FCEVs) use hydrogen to generate electric-
ity through a chemical reaction in a fuel cell. These vehicles offer the advantage of
quick refueling and produce zero emissions, with water being the only byproduct of the
reaction, making them an attractive option for long-distance travel.

These various types of electric vehicles cater to a wide range of driving needs, from
short urban commutes to longer trips, playing a crucial role in the ongoing shift toward
more sustainable transportation solutions.

[28]
In this thesis, the focus is exclusively on the first category, Battery Electric Ve-

hicles (BEVs), due to their potential for zero-emission operation and their growing
prominence in urban and long-distance travel.
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2.2 EV Charging Technologies

2.2.1 Modes and Levels

Electric vehicles (EVs) can be charged at different locations and speeds, with costs
varying accordingly. EV supply equipment (EVSE) consists of one or more charging
points (CPs) that connect the power grid to EVs. These points draw AC power and
convert it to DC power to charge the EV battery. Depending on the charging setup, the
power conversion can occur either onboard or offboard. Charging systems are categorized
based on two frameworks: "level" and "mode."

• Charging levels are defined by the Society of Automotive Engineers (SAE) and
specify the power and voltage of the charging system.

• Charging modes are established by the International Electro technical Commis-
sion (IEC) and focus on the electronic communication between the EV and the
power supply, which is crucial for safety and proper charge management.

The IEC outlines four charging modes:

• Mode 1: Involves charging directly from a standard household outlet with a simple
extension cord. However, it lacks DC current shock protection and is prohibited
in many countries.

• Mode 2: Utilizes a special cable, typically provided with the EV, which includes
integrated shock protection.

• Mode 3: Involves the use of a dedicated charging station or a wall-mounted home
charger, both of which offer AC and DC shock protection. The cable is included
with the charging station.

• Mode 4: Designed for DC fast charging, where AC is converted to DC externally
in a fast charger, which then charges the EV battery. Unlike the other modes, this
mode does not rely on onboard AC-to-DC conversion.

Charging levels are distinguished by voltage and power output:

• Level 1: Provides 120 V AC power with a capacity of 2 kW, suitable for residential
use without requiring special equipment. It is not permitted in the EU.

• Level 2: Uses a standard European 230/240 V AC plug, delivering power from 3
kW to 20 kW. This level supports both residential and public charging setups.

• Level 3: Utilizes high-voltage DC power (400 V DC), typically delivering between
50 kW and 130 kW. This level is intended for fast charging.

• Level 4: Operates at 400-800 V DC and can provide up to 500 kW of power. It
is primarily designed for long-distance travel and heavy vehicles.

These classifications ensure EV charging is both efficient and safe while catering to
diverse charging needs. [1]
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2.2 – EV Charging Technologies

Figure 2.1: Different Charging Modes
Reproduced from [9]

2.2.2 AC and DC Charging Standards

Countries around the world have adopted different EV charging standards, and in some
cases, more than one standard is used. For AC charging, the United States and Canada
use the IEC 62196 Type 1 (single-phase), while the European Union uses Type 2 (three-
phase). For DC charging, both regions use the Combined Charging System (CCS),
which works with their respective AC standards (Type 1 in North America and Type 2 in
Europe). Japan mainly uses the CHAdeMO standard for DC charging, while China relies
on the GB/T standard. France and Italy initially preferred Type 3 connectors but later
switched to Type 2 to match the rest of Europe. Tesla has its own brand-specific charging
stations, which dominate DC charging networks in some countries like Australia, China,
Pakistan, Serbia, and Hong Kong. The use of different charging standards worldwide
shows the challenges of developing EV infrastructure that is consistent and compatible
across regions. [20]

2.2.3 Charging Efficiency and Battery Condition

Electric vehicles (EVs) can be charged using either alternating current (AC) or direct cur-
rent (DC) systems, with DC charging providing much faster speeds. The most common
DC fast charging (DCFC) stations typically offer 50 kW using connectors like CHAdeMO,
Combined Charging System (CCS), or GB/T standards. Tesla was the first to introduce
120 kW Superchargers with proprietary connectors, followed by CCS developing 150 kW
chargers. In 2017, Porsche advanced DC charging by unveiling 350 kW CCS charging
posts at their Berlin office. However, EVs capable of utilizing the full 350 kW power,
such as the Porsche Taycan and the Audi e-tron GT concept, were designed with 800
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V lithium-ion battery packs to handle the higher power efficiently, avoiding excessive
charging currents and heat generation typical of standard 400 V systems. Additionally,
a prototype 450 kW CCS charger was tested in Bavaria, Germany, in December 2018 as
part of the ’FastCharge’ research project led by BMW, Porsche, and Siemens. Despite
these advancements in charger power, actual charging speeds can vary based on EV
specifications, environmental conditions, and the state of charge (SOC). For example,
charging rates drop significantly at low temperatures; according to the Nissan LEAF
Owner’s Manual, charging up to 80% SOC with a 50 kW charger can take between 30
to over 90 minutes depending on the temperature. Moreover, fast charging is generally
only effective up to around 80% SOC due to safety reasons. Beyond this point, the
charging current must be reduced to prevent exceeding battery voltage limits, resulting
in longer times to reach full capacity. The maximum charging power is also restricted
by the vehicle’s Battery Management System (BMS). EVs with smaller battery packs,
such as the Nissan LEAF (40 - 62 kWh) or BMW i3 (22 - 42 kWh), are typically limited
to 50 kW charging power, while vehicles with larger battery packs can accept higher
power levels. This limitation is because most EV batteries can safely handle charging
rates of about 1 - 1.5C. However, the Porsche Taycan is expected to exceed this with
a maximum charging rate of around 3C. As interest in fast-charging technology grows
within the industry, it is crucial to understand the processes that limit charging rates
and the effects different charging methods have on battery lifespan. [27]

2.3 Related Work

According to a study investigating the factors influencing Battery Electric Vehicle (BEV)
users’ choices regarding charging modes and locations in Japan, which uses a mixed logit
model and real world data from private and commercial BEVs, key findings reveal that
private BEVs with longer driving ranges prefer public charging over home charging,
while commercial BEVs favor normal charging at company locations, reflecting differing
operational needs. Charging behavior varies by time of day, with private users preferring
overnight home charging due to lower electricity tariffs and commercial users opting for
efficiency based charging. The regional density of public charging stations significantly
influences preferences, with urban users favoring public charging due to accessibility
and limited home charging options. Initial State of Charge (SOC), travel patterns,
and familiarity with fast charging also shape choices, highlighting risk averse behavior
and demand driven decisions. These findings underscore the importance of strategic
infrastructure planning, including robust public charging networks and targeted incentive
programs, to address diverse user needs and promote BEV adoption. [30]

Another study analyzes BEV charging behaviors using a framework that combines a
rule-based algorithm with a Hybrid Choice Model (HCM) based on Mixed Logit (ML).
Key findings reveal that charging decisions are significantly influenced by factors such
as risk aversion, vehicle state of charge (SOC), trip type, charging infrastructure cover-
age, parking duration, and pricing. For trip chain decisions, gender and infrastructure
coverage play critical roles, while location choices are driven by destination, charging
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price, and next travel distance. The results highlight that service quality, parking loca-
tion functionality, and charging facility accessibility strongly impact the spatial-temporal
distribution of charging demand. [33]

Expanding on insights into BEV charging behaviors and infrastructure requirements,
further research has explored how driver preferences and decision-making processes in-
fluence the adoption of smart charging systems. One such study examines EV driver
preferences for smart charging versus immediate charging, using a two-wave online ex-
periment with 222 UK participants in 2020. Results show a general preference for smart
charging (67.28%), influenced significantly by battery state of charge (SoC), time of day,
and price concerns. Drivers often overemphasize SoC, particularly for short commutes,
reflecting habits from conventional vehicle refueling. Reframing SoC information into
more tangible metrics, such as travel miles or days covered based on driving patterns, in-
creased smart charging adoption, with personalized metrics being particularly effective.
Cost savings and renewable energy usage also motivated smart charging, though sensitiv-
ity plateaued after modest incentives. The study highlights the importance of presenting
clear, user-friendly charging information, including personalized range and cost-saving
calculations, to improve decision-making. These findings emphasize the need for behav-
iorally informed smart charging systems that integrate human decision-making processes
to optimize user adoption and energy system efficiency. [18] Charging opportunities for
plug-in electric vehicles (PEVs) are influenced by owners’ travel behaviors. Charging
primarily occurs at four key locations: (1) at or near home, typically overnight, (2) at
workplaces or commuting hubs like transit stations, (3) at public places such as shopping
centers, and (4) along travel corridors during long-distance trips. [14]

A study based on Austrian demographic data and behavioral decision rules reveals
that the majority of battery electric vehicle (BEV) charging (approximately 88%) occurs
at home, aligning with previous findings in the literature. [2]

Research indicates that more than 95% of trips can be managed with home charging
alone. However, in developing economies like India and China, high population density
and a lack of dedicated parking spaces mean that many vehicle owners park on streets
and lack access to home charging facilities . In such cases, public charging infrastructure
becomes essential for supporting the broader adoption of electric vehicles . Furthermore,
public charging stations play a key role in enhancing the visibility of charging networks
and alleviating range anxiety among potential EV buyers, even if these facilities are not
always efficiently utilized. [3]

According to another study conducted in Ireland, EV users predominantly charge
their vehicles at home during evening hours, coinciding with peak electricity demand.
This suggests a need for incentives to encourage charging during off-peak periods to
reduce grid strain. Among public charging options, car park locations were the most
commonly used, and fast chargers showed the highest usage frequencies. [21]

The study [26] analyzed electric vehicle (EV) charging behaviors over a period of
1,519 days, uncovering significant trends and variations in usage. On average, EVs were
charged every three to four days, with noticeably less frequent charging on weekends.
The average daily charging frequency per vehicle was 0.2857, and a decline in charging
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frequency over time suggested that users charged their vehicles less often as their owner-
ship period increased. Peaks in charging initiation were observed in the morning (7 - 8
AM), late morning (10 - 11 AM), and evening (5 - 6 PM). Charging primarily occurred
at private parking locations, especially during nighttime (about 60%), followed by work-
place parking during working hours. Public charging was less commonly used but still
accounted for over 15% of the total charging sessions. Regarding parking and charging
durations, charging sessions initiated in the evening were typically longer compared to
those in the morning, and most vehicles were fully recharged by the end of parking.

[33] studies how people charge their electric vehicles (EVs) and what factors affect
their choices. People are more likely to charge during long trips, in areas with many
charging stations, or if they are more worried about running out of battery. Women
and younger people are more likely to charge because they feel more nervous about
the battery running out. Charging happens more often at workplaces and during long
parking times, but high charging costs make people charge less. The battery charge
level is also important. If the battery is already charged enough, people are less likely
to charge. Charging is more common at workplaces and entertainment places, especially
when parking is busy. This shows that charging stations should be placed where people
park for a long time and in locations that help reduce battery worries and make charging
easier.

A comparison of the total cost of ownership (TCO) between EVs and ICEVs in
Sweden showed that electricity costs for EVs are significantly lower than fuel costs for
conventional vehicles. Over three years, with an annual mileage of 15,000 km, fueling a
BMW i3 EV costs approximately 633 euros, whereas a comparable Volvo V40d ICEV
incurs 4,132 euros in fuel expenses. This cost difference suggests that lower running
costs might lead to increased car use. In Germany, EVs remain economically unfeasible
for most consumers due to higher electricity prices. Additionally, vehicle class and
annual driving distance play a major role in determining TCO. In contrast, in the UK,
California, and Texas, battery EVs and conventional vehicles have reached cost parity,
largely due to government subsidies that reduce EV ownership costs. [19]

2.4 Research Group Contributions

This thesis was conducted as part of the SmartData@PoliTo research group,1 based
at Politecnico di Torino. SmartData@PoliTo is an interdisciplinary research center ded-
icated to exploring innovative approaches to data science, artificial intelligence, and
big data analytics. The group brings together researchers and professionals from vari-
ous domains to address complex societal and industrial challenges through cutting-edge
technological solutions.

[4] examines the design factors of electric vehicle free-floating car sharing systems
using rental data from three cities to model demand and supply. The study evaluates the

1https://smartdata.polito.it/
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number and placement of chargers and fleet size under both stable and increasing demand
scenarios. Findings reveal that expanding charging infrastructure is more effective than
increasing the fleet to meet rising demand. Additionally, the current system is not
profitable due to high vehicle and operational costs, with profitability only achievable
if demand increases significantly. The existing fleet can support up to a 300% demand
increase but would still leave some unmet needs.

Another study [13] investigates free-floating car sharing usage in 23 cities across Eu-
rope and North America over a 14-month period, revealing that growth has plateaued
in most locations. The study identifies consistent demand patterns within continents
and varying spatial usage across different urban areas. It also compares electric vehi-
cle fleets with traditional combustion engine fleets, highlighting differences in refueling
requirements. Findings show high per-car utilization in cities like Madrid, while many
other cities experience stable or declining usage due to reduced service appeal or opera-
tional inefficiencies. These insights help system managers evaluate the profitability and
sustainability of car sharing services.

[8] explores the optimal design of electric vehicle-based free-floating car sharing sys-
tems by addressing the placement of charging stations and the development of intelligent
car return policies. Utilizing real-world rental data from Car2Go in Turin, the study
conducts trace-driven simulations to assess battery usage and charging needs. Various
charging station layouts are evaluated using optimization algorithms, and the effects of
collaborative versus selfish car return behaviors are analyzed. Remarkably, the findings
indicate that only 13 charging stations (52 poles) are sufficient to maintain a fleet of 377
vehicles in a city with one million residents, ensuring smooth operations with minimal
inconvenience to customers.

Leveraging extensive rental data from four cities, another study explores the design of
electric vehicle-based free-floating car sharing systems. It identifies the highly dynamic
and non-stationary nature of car sharing usage patterns and develops a discrete-event
trace-driven simulator to evaluate various factors such as charging station placement,
smart return policies, battery management, and customer behavior regarding charging.
The simulations reveal that strategically placing charging stations in approximately 8%
of city zones, especially in popular short-term parking areas, ensures that all trips are
feasible without battery depletion. Additionally, implementing a policy that requires
customers to return cars to charging stations when battery levels are low results in
rerouting for less than 10% of trips. [7]

The comparison between electric and internal combustion engine-based free-floating
car sharing systems reveals that electric fleets can match the demand satisfaction of
traditional systems while achieving lower emissions. Through simulations conducted in
Turin using real trip data and existing infrastructure, the study assesses factors such
as fleet operations, refueling strategies, and profitability. Despite the environmental
benefits, the higher costs associated with electric vehicles currently make EV-based FFCS
less profitable than their ICEV counterparts. Additionally, the research identifies that
deploying affordable low-power chargers is the most effective strategy for electric FFCS,
as it also reduces maintenance costs. The provided simulator serves as a tool for further
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exploration of engine type impacts on shared mobility systems. [12]
[6] Examines various strategies for designing electric free-floating car sharing systems

in smart cities, emphasizing the importance of charging station availability for system
sustainability. Utilizing real trip data from an operational provider in Turin, the study
employs a trace-driven simulator to model battery consumption under different design
scenarios, including the number and placement of charging stations and policies for
mandating car returns for charging. The results indicate that deploying as few as 15
charging stations (covering 6% of city areas) can enable the system to function almost
autonomously, allowing users to freely pick up and drop off cars with minimal rerouting.
This demonstrates the feasibility of electric free-floating car sharing with a strategically
limited charging infrastructure.

[5] Focuses on optimizing the design of electric free-floating car sharing systems by
determining the minimal number and strategic placement of charging stations. Utilizing
approximately 450,000 rental records from traditional combustion engine FFCS in two
cities, the study develops a user behavior model and charging policies. Through trace-
driven simulations, it evaluates various charging station placement strategies using both
greedy algorithms and a meta-heuristic local optimization approach. The results demon-
strate that installing charging stations in just 6% of city areas ensures continuous service
by preventing battery depletion, while expanding to 15% of zones further minimizes user
inconvenience. This research provides a data-driven framework for efficiently deploying
charging infrastructure in electric FFCS.
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Chapter 3

Dataset Management

3.1 Dataset Characterization

The dataset utilized in this thesis was provided by UnipolTech and contains information
about user trips made using combustion engine vehicles. The data was gathered from
a sample of their customers who volunteer for data analytics and have the following
attributes and structure:

Column Name Description Example Value
id veicolo A unique identifier assigned to each user. 1
id viaggio A unique identifier for each trip recorded per user. 0

istante start The date and time when the trip started. 2023-09-29 13:55:35
istante stop The date and time when the trip ended. 2023-09-29 14:11:42

categoria strada The category of road traveled during each segment of the trip E
tot km categoria strada The distance traveled on each road type (in kilometers). 1.47

Table 3.1: Datasets description

There are four distinct values for road categories in the dataset, defined as follows:

• E: Extra Urban

• U: Urban

• A: Highway

• "-": Other road types.

The initial dataset 3.1 contained 1,415,305 rows. Since the dataset includes different
categories of roads, each row represents a segment of a trip and indicates the distance
traveled on a specific road type. As a result, individual rows do not represent entire
trips. To make the dataset usable for analysis, preliminary processing was required,
such as consolidating rows so that each represents a complete trip. The detailed steps
of this pre-processing are explained in the next chapter.
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Figure 3.1: Raw Dataset

3.2 Data Pre-processing
The pre-processing phase involved organizing and consolidating the raw dataset to make
it suitable for further analysis. The steps are outlined below:

1. Removing Duplicates

• Issue: The dataset contained duplicate rows, with each segment of a trip
recorded as a separate entry.

• Solution: Removed duplicate rows and consolidated all information related
to a trip into a single row, including start time, end time, and distance traveled
on each road type (in Kilometers).

• Outcome: Each row now represents one complete trip.

2. Calculating Trip Duration

• Input: Start and end timestamps for each trip.
• Action: Calculated trip duration by finding the difference between the start

and end times.
• Outcome: Added trip duration (in minutes) as a new attribute to the

dataset.

3. Including Total Distance

• Action: Summed up the distance covered across different road types for each
trip.

• Outcome: Added total distance (in Kilometers) as a useful attribute for
future analysis.

4. Sorting Trips by Timestamp

• Issue: Trips for individual users were not in chronological order.
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• Action: Sorted trips based on timestamps for each user.
• Outcome: Ensured trips are sequential, reflecting the actual trip order.

5. Adding Parking Attributes

• Definitions:
– Start of parking: Timestamp at the end of a trip.
– End of parking: Timestamp at the start of the next trip for the same

user.
• Action: Added "start of parking" and "end of parking" as new attributes.
• Outcome: Captured additional insights into user behavior between trips.

6. Calculating Parking Duration

• Input: Start of parking and end of parking timestamps.
• Action: Calculated parking duration by finding the difference between the

two timestamps.
• Outcome: Added parking duration (in minutes) as a new attribute, provid-

ing further insight into user behavior.

Final Dataset

By consolidating and enriching the dataset, it became ready for further analysis. This
preparation enables more meaningful insights and downstream modeling. Below is an
example of the preprocessed dataset 3.2 structure.

Figure 3.2: Preprocessed Dataset

3.3 Data Exploration
Following the preliminary analysis, it is beneficial to conduct an exploratory examina-
tion of the dataset to gain a general understanding of the observed behaviors and trip
characteristics. This step helps identify patterns, trends, and potential anomalies that
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Figure 3.3: Number of Vehicles by Month and Year

could influence subsequent analyses. The following section presents several plots along
with descriptions of the key insights derived from each visualization.

As depicted in the bar chart 3.3, the dataset used in this thesis includes trips recorded
over a span of four months. The chart illustrates the number of vehicles active in each
month. To ensure clarity and avoid potential misinterpretations, it is assumed that
each vehicle represents a single user. Consequently, the dataset comprises 1,000 users,
although their activity is not consistent across the provided months.

Figure 3.4: Scatter plot showing the relationship between Average Distance Per Day (km) and
Average Trip Duration Per Day (minutes) on a daily basis.

The scatter plot 3.4 illustrates the relationship between the average distance trav-
eled per trip (in kilometers) and the average trip duration (in minutes) for the dataset
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analyzed in this thesis. Each point in the plot represents a single trip, with the x-axis
showing the average distance covered per trip and the y-axis displaying the corresponding
average duration.

The data reveals a dense concentration of trips with distances between 200 and 500
kilometers and durations between 200 and 600 minutes, indicating the typical range for
most trips in the dataset. However, a few outliers are evident, with trips that have excep-
tionally high durations (exceeding 1,200 minutes) or distances (beyond 700 kilometers).
These could represent anomalies or unique trips under specific circumstances.

Although the dataset lacks detailed information on the exact types of vehicles used
(e.g., bus, communal transport, or private vehicles), the high average distances and
durations suggest that these vehicles are heavily utilized. This observation makes it
unlikely that the trips are performed using typical home-owned family cars, which would
typically exhibit lower average usage. Instead, the data likely reflects trips performed
by fleet vehicles, public transportation, or other high-utilization systems.

This plot highlights important usage patterns and provides insight into the charac-
teristics of the trips in the dataset, suggesting the vehicles analyzed serve purposes that
go beyond typical personal or household use.

The cumulative distribution function (CDF) plot 3.5 illustrates the distribution of
the average number of trips per day within the dataset analyzed in this thesis. The
x-axis represents the average number of trips per day, while the y-axis represents the
cumulative probability, which shows the proportion of data points below a given number
of trips.

The CDF indicates that most vehicles or systems in the dataset perform fewer than
80 trips per day, as the curve reaches a cumulative probability of nearly 1 around this
point. This suggests that the vast majority of trips fall within a moderate range of
daily usage. A steep initial rise in the CDF highlights that a significant proportion
of vehicles or systems average fewer than 30 trips per day, which might correspond to
lower-utilization cases or smaller-scale operations.

Interestingly, a small number of outliers are observed on the far right of the plot, with
average daily trip counts exceeding 200 trips per day, and one extreme case nearing 390
trips. These outliers likely represent highly utilized vehicles or systems, such as shared
fleet vehicles, public transportation, or other high-frequency services.

This distribution reinforces the idea that the dataset reflects a mix of vehicle or
system types, ranging from those used moderately to those subjected to heavy, frequent
use. The presence of outliers highlights operational patterns that could be driven by
specific fleet or transport use cases.

3.4 Data Cleaning

After completing the preprocessing step, the next crucial task is cleaning the dataset.
Since this research focuses on analyzing trips, it is essential to remove rows where trip-
related data, such as durations or distances, are unreasonable or inconsistent. As the
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Figure 3.5: CDF of Average Number of Trips Per Day, illustrating the cumulative probability
distribution of daily trips.

data for these trips was collected from devices installed in users’ vehicles, potential tech-
nical issues might have introduced errors or inconsistencies. The following outlines the
various situations identified during the cleaning process and the corresponding actions
taken to address them:

1. Trips with a Duration of Zero but a Positive Distance
These entries suggest possible recording errors, as a trip cannot cover a distance
without a measurable duration. Such records were removed from the dataset.

2. Trips with a Distance of Zero but a Positive Duration
This situation can occur in specific scenarios, such as:

• Immobility with the Engine Running: Instances where the vehicle was
stationary due to waiting, traffic delays, or stopping at lights in congested
areas.

• Poor GPS Signal: Situations where the vehicle was in locations with weak
GPS reception, such as underground parking lots, tunnels, or densely built-up
areas.
These cases were retained unless other inconsistencies were detected.

3. Trips with Extremely Short Durations
Trips with durations less than 15 seconds were excluded, as such records are un-
likely to represent meaningful trips and may indicate errors.

4. Trips with Extremely Short Distances
Trips covering distances below 5 meters were excluded, as these are likely to be
noise or artifacts in the data.

5. Trips with Unreasonably Long Durations
Trips with durations exceeding 15 hours were considered implausible and removed.

28



3.5 – Tools

6. Trips with Unreasonably Long Distances
Trips covering distances greater than 900 kilometers were deemed unrealistic and
excluded.

7. Logical Inconsistencies
Records with logical inconsistencies, such as a trip duration of zero paired with
a non-negative distance, were identified and removed as they do not align with
physical realities.

By addressing these inconsistencies and removing outliers, the dataset was refined to
ensure the accuracy and reliability of the subsequent analyses.

3.5 Tools

Various tools were utilized for the development and analysis conducted in this thesis.
This section provides a brief discussion of each tool, highlighting its role in supporting
the researcher and its contributions to achieving the objectives of the study. The purpose
of documenting these tools is to provide a comprehensive reference for potential future
researchers who may seek to build upon or replicate this work.

Python

Python [25], an open-source, high-level programming language, was the primary tool
used for data processing, analysis, and simulation in this thesis. Its versatility and vast
ecosystem of libraries made it particularly suitable for handling complex tasks, such as
data manipulation, simulation modeling, and result visualization. Python’s simplicity
and readability further facilitated rapid development and testing.

Pandas

Pandas [23], a Python library designed for data manipulation and analysis, was inte-
gral to processing the dataset used in this study. It provided robust tools for cleaning,
transforming, and aggregating data, enabling the researcher to handle large and com-
plex datasets efficiently. Pandas’ functionality was critical for extracting insights and
preparing the data for further analysis.

Streamlit

Streamlit [11], an open-source Python framework, was utilized for building interactive
applications to visualize and share the results of the analysis. Its simplicity allowed
the researcher to create user-friendly interfaces quickly, enabling dynamic exploration of
data and simulation outputs. Streamlit played a key role in presenting findings in an
accessible and engaging format.
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Plotly

Plotly [24], a Python library for interactive visualization, was employed to create dy-
namic charts and graphs to represent the data and simulation results. Its ability to
produce highly customizable and interactive plots helped the researcher convey complex
patterns and trends effectively. This made Plotly an essential tool for both exploratory
data analysis and final result presentation.

Jupyter Notebook

Jupyter Notebook [10], an open-source interactive development environment, was used
for coding, visualization, and documentation in a single environment. Its flexibility in
combining code execution with narrative explanations made it a key tool for iterative
development and analysis.

PyCharm

PyCharm [16], a professional integrated development environment (IDE) for Python,
supported the coding workflow by providing features such as intelligent code completion,
debugging tools, and version control integration. It streamlined the development process
and enhanced productivity.

Seaborn

Seaborn [29], built on top of Matplotlib, was used for statistical data visualization. Its
high-level interface simplified the creation of informative and aesthetically appealing
visualizations, particularly for exploring relationships within the dataset.

Matplotlib

Matplotlib [15], a widely used Python plotting library, provided static and publication-
quality visualizations. It was employed for generating detailed plots that required high
levels of customization, contributing to a clearer presentation of results.
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Chapter 4

Methodology

Building upon the foundational data preprocessing steps and problem definition outlined
in the preceding chapters, this chapter delves into the methodology employed to model
real world electric vehicle (EV) charging patterns. The research focuses on replicating
the charging behaviors of diverse user profiles, each characterized by unique habits,
time constraints, and infrastructure preferences. By incorporating these profiles into
a comprehensive simulation framework, the study bridges the gap between the dataset
representing real-world trips undertaken in internal combustion engine (ICE) vehicles
and the algorithmic logic that governs EV charging decisions. This methodological
approach enables a nuanced exploration of charging behaviors, providing insights into
how various factors influence EV adoption and infrastructure demands.

The methodology adopted for this research is divided into three simulation phases,
each introducing additional layers of complexity to better approximate real-world electric
vehicle (EV) charging behavior. Since exact location data was unavailable, a core
assumption is made that charging is accessible anywhere a user parks, provided certain
conditions (e.g., minimum parking duration) are met.

4.1 Simulation Phases

4.1.1 Phase One: Abstract Scenario Development

The first phase of the study adopts a more abstract approach, as the input parame-
ters are not tied to a specific electric vehicle (EV). Instead, they are sourced from the
EV Database (https://ev-database.org/), a comprehensive platform that provides de-
tailed specifications for various EV models, including their prices, battery capacities,
consumption rates, compatible charging powers, and other technical features.

To cover a broad spectrum of EV characteristics, this phase utilizes:

• 10 different values for charging power,

• 10 different values for battery capacity, and
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• 8 different consumption rate combinations.

These values were selected to represent a wide range of EV configurations, ensuring
inclusivity across the varying specifications of existing vehicles. The primary objective
of this phase is to establish baseline scenarios by simulating diverse hypothetical EV
profiles.

A basic charging model is applied, where any parking event longer than
a predefined minimum duration automatically initiates a charging session.
This approach assumes that charging occurs whenever the parking duration exceeds a
specified threshold.

Key simplifying assumptions in this phase include:

• No consideration of time-of-day constraints or day-of-week variations.

• The State of Charge (SoC) at the start of parking is not factored into the
analysis.

By focusing solely on the minimum parking duration as the determining factor for charg-
ing, this phase provides an initial exploration of EV charging behavior under broad and
generalized conditions, laying the groundwork for more specific and detailed analyses in
subsequent phases.

Battery Capacities:

Ten different capacities were examined (21.3, 37, 46, 51, 68, 84, 95, 100, 107, and
118 kWh) to cover a broad range of values representative of various car models.

Charging Power:

Charging power is a critical parameter in assessing electric vehicle (EV) charging be-
havior, as it directly influences charging duration and infrastructure requirements. This
study considers both AC (Alternating Current) and DC (Direct Current) charg-
ing levels to reflect the variety of charging options available in real-world settings.

AC Levels: The following AC charging levels are included in the analysis: 3.2 kW,
6.6 kW, 7.2 kW, 11 kW, and 22 kW.

• 3.2 kW: Represents basic home charging setups using standard power outlets.
This option is widely accessible but provides slow charging, primarily suitable for
overnight charging scenarios.

• 6.6 kW and 7.2 kW: Reflect intermediate AC chargers commonly used in res-
idential or small public charging stations. These levels strike a balance between
charging speed and power requirements, making them suitable for vehicles parked
for extended periods (e.g., at home or work).
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• 11 kW: A standard power level for modern public and workplace chargers. It deliv-
ers significantly faster charging than basic AC setups while remaining compatible
with existing electrical infrastructure.

• 22 kW: A higher-end AC charging option, typically found in public or commer-
cial charging spaces. It is advantageous for vehicles capable of utilizing higher
AC power and is effective for reducing charging durations during shorter parking
events.

DC Levels: The following DC fast-charging levels are considered: 46 kW, 77
kW, 94 kW, 200 kW, and 250 kW.

• 46 kW and 77 kW: Represent entry-level DC fast chargers. These chargers are
efficient for most EVs that do not support ultra-fast charging, making them ideal
for urban public charging stations.

• 94 kW: A mid-level DC fast-charging option that balances charging speed and
energy efficiency, commonly seen in suburban and highway charging stations.

• 200 kW and 250 kW: High-power DC fast chargers designed for ultra-fast charg-
ing. These chargers cater to advanced EV models with large battery capacities,
enabling substantial charge levels in minutes. They are primarily installed at high-
way service stations to support long-distance travel.

Why Both AC and DC Levels?

The inclusion of both AC and DC levels in this study ensures a comprehensive analysis
of real-world charging scenarios.

• AC charging: Reflects slower, routine charging situations such as overnight home
charging or workplace charging, where vehicles are stationary for extended periods.

• DC charging: Focuses on fast-charging scenarios, where users prioritize minimiz-
ing downtime during long trips or short stops.

By simulating various combinations of charging power and battery capacities, this study
aims to capture the full spectrum of potential charging behaviors and vehicle capabili-
ties. This comprehensive approach highlights the implications for designing efficient and
effective EV charging infrastructure.

Minimum Parking Durations

Two thresholds are adopted:

1. 8 hours (480 minutes) for overnight or full-shift scenarios.

2. 20 minutes for short stops or brief windows.
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This approach evaluates how the availability of longer or shorter parking slots
influences charging feasibility.

Consumption Profiles

Scenario City (Wh/km) Highway (Wh/km) Combined (Wh/km)
1 98 172 132
2 114 187 150
3 120 200 154
4 131 201 163
5 141 244 189
6 156 234 192
7 167 264 217
8 171 265 215

Table 4.1: Consumption combinations for different driving conditions.

To account for diverse driving conditions and vehicle energy demands, eight different
consumption scenarios were tested. These scenarios consider energy usage across city,
highway, and combined driving conditions, ensuring a realistic representation of
EV performance. The table 4.1 summarizes the specific consumption combinations used.

In total, 1,200 simulations were conducted during Phase 1. These simulations
were divided as follows:

1. A combination of all consumption profiles, battery capacities, and charging
power levels (both AC and DC), using a 20-minute threshold for charging,
resulted in 800 simulations.

2. A separate analysis focused on all battery capacities, only AC charging pow-
ers, and all consumption combinations, contributing an additional 400 sim-
ulations.

Together, these scenarios provide a comprehensive exploration of different configu-
rations, covering a broad spectrum of electric vehicle characteristics and charging be-
haviors. The approach ensures that both short charging events (20 minutes) and
routine AC charging scenarios are thoroughly represented.

By including a diverse range of parameters and configurations, this phase establishes
a robust foundation for evaluating the impact of charging thresholds, vehicle specifica-
tions, and charging infrastructure on overall charging feasibility and performance. This
broad coverage helps to address potential variances across real-world EV charging situ-
ations, providing valuable insights for subsequent phases of the study.
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4.1.2 Phase Two: Integrating Behavioral Variability in Charging

This phase introduces nine distinct charging profiles that account for real-world
variations in charging behavior. These profiles incorporate:

• Day-of-week differences: Charging patterns vary between weekdays and week-
ends, reflecting differences in travel and parking behavior.

• Time-of-day effects: Charging scenarios consider the impact of overnight versus
daytime charging, capturing the variability in energy demand and grid load.

• Driver-specific State of Charge (SoC) thresholds: User-specific preferences
for when to initiate charging based on the remaining battery percentage.

While retaining the same sets of battery capacities, charging powers, and con-
sumption rates from Phase 1, this phase applies them in a more behaviorally nu-
anced context, reflecting real-world conditions more accurately.

As the analysis progresses, the level of complexity increases, introducing more re-
alistic elements into the simulations. In this phase, the focus shifts to understanding
how individual differences in charging behavior influence overall system performance.
Charging behaviors of different users have been considered, with some profiles
drawn from established studies in the literature and others based on the researchers’
own ideas, designed to highlight distinctions between various user groups.

This approach allows the study to move beyond abstract assumptions and provides
insights into the interplay between technical specifications and behavioral patterns. By
adding these layers of detail, Phase 2 lays the groundwork for exploring the impact of
user diversity on charging infrastructure design and energy system efficiency.

Behavioral Diversity in EV Charging: User Profiles

A primary challenge in EV adoption is the inherent diversity in driver behavior. While
some individuals maintain regular schedules and have access to home charging, oth-
ers depend exclusively on public chargers or fast-charging facilities along highways. To
capture these nuances, this research simulates a spectrum of user profiles, each repre-
senting distinct charging motivations, time windows, and typical State of Charge (SoC)
thresholds. By simulating a wide variety of user behaviors, the study avoids relying
on a simplistic ”one-size-fits-all” charging model, ensuring a realistic representation of
real-world conditions.

Each user profile encapsulates specific rules governing when, where, and how often
vehicles are charged. These rules account for:

• Time of day (e.g., overnight vs. afternoon charging).

• Day of the week (e.g., weekday vs. weekend charging habits).

• Charging duration thresholds (e.g., minimum or maximum charging times).
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• Charger preferences (e.g., AC slow chargers vs. DC fast chargers).

Below is a synopsis of the nine distinct user profiles analyzed in this study:

1. Frequent Users

• Description: Regularly charge their vehicles at home, typically overnight
overnight (9 PM - 8 AM) . On weekends, they may leave vehicles connected
for extended periods (Starts Friday 9 PM, ends Monday 6 AM) due to reduced
usage during leisure days.

• Charger Preference: Primarily Level 2 AC chargers (up to 11 kW) at home
or in residential areas.

2. Visitor Users

• Description: Make short, spontaneous visits to commercial or business dis-
tricts, charging for durations between 1.5 to 7 hours while running errands or
attending meeting.

• Charger Preference: Predominantly use DC fast chargers (46 kW or higher)
in the afternoon starting from 12 PM to 7 PM.

3. Taxi Drivers

• Description: Charge only overnight (9 PM - 8 AM) at home or in residential
areas

• Charger Preference: AC slow charging for 7 or more hours, ensuring a full
battery for daily operations.

4. Car Sharing Fleets

• Description: Operate on a high-utilization model, requiring multiple short
charges (20 minutes to 1.5 hours) throughout the day to keep vehicles avail-
able.

• Charger Preference: Heavily rely on DC fast chargers (46-250 kW) to
minimize downtime. Charging typically starts when the battery SoC drops
to 20%.

5. Conservative (Anxious) Drivers

• Description: Overly cautious about low battery levels, charging whenever
SoC falls below 50%. They prefer AC chargers but use DC fast chargers in
"emergency" cases (SoC <= 20%).

• Charger Preference: Primarily AC chargers (11 - 22 kW) for routine top-
ups, with DC fast chargers (46-94 kW) as a backup.
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6. Business Travelers

• Description: Require efficient, quick charging during long-distance weekday
trips, ensuring SoC stays above 20% to minimize disruptions.

• Charger Preference: DC fast chargers (46 - 250 kW) along highways or
business corridors, typically charging for 20 minutes to 1-2 hours.

• Time of Day: Charging occurs during travel breaks within typical working
hours (8 AM to 6 PM).

• Days of the Week: Monday through Friday

7. Weekend Travelers

• Description: Plan weekend getaways, relying on fast chargers to top up
quickly during trips. They typically charge when SoC drops to 30%.

• Charger Preference: DC fast chargers (46 - 250 kW)
• Charging occurs on weekends.
• Typically requires from 20 minutes to 2 hours for fast charging during

trips.

8. Workplace-Dependent Drivers

• Description: Lack access to home charging and rely solely on office chargers,
typically between 8:00 AM and 6:00 PM. They often charge for a minimum
of 6 hours during the working days from Monday to Friday.

• Charger Preference: AC chargers (3.2 - 22 kW) available at the workplace.

9. Casual Users

• Description: Drive infrequently, charging at irregular intervals when SoC
nears 20%. They may go days or weeks without charging if the vehicle is
seldom used.

• Charger Preference: Prefer AC slow charging (home or public), with ses-
sions lasting 8 hours or more.

Profile Charger Preference Time of Charging SoC Threshold Charging Duration
Frequent Users AC slow charging. Overnight None specified Up to 24+ hours.
Visitor Users DC fast chargers. Daytime None specified 1.5 to 7 hours.
Taxi Drivers AC slow charging. Overnight None specified 7+ hours.

Car Sharing Fleets DC fast chargers. Daytime 20% 20 minutes to 1.5 hours.
Conservative Drivers AC and DC as a backup. Variable 50%; DC: 20% Routine top-ups or emergency charges.
Business Travelers DC fast chargers. Daytime >20% 20 minutes to 1-2 hours.
Weekend Travelers DC fast chargers. Daytime (weekends) 30% 20 minutes to 2 hours.

Workplace-Dependent Drivers AC slow charging. 8:00 AM - 6:00 PM (work hours) None specified Minimum of 6 hours.
Casual Users AC slow chargers. Variable 20% 8 hours or more.

Table 4.2: Overview of the Nine User Profiles.
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4.1.3 Phase 3: Incorporating Real Market Vehicle Specifications

Phase Three builds directly upon the framework established in Phase Two by retaining
the same nine user profiles to ensure consistency in behavioral modeling. However, this
phase shifts focus from hypothetical combinations of battery capacities and consumption
patterns to the real-world specifications of commercially available electric vehicles
(EVs). This transition allows for a more grounded and practical analysis of EV charging
behaviors.

In this phase:

1. Integration of Real Vehicle Data: The study incorporates detailed specifica-
tions of the 50 top-selling EV models in Europe (as of 2024). These models
were selected to represent the diversity of vehicles on the market, capturing:

• Battery capacities: Real-world storage capacities, reflecting the wide range
of vehicle classes .

• AC/DC charging powers: Manufacturer-specified nominal values for both
AC and DC charging speeds.

• Consumption rates: Actual energy usage patterns across urban, highway,
and mixed driving conditions.

2. Enhanced Realism: By using real vehicle data, the simulations provide:

• More concrete and actionable results that align closely with the perfor-
mance of actual EV models.

• Insights that are directly applicable to manufacturers, policymakers, and po-
tential customers evaluating the feasibility of EV adoption.

3. Practical Relevance: This phase stands out as the most practical and com-
mercially relevant stage of the study. By grounding the analysis in real-world
specifications, it becomes easier to:

• Perform cost analysis for both users and businesses, enabling assessments
of charging expenses and operational efficiency.

• Address the concerns of companies or potential customers who are uncer-
tain about transitioning to EVs, offering them a clear, data-driven perspective
on real-world EV performance.

4. Opportunities for Further Analysis: The inclusion of real-world data opens
avenues for additional investigations, such as:

• Cost analysis: Estimating total charging costs under varying conditions
(e.g., home vs. public charging, AC vs. DC power).

• Infrastructure planning: Assessing the adequacy of current charging net-
works for the most popular EV models.

38



4.2 – How the Simulator Works

• Consumer insights: Offering potential EV adopters an understanding of
the practical benefits and limitations of specific models.

By anchoring the study in real-world vehicle data, Phase Three bridges the gap be-
tween theoretical modeling and practical application. This phase is designed to resonate
with industry stakeholders, offering insights that can guide decision-making for both
infrastructure development and consumer adoption of EVs. Its structured and practical
approach makes it the most relevant phase for addressing the challenges and opportuni-
ties in the transition to electric mobility.

4.2 How the Simulator Works

The simulation framework (figure 4.1) is designed to replicate real-world electric vehicle
(EV) usage by incorporating user-specific charging behaviors and trip patterns. Below
are the key steps in the simulation process:

Figure 4.1: Simulation workflow showing inputs, the simulation process, and outputs.

1. Identifying Charging Opportunities

Each trip in the dataset is analyzed row by row to determine if the subsequent
parking interval qualifies as a charging event, based on the assumptions and pa-
rameters of the respective simulation phase.

In Phase One, only the minimum parking duration is considered. Parking
intervals exceeding a predefined threshold (e.g., 20 minutes or 8 hours) are flagged
as charging events, with no regard for other factors like time of day or day of the
week.

In Phase Two and Three, the criteria are expanded to include day of the week
and time of day, in addition to the minimum parking duration. For instance,
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weekday parking may be flagged for workplace chargers, while weekend events may
apply to Weekend Travelers.
Across all phases, the primary goal of the first step is to evaluate whether a parking
event can be flagged as a charging event, with the complexity increasing as the
study progresses.

2. Calculate Energy Consumption
The simulation calculates the energy consumption for each trip based on the driving
conditions (e.g., urban, highway, or mixed). This is achieved using the vehicle’s
specified efficiency values for each road type and the distance traveled on those
roads, as provided in the dataset.
For each trip:

(a) The energy consumption for each road type is computed individually by mul-
tiplying the road-specific consumption rate by the distance covered.

(b) These individual energy consumption values are then summed to determine
the total energy consumption for the entire trip.

This approach ensures accurate calculation of total trip consumption by accounting
for variations in energy efficiency across different road types.

3. Calculating State of Charge (SoC) After Each Trip
The next step in the simulation involves determining the battery’s remaining State
of Charge (SoC) at the end of each trip. This is calculated as the difference between
the SoC at the beginning of the trip and the energy consumed during the trip. The
ground assumption is that the first trip for each vehicle in the dataset starts with
a fully charged battery (100% SoC).
For each trip:
The energy consumed during the trip is subtracted from the SoC at the start of
the trip to calculate the remaining SoC.

4. Calculating Energy Gained During Parking Events
The next step in the simulation involves determining the energy gained during
parking events. If, according to the first step, the "Charge Needed" flag is set
to True, it indicates that the day/time, weekday, and parking duration are
suitable for charging. At this stage, additional conditions defined by the charging
profile are evaluated to confirm whether charging occurs and to calculate the energy
gained.

Key Considerations:

(a). State of Charge (SoC) Thresholds:
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Figure 4.2: Flowchart illustrating the Calculation of Energy Gained During Parking Events

Each charging profile specifies conditions under which charging is triggered. For
instance:

• In the Casual User profile, charging is initiated only if the SoC falls to 20%.
• The current SoC of the battery is checked against these predefined thresholds

to determine if charging begins.

(b). Charging Parameters:
Once the conditions for charging are met:

• The energy gained is calculated by multiplying the parking duration (in
hours) by the output power of the charger.

• The charger type and power are determined based on the user profile. For
example:

– Car Sharing Fleets: Always use DC fast charging.
– Frequent Users: Prefer slower AC chargers.

(c). Energy Calculation Function:
A function is used to automate this process, taking the following inputs:

• park_duration: The parking interval in hours.
• charging_estimation: The estimated energy input from the charger.
• post_trip_soc: The battery’s SoC after the previous trip.
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• Battery_Capacity_wh: The vehicle’s total battery capacity in watt-hours.
• charge_flag: Indicates whether charging should occur based on initial checks.

The function ensures that the energy gained during the parking event is accurately
calculated, while also verifying that it does not exceed the maximum battery
capacity. This step guarantees precise tracking of battery replenishment and
avoids unrealistic energy estimates.

Figure 4.3: Flowchart representing the calculation of pre-trip, post-trip, and post-parking State
of Charge (SoC) based on battery capacity, trip energy consumption, and parking energy gained.
It evaluates whether the trip requirements are satisfied under defined conditions.

5. Calculating the Post-Parking State of Charge (SoC) The next step in the
simulation involves determining the battery’s State of Charge (SoC) at the end of
the parking event. This calculation combines the results from the previous steps:

• The remaining energy at the end of the trip, calculated in Step 3, repre-
sents the SoC after the energy consumed during the trip has been subtracted.

• The energy gained during the parking session, calculated in Step 4,
represents the energy replenished during the charging event.

The resulting value represents the SoC at the beginning of the next trip. In
essence, the battery energy carried over from the previous trip, combined with
the energy replenished during the parking session, determines the starting SoC for
the upcoming trip.
This step ensures continuity in the simulation, accurately tracking how the bat-
tery’s charge level evolves across successive trips and charging events. By dynami-
cally updating the SoC, the simulation provides a realistic representation of energy
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utilization and replenishment in electric vehicle operations.

6. Iterative Simulation Process for the Entire Dataset Steps 1 through 5 are
iteratively applied for every trip in the dataset, creating a comprehensive timeline
of State of Charge (SoC) changes, charging events, and flagged scenarios. This
iterative process ensures that the simulation accurately reflects the evolving energy
dynamics of each vehicle across its daily operations.

This repetition continues until all trips and parking events for each vehicle have
been processed, ensuring that the simulation captures the cumulative impact of
energy consumption and replenishment over time.

The implementation of the simulation framework, including the iterative steps and
all calculations, is provided in the code repository included in the Appendix1.

Handling Battery Capacity Limits and Consumption Overruns

In developing the simulation, special care was taken to ensure that the energy
calculations remained realistic and physically plausible. For instance, during the
charging computation, the algorithm explicitly checks that the energy added to
the battery during a charging event never exceeds the battery’s maximum capac-
ity. This safeguard is implemented by comparing the calculated charge against the
battery’s total storage limit and taking the minimum of the two. Such a precau-
tion ensures that the simulation honors the physical constraints of electric vehicle
batteries and prevents any overestimation of available energy.

Additionally, the simulation accounts for scenarios where the energy consumption
of a trip might exceed the battery’s initial state of charge. In such cases, the calcu-
lated state of charge (SoC) after the trip could mathematically become negative.
Recognizing that a negative SoC is not physically meaningful, the simulation re-
sets any negative SoC values to zero. This situation flags the corresponding trip
as ’unfeasible’, meaning the vehicle could not complete the trip without running
out of energy. Consequently, if a trip is flagged unfeasible, the SoC at the begin-
ning of the next trip is set to zero, indicating that the vehicle would start with an
empty battery until it can charge again. This worst-case scenario, where an empty
battery leads to a sequence of uncompleted trips, emphasizes the importance of
timely charging events to break the cycle and restore the battery’s energy, thereby
allowing subsequent trips to proceed.

1The Appendix contains detailed documentation and scripts that support the methodologies described
in this chapter, ensuring reproducibility and transparency of the results.
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Improving Efficiency in Large-Scale Data Processing

When processing data, particularly when filtering to analyze the behavior of spe-
cific users, efficiency becomes a critical factor. The time it takes to complete such
tasks largely depends on the size of the dataset relevant to the user, which typi-
cally represents only a subset of the entire dataset. For moderately sized datasets,
operations generally complete within seconds to minutes. However, when working
with very large datasets such as those containing over a million rows, it’s essential
to implement strategies that maintain efficient performance.

To address this challenge, several parallelization strategies can be applied to take
advantage of modern multi-core processors.

One approach involves using Pandas Multiprocessing Frameworks, such as Dask
DataFrame 2 or Modin.pandas 3. These tools allow for distributing compu-
tations across multiple CPU cores, which is particularly beneficial when working
with large datasets. By parallelizing tasks like data filtering and transformation,
these frameworks can dramatically reduce processing times.

Another performance optimization comes from vectorization with NumPy4.
If the computations involve looping through rows, these loops can be replaced
with NumPy’s vectorized operations. Vectorization leverages fast, low level C
implementations, which can significantly improve performance by eliminating the
need for slower, explicit loops.

When working with small datasets (fewer than 100,000 rows), the script should
run efficiently even without parallelization. The overhead associated with setting
up parallel tasks may not be necessary, as the data volume is manageable. How-
ever, for large datasets (over 1 million rows), parallel computing becomes more
important. In these cases, optimized libraries like Dask and Modin, combined with
techniques such as vectorization, can significantly improve performance. This is
especially true when filtering data for specific users although the overall dataset
may be massive, the relevant subset can be processed efficiently in parallel.

In conclusion, using parallel processing frameworks and vectorized operations al-
lows for effective management of both small and large datasets. While smaller
datasets may not need complex optimizations, large scale data processing partic-
ularly when filtering user specific behavior greatly benefits from these techniques.
Distributing the workload across multiple processing units or handling data in
chunks improves efficiency and ensures timely completion of complex tasks.

2https://docs.dask.org/en/stable/dataframe.html
3https://modin.readthedocs.io/en/stable/
4https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html
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4.3 Performance Metrics from the Simulation

The simulator produces several key attributes that provide insights into the perfor-
mance of the electric vehicle (EV) charging model. These outputs can be divided
into two groups:

• Unaggregated Metrics: Detailed trip-level performance indicators that
capture results for each individual trip.

• Aggregated Metrics: Overall performance summaries that compile and
analyze results across multiple trips or simulation scenarios.

The following sections describe these two groups of outputs in detail.

4.3.1 Individual Trip Performance Analysis

• Satisfied Trips: Counts the number of trips that were successfully completed
without energy-related issues. A "Satisfied Trip" indicates that the vehicle had
sufficient charge throughout the trip, as determined by comparing the pre-trip
State of Charge (SoC) with the energy required for the trip.

• Trips with Anxiety: Tracks the number of trips during which range anx-
iety occurred. This happens when the battery’s SoC falls below a critical
threshold (e.g., 10% of capacity) at any point during the trip, as flagged in
the simulation.

• Kilometers with Anxiety: Measures the total distance traveled under con-
ditions of range anxiety. This metric provides a more detailed view of how far
the vehicle was driven while the SoC was critically low, highlighting potential
risk areas.

• Autonomy (Km): Represents the estimated maximum distance (in kilome-
ters) the vehicle could travel based on the available SoC at the beginning of
a trip and the vehicle’s energy consumption rate. This value is derived by
dividing the pre-trip SoC by the combined consumption rate.

• Percentage of Satisfied Distance (% Satisfied Distance): Calculates
the percentage of the total trip distance that could be covered without en-
countering empty battery. This metric assesses the reliability of the charging
strategy and overall energy management for each trip.

Together, these metrics provide a comprehensive assessment of the EV’s perfor-
mance under various charging scenarios, highlighting the effectiveness of the charg-
ing model and the feasibility of completing trips across different user profiles and
assumptions.
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4.3.2 Aggregated Results and Performance Indicators

After computing performance metrics for each trip, the simulation proceeds to aggregate
these results into overall metrics for each simulation scenario.

• user_tot_trips: The total number of trips simulated for a given vehicle profile
within the file.

• user_tot_kilometers: The total distance (in kilometers) covered across all sim-
ulated trips for the profile.

• cnt_satisfied_trip: The count of trips that were completed successfully without
energy-related issues.

• cnt_trips_with_anxiety: The count of trips during which range anxiety was
experienced, according to the simulation criteria.

• Satisfied_Trip_Percent: The percentage of trips that were fully satisfied, com-
puted as (︃cnt_satisfied_trip

user_tot_trips

)︃
× 100.

• Trips_with_Anxiety_Percent: The percentage of trips where range anxiety
occurred, computed as (︃cnt_trips_with_anxiety

user_tot_trips

)︃
× 100.

• avg_satisfied_distance_percent: The average percentage of each trip’s dis-
tance that was completed without range anxiety, averaged over all trips.

• total_kilometers_with_anxiety: The sum of kilometers driven under range
anxiety conditions across all trips.

• Kilometers_with_Anxiety_Percent: The percentage of the total distance
driven under range anxiety, computed as(︃total_kilometers_with_anxiety

user_tot_kilometers

)︃
× 100.

• total_days: The total number of days on which trips were simulated, derived
from the trip start times.

• days_with_anxiety: The number of days on which at least one trip experienced
range anxiety.

• days_with_dissatisfaction: The number of days on which at least one trip was
not fully satisfied due to insufficient charge.
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• Percentage_Anxiety_Days: The percentage of total days that had at least
one instance of range anxiety, calculated as(︃days_with_anxiety

total_days

)︃
× 100.

• Percentage_Dissatisfaction_Days: The percentage of days with at least one
dissatisfied trip, calculated as(︃days_with_dissatisfaction

total_days

)︃
× 100.
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Chapter 5

Results

This chapter is divided into two main sections. The first section provides a detailed
explanation of the interactive dashboard, designed by the researcher to visualize the
outcomes of the simulations. It explores the dashboard’s functionalities, key features,
and how it facilitates the interpretation of results. The second section presents the
numerical findings derived from the dashboard, summarizing the insights gained from the
simulation process. These results reflect the three-phase simulation approach, followed
by a cost analysis. The findings are structured in alignment with the methodology,
moving from simplified models to more complex and near real-world scenarios.

5.1 Interactive Dashboard Navigation

Given the large number of simulations conducted in this research, which exceed thou-
sands of scenarios, traditional static plots created using libraries like Matplotlib would
be both time-consuming and impractical for visualizing and analyzing the results. To
address this challenge, Streamlit 1, an open-source Python framework, was employed
to create an interactive web application for the visualizations. Streamlit enables the
development of dynamic, data-driven applications without requiring front-end devel-
opment expertise. It allows for the easy addition of interactive components, such as
widgets, which are similar to defining variables in Python. Furthermore, it eliminates
the need for backend coding, route definitions, HTTP request handling, or integration
with HTML, CSS, and JavaScript.

This framework facilitated the creation of a comprehensive platform where all vi-
sualizations are consolidated in one place, making it more efficient for analysis. The
interactive dashboard developed with Streamlit allows users to explore the results by
adjusting settings and instantly observing how these changes affect the outcomes. It
supports various plot types, including heatmaps, violin plots, box plots, and scatter
plots, and enables users to generate visualizations either for specific users or for all users

1https://streamlit.io/
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Figure 5.1: Interactive Dashboard Home Page

collectively, based on their needs. All the plots presented in this chapter are derived
from this interactive dashboard, providing an intuitive and accessible way to analyze the
simulation results. In the figure 5.1, the home page of the dashboard is displayed.

Figure 5.2: Dashboard View :
Sample Characterization

Figure 5.3: Dashboard View :
Phase One Visualization Figure 5.4: Dashboard View :

Phase Two Visualization

Figure 5.5: Dashboard View : Phase Three Vi-
sualization Figure 5.6: Dashboard View: Cost Analysis
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As shown in the figures 5.2, 5.3, 5.4, 5.5 and 5.6, the main menu section allows users to
select the analysis level they wish to explore. The first option, "Sample Characterization,"
provides a comprehensive overview of the sample on which the research is based. The
plots shown in "Data Exploration" in Dataset Management chapter (Chapter 3) were
created from this menu. Subsequent options correspond to the different phases of the
simulation process, as discussed in the Methodology chapter (Chapter 4). Each phase
is presented separately in the figures, allowing for a detailed exploration of the results.
As shown in the figures, the dashboard features various drop-down menus that allow
users to select their preferred values for visualization. The following figures are taken
from the "Level 3 Analysis" which corresponds to the visualization of phase three of the
simulation. The first drop-down menu (figure 5.7) enables the selection of Scenario(s)
related to different charging scenarios. The next step, as shown in the subsequent figure
(figure 5.8), involves selecting the car brand(s) (figure 5.8), followed by the option to
choose the specific car model (figure 5.9) from the selected manufacturer.

The dashboard also provides the option to track the performance of either all users
within the sample or a specific user, which can be selected from a corresponding drop-
down menu. The next step allows users to specify the charging power, choosing
between AC or DC charging (figure 5.11 and figure 5.12) , which are selected separately.
Finally, users can choose the desired metrics (figure 5.13) and plots (figure 5.14). The
combination of these selections corresponds to a specific simulation, which is then ready
to be displayed and analyzed. This dashboard can be utilized as tool for providing a
practical way to explore and understand the simulation results in different scenarios and
from various perspectives.

Figure 5.7: Drop-down menu for selecting different charging scenarios
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Figure 5.8: Drop-down menu for selecting a specific car brand

Figure 5.9: Drop-down menu allowing users to select a specific car model

Figure 5.10: Drop-down menu for selecting User IDs.
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Figure 5.11: Drop-down menu for selecting the AC charging power (in kW)

Figure 5.12: Drop-down menu for selecting the DC charging power (in kW)

Figure 5.13: Drop-down menu for selecting metrics
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Figure 5.14: Drop-down menu for selecting plot types for visualization

In the cost analysis section 5.24, users can filter vehicles based on an initial budget,
categorized by the purchase price of electric vehicles. These prices are grouped into
intervals of 10,000 euro, ranging from 10,000 - 20,000 euro to 80,000 - 90,000 euro. This
segmentation allows users to focus on vehicles within their affordability range.

The cost metrics analyzed include various charging scenarios:

• Daily Charging Costs: These are calculated based on whether the user charges
their car at home or on the street.

– Street Charging Costs: Differentiated between AC and DC charging power.
If the charging scenario for a conservative driver is selected, the analysis con-
siders costs for both AC and DC charging.

– Home Charging Costs: Assume a lower bound of 0 euro, reflecting the
possibility of using renewable energy sources such as solar panels.

• Cost per Kilometer: This metric is particularly useful for users who wish to
compare the costs of operating an electric vehicle with traditional fuel expenses
(e.g., petrol or gas). It provides a tangible and comparable value that can aid
decision-making.

The price ranges considered for this analysis are as follows:

• Street DC Charging Power: 0.80 to 1.00 euro per kWh

• Street AC Charging Power: 0.38 to 0.80 euro per kWh

• Home Charging: 0 to 0.30 euro per kWh

This detailed analysis provides users with a clear understanding of daily operational
costs and cost efficiency, aiding them in making informed decisions about electric vehicle
ownership and usage.
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Figure 5.15: Interactive Dashboard - Cost Analysis

5.2 Simulation Results

5.2.1 Phase One

Since the first phase of the simulation operated at an abstract level, without considering
specific vehicle details, the results can be used to analyze the influence of various factors,
such as battery capacity and charging power, on different performance metrics. These
results offer a general overview of the system’s behavior under idealized conditions,
assuming that vehicle owners have continuous access to charging stations and charge
their vehicles at every parking event, provided it meets the pre-defined conditions for
charging duration.
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Figure 5.16: Box plot showing the distribution of Feasible Trip Percent for a battery capacity
of 21.3 kWh with charging powers of 3.2 kW and 22 kW. The results are based on all users,
considering a constant consumption rate of 98-172-132 Wh/km and a minimum charging duration
of 20 minutes.

The boxplot in Figure 5.16 shows the distribution of feasible trip percentages while
keeping energy consumption and battery capacity constant and minimum charging du-
ration is assumed 20 minutes. In this case, the only variable changing between scenarios
is the charging power, making it a clear illustration of how charging power affects trip
feasibility.

The 22kW charging rate consistently achieves higher feasible trip percentages com-
pared to 3.2kW, demonstrating the benefit of faster charging during parking events.
The 3.2kW scenario shows greater variability, with a wider interquartile range (IQR),
suggesting that slower charging can lead to inconsistent performance, especially during
shorter parking durations. In contrast, the 22kW charging scenario has a narrower IQR
and a higher median feasible trip percentage, indicating more reliable performance and
reduced range anxiety.

However, outliers in the 22kW data suggest that, despite the higher charging power,
there are instances where feasibility drops below 20%. This low percentage may be at-
tributed to the high utilization rate of vehicles in the sample, as discussed in the Dataset
Management chapter. Similarly, the 3.2kW scenario occasionally results in feasibility as
low as 10 - 20%, which creates a particular issue for users with frequent or long trips,
displaying the limitations of slower charging speeds.
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Figure 5.17: Violin plot showing the distribution of Feasible Trip Percent for battery capacities
of 21.3 kWh, 68.0 kWh, and 118.0 kWh, all with a charging power of 11.0 kW, by considering
all users, with a constant consumption rate of 131-201-163 Wh/km and a minimum charging
duration of 8 hours.

The violin plot (figure 5.17) shows the distribution of the Feasible Trip Percent met-
ric across three different scenarios, each varying by battery capacity while maintaining
a constant charging power of 11.0 kW and energy consumption rates of 131-201-163
Wh/km.

In the blue violin with a 21.3 kWh battery, the distribution is highly variable with a
wider spread, often approaching 0% feasibility, which highlights the struggle of smaller
capacities to support longer or more energy-intensive trips. Increasing the capacity to
68.0 kWh (green plot) narrows the distribution, indicating more consistent performance
and a generally higher range of feasibility that better accommodates diverse trip profiles.
The red plot with a 118.0 kWh battery shows a sharply concentrated distribution near
100%, displaying superior performance with minimal variability, which illustrates it can
support even the most demanding trips.

While the charging power remains constant across scenarios, its positive impact is
amplified with higher battery capacities.The plot highlights that low battery capacities
are associated with high variability and limited feasibility, while medium capacities,
as shown in the green plot, offer more balanced performance. The median value of
90% indicates that half of the users achieve more than 90% satisfaction. High capacities
consistently outperform lower ones, emphasizing that selecting the right battery capacity
is crucial for meeting user needs.
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Figure 5.18: Scatter plot showing the Feasible Trip Percent for two selected users (User 1 and
User 250) across different charging power scenarios (3.2 kW, 6.6 kW, 7.2 kW, 11.0 kW, and 22.0
kW) with a battery capacity of 84.0 kWh, with a constant consumption rate of 141-244-189
Wh/km and a minimum charging duration of 8 hours.

As mentioned earlier, the interactive dashboard allows users to track the behavior
and status of individual users across various scenarios. The scatter plot in Figure 5.18
shows the relationship between charging power and Feasible Trip Percent for two users,
User 1 and User 250, under a fixed 8 hour charging duration. In this analysis, both
battery capacity and energy consumption are kept constant across the five scenarios.

It reveals that increasing charging power from 3.2 kW to 7.2 kW significantly improves
feasibility, but further increases beyond 7.2 kW offer only marginal benefits due to a
saturation effect. After 8 hours, moderate power levels nearly fully charge the batteries,
and additional power has little impact.

User 1 generally achieves higher trip feasibility than User 250, but both experience
diminishing returns beyond a certain power threshold. These results suggest that, with
longer parking durations, very high charging rates offer limited extra benefit. In this
analysis, only two randomly selected users were examined, highlighting the dashboard’s
ability to track individual user performance. The findings stress the importance of con-
sidering user-specific behaviors such as parking time and trip patterns when optimizing
charging infrastructure, rather than focusing solely on increasing power, to ensure cost-
effectiveness.

5.2.2 Phase Two

Moving on to the second phase, users have the option to select charging scenarios based
on various predefined conditions. This phase is closer to real-world scenarios, as it
considers more than just the minimum charging duration to determine whether charging
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occurs. Here, users can compare different strategies and observe how these strategies
impact key metrics. For detailed explanations on each charging scenario check Phase
Two 4.1.2 section in the Methodology chapter.

Figure 5.19: Box plot showing the Average Feasible Distance Percent for business and weekend
travelers across two battery capacities (46.0 kWh and 95.0 kWh) with a charging power of 77.0
kW, by considering All Users, with a constant consumption rate of 120-200-154 Wh/km

The box plot 5.19 compares the average feasible distance percentage for business
and weekend travelers across two battery capacities (46.0 kWh and 95.0 kWh) with a
constant charging power of 77.0 kW. It reveals that increasing battery capacity from
46.0 kWh to 95.0 kWh significantly improves trip feasibility for both traveler profiles by
providing better range and reducing the likelihood of infeasible trips.

Business travelers consistently achieve higher feasible distance percentages than week-
end travelers, due to the fact that business travelers charge their vehicles on every work-
ing day during the week. In contrast, weekend travelers, who charge only on weekends,
exhibit more variability in trip feasibility, especially with the smaller 46.0 kWh battery.
This pattern is likely because their infrequent charging opportunities make them more
sensitive to battery capacity and charging power. Outliers, particularly for business
travelers with the 95.0 kWh battery, suggest extreme cases where even high capacity
may not ensure trip feasibility, possibly due to unusually high consumption.

In conclusion, investing in higher battery capacities generally improves trip feasibility,
especially for business travelers. However, for weekend travelers the frequency of charging
switching from charging two days a week to five can significantly impact trip feasibility,
proving the importance of consistent charging opportunities for optimal performance.
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Figure 5.20: Violin plot showing the distribution of days with unfeasibility percent for two
scenarios with battery capacity of 51.0 kWh: Frequent User (11.0 kW charging power) and Con-
servative Driver (11.0 kW AC/46.0 kW DC charging, by considering All Users, with a constant
consumption rate of 114-187-150 Wh/km

Based on violin plot 5.20, both scenarios share the same battery capacity (51 kWh)
and energy consumption rates and the key difference lies solely in their charging behav-
iors:

Frequent users based on the assumption made, primarily charge their vehicles us-
ing 11 kW Level 2 AC chargers, typically overnight at home, with additional charging
on weekends. Despite regular use, their reliance on a single charging mode results in
significant variability in the percentage of days with infeasible trips, with many days
experiencing high levels of infeasibility (80-90%).

This variability highlights the limitations of depending solely on moderate AC charg-
ing. The high median infeasibility indicates that, even with extended charging periods,
users frequently struggle to ensure trip feasibility, pointing to the challenges of relying
solely on this charging method.

Conservative Drivers, on the other hand, use AC chargers (11 - 22 kW) but also
supplement with 46.0 kW DC fast charging in emergencies. This mixed charging strategy
provides more flexibility and faster top-ups when needed, despite having the same battery
capacity and consumption rates. As a result, their distribution is narrower, with a
lower median infeasibility percentage, indicating a more consistent and reliable travel
experience. The addition of DC fast charging helps to bridge the gap during longer trips
or unexpected high energy demands, reducing the likelihood of infeasible days.

In conclusion, even with identical battery specifications and energy consumption,
distinct charging behaviors relying only on moderate AC charging versus combining it
with faster DC options lead to different outcomes in trip feasibility. The Conservative
Driver’s access to faster charging reduces variability and infeasible days, emphasizing
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the important role of charging behavior in optimizing electric vehicle use.

Figure 5.21: Scatter plot showing the Feasible Trip Percent for User ID 480 across different driver
scenarios: Taxi Driver, Workplace Dependent Driver, Casual Driver, and Conservative Driver.
Assuming battery capacity of 46.0 kWh, charging power of 11.0 kW, and a constant consumption
rate of 120-200-154 Wh/km.

The scatter plot (Figure 5.21) shows the Feasible Trip Percent for different driver
scenarios simulated for a single user (User ID 480). In all scenarios, the battery ca-
pacity is fixed at 46.0 kWh, with a charging power of 11.0 kW and a constant energy
consumption rate of 120-200-154 Wh/km. The four scenarios examined are Taxi Driver,
Workplace Dependent Driver, Casual Driver, and Conservative Driver.

Key insights from the plot reveal that the Taxi Driver scenario results in the lowest
feasible trip percentage, around 20%, suggesting that this charging behavior does not
work well for User 480.

In the Workplace Dependent Driver scenario, the feasible trip percentage increases
to about 40%, benefiting from workplace charging during long parking periods.

The Casual Driver scenario shows an even higher feasible trip percentage of nearly
60%, thanks to less frequent trips and moderate energy consumption. The Conservative
Driver scenario yields the highest feasibility at 70%, though this still indicates room
for improvement, even under optimal charging behavior. This suggests that User 480
should carefully plan travel patterns and charging strategies when transitioning from a
combustion engine vehicle to an electric vehicle.

Overall, the plot highlights the noticeable impact of charging strategies on trip fea-
sibility. Even with a constant energy consumption rate, varying charging patterns lead
to different results.
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5.2.3 Phase Three

This result is derived from Phase Three of the analysis, where the simulation incorpo-
rates real-world vehicles, making the findings more relatable and intuitive for readers
and users. Unlike the previous phases, this phase eliminates assumptions about battery
capacities and energy consumption rates. Instead, each vehicle model has been assigned
its actual specifications, including maximum battery capacity, realistic energy consump-
tion rates, and the highest charging speed it can accept. By working with real vehicles
and familiar names such as the Fiat 500e Hatchback, the results presented in this phase
are not only more grounded in reality but also carry greater practical implications. This
approach ensures that readers can better understand the trade-offs between different
vehicle configurations and user profiles, offering insights that are directly applicable to
real-world scenarios.

Figure 5.22: Heatmap of Feasible Trip Percent for all user profiles, comparing two vehicle models:
Fiat 500e Hatchback (42 kWh battery) and Tesla Model Y.

The heatmap 5.22 visualizes the distribution of Feasible Trip Percent for different
driver profiles across two vehicle models Fiat 500e Hatchback (42 kWh) and Tesla Model
Y under various charging scenarios.

While it’s clear that the Tesla Model Y outperforms the Fiat 500e across most sce-
narios, one interesting observation is the large gap between the two vehicles at lower
charging power (85 kW and 11 kW). The Fiat 500e experiences significant drops in trip
feasibility, especially with low charging power, which is not as apparent at first glance.
This suggests that for certain vehicle models with smaller batteries, the need for faster
charging infrastructure is more critical to maintain feasible trips.

The Workplace Dependent Driver scenario with 11 kW charging power shows the
Tesla achieving relatively higher feasibility percentages, but it’s important to note that
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even the best performing scenario (Tesla Model Y at 11 kW) still results in lower feasibil-
ity for the Fiat 500e. This indicates that while workplace charging during long parking
sessions helps, it may not be sufficient for the sample which was used for this study,
because the exploration on the dataset showed that the utilization rate is quite high in
this sample.

At higher charging powers (85 kW and 170 kW), increasing power shows decreasing
returns for the Tesla Model Y in some scenarios. This indicates that beyond a certain
point, charging power doesn’t significantly improve trip feasibility, particularly when
the battery is nearly full. This highlights the need to balance power and efficiency when
optimizing charging infrastructure.

Figure 5.23: Heatmap of Average Feasible Distance Percent considering all users across various
driver scenarios and vehicle configurations. The rows represent charging scenarios with charging
powers. The columns indicate vehicle models.

Car sharing scenarios show high feasibility with both 77.0 kW and 94.0 kW charg-
ing, maintaining strong feasibility which is above 70%). This suggests that car-sharing
charging scenario could work well on the existing sample and their trips pattern.

The BMW i4 eDrive40 performs consistently across different charging powers and
user profiles, with average feasibility between 60% and 70%. This makes the BMW
i4 a versatile model, offering stable feasibility regardless of user behavior and charging
options.

The Mercedes-Benz EQB 300 4MATIC tends to underperform compared to other
vehicles, especially with moderate charging power (77.0 kW). This highlights how vehicle-
specific factors like efficiency and energy consumption can impact performance.

These insights show that trip feasibility depends not only on battery size or charging
power but also on charging behavior, and vehicle-specific attributes, all of which are
crucial when designing EV ecosystems.
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5.2.4 Cost Analysis

Figure 5.24: The distribution of the lower bound
of daily average street charging costs across var-
ious user scenarios.

Figure 5.25: The distribution of the upper
bound of daily average street charging costs
across various user scenarios.

These box plots in figure 5.24 illustrate the distribution of street charging costs across
different charging scenarios by considering the lower bound of prices. For scenarios like
Frequent Users and Casual Drivers, which typically use AC chargers, the prices fall
within a range of 1 to 10 euros per day. However, for Business Travelers and Weekend
Travelers, who rely on DC fast chargers, the distribution shows larger values due to the
higher cost associated with fast charging. The car model selected for generating these
plots is the Dacia Spring Electric 45.

The Car Sharing and Business Traveler scenarios display higher charging costs,
as both assume the use of DC fast chargers, which are naturally more expensive. Ad-
ditionally, the Car Sharing strategy assumes that vehicles are kept at a full charge to
ensure they are always available for shared use. As a result, the median charging cost
in the Car Sharing scenario is higher than in the other charging scenarios.

The box plots in Figure 5.25 displays the distribution of street charging costs across
various charging scenarios, focusing on the upper bound of prices. As with the previous
plot, the car model used for generating these box plots is the Dacia Spring Electric
45. As anticipated, both the Car Sharing and Business Traveler scenarios exhibit
the highest average charging costs, ranging from 0 to 50 euros per day. For the other
charging scenarios, the prices generally remain within the 0 to 10 euros per day range.
However, for Casual Drivers, the median price rises to approximately 15 euros per
day, indicating a noticeable increase in charging costs compared to other user groups.
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Chapter 6

Conclusion

6.1 Discussion

6.1.1 Key Findings and Implications

This study explored how electric vehicle (EV) charging behaviors, user profiles, and
infrastructure requirements interact, using a three-phase simulation framework. The
findings provide valuable insights into the factors that influence EV adoption and offer
actionable recommendations for infrastructure development and policy-making.

Phase One: Abstract Scenarios In the first phase, the simulations used generalized
battery capacities and charging power levels to explore key trade offs. The results showed
that higher charging power generally improved trip feasibility, particularly when parking
durations were shorter. However, beyond a certain threshold such as 11 kW for overnight
charging there were diminishing returns, meaning that additional charging power didn’t
significantly improve feasibility. When it came to battery capacity, larger batteries made
a substantial difference in the percentage of feasible trips. Smaller batteries, on the other
hand, resulted in more variability and lower reliability, especially for users who relied on
them for longer trips. This phase emphasized the need for a balance between battery
size and charging speed to effectively meet user needs.

Phase Two: Behavioral Nuances The second phase introduced nine distinct user
profiles, which demonstrated how charging behaviors critically shape EV feasibility. For
example, Frequent Users, who rely solely on moderate AC charging, experienced
greater variability in trip feasibility, as their trips were more susceptible to charging
limitations. In contrast, Conservative Drivers, who combined AC charging with
DC fast charging, had more consistent trip feasibility. Additionally, user profiles like
Business Travelers and Weekend Travelers highlighted the importance of tailor-
ing infrastructure. For high-mileage users, such as business travelers, DC fast charging
was essential to ensuring trip feasibility. These findings underscore the need for flexible
charging strategies that cater to diverse user behaviors and travel patterns.
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Phase Three: Real-World Vehicles Incorporating real world EV specifications in
the third phase provided practical insights into vehicle performance and infrastructure
compatibility. For instance, Tesla Model Y consistently outperformed smaller vehicles
like the Fiat 500e Hatchback, achieving better trip feasibility and covering more
distance. The results also emphasized that charging infrastructure needs to be matched
to a vehicle’s specifications to optimize user satisfaction and system efficiency. This
phase bridged the gap between theoretical models and real world applications, offering
practical, data driven recommendations for stakeholders.

Cost Analysis The cost analysis revealed some important trends in charging and
operational costs. While DC fast charging incurred higher costs, it provided critical
flexibility for high-mileage users, making it a necessary option for those with demand-
ing travel needs. On the other hand, home charging remained the most cost-effective
choice, particularly when paired with renewable energy sources. Additionally, the cost
per kilometer metric allowed users to compare the operational costs of EVs with tradi-
tional fuel expenses, helping them evaluate the financial viability of EV adoption. These
insights are crucial for potential EV adopters and policymakers, as they provide a clearer
understanding of the financial implications of different charging strategies.

6.1.2 Broader Implications

The findings of this study offer valuable insights for several stakeholders.
For infrastructure development, it is clear that investments should focus on high

power DC fast chargers along highways and in urban centers, while also ensuring that
moderate AC chargers are readily available in residential areas. This would create a
more accessible and efficient charging network for all users.

In terms of policy, there are opportunities to incentivize the installation of home
chargers and the integration of renewable energy sources. These measures could help
reduce costs and further promote the adoption of electric vehicles (EVs).

Lastly, for consumers, providing personalized recommendations based on individual
driving patterns could be beneficial. Customized advice on EV models and charging
strategies will help users make informed decisions that best suit their needs and lifestyles.

6.2 Limitations

While this research offers valuable insights into electric vehicle (EV) charging behaviors
and infrastructure planning, it is important to recognize several limitations that may
affect the generalizability and accuracy of the findings.

One key limitation is the use of simplifying assumptions in the simulation. For
instance, the model assumes charging availability at every parking location, as precise
geographic data was not available. While this assumption helps streamline the analysis,
it overlooks real-world constraints such as charger availability, network distribution, and
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local grid capacity, all of which can significantly influence the feasibility of EV charging
in practice.

Another limitation arises from the generalization of user profiles. The charging be-
haviors modeled in the simulation are based on literature and hypothetical constructs,
which may not fully capture the diverse and evolving range of real-world user behav-
iors. In dynamic urban environments, where driving patterns and charging habits can
vary widely, these profiles may not be representative of all users, especially as behaviors
continue to evolve.

Additionally, the dataset used for the simulation is derived from internal combustion
engine (ICE) vehicles, rather than actual EVs. While the simulation provides valuable
insights, the differences in driving patterns, energy consumption, and charging habits
between ICE vehicles and EVs may not be fully accounted for, potentially affecting the
accuracy of the results.

The simulation also relied on static parameters, such as fixed consumption rates,
battery capacities, and charging powers, in the initial phases. In reality, factors such as
fluctuating energy prices, weather conditions, and advancements in battery technology
can all influence energy consumption and charging efficiency. These dynamic variables
were not incorporated into the simulation, limiting its ability to reflect real-world con-
ditions.

Although later phases of the simulation introduced more realistic specifications, the
model still assumes idealized conditions. It does not account for issues such as charger
malfunctions, maintenance downtime, or deviations from typical usage patterns. These
factors, while often overlooked, can play a crucial role in determining the effectiveness
of EV charging infrastructure.

Finally, the scope of the analysis was primarily focused on energy metrics and cost
implications. While these are important considerations, other aspects such as environ-
mental impacts, policy changes, and socio-economic factors influencing EV adoption
were not explored in depth. A more comprehensive analysis would include these broader
aspects to better understand the full range of factors affecting EV adoption and infras-
tructure development.

6.3 Future Work

Building on the findings of this study and acknowledging the limitations, several promis-
ing avenues for future research and improvements can be pursued.

One key area for enhancement is the integration of real-time data. By incor-
porating dynamic factors such as weather conditions, traffic patterns, and fluctuating
energy prices, the simulation accuracy can be significantly improved. Additionally, uti-
lizing real-time data streams would allow for adjustments in consumption rates and the
availability of charging infrastructure, making the simulation more reflective of actual
conditions.

Another important direction is the enhancement of user profiling. To refine and
expand user profiles, empirical data on EV user behaviors could be gathered through
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surveys or observational studies. Developing more detailed profiles that account for
a wider variety of lifestyles, socio-economic factors, and geographic differences would
provide a more comprehensive understanding of how different users interact with EVs.

Further, the simulation scenarios could be advanced to include a broader range of
situations. For example, incorporating emergency scenarios, charger malfunctions, and
deviations from typical user behavior would provide a more realistic view of charging
dynamics. Additionally, exploring scenarios with varying grid capacities and renew-
able energy integration would help assess the resilience of infrastructure under different
conditions.

In addition to technical factors, future research should also consider environmen-
tal and policy influences. Analyzing the environmental impacts of different charging
strategies and infrastructure choices could offer insights into the sustainability of EV
adoption. Investigating how government incentives, policy changes, and market dynam-
ics affect EV adoption and charging behaviors would also be valuable in understanding
the broader societal context.

An extended cost analysis is another crucial area for future work. Conducting
more detailed cost-benefit analyses, considering long-term operational costs, mainte-
nance, and potential savings from optimized charging strategies, would provide a deeper
understanding of the economic implications of EV adoption. Comparing simulation re-
sults with real-world cost data would also help validate and refine the economic models.

Lastly, the scalability of the study and application to different regions is essential.
By applying the simulation framework to various regions or cities, the research can better
account for local infrastructure, regulations, and user behavior variations. Expanding
the study to include larger datasets and more diverse vehicle models would enhance the
generalizability and applicability of the findings.

In conclusion, this study provides a framework for understanding the relationship
between EV user behaviors, vehicle specifications, and charging infrastructure. By ad-
dressing barriers like range anxiety and charging accessibility, it offers insights to acceler-
ate EV adoption and achieve broader environmental and public health benefits. Future
research should focus on integrating real-time data, enhancing behavioral profiling, and
incorporating dynamic variables to improve the impact and relevance of these findings.
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Market Vehicle Specifications

This appendix provides a comprehensive table of real-world electric vehicle specifications
employed during Phase Three of the methodology in this study. The table encompasses
key attributes for a diverse range of electric vehicles, including usable battery capac-
ity, maximum charging power (both AC and DC), energy consumption rates under city,
highway, and combined driving conditions, as well as the price for each model. All spec-
ifications have been meticulously extracted from ev-database1, ensuring that the study’s
findings are anchored in current and reliable market data. These realistic parameters and
constraints have informed the subsequent analysis and simulations, thereby establishing
a robust foundation for the research conclusions.

The table below summarizes the essential columns, which have been abbreviated for
clarity and formatting purposes:

1. Brand: The name of the automotive manufacturer.

2. Model: The specific model designation of the vehicle.

3. Battery: The usable battery capacity measured in kilowatt-hours (kWh).

4. AC Charger: The maximum compatible alternating current (AC) charging power
in kilowatts (kW).

5. DC Charger: The maximum compatible direct current (DC) charging power in
kilowatts (kW).

6. City Consumption: The estimated energy consumption in watt-hours per kilo-
meter (Wh/km) under mild weather conditions in urban settings.

7. Highway Consumption: The estimated energy consumption in watt-hours per
kilometer (Wh/km) under mild weather conditions on highways.

1https://ev-database.org
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8. Combined Consumption: The estimated energy consumption in watt-hours
per kilometer (Wh/km) under mild weather conditions combining both urban and
highway driving.

9. Price: The vehicle’s price reported in euros. Prices sourced from the German
market on the website have been selected, assuming they are closest to the pricing
in Italy.

Definitions:

• Mild Weather: Refers to optimal conditions characterized by a temperature of
23 degrees Celsius with no use of air conditioning (A/C).

• Highway Consumption: Assumes a constant driving speed of 110 km/h. Energy
usage may vary based on factors such as speed, driving style, climate conditions,
and route characteristics.

These standardized conditions ensure consistency and comparability across the dataset,
facilitating accurate analysis and interpretation of the vehicles’ performance metrics.
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Table A.1: Real Market Vehicle Specifications

Brand Model Battery AC DC City Highway Combined Price

Audi Q4 Sportback e-tron 45 80 11 175 121 190 154 54.950
Audi Q4 Sportback e-tron 45 quat-

tro
77 11 175 131 203 164 56.950

Audi Q4 e-tron 55 quattro 77 11 175 134 211 171 59.000
Audi SQ8 e-tron 106 11 168 163 255 206 98.100
Audi Q4 Sportback e-tron 35 52 11 145 120 189 153 47.600
Audi A6 Sportback e-tron perfor-

mance
94.9 11 270 112 165 137 75.600

Audi Q6 e-tron performance 94.9 11 260 134 213 171 68.800
BMW i4 eDrive35 67.1 11 180 108 164 134 57.500
BMW i4 eDrive40 81.3 11 207 109 166 136 60.500
BMW iX xDrive40 71 11 148 138 215 175 77.300
Dacia Spring Electric 45 25 6.6 34 98 172 132 16.900
Fiat 500e Hatchback 42 kWh 37.3 11 85 105 173 138 34.990
Fiat Grande Panda 43.8 7.4 100 112 190 148 24.000
Fiat 500e Hatchback 24 kWh 21.3 11 50 101 170 133 30.990
Fiat 600e 50.8 11 85 108 178 141 36.490
Ford Explorer Extended Range 77 11 135 122 195 156 48.510
Ford Mustang Mach-E ER RWD 91 11 150 129 207 165 58.500
Hyundai INSTER Long Range 46 11 85 102 170 133 27.000
Hyundai Kona Electric 65 kWh 65.4 11 105 113 184 145 47.190
Kia Niro EV 64.8 11 80 112 183 146 45.690
Kia EV6 Standard Range 2WD 54 11 175 120 193 154 46.990
Kia EV6 Long Range AWD 80 11 263 127 203 162 58.000
Mercedes-Benz EQB 250+ 70.5 11 102 116 183 147 53.514
Mercedes-Benz EQE SUV AMG 43 4MATIC 90.6 22 173 150 232 189 124.920
Mercedes-Benz EQT 200 Standard 45 22 80 134 225 176 39.623
Mercedes-Benz EQB 300 4MATIC 66.5 11 112 133 211 168 55.519
MG MG4 Electric 51 kWh 50.8 6.6 87 114 185 147 34.990
MG MG4 Electric 77 kWh 74.4 6.6 144 119 191 152 45.990
MG MG MG4 Electric XPOWER 61.7 6.6 142 130 213 169 46.990
Peugeot e-208 50 kWh 46.3 7.4 101 108 175 138 35.975
Peugeot e-208 51 kWh 48.1 7.4 100 103 169 134 40.875
Peugeot e-3008 73 kWh 73 11 160 132 212 170 48.650
Peugeot e-5008 97 kWh Long Range 96.9 11 160 137 220 176 60.000
Peugeot e-308 50.8 11 100 114 185 147 44.765

Continued on next page
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Table A.1 – continued from previous page
Brand Model Battery AC DC City Highway Combined Price

Renault Megane E-Tech EV60 220hp 60 22 129 105 171 136 46.600
Renault Megane E-Tech EV40 130hp 40 22 85 103 167 133 42.000
Renault Scenic E-Tech EV87 220hp 87 22 150 123 198 158 48.900
Renault 5 E-Tech 52kWh 150hp 52 11 100 107 176 141 32.900
Skoda Enyaq 85 77 11 135 117 186 148 48.900
Skoda Enyaq 60 60 11 124 117 187 151 44.200
Skoda Skoda Enyaq Coupe RS 77 11 175 117 179 145 63.300
Skoda Enyaq iV 85x 4x4 77 11 175 120 190 152 51.150
Skoda Enyaq iV CoupÃ© 60 58 11 124 112 173 140 46.850
Tesla Model Y 57.5 11 170 113 177 142 45.970
Tesla Model Y Long Range 75 11 250 118 185 149 55.970
Tesla Model Y Performance 75 11 250 124 195 156 60.970
Tesla Model 3 60 11 170 93 142 116 40.970
Tesla Model 3 Long Range Dual Mo-

tor
75 11 250 98 148 122 49.990

Volvo EX40 Single Motor ER 79 11 205 134 219 174 55.490
Volvo EX30 Single Motor 49 11 134 121 196 156 36.59072



Appendix B

Code Repository

This appendix includes the implementation of the simulation framework, along with
detailed documentation and scripts, supporting the methodologies outlined in the main
chapters. It ensures the reproducibility and transparency of the results. For access to the
complete code, please visit the researcher’s GitHub repository at https://github.com/homa-
jamalof/Trip-Simulator.

Explanation of the Code Snippet (1)

This section of code is designed to identify when an electric vehicle (EV) is likely being
charged at a workplace, reflecting typical charging behavior for workplace-dependent
drivers. The code begins by importing necessary libraries and defining a standard office
hours window from 8:00 AM to 6:00 PM.

The core of this snippet is the flag_workplace_charging function. This function
examines each row of trip data to determine if the parking event aligns with a workplace
charging scenario. Specifically, it checks:

• Whether the vehicle was parked for at least 6 hours (360 minutes).

• If the parking occurred on a weekday (Monday to Friday).

• If the parking period started and ended within the defined office hours (between
8:00 AM and 6:00 PM).

If all these conditions are met, the function returns True, flagging the event as a potential
opportunity for workplace charging. Otherwise, it returns False.

In simple terms, this code filters the dataset to pinpoint parking events that are long
enough, occur during working days, and fall within typical office hours circumstances
under which a driver is likely to charge their EV at work. This logical check is essential for
the simulation to accurately model and analyze charging behaviors specific to workplace
dependent drivers.

1 import pandas as pd
2 from datetime import time
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3
4 # Define time window
5 start_window = time (8, 0) # 8 AM
6 end_window = time (18 , 0) # 6 PM
7
8 def flag_workplace_charging (row):
9

10 # Calculate the total parking duration in minutes and start /end times
11 total_charging_duration = row[" park_dur_min "]
12 start_charging_time = row[" start_parking_time "]
13 end_charging_time = row[" end_parking_time "]
14
15 # Check if charging is on a weekday , within 8 AM - 6 PM , and is at least 6

hours
16 if (
17 total_charging_duration >= 360 and # minimum 6 hours (360 minutes )
18 start_charging_time . weekday () < 5 and # Monday to Friday
19 start_window <= start_charging_time .time () <= end_window and # Starts

within office hours
20 end_charging_time .time () <= end_window # Ends within office hours
21 ):
22 return True
23
24 return False

Listing B.1: Code Snippet (1)

Explanation of the Code Snippet (2)

Purpose: The calculate_charging function estimates the energy (in Wh) charged
during a parking session based on the parking duration, charging parameters, and battery
constraints. It only computes charging if permitted and ensures the charged energy does
not exceed the battery’s capacity.

Parameters:

• park_dur_min (float): The duration of the parking session in minutes.

• charging_estimations (dict): A dictionary containing:

– battery_capacity_kwh: Battery capacity in kWh.
– charging_power_kw: Charging power in kW.

• battery_capacity (float): The total battery capacity in Wh (not directly used
in this function).

• charge_flag (bool): A flag indicating whether charging is allowed.

Logic and Workflow:

1. Key Normalization: The function begins by converting all keys in the charging_estimations
dictionary to lowercase. This ensures robust access to dictionary values regardless
of key capitalization.
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2. Default Charging Value: It initializes charge_kwh to 0, representing no energy
charged by default.

3. Conditional Charging Calculation: If charge_flag is True, the function
calculates the energy that can be charged:

charge_kwh =
(︃

park_dur_min
60

)︃
×charging_estimations[’charging_power_kw’]

This equation converts the parking duration from minutes to hours and then mul-
tiplies by the charging power to obtain the energy charged in kWh.

4. Capacity Constraint and Return: Finally, the function returns the minimum
of:

charge_kwh×1000 and charging_estimations[’battery_capacity_kwh’]×1000

This ensures that the calculated energy does not exceed the battery’s maximum
capacity and converts the energy from kWh to Wh.

1 def calculate_charging ( park_dur_min , charging_estimations , battery_capacity ,
charge_flag ):

2 # Normalize the keys in the charging estimations dictionary to lowercase
3 charging_estimations = {k. lower (): v for k, v in charging_estimations . items ()}
4
5 # Default to zero charge if no charging occurs
6 charge_kwh = 0
7
8 # Charge if the charge flag is True:
9 if charge_flag :

10 # Calculate the energy charged using the charging power and duration
11 charge_kwh = ( park_dur_min / 60) * charging_estimations [’charging_power_kw

’]
12
13 # Ensure that the charged energy does not exceed the battery ’s total capacity
14 return min( charge_kwh * 1000 , charging_estimations [’battery_capacity_kwh ’] *

1000) # Return in Wh

Listing B.2: Code Snippet (2)

Explanation of the Code Snippet (3)

The calculate_energy_remained function analyzes trip data stored in a DataFrame
to compute energy consumption, update the vehicle’s state of charge (SoC), and assess
trip satisfaction and range anxiety. It uses specified consumption rates and charging
parameters to simulate charging events and energy usage across multiple trips.

Key steps of the function include:

• Initialization: The function normalizes keys in the charging estimation dictio-
nary, extracts battery capacity (converted to Wh), charging power, and sets a
"range anxiety" threshold at 10% of battery capacity. It also initializes consumption
rates for highway, urban, and other roads and sets up arrays to store calculations
for each trip.
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• Consumption Calculation: It computes energy consumed on different road
types for each trip and sums these to find total trip consumption, also determining
the total distance per trip.

• Trip-by-Trip Processing: For each unique vehicle:

– The function iterates over each trip, starting with a full battery.
– It calculates the post-trip SoC by subtracting the trip’s energy consumption.
– If charging is allowed (based on a flag), it calls calculate_charging to com-

pute energy gained during parking.
– It updates the SoC after parking by adding the charged energy, ensuring it

does not drop below zero.
– It computes the vehicle’s autonomy based on remaining energy, determines

the percentage of the trip that can be satisfied, and checks if the trip meets
satisfaction criteria.

– The function flags trips with range anxiety if SoC falls below the 10% thresh-
old and calculates how many kilometers were driven under such conditions.

– SoC values and other metrics are stored in pre-initialized arrays for each trip.

• DataFrame Update: After iterating through all trips, the function adds new
columns to the DataFrame for pre- and post-trip SoC, energy gained during park-
ing, autonomy, percentage of satisfied distance, trip satisfaction, range anxiety,
and kilometers driven with anxiety.

The function concludes by returning the enhanced DataFrame, which now contains
detailed energy profiles, trip satisfaction indicators, and range anxiety assessments for
further analysis in the simulation.

1 def calculate_energy_remained (df , consumption_combination , charging_estimation ):
2
3 # Normalize the keys in charging_estimation dictionary to avoid case

sensitivity
4 charging_estimation = {k. lower (): v for k, v in charging_estimation . items ()}
5
6 # Extract battery capacity and charging power from the dictionary
7 Battery_Capacity_wh = charging_estimation [’battery_capacity_kwh ’] * 1000 #

Convert kWh to Wh
8 charging_power_kw = charging_estimation [’charging_power_kw ’]
9

10 # Combined consumption rate for other roads (Wh/km)
11 combined_consumption_per_km = consumption_combination [’combined ’]
12
13 # Define a threshold for " range anxiety " (10% of the battery capacity )
14 anxiety_threshold_wh = 0.1 * Battery_Capacity_wh
15
16 # Default initial SoC is the full battery capacity in Wh
17 Pre_Trip_SoC_default = Battery_Capacity_wh
18
19 # Calculate energy consumption for different road types in Wh
20 df[’Highway_Consumption (Wh)’] = df[’dis_highway_Km ’] * consumption_combination

[’highway ’]
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21 df[’Urban_Consumption (Wh)’] = df[’dis_urban_Km ’] * consumption_combination [’
city ’]

22 df[’Other_Road_Consumption (Wh)’] = df[’dis_other_Km ’] *
combined_consumption_per_km

23 df[’Trip_Consumption (Wh)’] = df[’Highway_Consumption (Wh)’] + df[’
Urban_Consumption (Wh)’] + df[’Other_Road_Consumption (Wh)’]

24
25 # Calculate the total distance for each trip
26 df[’distance_per_trip ’] = df [[ ’dis_highway_Km ’, ’dis_urban_Km ’, ’dis_other_Km ’

]]. sum(axis =1)
27
28 # Initialize arrays to store calculated values for each trip
29 num_rows = len(df)
30 pre_trip_soc_wh = np.full(num_rows , Pre_Trip_SoC_default )
31 post_trip_soc_wh = np. zeros ( num_rows )
32 post_parking_soc_wh = np. zeros ( num_rows )
33 autonomy_km = np. zeros ( num_rows )
34 satisfied_distance = np. zeros ( num_rows )
35 satisfied_trip = np.full(num_rows , ’No ’, dtype = object )
36 trip_with_anxiety = np.full(num_rows , ’No ’, dtype = object ) # Initialize as ’No

’ for all trips
37 kilometers_with_anxiety = np.full(num_rows , ’N/A’, dtype = object ) # Initialize

as ’N/A’ for all trips
38 park_energy_wh_array = np. zeros ( num_rows )
39
40 # Extract relevant columns as numpy arrays for efficiency
41 vehicle_ids = df[’vehicle_id ’]. values
42 trip_consumptions = df[’Trip_Consumption (Wh)’]. values
43 park_durations = df[’park_dur_min ’]. values
44 charging_flags = df[’charge_flag ’]. values # Charging flag column
45 distance_per_trip = df[’distance_per_trip ’]. values
46
47 # Process each vehicle individually
48 unique_vehicle_ids = np. unique ( vehicle_ids )
49
50 for vehicle_id in unique_vehicle_ids :
51 # Select trips for the current vehicle
52 vehicle_mask = vehicle_ids == vehicle_id
53 vehicle_indices = np. where ( vehicle_mask )[0]
54
55 Pre_Trip_SoC_Wh = Battery_Capacity_wh # Start with full battery for each

vehicle
56
57 # Iterate over each trip for the current vehicle
58 for idx in vehicle_indices :
59 trip_consumption = trip_consumptions [idx]
60 park_duration = park_durations [idx]
61 charge_flag = charging_flags [idx] # Get the charging flag for the

current trip
62
63 # 1. Calculate post -trip State of Charge (SoC) after consumption
64 post_trip_soc = Pre_Trip_SoC_Wh - trip_consumption
65
66 # 2. Check if charging flag is True
67 if charge_flag :
68 # The car needs to charge
69 park_energy_wh = calculate_charging ( park_duration ,

charging_estimation , Battery_Capacity_wh , charge_flag )
70 else:
71 # No need to charge
72 park_energy_wh = 0
73
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74 park_energy_wh_array [idx] = park_energy_wh
75
76 # 3. Calculate post - parking SoC by adding energy gained from charging
77 post_parking_soc = max (0, post_trip_soc + park_energy_wh if

post_trip_soc >= 0 else park_energy_wh )
78
79 # 4. Calculate autonomy ( distance the vehicle can travel based on SoC)
80 autonomy_km [idx] = Pre_Trip_SoC_Wh / combined_consumption_per_km
81
82 # 5. Calculate % of trip that can be satisfied based on available SoC
83 satisfied_distance [idx] = min (( autonomy_km [idx] / distance_per_trip [

idx ]) * 100 , 100) if distance_per_trip [idx] > 0 else 0
84
85 # 6. Check if the trip is satisfied (i.e., enough energy for the whole

trip)
86 satisfied_trip [idx] = ’Yes ’ if Pre_Trip_SoC_Wh >= trip_consumption

else ’No ’
87
88 # 7. Determine if the trip has " range anxiety " (SoC falls below 10%)
89 if satisfied_trip [idx] == ’Yes ’ and post_trip_soc <

anxiety_threshold_wh :
90 trip_with_anxiety [idx] = ’Yes ’
91 elif satisfied_trip [idx] == ’No ’:
92 trip_with_anxiety [idx] = ’N/A’ # Anxiety is irrelevant if the

trip isn ’t satisfied
93
94 # 8. Calculate kilometers driven with range anxiety , if applicable
95 if satisfied_trip [idx] == ’Yes ’ and Pre_Trip_SoC_Wh >

anxiety_threshold_wh :
96 remaining_soc_before_anxiety = Pre_Trip_SoC_Wh -

anxiety_threshold_wh
97 km_before_anxiety = remaining_soc_before_anxiety /

combined_consumption_per_km
98 kilometers_with_anxiety [idx] = max (0, distance_per_trip [idx] -

km_before_anxiety )
99 elif satisfied_trip [idx] == ’No ’:

100 kilometers_with_anxiety [idx] = ’N/A’ # No anxiety for unsatisfied
trips

101
102 # 9. Update SoC for the next trip
103 pre_trip_soc_wh [idx] = Pre_Trip_SoC_Wh
104 post_trip_soc_wh [idx] = post_trip_soc
105 post_parking_soc_wh [idx] = post_parking_soc
106
107 # 10. Prepare for the next trip by updating Pre_Trip_SoC
108 Pre_Trip_SoC_Wh = post_parking_soc
109
110 # Add calculated values to the DataFrame
111 df[’Pre_Trip_SoC_Wh ’] = pre_trip_soc_wh
112 df[’Post_Trip_SoC_Wh ’] = post_trip_soc_wh
113 df[’Post_Parking_SoC (Wh)’] = post_parking_soc_wh
114 df[’Park_Energy (Wh)’] = park_energy_wh_array
115 df[’Autonomy_Km ’] = autonomy_km
116 df[’% Satisfied_Distance ’] = np. round ( satisfied_distance , 2)
117 df[’Satisfied_Trip ’] = satisfied_trip
118 df[’Trip_with_anxiety ’] = trip_with_anxiety
119 df[’Kilometers_with_anxiety ’] = kilometers_with_anxiety
120
121 # Reorder and return the DataFrame with the new calculated columns
122 df = df [[
123 " vehicle_id ", " trip_id ", " start_trip ", " end_trip ", " dis_highway_Km ",
124 " dis_urban_Km ", " dis_other_Km ", " distance_per_trip ", ’Pre_Trip_SoC_Wh ’,
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125 " Trip_Consumption (Wh)", ’Post_Trip_SoC_Wh ’, " park_dur_min ", ’Park_Energy (
Wh)’,

126 ’Post_Parking_SoC (Wh)’, ’Satisfied_Trip ’, ’Trip_with_anxiety ’,
127 ’Kilometers_with_anxiety ’, " Autonomy_Km ", "% Satisfied_Distance "]]
128
129 return df

Listing B.3: Code Snippet (3)

Explanation of the Code Snippet (4)

The functions demonstrate the process of running simulations for scenarios, such as
workplace-dependent drivers, by systematically varying consumption and charging pa-
rameters:

generate_table_name: This function constructs a descriptive filename based on
specific energy consumption rates (city, highway, combined) and charging parameters
(power and battery capacity). The generated name uniquely identifies the simulation
scenario, making it easier to organize and reference output files.

run_simulation: This function iterates over lists of consumption and charging pa-
rameter combinations. For each pair, it:

• Runs the energy calculation simulation using calculate_energy_remained.

• Generates a unique table name for the scenario using generate_table_name.

• Saves the resulting DataFrame to a CSV file with a filename that reflects the
simulation parameters.

Together, these functions automate the simulation process, generate well-labeled
output files, and facilitate analysis of different driving scenarios by exploring various
consumption and charging configurations.

1 def generate_table_name ( consumption_combination , charging_estimation ):
2 city = consumption_combination [’city ’]
3 highway = consumption_combination [’highway ’]
4 combined = consumption_combination [’combined ’]
5 charging_power = charging_estimation [’Charging_Power_kW ’]
6 Battery_Capacity = charging_estimation [’Battery_Capacity_kWh ’]
7
8 # Return the table name
9 return f" Profile8_Sim_ {city}_{ highway }_{ combined }_{ charging_power }kW_{

Battery_Capacity }kWh"
10
11
12 def run_simulation (df , consumption_combinations , charging_estimations ):
13 for consumption_combination in consumption_combinations :
14 for charging_estimation in charging_estimations :
15 # Ensure we pass the correct structure to calculate_energy_remained
16 result_df = calculate_energy_remained (df , consumption_combination ,

charging_estimation )
17
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18 # Generate table name for the output file based on consumption and
charging

19 table_name = generate_table_name ( consumption_combination ,
charging_estimation )

20 file_name = table_name + ".csv"
21
22 # Save the result DataFrame to a CSV file
23 result_df . to_csv (file_name , index = False )

Listing B.4: Code Snippet (4)
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