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Abstract  

Metal Additive Manufacturing (AM) has revolutionized the production of complex metal 
components by enabling the fabrication of intricate geometries with high precision. This 
technology's potential can be significantly enhanced by integrating artificial intelligence (AI) 
methods, particularly Machine Learning (ML), which offers advanced capabilities in 
establishing complex interrelationships and improving system and product quality control. ML 
algorithms present a transformative opportunity to address manufacturing challenges, optimize 
resource consumption, and enhance process efficiency by exploring the intricate linkages 
between process parameters, material properties, part geometry, microstructural 
characteristics, and their resultant properties. In metal AM processes such as Directed Energy 
Deposition (DED) and Laser Powder Bed Fusion (L-PBF), ML applications extend beyond 
process optimization to include defect detection, in-situ monitoring, and the enhancement of 
manufacturability and repeatability of components. This thesis investigates optimizing critical 
process parameters in L-PBF using ML techniques to establish a relationship between process 
parameters and defect content of AISI 316L-2.5%Cu. Recognizing these relationships enables 
the optimization of process parameters to attain specific objectives, such as high productivity, 
minimizing defect content, or low surface roughness. This optimization method facilitates 
applications, balancing productivity and quality, allowing the selection of parameters that 
satisfy both criteria. The prediction accuracy of seven ML algorithms, Bayesian Regression 
(BR), Decision Tree Regressor (DTR), Gradient Boosting Regressor (GBR), Gaussian Process 
Regressor (GPR), K-Nearest Neighbors Regressor (KNN), Random Forest Regressor (RFR), 
and Support Vector Regressor (SVR) were analyzed. Following the assessment of multiple 
models with varying training and testing sizes for the density of samples, the Support Vector 
Regression (SVR) model has been identified as the most effective model. The optimized 
process parameters, derived from the best-performing ML model prediction, demonstrated an 
accurate relationship between process parameters and defect content for achieving relative 
density values above 99.5% or high productivity. The findings of this thesis validate the 
effectiveness of ML in enhancing AM processes and underscore the potential of data-driven 
methodologies to advance the field of laser-based AM. 

Keywords: Additive Manufacturing, Machine learning, Laser Powder Bed Fusion, Process 
parameter optimization 
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1. Introduction 
Additive manufacturing (AM) is an innovative approach that constructs materials layer by 
layer, allowing for the creation of complex geometries from CAD designs [1]. AM enhances 
design flexibility and allows the processing of various materials, including polymers, metals, 
ceramics, and composites[2]. In contrast to traditional manufacturing methods, AM offers 
significant benefits, including enhanced material utilization efficiency and the ability to 
produce structures that closely approximate their final shapes. Regarding complexity, AM 
facilitates the creation of complex geometries and unique designs, which traditional 
manufacturing methods cannot accomplish[3]. Electron beam melting (EBM) and selective 
laser melting (SLM) are two advanced powder bed fusion (PBF) AM techniques. SLM, also 
known as L-PBF, utilizes high-power lasers to melt powder layer by layer selectively. In 
contrast, EBM involves micro-melting specific areas of partially sintered powder, leading to 
distinct microstructures. Both techniques can yield exceptional mechanical properties when 
process parameters are carefully optimized[4–6]. Although the L-PBF process has 
demonstrated effectiveness in the rapid manufacturing of complex components, the potential 
applications of printed components can be limited because of some problems, such as the small 
value of densification[7], elevated surface roughness[8], tensile residual stresses[9], and 
anisotropic structures[10–12]. However, these problems can be resolved by optimizing and 
tuning process parameters to achieve the desired quality of LPBF-produced parts [11]. 
Achieving this goal requires an in-depth investigation of all critical parameters and their 
influence on the mechanical and microstructural properties of the fabricated components. Even 
though more than 130 distinct process parameters can influence the LPBF process[13], factors 
such as laser power, scanning speed, hatch spacing, and layer thickness are recognized as 
having the most significant impact on the characteristics of the printed structures [14,15]. Metal 
AM also has a limited number of compatible materials that restrict its applicability across 
various fields, especially in specialized industries requiring specific material properties, such 
as the biomedical sector. To address this issue, considerable effort has been dedicated to 
developing novel alloys with customizable properties. This thesis focuses on a 316L stainless 
steel alloy with a 2.5% copper addition, which is used to possess antibacterial properties, 
making it appropriate for applications within the biotechnology field. 

ML techniques fill the gap between the requirement for accurate models and the need for 
repeated and extensive experimentation. When ML is combined with high-throughput trials, 
the search for optimal process parameters is accelerated while costs associated with 
experimentation and testing are significantly reduced. Unlike traditional physical models, ML 
algorithms have demonstrated their ability to generate valuable insights by training on datasets 
and making predictions based on acquired knowledge. Among ML approaches, supervised 
learning is particularly notable, as it uses labeled data divided into training and testing sets, 
with the primary aim of applying models that establish relationships between features and the 
target variable in the dataset. Supervised ML can further be categorized into two types: 
regression, which predicts continuous quantities, and classification, which involves predicting 
discrete class labels [16,17]. Regression models were used because the target variable (relative 
density) is continuous in this research. 
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The primary objective of this thesis is to demonstrate the capability of ML to generate precise 
predictions of process parameter defect content relation, especially when different priorities, 
such as productivity or surface quality, are prioritized. This predictive ability allows for 
accurately customizing the AM process to meet specific requirements without additional 
density testing, thereby improving the optimization process. This emphasis is directly 
associated with enhancing efficiency in AM and seeks to make substantial contributions to 
progress in this field of study. To reach these goals, the accuracy of seven supervised ML 
algorithms in predicting the process parameter defect content relation of AISI316L-Cu stainless 
steel specimens manufactured by L-PBF using different combinations of process parameters, 
including laser power, scanning speed, and hatch distance with constant layer thickness. The 
performance of each model was evaluated using R², MAE, and MSE error estimators.  

Chapter 2, titled "State of the Art," thoroughly investigates the current ML approach and AM 
technologies, PBF and DED. As mentioned, the final quality of manufactured components is 
directly influenced by various parameters, including laser power, scan speed, hatch distance, 
and powder characteristics, which are defined in Chapter 2. This chapter also reviews the 
different categories of ML techniques, such as supervised, unsupervised, semi-supervised, and 
reinforcement learning, and their application to enhance AM processes. It also highlights recent 
developments in which researchers have applied ML algorithms to improve the efficiency of 
AM. These advancements include the optimization of parameters for enhanced mechanical 
properties, the regulation of geometric deviations, and the in-situ monitoring of defect 
detection. 

Comprehensive descriptions of the methodologies employed in this research are available in 
Chapter 3, Materials and Methods. This chapter outlines the procedures implemented in sample 
modeling, including the experimental design framework established to modify the process 
parameter ranges and define sample fabrication methods, concentrating on how different 
process conditions affect the material properties. The characterization techniques employed to 
assess the mechanical and microstructural properties are explained in detail in this chapter, 
including X-ray computed tomography (XCT), Archimedes method, and metallographic 
techniques. XCT provides a non-destructive method for analyzing internal porosity. 
Archimedes density measurements, conversely, calculate the component overall density. 
Moreover, metallographic techniques are employed to measure porosity percentage and sample 
density by microstructural analysis. Comprehensive parameter optimization can be reached by 
using these characterization techniques, as they provide the necessary data for training and 
evaluating ML models. 

Chapter four, "Results and Discussion," presents the results from the experiments and the 
evaluation of the ML models. The initial section of the chapter outlines the procedures for data 
acquisition and preprocessing, along with an outline of the data partitioning for training and 
testing purposes. The hyperparameter tuning process is clarified, wherein several ML models 
were applied to analyze the relationship between the process parameters and the sample 
outcomes. This chapter also addresses selecting the best model based on evaluation metrics to 
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achieve an optimized parameter set that fulfills the desired objectives. It examines how 
variations in process parameters influence porosity content within the samples. 

The concluding chapter, entitled "Conclusion and Future Perspective," provides a summary of 
the thesis’s key contributions and discusses potential avenues for future research. This chapter 
explains the significance of employing ML to enhance AM technologies. It also emphasizes 
the potential for AM to enhance sustainability and resource efficiency as ML techniques 
advance. The integration of larger, more complex datasets may yield models that are 
significantly more accurate and predictive. The results presented herein emphasize the capacity 
of ML and AM to transform material development, enabling the production of customized, 
high-performance components across various industries. 

This thesis aims to advance the field of intelligent manufacturing by proposing a systematic 
methodology for developing materials in AM. This methodology will facilitate more 
efficient, sustainable, and adaptable production processes. 
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2. State of the art 
 
AM has offered a substantial revolution in the manufacturing process of metal components. 
This technology facilitates the production of complex geometries with great precision. It also 
provides the capability to generate localized alterations in microstructure and properties 
through targeted adjustments in the manufacturing process. The persistent issue of achieving 
consistent and high-quality outcomes for varied applications persists despite the considerable 
efforts made by individuals over the years that have resulted in the commercialization of metal 
AM technologies [18]. Direct metal AM processes can primarily be classified into two major 
technological categories: PBF and DED. These two direct AM processes have become 
increasingly prominent in academic research and industrial applications, making them the 
primary focus of interest. In DED, material is supplied through a moving nozzle, while PBF 
adds thin layers of powder after each fusion step. Both methods involve melting the material 
with a heat source like a laser or electron beam [10,19]. In recent years, extensive research has 
been conducted to enhance the efficiency of AM processes. One of the most effective tools for 
improving AM performance is using artificial intelligence (AI). AI technologies, such as ML, 
automation, robotics, machine vision, data mining, extensive data analysis, and expert systems, 
have presented their efficacy in manufacturing [20]. ML is a powerful tool for improving the 
quality and efficiency of metal AM [21]. It can also play an important role in enhancing the 
quality of printed components, particularly when basic physical principles are not well known 
but data on process variables, alloy properties, and product characteristics are accessible [22]. 
Integrating ML with AM can detect defects early, reduce waste, optimize input and output 
characteristics, and improve speed and accuracy, ultimately enhancing the quality [23]. 

ML methods have gained considerable interest for their exceptional performance in various 
data-related tasks, including regression, classification, and clustering. These approaches can be 
classified into supervised, unsupervised, semi-supervised, and reinforcement learning based on 
the extent and nature of supervision needed during the training process [24]. Integrating these 
powerful ML techniques presents an exciting opportunity to revolutionize manufacturing 
processes, tackle challenges, and optimize resource utilization. By considering the parameters 
of the AM process and the material properties, part geometry, and microstructural 
characteristics as inputs for ML algorithms, it becomes possible to establish a relationship 
known as Process-Structure-Property (PSP). Various linkages and correlations may be 
observed among data, including optimizing processing parameters and property prediction, 
cost estimation, defect identification, in-situ monitoring, and controlling geometric deviation 
[25].  

Consequently, this thesis will comprehensively analyze the applications of ML in two laser-
based AM technologies, L-PBF and DED. The papers under discussion within the context of 
this review text provide an overarching view of ML applications in AM. However, it is worth 
noting that the number of papers focusing on ML general applications in AM [18,25,26] is 
notably higher than those that specifically address L-PBF [27–29] or DED [30–32], which tend 
to be less frequent in the literature. There two main reasons for the selective analysis approach 
in this chapter. Firstly, a deeper and more comprehensive understanding of the practical 
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applications of ML in L-PBF and DED is facilitated by focusing on them. The unique 
difficulties and challenges associated with L-PBF and DED, which may be overlooked in 
broader studies, can be explored by this approach.  Secondly, generalization problems can be 
avoided by concentrating on these two processes. By emphasizing L-PBF and DED, more 
actionable insights can be provided into how ML can be effectively applied in these specialized 
areas. This approach enables real-world challenges to be addressed and innovative solutions to 
be offered. 

Fig. 1, extracted from the Scopus database using the keywords listed in Table 1, shows a 
significant increase in the number of articles on integrating ML in AM. This surge can be 
attributed to the growing importance of the subject. The chart generally demonstrates the broad 
application of ML in AM.  

Table 1. Keywords used to search and obtain data from the Scopus database 

Application of ML in AM Application of ML in L-PBF Application of ML in DED 

(TITLE-ABS-KEY (machine AND 
learning AND in AND additive AND 

manufacturing) AND ( LIMIT-TO 
(SUBJAREA, "ENGI" )) AND  ( 
LIMIT-TO (DOCTYPE, "ar") OR 
LIMIT-TO (DOCTYPE, "cp") OR 

LIMIT-TO (DOCTYPE, "re" )) AND 
(LIMIT-TO (LANGUAGE, "English"))) 

(TITLE-ABS-KEY (machine AND 
learning AND in AND laser AND 

powder AND bed AND fusion) AND 
(LIMIT-TO (SUBJAREA, "ENGI")) 
AND ( LIMIT-TO (DOCTYPE, "ar") 
OR LIMIT-TO (DOCTYPE, "cp") OR 
LIMIT-TO (DOCTYPE, "re")) AND 

(LIMIT-TO (LANGUAGE, "English"))) 

TITLE-ABS-KEY (machine AND 
learning AND in AND directed AND 

energy AND deposition) AND (LIMIT-
TO (SUBJAREA, "ENGI" )) AND  ( 

LIMIT-TO (DOCTYPE, "ar") OR 
LIMIT-TO (DOCTYPE, "cp") OR 

LIMIT-TO (DOCTYPE, "re") ) AND 
(LIMIT-TO (LANGUAGE, "English"))). 

 
Furthermore, it is worth noting that the number of articles studied for DED is significantly 
lower than L-PBF. Despite this, both processes are the focus of this thesis. This approach is 
motivated by the desire to provide a more detailed and specialized analysis of these AM 
techniques, recognizing their unique requirements and challenges.  

 
 

Fig. 1.The number of published papers on the application of ML in various AM methods as a function of 
publication year. The data was extracted according to the keywords tabulated in Table 1. 
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2.1. Additive Manufacturing 
Metallic components can be produced via direct metal AM immediately after being designed 
in a single processing step [33]. During the AM process, complex shape components are built 
layer upon layer following a digital layout. This distinct characteristic directly produces 
complex shape components from the design, eliminating the need for costly tooling or shaping 
tools like punches, dies, or casting molds and diminishing the number of traditional processing 
stages [10]. Manufactured metallic parts are utilized in various industries, including healthcare, 
energy, automotive, marine, and consumer products [34]. Examples of these components 
include metal implants designed for specific patients [35], turbine blades with cooling channels 
[36], manifolds for engines and turbines, and lattice structures and truss networks optimized 
for a better strength-to-weight ratio [37]. 

According to ASTM F42, AM processes can be broadly categorized into seven classes: Vat 
photopolymerization (VP), Material Extrusion (ME), Material Jetting (MJ), Binder Jetting 
(BJ), PBF, DED, and Sheet Lamination (SL) [38]. PBF and DED methods differ based on the 
feedstock (powder or wire) and the heat source, which can be a laser, electron beam, plasma 
arc, or gas metal arc. Electron beam processes are conducted in a vacuum or low-pressure inert 
gas environment, allowing the use of reactive metals. In contrast, some heat sources require 
the parts to be shielded using an inert gas [19]. Certain AM processes, known as indirect metal 
AM processes, can consolidate metallic materials in the form of thin sheets and ribbons using 
ultrasonic methods without melting the feedstock material. Additionally, Alloy powders can 
be fused by jetting a binder onto a powder bed and then sintering it in a high-temperature 
furnace [10]. 

2.1.1. DED 
DED is becoming increasingly popular since its mechanical properties are comparable 
to typical manufacturing techniques. DED is an AM method that uses concentrated thermal 
energy to liquefy and place materials, forming solid three-dimensional (3D) structures layer-
on-layer [39]. This AM method is faster and more cost-effective than subtractive 
manufacturing and can produce intricate parts with minimal material waste. Furthermore, DED 
exhibits exceptional efficacy when utilized for repair and remanufacturing purposes [40]. DED 
can be classified into two categories based on the feedstock used: wire feed DED and powder 
feed DED, as depicted in Fig. 2. In the powder feed system, the material undergoes melting 
during the deposition process, but in the wire feed system, a laser or arc is used to fuse the wire 
on the substrate. The energy source is concentrated in a particular location, where it deposits 
the feedstock onto the previous layer (or the substrate for the first layer) simultaneously. This 
procedure involves creating a molten pool by melting both the raw material and the preceding 
layer. The resulting deposition layer is formed as the substance cools down [41]. 
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Fig. 2. Schematic illustration of DED systems[42]. (a) Powder feed DED system; (b) Wire feed DED system 

In contrast to wire feed DED, powder feed DED provides better surface quality, although at a 
comparatively reduced production speed. Despite its considerable advantages over other metal 
AM technologies, DED still has limitations in achieving desirable surface finishes and 
minimizing porosity and cracks in the produced components [43]. Microstructural defects can 
arise from several reasons, including trapped gas, insufficient fusion, fast solidification, and 
inadequate powder melting[44]. A significant challenge in the DED process is the considerable 
variation in the quality of produced components. This variability is controlled by several 
aspects, such as process parameters, laser-material interactions, and defect creation. Although 
large-scale experimentation or simulation can enhance production quality, these approaches 
are considered time-consuming and expensive processes. In-situ monitoring is an alternative 
method for optimizing the quality of DED parts. However, this approach is highly challenging 
because of the enclosed chambers and the elevated temperatures of the melt pool, which can 
reach 2000-3000 °C [30]. Wire-based DED is a process similar to traditional welding that uses 
high power to create thick layers at high deposition rates, allowing for the economical 
production of large parts. However, parts produced using this technique usually require 
machining due to significant surface waviness caused by the formation of large molten pools 
[19]. 

2.1.2. PBF 
PBF is widely recognized as the primary AM method due to its advanced ability to manufacture 
metallic and non-metallic components with remarkable precision. Moreover, PBF may produce 
homogenous alloy components with high strength and facilitate free-form manufacturing, 
therefore offering various advantages [45]. Compared to DED, which uses a laser, electron 
beam, or arc heat source is used to melt the feedstock, in PBF, thin layers of powder are added 
after melting the last one. However, PBF has some limitations in terms of bed or box size, 
making it impossible to produce large components [10,19,46]. L-PBF, as a subset of PBF, 
specifically employs laser technology for AM. The critical distinction between L-PBF and 
other AM techniques is the use of laser, which provides high precision and control during the 
process. This section investigates L-PBF and EB-PBF methods, as they have unique 
operational principles that significantly differentiate them. Solid components are formed from 
powdered material through heating, direct liquefaction, and subsequent solidification, 
particularly in L-PBF. Laser and electron beams are the primary heat sources to ensure high 
precision in producing these parts. The procedure proceeds by overlaying the preceding layer 
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with the subsequent layer of powder from a pre-deposited powder mixture using a re-coater 
blade or roller (Fig. 3) 

 

 
Fig. 3. Schematic of the L-PBF process [44] 

The unmelted particles in the powder bed act as structural supports for the produced 
components. Following the melting and solidification of a layer of powder, the build platform 
descends, allowing a new layer to be spread and melted on top of the preceding one. Thermal 
rates in L-PBF can range from 10³ to 10 (K/s) [47]. This method is very efficient for producing 
complex geometries using various materials while requiring support structures. Regarding 
large-scale production of gradient-structured metals and alloys, L-PBF is a highly effective 
technique for fabricating gradient structures characterized by intricate architectures. 
Nevertheless, there are still obstacles to overcome, such as a low level of densification in some 
conditions during the process and the inclination for gradient structures to exhibit considerably 
greater grain sizes, frequently surpassing 100 nm. To address these challenges, optimizing 
parameters such as power density, powder flow rate, scanning speed, and hatch spacing for 
each alloy is essential [48]. 

The main obstacle in employing metallic powders in L-PBF is identifying the appropriate 
process parameter map to manufacture components with exceptional microstructural and 
mechanical qualities. Therefore, some research has concentrated on optimizing LPBF process 
parameters. These investigations can be classified into three primary groups: laser-related, 
powder-related, and powder-bed-related characteristics [49]. 

2.1.2.1. Powder-related parameters 

In AM, powder-related factors such as chemical composition, surface morphology, and particle 
size distribution are assumed to be relatively constant [50]. The chemical makeup of the powder 
is essential in determining the L-PBF process and its related parameters. The results suggest 
that minimal alterations in the chemical composition have little effect on the densification 
behavior. However, the powder's chemical makeup impacts its microstructure, subsequently 
affecting its mechanical characteristics. Kempen et al. [50] discovered that augmenting the 
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silicon (Si) concentration in the AlSi10Mg alloy leads to improved laser energy absorption in 
the powder bed, enhancing overall processability. It was shown that the shape of the starting 
powder significantly affects the ultimate quality and density of parts produced by LPBF 
processing. They found that powder morphology is a determining factor in the degree of 
compactness of powder particles when a new layer is deposited on top of an existing metal 
layer. In their study, the dimensions and morphology of the powder particles were also 
determined. As a result, it was reported that the dimensions and morphology of the powder 
particles are completely different based on the production method. Chang et al. [50] examined 
how particle size affects the microstructural characteristics, constitutional phases, and 
mechanical qualities of parts produced by LPBF processing. Their findings demonstrated that 
decreasing the size of powder particles enhances the uniformity of the microstructure of the 
resulting product. Erika Lannunziata Chang et al. [51] focused on investigating the impact of 
the powder atomization method on the densification, roughness, and mechanical characteristics 
of AISI 316L samples manufactured using the L-PBF technique. It was illustrated that gas-
atomized samples generally exhibited higher density due to their decreased oxygen 
concentration and enhanced flowability. 

2.1.2.2. Laser-related parameters 

The dimensions of the laser system, including its type, spot size, and laser power, as well as 
scanning parameters such as scanning strategy, speed, and hatch spacing, greatly influence the 
properties of the manufactured component [50]. These parameters significantly impact the 
characteristics and excellence of components produced by L-PBF and are essential for defining 
the volumetric energy density. The term "volumetric energy density" denotes the extent to 
which a unit volume of powder absorbs energy during the melting process. Enhancing the laser 
volumetric energy density can optimize the density of manufactured components, even when 
subjected to different atmospheres like argon, nitrogen, or helium, as illustrated in Fig. 4. In 
the case of Al–12Si components, there exists a critical energy level of 30 J/mm³, below which 
the energy is inadequate to completely liquefy the powder, resulting in reduced density and 
heightened porosity [50]. Moreover, exceeding this critical volumetric energy density, 30 
J/mm3, may negatively impact the surface quality due to the development of balling [47]. 
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Fig. 4. Analysis of the relationship between relative density and incident laser energy for Al–12Si components 

treated using LPBF. The result evidences a positive correlation between laser energy density and relative 
density. At energy densities below 30 J/mm³, the energy is insufficient to completely melt the powder, leading 

to a reduced relative density. Once this threshold is surpassed, the relative density stabilizes at [47]. 
 
Residual stresses and deformation in LPBF-built parts, can be considered as the main 
challenges in this technology. During the L-PBF process, localized heat generates significant 
temperature gradients, resulting in stress inside the manufactured components. Plastic 
deformation happens when the thermomechanical stress exceeds the yield strength of the 
material. Repetitive thermal cycles from consecutive layers can lead to the buildup of stress 
and deformation, which may ultimately lead to failure and significant distortion of the LPBF 
components, including cracking and layer delamination. As a result of its impact on local heat 
distribution, the scanning technique significantly affects these deformations and residual 
stresses [47]. 

Using small-diameter beams and small metal powders, complex parts with fine and closely 
spaced features can be produced. These processes differ in their heat source power, scanning 
speed, deposition rate, surface roughness, and other essential features, as depicted in Fig. 5 
[10]. 



 28 

 
Fig. 5. Process parameters for various AM methods upon consulting Refs [10,19,34,52–57]. The surface 

roughness represents the average deviation of the surface from its mean height. 

These parameter differences can cause a 10,000-fold variation in cooling rates and significant 
differences in temperature gradient and heat input among various AM methods. As a result, the 
microstructure and properties of components are affected by the cooling rate and heat input, 
which is why the parameters shown in Fig. 5 must be controlled with more effective approaches 
than in conventional processes to ensure the production of high-quality and dependable parts 
[45,58–61]. 

Achieving precise control over the microstructure, defects, and properties in AM processes is 
still a challenge due to the need for extensive experimentation to explore a wide range of 
process parameters. Printing conditions are often selected based on the machine manufacturer's 
recommendations or through trial and error [62]. Trial and error methods are not ideal for 
improving part quality in AM due to the expensive nature of the feedstock and machines [52], 
as well as the fast-evolving economic culture that leads to the creation of new products at a 
rapid rate. Instead, mechanistic models can predict various physical attributes of AM parts, 
such as temperature fields, solidification characteristics, microstructure, and defect formation. 
These models rely on a phenomenological understanding of the process variables and 
thermophysical properties of alloys [63]. 

2.1.3. Artificial Intelligence integrated with AM 

The use of AI methods in digital manufacturing is becoming increasingly prevalent due to 
advancement in data acquisition technologies, robotic systems, and computer science [64]. 
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These methods, including ML, automation, robotics, machine vision, data mining, big data 
analytics, and expert systems, have all demonstrated their effectiveness in enhancing control 
over systems and product quality [20]. ML can assist in various stages of the AM process by 
analyzing data on process variables, alloy properties, and product attributes. This analysis can 
help reduce defects, achieve superior microstructures and properties, and accelerate product 
qualification. Additionally, using ML and developing mechanistic models can create 
opportunities for producing novel alloys [52]. The combined use of mechanistic models and 
ML is crucial for various aspects of AM, including designing, planning, producing, 
characterizing, and evaluating the performance of printed parts (see Fig. 6). 

 

Fig. 6. Application of mechanistic models and ML in the various steps of metal AM. Both mechanistic models 
and ML offer a quantitative framework for understanding the characteristics of components. This figure 

illustrates the respective roles of ML and mechanistic models at different stages in manufacturing and analyzing 
elements. 

The integration of ML with AM processes presents an opportunity to effectively address 
defects during the early stages and stop the production of defective components as soon as a 
defect is detected. ML can optimize input and output characteristics and predict the properties 
of a component, while also enhancing AM process speed, accuracy, and efficiency, ultimately 
influencing quality outcomes [23,65]. 

2.2. Machine Learning 
ML methods have gained considerable interest due to their exceptional performance in various 
data-related tasks, including regression, classification, and clustering. As seen in Fig. 7, these 
approaches can be classified into supervised, unsupervised, semi-supervised, and 
reinforcement learning, based on the extent and nature of supervision required during the 
training process [24]. Supervised learning involves labeled data that is divided into training 
and testing sets. The primary objective is to develop models that establish links between 
predictors (features) and the response (target) within the dataset [66]. In contrast, unsupervised 
learning does not require labeled data or a training set to create the model. In the case of semi-
supervised learning, a small portion of the dataset is labeled, enabling the system to learn from 
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these labeled samples and classify a larger volume of data. Reinforcement learning differs from 
other ML methodologies by using a reward-and-penalty framework for algorithm training [33]. 

 
Fig. 7. Three different approaches for the classification of ML. 

ML models can also be classified as batch/offline learning or online learning. In the case of 
offline learning, the model cannot learn incrementally and must be trained using all available 
data, which demands substantial time and computing resources. Online learning enables the 
model to learn dynamically, and incrementally as new data is presented without the need to 
retrain the entire model. This methodology is particularly appropriate for working with large 
and continuously expanding datasets [24]. Likewise, ML approaches can be categorized as 
instance-based or model-based learning. Instance-based models use a similarity measure to 
identify new cases, while model-based learning involves constructing and using a model for 
predictions. In the field of AM, ML approaches are typically offline instance-based or model-



 31 

based, incorporating supervised or unsupervised learning models [24]. As depicted in Fig. 8, 
each method in ML uses multiple algorithms, which are elucidated in the accompanying table. 

 

 

Fig. 8. Some of the most essential ML algorithms with their description. 

2.2.1. Supervised Learning 

Supervised learning is the most frequently employed method among machine learning 
techniques [67]. In this method, a model can be developed by training the dataset to accurately 
classify labeled data within the test set [68]. However, acquiring labeled data for training 
supervised learning models can be challenging and costly, especially for large datasets. 
Additionally, the manual labeling process is susceptible to human bias, which can further 
degrade the accuracy of the model [24]. Supervised ML is divided into two main categories: 
classification and regression methods. Classification methods contain SVMs, DTs, Naïve 
Bayes, k-NNs, and ANNs. These methods rely on the "pattern recognition" principle to 
categorize data. Conversely, regression involves predicting continuous values by analyzing a 
dependent variable concerning one or multiple independent variables. This procedure provides 
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the optimal pattern that best fits the given data [69]. In supervised learning, the ML model 
adjusts the weights assigned to input variables iteratively until it achieves an optimal data fit. 
This process involves an algorithm that identifies patterns within a training dataset. As shown 
in Fig. 9, some specific considerations and preliminary measures must be undertaken to execute 
this task [67,70]: 

1. Acquiring a dataset and data processing 

2. Feature selection (target variable) 

3. Splitting the dataset (training, cross-validation, testing) 

4. Hyperparameter tuning and prediction 

 
Fig. 9. The steps required for developing ML models based on supervised learning algorithms. 

Supervised learning algorithms can address various numerical engineering problems. Each 
input data point is associated with a corresponding output variable Y, and the training dataset 
comprises multiple input-output pairs [71]: 

 

𝒀 = [

𝒚𝟏

𝒚𝟐

⋮
𝒚𝒏

] (1) 

Meanwhile, various mathematical techniques can be employed to represent scalar values in the 
context of observations. These observations are typically organized in rows, with each column 
representing a specific feature. This arrangement of statements leads to the formation of a 
matrix structure [72]: 
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𝑿 = [

𝒙𝟏,𝟏 𝒙𝟏,𝟐 ⋯ 𝒙𝟏,𝒏

𝒙𝟐,𝟏 𝒙𝟐,𝟐 … 𝒙𝟐,𝒏

⋮ ⋮ ⋱ ⋮
𝒙𝒏,𝟏 𝒙𝒏,𝟐 ⋯ 𝒙𝒏,𝒏

] (2) 

In this method, datasets can take various forms, including photos, audio samples, and text. The 
error between the predicted and actual output values is calculated using an objective function 
known as the cost function. To provide an unbiased assessment of the model's accuracy, a trial 
phase is conducted using a test set consisting of previously unseen additional information [71]. 

2.2.1.1. Regression Learning for AM Applications 
Regression analysis is a valuable tool for predicting and optimizing various process parameters 
for AM applications. Several studies have explored the applications of this technology, 
providing valuable insights into how it can enhance manufacturing processes and product 
quality. For instance, Eshkabilov et al. [73] implemented an SVR algorithm to establish the 
relationship between process parameters and the relative density, hardness, yield strength, and 
tensile strength of samples produced by L-PBF. Similarly, a RFR model was developed by 
Peng et al. [74] to determine the correlation between the fatigue behavior of AlSi10Mg alloy 
and the defects of parts manufactured by L-PBF. In another work, Caiazzo et al. [75] applied 
an NN model to correlate laser power, scan speed, and powder feeding rate with geometrical 
parameters of the deposited track, highlighting the significant impact of regression analysis in 
optimizing AM processes. 

2.2.1.2. Classification Learning for AM Applications 

Classification analysis has also proven to be a valuable tool in various fields of AM for 
categorizing and optimizing diverse process parameters through different algorithms. 
Khanzadeh et al. [76] used multiple ML algorithms, including KNN, SVM, DT, and DA, to 
detect defects. Fig. 10 illustrates a procedure that uses images as input for defect detection in 
the L-PBF process of Ti-6Al-4V. For each thermal image labeled as porous or non-porous, 
geometric features are extracted and used to train the ML models. 
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Fig. 10. Illustration of the process for predicting porosity through supervised ML [76]. 

SVM is another well-known ML tool that efficiently handles classification and regression 
tasks. This algorithm has garnered significant attention from researchers, especially in defect 
detection. The SVM algorithm relies on hinge loss for its operation. The exponential loss is 
associated with the classic boosting method, while the logistic loss function is linked to logistic 
regression. The logistic loss function is significant as it serves classification purposes and is 
prominent in ML problems [77,78]. The mathematical expression for logistic regression is 
articulated as follows: 

 
Log Loss =  ∑ −y log(ý) − (1 − y) log(1 − ý)

(x,y)∈D
 (3) 

In the context of logistic regression, the dataset (x, y) ∈ D consists of a significant amount of 
data with various labels. In this classification task, the variable y denotes the chosen label 
applied to a particular instance. It is essential to acknowledge that logistic regression commonly 
deals with binary classification, wherein the dependent variable y assumes either 1 or 0 values. 
However, the variable (y') represents the estimated value, which falls within the continuous 
range of 0 to 1 [79]. 

In classification problems, NNs stand out as one of the most widely adopted algorithms. 
Traditional NNs are typically employed when dealing with inputs consisting of parameters and 
class labels. However, for tasks involving images, handwritten digits (see Fig. 11), and 
autoencoders, a specialized form of NN algorithm known as CNN is specifically designed to 
provide practical solutions [80]. This model initially dissects image characteristics such as 
curves, edges, and lines in the early layers. Subsequent layers then organize and synthesize 
these features, while the final layers are responsible for reconstructing the image from scratch 
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[80,81]. In another task, Yuan et al. [27] investigated the application of CNN to predict the 
continuity of L-PBF tracks. The ML model was fed with melt pool images captured at various 
printing positions. Variances in melt track width resulted from adjustments to L-PBF process 
parameters. The algorithm primary task for each track was to evaluate the mean and standard 
deviation of track width and achieve a 93% precision rate in classifying track continuity. 

 
Fig. 11. Schematic of CNN algorithm for classifying handwriting digits [67,82]. 

2.2.2. Unsupervised Learning 
Unsupervised learning is a ML method that aims to identify previously unknown patterns 
within a dataset without predefined targets or labels. Unlike supervised learning, which relies 
on labeled training data, unsupervised learning, also known as self-organization, can construct 
probability density models using input data with minimal human supervision [83]. 
Unsupervised learning is employed to explore algorithmic approaches that can effectively 
organize complicated inputs and detect elemental patterns with limited human guidance to 
create improved predictive systems [69]. For instance, UTL has been used as a promising 
approach for anomaly detection in industrial applications. It is a specific type of unsupervised 
ML that can train abnormal detectors adapted to changing operating situations [84]. 
Additionally, unsupervised learning models are typically less accurate than supervised learning 
models, and the user should still explain the results of the algorithm [24]. There are five main 
categories for unsupervised learning: outlier detection, data clustering, dimensionality 
reduction, hierarchical learning, and latent variable models [69]. The primary task in 
unsupervised learning involves analyzing data clusters formed based on their similarity. 
However, in AM, dataset sizes are often limited, restricting the application of the clustering 
analysis [25]. Wang et al. [26] used conventional optical images as input data for the 
autoencoder in an AM process. They implemented a clustering algorithm to identify the data 
group that yielded optimal results. The subsequent evaluation using a scoring system showed 
that the ML-based clustering method aligned effectively with conventional parameter 
optimization techniques, such as laser point distance, powder layer thickness, and laser 
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scanning speed. Furthermore, an unsupervised ML model inherently possesses the ability to 
differentiate extraneous inputs within models and develop strategies to ensure uniform material 
production under consistent conditions and quality benchmarks [67]. Likewise, unsupervised 
learning is useful for identifying cyber-physical attacks in AM processes [85]. 

2.2.2.1. K-means Clustering 
The K-means clustering algorithm is a widely used unsupervised learning method for clustering 
challenges due to its simplicity and effectiveness. The algorithm involves setting up k centers 
that are assigned to a particular cluster [86]. While k-means operates as an unsupervised 
technique, selecting the number of clusters requires careful consideration to minimize the 
probability of generating inaccurate results. Furthermore, k-means encounter challenges when 
dealing with non-spherically dense data clusters [87]. Snell et al. [88] introduced a pore 
classification methodology that relied on k-means clustering for distinguishing gas pores, 
keyholes, and lack of fusion for L-PBF specimens. In that study, XCT was employed to gather 
3D pore data from L-PBF Ti-6Al-4V specimens. The CT-obtained radiographs were used to 
reconstruct 3D volumes with specific voxel sizes. The datasets were processed, segmented, and 
quantified using image processing methods, where the length, sphericity, and aspect ratio were 
employed as parameters for clustering 2664 pores. Optical Microscopy was applied to gather 
2D pore data from 81 L-PBF Inconel 718 specimens through micrographs, utilizing the 
roundness and length measurements from a total of 21,955 pores as inputs for k-means 
clustering. Optical microscopy is a quick and cost-effective method for collecting data across 
numerous samples, making it an ideal choice for optimizing metal AM parameters. The results, 
partially illustrated in Fig. 12, indicate that the clustering of 3D pore data is more effective than 
the traditional limits-based approaches in classifying the pore types [88]. 

 
Fig. 12. Pore classification based on k-means clustering for L-PBF Ti-6Al-4V specimens. (a) pore length and 

sphericity. (b) Sphericity and vertical aspect ratio [88]. 

2.2.3. Semi-Supervised Learning 
Semi-supervised models are used to overcome the limitations of both supervised and 
unsupervised ML models  [89]. Semi-supervised learning is an ML approach that combines 
labeled and unlabeled data to train a model. By integrating the advantages of both 
methodologies, semi-supervised models can achieve higher levels of accuracy and 
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interpretability compared to supervised and unsupervised learning methods. Semi-supervised 
models can also be used to learn from unlabeled data, which is valuable when labeled data is 
scarce [90]. 

Labeled data from supervised learning methods can be used to initialize a model for unlabeled 
inputs, which may or may not have been previously labeled. Semi-supervised learning methods 
can be divided into two categories: transactive graph-based methods and inductive methods.  
Inductive methods use three subcategories to define how they use unlabeled data: Wrapper 
methods, unsupervised processing methods, and semi-supervised methods. Wrapper methods, 
such as self-training, co-training, and boosting, use unlabeled data to improve the performance 
of a supervised learning model. Unsupervised processing methods, such as feature extraction, 
cluster-then-label, and pre-training, use unlabeled data to extract features or learn a 
representation of the data that can be used to improve the performance of a supervised learning 
model. Semi-supervised methods, such as maximum-margin, perturbation-based, manifolds, 
and generative models, use unlabeled data to learn a model that is resistant to noise and outliers 
[91].  

Although semi-supervised ML models have great practical value, they have been used less 
frequently in the AM field than in other fields. Okaro et al. [90] developed a Gaussian Process 
model to automatically detect defects in AM products. They used a large photodiode dataset to 
extract key features and set up a monitoring system that included both in-situ and ex-situ 
labeling methods. The ex-situ data was labeled using ultimate tensile strength tests. A receiver 
operating characteristic (ROC) curve was calculated as the classification algorithm provides 
the probability of each data point association with a specific class. The analysis entailed 
evaluating the effectiveness of the classification algorithm by varying the ‘threshold 
probability.’ The semi-supervised model developed in the study was found to capture the 
benchmark results more closely than the supervised approach, as shown in Fig. 13. 

 
Fig. 13. The ROC curve of the ML models, along with the histogram of algorithm success rates for the (b) semi-

supervised and (c) supervised [90]. 
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2.2.4. Reinforcement Learning 
Reinforcement learning is defined as "the process of acquiring a mapping from a given situation 
to corresponding actions to maximize a scalar reward or reinforcement signal" [92]. When the 
primary goal is to generate a prediction-based system, reinforcement learning is the best 
approach compared to other ML methods. The most crucial characteristic of this approach is 
its ability to acquire ways to lead to desired results using encouragement. The rewards motivate 
the learning process and influence the behavior of the algorithm [93,94]. This approach is 
occasionally referred to as the "environment-centric approach", which is an effective technique 
for enhancing automation and refining the efficiency of complex systems [95].  
Wasmer et al. [96] established a quality monitoring system for L-PBF by incorporating 
reinforcement learning with acoustic data acquired from acoustic emission during printing. 
Their evaluation of classification accuracy for AISI 316L samples indicated the potential of 
their reinforcement learning-based approach for in-situ, real-time quality monitoring within L-
PBF. In another study, Knaak et al. [97] introduced the application of reinforcement learning 
for predicting surface roughness in the L-PBF process, illustrated in Fig. 14. They implemented 
an advanced optical imaging system with an extended dynamic range combined with 
convolutional neural networks. The main benefit of this approach is its capacity to be 
incorporated into a control system for real-time surface optimization [97]. 

 

Fig. 14. Layer-wise Monitoring and Optimization Framework for L-PBF Processes Based on Reinforcement 
Learning Models[97]. 

2.3. Application of Machine Learning in Additive Manufacturing 

The interplay between process-structure-property relationships has been thoroughly examined 
and documented in multiple review articles [25,50,98,99]. The processing phase in the 
commonly used process-structure-property relationships has two distinct components: 
"processing parameters" and "processing resultant data". This division aims to differentiate 
between data existing before the manufacturing process and data created during the process 
[100]. These data types are employed for ML purposes in various AM aspects, including 
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processing parameters optimization and property prediction, cost estimation, geometric 
deviation control, defect detection, and in-situ monitoring [25]. In the subsequent sections, each 
of these applications and their associated relationships will be explored. 
Table 2 lists recent literature on metal AM that applies data-driven approaches, categorized 
based on the data acquisition method. This classification allows readers to become familiar 
with potential data sources, their applicability, and the features that can be detected or predicted 
by applying them. It can be seen in the table that the in-situ monitoring techniques, such as 
optical, thermal, X-ray imaging, and acoustic methods, are the most utilized data acquisition 
techniques. The techniques mentioned are used to observe general anomalies during the process 
[101] or specific phenomena like the detection of plume and spatter phenomena [102] and 
keyhole porosity [103,104]. This finding highlights the need for standardized protocols and 
robust quality assurance systems, including a closed-loop control system that comprehensively 
monitors and dynamically executes real-time modifications to the end product. This approach 
has the potential to broaden the application domain for AM methods. For this purpose, 
researchers have utilized statistical techniques to examine different forms of in-situ data 
acquisition to identify process signatures and process windows. The analyzed data has been 
utilized to develop ML models to predict or identify the desired features.  

Table 2. Literature on metal AM works applying data-driven approaches 

Data acquisition 
method 

AM 
technology 

Data source Alloy Application References 

In-situ 
monitoring 

L-PBF 

High-speed 
thermal imaging 

17-4 PH stainless steel 
[101], 304L stainless 

steel  [105] 

Anomaly quality prediction 
[101], detection of micropores 

[105] 
– 

High-speed 
optical imaging 316L stainless steel  

Prediction of plume and 
spatter phenomena [102], 

identification of local defects 
related to overheating [106] 

– 

Synchrotron X-
ray imaging 

Ti6Al4V [103,104], 
AlSi10Mg, Inconel 625, 

CP1, 316L stainless 
steel, Aluminium [104] 

Keyhole porosity detection 
[103,104] 

– 

Optical 
tomography 

image 
AlSi10Mg Detection of local hot spots  [107] 

Thermographic 
imaging 

H13 tool steel 
Detection of geometrical 
shape, delamination, and 

splatter 
[108] 

Acoustic signal 
Ti6Al4V, CM247- LC 
[109], 304L Stainless 

steel  [110] 

Prediction of porosity and 
surface imperfections [109], 

single track defects [110] 
– 

High-resolution 
sensor imagery 

GP-1 stainless steel  
Detection of discontinuities, 
such as incomplete fusion, 

porosity, cracks, or inclusions 
[111] 
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Data acquisition 
method 

AM 
technology 

Data source Alloy Application References 

Optical imaging 

17–4 PH stainless steel 
[86,112], Ti6Al4V 
[86,113–116], 316L 

stainless steel 
[27,86,117], bronze 

alloy [86] 

Defect prediction [112], 
prediction of porosity 
[114,116], powder bed 

anomalies  [113], detection of 
single track width and 
continuity [27,117], 

identification of edge 
smoothness [115], process 

anomaly detection [86] 

– 

Photodiode  
Inconel 718 [118,119], 

AlSi10Mg [105] 

Porosity detection [119], 
Fault detection, quality 

classification [118], detection 
of overhang defects [105] 

– 

L-DED 

Pyrometry Ti6Al4V  layer-wise quality prediction 
[120], Porosity [121],  – 

Synchrotron X-
ray imaging 

Inconel 718 
Prediction of track height, 
roughness, and melt pool 

geometry 
[104] 

Acoustic signal 
A mixture of Ti6Al4V 

with H13 tool steel 
Detection of porosity and 

crack 
[122] 

Melt pool thermal 
image 

Ti6Al4V 
[76,121,123,124] [125], 

Sponge Ti powder 
[126], 316L stainless 

steel [127]  

Porosity prediction 
[76,121,123,124,126], 

dilution estimation [127], 
surface distortion prediction 

[125] 

– 

Point cloud 
processing 

316L stainless steel  

 
 Identification of surface 

defects 
 

[128] 

Post-process 
characterization L-PBF 

High-speed 
camera 

316L stainless steel   Determination of build 
quality [129] 

Archimedes test 
      17-4 PH stainless 
steel [130], AlSi10Mg 

[131] 

 
Prediction of porosity 

 
 

[130,131] 

XCT experiment, 
2D micrograph 

 

Ti6Al4V [88,132], 
Inconel 718, 

 Ti5553, Haynes 282 
[88] 

Identification of different 
pores [88,132] 

 

Archimedes test, 
and surface 
roughness 

Stainless steel 316L-Cu 
Predicting part density and 
surface roughness in multi-

material region 
[16] 

Optical 
micrograph, first-

principles 
calculations, and 
compression tests 

TiZrNbTa RHEA Prediction of defects during 
in-situ alloying 

[132] 

Optical 
micrograph 

316 L stainless steel, 

AlSi10Mg, 
Fe60Co15Ni15Cr10 

MEA 

Prediction of porosity [133] 
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Data acquisition 
method 

AM 
technology 

Data source Alloy Application References 

L-DED 

Optical 
micrograph 

Al-5083 [134], 316L 
stainless steel [135], 
ER70S-6 mild steel 

[136], 1.5130 [137], Ti-
10Fe [132] 

Macro and micropores 
analysis [134], track 

depositing height [135], track 
geometry prediction 

[136], prediction of welding 
distortion [137], build height 

and grain size [132] 

– 

Fatigue and XCT 
experiments 

Ti6Al4V Fatigue life prediction [138] 

 

2.3.1. Processing Parameters Optimization and Property Prediction 

Ensuring part quality with specific processing parameters can be costly and time-consuming 
for designers. More specifically, the biggest challenge in the L-PBF process is the 
determination of the optimal process parameters that will results in a high-density and well-
processes component. While experiments and simulations are helpful, they may not always be 
practical in cases with various input parameters. However, ML models efficiently establish the 
link between the process parameters and part quality, reducing costs and speeding up the 
optimization process [139]. Process parameter optimization is usually carried out when either 
innovative materials or a new approach needs to be processed by AM methods [140]. Process 
parameters can also be set as input features in ML methods to optimize the geometric variations 
for L-PBF components [21]. Several instances exist in the literature [141–145] where 
researchers have utilized various ML models and algorithms for optimizing process 
parameters. Among the ML models, ANNs have demonstrated superior efficacy for process 
parameter optimization [146]. Reddy et al. [97] developed an ANN model to predict the volume 
fraction of α phase for various Ti alloys produced via the DED method followed by different 

heat treatments. The ANN model used in this study had two hidden layers, each consisting of 
six neurons representing Al, V, Fe, O, N, and heat treatment temperature for the input layer, 
and two neurons representing  and β phase volume fractions for the output layer. The model 
was trained over 18,000 iterations with hyperparameters set at a learning rate of 0.7. The 
comparison between experimental and model prediction results can be observed in Fig. 15. 
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Fig. 15. Comparison between experimental data and ANN predictions for the quenching process of a Ti–6.3Al–
4.1V–0.21Fe–0.17–0.005N alloy at four different temperatures: (a) 700 °C, (b) 815 °C, (c) 900 °C, and (d) for a 

Ti–6.85Al–1.6V–0.13Fe–0.17–0.001N alloy quenching[147]. 

Silbernagel et al. [148] used ML techniques to optimize process parameters for L-PBF of pure 
copper using optical imagery. Data in the form of images was gathered and subsequently fine-
tuned through ML methodologies. In this case, as shown in Fig. 16, the results indicate that the 
most favourable track outcomes were achieved across all layer thickness variations using a 
point distance of 50 µm and laser scan speeds of 250 mm/s or higher. 

 

Fig. 16. The procedure of ML methodology adopted by Silbernagel et al. [148]. (a) Pairs of 18 mm long full 
scan track images of thin walls [148]. (b) Using the CNN algorithm with an AE [149] for decreasing the high-
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dimensional image data into a simplified reconstructed output, (c) selection of the top 20 images from clusters 
which were evaluated and scored between 0 (clusters which showed signs of balling or an unstable melt pool) 

and 100 (clusters where the images demonstrated high-quality weld tracks), and (d) ML track quality for 
different laser scan speeds [148]. 

ML methods have also been used to predict the mechanical behaviour of AM products, 
including tensile properties [150–153], fatigue behaviour [154–157], and microhardness [158–

161]. In a research by Maleki et al. [150], the process parameters were optimized, and the 
mechanical properties of Ti6Al4V were improved using a Neural Network model (see Fig. 17). 
The research indicated that scanning speed, laser power, and hatch spacing have the most 
notable effect on the tensile strength, as shown in Fig. 18.  

 

Fig. 17. The flowchart of the procedure of the research done by Maleki et al[150]. 

 

Fig. 18. Effects of the various tensile process parameters on the properties of L-PBF fabricated Ti-6Al-4V [150]. 

Moon et al. employed a drop-out neural network (DONN) [156] to predict the fatigue behavior 
of Ti–6Al–4V L-PBF-produced samples. The model features consisted of stress, surface 
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roughness (Ra, Rt, Riso, r̅), pore density, diameter, compactness, sphericity, and projected YZ 
area for 41, 35, and 76 data points, with the predicted target being log cycles to failure. Due to 
the limited amount of data, the leave-one-out cross-validation method was employed. One data 
point was reserved for testing, while the remaining data was used for training. This process 
was iterated through for all the data. Predictions and the experimental values can be observed 
in pair plots depicted in Fig. 19, where M and AB refer to two samples with different surface 
features.  

 

Fig. 19 Comparing DONN predictions with experimental high-cycle fatigue (HCF) in logN for (a) AB, (b) M, 
and (c) combined AB+M samples. The uncertainties are displayed in different colours [156]. 

The fatigue behavior of metallic materials is mainly influenced by their surface characteristics, 
such as roughness, porosity, and defects, thus necessitating their consideration in metal AM 
products for cyclic loading applications. Therefore, the surface quality of the metal AM 
components needs to be enhanced so the products are widely adopted in delicate applications 
like medical components. Zhang et al. [162] presented an ANN algorithm to model and 
interpolate the complex, nonlinear relationship between different parameters and the targeted 
surface roughness and porosity of L-PBF Ti-6Al-4V samples. The training dataset, which 
consists of 35 samples, was obtained from DEM simulations (refer to Fig. 20). This approach 
enabled the creation of a process map, which helped to determine the optimal process 
parameters to achieve the desired surface roughness with a prediction accuracy of over 97%. 
Consequently, this method led to time savings during the printing process and reductions in the 
overall manufacturing cost. Additionally, Kumar et al. [163] worked on predicting the surface 
roughness of components produced by DED using KNN modeling. The predictive model 
demonstrated a prediction error of 2.8% for powder-based DED and 2.3% for wire-based DED.  
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Fig. 20. The collaborative integration of experimental work, physics-based DEM simulations, and ML 
techniques [162]. 

Aside from the surface features, microstructure has also been of interest to the researchers. Cao 
et al. [164] used the Generative Adversarial Network (GAN) model to quantitatively predict 
alpha phase morphology in additively manufactured Ti-6Al-4V specimens.  Due to its efficient 
handling of image datasets, the GAN model is a promising option for exploring the 
relationships between microstructure and manufacturing processes. Fig. 21 shows that the 
GAN model is trained to analyze and learn the complex details of the needle's physical 
structure, including its shape and size. Once the model has gathered sufficient data, it can 
reconstruct the predicted microstructure morphology in a visually understandable form, as 
depicted in Fig. 21. 

 

Fig. 21. XOY cross-sections of L-PBF fabricated Ti-6Al-4V; (a) real micrographs and (b) micrographs 
produced by GAN [164]. 
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Yao et al. [115] conducted a study using an ML-based processing parameter optimization 
approach to identify the proper sets of processing parameters, resulting in a superior synergy 
of strength and ductility in L-PBF. As shown in Fig. 22, the formation and morphology of α’ 

phases and the resultant properties (Fig. 22c) were investigated by considering the influence of 
L-PBF process parameters and heat treatment influence (Fig. 22a) as the ML model features. 
Moreover, the researchers used the partial dependence plots generated by the ML models (see 
Fig. 22b) to determine that the maximum ductility may be achieved at P/V=0.1 (J/mm), and 
the hatching distance was determined through experimentations. 

 

Fig. 22. (a) The relative importance of different features that affect ductility in L-PBF-produced Ti64 alloys, as 
calculated using ML. (b) The 3D contour map, and (c) a schematic illustrating the design concept for 

simultaneously enhancing both strength and ductility in the studied sample [115]. 

2.3.2. Geometric Deviation Control 
Frequently encountered issues with AM components include low geometric precision and 
suboptimal surface quality [165]. These challenges hinder the widespread adoption of AM in 
different industries, such as the aerospace and medical sectors [166]. To address this issue, ML 
models can identify geometric imperfections, quantify the degree of deviation, and suggest 
solutions to improve these issues. For example, Francis et al. [125] developed a framework that 
compensates for geometric errors in the L-PBF process using a CNN model. The ML model, 
after being trained, could predict distortions by considering thermal data and a set of process 
variables. This ultimately generated an error detection and correction outcome within the CAD 
model. According to reports, this method improved the geometric precision of objects produced 
with the adjusted CAD model. In this case study, the authors utilized the CAMP-BD approach, 
which is a combination of a CNN and ANN, designed to predict results by analyzing extensive 
datasets. As shown in Fig. 23, the input information comprises the tensor structure of the 
thermal history and the processing/designing parameters. At the same time, the deep learning 
model predicts which set of data corresponds to the output data, specifically distortion. 
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Fig. 23. Illustration of the procedure of geometric error compensation proposed for Ti-6Al-4V in L-PBF using 
CAMP-BD [125]. 

Zhu et al. [167] used the CNN method in the L-PBF Process to predict geometric deviation in 
AM parts. They employed Ansys Additive as an AM simulation software to generate the 
deviation data. Three processing parameters, part size, and a multi-channel model were used 
to predict deviation profiles on a 2D layer with a deviation field consisting of three channels 
as input. The convolution and pooling operations were performed at two stages, forming the 
suggested network. To overcome the problem of the limited dataset, they used Statistical Shape 
Analysis to increase the data and generate new samples. 
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Fig. 24. Comparative analysis of the original deviation profile and the CNN prediction for (A) cylindrical shape 
and (B) square shape [167]. 

2.3.3. Defect Detection and In-situ Monitoring 
The accuracy of human visual inspection is subject to errors and irregularities; nonetheless, the 
accurate detection of errors is highly prioritised in the AM process. Regarding defect detection 
issues, a crucial first step towards achieving in-process quality assurance is establishing a 
correlation between process conditions and defects [72,168]. Table 2 lists some case studies 
that focus on the application of ML in AM for defect detection. For instance, Gobert et al. [169] 
captured layer-wise images of the AM process during L-PBF. The images illustrated in Fig. 25 
were subsequently utilized as input data for computed tomography scans to identify defects. 
The input data consisted of layer-wise images captured under varying lighting conditions. The 
main objective of the ML algorithm was to accurately classify whether each layer displayed 
any anomalies or not.  
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Fig. 25. Schematic of the procedure proposed by Gobert et al. [169]. The left side of the illustration depicts 
anomaly extraction from CT scans, while In-situ sensor imagery is shown at the center. Feature extraction, 

supervised ML, and performance assessment are also depicted on the right. 

In a previous study, Ye et al. [170] presented a layer-wise monitoring framework for quality 
control of AM using in-situ point cloud fusion (Fig. 26). Their approach maximized the 
advantages of 3D scanning for direct monitoring, resulting in a more accurate assessment of 
morphological changes. The results showed an improved ability to identify small changes that 
can impact the overall quality of the component.   

 

Fig. 26. The schematic of the framework of the selected methodology in the study by Ye et al. [170]. 

Early detection of defect formation can be facilitated by integrating in-situ monitoring with 
unsupervised learning techniques. Scime et al. [86] applied unsupervised learning techniques 
for anomaly detection within the powder layer of the L-PBF process. As illustrated in Fig. 27, 
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they used images of powder beds as input for their ML model, intending to classify various 
anomalies that could lead to irregularities in powder spreading. Filters generate different 
responses depending on the distribution of images. Pixel responses are recorded as vectors and 
clustered using the k-means algorithm. Each cluster is defined by an average response vector 
known as "visual words". Filter response vectors are compared to the closest visual word in the 
dictionary. The fingerprint of each training image patch is recorded in a tabular format. Results 
from the three patch-type analyses, along with CAD data, are integrated using context-driven 
heuristics to classify anomalies for individual pixels in the powder bed image.  

 

Fig. 27. Schematic of ML procedure applied in the case study proposed by Scime et al. [86] for in-situ 
monitoring and analysis of powder bed images. 

Surface anomaly identification has gained significant interest in minimizing the need for 
expensive post-processing work due to the uneven and rough surface finish characteristic of 
DED-printed components. Kaji et al. [171] employed DBSCAN (Density-based spatial 
clustering of applications with noise) and RAND-LA net to detect surface anomalies in a 
powder feed DED system, achieving a prediction accuracy of 93%. A laser line scanner was 
used to acquire 2D surface profiles from the DED-built part surface to create a 3D point cloud. 
The validation results, shown in Fig. 28, indicate the model struggles to recognize concave 
surfaces. This is because these surfaces are global features, that are difficult to detect using the 
DBSCAN clustering algorithm and the RandLA-Net model. 
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Fig. 28 Comparison of RandLA-Net prediction with Ground Truth (GT). The colors depict different surface 
types: red for convex, blue for concave, and green for normal surfaces [171]. 

Gaikwad et al. [172] used the L-PBF process to create a ML model that examines the quality 
of a single track printed with Stainless Steel 316L powder. The Sequential Decision Analysis 
Neural Network (SeDANN) algorithm was used for this purpose. The input data was gathered 
by pyrometer and high-speed video camera. The model analyzed the effects of printing 
parameters, such as laser power and velocity, on the quality of the single track. The study found 
that the SeDANN algorithm had higher accuracy than other ML models in detecting balling, 
lack of fusion, conduction, and keyhole during the process monitoring. 

Du Plessis [173], examined the effect of process parameters on the formation of defects in L-
PBF Ti6Al4V. The results showed that while higher scanning speeds offered a safer processing 
window for avoiding pore formation, the possibility of keyhole formation increased with 
increasing laser power. Understanding the interactions between lasers and materials as well as 
the dynamics of melt pools, is crucial in reducing the formation of defects such as keyhole 
pores. Laser absorption as a result of keyhole formation was investigated by Jiang et al. [174] 
using a deep learning method, while Synchrotron X-ray imaging was used to generate input 
data for the ML models. The authors reported a mean absolute error of less than 3.3% [174]. 
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Similarly, Gorgannejad et al. [175] used X-ray imaging to train data fusion ML models for 
predicting the localized evolution behavior of keyhole pores. The authors also utilized 
thermally induced optical emission measured using both off-axis and coaxial photodiode 
sensors, as well as acoustic emission. According to heavily featured models, it was observed 
that the prediction results depended largely on the acoustic monitoring signal, with a secondary 
contribution from the optical emission sensors. 
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3. Materials and methods 

3.1. Sample Modeling 
First, the CAD files were created to do sample modeling, and the production process was 
carried out by the specific machine. The operations commenced with the creation of the CAD 
files, wherein 64 cubes and CD files were modeled for each component. Fig. 29 displays the 
exact measurements of the samples. 

 
Fig. 29. Nominal dimension of the cubic samples 

At this step, the software Materialise Magics was used to input the pre-selected process 
parameters for each component. It is crucial to acknowledge that each component was allocated 
a specific laser speed, laser power, and hatch distance, leading to unique features for each 
component once it was printed.  

3.1.1. Design of experiment 
The Design of Experiment (DoE) includes all different process parameter settings used in this 
project. Before starting the L-PBF process, there are several parameters that can be modified. 
These parameters are the necessary machine settings needed to manufacture a component using 
powders. To simplify matters, these process parameters are divided into four groups: laser-
related, scan-related, powder-related, and temperature-related parameters. The laser-related 
characteristics encompass laser power, wavelength, spot size, pulse duration, and pulse 
frequency. Scan-related characteristics encompass the velocity at which scanning occurs (scan 
Speed), hatching distance, and the specific pattern used for scanning. The factors connected to 
powder include particle size and distribution, particle shape, powder bed density, layer 
thickness, and material qualities. The temperature-related characteristics include the 
temperature of the powder bed, the temperature of the powder feeder, and the uniformity of 
temperature [176]. 
The selection of appropriate process parameters is crucial for improving product quality. The 
interaction between these parameters is important to highlight because changing one parameter 
can sometimes produce the same result as changing another. In general, it is necessary to 
maintain a balance between all criteria. To optimize production rate and enhance quality of the 
production, which are the is the main goals of this thesis research, it is essential to choose the 
optimal process parameters. While all process parameters affect the efficiency of the process, 
Only the most influential individuals were considered to obtain the desired results. After careful 
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consideration, 64 experimental data points were selected for a wide range of three process 
parameters, including laser power (P), laser speed (v), and laser hatch distance (h) which are 
reported in Table 3. The process parameter selection was made based on our experience with 
the machine and a preliminary analysis that has not been reported. In the next step, the EP 
Hatch Prima software was used to define these process parameters, generating 64 different 
CAM and CLI files. As reported in Table 3, the laser power varied between 100 and 340 W, 
while the scan speed and hatch distance ranged from 400 to 1000 mm/s and from 0.1 to 0.2 
mm, respectively. The wide variety of parameters led to a major variation in an applicable 
term named volumetric energy density (VED), which quantifies the amount of input energy 
per unit volume of the powder bed. The concept of VED was first established in references 
[177,178] to Attain substantial significance by comparing the different sets of parameters. 
VED, mentioned in Eq. 1, in this thesis, is used to evaluate the relative density of materials 
processed with L-PBF [179]. 

 
         VED = 

𝑃

 𝑉×ℎ×𝑙
 Eq. 1 

 

Where: 
 

VED = Volumetric energy density [ 𝐽

𝑚𝑚3] 
 

P = Laser power [𝐽

𝑠
] 

 
v = Scanning speed [𝑚𝑚

𝑠
] 

 
h = Hatching distance [mm] 

 
l = Layer thickness [mm] 

 
Subsequently, the predefined files served as the input for the PrintSharp 250 machine. Fig. 30 
illustrates the design of 64 components, with their respective CAM files being visible. 

 



 55 

 

Fig. 30. Illustration of the CAM model which depicts the positioning of the 64 components on the platform used 
in L-PBF process. 

Table 3. Process parameters for each sample used in this thesis. 

s. 
ID 

Power[W] 
 

Scan 
speed[mm/s] 

Hatch 
Distance[mm] 

VED[J/mm3]  s. 
ID 

Power[W] Scan 
speed[mm/s] 

Hatch 
Distance[mm] 

VED[J/mm3] 

1 190 400 0.1 158  33 190 400 0.12 132 
2 190 600 0.1 106  34 190 600 0.12 88 
3 190 800 0.1 79  35 190 800 0.12 66 
4 190 1000 0.1 63  36 190 1000 0.12 53 
5 200 400 0.1 167  37 200 400 0.12 139 
6 200 600 0.1 111  38 200 600 0.12 93 
7 200 800 0.1 83  39 200 800 0.12 69 
8 200 1000 0.1 67  40 200 1000 0.12 56 
9 270 400 0.1 225  41 270 400 0.12 188 
10 270 600 0.1 150  42 270 600 0.12 125 
11 270 800 0.1 113  43 270 800 0.12 94 
12 270 1000 0.1 90  44 270 1000 0.12 75 
13 340 400 0.1 283  45 340 400 0.12 236 
14 340 600 0.1 189  46 340 600 0.12 157 
15 340 800 0.1 142  47 340 800 0.12 118 
16 340 1000 0.1 113  48 340 1000 0.12 94 
17 190 400 0.11 144  49 190 400 0.13 122 
18 190 600 0.11 96  50 190 600 0.13 81 
19 190 800 0.11 72  51 190 800 0.13 61 
20 190 1000 0.11 58  52 190 1000 0.13 49 
21 200 400 0.11 152  53 200 400 0.13 128 
22 200 600 0.11 101  54 200 600 0.13 85 
23 200 800 0.11 76  55 200 800 0.13 64 
24 200 1000 0.11 205  56 200 1000 0.13 51 
25 270 400 0.11 136  57 270 400 0.13 173 
26 270 600 0.11 102  58 270 600 0.13 115 
27 270 800 0.11 82  59 270 800 0.13 87 
28 270 1000 0.11 258  60 270 1000 0.13 69 
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s. 
ID 

Power[W] 
 

Scan 
speed[mm/s] 

Hatch 
Distance[mm] 

VED[J/mm3]  s. 
ID 

Power[W] Scan 
speed[mm/s] 

Hatch 
Distance[mm] 

VED[J/mm3] 

29 340 400 0.11 172  61 340 400 0.13 218 
30 340 600 0.11 129  62 340 600 0.13 145 
31 340 800 0.11 103  63 340 800 0.13 109 
32 340 1000 0.11 158  64 340 1000 0.13 87 

 
 
Following manufacturing the 64 cubic samples to provide a more comprehensive investigation 
on VED, process parameters, and porosity formation, seven extra components were collected 
from other studies [17] to investigate the correlation between porosity and mechanical 
properties, see Table 4.  

Table 4. The process parameters of the seven extra samples collected from other studies [17] 

s. ID Power[W] 
 

Scan 
speed[mm/s] 

Hatch 
Distance[mm] 

VED[J/mm3] 

1 100 1000 0.1 33 
2 200 1000 0.2 33 
3 100 800 0.1 42 
4 150 1000 0.12 42 
5 200 800 0.2 42 
6 270 1000 0.2 45 
7 190 1000 0.13 49 

 

3.2. Samples Manufacturing 
The samples were produced using the PrintSharp 250 (Fig. 31), a PBF machine designed for 
medium-volume applications. It is specifically intended for the industrial manufacture of 
complex components and offers great flexibility when it comes to managing parts. The 
technical features of the machine are documented in Table 5. 
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Fig. 31. Prima Additive Print Sharp 250 

Table 5. The technical parameters of the PrintSharp 250 

 
 

 

 

 

 

 

 

 

 

 

Category Specification 
Dimensions (LxWxH) 3500 (L)- 1100 (W)- 2450 (H) mm 

Weight 2000 kg 
Power Supply 380 V/50 Hz/8kW 
Type of laser Yb (Ytterbium) Fiber Glass 
Laser Power 200 W/ 500 W (Optional) 

Laser Focus Diameter 70 – 100 µm 
Beam Wavelength 1060 – 1080 nm 
Building Volume 250 x 250 x 300 mm 

Beam Deflection Speed 8 m/s 
Positioning Speed 10 m/s 

Build rate 12 – 30 cm³/h 
Layer Thickness 0.02 – 0.1 mm 

Layer Width 0.1 mm (single line width) 
Recoater Specs Travel: 650 mm 

Building Platform z-axis Travel: 300 mm/Speed max : 6 mm/s/Res: 0.01 
mm 

Heating Platform Up to 200°C 
Monitoring of O₂ Level Below 100 ppm 

Permissible Room Temperature 15 – 30°C 
Gas (Consumption – running/filling) 7 l/min (running) 

System Fill Consumption 20 l/min (up to filling) 
Cam Software Materialise Magics 

Control & Other Software Eplus control software (EPC) 
Industrial Interfaces Ethernet 
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The materials used were gas-atomized AISI316L stainless steel powder, supplied by Oerlikon, 
and gas-atomized copper powder from Sandvik Osprey Ltd. The copper and stainless steel 
powders were mixed for 16 hours in a low-energy ball mill without the presence of milling 
balls. The ultimate powder mixture consisted of 2.5 weight percent copper. The chemical 
composition and morphology of the initial powder mixture are presented in Fig. 32. displays 
the morphology and related Energy Dispersive X-ray Spectroscopy (EDS) elemental maps of 
the initial powder mixture. The powder distribution analysis reveals that the average particle 
diameter of the blended AISI316 and Cu is 27 μm, with specific values of 13 μm for d10, 23 

μm for d50, and 40 μm for d90. Similarly, the average particle diameter of Cu is 6.3 μm, with 

specific values of 3.1 μm for d10, 5.3 μm for d50, and 13.1 μm for d90. Table 6.displays the 
chemical composition of the Cu-containing AISI316L stainless steel powder utilized in this 
study, as determined by EDS. 

 
 

Fig. 32. Schematic of a scanning electron microscope (SEM) image of a mixture of powders accompanied by 
elemental maps obtained using energy-dispersive X-ray spectroscopy (EDS)[180]. 

Before starting the production process, the build chamber was thoroughly emptied to a residual 
oxygen level of less than 0.1%. High-purity Argon was used to preserve an inert atmosphere 
within the construction chamber and minimize the likelihood of oxidation. A scanning 
approach was employed using a bidirectional stripe scanning pattern with a 67° rotation 
between each succeeding layer. The layer thickness of all samples was set to 30m in this 
project [180]. 

Table 6. The chemical composition of the combined AISI316L-Cu powder was determined both nominally and 
by analysis[180]. 

 

In Fig. 33, the highlighted section illustrates the laser in operation during the LPBF process. 
The laser accurately melts a small layer of metal powder to create the desired shape. The 
process of melting is fundamental to LPBF, as it enables the fabrication of complex and highly 

Elements Cr Ni Mo C Mn Cu P 
Nominal (wt%) 17-19 13-15 2.25-3 0.03 2.0 2.5 25 
Analysed (wt%) 17.02 13.5 2.04 0.02 2.11 2.92 22 
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accurate metal parts through the sequential deposition of layers. Fig. 33 illustrates the 
manufactured samples on the building platform after the completion of the building process. 
After completing the production process, all parts stuck to the building platform were removed 
from the workspace and meticulously cleaned. Finally, the samples were cut from the platform 
employing a Wire Electrical Discharge Machine (W-EDM). It is worth noting that the samples 
were labeled during the production with a numerical value (sample ID in Table 3) to signify 
their distinct process parameters. The x-axis corresponds to the recoater orientation, while the 
z-direction aligns with the building direction. 

                                                                          

  
(a)                                                       (b) 

Fig. 33. (a) Schematic of the platform during job running, (b) the result after completion of production. 

 

3.3. Sample characterization 
First, the W-EDM was used to separate the parts from the platform. Then, the density of the 
components was determined using an Archimedes balance. After conducting density 
measurements and analysis, specific components were chosen for tomography and 
metallography analysis. Finally, the microstructure of these samples was analyzed using an 
optical microscope for metallography data and the VGStudio software for XCT data. 

3.3.1. Cutting Machine 
The G.cut WEDM machine was utilized to cut the samples at this particular stage. This machine 
is shown in Fig. 34. Section 1 corresponds to the software interface of the cutting machine, 
where the settings for wire movement, the auto process, and the start and stop buttons for 
cutting are managed. Section 2 displays the X, Y, and Z coordinate directions, which assist in 
ensuring the cutting is performed in the correct direction. Section 3 is the main part of the 
machine, where the workpiece is placed, and the cutting operation is carried out. To start the 
process, the platform must be attached to the W-EDM using clamps. Next, using the specific 
software in the computer connected to the machine, a surface touch was established between 
the wire and the platform to create the reference point for both the x and y coordinates. After 
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adjusting the exact location for the wire starting point, the appropriate dimensions and correct 
orientation were loaded into the machine to commence the cutting operation. Finally, the 
printed components were separated and prepared for further procedures. 

 
Fig. 34. Key components of the WEDM machine: Section 1 (software controls), Section 2 (coordinate 

display), and Section 3 (cutting area). 

The wire-cutting machine uses an electrically charged slender wire to cut the samples with the 
highest accuracy. This method operates by generating electrical discharges between the wire 
and the workpiece, gradually removing material along the cutting direction. The sparks, as 
shown in Fig. 35 are produced rapidly and efficiently, resulting in the removal of small 
quantities of metal and the desired shape of the workpiece. Throughout the cutting procedure, 
a constant flow of deionized water is employed to cool both the wire and the workpiece, thereby 
preventing excessive heat and removing the eroded particles. In this process, water is also used 
as a dielectric, which is essential for the occurrence of the electrical discharge process. The 
words "time on" and "time off" pertain to the length of the electrical pulses (on-time) and the 
gaps between them (off-time), respectively. The parameter "ton" regulates the energy and length 
of each spark, which directly impacts the cutting speed and surface quality. On the other hand, 
"toff" enables a brief cooling period, minimizing the potential for thermal damage and 
enhancing the accuracy of the cutting process. These parameters are essential for maximizing 
the cutting efficiency and ensuring the high quality of the end product [181]. 
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Fig. 35. Illustration of electrical sparks and the movement of water during the wire-cutting procedure. 

3.3.2. Archimedes density 

The Archimedes approach is employed to determine the relative densities of components 
produced by SLM [182]. This method involves weighing a single sample in two distinct fluids. 
Typically, the fluid used for reference is air. The second fluid consists of distilled water, 
acetone, or ethanol. While distilled water is frequently utilized [183], it may only sometimes be 
appropriate due to the potential formation of air bubbles on the sample surface. This 
phenomenon occurs significantly in lattice structure components when air bubbles prevent the 
complete penetration of water into the interior of the mesh due to the high surface tension of 
the water[184]. 

According to the ASTM F3637-23 [185], the Archimedes density measuring method was done 
for each sample to calculate its geometrical and Archimedes density. Firstly, the measurement 
chamber is prepared, and the beaker is filled with distilled water, with a density of 0.997 𝑔

𝑐𝑚3. 
Subsequently, the device is accurately calibrated, to measure the dry weight (wdry) of the 
sample, as depicted in Fig. 36 (part 1). Once the dry weight of the sample is determined, it is 
shown on the digital monitor, as illustrated in Fig. 36, part 3. Upon finishing this procedure, 
the device is reset to a value of zero, and the sample is placed on the filter, as depicted in Fig. 
36 part 2, to be fully immersed in distilled water. All the bubbles that had been formed were 
eliminated, and the sample was completely submerged in the water. The weight at this point 
was documented as wimmersion. Subsequently, the sample was extracted from the water, placed 
on the wet wipes, and promptly reweighed, as shown in Fig. 36 (part 1) to measure the amount 
of water that had been absorbed during immersion. This phase resulted in obtaining the wet 
weight, indicated as  wwet . Furthermore, the theoretical density of the powder was set to be 
7.985 𝑔

𝑐𝑚3 
 using the relative technique. This method considers that the powder consists of 2.5% 

copper and 97.5% AISI316. Subsequently, the total porosity percentage and relative 
Archimedes density percentage for all samples were computed utilizing the given formulas: 
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     𝜌𝐴𝑟𝑐ℎ𝑖𝑚𝑒𝑑𝑒𝑠  =   𝜌𝑙𝑖𝑞𝑢𝑖𝑑 ∗
 wdry

wdry _ wimmersion
 

 

Eq. 2 

𝜌𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 = 𝜌𝑙𝑖𝑞𝑢𝑖𝑑 ∗
 wdry

 wwet _wimmersion
 

 

Eq. 3 

Total porosity percntage = 𝜌𝑡𝑒𝑜𝑟𝑒𝑡ℎ𝑖𝑐𝑎𝑙_𝜌𝑏𝑢𝑙𝑘

𝜌𝑡𝑒𝑜𝑟𝑒𝑡ℎ𝑖𝑐𝑎𝑙
 *100% 

 
Eq. 4 

Relative Archimedes Density percntage = 𝜌𝐴𝑟𝑐ℎ𝑖𝑚𝑒𝑑𝑒𝑠

𝜌𝑡𝑒𝑜𝑟𝑒𝑡ℎ𝑖𝑐𝑎𝑙
 *100% 

 
Eq. 5 

Where: 

𝜌𝐴𝑟𝑐ℎ𝑖𝑚𝑒𝑑𝑒𝑠  = Archimedes density (apparent density) [ 𝑔

𝑐𝑚3] 
 

𝜌𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 = Geometrical density (bulk density) [ 𝑔

𝑐𝑚3] 

 

 
 

Fig. 36. The illustration of the measurement setup for Archimedes density is 1) a position for measuring the dry 
and wet weight, 2) place for measuring the immersion weight, and 3) a digital display for showing the weight 

values. 

3.3.3. X-ray computed tomography 
XCT employs algorithms to construct 3-D representations by combining many X-ray images 
taken around a rotational axis [160]. In recent years, three primary XCT techniques have been 
developed, each enhancing the speed of data collection. The initial XCT method acquires 
density data along each beam of X-rays that is linearly displaced in the opposite direction of 
an X-ray detector. A small increment rotates the scanner, and this process is repeated until a 
full 360° of data is acquired. In the second technique, a two-dimensional array of X-rays is 
used that covers the entire object width, along with a one-dimensional array of detectors 
positioned at the edges of the X-ray beam. The third approach employs a two-dimensional 
detector with a complete three-dimensional X-ray beam cone. The x-ray source and detector of 
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the beam scanner move in a straight line to scan a slice of the xy plane. The source and detector 
have slight movements in the z-axis for the measured item, and this process is repeated. The 
fan beam scanner exposes an entire slice of the object simultaneously, whereas the cone beam 
scanner exposes the entire thing. To capture the entirety of the item, each scanning method has 
a full rotation of 360°[187]. Fig. 37. shows each XCT approach. XCT evaluations focus on 
image quality, notably resolution and contrast. The maximum magnification of XCT images 
decreases with object size due to X-ray penetration, reducing resolution. Reducing 
magnification increases scan voxels and reduces image clarity. Low X-ray penetration makes 
measuring high-density materials difficult, limiting object size. This is because reliable contrast 
requires more prolonged exposures. Instead of scanning the whole object, XCT scanners 
measure a particular section or use a reference coupon with similar features. This improves 
image quality. This technique may increase scan quality but not capture the object of interest, 
which may skew the results. 

 

Fig. 37. Three different beam XCT schematics. The fan beam image shows a curved detector, whereas the cone 
beam image shows a flat panel detector. All of these schematics can be employed in each case[6]. 

Eleven samples were chosen for XCT analysis based on the Archimedes density 
measurement method data. These samples were analyzed by tomographic method to 
measure their porosity percentage and density, which would be compared with alternative 
methodologies. In addition, we obtained comprehensive data on porosity distribution, the 
geometries of porosities, their diameters, and other relevant features, which will be further 
elaborated in the results and discussion section. The samples were initially positioned on 
the holder in this procedure, as depicted in Fig. 38(a). In section (b) of Fig. 38, a copper 
filter was positioned in front of the X-ray gun. The sample position was verified and 
corrected using the software in the computer connected to the machine, as shown in Fig. 
39, to guarantee that the sample stayed within the X-ray imaging frame. Once the correct 
placement is confirmed, the tomography process begins. Before introducing a new sample 
for tomography, it is imperative to eliminate any remaining residue by uniformly resetting 
the detector using X-ray beams. 
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Fig. 38.  A general representation of the interior XCT setup(a) sample holder for tomography.(b) X-ray beam 
gun. (c) Detector configuration for accurate tomography detection and imaging. 

 

Fig. 39. The software interface checks and alters the sample's position during tomography analysis to keep it in 
the X-ray imaging frame. 

3.3.4. Metallography 

Following the completion of the tomography analysis of the eleven samples, metallographic 
analysis was conducted on these samples. Given the small size of the samples, it was necessary 
to mount them to assist in the subsequent grinding and polishing procedures. For the initial 
mounting stage, acrylic resin KMU and methyl methacrylate hardener were employed, as 
depicted in Fig. 40(a). The samples were placed in the mount frame in the specified orientation. 
A mixture consisting of a 2:1 ratio of resin to hardener was made by thoroughly mixing for a 
duration of one minute. Subsequently, the mixture was put into the mounting mold. After 15 
minutes, the mounted samples were extracted from the mold, as depicted in Fig. 40(b). At this 
point, the samples were prepared for the processes of grinding and polishing. 
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(a)                                                                     (b) 

Fig. 40. (a)The acrylic resin and methyl methacrylate hardener were used for mounting the samples before the 
grinding and polishing process. (b) Mounted samples were removed from the mold, ready for the grinding and 

polishing process. 

The process of grinding and polishing was conducted using a Presi machine, as seen in Fig. 
41(a). First, abrasive papers with grit sizes of P480, P600, P800, P1200, and P2400 were chosen 
based on the material of the sample as shown in Fig. 41 (b). The grinding process commenced 
using the most abrasive paper, and the selected paper was dampened before being placed on 
the machine. Then, with a rotational speed of 150 rpm, the machine was turned on to polish the 
samples. At this step, to prevent scratches caused by residual particles, water is continually 
spread all over the abrasive paper. Following each grinding repetition, the sample was analyzed 
under a microscope to verify the visibility of the grinding lines. After identifying the distinct 
lines, the sample was rotated by 90 degrees, and a more refined abrasive paper was employed 
to eliminate the existing lines and generate fresh ones. This process was repeated until the final 
grinding stage using the P2400 paper was finished. 

             
 

(a)                                                                          (b) 
 

Fig. 41. (a) The Presi machine was used for the grinding and polishing of the samples. (b) The selection of 
abrasive papers (P480, P600, P800, P1200, and P2400) used for grinding the samples. 
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After the grinding stage, the samples were polished to eliminate the scratches caused by the 
previous procedures. Polishing pads with grit sizes of 1 and 3 m were used, as depicted in 
Fig. 42 The 1 m pink pad was positioned on the device, and diamond suspension, together 
with a lubricant, as depicted in Fig. 43 (a), was utilized to attain a polished surface. 
Subsequently, the surface was further refined using the 3m blue polishing pad and a 0.3 m 
aluminum oxide solution, as shown in Fig. 43 (b). 
 

 
 

Fig. 42. Polishing pads with 1-micron(pink) and 3-micron(blue) grit sizes were used for polishing the samples. 

 

   
(a)                                                         (b) 

Fig. 43. (a) Diamond suspension and lubricant used during the polishing process by the 1-micron pink pad. (b) 
0.3-micron aluminium oxide solution used during the polishing process with the 3-micron blue pad. 

After finishing this stage, it was anticipated that the sample surfaces would exhibit a high 
degree of smoothness and reflectivity, such as a mirror, as depicted in Fig. 44. At this point, 
the samples were prepared for the subsequent phase, where the microstructure was investigated 
using an optical microscope. 
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Fig. 44. The final appearance of the samples after grinding and polishing, with a smooth, mirror-like surface, 
ready for microstructural examination under an optical microscope. 

3.3.5. Optical Microscope  

The surface of the samples was analyzed using an optical microscope after being polished. In 
this investigation, a "LEICA" optical microscope (Fig. 45(a)) was utilized that offered 
magnification options ranging from 5x to 100x. Imaging was conducted using a calibrated 
black-and-white filter. In addition, the microscope is equipped with software that provides 
sophisticated image processing capabilities. The samples were placed on a specialized plane 
with the surface to be examined facing downward (Fig. 45 (b)). The surface analysis was 
performed using an optical microscope set at a magnification of 5x and 10x. Each surface was 
divided into nine different areas, creating a matrix. Nine different images were taken for each 
sample. The average porosity percentage of all nine images was determined to calculate the 
porosity percentage of a specific sample. The microscope's focus was accurately calibrated for 
each photograph to guarantee optimal sharpness of the surface pores. The photos depict black 
dots on the background, which symbolize the porosities found within the specific section.  

 

       
 

(a)                                                   (b) 
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Fig. 45. Schematic of the optical microscope used for capturing high-resolution images of metallographically 
prepared and numbered samples. (b)The sample is placed in a down position for analysis using an optical 

microscope. 

3.3.6. Image Analysis 
Following the acquisition of the photos, they engaged in post-processing with the software 
known as ImageJ. ImageJ is a Java-based software that was developed by the National 
Institutes of Health in the United States for the purpose of processing and analyzing images. 
The porosity percentage of the samples was examined using the ImageJ software, as 
demonstrated in  
Table 7 as an example of one of the samples with a porosity percentage of 2.329%. Since for 
porosity analysis, ImageJ requires an image that contains 8 bits, the first step consisted of 
converting the image into an 8-bit format, which ultimately led to the creation of a grayscale 
representation in which the color of each pixel is determined by the intensity of the greyscale. 
The software made it easier to quantify the proportion of pores on the surfaces as well as the 
diameters of the pores. By adjusting the threshold to prevent any distortions that were caused 
by polishing and any scratches that were still present, it became possible to precisely measure 
the percentage of darkened regions that corresponded to the pores in the samples (Fig. 46). 

Table 7. Analysis of sample porosity using ImageJ software, demonstrating the quantification process of porosity 
within the sample. 

 
Area Mean StdDev Mode Min Max Median %Area MinThr MaxThr 

1 16708.651 255 0 255 255 255 255 2.329 255 255 

 
 

 
 

Fig. 46. Representation of the grayscale image was processed in ImageJ using thresholding to measure the pores 
(shown in red), while excluding any polishing errors and scratches. 
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3.4. Evaluation of ML algorithms 
 
Applying a regression model typically requires multiple metrics for a comprehensive 
evaluation [187]. The accuracy of the chosen models is assessed using three statistical metrics: 
the coefficient of determination (R²), the mean absolute error (MAE), mean square error 
(MSE). 
The MAE represents the average absolute deviation for each statistic which is an indication of 
prediction accuracy[188]. MAE provides a more accurate representation of the actual amount 
of the prediction error, in contrast to other error metrics, by properly addressing the issue of 
error cancellation[189]. It should be noted that the MAE value is expressed in the same units 
as the original target variable. This feature facilitates comparisons among multiple machine 
learning models, specifically for the target data, rather than across different prediction 
tasks[187]. 
The Mean Square Error (MSE) denotes the sample standard deviation of the discrepancies 
between predicted and actual values, used as a metric that calculates the ratio between the 
squared differences of predicted and actual values, and the total number of data points. It is 
worth noting that the MSE is more sensitive to outliers compared to the MAE [189,190].  
The coefficient of determination, often denoted as R2, measures the strength of the relationship 
between two variables. It assesses the accuracy of the regression equation in fitting the 
observed data and capturing the variability in the dependent variable. Specifically, R2 
quantifies the level of the variation in the target variable that can be assigned to the changes in 
independent input variables in a regression model. Essentially, it signifies the degree of 
correlation between the input and target variables[72]. It is essential to note that assessing 
prediction accuracy by using only R2, especially in non-linear regression, is inadequate. 
Therefore, in this study, R2 is not the exclusive statistic for assessing model performance. 
Additionally, R2 has certain limitations. Although, the increase of independent variables results 
in a rise in R2, especially in large datasets, a very high value of R2 may indicate an overfitted 
model, while an accurate model may have a reduced R2. Negative R2 values also indicate that 
predictions are worse than the mean target value[187]. MAE, MSE, and R2 can be calculated 
by equations below. 
 
 

                          MAE =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

       Eq. 6              

 

                          𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 Eq. 7 

                       𝐑𝟐 =  
∑ (�̂�𝒊 − �̅�)𝟐𝒏

𝒊=𝟏

∑ (𝒚𝒊 − �̅�)𝟐𝒏
𝒊=𝟏

 Eq. 8                    
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Where 𝑦𝑖, �̂�𝑖, �̅� represent actual, predicted, and mean values, respectively, and n is total number 
of data points. The high R2 value and the low MAE and MSE values suggest that the analysis 
and statistical model are accurately representative[191]. 
To address the above-mentioned limitations and have a comprehensive analysis of algorithms 
accuracy, the Index of Merit (IM) is introduced in this study. As shown in equation (9) IM 
integrates the three statistical measures (MAE, MSE, and R²) into a single metric that provides 
a more holistic view of model accuracy. A value closer to zero indicates optimal predictive 
performance, whereas values further from zero suggest decreasing accuracy [192,193]. 
 

                                                   IM =  √(𝑀𝐴𝐸)2 + 𝑀𝑆𝐸 + (1 − 𝑅2)2 Eq. 9                   
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4. Result and Discussion 

4.1. Overview 
This section highlights the results gained from the measurement methods outlined in the 
previous chapter. Fig. 47 presents a comprehensive illustration of the complete workflow, 
illustrating the utilization of ML models to analyze the data and optimize the process 
parameters by finding an accurate relationship between them and defect content.  

Fig. 47also depicts the overall organization of the tasks performed in this part of the thesis, 
while the first three sections are related to the methodology procedure, which was explained in 
the previous chapter. These sections are essential as they provide the basis for the work done 
in this chapter. The following sections of the figure describe the procedures for data processing, 
model testing, and conducting a comprehensive analysis of the optimized parameters. The main 
data that has been analyzed in this thesis includes measured relative density percentages 
obtained through three distinct methodologies (Archimedes density measurement, 
image analysis, and XCT), specific process parameters and the calculated VED for each 
component. In the next step, the data was split into training and test sets, a standard procedure 
in ML processes for assessing model performance. In Fig. 47, the letter "i" denotes that the 
data partitioning into training and test sets iterated in several phases, employing different ratios, 
starting from 40 (train)/60 (test). Following the splitting of the data, a correlation heatmap was 
plotted to analyze the impact of each hyperparameter on model performance. Rather than 
exploring an excessively wide range of hyperparameters, which can be computationally 
expensive, shorter ranges were initially defined for almost all hyperparameters of each model.  
Three evaluated parameters exhibited the most significant influence and were selected for a 
detailed analysis. To do so, the impacts of these critical parameters were assessed using a large 
dataset by R² value. The optimal hyperparameter settings leading to the highest R² value were 
chosen for the subsequent analysis phase. Following identifying the optimal values of the first 
and second parameters, the influence of the third parameter was investigated. This analysis 
utilized 2D plots to assess errors through multiple metrics. The error plots facilitated the 
identification of the optimal range for the third parameter, which was chosen based on the 
maximum R² value achieved. After finishing the parameter tuning, the focus of the analysis 
turned to the prediction phase. During this phase, two-dimensional graphs were used to 
compare the predicted values with the actual values. Additionally, this process was repeated 
until the training size reached 90%, wherein the effect of training data size on model 
performance was examined by systematically increasing the training set size in 10% 
increments, from 40% to 90%. This approach investigates the sensitivity of each model to 
varying train-test data splits.  Upon reaching the 90% training size threshold, the workflow 
advanced to the final stage, during which the optimal model and its associated hyperparameters 
were chosen.  This chapter subsequently discusses a variety of ML models in detail. Upon 
reaching the specified training size, the outcomes of these models, including their optimal 
parameters and performance, are documented. 
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Fig. 47. An overview of the workflow is provided in this chapter, demonstrating the use of ML models to 
analyze data and optimize process parameters by finding a relationship between them and defect content. The 
initial three sections pertain to the approach, whereas the subsequent sections outline the process parameter 

optimization. 

4.2. Data pre-processing 
All data acquired from the three density measurement methods has been compiled in this 
section. Table 8 presents the relative Archimedes density percentages measured for each of the 
64 samples. Furthermore, for a specific subset of chosen samples, the densities were assessed 
using two alternative methods, as detailed in Table 9. Upon gathering data from the three 
methodologies, the averages were computed to facilitate the implementation of different ML 
models (SVR, GPR, GBR, k-NN, DT, RF, BR) on the average density. The primary objective 
is to enhance the process parameters according to these models. The average values of 13 pieces 
were initially computed, and subsequently, these averages were extrapolated to the 
remaining pieces. This methodology provides a thorough analysis while considering the data 
constraints of specific techniques. As it was mentioned, to analyze the effect of training size 
on prediction accuracy, the data was divided into training and test sets.The process of applying 
multiple ML models was started with a training size of 40%. In each iteration, the training size 
increased by 10% to reach 90%. The analyses and conclusions are presented based on these 
chosen ratios.  This precise data splitting and model setup procedure ensures that the 
performance of each algorithm is both powerful and reliable, resulting in important insights 
into optimizing process parameters. The findings of these analyses, including optimal 
arrangements for training and testing data, are detailed, providing the precise selection of the 
most appropriate ML models for the dataset. 
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Table 8. Relative Archimedes density percentages measured for all 64 samples 

Sample 
ID 

Relative 
Archimedes 
Density[%] 

 Sample 
ID 

Relative 
Archimedes 
Density [%] 

1 96.89  33 96.11 
2 98.27  34 98.80 
3 98.46  35 99.93 
4 99.69  36 99.15 
5 99.03  37 96.33 
6 97.68  38 98.30 
7 98.90  39 99.56 
8 98.24  40 98.87 
9 97.87  41 97.94 
10 97.38  42 98.25 
11 98.69  43 97.81 
12 98.79  44 97.64 
13 96.40  45 96.38 
14 97.74  46 97.05 
15 98.03  47 98.51 
16 97.27  48 97.60 
17 96.36  49 95.89 
18 96.44  50 97.42 
19 98.57  51 98.52 
20 98.48  52 99.09 
21 96.47  53 97.88 
22 97.74  54 98.31 
23 98.10  55 99.53 
24 99.48  56 98.55 
25 96.16  57 96.99 
26 98.58  58 98.19 
27 97.77  59 98.51 
28 98.80  60 98.89 
29 96.86  61 95.95 
30 97.90  62 97.92 
31 99.33  63 97.66 
32 98.08  64 97.28 

 
The results from the metallography and tomography techniques, as illustrated in Table 9, were 
determined by images obtained by optical microscopy and Tomography analysis. The optical 
microscope images were subsequently analyzed using ImageJ software. The porosity 
percentages were determined via image analysis of the tomographic data. This detailed analysis 
confirmed a thorough examination of the samples' surface and volumetric characteristics, 
providing significant insights into the materials' internal structure. Advanced imaging 
techniques and software facilitated a more precise assessment of porosity, thereby improving 
the overall accuracy of the data and its significance to the study. 

Table 9. Porosity percentages for selected samples using two additional methods (metallography and XCT). 

 
Sample ID 

Porosity content by 
XCT [%] 

Porosity content by 
image analysis [%] 

Porosity content by 
Archimedes Density 

analysis[%] 
5 0.99 - 0.97 
7 1.09 - 1.10 
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Sample ID 

Porosity content by 
XCT [%] 

Porosity content by 
image analysis [%] 

Porosity content by 
Archimedes Density 

analysis[%] 
9 4.72 - 2.13 
13 4.55 1.99 3.60 
16 2.52 7.58 2.73 
18 3.11 2.82 3.56 
21 3.26 2.41 3.53 
22 0.90 1.37 2.26 
23 1.26 1.38 1.90 
31 2.24 2.11 0.67 
34 1.11 1.24 1.20 
39 1.43 - 0.44 
52 0.96 0.94 0.91 

A selection of samples from Table 9 was made for additional analysis to investigate the 
correlation between tomography and metallography data and to decrease errors in density 
measurements. The density percentage for each sample was determined using two distinct 
methodologies. In Sample 16, the notable difference between tomography and metallography 
results can be attributed to the fact that metallography mainly investigates the surface. Fig. 
49(b) illustrates that this sample exhibits significant porosity at the surface, whereas the bulk 
displays reduced porosity, highlighting the differences between these measurement techniques. 
The 3D tomography images depicted in Fig. 49(a) illustrate the distribution, morphology, and 
dimensions of the pores. In denser samples, such as Sample 52, the results from both methods 
converge more closely due to the reduced porosity, resulting in a minimal disparity between 
the methods. 

 
Fig. 48. Porosity percentage chart displaying the results after applying standard error to the data in Table 9 
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Furthermore, after applying the standard deviation to all data in Table 9, the porosity 
percentage chart is illustrated in Fig. 49. The analysis concentrated exclusively on the 
Archimedes method applied to all 64 samples. The purpose of this analysis was to determine 
the closeness of the data using the Archimedes method to achieve a precise comprehension of 
its accuracy.  

 
 

Fig. 49. Representation of a thorough analysis of the samples employing various density measurement 
techniques.  (a) presents the 3D tomography, providing a comprehensive visualization of the sample structure, 
with each sample measuring 8 × 8 × 8 mm.  (b) emphasizes the frontal perspective of the samples, displaying 
particular internal characteristics via tomography imaging.  (c) presents metallographic images acquired 
through OM, comprehensively analyzing the sample's structure. Furthermore, the density values of the samples, 
obtained through XCT and image analysis techniques, are presented for comparison. 

Fig. 50 illustrates the impact of process parameters on the relative density of parts as it varies 
with the volumetric energy density (VED). The laser power is shown by the size of the points, 
while the hatch distance and scan speed are indicated by the color in Fig. 50a and Fig. 50b, 
respectively. The Volumetric Energy Density (VED) varies from 33 to 283 (J/mm³), leading to 
component densities ranging from 90.9% to 99.9%. Sample 38 exhibited the highest density, 
measuring 99.9%, along with a corresponding Volumetric Energy Density (VED) of 66 J/mm³. 
Inadequate laser energy at lower VED values results in partial fusion, which reduces the 
components density. Nevertheless, if the Volumetric Energy Density (VED) exceeds 50 J/mm³, 
the L-PBF process produces components with a high level of density, as confirmed by optical 
micrographs as shown in Fig. 50. As VED grows, a decrease in density occurs because of 
keyhole formation, which highlights the significance of vaporization effects within high range 
of VED. Therefore, both extremely low and extremely high values of VED are 
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inappropriate generally for creating a totally dense component. Therefore, As the VED 
changes, different types of porosities can be observed. 

 

Fig. 50. Illustration of the relationship between the calculated Volumetric Energy Density (VED) and the 
relative Archimedes density. The size of the points represents laser power, while color indicates (a) scan speed 

and (b) hatch distance. 

4.3. Hyperparameter Tuning 

Various ML models were utilized on the data, assessing their impact to identify the most 
accurate and optimal model for process parameter optimization. Supervised learning is a 
prominent ML approach that employs labeled data segmented into training and testing sets, 
primarily to develope models that identify relationships between predictors (features) and the 
response (target) within the dataset. A systematic approach was employed for hyperparameter 
tuning to enhance the performance of the ML models. Rather than exploring an excessively 
wide range of hyperparameters, which can be computationally expensive, shorter ranges were 
initially defined for almost all hyperparameters of each model. This approach allowed the key 
hyperparameters with the most significant impact on model accuracy, as indicated by the 
coefficient of determination (R²), to be identified. However, it should be noted that if 
inappropriate ranges for hyperparameters are defined, inaccurate correlation heatmaps may 
result, potentially leading to the selection of wrong hyperparameter values. This highlights the 
importance of carefully selecting parameter ranges to ensure reliable tuning outcomes. 

A correlation heatmap was generated to visualize the relationship between each 
hyperparameter and the R² score. Fig. 51, displays the heatmap showing the relationship 
between each hyperparameter and the R² score, visually representing the correlations between 
the algorithms and the predictive accuracy. This analysis identified the top three most 
influential hyperparameters. Subsequently, the hyperparameters were evaluated more 
comprehensively using more comprehensive ranges and smaller step sizes. In the next step, a 
3D plot was used to examine the effect of the two most impactful hyperparameters on 
prediction accuracy, those which are highlighted with red rectangles in Fig. 51, allowing for 
the identification of their optimal values, as shown in Fig. 52.  
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4.3.1. Heat map correlation plot 
To find the effect of each hyperparameter for each algorithm, a heat map correlation plot was 
created, as illustrated in Fig. 51. To find the optimal value for each hyperparameter, heat maps 
were utilized to show the effect of each parameter on the R² score. The most effective 
hyperparameters were highlighted by red and blue rectangles, indicating the parameters with 
the maximum impact. As mentioned before, the hyperparameters highlighted by red rectangles 
were selected to use in the 3D plot, while the third hyperparameters, highlighted by blue 
rectangles analyzed by a 2D plot. The aim of selecting these three hyperparameters for further 
analysis is to find the optimal value which corresponds to the lowest error in each model. For 
example, in the case of the RFR model, parameters such as min_samples_leaf, 
min_weight_fraction_leaf, and n_estimators as suggested by correlation heatmap were 
analysed. After identifying the two most influential hyperparameters (min_samples_leaf and 
min_weight_fraction_leaf), a 3D plot was generated to visualize how their interaction affected 
the R² score. The optimal values for these parameters were then fixed, and the third 
hyperparameter (n_estimators) was fine-tuned to further enhance the model performance. It is 
worth noting that Fig. 51, Fig. 52, and Fig. 53 are related to the analysis of the models using a 
training size of 80%. 

 
 

Fig. 51. Correlation heatmap of hyperparameters and R2 for all algorithms (Training Size 80%) 

4.3.2. First and second hyperparameter analysis - 3D plot surface 

After identifying the three most effective hyperparameters, a 3D plot is created using the first 
and second hyperparameters (highlighting with red rectangles in Fig. 51) chosen in the previous 
step. This process aims to find the optimized hyperparameter values leading to the maximum 
R², indicating the minimal error, for each model, see Fig. 52. Following this step, only one 
hyperparameter remains unassigned a value. In the subsequent phase, a 2D plot is employed to 
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ascertain the optimal value for the third hyperparameter by analyzing the minimal errors which 
will be explained in the next section. 

 
Fig. 52. 3D plots illustrating the optimal hyperparameter values for achieving the maximum R² score (minimum 

error) for various ML models . 
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4.3.3. Third hyperparameter analysis - 2D plot 
In this step, to identify the optimal value for the third hyperparameter a 2D plot was used for 
each algorithm in all training sizes as depicted in Fig. 53. The optimized value for the third 
hyperparameter is determined by the criterion that an elevated R² and lowered MSE and MAE 
signify superior model performance with minimized error. This step represents the last stage 
of hyperparameter selection, wherein values for all hyperparameters have been established for 
each model. The next step is to investigate the error rates of the various models. 

 

Fig. 53. 2D plots showing the optimal value selection for the third hyperparameter based on three error metrics 
including R², MSE, and MAE for various ML models 
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In the SVR model, although the gamma parameter showed a stronger correlation in the heatmap 
plot (Fig. 51) compared to epsilon, it only has two possible values. As a result, a 2D plot 
analyzing this hyperparameter would not provide sufficient insight. Consequently, as is shown 
in Fig. 53, the epsilon parameter was selected for analysis in the 2D plot due to its more 
comprehensive range of values. However, both gamma values were tested during the tuning 
process to ensure a thorough evaluation. 

This tuning process significantly improved the prediction accuracy in all models, ensuring that 
the selected hyperparameters yielded optimal results. The final hyperparameter values were 
then used in subsequent model evaluations, including comparisons of predicted versus actual 
values for model validation. 

4.3.4. Train size effect analysis 
After completing the hyperparameter tuning process and selecting the optimized 
hyperparameters, we used these values in the ML algorithms to predict the target variable (the 
relative density of the testing data) for which the actual values were already known. The 
efficiency of each model was subsequently assessed by quantifying the differences between 
the predicted and actual values. The impact of different train sizes on model performance, 
assessed through R2, MAE, and MSE, is an essential part of model evaluation and 
optimization. Fig. 54 depicts the impact of various train sizes (40%, 50%, 60%, 70%, 80%, 
90%) on the aforementioned error metrics across several algorithms: BR, DTR, GBR, GPR, 
K-Nearest Neighbors (KNN), SVR, and RFR. The general trend observed in Fig. 54a indicates 
that as the training size percentage increases, the Mean Squared Error (MSE) generally tends 
to rise in most algorithms, which inversely affects prediction accuracy. This increase in MSE 
is more noticeable in the BR. For instance, at the training size of 40%, the BR demonstrates a 
mean squared error (MSE) of 1.987, which increased to 7.043 by raising the training size to 
90%. The significant rise in MSE highlights the model's sensitivity to decreased testing size, 
leading to lower prediction efficiency.  However, some algorithms, such as SVR, demonstrate 
the inverse trend, where an increase in training size decreases the MSE, indicating enhanced 
predictive accuracy with larger datasets. 

The effect of train size on Mean Absolute Error (MAE), as shown in Fig. 54b, follows a similar 
pattern to that of MSE. The lowest MAE values are typically observed at the 60% training size, 
while larger training sizes of 90% result in higher MAE values. For example, in the GBR 
model, the MAE at 60% train size is 0.713, but this value rises to 0.896 at 90%. While this 
suggests that a 60% train size may yield optimal results for minimizing MAE, it is important 
to note that other error metrics, such as MSE and R², must also be considered to identify the 
most appropriate train size for overall model performance. 

Fig. 54c shows that the coefficient of determination (R²) increases as the training size rises, 
indicating improved predictive accuracy. The most significant improvements in R² occur when 
the training size reaches 80% and 90%. For instance, in the GPR model, the R² value starts at 
0.252 with a 40% training size but more than triples to 0.856 when the training size reaches 
90%. Similarly, the SVR model significantly improves, with the R² increasing from 0.344 at a 
40% train size to 0.842 and 0.871 at 80% and 90%, respectively. However, this trend is not 
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consistent across all algorithms. In the BR, an opposite pattern is observed, where increasing 
the training size leads to a decrease in R2, highlighting the distinct behavior of each algorithm. 
Although using 90% of the data for training usually results in the highest R² score across 
various algorithms, using only 10% of the data for testing leads to an increase in MAE and 
MSE. This shows that considering only R² is not enough to evaluate the prediction accuracy of 
each model, and other error metrics should also be considered. 

The results indicate that a training size of 80% achieves an optimal balance between three 
different error metrics, depending on the algorithm applied. Among the analyzed algorithms, 
SVR provides the highest accuracy in almost all training sizes, while the BR displays the lowest 
prediction efficiency throughout the evaluation. These findings highlight the necessity of 
choosing a proper training size and optimal hyperparameters to optimize accuracy and error 
metrics for each algorithm. 



 82 

 
Fig. 54. R2, MAE, and MSE values for different values and train sizes of each ML algorithms 
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4.3.5. Predicted vs. Actual Density Comparison 

This section evaluates the predictive accuracy of various algorithms by comparing the 
predicted and actual relative densities on the vertical and horizontal axes, respectively. Fig. 55 
illustrates the comparison of the actual and predicted relative densities in AISI 316L-2.5% Cu 
components manufactured by L-PBF for all methods at 80% training size. The proximity of 
the points to the red dashed line, representing perfect predictions, indicates the accuracy of 
each model. The shaded gray area shows ±1% tolerance range, indicating an acceptable range 
for prediction deviations. Most models are less accurate in components with lower relative 
densities, except for SVR and GPR, which consistently maintain high precision across the 
entire range. For components with higher relative density, prediction accuracy improves in all 
models, as shown by the closer alignment of points with the red line. 

 

Fig. 55. Predicted density versus actual density plots with regression applied for each ML model, illustrating the 
performance of the selected hyperparameters. 

4.4. Final Model Selection and verification 
Following the assessment of the models, the best ML algorithm for density prediction was 
identified. Fig. 56 compares the actual and predicted relative densities attained by the best 
machine-learning model using testing data. The SVR algorithm with the optimized 
hyperparameters (kernel = rbf, C = 215.44, Max_iter = 990, tol = 0.0278, epsilon = 0.1) was 
applied to predict relative densities at 15 testing points. Among the models, SVR excelled, 



 84 

attaining the lowest MAE of 0.601, MSE of 0.640, and highest R2 of 0.842 at the training size 
of 80%. As shown in Fig. 56, the predictions closely match the actual values. Additionally, Fig. 
56 highlights the optimal values of the target variable (relative density), the corresponding 
VED, and the same trend shown in Fig. 50 for manufacturing under optimal conditions. 
additionally, the optimized process parameters for the target density can be predicted using the 
most accurate model, reducing powder usage for printing and saving time and cost. 
Supplementary advantages encompass enhanced efficiency and diminished material waste in 
production, thereby fostering more sustainable and economically viable manufacturing. 

 

Fig. 56.  Comparison of actual and predicted relative Archimedes density as a function of calculated VED using 
SVR with optimized hyperparameters at the training size of 80% 

4.5. Optimized Process Parameters Map  

Fig. 57 illustrates the predicted relative density for four different scan speeds: 400, 600, 800, 
and 1000 mm/s based on the best predictor model, SVR at the training size of 80% with specific 
optimized hyperparameters. These values are within the specified range of hatch distance (0.1 
to 0.2 mm) and power (100 to 400 W). Generally, as the scan speed increases, the contour plots 
in Fig. 57 indicate a continuous rise in predicted relative density, as shown by the expansion 
of yellow and green regions. This trend highlights the influence of scan speed on the relative 
density, where higher scanning speeds caused enhanced relative density under the given 
conditions. 

At a scanning speed of 400 mm/s, the minimum relative densities are observed in the power 
range of 300 to 400 W, independent of the hatch distance. Conversely, the highest relative 
densities at this scan speed are obtained when the power ranges from 100 to 200 W, with the 
hatch distance between 0.13 and 0.15 mm. This suggests that optimal relative density at the 
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scan speed of 400 mm/s can be achieved within these specific process parameters at lower 
power levels combined with moderate hatch distances. 

At a scanning speed of 600 mm/s, the predicted relative density improved across the entire 
hatch distance and power range compared to the previous scan speed. However, the maximum 
predicted relative density is still lower at scanning speeds of 800 and 1000 mm/s. The lowest 
relative density is observed when the power exceeds 300 W, particularly at hatch distances less 
than 0.12 mm. On the other hand, when the power is less than 300 W, the highest relative 
densities are achieved in two specific hatch distance ranges, 0.10 to 0.11 m, and 0.15 to 0.18 
mm. 

The maximum predicted relative density at a scan speed of 800 mm/s increased by 0.8% 
compared to the previous scan speed of 600 mm/s, and by 1.1% compared to the speed of 400 
mm/s, reaching a peak of 99.5%. The highest relative densities were achieved in the hatch 
distance range of 0.12 to 0.18 mm. However, at high P values,  particularly around 400 W, the 
highest percentage of porosity would be possible, especially in small hatch distance ranges. 

At the scanning speed of 1000 mm/s, the maximum relative density decreased by 0.5%. The 
predicted relative density value reached its lowest value at the hatch distance range of less than 
0.12 mm. For hatch distances greater than 0.12 mm, the power should be set between 100 and 
250 W to achieve high relative density, particularly at a hatch distance of 0.14 mm. 

Based on Fig. 57, it can be concluded that while high relative density values are achievable in 
all four plots, a scanning speed of 800 mm/s can be considered the optimal value. At this 
scanning speed, porosities can be further minimized using a power setting of approximately 
250 W and a hatch distance of 0.13 mm. 
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Fig. 57. Illustration of predicted relative density (%) for different scan speeds (400, 600, 800, and 1000 mm/s) 
by varying power (100-400 W) and hatch distance (0.1-0.2 mm) ranges, using the SVR algorithm at the training 

size of 80% after hyperparameter tuning 
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5. Conclusion and Future Perspective 
In the future, 3D printing is expected to become more diverse and application-focused in terms 
of materials, departing from traditional perspectives. This shift is driven by increased 
willingness and the availability of a broader range of materials. Industries, such as aerospace 
and automotive, are increasingly turning to 3D printing to develop materials that meet their 
specific needs. Designers can now choose materials specifically tailored to their applications 
to evaluate printability, complexity, time, cost, raw materials, model size, and geometry for 
prototypes or manufacturing. To address this, GA and genetics-based ML methods optimize 
these multi-indicators and minimize complexity. GA is preferred due to its ability to handle 
extensive data in binary string format [190]. 
As discussed in this review, addressing the challenges of applying ML algorithms in AM 
involves overcoming limitations related to specific machines, materials, and process 
parameters. A crucial research gap is the need to generalize these ML models to broader 
contexts, necessitating further investigation. Additionally, even though the data used in these 
algorithms is often voluminous, it may prove insufficient. Various sensors on AM machines 
can be combined to improve defect detection and accuracy for monitoring goals, yet this 
introduces new challenges. Handling diverse and high-volume sensor data requires the 
development of novel ML algorithms. Consequently, the following research directions are 
proposed to enhance the use of ML techniques for real-time monitoring and control of AM 
processes. 

5.1. Sensor Development 
To ensure timely corrective actions are taken in AM, it is essential to have a prompt response 
when employing the ML model for real-time control [22]. As a solution, it has been proposed 
to create an intelligent sensor  that can leverage "Big Data" analytics and facilitate AM 
integration into the Industry 4.0 framework [191]. Moreover, computational tools and 
algorithms are essential for operating newly developing sensing platforms. These tools enable 
the platforms to perform better than earlier sensor technologies in terms of cost, resolution, 
size, and sensitivity, among other factors [191]. Furthermore, it is important to emphasize that 
the benefits are reciprocal (Fig. 58); using ML algorithms can enable an iterative design process 
that rectifies inconsistencies in prototype sensors as they transfer to large-scale manufacture 
[192], further paving toward acquiring high-quality data. 
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Fig. 58. The mutual benefits sensors and ML models may offer to enhance the quality of metal AM. 

5.2. Volume, Velocity, and Variety of Data  
Although ML methods have undergone significant development over the years, their 
application to online monitoring is a relatively new area that requires further exploration. Given 
the rapid pace of the AM process, the data collected exhibits characteristics typical of "Big 
Data" in terms of volume, velocity, and variety [193]. The research articles reviewed in this 
study indicate that supervised ML methods are the most employed approach for real-time 
monitoring and control of L-PBF. Consequently, it is anticipated that labeling and training such 
a substantial volume of data can be both cumbersome and labor-intensive [140]. To mitigate 
the time required for data training, an alternative approach involves the utilization of different 
ML methodologies, such as unsupervised and active learning techniques, which are likely to 
gain more traction. This approach could lead to shorter training periods and allow faster 
response times [193]. 
Another promising avenue for research lies in the domain of UQ, a crucial element for ensuring 
the reliability of robust designs. The assessment of uncertainty in the AM sector has been 
thoroughly examined by Wang et al. [194]. In the context of regression tasks, ML models such 
as GPR not only furnish the predicted mean value of output at a given input but also supply a 
standard deviation, which indicates the associated uncertainty at that particular input point. 
Furthermore, in classification tasks, ML models also offer a measure of confidence in their 
classification decisions. 

5.3. Conclusion 
Optimization of the critical process parameters of the L-PBF process using ML approaches to 
improve component density and quality and enhancing the building rate were two main goals 
of this thesis. An optimal process parameter ranges for improving process performance were 
identified through a comprehensive analysis of the effects of laser power, scan speed, and hatch 
distance on relative density. The results from the ML models, combined with experimental 
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data, provide valuable insights into how variations in process parameters affect the 
densification of LPBF components. This research validates the effectiveness of ML in 
enhancing AM processes and highlights the significance of data-driven methodologies in 
advancing the field. 

In the second chapter, state of the art,  an in-depth overview of the current research on ML in 
laser-based AM processes such as L-PBF and DED was provided. It examines the key issues, 
focusing on application case studies, methodologies, and model development. Furthermore, the 
application of ML in these fields was studied in several phases, including processing 
parameters optimization and property prediction, geometric deviation control, defect detection, 
and in-situ monitoring. Conducting a thorough review of the current literature on the 
applications of ML in L-PBF and DED reveals that researchers are exploring innovative 
approaches, including data-driven techniques, to address time and cost-related issues.  

The third Chapter, Materials and Methods, explained the methodology employed throughout 
the study, highlighting the selection of process parameters, the manufacturing process, different 
methods for measuring sample densities, and the subsequent ML optimization. It outlines each 
step taken to ensure accurate and reliable results, focusing on optimizing process parameters 
to improve the quality of LPBF components. 

In the fourth chapter, titled Results and Discussion, components density, porosity percentage 
of each sample, and the ML methodology used to optimize the LPBF process parameters were 
described. The dataset, consisting of density measurements, was split into various training and 
testing sets. Seven ML algorithms including BR, DTR, GBR, GPR, KNN, RFR, and SVR were 
evaluated for their predictive accuracy. Given the importance of hyperparameters in optimizing 
model performance, each algorithm underwent extensive hyperparameter tuning using Grid 
Search. A correlation heatmap was generated to evaluate the relationship between 
hyperparameters and prediction accuracy, identifying the three most influential 
hyperparameters for further analysis. Finally based on the prediction of the best ML algorithm, 
The SVR algorithm with the optimized hyperparameters (kernel = rbf, C = 215.44, Max_iter = 
990, tol = 0.0278, epsilon = 0.1), the optimized process parameter for L-PBF process was 
defined. 

According to the research conducted on the process parameter optimization in L-PBF using 
ML, the following outcomes can be drawn: 

1. Trial and error is not an ideal approach for improving the quality of parts in AM due to 
the high cost associated with feedstock and machines as well as the rapidly changing 
economic landscape characterized by the quick creation of new products. On the other 
hand, producing high-quality goods from 3D designs created in virtual environments 
requires a new predictive paradigm, further necessitating the application of data-driven 
methods. 

2. ML models can predict the product component density, microstructural properties, and 
mechanical behavior of manufactured parts with minimal error. Moreover, geometric 
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deviation control can be conducted with ML-assisted methods to enhance the efficiency 
of powder-based AM methods and facilitate increased utilization in practical 
manufacturing processes. 

3. Among the seven evaluated ML models, SVR algorithm outperformed others with the 
highest prediction accuracy in optimizing process parameters, achieving an R² score of 
0.842, MAE of 0.601, and MSE of 0.640. 

4. Extensive hyperparameter tuning using Grid Search led to optimized settings for each 
algorithm, revealing that fine-tuning of hyperparameters including C, kernel, and tol in 
SVR had the most significant impact on model accuracy and process optimization. 

5. A strong correlation was observed between the key process parameters—laser power, 
scan speed, and hatch distance—and the relative density of the components. The 
optimized process parameters significantly improved the relative density of the 
components, reaching values close to or above 99%, indicating a successful reduction 
in porosity. 

6. The optimized process parameters for L-PBF using SVR with hyperparameter tuning 
were determined to be laser power = 200 - 250 W, scan speed = 800 mm/s, and hatch 
distance = 0.13 mm, significantly enhancing the component relative density. 

7. The application of ML techniques not only predicted a reliable process parameters 
defect content relationship but also led to an enhancement in the building rate, thus 
addressing both quality and productivity in the L-PBF process. The ML models 
developed can be applied to other AM processes or materials, demonstrating the 
versatility of data-driven optimization approaches in AM. 

It is noteworthy that ML alone cannot address every problem. It is crucial to identify the 
specific conditions and contexts in which ML is advantageous and select the appropriate 
algorithm to address the issue. Although there are many promising applications, using ML to 
improve the production process of L-PBF and DED still faces numerous challenges.  
Overcoming these obstacles will require further inv 
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