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Abstract

The study of airflow over open cavities is fundamental to the design of modern
aircraft, both in civil and military aviation. Such flow is inherently unstable and
leads to pressure oscillations, including broadband components and periodic tonal
components, which can interfere with the aerodynamics of the aircraft. Therefore,
such cavities have been investigated since the 1950s.
Rossiter was the first to describe the phenomenon, identifying the cause of the
tonal pressure oscillations (which will later be called Rossiter modes) and deriving
an empirical formula for their frequency, which will later be refined by Heller.
Subsequent studies have discovered the existence of cavities in which the periodic
pressure components are reduced, if not completely absent, and identified other
parameters that influence the flow behaviour, such as the cavity length-to-depth,
length-to-width and width-to-depth ratios, and the Reynolds and Mach numbers.
The development of subsequent CFD techniques has allowed a greater understanding
of the phenomenon, although, due to the high Reynolds numbers, the simulation
of transonic and supersonic cavities remains a challenge.
In this paper, a reference geometry has been analysed through the commercial
software Simulia PowerFLOW ®, which implements the Lattice-Boltzmann Method,
describing how the simulation was prepared and comparing the results with those
obtained experimentally and present in the literature.
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Chapter 1

Introduction

The study of airflow over open cavities is crucial for the design of modern aircraft,
in both civil and military aviation. Cavity flows, such as those over weapon bays,
landing gear bays, and every opening in the airframe, are indeed widespread in
current aerospace applications. Flow over such cavities is inherently unsteady
and leads to pressure oscillations, which can interfere with aircraft aerodynamics
and internal noise levels. Furthermore, pressure oscillations may affect structural
integrity by coupling with the main flexural modes of the airframe and provoking
structural failure due to acoustic fatigue. In addition, protracted vibrations may
exceed the certification limit. Therefore, such cavities have been the subject of
investigation since the 1950s[8, 15], both experimentally and numerically. The
primary focus has been on rectangular cavities, due to their simple geometry and
numerous applications.

1.1 Description of Pressure Oscillations

Pressure oscillations include broadband components and periodic tonal com-
ponents. The cause of the latter ones is an acoustic feedback inside the cavity:
Kelvin-Helmholtz instabilities within the shear layer impinge on the downstream
lip of the cavity and generate acoustic waves that propagate upstream and trigger
the formation of vortices (Figure 1.1). These vortical structures interact with the
same acoustic waves, generating a closed-loop feedback. These periodic fluctuations
are referred to as Rossiter modes.

The aforementioned mechanism is true for Mach numbers lower than 2, while
the cause of the pressure oscillations at higher Mach numbers is not yet known and
several hypotheses have been proposed[10].

1



CHAPTER 1. INTRODUCTION

Length-to-depth and width-to-depth ratios

An important role is played by the cavity length-to-depth ratio[15]. In shallower
cavities, the flow separates from the front edge and reattaches along the cavity floor
(Figure 1.1a). Its pressure decreases initially, as speed increases, but then rises at
the reattachment point. Approaching the downstream wall, flow pressure increases
again until the boundary layer separates once more, reattaching downstream of the
cavity[16]. This results in a reduction or even a total inhibition of the feedback
mechanism responsible for the tonal components of pressure oscillations[10]. Hence,
for higher length-to-depth ratios, random pressure oscillations are dominant. These
are known as closed cavity flows.

(a) Closed cavity flow

(b) Open cavity flow

Figure 1.1: Two different types of cavity flow.[3]

On the other hand, as the cavity depth increases, the separation and reattach-
ment points become closer until the two coincide, and a reverse flow between the
high and low pressure regions is formed (Figure 1.1b). Thus, for deeper cavities,
there are strong tonal components of pressure oscillations. These are know as open
cavity flows.

For very high depths, the pressure spectrum presents one peak that is much
larger than the others, while for lower-depth cavities there are two or more peaks
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CHAPTER 1. INTRODUCTION

of equal intensity. The frequency at which the peak occurs is called the dominant
frequency[16].

Cavity width too influences the behaviour of the cavity, as described below,
causing periodic pressure oscillations to occur even for larger length-to-depth ratios
if the cavity is sufficiently wide[12]. In addition to this, cavity width also affects the
amplitude of the periodic oscillations (but not their frequencies nor the amplitudes
of the random oscillations): in particular, by decreasing the length-to-width ratio,
the peak of the spectrum shifts towards smaller frequencies, i.e. the dominant
frequency is reduced[16].

Mach and Reynolds Numbers

The amplitude of both periodic and random pressure oscillations is affected
by the free stream Mach number, but in opposite ways: an increase in the Mach
number leads to an increase in the amplitude of the periodic oscillations and, on
the contrary, to a reduction in the random ones.

Regarding the Reynolds number, it was observed that the transition from laminar
to turbulent boundary layer affects the cavity response, but once the upstream
boundary layer is completely turbulent, pressure fluctuations are insensitive to
Reynolds number variations[5, 16].

(a) t = 0: Sound wave leaves rear lip.

(b) t = t′: Vortex leaves front lip.

Figure 1.2: Simplified model of flow over cavity[16] (note that the sound speed inside
the cavity ac is here indicated with c).
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CHAPTER 1. INTRODUCTION

A Rossiter frequencies formula

A formula for Rossiter modes frequencies can be derived by assuming that the
acoustic waves in the cavity and the vortex shedding have the same frequency.
This is reasonable since the acoustic radiation excites the vortex shedding. If we
consider a vortex propagation velocity equal to kv times the free stream velocity
and a sound speed inside the cavity ac, we can say that:

f = kvU∞

λv

= ac

λa

(1.1)

Consider an acoustic wave leaving the rear lip at t = 0, when a vortex is located
γvλv downstream of the cavity. At time t = t′, another sound wave reaches the
cavity front lip when a vortex is shed. Assuming a number of complete wavelengths
ma involved (see Figure 1.2a), it can be stated that:

L = maλa + act
′ (1.2)

In the same time interval, the vortex downstream of the cavity has spaced a
distance kvU∞t′. Considering, in a similar manner, mv complete wavelengths (see
Figure 1.2b), we have:

mvλv = L + γvλv + kvU∞t′ (1.3)

By taking t′ from one equation and substituting it into the other, and making
explicit λa and λv as a function of f according to the (1.1), we obtain:

f = U∞

L
· ma + mv − γv

M a∞
ac

+ 1
kv

(1.4)

1.2 Brief History of Studies about Cavity Flows
Early studies on cavity flows witnessed the presence of self-sustained oscillations

and acoustic tones[8], but it was only Rossiter in the 1960s[16] who first described
the phenomenon behind the tones and derived, empirically, a formula for the
periodic components of pressure fluctuations:

fm = U∞

L
· m − α

1
K

+ M∞
(1.5)

where K is a constant and α is function of the L
D

ratio.
This formula is similar to the (1.4) found via analytical method, and the two

are the same if ma + mv = m, γv = α, kv = K and ac = a∞.
The latter is the weakest hypothesis, since it’s true only for low Mach numbers.
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CHAPTER 1. INTRODUCTION

Heller[4, 5] corrected it by taking into account the increase in cavity temperature
due to compression work and considering the speed of sound inside the cavity equal
to the stagnation speed of sound:

fm = U∞

L
· m − α

1
kv

+ M∞√
1+ γ−1

2 M2
∞

(1.6)

Furthermore, Rossiter found thatα = 0.062 · L
D

kv = 0.57
(1.7)

Subsequently, at the end of the 1990s[12], it was observed that in addition to
open and closed cavity flows, the reattachment of the flow on the bottom of the
cavity may not be stable, i.e. is intermittent. In this case, since the feedback
mechanism is also intermittent, the periodic components of the fluctuations are
strongly reduced, but not as negligible as when the reattachment is stable. The
cavities where the flow behaves this way are known as transitional cavity flows.
Maureen et al.[12] identified the threshold for having a closed cavity flow regime at
length-to-depth ratios varying approximately between 8 and 14, being higher for
larger width-to-depth ratios. His results are given in Figure 1.3.

The utilization of Computational Fluid Dynamics (CFD) techniques has en-
abled a deeper examination of the phenomenon. However, due to the substantial
computational expense associated with simulations at high Reynolds numbers, the
simulation of cavities in the transonic and supersonic regimes remains a challenging
task[10]. It has been observed that Unsteady RANS (URANS) methods are able
to predict the Rossiter modes, but they are by nature not able to predict the full
spectrum of turbulent scales and, therefore, broadband components of pressure
oscillations. In contrast, Detached Eddy Simulation (DES) and Large Eddy Simu-
lation (LES) are able to predict both tonal and broadband components, and have
proven to be more accurate. Some mixed RANS-LES techniques also seem to agree
well with the experimental results[9, 10, 13].

Some recent studies, however, have used the commercial software SIMULIA
PowerFLOW ® by Dassault Systèmes based on a Very Large Eddy Simulation
(VLES) Lattice-Boltzmann Method (LBM)[1, 10]. The first of these works[10], led
by Mancini et al., analysed two cavities, one deeper and the other shallower, both
in the high-subsonic and supersonic cases. They proposed a further correction to
the Rossiter-Heller formula (eq. 1.6) in order to consider the reduction of the sound
propagation time from the rear wall to the front wall of the cavity. In this way,
the actual speed of the acoustic waves travelling upstream is ac(1 + Mc), where
Mc is the reversed-flow convection Mach number inside the cavity. If the original
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CHAPTER 1. INTRODUCTION

(a) W
D = 1

(b) W
D = 2

(c) W
D = 4

Figure 1.3: Boundaries of cavity flow regimes obtained by Maureen et al.[12] at different
width-to-depth ratios. Circles indicate an open flow regime; squares a transitional flow;
diamonds a closed flow.
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CHAPTER 1. INTRODUCTION

formula is updated, the equation becomes

fm = U∞

L
· (m − α)(1 + Mc)

1+Mc

kv
+ M∞√

1+ γ−1
2 M2

∞

(1.8)

If Mc = 0, the two formulae are equal.
This correction ensures that the Rossiter modes frequencies obtained from

the semi-empirical formula are much closer both to those obtained from wind
tunnel measurements and to those obtained from the LBM simulation. The same
study also proved that the reverse-flow Mach number in cavity depends both from
free-stream Mach number and length-to-depth ratio, although it did not manage to
demonstrate the dependence, being Mc higher in supersonic case for shallow cavities
and vice versa for deep cavities, and used an average value of 0.18. Furthermore,
it confirmed that Rossiter modes are predominantly longitudinal, with slightly
spanwise variations, despite side edge vortices. Anyway, the paper proved that
Rossiter modes frequencies and wall pressure oscillations can be properly described
by the software for all cases.

A subsequent paper by the same authors[1] focused on expressing Mc as a
function of the free-stream Mach number and cavity length-to-depth ratio. By
relating Mc to the free-stream Mach number and the stagnation temperature in
the cavity they obtained:

Mc = M∞ñ
1 + γ−1

2 M2
∞

· Ṽc (1.9)

where Ṽc is a function of L
D

and M∞ and is derived via polynomial regression:

Ṽc = c0 + c1
L

D
+ c2M∞ + c3

3
L

D

42
+ c4M

2
∞ + c5M∞

L

D
(1.10)

Two different sets of coefficients were used (relative to two different distances from
the cavity floor) and the one with the less error compared to reference experimental
data were chosen.

The same paper, also, improved the α function of cavity aspect ratio by replacing
the linear fit made by Rossiter (eq. 1.7) with a second-order fit. The two corrections
made led to an improvement in Rossiter modes prediction accuracy.

Due to the importance of the application of this phenomenon, several researches
have been carried out to investigate possible control techniques, both active and
passive.

Passive control consists of modifying the cavity, such as adding spoilers to the
leading edge[11]. This causes the boundary layer to be deflected from the cavity and
the shear layer to develop outside it, not impinging on the rear wall, thus avoiding
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CHAPTER 1. INTRODUCTION

the feedback mechanism. However, the ramp angle must be properly calculated
based on the cavity geometry and the flow velocity, making this modification
ineffective in off-design conditions[3].

Active control techniques, instead, include injecting fluid from the front wall
into the shear layer, along the whole span: this reduces the turbulent intensity and
the size of the recirculation zone, reducing the positive feedback[3].

1.3 Aim of this Work
In this thesis a case of study with the above mentioned PowerFLOW software

will be examined and analysed.
In Chapter 2 Boltzmann equation and the assumption underlying Lattice-

Boltzmann Method will be presented, explaining how the macroscopic quantities
are connected to the distribution function and how the common Navier-Stokes equa-
tions can be obtained from the Boltzmann one. The computational algorithm and
how boundary conditions are implemented will be shown, and the above-mentioned
software will then be briefly presented, explaining its steps.

In Chapter 3 the reference geometry will be presented and the preparation of
the case to be simulated will be described step by step. The simulations performed
will then be indicated and the results analysed: initially the temporal evolution of
the flow in terms of boundary layer and vorticity will be shown, to then describe its
mean field and turbulent kinetic energy. A comparison will then be made between
three planes at different span positions to verify if, as stated in this Chapter, the
phenomenon is predominantly longitudinal. Finally, the pressure oscillations will
be analysed as Overall Sound Pressure Level and Sound Pressure Level, comparing
the data obtained from the simulation with the experimental ones and with other
numerical data present in the literature.
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Chapter 2

The Lattice-Boltzmann Method
and the PowerFLOW Software

The Lattice-Boltzmann Method (LBM) is a CFD technique that, unlike common
methods based on the modelling of the Navier-Stokes equations, consists in the
discretization of the Boltzmann equation, whose main variable is the probability
density function f(x⃗, ξ⃗, t) of a particle, described by its position x⃗ and velocity ξ⃗
at a given time t. At the end of this Chapter, however, it is shown how from the
Boltzmann equation the Navier-Stokes can be derived.

The basic idea of the method is that macroscopic fluid dynamics is nothing
but the sum of the individual microscopic dynamics of the particles constituting
it. However, since the number of fluid particles is so high that they can be
modelled individually, they are described with a statistical approach through their
distribution function[2].

The macroscopic physical quantities describing the filed are connected to the
moments of the function f . Indeed, the density ρ, the momentum density ρu⃗ and
the total energy ρE are, respectively, the zeroth, first and second moment of f
with respect to ξ⃗[18]:

ρ(x⃗, t) =
ÚÚÚ

f(x⃗, ξ⃗, t)dξ⃗ (2.1a)

ρ(x⃗, t)u⃗(x⃗, t) =
ÚÚÚ

f(x⃗, ξ⃗, t)ξ⃗dξ⃗ (2.1b)

ρ(x⃗, t)E(x⃗, t) = 1
2

ÚÚÚ
f(x⃗, ξ⃗, t)(ξ⃗ · ξ⃗)dξ⃗ (2.1c)

The other physical quantities are calculated from these.
The velocity ξ⃗ is the sum of the macroscopic velocity of the fluid u⃗ and the

microscopic velocity ζ⃗, also called peculiar velocity. It is easy to prove that:ÚÚÚ
f ζ⃗dξ⃗ =

ÚÚÚ
f ξ⃗dξ⃗ −

ÚÚÚ
fu⃗dξ⃗ = 0 (2.2)

9
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By making ξ⃗ explicit in (2.1c) we obtain:

ρ(x⃗, t)E(x⃗, t) = 1
2

ÚÚÚ
f(x⃗, ξ⃗, t)(ξ⃗ · ξ⃗)dξ⃗ =

= 1
2

ÚÚÚ
f(x⃗, ξ⃗, t)(u⃗ + ζ⃗) · (u⃗ + ζ⃗)dξ⃗ =

= 1
2

ÚÚÚ
f(x⃗, ξ⃗, t)(∥u⃗∥2 +

...ζ⃗...2
+ u⃗ · ζ⃗)dξ⃗ =

= 1
2

ÚÚÚ
f(x⃗, ξ⃗, t)∥u⃗∥2dξ⃗ + 1

2

ÚÚÚ
f(x⃗, ξ⃗, t)

...ζ⃗...2
dξ⃗ =

= 1
2ρ∥u⃗∥2 + 1

2

ÚÚÚ
f(x⃗, ξ⃗, t)

...ζ⃗...2
dξ⃗

(2.3)

Remembering that the total energy ρE is the sum of the kinetic energy 1
2ρ∥u⃗∥2

and the internal energy ρe, we get that the internal energy ρe is equal to:

ρ(x⃗, t)e(x⃗, t) = 1
2

ÚÚÚ
f(x⃗, ξ⃗, t)(ζ⃗ · ζ⃗)dξ⃗ (2.4)

Pressure can, instead, be obtained by considering the variation in time of the
momentum of particles on a surface, and considering that the effect in the three
directions of motion is the same[17]. Hence, we obtain:

p(x⃗, t) = 1
3

ÚÚÚ ...ζ⃗...2
f(x⃗, ξ⃗, t)dξ⃗ = 2

3ρ(x⃗, t)e(x⃗, t) (2.5)

From this relationship we obtain that the pressure is directly proportional to
the internal energy: this is not at all unexpected considering that the greater the
internal energy, the faster the individual particles move, therefore they impact
more often and with more intensity on a surface.

This equation can also be compared with the ideal gas law:

p = ρRT (2.6)

where R is the specific gas constant, and is equal to R = R0
M , with R0 = 8.31 J

mol·K
the universal gas constant and M the fluid molar mass.

R0 can also be seen as the product of the Boltzmann constant kb = 1.38 ×
10−23 J/K and the Avogadro number NA = 6.02 × 1023 mol−1, therefore:

p = ρRT = ρ
kbNAT

M
(2.7)

Finally, since M denotes the mass of a mole of particles, and NA the number
of particles in a mole, their ratio is equal to the mass m of a single particle:

p = ρRT = ρ
kbT

m
(2.8)

10
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Comparing the two, we obtain that:

e = 3
2

kbT

m
(2.9)

This will lately be used to calculate the equilibrium distribution.

2.1 The Boltzmann Equation
The Boltzmann equation states that the evolution of the distribution function

df
dt

depends on collisions between particles, described by a collision operator Ω:

df

dt
= Ω (2.10)

Collisions are certainly influenced by the positions and velocities of the particles
just before they occur, so Ω = Ω(f). Furthermore, f = f(x⃗, ξ⃗, t), so:

df

dt
= ∂f

∂x⃗

dx⃗

dt
+ ∂f

∂ξ⃗

dξ⃗

dt
+ ∂f

∂t
= Ω(f) (2.11)

Considering that dx⃗
dt

= ξ⃗ and that dξ⃗
dt

= F⃗
ρ

, with F⃗ indicating the external forces
acting on the fluid, we obtain the Boltzmann equation:

df

dt
= ∂f

∂t
+ ξ⃗

∂f

∂x⃗
+ F⃗

ρ

∂f

∂ξ⃗
= Ω(f) (2.12)

Collision Operator

The collision operator described by Boltzmann is the following[7]:

Ω(f) =
Ú +∞

−∞

Ú 4π

0
n2(f ∗f ∗

1 − ff1)cσdΩdc1 (2.13)

It models in detail the collision of each pair of particles, leading to a complex
integral-differential equation. Since, as mentioned, the method is based on an
average behaviour, it is possible to replace this operator with a simpler one, as
identified by Bathgnar, Gross and Krook, called BGK operator [2]:

Ω(f) = −1
τ

(f − f eq) (2.14)

The collision operator Ω is, in this way, related to the equilibrium distribution
f eq, since after the collision, the particles tend to return to the equilibrium state

11
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within a certain relaxation time τ . In theory, since this operator only considers
binary collisions, its applicability would be limited to fluids where the diameters
of the particles are much smaller than the distance between them, i.e. for dilute
gases. However, its influence is very small, so the BGK operator can be safely used
also for continuum flows[7]. Therefore, the equation (2.12) can be rewritten as:

∂f

∂t
+ ξ⃗

∂f

∂x⃗
+ F⃗

ρ

∂f

∂ξ⃗
= −1

τ
(f − f eq) (2.15)

Furthermore, the collision operator must obey conservation laws for mass,
momentum and energy[17], meaning:

ÚÚÚ
Ω(f)dξ⃗ =

ÚÚÚ
(f eq − f)dξ⃗ = 0 (2.16a)

ÚÚÚ
ξ⃗Ω(f)dξ⃗ =

ÚÚÚ
ξ⃗(f eq − f)dξ⃗ = 0 (2.16b)

ÚÚÚ
(ξ⃗ · ξ⃗)Ω(f)dξ⃗ =

ÚÚÚ
(ξ⃗ · ξ⃗)(f eq − f)dξ⃗ = 0 (2.16c)

ÚÚÚ
(ζ⃗ · ζ⃗)Ω(f)dξ⃗ =

ÚÚÚ
(ζ⃗ · ζ⃗)(f eq − f)dξ⃗ = 0 (2.16d)

Thus, substituting the equations (2.1), it is obtained that:
ÚÚÚ

f eq(x⃗, ξ⃗, t)dξ⃗ = ρ(x⃗, t) (2.17a)

ÚÚÚ
f eq(x⃗, ξ⃗, t)ξ⃗dξ⃗ = ρ(x⃗, t)u⃗(x⃗, t) (2.17b)

1
2

ÚÚÚ
f eq(x⃗, ξ⃗, t)(ξ⃗ · ξ⃗)dξ⃗ = ρ(x⃗, t)E(x⃗, t) (2.17c)

1
2

ÚÚÚ
f eq(x⃗, ξ⃗, t)(ζ⃗ · ζ⃗)dξ⃗ = ρ(x⃗, t)e(x⃗, t) (2.17d)

Moreover, from equations (2.17b) and (2.2) derives that:
ÚÚÚ

f eq(x⃗, ξ⃗, t)ζ⃗dξ⃗ = 0 (2.18)

12
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Equilibrium Distribution

It is possible to assume that after a collision, particles’ velocities are distributed
in all directions around the mean velocity u⃗, meaning that the distribution func-
tion is dependant on the peculiar velocity[17]. Moreover, since the equilibrium
distribution is independent of the direction, it is possible to separate the function
f in different ζ⃗ coordinates:

f eq(ζ⃗) = f eq
x (ζx)f eq

y (ζy)f eq
z (ζz) (2.19)

This relationship is satisfied by Gaussian functions, i.e.:

f eq(ζ⃗) = ae−b∥ζ⃗∥2

(2.20)

where a and b are two constants.
By substituting this expression of f eq in equations (2.17a) and (2.17d):a = ρ

1
b
π

2 3
2

b = 3
4e

(2.21)

Substituting the (2.9), we obtain the Maxwell-Boltzmann equilibrium distribu-
tion:

f eq(x⃗, ξ⃗, t) = ρ

A
m

2πkbT

B 3
2

· e
− m∥ζ⃗∥2

2kbT (2.22)

More in general, if D is the number of dimensions of the problem (1, 2 or 3),
the equilibrium distribution can bes expressed as[19]:

f eq(x⃗, ξ⃗, t) = ρ

A
m

2πkbT

BD
2

· e
− m∥ζ⃗∥2

2kbT (2.23)

2.2 The Lattice-Boltzmann Equation
The Lattice-Boltzmann Method consists of dividing the flow domain into a

discrete lattice, applying two simplifications.
The first one is that external forces are negligible compared to the forces

operating inside the collisions[7], while the second one is that particles can only
occupy a finite number of positions in the grid; this leads to a discrete number of
velocity directions. The different possible models are indicated by the notation
DkQb, where k stands for the dimension of the space and b for the number of the
velocity unitary vectors e⃗i[7].
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(a) D2Q9 model, used in a 2D
square lattice.

(b) D3Q39 model used by Pow-
erFLOW software.

Figure 2.1: Two different velocity models, one two-dimensional and one three-
dimensional.

E.g., in a two-dimensional square grid, a D2Q9 modes can be used, meaning
particles are limited to nine possible velocities (Figure 2.1a).

Hence, the the equation (2.15) becomes:

∂fi

∂t
+ ξ⃗i

∂fi

∂x⃗
= −1

τ
(fi − f eq

i ) for i = 0 . . . b (2.24)

The microscopic velocity ξ⃗i in the direction e⃗i can be expressed as ξ⃗i = ce⃗i. The
magnitude c is called lattice velocity.

Integrating over a time interval ∆t and a space interval ∆x the function f :

fi(x⃗, t + ∆t) − fi(x⃗, t)
∆t

+ c
fi(x⃗ + ∆x⃗, t + ∆t) − fi(x⃗, t + ∆t)

∆x
= −1

τ
(fi − f eq

i )
(2.25)

The lattice velocity c can be expressed ad c = ∆x
∆t

. An unitary lattice velocity
is assumed, so that ∆x⃗ = e⃗i∆t. Substituting this in the previous equation, the
Lattice-Boltzmann Equation is obtained:

fi(x⃗ + e⃗i∆t, t + ∆t) − fi(x⃗, t) = −∆t

τ
(fi − f eq

i ) (2.26)

where the quantity ω = ∆t
τ

is called collision frequency.
Having a discrete number of velocities, the macroscopic quantities described by

the integrals in the equations (2.1a) and (2.1b), are actually calculated as simple
algebraic sums:

ρ =
bØ

i=0
fi (2.27a)
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ρu⃗ =
bØ

i=0
fie⃗i (2.27b)

Finally, the equation (2.22) can be simplified via a second-order series expansion
with respect to the velocity u⃗[2]:

f eq
i = ρwi

1
1 + A(e⃗i · u⃗) + B(e⃗i · u⃗)2 + C∥u⃗∥2

2
(2.28)

where wi is a weighting factor and A, B and C are lattice constants. These
constants can be calculated using the equations (2.17a) and (2.17b), moving from
integrals to summations as done above.

2.3 Computational Algorithm
Any software that implements the LBM must manage the computational algo-

rithm and the boundary and initial conditions. The computational algorithm can
be seen as sum of a collision phase and a propagation phase: at each timestep, the
particles incoming collide, modifying their distribution function according to the
Lattice-Boltzmann equation

fi(x⃗ + e⃗i∆t, t + ∆t) = fi(x⃗, t) − ∆t

τ
(fi − f eq

i )

and then they propagate in neighbouring cells, triggering a new collision in the
next timestep[18].

So, the computational loop (schematized in Figure 2.2) consist in the following
steps per each lattice cell:

1. From the distribution fi, the macroscopic quantities ρ and u⃗ are calculated,
according the equations (2.27).

2. From ρ and u⃗, the equilibrium distribution f eq is obtained through the (2.28).

3. The distribution functions after the collision are computed according to the
RHS of the above equation.

4. The distribution functions propagate towards neighbouring cells, completing
the above equation.

Then the cycle stars again, until a stop condition is met. The order of execut-
ing collision and propagation is arbitrary[18], meaning that either particles first
propagate to adjacent cells and then particles in the same cell collide, and then
they propagate again, or that particles in the same cell collide first and then they
propagate to adjacent cells, and then they collide again.
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Figure 2.2: Schematization of the algorithm steps: here there is first the propagation
step and the collision one.[14]

The first three steps are completely local, since only local quantities in each cell
are used, while in the propagation step particles only propagate in neighbouring
cells: hence, the Lattice-Boltzmann Method is suited for a large parallelization of
the algorithm[17].

This cycle is preceded by an initialization, where for each cell initial conditions
necessary to start the computational loop are applied.

Boundary Conditions
The boundary conditions are given as a function of the macroscopic quantities,

therefore they must be transformed in order to be used in the LBM[18]. There
are essentially three types of boundary conditions: periodic, bounce back and
Zou-He[17].

Periodic conditions The simplest boundary conditions are periodic ones, where
each cell is considered "adjacent" to those at the opposite corner of the domain:
in this way the particles propagate from one corner to the opposite one, as in
Figure 2.3a

Bounce back conditions Bounce back conditions are used to model no-slip
conditions on a wall: cells are created so that the wall is "immersed" in the lattice
(and not coincident with the cell boundaries). Particles propagating towards the
wall are actually bounced back after the propagation step, meaning they maintain
their distribution function, but with inverted velocity, as in Figure 2.3b.

The bounce back can be decomposed into normal and tangential: the first
ensures that there is no mass flow through the wall, blocking the fluid, the second
that the no-slip condition is valid. It is possible that only the normal bounce back
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(a) Periodic

(b) Bounce back

Figure 2.3: Example of boundary conditions in a D2Q9 model.[17]

is applied and not the tangential one, in this way the free-slip condition is modelled,
as for a frictionless wall.

Zou-He conditions These are used to model a condition of a known physical
quantity, such as an inlet or an outlet. In this case, after the propagation step, the
distribution functions towards the boundary are maintained, while those moving
away from it are calculated considering the equations (2.27), forcing the physical
quantities to be those imposed by the boundary condition.

2.4 PowerFLOW Software
The PowerFLOW software implements this method. In a three-dimensional

case, the lattice is made up if cubic volume elements, named voxels, and surface
elements, called surfels, at the intersection between a solid body and a fluid are
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Figure 2.4: PowerFLOW lattice elements.[14]

Figure 2.5: Lattice refinement example with three different VR levels: the higher the
level, the finer are the voxels.[18]

generated (Figure 2.4). A D3Q39 (which can be seen in Figure 2.1b) model is
used[10].

Voxels have different sizes, according to their Variable Resolution (VR) level
established during the creation of the case to be simulated. Moving from one VR
level to the immediately lower one, voxels seize doubles (i.e. their volume increases
by factor of 8), as in Figure 2.5, where moving from a VR level of 1 to a VR level
of 2, the voxel size is halved.

Similarly, to ensure that the data is synchronized, as the voxel size doubles,
the data update rate is halved, meaning that if the data in the densest region is
updated every timestep, in the immediately less dense region, it is updated every
two timesteps.

For high Reynolds numbers, a hybrid LBM/VLES approach is used[14]. Thus, a
modified two-equations model k−ε based on re-normalization group formulation[10]
for turbulence is present, but it is not necessary to compute an eddy viscosity
as in RANS. Instead, the turbulent kinetic energy k and the dissipation ε values
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obtained from the two-equations system are used to calibrate the collision operator,
modifying the relaxation time τ .

The PowerFLOW solver consists of 3 steps:

1. Discretization: the software automatically generates the grid for any geom-
etry, according to the VR levels defined during case creation.

2. Decomposition: the case is prepared to be simulated in parallel on a multi-
core system. Due to the intrinsic local nature of the method, it is efficiently
run on clusters or multiple processors.

3. Simulation: the simulation itself is performed and the results are generated,
acquiring data either from single points or from entire volumes.

2.5 Relation with Navier-Stokes Equations
At the end of this Chapter, we want to show how the Navier-Stokes equations,

normally used in fluid dynamics and on which the most common numerical methods
are based, can be derived from the Boltzmann equation.

First, the equation (2.15) is rewritten making the Cartesian components of the
vectors explicit, indicating them with the Greek letters in subscript:

∂f

∂t
+
Ø

α

ξα
∂f

∂xα

+
Ø

α

Fα

ρ

∂f

∂ξα

= −1
τ

(f − feeq) (2.29)

Mass Conservation

The first equation, i.e. the conservation law for mass, can be obtained by
integrating over dξ⃗ the equation above:
ÚÚÚ ∂f

∂t
dξ⃗ +

ÚÚÚ Ø
α

ξα
∂f

∂xα

dξ⃗ +
ÚÚÚ Ø

α

Fα

ρ

∂f

∂ξα

dξ⃗ = −1
τ

ÚÚÚ
(f − f eq)dξ⃗ (2.30)

The RHS is null, from eq. (2.16a). Due to linearity, summations and integrals
can be switched, while Fα

ρ
is a constant and t and x⃗ are not function of ξ⃗, so they

can be take out from the integrals. Moreover, being ξ⃗ a merely coordinate in
velocity space, it’s independent of x⃗[17], so that ξα

∂f
∂xα

= ∂
∂xα

(ξαf). This means:

∂

∂t

ÚÚÚ
fdξ⃗ +

Ø
α

∂

∂xα

ÚÚÚ
ξαfdξ⃗ +

Ø
α

Fα

ρ

ÚÚÚ ∂f

∂ξα

dξ⃗ = 0 (2.31)
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The first and second integral are the density moment (2.1a) and the momentum
moment (2.1b), while the third one can be valued through the Stokes theorem:

ÚÚÚ ∂f

∂ξα

dξ⃗ =
ÚÚ

∂ξ⃗
fdξ⃗ (2.32)

Since it’s impossible for a particle to have infinite velocity, f → 0 when ξ⃗ → ∞,
so the surface integral is null. Therefore, the above equation becomes:

∂

∂t
ρ +

Ø
α

∂

∂xα

(ρuα) = 0 (2.33)

which can be re-written as:
∂ρ

∂t
+ ∇ · (ρu⃗) = 0 (2.34)

which is exactly the continuity equation.

Momentum Conservation

Momentum conservation equation can be obtained multiplying the equation (2.29)
by ξα and integrating over dξ⃗:ÚÚÚ

ξα
∂f

∂t
dξ⃗ +

ÚÚÚ
ξα

Ø
β

ξβ
∂f

∂xβ

dξ⃗ +
ÚÚÚ

ξα

Ø
β

Fβ

ρ

∂f

∂ξβ

dξ⃗ = −1
τ

ÚÚÚ
ξα(f − f eq)dξ⃗

(2.35)
By the same considerations made before, the equation becomes:

∂

∂t

ÚÚÚ
ξαfdξ⃗+

Ø
β

∂

∂xβ

ÚÚÚ
ξαξβfdξ⃗+

Ø
β

Fβ

ρ

ÚÚÚ
ξα

∂f

∂ξβ

dξ⃗ = −1
τ

ÚÚÚ
ξα(f−f eq)dξ⃗

(2.36)
From eq. (2.17b), the RHS is null, while from eq. (2.1b) the first integral is equal

to ρuα. The third integral can be obtained integrating by parts:ÚÚÚ
ξα

∂f

∂ξβ

dξ⃗ = −
ÚÚÚ ∂ξα

∂ξβ

fdξ⃗ (2.37)

It is clear that ∂ξα

∂ξβ
= 1 if α = β and 0 otherwise, so:

ÚÚÚ
ξα

∂f

∂ξβ

dξ⃗ = −δαβ

ÚÚÚ
fdξ⃗ = −ρδαβ ⇒

⇒
Ø

β

Fβ

ρ

ÚÚÚ
ξα

∂f

∂ξβ

dξ⃗ = −
Ø

β

Fβδαβ = −Fα

(2.38)
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where δαβ is the Kronecker delta.
The second integral, instead, can be calculated by by considering that ξαξβ =

(uα + ζα)(uβ + ζβ):ÚÚÚ
ξαξβfdξ⃗ =

ÚÚÚ
(uα + ζα)(uβ + ζβ)fdξ⃗ =

=
ÚÚÚ

uαuβfdξ⃗ +
ÚÚÚ

uαζβfdξ⃗ +
ÚÚÚ

uβζαfdξ⃗ +
ÚÚÚ

ζαζβfdξ⃗ =

= uαuβ

ÚÚÚ
fdξ⃗ + uα

ÚÚÚ
ζβfdξ⃗ + uβ

ÚÚÚ
ζαfdξ⃗ +

ÚÚÚ
ζαζβfdξ⃗

(2.39)

The first term is equal to ρuαuβ and represents the macroscopic flow momentum,
the second and third one are nulls from the (2.2), while the fourth term represents
a diffusion of momentum[17]. If we define σαβ = −

sss
ζαζβfdξ⃗, we obtain the

momentum conservation equation:

∂

∂t
(ρuα) +

Ø
β

∂

∂xβ

(ρuαuβ − σαβ) − Fα = 0 (2.40)

which in vectorial form is:
∂(ρu⃗)

∂t
+ ∇ · (ρu⃗u⃗) = ∇ · σ̂ + F⃗ (2.41)

where σ̂ can be identified with the Cauchy stress tensor.

Energy Conservation

Finally, the last conservation equation can be obtained multiplying the equa-
tion (2.29) by ξαξα

2 and integrating:

1
2

∂

∂t

ÚÚÚ
ξαξαfdξ⃗ + 1

2
Ø

β

∂

∂xβ

ÚÚÚ
ξαξαξβfdξ⃗ + 1

2
Ø

β

Fα

ρ

ÚÚÚ
ξαξα

∂f

∂ξβ

dξ⃗ = 0

(2.42)
Again, the RHS is null because of the (2.17c). The first integral is equal to ρE

(eq. 2.1c), while the second and third ones can be calculated with a similar method
as for the momentum equation:

1
2
Ø

β

Fβ

ρ

ÚÚÚ
ξαξα

∂f

∂ξβ

dξ⃗ = −
Ø

α

Fαuα (2.43a)

1
2
Ø

β

∂

∂xβ

ÚÚÚ
ξαξαξβfdξ⃗ = −

Ø
α

∂

∂xα

A
ρuαE −

Ø
β

(σαβuβ) + 1
2

ÚÚÚ
ζα∥ζ∥2fdξ⃗

B
(2.43b)
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Defining qα = 1
2
sss

ζα∥ζ∥2fdξ⃗, the total energy conservation equation is ob-
tained:

∂

∂t
(ρE) +

Ø
α

C
∂

∂xα

(ρEuα −
Ø

β

(σαβuβ) + qα) − Fαuα

D
= 0 (2.44)

which can be re-written in a simpler way:

∂(ρE)
∂t

+ ∇ · (ρEu⃗) = ∇ · (σ̂ · u⃗) + F⃗ · u⃗ − ∇ · q⃗ (2.45)

where q⃗ is the heat flux.

Stress Tensor and Heat Flux

In the last two equations, σ̂ and q⃗ have been defined in relation to f . However,
it can be shown that in reality they depend only on macroscopic quantities: the
distribution function f is expanded around the equilibrium distribution f (0) = f eq

through a sum of perturbed functions f (n), such that f (n)

feq = O(Knn), where Kn is
the Knudsen number [17]:

f = f eq + εf (1) + O(Kn2) (2.46)

Similarly, σ̂ and q⃗ can be expanded too:

σ̂ = σ̂(0) + εσ̂(1) + O(Kn2) (2.47a)

q⃗ = q⃗(0) + εq⃗(1) + O(Kn2) (2.47b)
with

σ
(n)
αβ = −

ÚÚÚ
ζαζβf (n)dξ⃗ and q(n)

α = 1
2

ÚÚÚ
ζα∥ζ∥2f (n)dξ⃗ (2.48)

From equations (2.5) and (2.18) can be obtained σ̂(0) and q⃗(0):

σ
(0)
αβ = −pδαβ (2.49a)

q(0)
α = 0 (2.49b)

σ̂(1) and q⃗(1) are, instead, obtained by substituting the (2.46) in the (2.15),
dividing both sides by f eq, and obtaining f (1) as a function of the latter. Then
replacing f eq with its expression as in (2.22) and calculating the integrals, we obtain
that[17]:

σαβ = −pδαβ + pτ

A
∂uα

∂xβ

+ ∂uβ

∂xα

− 2
3δαβ

Ø
γ

∂uγ

∂xγ

B
(2.50a)

qα = −ρeτ
10
9

∂e

∂xα

(2.50b)
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From Newtonian-Stokesian fluids constitutive relationship and from Fourier law,
we know that:

σαβ = −pδαβ + µ

A
∂uα

∂xβ

+ ∂uβ

∂xα

− 2
3δαβ

Ø
γ

∂uγ

∂xγ

B
(2.51a)

qα = κ
∂T

∂xα

(2.51b)

Therefore, it is obtained that: µ = pτ

κ = 5
2ρR2Tτ

(2.52)

The transport coefficients µ and κ are, therefore, derived as a function of the
relaxation time τ , instead of being empirical parameters of the fluid.

Substituting, therefore, the relations just obtained in the equations of conserva-
tion of momentum and energy, we obtain the common Navier-Stokes equations:

∂ρ

∂t
+ ∇ · (ρu⃗) = 0 (2.53a)

∂(ρu⃗)
∂t

+ ∇ · (ρu⃗u⃗) = −∇p + ∇ ·
A

µ
1
∇u⃗ + ∇u⃗T − 2

3(∇ · u⃗)Î
2B

+ F⃗ (2.53b)

∂(ρE)
∂t

+∇·(ρEu⃗) = −p∇·u⃗+∇·
A

µ
1
∇u⃗+∇u⃗T − 2

3(∇·u⃗)Î
2

·u⃗
B

+F⃗ ·u⃗+∇·(κ∇T )

(2.53c)
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Chapter 3

A Case of Study: the M219 Cavity

In 2000, Henshaw[6] collected several experimental data relating to a particular
geometry, called the M219 cavity. This cavity has been used as a benchmark for
subsequent CFD techniques, including those mentioned in Chapter 1. The geometry
is depicted in Figure 3.1: the cavity has two configurations: one deeper and one
shallower.

On the cavity floor there are ten Kulite pressure transducers, whose position
along the cavity is indicated in Table 3.1 on the following page. For the deeper
case, Kulite probes are located on the rig centre line, which is displaced by 1 inch
from the cavity centre line; while, for the shallower case, the probes are on the
cavity centre line. Henshaw collected data for both configurations at three different
Mach numbers (0.6, 0.85 and 1.35).

Figure 3.1: M219 Cavity. Dimensions are in inches.
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Table 3.1: Kulite transducers position

Probe x (in) x/L

k20 1 0.05
k21 3 0.15
k22 5 0.25
k23 7 0.35
k24 9 0.45
k25 11 0.55
k26 13 0.65
k27 15 0.75
k28 17 0.85
k29 19 0.95

In this work, the deep cavity in the transonic case has been chosen to validate
the LBM using the software PowerFLOW, meaning a cavity depth of 4 inches and
a Mach number of 0.85.

3.1 Case Preparation
Geometry The chosen geometry has been recreated in a CAD environment, using
the commercial software SolidWorks by Dassault Systèmes – the same company
as PowerFLOW – and then imported into the PowerCASE software, used for
preprocessing. A box has been then created around the test rig to simulate the
wind tunnel, whose dimensions are shown in Figure 3.2. The coordinate system
used can be seen in Figure 3.3 on the next page.

Figure 3.2: Wind tunnel dimensions.[13]

Ten probes have been added to the bottom of the cavity for data acquisition,
positioned like the Kulite pressure transducers of the Henshaw experiment.
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Figure 3.3: Coordinate System.

Table 3.2: Boundary conditions at inlet and outlet.

Total Pressure Inlet

p0 [Pa] T0 [K]
102 149 302

Pressure Outlet

p [Pa]
63 691

Boundary and Initial Conditions Thereafter, the boundary conditions have
been set: first boundaries have been created as thin boxes around the tunnel walls
(see Figure 3.4b), and then the conditions have been implemented. The test rig
surfaces have been assigned a standard wall condition, while the tunnel side walls,
as well as the ceiling and floor, have been modelled as frictionless walls; the inlet as
a total pressure inlet, setting p0 and T0, and the outlet as a pressure outlet, setting
a pressure calculated from p0 and M .

Finally, the initial fluid conditions have been set, with standard γ, cp and ν, and
pressure, temperature and velocity calculated from p0, T0 and the Mach number.

The boundary conditions are summarized in Table 3.2; the fluid initial conditions
in Table 3.3.

Table 3.3: Fluid initial conditions.

γ 1.4
cp [J/(kgK)] 1005
ν [m2/s] 1.5 × 10−5

T [K] 263.87
p [Pa] 63 691
U∞ [m/s] 277
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VR Regions The next step is to define the refinement regions of the domain, as
described in Chapter 2. The highest VR level, meaning the finest region, is assigned
to the:

• test rig boundary layer;

• cavity boundary layer;

• cavity shear layer.

These are the red ones in Figure 3.4a. In the same picture, the magenta regions
have the voxel size one time bigger, and is an offset of the red one; while in the
purple region the voxel size is two times bigger, and is defined as a test rig offset.

The subsequent regions (Figure 3.4b) are constructed as increasingly larger
boxes, until reaching the boundaries of the domain. The dimensions of each region
are calculated to have a minimum of 10 voxels per region, thereby reducing the
numerical errors that may arise at the interface between two regions due to the
variation in voxel size.

(a) VR Regions near the test rig. The white Xs are the probes located as the Kulite transducers
(Table 3.1).

(b) VR Regions stepping away from the test rig. Here it is also possible to notice the domain
boundaries, created as thin boxes: the ceiling and floor of the gallery (in white), the inlet (in green)
and the outlet (in red).

Figure 3.4: VR Regions in the flow domain.

Frequency Range Lastly, it is necessary to establish the frequency range within
which the analyses are performed. Indeed, the dimensions of the voxels and the
acquisition time depend on the extremes of the range.

28



CHAPTER 3. A CASE OF STUDY: THE M219 CAVITY

Table 3.4: Frequency range of the simulation.

fmin [Hz] fmax [Hz]
100 2500

The size of the voxels in the finest region derives from the maximum frequency:
a sufficient number of voxels for each wavelength is necessary to best describe
pressure oscillations, avoiding aliasing phenomena. Given c the velocity and fmax

the maximum frequency, the size of the smallest voxels is equal to:

smallest voxel size = 1
N

c

fmax

(3.1)

where N is the number of desired voxels for each wavelength. Since we want to
capture both pressure oscillations caused by vortices and those caused by sound,
the velocity c must be the smallest between the speed of sound ac and the speed of
vortical structures, equal to 0.57 · U∞ (Chapter 1). Thus, the higher the maximum
frequency, the smaller the voxels will be.

The minimum frequency, on the other hand, influences the data acquisition
time, since it is necessary to simulate for enough periods for the mean flow to be
stationary. The period T is equal to 1

fmin
, so the lower the minimum frequency, the

longer the acquisition time.
The frequency range for this simulation is reported in Table 3.4.

Data Acquisition Data sampling happens at the ten probes on the cavity floor,
as well as on three planes cutting the cavity, placed at one-quarter (y = −1 in),
one-half (y = 0 in) and three-quarters (y = 1 in) of its spanwise dimension, with an
acquisition frequency three times higher then the maximum frequency, according
to Nyquist criterion.

3.2 Simulation
The simulations were performed with the PowerFLOW software on the Legion

server of the Politecnico HPC, whose technical characteristics are reported in
Figure 3.6.

A first simulation was performed with a coarse grid, with 30 voxels per wave-
length in the finest region and an acquisition time of 40 periods. This means almost
5 million voxels and a saving time of nearly 0.4 s, and the simulation took about 5
hours on 32 cores, i.e. 160 CPU hours. At the end of the simulation a checkpoint
was generated, which was used as a seed to initialize the next simulation.
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(a) k20 (b) k21 (c) k22

(d) k23 (e) k24 (f) k25

(g) k26 (h) k27 (i) k28

(j) k29

Figure 3.5: Mean pressure trend in time in the Kulite probes after the 2nd simulation.
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Figure 3.6: HPC Legion server technical specifications.[20]

The second simulation was then launched with a finer grid and a longer acqui-
sition time, considering twice the voxels per wavelength in the finest region and
twice the saving time, for a total of about 32 million voxels and 52 h/1660 CPU
hours.

At the end of this simulation, the trend of the mean probe pressure over time
was plotted, in order to verify that the transient regime is concluded, meaning the
average flow has reached steadiness. This is reported in Figure 3.5. As can be
seen, the steadiness of the mean flow has not yet been reached: therefore, a further
simulation with a longer time is necessary.

For the third simulation, the number of voxels per wavelength was doubled
again, reaching a total of approximately 296 million. Once again, the checkpoint
generated at the end of the previous simulation was used as a seed to initialize this
simulation. Regrettably, this simulation could not have been completed.

The simulation times, as well as the number of voxels and their size in the
region with the highest VR level, are summarized in Table 3.5.

Table 3.5: Voxel dimension and simulation time of the three simulation performed.

Number of voxels Smallest voxel size CPU hours

Coarse grid ~5 million 2.1 mm 160
Medium grid ~32 million 1.3 mm 1660
Fine grid ~296 million 0.67 mm /
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3.3 Results Analysis
The results obtained have been analysed using the PowerVIZ and PowerA-

COUSTICS software. As seen in Chapter 1, the parameters that determine the
nature of the cavity flow are the width-to-depth and length-to-depth ratios, and
the Mach number. For a ratio W

D
= 1 and a ratio L

D
= 5, at a Mach number of 0.85,

according to Figure 1.3a on page 6, an open cavity flow can be predicted.

Flow Evolution
The evolution of the flow in a mid-span plane can be observed in Figure 3.7,

where the mean streamwise velocity field at different time instants is reported. The
black line indicates the point where the x-velocity u is equal to 0.99 · U∞, which can
be conventionally considered the border of the boundary layer. The point where
the boundary layer rapidly decreases and then grows again is the reattachment
point. As can be seen, the boundary layer on the test rig separates from the front
edge of the cavity, and then reattaches on the rear edge, or even downstream of it.
Therefore, we are in the case of open cavity flow, as we expected.

The red line, instead, is an iso-line at u = 0, identifying the region with negative
x-velocity, i.e. an upstream flow: this is the recirculation region, where a reverse
flow is formed from a high-pressure zone and a low-pressure one.

The flow behaviour can be observed through the streamlines, reported in
Figure 3.8: far from the cavity the flow is undisturbed, while in proximity of the
cavity it is deflected by the shear layer; it is also possible to note the streamline that
impinges on the rear lip: this is at the basis of the feedback mechanism (responsible
for the strong tonal components of pressure oscillation), because the acoustic waves
generated in this way interact with the vortices of the shear layer.

Inside the cavity, and in particular starting from the rear wall, the recirculation
bubble is formed, consisting of two clockwise vortices. A second vortex, smaller
and counter-clockwise, is present near the front wall.

The streamlines are superimposed on the plot of the vorticity component
ωy = 1

2

1
∂u
∂z

− ∂w
∂x

2
, whose behaviour over time is reported in Figure 3.9. Observing

the temporal evolution of vorticity, it can be seen that the vortices of the shear
layer propagate downstream, while those in the cavity, due to the recirculation zone,
move upstream and simultaneously upwards, following the recirculation bubble.
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(a) t = 0.6 s (b) t = 0.7 s

(c) t = 0.8 s (d) t = 0.9 s

(e) t = 1.0 s (f) t = 1.1 s

(g) t = 1.2 s (h) t = 1.3 s

(i) t = 1.4 s

Figure 3.7: Streamwise velocity u evolution in a mid-span plane.
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Figure 3.8: Streamlines in a mid-span plane, at t = 1.4 s, superimposed over the
vorticity field ωy.

Mean Field

Figure 3.10 reports the streamlines superimposed over the mean streamwise
velocity field U . Above the cavity, the mean velocity is constant and slightly
greater than the velocity U∞, since the test rig slightly reduces the tunnel section,
accelerating the flow. An even greater increase would be observed if there were a
boundary layer on the tunnel walls, which however in this simulation have been
modelled as frictionless.

Then there is a constant mean velocity in the boundary layer on the rig, both
upstream and downstream of the cavity, and in the shear layer. Inside the cavity,
instead, there is a slightly negative or null mean velocity in the first half, while in
the second half there are negative velocities with a high magnitude on the bottom
and progressively greater velocities with the increase of z, until reaching positive
velocities. This behaviour is consistent with the recirculation bubble identified by
the streamlines: the flow has a positive streamwise velocity in the shear layer and
a negative vertical velocity near the rear wall, so at the bottom of the cavity the
streamwise velocity becomes negative and the vertical velocity positive, until it
rejoins the shear layer.

This can be better seen looking at the mean velocity profiles, as in Figure 3.11.
Near the front edge, the mean velocity in the cavity is almost null, while moving
downstream zero mean velocity point shifts towards lesser z and the magnitude of
the negative velocity increases.
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(a) t = 0.6 s (b) t = 0.7 s

(c) t = 0.8 s (d) t = 0.9 s

(e) t = 1.0 s (f) t = 1.1 s

(g) t = 1.2 s (h) t = 1.3 s

(i) t = 1.4 s

Figure 3.9: Vorticity ωy evolution in a mid-span plane.
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Figure 3.10: Streamlines in a mid-span plane, at t = 1.4 s, superimposed over the mean
streamwise velocity U .

Turbulent Kinetic Energy
Figure 3.12 reports, together with the average streamwise velocity, the variances

of the three velocity components: the streamwise u, the spanwise v and the vertical
w. Mathematically, the variance of the streamwise velocity u is defined as

σ2
u = 1

T

Ú T

0
(u(t) − u)2dt (3.2)

But the difference between the instantaneous velocity u and the average velocity
U = u is the turbulent component of velocity u′ in the Reynolds decomposition, so
the variance of u is σ2

u = u′2. And similarly for v′2 and w′2.
Therefore, the variances of the velocities are associated with the turbulent kinetic
energy TKE, which is defined as:

TKE = u′2 + v′2 + w′2 (3.3)

The plots show how the turbulent energy is concentrated in the shear layer and
in the recirculation zone, and in the boundary layer downstream of the cavity.

For the same positions of the velocity profiles, the profiles of the turbulent
kinetic energy have been calculated, which are shown in Figure 3.13. The TKE
peak is located near the shear layer, and its intensity increases in x. The only
exception is the front lip, where the turbulent energy peak is located inside the
cavity, whose intensity is, however, an order of magnitude lower than the energy
peaks downstream.
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(a) x = 0 in (Front Edge) (b) x = 2.5 in (c) x = 5 in

(d) x = 7.5 in (e) x = 10 in (f) x = 12.5 in

(g) x = 15 in (h) x = 17.5 in (i) x = 20 in (Rear Edge)

Figure 3.11: Mean streamwise velocity profiles for different positions along the cavity.
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(a) Mean streamwise velocity (b) Variance of streamwise velocity

(c) Variance of spanwise velocity (d) Variance of vertical velocity

Figure 3.12: Mean streamwise velocity and variance of velocity components in a mid-
span plane.

Planes Comparison
Subsequently, the data relating to the three acquisition planes have been

compared to verify that the phenomenon were predominantly longitudinal, as
described in Chapter 1.

In Figure 3.15 the static pressure fields are reported. The three distributions
differ slightly from each other, confirming what was said; however, some differences
are still present. This is because, although the test rig is centred with respect
to the wind tunnel, the cavity is eccentric, and in particular displaced by 1 inch
towards the positive y. From the same plots it is also possible to note the passage
from the high pressure area near the cavity rear wall to the low pressure area next
to it, which is at the basis of the recirculation bubble formation.

The same comparison has been made with the streamwise velocities, in Fig-
ure 3.16, whose plots have been superimposed in Figure 3.14: the height and shape
of the boundary layer is almost invariable along the span, while a greater variation
is observed in the reverse flow zone.

A further comparison has been made on the vertical velocity w, to verify the
presence of edge effects. Figure 3.18 reports the mean vertical velocity W for the
three planes. In it, in the second half of the cavity, a positive vertical velocity can
be observed for negative y and vice versa: therefore, it is reasonable to assume that
there is a recirculation bubble also in the spanwise plane, like in the streamwise
plane. This is confirmed by the plot of the average spanwise velocity V for the plane
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(a) x = 0 in (Front Edge) (b) x = 2.5 in (c) x = 5 in

(d) x = 7.5 in (e) x = 10 in (f) x = 12.5 in

(g) x = 15 in (h) x = 17.5 in (i) x = 20 in (Rear Edge)

Figure 3.13: TKE for different positions along the cavity.
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Figure 3.14: Boundary layer and reverse flow region comparison.

at y = 0, in Figure 3.17, where, in the second half of the cavity, there is a negative
mean velocity on the bottom and a positive mean velocity near the shear layer.
Therefore, also in the plane (y, z) there is a recirculation, but counter-clockwise.

Finally, in Figures 3.19 and 3.20 the variances of the streamwise velocity and
the vertical velocity for the three planes are reported, respectively. There are some
variations in the intensity of the turbulent velocity components, but not in the area
where they are concentrated.

These data are summarized in Figure 3.21, which reports the mean streamwise
velocity, mean vertical velocity, pressure and turbulent kinetic energy profiles
for three different positions along the cavity, namely the front edge (x = 0 in),
mid-length (x = 10 in) and the rear edge (x = 20 in).

The streamwise velocity profiles are almost perfectly coincident, as are those of
TKE and pressure, with the only exceptions of the turbulent energy at the front
edge and the pressure at the rear edge. The vertical velocity, instead, presents
greater differences between the three planes.

Pressure Oscillations
Locally, the pressure oscillations have been valued as Overall Sound Pressure

Level (OASPL) and Sound Pressure Level (SPL); in particular, the OASPL has
been computed along the entire cavity, while the SPL on two probes, the k22 and
the k29.

The OASPL is defined as:

OASPL = 20 log10

A
p′

rms

pref

B
(3.4)

where the subscript rms denotes the root mean square of the pressure fluctuations
p′, i.e. the difference between the instantaneous pressure p and the mean pressure
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(a) Plane at y = 1 in

(b) Plane at y = 0 in (Mid-span plane)

(c) Plane at y = −1 in

Figure 3.15: Static pressure p for three different y-normal planes, at t = 1.4 s.
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(a) Plane at y = 1 in

(b) Plane at y = 0 in (Mid-span plane)

(c) Plane at y = −1 in

Figure 3.16: Streamwise velocities u for three different y-normal planes, at t = 1.4 s.
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Figure 3.17: Mean spanwise velocity V in a mid-span plane.

pmean, whose r.m.s. is:

p′
rms =

ó
1
T

Ú t0+T

t0

1
p(t) − pmean

22
dt (3.5)

while the reference pressure is pref = 20 μPa.
The SPL, instead, is calculated as:

SPL = 20 log10

A
PSD

p2
ref

B
(3.6)

where the Power Spectral Density (PSD) is computed by the MATLAB function
pwelch, dividing the signal in 16 segments, with an overlap of 50%.

Refinement Cases

The results obtained from the two simulations are compared with the experi-
mental results[6], to verify whether convergence is achieved by refining the grid.

In Figure 3.22 the OASPL is depicted. Numerical results differ from the
experimental ones by a factor of about 1.5 in p′

rms for all probes: this is probably
due to an error in the case preparation or in the data post processing phase, that
could not have been detected. However, the reported trend appears to be correct,
meaning that if the error is located and resolved, the data numerical should converge
to the experimental ones.

In Figure 3.23, instead, the SPL of the two probes k22 and k29 is reported.
The spectra are in 1/12 octave band, i.e. the frequency domain has been divided
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(a) Plane at y = 1 in

(b) Plane at y = 0 in (Mid-span plane)

(c) Plane at y = −1 in

Figure 3.18: Mean vertical velocity W for three different y-normal planes.
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(a) Plane at y = 1 in

(b) Plane at y = 0 in (Mid-span plane)

(c) Plane at y = −1 in

Figure 3.19: Variance of streamwise velocity u′2 for three different y-normal planes.
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(a) Plane at y = 1 in

(b) Plane at y = 0 in (Mid-span plane)

(c) Plane at y = −1 in

Figure 3.20: Variance of vertical velocity w′2 for three different y-normal planes.
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(a) Mean streamwise velocity
at x = 0 in

(b) Mean streamwise velocity
at x = 10 in

(c) Mean streamwise velocity at
x = 20 in

(d) Mean vertical velocity at
x = 0 in

(e) Mean vertical velocity at
x = 10 in

(f) Mean vertical velocity at
x = 20 in

(g) Static pressure at x = 0 in (h) Static pressure at x = 10 in (i) Static pressure at x = 20 in

(j) TKE at x = 0 in (k) TKE at x = 10 in (l) TKE at x = 20 in

Figure 3.21: U , W , p and TKE comparison between three planes.
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Figure 3.22: OASPL along the cavity with different grid resolution.

into intervals, in which the upper limit is 2 1
12 times the lower limit, and the values

are integrated on that interval.
From the spectra it is possible to note that for the low frequencies the numerical

and experimental results are in agreement, while at the higher frequencies the
oscillations are overestimated: in part this may be due to the failure to reach the
temporal convergence, which causes broadband pressure oscillations to be higher.

As said at the beginning of this section, being the cavity an open cavity flow,
there are strong tonal components (the peaks in the spectra), which allow to identify
the Rossiter frequencies. The latter are reported in the Table 3.6 on page 51 and
compared with those measured by Henshaw[6] and the theoretical ones, according
to the equation (1.8) on page 7, which in the graph are reported as dotted lines.
The first two frequencies are correctly predicted, while the third and fourth are
anticipated.

Comparison with Literature Data

Then, the results obtained have been compared with those present in the
literature, and in particular with the results obtained by Nilsson[13], based on
Delayed Detached Eddy Simulation (DDES) and Improved Delayed Detached Eddy
Simulation (IDDES) methods, and those of Mancini[10], based instead on the same
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(a) k22

(b) k29

Figure 3.23: SPL at two probes with different grid resolution.
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(a) k22

(b) k29

Figure 3.24: SPL at two probes with different numerical methods.
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Table 3.6: Rossiter frequencies [Hz].

Equation (1.8) Measured[6] Coarse grid case Medium grid case

f1 151 139 139 139
f2 374 369 391 369
f3 598 585 552 552
f4 822 826 780 780

LBM and obtained through the same software. Ideally, the data obtained from
the simulations performed should coincide with Mancini’s ones, however – as said
before – there are some errors that cause our results to differ.

Figure 3.25 contains the OASPL, while Figure 3.24 shows the spectra.
The most accurate method for predicting the OASPL is the IDDES. Furthermore,
from the spectra, it can be seen that Mancini’s results also differ from the ex-
perimental ones, a sign that the LBM is less effective in predicting broadband
components of pressure oscillations.

Figure 3.25: OASPL along the cavity with different numerical methods.
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Chapter 4

Summary

The study of cavity flow, due to its numerous applications, remains of vital
importance, and modern CFD techniques contribute to a better understanding of
the phenomenon.

Among these, the Lattice-Boltzmann Method has been described in this paper
and used, through the PowerFLOW software, to analyse the M219 cavity, comparing
the numerical results with the experimental data collected by Henshaw and other
numerical data present in the literature, obtained with different methods.

Three different simulations have been carried out, with an increasingly finer
grid. The third of these, however, could not have been concluded.

The analysis observed how the boundary layer separated from the front edge
reattaches downstream of the cavity, confirming the open-flow cavity behaviour
suggested by the length-to-depth and width-to-depth ratios. Furthermore, through
the streamlines, the recirculation bubble in the cavity itself was observed.

A comparison of several physical quantities on three different planes along the
span then highlighted the presence of a recirculation bubble also in a span-aligned
plane.

Finally, the pressure oscillations were analysed in terms of OASPL and SPL,
identifying the Rossiter frequencies. The difference with respect to the experimental
data hints the presence of a numerical error in the case preparation or in the post-
processing phase, which however has not been identified. However, the trend seems
to be in line with the experimental one. Finally, the comparison with the literature
data shows that the most accurate method is DDES, and that a certain error in the
broadband components is intrinsic in LBM. However, the PowerFLOW software
has the advantage of a quasi-automatic generation of the grid, without the need
for manual refinement near the walls, and a fully parametrizable case preparation,
which allows changes without the need to recreate the model from scratch. Finally,
the very nature of Lattice-Boltzmann Method lends itself to running simulations
on multi-core platforms, such as the Politecnico’s HPC.
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Acronyms

CFD Computational Fluid Dynamics

DDES Delayed Detached Eddy Simulation

DES Detached Eddy Simulation

HPC High Performance Computing

IDDES Improved Delayed Detached Eddy Simulation

LBM Lattice-Boltzmann Method

LES Large Eddy Simulation

OASPL Overall Sound Pressure Level

PSD Power Spectral Density

RANS Reynolds-averaged Navier-Stokes

RHS Right Hand Side

r.m.s. root mean square

SPL Sound Pressure Level

URANS Unsteady RANS

VLES Very Large Eddy Simulation

VR Variable Resolution
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