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Abstract

The deployment of neural networks in space has opened new possibilities for
achieving high-precision proximity operations, which are crucial for inspection,
maintenance, and debris removal in the context of on-orbit servicing (OOS).
A core requirement for these missions is accurate pose estimation, defined as
the capability of an active spacecraft to estimate the relative position and
orientation of a non-cooperative one. It involves substantial technological
challenges in sensor architecture selection and algorithm development. For
this purpose, visual navigation employs monocular cameras, favoured for their
compact form and low resource demands, which serve as ideal sensors for
capturing visual data in space environments. By leveraging Convolutional
Neural Networks (CNNs), this research aims to enhance pose estimation
capabilities, addressing the unique challenges posed by non-cooperative targets
under varying lighting conditions and complex orbital backgrounds.
This work aims to provide an optimization strategy for neural networks
to increase their accuracy, performance, and efficiency for deployment on
hardware with limited capacity. Particular emphasis is placed on advanced
hyperparameter optimization and compression techniques, such as pruning, to
streamline the network while preserving high levels of accuracy. The network
model was trained and validated using two synthetic image datasets, each
representing distinct, mission-critical phases of proximity navigations.
The results demonstrate the effectiveness of hyperparameter optimization
(HPO) and pruning techniques in enhancing the performance and efficiency
of neural networks for space-based pose estimation tasks. The application of
HPO led to a marked improvement in pose accuracy, with optimized networks
achieving higher performance while downgrading image resolution, thereby
minimizing computational cost and accelerating convergence during solution
search and network training. Furthermore, structured pruning techniques
were successfully applied, reducing model size without compromising accuracy.
These optimizations validate theoretical expectations and establish practical
benefits for on-orbit neural network deployment, showing that highly accurate
and resource-efficient networks can be realized by reducing resolution and
leveraging structured pruning. This work provides a foundation for further
exploration into optimization techniques that maintain high performance even
on constrained hardware, highlighting efficient strategies for real-time space
applications.
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Chapter 1

Introduction

1.1 Visual Navigation for proximity operation
In recent years, the number of satellites launched into orbit has increased
significantly, driven by lower launch costs and easier access to space. Each
mission has distinct goals that define the satellite’s size, functionality, and
lifespan. Most satellites complete their missions as planned, after which they
are either relocated to a graveyard orbit or left to re-enter Earth’s atmosphere.
Non-cooperative satellites represent a category of satellites that do not actively
participate in mission operations, either due to their design or because of
unforeseen malfunctions. These satellites can pose significant risks to other
space infrastructure, especially when malfunctions hinder the success of the
mission. To address these challenges, there has been growing interest in On-
Orbit Servicing (OOS) missions, which focus on the inspection, maintenance,
and repair of in-orbit spacecraft. OOS helps extend the operational life of
spacecraft and ensures their continued functionality. In parallel, Active Debris
Removal (ADR) missions are also critical for mitigating the risks posed by space
debris, including defunct satellites. ADR involves removing non-functional
satellites and other debris from Earth’s orbit, which is essential to maintaining
the safety and sustainability of space operations. Both OOS and ADR missions
require spacecraft to perform complex rendezvous and proximity manoeuvres
around the target before carrying out mission-specific tasks.[1]
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Introduction

Figure 1.1: Conceptual image of OOS

A key requirement for these autonomous operations is highly precise pose
estimation, which involves determining the relative position and orientation of
the target spacecraft. In many cases, the target is non-cooperative, meaning
it does not actively communicate or provide signals to assist with navigation.
As these missions often involve small spacecraft, visual navigation systems
based on monocular cameras are commonly used due to their compact size
and low power consumption. Visual navigation enables spacecraft to estimate
their position and orientation by analyzing visual cues, such as features on the
target object. Traditional methods for pose estimation in space have relied
on manually designed feature-matching techniques. These methods utilize
feature descriptors and detectors such as SIFT, SURF, KAZE, and AKAZE
[2] to identify key features like corners and edges, subsequently leveraging
their 3D correspondences to determine the relative pose. However, these
techniques face significant limitations in the space environment due to chal-
lenges like low signal-to-noise ratios and high contrast lighting conditions.
These limitations reduce the effectiveness of conventional approaches, making
them less reliable for autonomous operations. To address these issues, more
advanced techniques, such as neural networks, are found to improve robustness
and generalization in space-based visual navigation, providing more accurate
pose estimation even in the harsh conditions encountered in space operations.[3]

Deep learning (DL)-based approaches have shown significant potential in
various applications, but they largely depend on labelled data, which is
challenging to acquire in certain domains. To address this, synthetic data
generation and laboratory-based data collection have emerged as feasible meth-
ods for training and testing DL algorithms, as demonstrated by Park et al.
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[4]. However, these techniques often face performance issues when applied to
real-world images, a problem commonly referred to as the domain gap. This
discrepancy between training and real-world performance highlights the need
for strategies to bridge the gap. Although some methods have been proposed,
such as those by Park et al. [4] and Lovaglio [3], they are often either too
computationally demanding for onboard use or fail to achieve the necessary
accuracy for practical implementation.

Figure 1.2: Pose estimation [5]

This thesis aims to optimize neural networks for pose estimation by focusing
on hyperparameter tuning to develop a solution that is both computationally
efficient and lightweight while meeting the accuracy requirements for pose
determination. The optimization process extends beyond selecting appropriate
training parameters, addressing the need to adapt the neural network for
compatibility with limited processing power onboard processors equipped on
satellites, ensuring both timeliness and precision. A methodological approach
is proposed to optimize such neural networks to establish a standard for optical
navigation in future space missions.

1.1.1 Domain Gap
In space exploration, the Domain Gap presents a critical challenge for applying
machine learning (ML) models in space-borne vision applications. This gap
arises from the significant difference between the environments in which ML
models are trained, typically simulated, and the actual conditions encountered
in space. Acquiring a good dataset of space-borne images for model training
is challenging because, even when images are collected from space, they will
always differ from those relevant to the specific mission being studied. This
variability arises from differences in spacecraft and environmental conditions,
making it difficult to obtain a consistent and representative set of data for
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training purposes. This limitation hinders the ability to thoroughly evalu-
ate the performance of ML models on real space images before deployment.
Consequently, most of the existing methods rely on training models with
synthetic images and extensive data augmentation or domain randomization
to simulate space conditions. However, the evaluation of these models on
actual space-borne images remains limited due to the scarcity of such data.
Furthermore, the computational and memory constraints of satellite avionics
make it impractical to perform domain adaptation during the mission.

(a) Space Rider - synthetic image (b) Cygnus - space-born image

Closing the domain gap is crucial to guarantee that models developed and
tested in Earth-like conditions can operate reliably in space. Although ad-
vancements have been made, a complete solution to this issue is still lacking,
highlighting the need for more sophisticated domain adaptation methods
designed to address the specific challenges of space exploration.
It’s valuable to mention the work of the SPEED/SPEED+ benchmark, de-
veloped at Stanford’s Space Rendezvous Laboratory (SLAB) [6]. The aim is
to create a large dataset that includes 59960 synthetic photos: 6740 for emu-
lating diffuse light in Earth’s orbits and 2791 images for simulating the sun’s
influence on spacecraft. This groundbreaking work has become a benchmark
for the training and testing of neural networks for space, as well as a standard
procedure for future missions. However, even though these images so other
techniques need to be implemented in order to bridge the gap.[4]
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Figure 1.4: SPEED+ mock-up [7]

1.2 CNN for pose estimation
The present thesis will concentrate on enhancing the performance of the
following convolutional neural network architecture [3] tailored for the ESA’s
mission Space Rider Observer Cubesat (SROC).
SROC mission is designed to showcase essential technologies and capabilities
required for conducting rendezvous and docking missions within a safety-
critical environment. The system is tasked with executing proximity operations
near the Space Rider (SR) vehicle, ultimately docking with the mothership
before re-entering Earth’s atmosphere. The mission statement is outlined
as follows: “To operate a CubeSat in LEO to demonstrate capabilities in
the close-proximity operations domain in a safety-critical context, including
rendezvous and docking with another operational spacecraft.”[8].

Figure 1.5: SROC mission [8]
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As an in-orbit demonstrator, the SROC project aims to develop and validate
novel technologies specific to proximity operations in space. Additionally, the
advancements achieved through the SROC mission will contribute to other
space operations, such as in-orbit servicing and debris mitigation.[8]
The following sections will introduce the main architecture of this CNN,
outlining its key components

• Preliminary Classification CNN: It’s a basic binary classifier, trained to
recognize the presence of the target labelling the images as 1 defines if
the target is present, while 0 if not.

• Pose Estimation CNN: It estimates the pose of an uncooperative target
by computing the rotation and translation through regression over two
heads, EfficientPose and Heatmap.

Figure 1.6: EfficientPose Estimation Network [3]
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1.2.1 Binary Classification

The CNN is entirely custom-designed and classifies augmented, pre-processed
images with a binary output of 1 or 0, indicating the presence or absence of
the target. The overall architecture consists of four convolutional layers, each
utilizing a 3x3 kernel and a stride of 1. The first layer accepts 3 input channels
(corresponding to RGB) and produces 16 output channels, each representing
a unique filter that detects different patterns. In subsequent hidden layers,
the number of output channels is doubled, progressing from 16 to 32, 64, and
128 filters. The figure below provides a detailed schematic of the architecture,
illustrating the various operations applied to the layers, such as MaxPooling
for output size reduction, activation functions, and batch normalization.

Figure 1.7: Binary Classification Network [3]

1.2.2 EfficientPose

The CNN follows the approach designed by Park et al [4], based on the
EfficientDet feature encoder, comprising EfficientNet as a backbone and the
Bidirectional Pyramid Network (BiFPN), which output is given to the multiple
prediction heads. These heads have different works as bounding box detection,
keypoints prediction, target rotation and translation regression. There’s also
the Heatmap head, designed to process images maintain high resolution and
produce heatmaps as outputs.
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Figure 1.8: Park’s proposed architecture [4]

Starting from EfficientNet, it was selected as the backbone for the model due to
its efficiency and high performance in image detection. The backbone features
extracted by EfficientNet give detailed information about the object shapes,
textures, and contexts being effective in capturing meaningful representations
of input images.
The BiFPN is a lightweight and efficient module consisting of a top-down
pathway that aggregates features from higher levels of the network and a
bottom-up pathway that aggregates features from lower levels. These pathways
are strictly connected by fusion nodes that combine features from any level
using a weighted sum. During the training phase, the weights of these nodes
are learned to optimize the feature fusion process.
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Chapter 2

Mathematical Background

2.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) represent a specialized class of deep
neural networks designed to leverage the spatial structure present in grid-like
data, making them particularly well-suited for tasks involving image-driven
pattern recognition tasks, such as classification, detection and segmentation.
CNNs stand out as one of the most powerful types of Artificial Neural Networks
(ANNs), deriving their name from convolution, a linear mathematical operation
they employ to extract features from input data.[9]
The architecture of CNNs is inspired by the visual perception system of living
beings and is composed of one or more groups of convolution and pooling
layers, followed by fully connected (FC) layers and an output layer. In the
subsequent sections, the characteristics of these three key building blocks will
be explored in detail.

2.1.1 Convolutional Layer
A convolutional layer can be seen as the "eyes" of a CNN, as each neuron
in this layer is responsible for detecting specific features within the input.
Typically, the input to a convolutional layer is either the original image, in
the case of the first layer, or the output from a previous layer in the network.
Convolutional layers perform convolution operations on the input data using
learnable filters, also known as kernels. These filters are small matrices of
weights that act as feature detectors, designed to identify specific patterns or
characteristics in the input data. During the convolution process, the filter is
systematically applied to the input data, and at each step, the dot product
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between the filter and the corresponding region of the input is computed. Each
filter is trained to focus on localized areas of the input to extract particular
features. The result of this process is a set of feature maps that highlight the
most relevant patterns and features present in the input.

2.1.2 Pooling layer

Pooling is a mathematical operation required in CNNs. A pooling operation
replaces the output of the convolution operation at a certain location down-
sampling the spatial dimensions of the input feature maps. The result is
the reduction of the number of parameters and computational complexity
of the network. The pooling layer, usually inserted between convolutional
layers, makes the representations more computationally efficient and reduces
overfitting, in particular when it’s dealing with large-scale datasets.[9]
The most popular pooling operation is max pooling, it summarizes the input
as the maximum within a rectangular neighbourhood but does not introduce
any new parameter. So, the advantage is the aggressive reduction of the
parameters. The figure below illustrates a simple example of how max pooling
functions. The input consists of a 4x4 slice, with a 2x2 filter applied and a
stride of two. In the first 2x2 region, the maximum value is 7, which is stored
in the output channel. As the filter slides over by 2 pixels, the maximum
value in the next region (highlighted in green) is again 7. Once the edge is
reached, the filter resets to the left and moves down by 2 pixels. In the yellow
region, the maximum value is 6, which is stored in the output channel, and
the same process is applied to the neighbouring region. After completing the
operation, the result is a 2x2 down-sampled representation of the input slice,
while maintaining the depth of the volume at its original size.

Figure 2.1: MaxPooling example
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2.1.3 Fully connected Layer
The final component of every CNN architecture consists of fully connected
layers, commonly referred to as dense layers. These fully connected layers
receive input from the last convolutional or pooling layer, known as the feature
map. This feature map is flattened into a vector, which is subsequently fed
into the fully connected layer to produce the final output of the CNN for
classification or regression tasks. In fully connected layers, each neuron receives
input from all neurons in the previous layer and generates an output that is
transmitted to all neurons in the subsequent layer.

Figure 2.2: Fully connected layer network

The number of neurons in this layer determines the dimensionality of the
learned feature space, while the weights associated with each connection are
adjusted during the training process. This type of connectivity enables the
network to learn complex patterns and relationships within the input data
effectively.

2.1.4 Back-propagation
Once outlined the general architecture of a neural network, it is essential to
understand how it operates, particularly the training process through which
the network learns to perform the required task. It’s possible to describe
it in two distinct operations: the forward pass and the back-propagation.
The forward pass begins by propagating the input data through the network,
starting from the input layer, passing through the hidden layers, and finally
reaching the output layer where the network’s predictions are made. The
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error is then calculated based on the difference between the predicted output
and the actual target values.[10] Next, the backward pass is initiated. During
this phase, the error is propagated backwards through the network, from the
output layer to the input layer, updating the weights along the way to improve
the network’s performance.

Figure 2.3: Back-propagation pass [10]

This process, known as back-propagation, is an iterative algorithm designed
to minimize the cost function by determining which weights and biases need
adjustment. In each iteration or epoch, the model learns by updating these
weights and biases, using the gradient to guide how much each parameter
should be modified to reduce the error in the next forward pass.

2.1.5 Loss Functions

This section examines the primary loss functions utilized in neural networks for
object detection and pose estimation, which are crucial for evaluating network
performance. Loss functions act as essential tools to guide the learning process,
measuring how accurately network predictions align with actual data. Here,
particular focus is placed on the Intersection over Union (IoU) and SPEED
loss, each tailored to capture different performance metrics [3].

The IoU quantifies the overlap between predicted and actual regions, providing
a ratio that reflects prediction accuracy relative to the ground truth. This
metric is especially effective because it penalizes both false positives and false
negatives, fostering balanced prediction outcomes.

12



Mathematical Background

Figure 2.4: IoU [11]

The SPEED loss serves as the official performance metric for the Satellite Pose
Estimation Challenge [12], specifically designed to evaluate predicted satellite
pose in terms of both positional accuracy and orientation.

For position, the error et is calculated as the 2-norm difference between
the ground truth position tgt and the predicted position tpr. To account for
variations in target distance, the normalized error is computed, which heavily
penalizes positional errors when the target satellite is closer. [12]

ēt = ||tgt − tpr||2
||tgt||2

(2.1)

Orientation error eq, in contrast, is derived as the angular distance between
the true and predicted quaternions qgt and qpr, respectively.

eq = 2arccos|qgt · qpr| (2.2)

The overall pose error is then determined by combining the normalized po-
sition error with the orientation error, providing a comprehensive metric for
evaluating satellite pose accuracy.

epose = ||tgt − tpr||2
||tgt||2

+ 2arccos|qgt · qpr| (2.3)
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2.2 Hyperparameters
Hyperparameters play a crucial role in determining how well a model general-
izes from training data to unseen data.
A Machine Learning model is a mathematical model with several parameters
that need to be learned from the data. These are referred to as model param-
eters, which are internal to the model and are automatically adjusted by the
algorithm during the training phase. These include weights and biases, and
they cannot be manually set; they are learned through the training process
and later used for making predictions.
The training phase focuses on selecting the most suitable hyperparameters,
which guide the learning algorithm to achieve optimal results. Unlike model
parameters, the user explicitly defines hyperparameters to manage the learning
process [13], and they must be set before training begins. These top-level
parameters influence crucial aspects of the model, such as its complexity and
the speed at which it learns. It is essential to note that hyperparameters are
external to the model and cannot be altered once training starts.
Tuning hyperparameters significantly impacts the model’s performance, as
determining the ideal values for a specific problem is often challenging. Poor
hyperparameter selection has been recognized as a major obstacle to progress
in machine learning research. To minimize errors in hyperparameter selection,
it is important to understand the most commonly used hyperparameters and
their influence on model performance. [13]

The following section will explore eight key hyperparameters commonly em-
ployed in tuning machine learning models.

Learning rate
The learning rate controls the size of the steps a model takes during gradient
descent, the method used to minimize the loss function. It also determines
the frequency of cross-checking with model parameters. Choosing an optimal
learning rate is challenging because a high learning rate allows the model to
learn quickly by taking larger steps, but it risks overshooting the optimal
solution. Conversely, a low learning rate ensures slower, more precise progress
but can cause the model to get stuck in local minima.

Learning rate factor
The learning rate factor is a multiplier that adjusts the learning rate dynami-
cally throughout training. It helps maintain stability and improve convergence
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by gradually reducing the learning rate as training progresses.

Scheduler
Schedulers are tools that adjust the learning rate over time to enhance training
efficiency and model performance. They address issues like slow convergence
or overshooting by adapting the learning rate based on the training’s progress.
The choice of scheduler depends on the model’s architecture and specific goals.
[3]

• Step: The step scheduler lowers the learning rate by a specific factor
at predetermined epochs. The learning rate stays constant until the
scheduled epoch is reached, after which it drops by the set factor. This
method is useful for gradually decreasing the learning rate to aid in
convergence during training.

• Cosine: The cosine scheduler adjusts the learning rate based on a cosine
function throughout the training process. It begins with the learning
rate at its highest value and then gradually reduces it in a smooth,
cosine-shaped curve until it approaches near zero by the end of training.

• Exponential: The exponential scheduler reduces the learning rate expo-
nentially throughout training. This is done by applying a fixed decay
rate after each epoch, resulting in a steady exponential decrease in the
learning rate as training progresses.

Batch size
The batch size refers to the number of samples the model processes before
updating its gradients. Batch sizes can range from a single sample to the
entire dataset. Typically, a range of 1 to a few hundred samples offers the
fastest training, but this depends on hardware like the GPU.

Number of epochs
An epoch can be defined as the complete cycle for training where the model
uses the entire dataset once, performing both forward and backward passes.
The number of epochs needed varies by model and is determined by monitor-
ing validation errors. A single epoch in training is not enough. It leads to
underfitting so the number of epochs is increased until there is a reduction in
a validation error until there is no improvement for the consecutive epochs.
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Epochs for learning rate decay
This hyperparameter specifies the number of epochs after which the learning
rate is reduced. It can be set to any value between 0 and the final epoch of
training.

Weight decay interval amplitude
The hyperparameter defines the amplitude of the weight decay interval in case
of the step scheduler is chosen.

Optimizer
Optimizers play a crucial role in minimizing the loss function by iteratively
updating a model’s weights and biases. They adjust the parameters to guide
the model toward convergence. The most relevant optimizer algorithms are:

• The Adam optimizer is adaptive, calculating individual learning rates for
each parameter by adjusting the step size based on the square root of the
accumulated second moments of the gradients.

• AdamW is a variation of Adam that separates weight decay regularization,
which helps prevent overfitting, from the optimization step. This decou-
pling allows the model to better focus on minimizing the loss function.
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Chapter 3

Methodology and tools:
Optimization of
Convolutional Neural
Networks

Optimizing neural networks is essential to enhance performance and efficiency.
By fine-tuning hyperparameters and reducing model complexity, optimization
helps ensure that networks generalize well to unseen data while minimizing
computational resources. This is particularly important in real-world applica-
tions, where high accuracy and reduced processing time are critical for tasks
like image recognition and natural language processing.

3.1 Hyperparameters tuning: Black-box opti-
mization

Hyperparameters are important in determining the performance of CNN-
based algorithms. However, finding the optimal set of hyperparameters is
often a complex and inefficient process and traditionally relies on subjective
trial-and-error methods. In this context, black-box optimization (BBO) has
emerged as a powerful approach to tackle optimization problems where the
objective function is unknown, complex, or does not have a clear mathematical
representation.
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BBO is therefore particularly suitable for hyper-parameter optimization, an
important challenge aimed at improving model performance. The objective
function in black-box optimization f : X → R must be optimized within a
limited evaluation budget, where the term ’black-box’ means that there is no
additional information about the function beyond its evaluations at specific
points. In scenarios where each evaluation is resource-intensive, it is essential
to carefully select input values to efficiently generate a set of inputs that
converges to a global optimum.
The BBO algorithm is particularly effective in determining optimal operating
parameters in systems where performance depends on tunable parameters.
The application of BBO to hyperparameter optimization (HPO) provides an
automated, systematic approach that overcomes the shortcomings of heuristic
methods and significantly improves the performance of CNN-based algorithms.
By systematically exploring the hyperparameter space, HPO methods search
for configurations that maximize performance metrics. Furthermore, these
methods allow the integration of domain knowledge and prior knowledge,
enabling more informed and efficient optimization decisions.

3.1.1 Optuna: Define by-run optimization network

Identifying optimal hyperparameters is often a complex task that may require
inefficient trial-and-error approaches. HPO offers a more structured approach
to enhance the performance of CNNs. In this study, the Optuna library
is employed as the HPO framework. Optuna is an advanced, open-source
optimization tool developed under the define-by-run paradigm. It utilizes
sophisticated algorithms for hyperparameter sampling and effectively prunes
unpromising trials, enhancing exploration efficiency.
The define-by-run approach, a contemporary concept in deep learning, allows
users to build and modify deep neural networks during execution dynamically.
In the context of optimization frameworks, this term refers to a design that
permits users to construct the search space dynamically, eliminating the need
to predetermine all aspects of the optimization process. In Optuna, hyperpa-
rameter optimization is formalized as the minimization or maximization of an
objective function, which takes a set of hyperparameters as input and returns
a corresponding score.
Optuna organizes this process into studies, where each objective function
evaluation is referred to as a trial. During each trial, the objective function
interacts with a "trial object," progressively constructing the function as the
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trial unfolds. The search spaces for hyperparameters are thus defined dynam-
ically through interactions with the trial object during the runtime of the
objective function.
Attention is focused on the sampling and pruning algorithms employed in
constructing the experimental setup with the Optuna framework. These algo-
rithms are essential for optimizing the hyperparameter search process, enabling
efficient exploration of the parameter space and dynamic elimination of subopti-
mal trials, thereby enhancing computational efficiency and overall performance.

Sampler algorithms

The efficient parameter-sampling algorithms allow the first step for the user-
customization framework. Optuna offers a variety of samplers that it’s possible
to divide into two types of sampling methods: independent sampling which
samples each parameter independently and relational sampling which exploits
the correlations among the parameters.
Independent sampling methods such as the Tree-Structured Parzen Estimator
(TPE) are recognized for their strong performance even without utilizing pa-
rameter correlations. The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) represents an example of a sampling algorithm that leverages rela-
tionships within the parameter space. In this approach, candidate solutions,
corresponding to hyperparameters, are drawn from a multivariate Gaussian
distribution. Following the evaluation of all sampled solutions, they are ranked
based on their performance metrics. The parameters of the Gaussian distribu-
tion are subsequently updated under this ranking to refine the sampling process
[14]. The cost-effectiveness of both relational and independent sampling is
contingent on the environment and the task at hand. Optuna can handle
various independent sampling methods like TPE as well as relational sampling
methods such as CMA-ES or Independent Natural Gradient Optimization
(INGO).
However, Optuna offers a naive option for the TPE algorithm, the reasons why
it became so popular is for its great flexibility and outstanding performance
demonstrated for HPO in DL models. In this paragraph, it will be discussed
the algorithm’s intuition and the role of its control parameters. TPE is a
variant of Bayesian optimization (BO), where in general the goal of BO is to
minimize the objective function, such as finding the optimal configuration for
the hyperparameter. It iteratively searches for optimum using the acquisition
function to trade off the degree of exploration (research of unseen regions) and
exploitation (research region near promising observation). [15]
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In the TPE algorithm, the search space is divided into regions following a
tree-like structure, where each node represents a region. At each iteration, it
explores different regions of the search space to discover promising areas that
may contain the optimal solution. This exploration is helped by prioritizing
regions that have not been explored yet. Then, a probabilistic model is built
to estimate the performance of the configurations of every node (region).
Going deeper into the functionality and the role of its parameters, the TPE
can be divided into the splitting algorithm, the weighting algorithm, and the
kernel functions for building the surrogate model.

1. Splitting algorithm: utilizes the gamma splitting function to divide the
search space into two regions as the better and worse group, which are
then explored separately to identify the optimal hyperparameters. The
quantile is used to determine the proportion of the search space allocated
to each child node. [15]

2. Weighting algorithm: evaluates the objective function at each node in
the tree and calculates the weight based on its evaluation score and the
scores of its parent and child nodes. Then, it assigns the calculated
weights to each node. The functions model the relationship between
hyperparameters and the evaluation function, enabling the algorithm to
search for optimal hyperparameters efficiently. [15]

3. Kernel functions: transform hyperparameters into a higher-dimensional
feature space, where the relationship between hyperparameters and the
evaluation function is more linear. Several kernel functions can be used
and it depends on the type of hyperparameter, for example, categorical or
numerical. But there’s also another aspect that is important to mention
and it’s the difference between univariate and multivariate kernels. The
first one can handle conditional parameters because of the independence of
each dimension instead the multivariate cannot but the implementation of
the latter enhanced the general performance at the expense of conditional
parameter handling.[15]

Pruner Algorithms

The pruning algorithm is crucial for maintaining the cost aspect of cost-
effectiveness. Generally, the pruning mechanism operates in two stages: it
regularly checks the intermediate objective value and stops any trials that do
not satisfy a set condition. Optuna, like the samplers, provides various pruning
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algorithms such as MedianPruner, HyperOpt, and RandomPruner, but the
Asynchronous Successive Halving (ASHA) algorithm has shown exceptional
performance compared to the others.
ASHA is a robust enhancement of the Successive Halving (SHA) method. It
allows each worker to perform aggressive early stopping asynchronously based
on the provisional ranking of trials. This makes it well-suited for parallel
computation, enabling the simultaneous processing of multiple trials without
delays. The SHA is based on distributing a limited budget to each hyperpa-
rameter configuration, assessing all configurations, and keeping the best ones.
The budget for each configuration is then increased by a factor of η, and this
is repeated until the maximum budget R is achieved.[16]
This optimization process is influenced by several parameters, including the
number of hyperparameter configurations, the minimum and maximum budget
for each configuration, the reduction factor η, and the early-stopping rate s.
The early-stopping rate is particularly significant, as lower values lead to more
aggressive early stopping, impacting the resources allocated to each config-
uration. This optimization can be visualized as a series of "rungs" or levels,
where each rung signifies an increase in the budget for each configuration and
a decrease in the number of configurations retained. [16]
Parallelization of SHA is essential for enhancing its efficiency in large-scale
scenarios, but strategies like running multiple instances of SHA on each worker
are ineffective in such contexts. Therefore, the ASHA algorithm was developed,
utilizing asynchronous to address stragglers and maximize parallelism. The key
distinction is that ASHA advances configurations to the next rung whenever
feasible, rather than waiting for their completion before moving on to the next
stage.

Figure 3.1: ASHA promoting rungs [16]
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3.2 Model reduction
CNNs have demonstrated outstanding performance across a wide range of
applications. This success is often attributed to their increasingly deep archi-
tectures, which come at a high computational cost. These architectures can
contain millions of parameters, demanding substantial computing power and
making them difficult to deploy on hardware with limited resources. Model
compression offers a potential solution to this issue by reducing the number of
parameters, computational demands, and memory usage. This work explores
various strategies to implement the most effective method for compressing a
large, custom CNN. The techniques examined include pruning, quantization,
and knowledge distillation.

Quantization

One of the most effective techniques to achieve this is quantization, which
involves reducing the precision of weights and activations. By lowering pre-
cision, quantization helps to decrease both the computational burden and
memory requirements of a model, making it a popular approach in various
machine-learning applications. Quantization offers several advantages that
make it a versatile optimization technique. Notably, it can be applied across
a wide range of models and use cases without necessitating changes to the
underlying architecture. This flexibility allows developers to take a pre-trained
floating-point model and convert it into a fixed-point quantized model with
minimal accuracy loss. For example, 8-bit quantization is a widely used ap-
proach that can reduce the model size by a factor of four while maintaining
accuracy levels close to those of the original floating-point model. Also, moving
8-bit data is four times more efficient than 32-bit floating-point data, which is
particularly beneficial where memory access is a significant source of power
consumption.[17]

There are two primary approaches to quantization: Post-Training Quan-
tization (PTQ) and Quantization Aware Training (QAT). PTQ is a simple
and effective method that quantises models after training, with limited data
required for the process. Since it does not involve modifying the training
process, PTQ is an attractive option when time or computational resources
are limited. However, the simplicity of PTQ can sometimes come at the cost
of accuracy. In certain cases, the loss in precision introduced by quantization
can lead to unacceptable performance degradation, especially in more complex
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models.[17]
In scenarios where accuracy loss from PTQ is intolerable, QAT offers a more
robust solution. It integrates quantization into the training process itself,
allowing the model to adapt to the lower precision environment during its
learning phase. This is achieved by inserting fake quantization modules into
the model during training, which simulate the effects of quantization—such
as clamping the values to the reduced precision range. So, the model learns
to accommodate the limitations of quantized representations, leading to a
final model that better retains accuracy when converted into a fully quantized
version. Once the training is complete, the model is converted into a quantized
integer model using the information captured by the fake quantization modules.
[18]

Knowledge Distillation

Knowledge Distillation (KD) is a model compression technique employed
in CNNs that facilitates the transfer of knowledge from a larger, more complex
model known as the teacher to a smaller, more efficient model known as the
student. [19] The process involves training the student model not only on
the original training dataset but also utilizing the labels generated by the
teacher. This richer information helps the student model learn the patterns
and relationships in the data more effectively.
By mimicking the teacher’s behaviour, the student can achieve comparable
performance while being significantly smaller in size, leading to faster inference
times and reduced computational resource requirements. This technique is
particularly advantageous for deploying CNNs on resource-constrained devices,
such as embedded systems, where computational efficiency and speed are
relevant.
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Pruning

The objective of pruning is to minimize the number of parameters with-
out significantly affecting the performance of the models. Most research on
pruning has been done on CNNs for the image classification task, which is the
foundation for other computer vision tasks.

Figure 3.2: Visual pruning scheme [20]

Pruning can be categorized into unstructured and structured pruning.
The unstructured pruning removes individual weights or connections within the
network based on predefined criteria, resulting in a sparse model representation.
This irregular sparsity can be more difficult to optimize on certain hardware,
as the remaining parameters are not organized in a predictable pattern. [21]
Additionally, this method often necessitates fine-tuning and retraining to
preserve the performances. On the other hand, in structured pruning, entire
components such as channels, layers, or filters are removed. Because large
structural elements are pruned, the resulting model is often smaller and
maintains a regular architecture, which is beneficial for optimizing hardware
acceleration. [21] Such pruning often leads to significant speedups during
inference, especially on GPU.
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Figure 3.3: Visual structuring pruning scheme [20]

Since structured pruning tends to be more effective on larger networks, and
this work aims to reduce the number of parameters while maintaining effi-
ciency, we will explore its methods and applications in detail. Structured
pruning is a technique designed to reduce the complexity of deep convolutional
neural networks by systematically removing structural elements such as filters,
channels, or entire layers. This method improves computational efficiency and
reduces memory usage, which is critical for deploying deep learning models in
environments with limited resources. Filter pruning removes entire convolu-
tional filters based on criteria like weight magnitude or filter relevance. This
approach is effective because filters that contribute less to the final prediction
can be eliminated without a significant loss in accuracy. This strategy sim-
plifies the network, minimizing the resources required for both training and
inference.
Methods such as channel pruning take a slightly different approach by focusing
on the removal of channels, or feature maps, that represent intermediate rep-
resentations of the input. Channels that carry redundant or non-informative
features can be pruned, leading to a streamlined network architecture. This
reduces the size of intermediate data passed between layers, saving both mem-
ory and computational power.
It’s possible to implement a more aggressive approach, such as layer pruning,
that involves eliminating entire layers from the CNN, which is feasible in
cases where some layers contribute little to model performance. This method
is often guided by architectural search strategies that balance the trade-off
between pruning too many layers and maintaining network efficacy.[22]
Pruning can be integrated during different stages of the network life cycle.
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Dynamic pruning during training is one approach, where the network is it-
eratively pruned while it is still learning. This dynamic adaptation allows
the model to retain high performance by gradually learning to optimize itself
with fewer parameters. Additionally, techniques like Dynamic Pruning with
Feedback (DPF) utilize feedback loops to further refine which components of
the network can be pruned during training.
Alternatively, pruning can be applied after the network has been fully trained,
often known as pruning during inference. In this case, techniques like Rank-
Normalized Pruning (RNP) are used to remove filters or channels that are
less important during the inference phase. This method is advantageous for
reducing the computational load during real-time deployment, where mini-
mizing latency is a priority. Here, the focus is not on adjusting the network
during training but on trimming unnecessary components after the model has
already learned.[22]
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Chapter 4

Test and Results

In this section, the tests and results of the optimization experiments are
presented. Each subsection details the experimental setup, the outcomes of the
conducted experiments, and a consequent discussion of the obtained results.
This discussion highlights the strengths of the implemented optimization
while addressing the challenges encountered, serving as a basis for future
improvements.
The mean performances, i.e., the average errors evaluated on the inference
dataset, are presented in tables. The reported errors are Intersection over
Union (IoU) and the SPEED loss, which includes position error, orientation
error, and pose error designed to evaluate the predicted satellite pose in terms
of both position and orientation (refer to 2.1.5 for more details).

4.1 HPO
This section explores the approach used to optimize hyperparameters, lever-
aging the Optuna tool as the primary method for conducting this task. The
results obtained by Lovaglio [3] serve as the baseline for this optimization
process, providing a reference point for evaluating improvements.

4.1.1 Setup and Test

The initial step in the optimization strategy involves identifying the specific
hyperparameters that will be targeted for tuning. These hyperparameters
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influence the model’s performance, and optimizing them effectively can signifi-
cantly enhance accuracy and efficiency. Once the relevant hyperparameters
have been identified, the next task is to establish a suitable range of values
that each hyperparameter can assume. It is essential to strike a balance
between exploring a broad spectrum of configurations and maintaining focus
on ranges known to produce desirable results. The table below provides a
detailed overview of the hyperparameters chosen for optimization, along with
the specific ranges of values considered during the search process.

HPO Values
Scheduler Step, Exponential, Cosine Decay
Learning rate [10−5; 10−3]
Learning rate factor [0.1; 0.9]
Batch size [3; 8]
Number of epochs [100; 150]
Optimizer Adam, AdamW
Weight decay interval amplitude [1; 2]
Epochs for learning rate decay [0; End epoch]

Table 4.1: Range of hyperparameters for HPO

For instance, the learning rate must remain relatively small, as increasing
it beyond 10−3 would not be practical or effective. Similarly, choosing an
appropriate learning rate scheduler and determining a suitable range for the
batch size is equally important. For the batch size, it is well understood
that increasing it to a certain threshold, typically greater than 1, can lead
to improved performance due to more stable gradient estimates and better
utilization of hardware resources.
This careful balance between range exploration and constraint is essential to
ensure that the optimization process is both thorough and efficient, leading to
improved model performance without overstepping practical bounds.

4.1.1.1 Final Approach Dataset

The dataset consists of around 3000 RGB images, split into training, validation,
and testing sets in a 70-15-15 ratio. The images represent a mission scenario
where the chaser follows a straight-line trajectory toward the target along the
InTrack axis to achieve mating conditions. This scenario, known as the Final
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Approach (FA), covers distances ranging from 8 to 80 meters from the target.
To speed up the training and inference processes without sacrificing quality,

the original image resolution of 2048x1536 has been reduced to 512x384. This
reduction is supported by Lovaglio’s work [3], which demonstrated that a
graphical downgrade does not negatively impact performance. The findings in
table 4.8 confirm this theory, showing that the reduced resolution maintains
the model’s performance while improving processing efficiency.

Figure 4.1: Images from FA Dataset

As discussed in 1.1.1, training with synthetic images can be particularly
challenging. Data augmentation techniques are essential to improve training
performance and minimize overfitting. To this end, using the available data,
the Albumentations library has been applied to enhance the diversity of train-
ing samples.

Setup

The following section outlines the methodology and options selected for the
optimizer, which are tailored to the specific characteristics of the network,
such as its size, the objective function to minimize, and the nature of the
hyperparameters involved (integer, categorical, or float). For more in-depth
information, refer to the theory discussed in 2.2 and the Optuna documenta-
tion [23]. For this thesis, the multivariate TPE sampler was chosen due to its
robustness and versatility, making it well-suited for integration with pruners,
an essential requirement to accelerate the optimization process. ASHA was se-
lected as the pruner to discard unpromising trials due to its ability to evaluate
trials asynchronously and promote promising configurations without waiting
for all rounds to finish. The table below outlines the strategy and options
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employed.

TPE Sampler Multivariate: true consider magic clip: true
ASHA Pruner min resource: auto reduction factor: 4

Table 4.2: Optuna Sampler and Pruner configuration

Two optimization simulations are conducted with differing numbers of trials,
specifically 10 and 20. The reason behind this is to assess whether the TPE
algorithm requires more than 10 trials, the minimum needed for the algorithm
to explore the hyperparameter space effectively.

Test case with 10 trial

In this case, the following optimal hyperparameters were identified.

HPO Values
Scheduler Exponential
Learning rate 0.000757
Learning rate factor 0.783
Batch size 4
Number of epochs 115
Optimizer AdamW
Weight decay interval amplitude 1
Epochs for learning rate decay 27

Table 4.3: Set of optimized hyperparameters - FA 10 trials

It is important to note that the objective function is relatively easy to mini-
mize when using the FA dataset. Consequently, the optimization process is
efficient, requiring only the time needed for a single evaluation round. This
is facilitated by the ASHA pruner, which promotes promising configurations
asynchronously, thus conserving resources by avoiding less promising alterna-
tives. The following Optuna plots further illustrate the relationships between
the hyperparameters, their significance, and the optimization history.
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Figure 4.2: Parameter relationship - FA Dataset trial 10

The contour plot in the upper figure illustrates the relationships between
various hyperparameters and the combinations of values that can minimize the
objective function. In the figure below, the importance of each hyperparameter
is displayed, ranked by their relative contributions to error reduction.

Figure 4.3: Hyperparameters importances - FA Dataset trial 10
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As shown in the lower figure, the timeline demonstrates that the objective
function was minimized as early as the first trial, while the second and
ninth trials were disregarded and pruned. As the process progressed, the
optimization consistently favoured the configuration from trial 1, which led to
the minimization of pose error.

Figure 4.4: Timeline of the study - FA Dataset trial 10

This figure further confirms the previous observations regarding the timeline,
showing that the objective function was minimized by evaluating only a limited
number of trials.

Figure 4.5: Optimization history - FA Dataset trial 10
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Test case with 20 trials

This test confirmed the results of the first test, though it yielded a dif-
ferent set of parameters. As a result, extending the optimization process is
unnecessary, as the objective function is effectively minimized within the early
configurations of the first round.

HPO Values
Scheduler Step
Learning rate 0.000324
Learning rate factor 0.176
Batch size 5
Number of epochs 104
Optimizer Adam
Weight decay interval amplitude 2
Epochs for learning rate decay [11;104]

Table 4.4: Set of optimized hyperparameters - FA 20 trials

The contour plot in this case shows different relationships between various
hyperparameters and combinations of values as expected.

Figure 4.6: Parameter relationship - FA Dataset trial 20
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In the figure below, the importance of each hyperparameter is displayed and
it’s also changed

Figure 4.7: Hyperparameters importances - FA Dataset trial 20

As shown in the lower figure, the timeline demonstrates that the objective
function minimization was achieved by exploring the first trial and evaluating
others trials but the pruning was not needed.

Figure 4.8: Timeline of the study - FA Dataset trial 20

As in the previous trial, the objective function was minimized by evaluating
only a limited number of trials.
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Figure 4.9: Optimization history - FA Dataset trial 20

4.1.1.2 Walking Safe Eclipse Dataset

The dataset comprises approximately 9500 RGB images related to the Walk-
ing Safety Ellipses (WSE) for Space Rider observation. In this dataset, the
target spacecraft is placed in random positions and orientations relative to
the chaser, with distances ranging from 600 to 100 meters. Like the previous
dataset, the original resolution of 2048x1536 pixels is reduced to 512x384 for
efficiency purposes. The dataset is split with an 80-20 ratio for training and
validation/testing, and data augmentation using the Albumentations library
is applied.

Figure 4.10: Images from WSE Dataset
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Setup

The method applied to this dataset remains unchanged, utilizing the synergy
between the TPE sampler and the ASHA pruner, with the number of trials set
to 10, as it was confirmed unnecessary to increase this number in the previous
dataset.
However, significant differences exist compared to the previous dataset, and it
is expected that the objective function will be more challenging to minimize
due to the increased distance from the target, and the fact that the target’s
orientation is not fixed but varies as the chaser follows an elliptic orbit around
SR. As a result, the optimization process will probably take longer and the
sampler will need to evaluate all trials, pruning only those deemed unpromising
to minimize the pose error as much as possible.

Test case with 10 trial

In this case, the following optimal hyperparameters were identified.

HPO Values
Scheduler Cosine Decay
Learning rate 0.000151
Learning rate factor 0.418
Batch size 3
Number of epochs 116
Optimizer AdamW
Weight decay interval amplitude 2
Epochs for learning rate decay [3;110]

Table 4.5: Set of optimized hyperparameters - WSE
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The contour plot in this test case shows an unexpected relationship between
various hyperparameters and combinations of values, in particular, it seems
that batch size and the optimizer do not correlate with other hyperparameters

Figure 4.11: Parameter relationship - WSE Dataset trial 10

In the figure below, the significance of each hyperparameter is illustrated,
explaining the lack of correlations with batch size and optimizer. This is due to
their importance being ranked very low. This remains true when considering a
ranking of hyperparameters that most significantly influence the minimization
of the objective function. However, batch size plays a crucial role in calculating
the error, which this ranking does not account for. This will be elaborated
on later, but it is essential to highlight that the optimal batch size is heavily
dependent on the structure of the images in the dataset. For example, the
FA dataset’s images are quite similar, as the model follows a straight path
toward the target. This is not the case with the WSE dataset, where greater
variability exists. As a result, the network likely requires a larger sample of
images per iteration to compute back-propagation accurately.
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Figure 4.12: Hyperparameters importances - WSE Dataset trial 10

As shown in the lower figure, the timeline demonstrates that the objective
function minimization was achieved by exploring all ten trials and pruning
the most trials.

Figure 4.13: Timeline of the study - WSE Dataset trial 10
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As in the previous trial, the objective function was minimized by evaluating
the fourth trial.

Figure 4.14: Optimization history - WSE Dataset trial 10

4.1.2 Results
FA Dataset

Regarding the optimization performed on the FA dataset, the following two
tables present the mean performances, evaluated on the inference data, of the
neural network optimized via HPO with 10 and 20 trials, respectively.

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

Optimized - 10 trials 512x384 99.5 0.003 0.029 0.003

Table 4.6: Mean performances of FA optimization - 10 trials

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

Optimized - 20 trials 512x384 99.1 0.005 0.04 0.005

Table 4.7: Mean performances of FA optimization - 20 trials

It is noteworthy that, in addition to the performances falling within an ac-
ceptable range, 10 trials are sufficient for the TPE sampler to effectively
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and efficiently explore the hyperparameter space. Therefore, for subsequent
work, we decided to proceed with 10 trials. Nonetheless, the most promising
result was obtained with the 10-trial optimization, and this will be used for
comparison with the original network. It is important to highlight, however,
that the number of trials does not affect the success of finding the optimal
solution, but rather the depth of the search. The choice of 10 trials represents
a trade-off between computational time and the quality of results obtained.

The table below demonstrates that hyperparameter optimization is particularly
effective in minimizing pose error, yielding better results than the baseline. It
is of particular interest that the optimized results were achieved while reducing
the image resolution by 75 %. Thus, through HPO, it is possible to achieve
smaller losses by significantly decreasing the image resolution, which translates
into lower computational cost and faster convergence during both the search
for optimal solutions and network training.

Network Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

Not Optmized 1024x768 99.2 0.004 0.035 0.005
Optimized 512x384 99.5 0.003 0.029 0.003

Table 4.8: Comparison of FA mean performances

To sum up the improvements obtained through the optimization:

• The IoU loss experiences no improvement or decay

• The ēt error see an improvement of 25%

• The eq error has an improvement of 17%

• The epose error experience improvement of 40%

It is therefore essential to investigate whether increasing the resolution back
to the original, while using the optimized hyperparameters, will yield better
results or if we have reached a limit beyond which further improvements are not
feasible. The table compares the performance of the optimized network trained
with low-resolution images (512x384) and high-resolution images (1024x798)
to explore potential improvements.
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Network Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

Optimized 512x384 99.5 0.003 0.029 0.003
Optmized 1024x768 99.2 0.004 0.025 0.004

Table 4.9: Comparison of FA optimized mean performances between different
resolutions

The results indicate that no significant improvement was observed, and the
mean performances remain within an acceptable range. Therefore, working
with low-resolution images is a strategy that allows significant computational
savings and reduced training time without degrading performance.

WSE Dataset

Based on the results obtained from the previous scenario and the applied
methodology (refer to 4.1.1.2), the optimization was conducted using 10 trials
and then, a new test case to solve some issues.

Test case - 10 trials

The following tables present the mean performances of the optimized network,
as well as a comparison with the results of the original network trained on the
current dataset.

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

Optimized - 10 trials 512x384 93.5 0.020 5.65 0.11

Table 4.10: Mean performances of WSE optimization - 10 trials

Network Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

Not Optmized 1024x768 93.5 0.043 2.386 0.085
Optimized 512x384 93.5 0.020 5.65 0.11

Table 4.11: Comparison of WSE mean performances
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The table above shows that the optimization process yields results that deviate
from expected outcomes. Specifically, while the normalized error significantly
decreases, a contrasting increase in orientation error occurs, which subsequently
impacts the pose error as well. This unexpected outcome is likely attributable
to an improper combination of hyperparameters. As mentioned in 4.1.1.2, the
WSE dataset poses particular challenges for target orientation estimation, as
the EfficientPose prediction head struggles to achieve high precision in attitude
estimation at extended distances, often prioritizing the minimization of one
error over the other, in this case, focusing on reducing distance estimation error.
This results in variability in error calculation that is highly sensitive to both
training and the hyperparameter set. Consequently, the baseline presented by
Lovaglio [3] demonstrates a lower orientation error; however, as extensively
shown, the distance error decreases with hyperparameter optimization. This
issue remains an open avenue for future research, as it will be essential to
identify an alternative strategy for selecting a hyperparameter set that can
stabilize orientation estimation accuracy.

To sum up, the improvements obtained through the new optimization:

• The IoU loss experiences no improvement or decay

• The ēt error see an improvement of 53.4%

• The eq error has a decay of 57%

• The epose error experience an overall decay of 22%
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4.2 Model size reduction

As anticipated, the present work focuses on dynamic structured pruning to
achieve a more compact and efficient neural network while enhancing the
accuracy previously attained through hyperparameter optimization.

4.2.1 Setup and Test

Specifically, the pruning methods employed in the network leverage weight-
dependent criteria to assess the significance of individual filters within the
architecture. These techniques are relatively simple to implement and come
with lower computational costs. Weight-dependent criteria can be divided into
two main categories: filter norm and filter correlation. This research focuses
on the first category, where filter norm values are used as the key metric for
pruning. In general terms, the lp-norm of a filter can be expressed as:

...Fl
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...
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= p

öõõõô NlØ
n=1
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KlØ
k2=1

|Fl
i(n, k1, k2)|p (4.1)

where i represents the i-th filter in l-th layer, Nl is the input channel size and
Kl the kernel size. The choice of p is arbitrary and represents the order of the
norm, in general, the common norms are l1-norm and l2-norm. [22] In this
work, the methodology involves the l1-norm which calculates the sum of the
absolute values of the filter’s weights. It has been chosen because it promotes
sparsity by selecting filters with fewer non-zero weights, making it a good
option for identifying the less important ones.
Below are two pruning methods applied to the previously optimized neural
network, confirming the theoretical results.

L1-norm method

In this case, a function was implemented using PyTorch’s native module,
enabling structured pruning based on the p-norm. The objective is to prune
filters in the convolutional layers of the pre-trained network with a pruning
rate of 40%. This approach significantly reduces the number of parameters,
from 12 million to approximately 7.5 million, while improving the accuracy of
error pose.
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Figure 4.15: Flow-chart of the algorithm

The algorithm is implemented before the training phase, and the pruned model
is subsequently retrained for 50 epochs, which is sufficient considering that
the neural network was pre-trained for 115 epochs.

Filter Pruning method

In this test case, the Neural Network Compression Framework (NNCF) was
assessed. NNCF is designed to offer both post-training and training-time algo-
rithms for neural network optimization, focusing on model compression while
minimizing accuracy loss. The framework functions through a set of modules
that implement various algorithms, with these modules drawing configuration
details from a configuration file that outlines the optimization strategy. In this
instance, a weight-dependent filter pruning algorithm was chosen, based on the
work "Pruning Filters for Efficient ConvNets (PFEC)" [24]. The configuration
applies pruning across the entire network, beginning with a pruning rate of
10%, which escalates to 40% after 10 epochs. The reason for this progressive
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pruning strategy is its ability to reduce the model’s complexity while maintain-
ing performance. Initially, the network was heavily dependent on the weights
and filters it had learned. Starting with an excessively aggressive pruning
rate could risk removing too many crucial connections, leading to a significant
decline in performance. The final setting to configure is the filter importance
criterion. Pruning can be applied either globally or layer-wise. The distinction
lies in whether to prune layers independently, selecting filters with the least
importance in each layer separately, or to conduct global pruning, choosing the
least important filters across the entire network, potentially removing more
filters from one layer than another, depending on their relative importance.

4.2.2 Results of model reduction
In this section, the results obtained by applying the pruning methods described
in section 4.2 to the neural network optimized via HPO for both datasets will
be discussed. The objective is to demonstrate that current structured pruning
methods can be an effective tool for reducing the size of large neural networks
without compromising their accuracy. The outcome of this process will result
in a lighter, faster, and more efficient neural network.
Since three pruning strategies were implemented, the following table presents
the mean performances of the pruned network, providing an overview of the
effectiveness of this technique.

FA Dataset

The table presents the results obtained by applying the three pruning strate-
gies, noting that the network with optimized hyperparameters was pretrained,
subsequently pruned, and then trained for half the epochs used in the initial
training. The results confirm theoretical expectations: there is no performance
drop despite a 40% reduction in model size.

Pruning method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

L1-norm 512x384 99.3 0.003 0.027 0.004
Global Filter 512x384 99.5 0.003 0.023 0.003
Layerwise Filter 512x384 99.4 0.003 0.023 0.003

Table 4.12: Comparison of FA mean performances between different pruning
methods
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The table demonstrates that all three pruning strategies yield promising results,
even with the reduction in architectural parameters. Each approach maintains
robust performance, highlighting the effectiveness of pruning in preserving
model accuracy while streamlining the network structure. This underscores
the potential of pruning as a technique for optimizing neural networks without
compromising their core capabilities

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

Original 512x384 99.5 0.003 0.029 0.003
Pruned 512x384 99.5 0.003 0.023 0.003

Table 4.13: Comparison of FA mean performances between original and
pruned network

To further clarify the improvement level, a comparison between the original
network and the globally pruned network with filter pruning is presented.
This comparison can help establish a standard procedure for optimizing such
neural networks. Specifically, after determining the optimal hyperparameter
configuration, structured pruning is applied to reduce model size. It is essential
to note that the pruning rate should be carefully selected based on the specific
neural network, as smaller or task-specific networks may not benefit from an
aggressive pruning approach.

WSE Dataset

The table presents results obtained using the same training strategy as ap-
plied in the previous dataset, in combination with one of the three pruning
algorithms, specifically, the L1-norm approach, though this choice is arbitrary.
The results confirm theoretical expectations: there is no performance drop
despite a 40% reduction in model size.

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

Original 512x384 93.5 0.020 5.65 0.11
Pruned 512x384 92.4 0.020 5.93 0.12

Table 4.14: Comparison of WSE mean performances between original and
pruned network
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4.2.2.1 Comparison with smaller neural network

The objective of this thesis is to demonstrate the substantial benefits of optimiz-
ing neural networks to enhance their efficiency while simultaneously reducing
their size without compromising performance. This section presents a compar-
ative study of two neural networks: the first is a larger network that undergoes
optimization and pruning, while the second is a smaller network trained with
the same set of hyperparameters. Architecturally, the networks are identical,
differing only in the backbone used. The first network, employed throughout
this study, utilizes the EfficientDet D3 model with 12 million parameters,
whereas the second network uses the D2 model with 8 million parameters.
The hypothesis is that the performance of the D3 network, optimized with
hyperparameter tuning and pruned by 40%, resulting in approximately 8 mil-
lion parameters, will outperform the smaller network with fewer connections.
The study is based on the premise that a properly optimized neural network,
effectively pruned of non-contributive connections, will retain the performance
advantages of a larger network.

The initial test involved training both networks with the same hyperparameter
set derived from the D3 network’s optimization. Results align with expecta-
tions, demonstrating that the optimized and pruned network outperforms the
network with fewer parameters on the FA dataset.

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

D3 512x384 99.5 0.003 0.023 0.003
D2 512x384 98.8 0.006 0.029 0.007

Table 4.15: Comparison of FA mean performances between D3 optimized
and pruned and smaller D2 network

This raises the question of whether different hyperparameter sets, each ob-
tained through HPO specific to the original network, could influence results.
The expectation is to confirm prior outcomes: an optimized and subsequently
pruned network should consistently deliver high performance, preserving its
ability to generalize and identify patterns. This approach supports adopting
large neural networks, maintaining their core characteristics while significantly
reducing their size.

47



Test and Results

So, the first step is to conduct HPO on the D2 network, utilizing the same
range of hyperparameters outlined in Table 4.1. The network is then trained
with the optimized set, obtaining the following set of optimized parameters

HPO Values
Scheduler Cosine Decay
Learning rate 0.000705
Learning rate factor 0.482
Batch size 5
Number of epochs 137
Optimizer AdamW
Weight decay interval amplitude 1
Epochs for learning rate decay 42

Table 4.16: Set of optimized hyperparameters on D2 network - FA Dataset

Subsequently, the mean performances between the two networks, both now
configured to have the same number of parameters, are compared in the
following table.

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

D3 512x384 99.5 0.003 0.023 0.003
D2 opt 512x384 99.4 0.003 0.017 0.004

Table 4.17: Comparison of FA mean performances between D3 optimized
and pruned and smaller D2 optimized network

The results presented in the table indicate that the two networks exhibit nearly
identical performance levels, underscoring the critical importance of hyperpa-
rameter optimization as a foundational step for their effective deployment. A
separate discussion is warranted regarding pruning: while it is advantageous in
large neural networks, where it is generally advisable to prune connections that
contribute minimally to predictions, no significant performance difference is
observed when compared to a smaller, optimized version of the same network.
For this thesis, the choice of network architecture is arbitrary and highly
contingent on hardware constraints.

48



Chapter 5

Simulation of mission’s
inference

This chapter will discuss the results of a simulation designed to approximate
real-world conditions by testing a progressive, sequential image dataset. This
dataset simulates the images that the camera would capture during the SROC
mission. The aim is to assess whether the neural network’s performance meets
the mission’s relative position estimation error requirements. Specifically, the
requirement stipulates that, for each range of relative distance from the target,
an error margin below 2% of the smallest approach distance in the manoeuvre
conducted shall be achieved. For the FA manoeuvre, the table below shows
the requirements for each range of distance.

Relative distance range Performance
[60; 40] m 0.8 m
[40; 20] m 0.4 m
[20; 10] m 0.2 m
[10; 5] m 0.1 m

Table 5.1: AOCS requirement for relative position
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5.1 Setup of the neural network
Since this point, the focus has been on optimizing the neural network by
training with two separate datasets to demonstrate the replicability and
effectiveness of the method across various scenarios.
However, the ultimate objective is to deploy this neural network for the SROC
mission, where it must accurately recognize and estimate the target’s relative
position in any orientation during manoeuvres. Consequently, priority is given
to achieving a network with a robust generalization capability, that is its
ability to make accurate predictions on data it has not encountered during
training.

5.1.1 Overfitting and troubleshooting
The model’s primary task is to generalize to unseen data; therefore, a neu-
ral network with strong generalization capabilities will be less sensitive to
noise or irrelevant details in the training dataset, making it better suited to
real-world applications where data rarely matches training conditions precisely.

The primary issue to mitigate is overfitting, a phenomenon where the net-
work over-specializes in training data, memorizing details rather than learning
generalizable patterns. A well-generalizing network can capture the data’s
underlying structures rather than each sample’s specific features. To prevent
and reduce overfitting, the following strategies were implemented:

1. Dataset Division: The data was split into training, validation, and test
sets to assess model performance and prevent overfitting objectively.

2. Data Augmentation: To increase data diversity and quantity for training,
we applied data augmentation techniques, using the Albumentations
library based on Lovaglio’s approach [3]. The main limitation here is
the lack of rotation and flipping of the images, which would significantly
enhance the network’s generalization capacity by exposing it to varying
target orientations during training.

3. Epoch Regulation: The number of training epochs can also negatively
affect generalization if set too high. Overextending training epochs
can lead the network to memorize specific training images rather than
identifying broader patterns.
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Testing the optimized neural network trained on only a single dataset with
a set of unseen images, where the target position deviates from the training
dataset yields unsatisfactory results with low performance, as shown in the
images.
Despite hyperparameter optimization, the network fails to generalize effectively
to a completely different dataset due to its inability to capture the underlying
patterns in the training data. This issue is largely attributed to target
orientation; as shown in the images, the target is rotated by 90 degrees
compared to the training dataset.

(a) Training Dataset

(b) Inference (unseen) Dataset

Figure 5.1: Comparison between Training and Inference datasets
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Although seemingly trivial, the lack of angular rotation for data augmentation
results in poor pattern recognition and spatial estimation ability when the
target’s orientation differs.

(a) Bounding box error

(b) Keypoints error

Figure 5.2: Committed prediction error by the neural network
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The second test relies on the following strategy. The neural network is trained,
with the same hyperparameters of the table 4.5, on an expanded WSE dataset,
which includes over 40000 additional SR images captured during the WSE
manoeuvre. These images were acquired using identical camera configurations
as those utilized for the FA dataset, ensuring consistency in data characteristics.
Horizontal and vertical flips were applied to the images as data augmentation
techniques to increase variability and improve the model’s generalization
capabilities.

Figure 5.3: New WSE Dataset
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The following table presents the neural network’s performance evaluated on
its inference dataset, highlighting significant improvements in positional and
orientation error as well as in the IoU percentage.

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

D3 512x384 95.0 0.014 4.27 0.08

Table 5.2: Performance of the Neural Network on WSE test dataset

The true benchmark for the network, however, is the progressive dataset
generated earlier, which consists of images the neural network has never
encountered. The expectation is that the network has enhanced its ability to
generalize.

Method Dimension (pxl) IoU (%) ET N [m] Eq [deg] Epose

D3 512x384 76.0 0.043 15.6 0.30

Table 5.3: Performance of the Neural Network on FA progressive dataset

The table indicates improved results in terms of translational and orientation
errors, as the training dataset was designed to be more generalized, encom-
passing all possible configurations.
Nevertheless, in terms of error, these performance levels remain insufficient
to satisfy the requirements. Further training on a specialized dataset with
diverse angular orientations is necessary, as previously addressed in earlier
chapters of this thesis. Training the network with a fixed setup fails to provide
adequate generalization, leading the model to memorize a single configuration.
This limitation is compounded by the inability to apply data augmentation
techniques, such as rotation, to rectangular images.

Addressing this issue is crucial for future developments. This work serves as
a starting point for tackling the challenges of overfitting and improving the
network’s generalization capabilities, with particular attention to the target’s
orientation.
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(a) Bounding box error

(b) Keypoints error

Figure 5.4: Committed prediction error by the new WSE-trained neural
network
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5.2 Test and Results
Regardless of the previously obtained results, this section demonstrates that a
neural network with a high degree of generalization, such as the one trained
on the FA dataset in Section 4.1.1, can meet the requirements outlined in
Table 5.1.
The experimental setup involves testing 450 images simulating the satellite’s
approach toward the target. For each evaluated image, the network outputs the
same image annotated with the predicted bounding box and assesses whether
the distance prediction satisfies the specified requirement. The evaluation
script first calculates the prediction error across the three axes compared to
the ground truth, applying a tolerance of 0.1 %. Next, it assesses the satellite’s
position, applies the corresponding requirement, and verifies whether the
network’s prediction falls below the threshold. If the requirement is not met,
the image is annotated with "requirement not satisfied" in red; otherwise,
"requirement satisfied" appears in green.

Figure 5.5: Output of the NN based on requirements

Upon testing, it was observed that 449 out of 450 images met the requirement,
meaning 99.78% of the network’s predictions were within the acceptable
threshold. This result supports the assertion that a well-generalized network
capable of recognizing target patterns in space can fulfill mission requirements
with a confidence level exceeding 90%.
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Chapter 6

Conclusions and future
work

This study has conducted a comprehensive investigation into optimizing CNNs
for optical navigation in space, with a particular emphasis on pose estimation
for non-cooperative spacecraft. By leveraging advanced optimization tech-
niques, including hyperparameter tuning and structured pruning, the research
has achieved notable advancements in both accuracy and computational effi-
ciency, paving the way for more effective and practical applications in space
exploration. A key strength of this work lies in the systematic methodology
adopted for CNN optimization. The use of Optuna as a framework for hyper-
parameter tuning enabled an exhaustive exploration of the hyperparameter
space, leading to optimized model performance without relying on heuristic or
manual methods. This rigorous approach resulted in a substantial reduction
in pose estimation errors, demonstrating the critical role of precise hyperpa-
rameter selection in enhancing model generalization to unseen data.
In addition to hyperparameter optimization, structured pruning played a
pivotal role in reducing model complexity while preserving high levels of
performance. Pruning has produced lighter neural networks by significantly
decreasing the number of parameters, making them well-suited for deployment
on resource-constrained hardware, such as spacecraft systems.
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The testing outcomes have confirmed that these optimization techniques not
only preserved the models’ accuracy but, in some cases, enhanced it. The
optimized networks were capable of delivering robust performance even at
lower resolutions, without compromising output quality. This is a critical
accomplishment, as it demonstrates the feasibility of maintaining high perfor-
mance in resource-limited settings.
This project has highlighted the importance of an integrated approach to
optimizing neural networks for space applications. The techniques developed
and tested here offer substantial potential for enhancing the efficiency and
reliability of optical navigation operations in complex environments.

Building upon these achievements, several open works for future research
have been identified. A deeper exploration of model reduction techniques is
warranted, with a focus on incorporating quantization alongside advanced
pruning methods to minimize model size and weight further. This could en-
hance the deployability of neural networks on even more constrained hardware
platforms.
Moreover, accelerating the hyperparameter optimization process by developing
faster and more efficient tuning algorithms could significantly reduce compu-
tational overhead and time requirements. This would be particularly valuable
for large-scale applications.
Another critical aspect of improvement involves strategies to mitigate overfit-
ting. A fundamental approach to preventing the network from focusing on
a single pattern is the generation of a robust image dataset characterized by
diverse scenarios that deviate from nominal conditions. Such a dataset must
include multiple target configurations as well as images where the target is
not centered within the camera’s frame. This strategy is essential to ensure
that the network does not rely excessively on a single pattern but, through
appropriate training, develops the ability to generalize across a wide range
of scenarios and conditions. This includes suboptimal target positions and
orientations, all while maintaining accuracy. In addition, testing these opti-
mized designs on actual spacecraft hardware is an essential step to validate
their performance under real-world operational constraints.
In conclusion, this thesis has laid a solid foundation for the optimization
of CNNs in space navigation, highlighting the potential of advanced neural
network methodologies. The identified future directions hope to refine and
extend these contributions, advancing the field of space-based AI systems.
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