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Abstract

Within the framework of the Monte Carlo variance-reduction techniques
lie the so called ”zero variance” techniques which, using the solution of
the adjoint equation, provide estimates of the sought physical quantities
with no error. These techniques are of considerable relevance when
the event to be estimated is rare, like in most of the radiation shielding
problems. Among this family of methods it is possible to distinguish the
”branchless” and ”branching” methods based on how the multiplicative
phenomena are treated. This work will analyze a set of zero variance
branching methods and will compare them with other methods in order
to assess their robustness and efficiency.
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Chapter 1

Introduction

It is widely known that Monte Carlo simulations applied to the Boltzmann equation rep-
resent the golden standard in neutronics and particle transport calculations. By applying
a Monte Carlo approach to the Boltzmann equations, in fact, it is possible to sample a
given number of particle histories, each of which represents contribution to the sought
phenomena to be analyzed. Nevertheless, although they are usually preferred to the de-
terministic codes because of their capability to avoid the discretization of the phase space,
Monte Carlo methods are affected by statistical uncertainty, by construction. To reduce
this statistical uncertainty the most straightforward way is to increase the number of sim-
ulated particles histories: thanks to the well-known Central Limit Theorem, the statistical
error will decrease with the increasing number of particles as 1/

√
N. This approach makes

the Monte Carlo simulations rather long, since to reach satisfactory results N tends to be
vary large. Especially for problems were the sought estimate is related to a rare event, the
number of needed histories can become quite burdening. The term rare event is used to
indicate a statistical event that has very small probability of occurrence, like the response
of a detector placed behind a radiation shield: the number of neutrons that can pass
through the shield and reach the detector is so small that the estimate of the detector
response will be characterized by a considerable statistical uncertainty.

One way to solve this problem is the implementation of variance reduction techniques.
These techniques are able to bias the sampling procedure of the Monte Carlo game in
such a way that the variance will be lower with respect to the original game. Then, in or-
der to obtain the same final score (connected to the first order moment) of the simulation,
appropriate correction are used. In fact, since the sampling has been biased toward some
target result, it is necessary to adjust the particle contribution to the average. In variance
reduction Monte Carlo every particle is characterized by a weight that can be decreased
or increased depending on the implemented biasing scheme. The number of such biasing
techniques is extremely large, and the choice of a specific method is typically imposed by
the specific problem at hand.

Among the different types of variance reduction techniques there are two different families
called the branchless and branching techniques: the main difference lies in how these two
families of schemes tackle the multiplicative phenomena that may happen. As the name
suggests the branching schemes allow for branching particle histories, so from a single
particle multiple particles can be born and new histories will start. On the other hand
the branchless schemes follow a sort of 1-in-1-out kind of approach and do not allow the
creation of new branches. The statistical weight of the outgoing particle is adjusted ac-
cordingly.

9



10 CHAPTER 1. INTRODUCTION

An ideal class of variance-reduction techniques is at the center of this work and allows
providing estimates with zero statistical error. Such zero variance schemes were inves-
tigated by Lux and Koblinger [1], by Hoogenboom [2], by Booth [3] in their respective
works. As shown in the following, zero-variance Monte Carlo games require the knowl-
edge of the solution of the adjoint equation, the importance function χ†. In other words
to get to the solution with zero error it is needed to know the exact solution before-
hand. This may appear as massive drawback to the practical use of these schemes in
real life application. Nevertheless, they provide the theoretical foundations to guide ef-
fective importance-sampling schemes such as the Consistent Adjoint-Driven Importance
Sampling (CADIS) strategy, which is nowadays available in most Monte Carlo simulation
codes.

This work aims at developing a better understanding of the zero variance branching meth-
ods and to compare their performance in different simulation setups with respect to zero
variance branchless methods. The focus will be in particular on the class of neutron
transport problems simultaneously involving radiation shielding and multiplication, as oc-
curring for instance for ex-core detector monitoring during reactor start-up. For these con-
figurations, Monte Carlo simulations have to take care of two competing goals: pushing the
neutrons towards the detector and exploring the fissile regions that are responsible for the
source amplifications. Recent investigations have shown that approximate zero-variance
techniques like the aforementioned CADIS might fail in this case [4], which motivates the
investigations discussed in this manuscript, focusing on zero-variance Monte Carlo games
in the presence of neutron multiplication.

The work described in this manuscript is part of a six-month internship performed at
the Service d’étude des réacteurs et de mathématiques appliquées (SERMA) of the CEA
Paris-Saclay, under the supervision of Drs. A. Jinaphanh, D. Mancusi and A. Zoia. Ad-
ditionally, I gratefully acknowledge the informal supervision of Ms. T. Gomes-Ferreira,
PhD student in the same R&D unit, whose thesis subject concerns zero-variance games.

Some of the results obtained for branching zero-variance games will appear in the paper
”T. Gomes Ferreira, F. Rossi, A. Jinaphanh, D. Mancusi, A. Zoia, Comparison of Branch-
ing and Branchless Zero-Variance Games”, in the proceedings of the M&C2025 conference.



Chapter 2

Background and Theory

2.1 Notations

2.1.1 Phase space

In most of the nuclear engineering applications the study of the neutron population is
of outmost importance. Due to the large numbers of particles present in most of the
real-life relevant problems, tracking each one of them and describing its history is by no
means a trivial matter. For this purpose it is usually preferred to define some average
quantities over the stochastic particle histories. By doing so it is possible to look at these
average quantities and infer the physical properties. The outcome of this strategy is the
Boltzmann’s Transport Equation, which will be the object of this Chapter. It is possible
to define the phase space of interest using 6 coordinates:

• 3 spatial coordinates → (x, y, z), also denoted −→r

• 2 angular coordinates → (µ, φ), also denoted
−→
Ω

• 1 energy coordinate → (E)

Each point in the phase space is uniquely defined by a combination of these six variables.
In this work the six coordinates are condensed under a single letter that will be associated
to a point in the phase space:

(x, y, z, µ, φ,E) → (−→r ,
−→
Ω , E) → P (2.1)

(x′, y′, z′, µ′, φ′, E′) → (−→r ′,
−→
Ω ′, E′) → P ′ (2.2)

2.1.2 Cross sections

Now consider a neutron flying around in a non-void medium: at some point the particle’s
flight path will intercept one of these nuclei, creating a collision. The collision types can
be very different, but the most relevant can be summarized as:

• Scattering: the neutron collides with an atomic nucleus and it is scattered with
possibly different direction and energy. Scattering can be elastic or inelastic.

• Capture: the neutron collides with the nucleus and is absorbed.

• Multiplicative event: like for the capture case the neutron is absorbed inside the
collided nucleus which becomes in this case unstable and expels a given number of
outgoing particles.

11



12 CHAPTER 2. BACKGROUND AND THEORY

Regarding the multiplicative events, probably one of the most interesting is the fission
event: during a fission event the unstable atomic nucleus tries to regain its former stability
by expelling a certain amount of neutrons and by splitting itself in lighter nuclei.
Each collision event can happen with a given probability, that depends on the position and
energy of the incident neutron. These probabilities are expressed using the macroscopic
cross sections and are indicated with the symbol Σi(P ). Depending on the atomic density
of the media where the collision takes place, the collision can happen more or less often.
Macroscopic cross sections can be decomposed into:

Σi(x, y, z, E) = σi(E)Ni(x, y, z) (2.3)

The macroscopic cross section represents the probability per unit path that a particle
having a certain position and energy interacts inducing the reaction i.
Summing all the possible collision types that a particle can experience it is possible to
define the total microscopic and macroscopic cross sections:

Σt(
−→r , E) = Σs(

−→r , E) + Σc(
−→r , E) + Σf (

−→r , E) (2.4)

It is also useful to group together the fission and capture event in what is usually called
an absorption event:

Σa(
−→r , E) = Σc(

−→r , E) + Σf (
−→r , E) (2.5)

2.1.3 Fission and scattering spectra

In case of fission or scattering where some particles can actually come out from a collision it
is also needed to define the outgoing direction and energy of those particles. This outgoing
direction and energy take different values according to a probability density function (see
also Sec. 2.3.1). The so called ”fission spectrum”,

χ(E)dE (2.6)

is defined as the probability that an outgoing neutron generated from a fission event is
emitted with energy dE around E. The emission of the fission neutron is usually an
isotropic process. It can additionally be noted that the fission spectra do not depend on
the incoming neutron energy and direction. The scattering probability density function
depends on both the energy and direction:

fs(
−→r ,

−→
Ω →

−→
Ω ′, E → E′) (2.7)

The factor above defines the probability that a neutron undergoing scattering in −→r and

colliding with the nucleus with direction
−→
Ω and energy E is re-emitted after the collision

with direction
−→
Ω ′ and energy E′.

2.2 The Boltzmann’s transport equation

2.2.1 Neutron flux

The average number of neutrons per unit volume is denoted by:

N(−→r ,
−→
Ω , E)d−→r

−→
ΩdE (2.8)

or more simply N(P )dP , where N(P ) is the neutron angular density. This expression
represents the (expected) number of neutrons around −→r about d−→r , flying with direction

around
−→
Ω about d

−→
Ω and with energy around E about dE. Then the neutron flux is

defined as the product between the neutron density and the neutron velocity.

ϕ(−→r ,
−→
Ω , E) = v(E)N(−→r ,

−→
Ω , E) (2.9)
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Figure 2.1: Example of the considered packet of neutrons [5]

2.2.2 The Boltzmann equation

It is possible to show that the neutron flux satisfies the linear Bolzmann equation [6]:

−→
Ω · ∇ϕ(−→r ,

−→
Ω , E) + Σt(

−→r , E)ϕ(−→r ,
−→
Ω , E) =∫

d
−→
Ω ′
∫
dE′Σs(

−→r , E′)fs(
−→r ,

−→
Ω ′ →

−→
Ω , E′ → E)ϕ(−→r ,

−→
Ω ′, E′)+

χ(−→r , E)

4π

∫
d
−→
Ω ′
∫
dE′ν(−→r , E′)Σf (

−→r , E′)ϕ(−→r ,
−→
Ω ′, E′)+

Q(−→r ,
−→
Ω , E) (2.10)

The equation was derived from a balance of the exiting and disappearing the domain of
the phase space considered and the neutrons entering and appearing in the same phase
space domain. The equation above is nothing else than a balance between all the possible
ways a neutron can enter the small region of phase space under consideration and all the
possible way a neutron can disappear from the said region.

The term
−→
Ω ·∇ϕ(−→r ,

−→
Ω , E) represents the leakage out of the considered element; it is also

called the ”streaming term”.

The term Σt(
−→r , E)ϕ(−→r ,

−→
Ω , E) represents the disappearance of the neutrons due to some

interaction that takes place inside the phase space domain of interest.
On the right-hand side of the equation lies the effect of the scattering and fission events,
which acts as sources of neutrons with phase space coordinates P . Looking specifically at
the first term it can be read as: all the incoming neutrons with energy E′ and direction−→
Ω ′ which undergo a scattering in −→r about d−→r and which are re-emitted with energy

and direction respectively E and
−→
Ω, integrated over all the possible incoming energy and

direction. Something similar can be said about the fission term that appears after this
scattering term.
The last term is the contribution of an external source.
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Figure 2.2: S-2 model example: after a collision the new direction can only be either
”positive” or ”negative”.

2.3 Deterministic and stochastic approach

Solving analytically the Boltzmann’s transport equation is de facto impossible but for
extremely simple cases, so two main numerical approaches are used instead:

• Deterministic approach: discretize the phase space using suitable simplifications in
order to reduce the number of unknowns, and then find a solution on the discretized
mesh by standard numerical methods. Some useful deterministic methods are:

– P-N method,

– S-N method (see Figure 2.2 for an example),

– Diffusion model.

• Stochastic approach (also called Monte Carlo) : sample neutron histories, from
the source to death by absorption or leakage; record the events of interest, ie the
contributions to a given ”detector”; finally, take the ensemble averages over the
simulated histories, in order to have an estimate of the sought observable.

2.3.1 Monte Carlo approach

The other way to solve the Boltzmann transport equation is the Monte Carlo approach
which relies on the statistical aspects related to the neutron transport: as mentioned, in
fact, all the cross sections Σi that governs the physical phenomenon of interest represent
probabilities per unit path. The key point to understand the stochastic approach is that
the average behavior of the whole neutron population can be predicted by looking at the
statistical laws. The same reasoning can be applied to a coin toss: it is not possible to
predict a priori if a tossed coin will land on head or tail but it is known that tossing the
same coin over and over will result in half of the results being head and the other half
being tail. This type of reasoning is the basis of the Monte Carlo simulations for neutron
transport that will be used in this work to solve the Boltzmann equation.
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Probability notations

At the basis of this work and at the basis of every Monte Carlo simulation lies the theory
of probability. It is possible to give the axiomatic definition of probability stating that
probability is an application that goes from the event space (space where all the possible
outcomes of a phenomenon lie) to the real axis in the interval [0,1]. This definition is
based on 3 axioms [7]:

• The probability of any event is equal or larger than 0.

• The probability of the whole sample space is 1.

• Given Ej with j = 1, 2, ... events such that Ei ∩ Ej = ∅ if i ̸= j (the events are
mutually exclusives), the probability of their union is the sum of their probabilities.

From this definition the concept of probability is derived and to indicate the probability
that a certain phenomenon x happens, the writing P [x] is used.
Then it is possible to give the definition of ”random variable” which will be used later on:
a random variable ξ is application from the sample space to a real number between 0 and
1 [7]. It is also possible to define the ”cumulative density function” as:

Fξ(t) = P [ξ ≤ t] (2.11)

and this function is such that:
limt→−∞ Fξ(t) = 0

limt→+∞ Fξ(t) = 1

limt→t+0
Fξ(t) = Fξ(t0)

it is a monotonic increasing function

(2.12)

Lastly the ”probability density function” is:

fξ(t) =
dFξ(t)

dt
(2.13)

An example of probability density function is the ”normal distribution” which has the
form of:

fξ(t) =
1√
2πσ2

exp

[
−(t− µ)2

2σ2

]
(2.14)

where µ is the mean value and σ2 is the variance of the distribution.

Central limit theorem and its applications

To know the mean value of a statistical phenomenon a series of experiments should be
performed in order to get a set of random variables ξi with i = 1, 2, ...N . Each ξi is
statistically indipendent, so the values they assume do not depend on the values the others,
and identically distributed, since they are connected to the same statistics. We define then
the ”sample average” as:

ξ
(N)

=
1

N

N∑
i=1

ξi (2.15)

The sample average ξ
(N)

is an approximation of the mean value of the phenomenon which
we will indicate by M1[x], ie the first order moment of the phenomenon.
From the Tchebycheff inequality it can be demonstrated that the probability that the
absolute difference between the mean value of a statistical phenomenon and the result
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of the statistical of the said phenomenon has an upper bound which depends on some
tolerance. In other words:

P

[
|ξ −M1[x]| ≥ k

]
≤ σ2[x]

k2
(2.16)

Applying this theorem to the sample average it is possible to obtain the following:

P

[
|ξ(N) −M1[x]| ≥ k

]
≤ σ2[x]

N · k2
(2.17)

From the previous equation it follows directly that by increasing the number of experiments

it is less and less likely that the sample average ξ
(N)

is far from the expected value. Also:

P
[
|ξ(N) − µ| ≥ k

]
= P

[
ξ
(N) ≥ µ+ k

]
+ P

[
ξ
(N) ≤ µ− k

]
(2.18)

= F
ξ
(N)(µ+ k)− F

ξ
(N)(µ− k) (2.19)

Where F
ξ
(N)(y) is the cumulative function calculated in y. Calling now the mean value

and variance of the phenomenon as:

M1[x] = µ (2.20)

σ2[x] = σ2 (2.21)

it is possible to apply the ”Central Limit Theorem” which states that given a statistical
phenomenon for which it exists a mean value µ and a variance σ2 and given a set of
random variables ξi that are generated according to it and that can be used to define the

sample average ξ
(N)

, then if the number of experiments N is large enough the said sample
average is normally distributed and the variance of the mean scales as σ2

N . Applying this
theorem to the relations derived from the Tchebycheff Inequality it can be demonstrated
that:

P

[
|ξ

(N)−µ

σ√
N

| ≤ 1

]
≈ 0.68 (2.22)

P

[
|ξ

(N)−µ

σ√
N

| ≤ 2

]
≈ 0.95 (2.23)

P

[
|ξ

(N)−µ

σ√
N

| ≤ 3

]
≈ 0.99 (2.24)

So, taking an interval wide 3σ around the sample average assures that the real solution is
inside that interval with a confidence of 99%.

Random walks

The application of basic probability and statistics concepts to neutron transport is now
considered, with the aim of obtaining estimates of the quantity of interest via Monte Carlo
simulations. The first element to define is the concept of random walks, which represent
random transitions between points in the phase space. To ensure that these random
walks accurately reflect the underlying physical phenomena, it is necessary to impose the
condition that, on average, the mean value of the physical statistical phenomenon aligns
with the estimate derived from the random walks. The process begins with a simple
example focusing solely on neutron flight. The probability that a neutron can move from

a point P = (−→r ,
−→
Ω , E) to a point P ′ = (

−→
r′ ,

−→
Ω , E) with a free flight is composed of two

parts: the probability that the free flight ends in P ′ and the probability that the particle
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can move from P to P ′ without interactions. Knowing also that the probability of having
an interaction of any kind in a specific point is proportional to Σt(P ) and supposing a
purely homogeneous medium (so that the macroscopic cross section does not depend on
the position), it is possible to write the following probability density function for the
neutron free flight:

fflight(|−→r −−→r ′|, E) = Σt(E)e[−(|
−→r −−→r ′|)Σt(E)] (2.25)

Then by definition the cumulative of this probability density function is:

Fflight(|−→r −−→r ′|, E) = 1− e[−(|
−→r −−→r ′|)Σt(E)] (2.26)

Once the cumulative function is known, the inverse transform method can be employed to
sample random values distributed according to it. This method is applicable only when the
analytical expression of the cumulative function is available. If the statistical phenomenon
is complex and the derivation of the cumulative function is difficult, alternative approaches
may be more suitable. The method is based on the following algorithm:

• generation of a random number ρ ∈ [0, 1] with any method;

• setting of Fflight(s, E) = ρ;

• inversion of the relation to find s = F−1
flight(ρ) .

For simplicity the substitution s = (|−→r −−→r |) was used. For our example the inversion is
rather simply and yields:

s = − 1

Σt(E)
log(1− ρ) (2.27)

In this way it was possible to generate free flights for the neutron that on average respect
the physical laws imposed by the Boltzmann transport equation.
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Chapter 3

Zero Variance Monte Carlo

The approach used to simulate the neutron flight and interaction is the same as the one
used by Lux and Koblinger in their book [1]. Like the two authors did, it is useful to
identify three main steps, which are:

• the sampling from the source, connected to the source kernel Q ;

• the sampling of the flight lenght, connected to the flight kernel T ;

• the sampling of the reaction channel, connected the collision kernel C.

3.1 Additional definitions

3.1.1 Source, flight and collision kernels

Any particle source can be characterized by the source density:

Q(−→r ,
−→
Ω , E) = Q(P ) (3.1)

The sampling process from the source depends on the type of the source (ie isotropic,
collimated, mono-energetic...).

How the particle can travel from a point in space to another is defined by the flight
kernel, namely:

T (P ′, P ) = Σt(
−→r ′, E) exp

[
−
∫ |−→r −−→r ′|

0
ds′Σt(

−→
r′ + s′

−→
Ω)

]
δ
(−→
Ω −

−→r −−→r ′

|−→r −−→r ′|

)
(−→r −−→r ′)2

δ(
−→
Ω ′−

−→
Ω)δ(E−E′)

(3.2)
One way to interpret the equation above is the following: the average number of

particles having coordinates P given a particle starting a flight with coordinates P ′ is
given by the probability of colliding in ds around −→r multiplied by the probability of not

colliding until point
−→
r′ multiplied by the probability the particle has the correct direction

and energy.
What the particle does upon reaching the next collision site at the end of its free flight

is governed by the collision kernel:

C(P ′, P ) =
∑
i

∑
j

Σt,i(
−→r ′, E′)

Σt(
−→r ′, E′)

σi,j(E
′)

σt,i(E′)
νi,j(E

′) fi,j(
−→
Ω ′ →

−→
Ω , E′ → E)δ(−→r −−→r ′) (3.3)

The collision kernel represents the average number of particles with coordinates P
given a particle having a collision in P ′.

19
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In general, the kernels T and C and the source Q are not normalized. In this case, the
sampling can be performed by first normalizing the aforementioned quantities in oder to
express them as appropriate probability densities. Then, the sampled particle is attributed
a weight correction factor equal to the norm of the sampled kernel. Alternatively, the
normalization factor can be taken into account in the particle multiplicity at collision
event.

3.1.2 Densities

With the help of the kernels above it is possible to define also the so-called ”collision

densities” χ(−→r ,
−→
Ω , E) and ψ(−→r ,

−→
Ω , E) like:

χ(−→r ,
−→
Ω , E) = Q(−→r ,

−→
Ω , E) +

∫
dE′

∫
dΩ

′
ψ(−→r ,

−→
Ω , E)C(

−→
Ω ′, E′ →

−→
Ω , E|−→r ) (3.4)

ψ(−→r ,
−→
Ω , E) =

∫
d
−→
r′ χ(−→r ,

−→
Ω , E)T (

−→
r′ → −→r |

−→
Ω , E) (3.5)

In the first equation the form of the emission density was derived, and it can be
interpreted as the average number of particles leaving a collision (or the source) at point
P . The second one instead defines the collision density which is the average number of
particles going into a collision at point P .

3.1.3 Scoring in Monte Carlo games

In any Monte Carlo simulation, it is necessary to record the relevant information used to
estimate average quantities. The standard approach involves utilizing response functions
R in conjunction with the appropriate payoff function f(P ):

R =

∫
dPfχ(P )χ(P ) =

∫
dPfψ(P )ψ(P ) (3.6)

Since the collision densities can be expanded into a Neumann series, each integral can be
evaluated as an infinite sum of integrals, as follows:

R =
∞∑
i=0

Ri,χ =
∞∑
i=0

∫
dPfχ(P )χi(P ) (3.7)

R =

∞∑
i=0

Ri,ψ =

∞∑
i=0

∫
dPfψ(P )ψi(P ) (3.8)

Practically, every single contribution of the histories is recorded at each collision and then
they are summed up to obtain the total contribution of the history to the score. The
weights due to the biased sampling processes also contributes to the final score. The score
of a single history is then:

µχ =
∑
i=0

ri,χ =
∑
i=0

fχ(Pi) (3.9)

µψ =
∑
i=0

ri,ψ =
∑
i=0

fψ(Pi) (3.10)

Then the detector response is given taking the first moment of the score and integrating
over the desired phase space.
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3.2 Type of games

3.2.1 Analog

The term analog game refers to a type of simulation where the particle weight remains
fixed at unity, and no weight corrections are applied to bias the statistics. In such sim-
ulations, the particle typically follows the natural statistical laws governing the physical
phenomenon [3]. The collision kernel for the analog game can be expressed as:

C(P ′, P ′′) = cc(P
′)δ(P ′′ − P ) + cs(P

′)Cs(P
′, P ′′) + cf (P

′)

∞∑
n=1

nqn(P
′)Cn(P

′, P ′′) (3.11)

In the equation above, P is a point outside the phase space region where the simulation
takes place, where both the contribution probabilities and the kernels are zero.

Figure 3.1: Scheme of an analog game

3.2.2 Implicit capture

The implicit capture game represents the first and arguably the simplest extension of
the analog game, emerging from a common issue encountered in analog simulations. In
traditional analog games, the history of a particle is terminated when a sampled collision
results in capture. This limitation becomes apparent in scenarios where, despite simulating
a large number of particles to reduce variance, the capture event prematurely halts the
particle’s trajectory. This issue is particularly important in radiation shielding problems,
where simulations often involve media with high attenuation. To mitigate the impact
of capture on particle histories, implicit capture games omit the simulation of capture
events. Specifically, collisions that would normally result in capture are no longer sampled.
However, since a probability density function is still required for Monte Carlo simulations,
the scattering and fission probabilities are renormalized to sum to unity. To correct for
this modification in the original statistical distribution, the particle’s weight is adjusted
by a factor equivalent to the capture probability. Conceptually, this can be interpreted as
only a fraction of the particle surviving the collision, with the remaining fraction being
effectively terminated during the interaction. This perspective clarifies why the weight
correction factor corresponds precisely to the capture probability [8].
Using the ∗ symbol to indicate a game with this kind of biasing, the collision kernel for an
implicit capture game is then:
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Figure 3.2: Scheme of an implicit capture

C∗(P ′, P ) =
σ∗s(E

′)

σ∗t (E
′)
· νs(E′) · fs(Ω′, E′ → Ω, E)δ(r − r′) (3.12)

+

∞∑
n=1

σ∗f
σ∗t

· qn · νf,n(E′) · ff (Ω′, E′ → Ω, E)δ(r − r′)

C∗(P ′, P ) = c∗s(P
′) · νs(E′) · fs(Ω′, E′ → Ω, E)δ(r − r′) (3.13)

+
∞∑
n=1

c∗f (P
′) · qn · νf,n(E′) · ff (Ω′, E′ → Ω, E)δ(r − r′)

C∗(P ′, P ) = c∗s(P
′)C∗

s (P, P
′) + c∗f (P

′)
∞∑
n=1

nq∗n(P
′)C∗

n(P, P
′) (3.14)

3.2.3 Russian roulette

In an infinite medium without capture we will have immortal particles and the simulation
will run indefinitely. One of the most commonly used method to terminate a particle
history which is used in this type of scenarios is the so called Russian roulette. The idea
of this method is to try to kill the particle with a small weight that will then contribute
in a negligible manner to the score.
To implement this algorithm first it is needed to define a certain weight cutoff and if the
particle weight is lower than this cutoff the said particle will undergo Russian roulette.
Once inside the roulette a termination probability proportional to the particle weight (and
eventually dependent on some other parameters) is defined , and subsequently it is decided
if the particle history is terminated or not. If the particle survives the roulette its weight
is re-set to a chosen value.



3.2. TYPE OF GAMES 23

Figure 3.3: Scheme of the weight window procedure

3.2.4 Weight windows

A more complex way to implement the previous population control methods by also adding
the information of the importance, derived from the solution of the adjoint Boltzmann
equation. First of all, this method combines the Russian roulette previously described
with a splitting method in order to define a window in which the particle weight can be.
If the weight is below the window’s lower limit the particle enters a roulette, it if is above
the window’s upper limit the particle is split in a number of particles such that the weight
of each one of them is inside the limits. Once the window’s limits have been defined this
way, it is possible to enlarge or shrink the window depending on the importance of the
point in the phase space where the particle is located. A particle near a region with a
higher importance will have a lower chance of being killed by the roulette than a particle
with the same weight but in a region with a lower importance. [9]
This method has two advantages: first it forces the particle to move from regions of
lower importance to regions with higher importance, second it delays the termination
of the particle histories depending on their position. The first advantage is related to
the fact that less and less particles can survive in lower importance regions, while a lot
more particle will do in the higher importance ones: the result is similar to a biasing of
the transport kernel T (P, P ′) but it is achieved not during the free flight but during the
collision. The second advantage is instead related to a problem that can arise when the
weight windows do not consider the information of the adjoint flux: in this first version,
in fact, the window’s limits are the same regardless of the position, then particles that
have been doing the same collisions will be killed at the same time. This creates a sort
of oscillating behavior thanks to which the total population will go down when a lot of
particles experience the roulette altogether at the same time. Introducing the importance
adds some unique information to each particle so that each window’s limits will be different
than the others.
A scheme depicting the weight window procedure is presented in Figure 3.3.

3.2.5 Exponential transform

The biasing of the free flight can be implemented using the exponential transform tech-
nique. This technique, also called path length stretching is designed to increase the effi-
ciency for deep penetration problems, so it fits well in the scope of radiation shielding. It
is based on the definition of a stretching parameter, used to increase the distance travelled
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in directions with higher importance regions and to decrease the same distance in direc-
tions with regions of lower importance. The biasing of the free flight length is done by
modifying the total cross section as follows:

Σ∗
t = Σt(1− pµ) (3.15)

Where p (with |p| < 1) is the exponential transform parameter used to vary the degree
of biasing and µ is the cosine of the angle between the preferred direction and the particle’s
direction. Shorter free flights are associated with a higher frequency of collisions and of
instances where the particle can undergo Russian roulette and thus be killed. An example
of the exponential transform, or path stretching is presented in Figure 3.4.

Figure 3.4: Scheme of the exponential transform technique

3.2.6 Forced fission

In a forced fission game, the events that a particle can experience during a collision are
fundamentally different from those in the corresponding analog game. In the original
analog game, a particle has three possible interactions: it can either scatter, be captured,
or undergo fission (according to what was said up until now) . In contrast, in the forced
fission game, the capture reaction channel is suppressed, so the particle can only scatter
and undergo fission, provided that fission is possible, but these events happen during the
same collision event. So, since the reaction channel is basically only one, the particle is
always forced to take this channel and every collision will always contain both a fission
part and a scattering part. In other words:

P [fission + scattering] = 1 at every collision

Imaging the collision as a whole unique process it is possible to visualize it as a black box
where 1 neutron enters the collision and n neutrons exit the collision. In addition, knowing
that scattering will always occur (a particle can always be scattered while it undergoes
fission only if inside a multiplicative medium), so the number of outgoing neutrons will
not be lower than 1. In other words it exists:

min(n) = m ≥ 1 (3.16)

The number of outgoing neutrons from a fission event using a forced fission scheme can
be sampled as [10]:

ν̂ = ⌊
νσf
σt

+ ρ⌋ (3.17)
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This is not the only way to implement the forced fission scheme but it will be the one used
in this work. It is evident how from this sampling approach ν̂ can have only two possible
values: {

ν̂ =
νσf
σt

with probability P = 1− νσf
σt

ν̂ =
νσf
σt

+ 1 with probability P =
νσf
σt

(3.18)

Then combining the fact that for sure a neutron is coming out from the scattering (and
since scattering and fission are not correlated) it is possible to think of the collision in the
forced fission scheme as the aforementioned ”black-box” where for each incoming neutron,
the n number of outgoing neutron is:

min(n) = m = ⌊
νσf
σt

⌋+ 1 (3.19)


n < m→ cn(P

′) = 0

n = m→ cn(P
′) = 1− νσf

σt

n = m+ 1 → cn(P
′) =

νσf
σt

(3.20)

Within the fissile media, otherwise the solution is trivial and it corresponds to having only
scattering (so n = 1) with probability equal to unity.

Figure 3.5: Scheme of a forced fission game

Ultimately, in forced fission branching games it is meaningless to talk about reaction
channel probabilities, since the outcome of every collision will always be the same. Keeping
this in mind it is possible to write the collision kernel for a forced fission game as:

CFF (P ′, P ′′) = CFFs (P ′, P ′′) + δf (P
′)

∞∑
n=1

nqFFn (P ′)CFFn (P ′, P ′′) (3.21)

δf (P
′) =

{
1 if cf (P

′) > 0

0 if cf (P
′) = 0

(3.22)

where the symbol FF was used to indicate that it is a forced fission scheme.
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3.3 Zero-variance games

The simple analog game described above can be replaced by a modified (non-analog) game
by replacing the source, flight and collision kernels respectively by the modified quantities:

Q̂ , T̂ , Ĉ (3.23)

Then the detector response is:

R =

∫
dP fψ(P )ψ(P ) =

∫
dP fψ(P )

ψ(P )

ψ∗(P )
ψ∗(P ) (3.24)

and the quantity ψ(P )
ψ∗(P ) can be interpreted as a weight correction factor that preserves

an unbiased average, where ψ∗(P ) is given instead as:

ψ∗(P ) =

∫
dP ′ T̂ (P, P ′)

∫
dP” Ĉ(P ′′, P ′)ψ∗(P”) +

∫
dP ′ T̂ (P, P ′)Q̂(P ′) (3.25)

It is possible to choose the modified Q̂,T̂ and Ĉ in such a way that the variance of the
sought response function is exactly zero. The derivation of these zero-variance kernels will
become clearer after the formulation of the moments equations presented in the following
Chapters and in the Appendices of this work. However, the final results can already be
presented in simple case of the zero-variance game derived from a purely analog game:

T̂ (P, P ′) = T (P, P ′)
f(P, P ′) +

∫
dP ′′ C(P, P ′)χ∗(P ′′)

χ∗(P )
(3.26)

Ĉ(P ′, P ′′) = C(P ′, P ′′)
χ∗(P ′′)∫

dP ′′ C(P ′, P ′′)χ∗(P ′′)
(3.27)

Q̂(P ) = Q(P )
χ∗(P”)∫

dP Q(P )χ∗(P ′′)
(3.28)

By using the new kernels the simulation is biased toward the desired outcome, so to have
at the end an unbiased result a system of weights that conserves the average score needs
to be implemented. These weights were already introduced in the description of the score
at the detector and the corrections of the particle weight can happen:

• After a flight from P to P ′ the weight correction is W ′

• After a scattering from P ′ to P ′′ the weight correction is W ′′

• After a n-fission phenomena from P ′ to P ′′
n the weight correction of the n-th outgoing

particle is W ′′
n

It is possible to express Ĉ by singling out each reaction channel:

Ĉ(P ′, P ′′) = ĉc(P
′)δ(P ′′ − P ) + ĉs(P

′)Ĉs(P
′, P ′′) + ĉf (P

′)
∞∑
n=1

nq̂n(P
′)Ĉn(P

′, P ′′) (3.29)

Where each ĉj is the probability to choose that specific reaction channel. Considering
as multiplicative event a fission where either two or three neutrons can be produced, the
previous equation can be simplified as:

Ĉ(P ′, P ′′) = 1×
[
ĉs(P

′)Ĉs(P
′, P ′′)

]
+2×

[
ĉf (P

′)q̂2(P
′)Ĉ2(P

′, P ′′)
]
+3×

[
ĉf (P

′)q̂3(P
′)Ĉ3(P

′, P ′′)
]

(3.30)
where each possible reaction channel was divided.
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3.4 Derivation of the zero-variance games

The aim of this part of the report is to derive formally the kernels associated with the
zero-variance Monte Carlo game and using the strategy of the moments equation. The
general condition to achieve zero variance is that:

D̂(P ) = M̂2(P )− M̂2
1 (P ) = 0 (3.31)

where M̂2(P ) and M̂1(P ) are the respectively the second and first order moment of a
tally associated with the random walk of the particle for a given response function and
D̂(P ) is the variance of the said tally. From the previous equation, it is evident how to
derive the zero variance kernels the expressions for the first and second order moment of
the desired estimator are necessary. Here, we present the final formulas of the derivation;
the full derivation of the expressions for the moments can be found in the Appendices.
The derivation will be shown first for analog game, and then it will be adapted to implicit
capture and forced fission game, for which only the final result will be shown in this
Chapter. It was decided to not formally derive the zero variance kernels for the branchless
games since this kind of work has been already investigated by others [11] [12] and since
the focus of this work are the branching games.

3.4.1 From an analog game

The derivation proposed here is the same as the one proposed by Lux and Koblinger [1].
Recalling once again the form of the collision kernel for an analog game but modifying it
so that the scattering term and the term with only 1 outgoing neutron from fission are
grouped together in the same term:

C(P ′, P ′′) = ccδ(P
′′ − P ) +

∞∑
n=1

ncn(P
′)Cn(P

′, P ′′) (3.32)

Then let also recall the first moment of the general score estimator f(P, P ′):

M1(P ) =

∫
dP ′ T (P, P ′)f(P, P ′) +

∫
dP ′ T (P, P ′)

∫
dP ′′C(P ′, P ′′)M1(P

′′) (3.33)

and by substituting the collision kernel:

M1(P ) =

∫
dP ′ T (P, P ′)f(P, P ′) +

∫
dP ′ T (P, P ′)

∞∑
n=1

ncn(P
′)

∫
dP ′′ Cn(P, P

′′)M1(P
′′)

(3.34)

where the first term on the r.h.s. is the partial score due the particle moving from P
to P ′ and the second term represents the partial score due to all the collided particles.
The expression for M1(P ) is formally equal to the adjoint of the emission density χ∗(P ),
which can be interpreted as the importance itself. [1]
Now, let us call

∫
dP”Cn(P

′, P ′′)M1(P
′′) as mn(P

′) and let us add and subtract the term:∫
dP ′ T (P, P ′)

∞∑
n=1

ncn(P
′)H(P, P ′)Hn(P

′)mn(P
′) (3.35)

where H(P, P ′) and Hn(P
′) are for now arbitrary functions. Then it is possible to

rewrite the first moment as:
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M1(P ) =

∫
dP ′ T (P, P ′)

{
f(P, P ′) +

∞∑
n=1

ncn(P
′)
[
1−H(P, P ′)Hn(P

′)
]
mn(P

′)

}
(3.36)

+

∫
dP ′ T (P, P ′)H(P, P ′)

∞∑
n=1

ncnHn(P
′)mn(P

′)

The second moment of the general score estimator is instead:

M2(P ) =

∫
dP ′ T (P, P ′)f2(P, P ′) + 2

∫
dP ′ T (P, P ′)f(P, P ′)

∫
dP ′′ C(P ′, P ′′)M1(P

′′)

(3.37)

+

∫
dP ′ T (P, P ′)

∫
dP ′′ C(P ′, P ′′)M2(P

′′)

Let us now assume to change the game from analog to non-analog with proper weights
corrections to ensure the unbiasedness of the modified game:

W ′ =
T (P, P ′)

T̂ (P, P ′)
(3.38)

W ′′
n =W ′ cn(P

′)Cn(P
′, P ′′)

ĉn(P ′)Ĉn(P ′, P ′′)
(3.39)

and the total weight of the particle when in P is simply indicated by W . Thanks
to the moment equations for a general non-analog game, the first and second moment
corresponding to the non-analog game with a particle starting with unit weight at P can
be expressed as:

WM̂1(P ) =

∫
dP ′T̂ (P, P ′)[W ′f̂(P, P ′) + cc(P

′)W cf̂c(P
′) (3.40)

+ ĉs(P
′)

∫
dP ′′ Ĉs(P

′, P ′′)W”f̂s(P
′, P ′′)

+ ĉf (P
′)

∞∑
n=1

q̂n(P
′)

n∑
i=1

∫
dP ′′

(i)Ĉn(P
′, P ′′

(i))W
′′
n(i)f̂n(P

′, P ′′)]

+

∫
dP ′ T̂ (P, P ′)[ĉs(P

′)

∫
dP” Ĉs(P

′, P ′′)W ′′M̂1(P
′′)

+ ĉf (P
′)

∞∑
n=1

q̂n(P
′)

n∑
i=1

∫
dP ′′

(i) Ĉn(P
′, P ′′

(i))W
′′
n(i)M̂1(P

′′
(i))

M̂2(P ) =

∫
dP ′ T̂ (P, P ′)[(W ′)2f2(P, P ′) (3.41)

+ 2W ′f(P, P ′)
∞∑
n=1

nĉn(P
′)

∫
dP ′′Ĉn(P

′, P ′′)W ′′
nM1(P

′′)

+

∞∑
n=1

n(n− 1)ĉn(P
′)(

∫
dP ′′ Ĉn(P

′, P ′′)W ′′
nM1(P

′′))2]

+

∫
dP ′ T̂ (P, P ′)

∞∑
n=1

nĉn(P
′)

∫
dP ′′ Ĉn(P

′, P ′′)(W ′′
n )

2M̂2(P
′′)
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Monte Carlo game will be zero-variance if:

M̂2(P )

M̂1(P )
= M̂1(P ) (3.42)

Since the game needs to be unbiased the first moments of the analog and of the general
non-analog games need to be equal, so M̂1(P ) = M1(P ). Dividing the equation for the
second moment by the first moment M1(P ) and dividing and multiplying in the last term

by Θ(P ′)
M1(P ′) , where Θ(P ′) is for now an arbitrary function, results in

M̂2(P )

M1(P )
=

∫
dP ′ T̂ (P, P ′)

[
(W ′)2f2(P, P ′) + 2W ′f(P, P ′)

∞∑
n=1

nĉn(P
′)

∫
dP ′′Ĉn(P

′, P ′′)W ′′
nM1(P

′′)

+

∞∑
n=1

n(n− 1)ĉn(P
′)
(∫

dP ′′Ĉn(P
′, P ′′)W ′′

nM1(P
′′)
)2]

/M1(P )

+

∫
dP ′T̂ (P, P ′)

Θ(P ′)

M1(P ′)

∞∑
n=1

nĉn(P
′)

∫
dP ′′Ĉn(P

′, P ′′)
M1(P

′′)

Θ(P ′)
(W ′′

n )
2 M̂2(P

′′)

M1(P )

(3.43)

To ensure a zero-variance game the equality of the terms on the r.h.s. of this equation
with respect to the two terms on the r.h.s. of M1(P ) is needed. For the second term:

T̂ (P, P ′)
Θ(P ′)

M1(P ′)
ĉn(P

′)Ĉn(P
′, P ′′)

M1(P
′′)

Θ(P ′)
(W ′′

n )
2

= T (P, P ′)H(P, P ′)cn(P
′)Cn(P

′, P ′′)Hn(P
′)

(3.44)

which is satisfied for:

T̂ (P, P ′) =
T (P, P ′)Θ(P ′)

H(P, P ′)M1(P

ĉn(P
′)Ĉn(P

′, P ′′) =
cn(P

′)Cn(P
′, P ′′)M1(P

′′)

Θ(P ′)Hn(P ′)

Θ(P ′)

H(P, P ′)
= f(P, P ′) +

∞∑
n=1

ncn(P
′)m(P ′)

(3.45)

The last equation was added to satisfy the normalization of T̂ (P, P ′). For what con-
cerns the second term to compare, after some manipulation it can be obtained that the
two are equal if the following condition is satisfied:

f(P, P ′) +

∞∑
n=1

ncn(P
′)mn(P

′)[1−H(P, P ′)Hn(P
′)]

f(P, P ′)[f(P, P ′) +
∞∑
n=1

ncn(P
′)mn(P

′)]
H(P, P ′)

Θ(P ′)

+
∞∑
n=1

ncn(P
′)mn(P

′)[f(P, P ′) + (n− 1)Hn(P
′)Θ(P ′)]

H(P, P ′)

Θ(P ′)

(3.46)

Which is true for: 
Hn(P

′) =

∑∞
n=1 ncn(P

′)mn(P
′)

nΘ(P ′)
∞∑
n=1

ĉn(P
′) = 1

(3.47)
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In the zero-variance game the absorption probability is zero, since all the ĉn(P
′) are

normalized to unity. Lastly, the expressions for the zero-variance kernels that was previ-
ously anticipated in Sec. 3.3 can be written.

T̂ (P, P ′) =
T (P, P ′)Θ(P ′)

H(P, P ′)M1(P )
(3.48)

= T (P, P ′)
f(P, P ′) +M1(P

′)

M1(P )
(3.49)

= T (P, P ′)
f(P, P ′) +

∫
dP ′′C(P ′, P ′′)M1(P

′′)

M1(P )
(3.50)

Ĉ(P ′, P ′′) = ĉc(P
′)δ(P ′′ − P ) +

∞∑
n=1

nĉn(P
′)Ĉn(P

′, P ′′) (3.51)

=
∞∑
n=1

ncn(P
′)mn(P

′)

M1(P ′)

Cn(P
′, P ′′)M1(P

′′)

mn(P ′)
(3.52)

=

∞∑
n=1

ncn(P
′)Cn(P

′, P ′′)
M1(P

′′)∫
dP ′′ C(P ′, P ′′)M1(P ′′)

(3.53)

= C(P ′, P ′′)
M1(P

′′)∫
dP ′′ C(P ′, P ′′)M1(P ′′)

(3.54)

Q̂(P ) = Q(P )
M1(P )∫

dP Q(P )M1(P )
(3.55)

Using the duality between the adjoint of the emission density and the first order mo-
ment of the desired estimator it is possible to retrieve the expressions described in the
previous pages.

3.4.2 From an implicit capture game

We sketch now the derivation of a zero-varance MC game based on an underlying implicit
capture game. Even if the starting game is not an analog game, the structure of the kernels
remains almost unchanged while performing an implicit capture game. For this reason it
is expected that the final version of the kernels even in the zero-variance version of this
type of game to be similar to the zero-variance games derived from an analog game. In
the Appendix B of this work the derivation is discussed and here only the final results are
depicted. The first and second order moment of a general estimator in this kind of game
were found to be equal to:

M∗
1 (P ) =

∫
dP ′T (P, P )f(P, P ′) (3.56)

+

∫
dP ′T (P, P ′)

∫
dP”

[
cs(P

′)Cs(P
′, P”) + cf (P

′)
∞∑
n=1

nqn(P
′)Cn(P

′, P”)

]
M∗

1 (P”)

=

∫
dP ′T (P, P ′)f(P, P ′) +

∫
dP ′T (P, P ′)

∫
dP”C(P ′, P”)M∗

1 (P”)

=M1(P ) (3.57)
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M∗
2 (P ) =

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)
f2(P, P ′)

1− cc(P ′)

]
+

[
2

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)f(P, P ′)M1(P”)

]
+

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)(1− cc(P
′)))M∗

2 (P”)

]
+

[
1

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

nqn

∫
dP”Cn(P

′, P”)
f2(P, P ′)

1− cc(P ′)

]

+

[
2

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

nqn

∫
dP”Cn(P

′, P”)f(P, P ′)M1(P”)

]

+

[
1

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

nqn

∫
dP”Cn(P

′, P”)(1− cc(P
′))M∗

2 (P”)

]

+

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

n(n− 1)qn(1− cc(P
′))

[∫
dP”Cn(P

′, P”)M1(P”)

]2
−
∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

(n− 1)qn
f2(P, P ′)

1− cc(P ′)

From the first of the previous two equation s it is possible to see that the expected
value of the estimator is preserved, making this an unbiased game.
For the derivation of the zero-variance scheme starting from an implicit capture game, an
attempt was made into mapping the modified starting rules of the game into the derivation
done by Lux and Koblinger [1] and by correcting the weight of the particle in a such a
way to have an unbiased way. Practically:

• the implicit capture game is derived

• with the collision kernel of this new game the zero-variance game is derived

• at the end the weight is corrected using the weight correction of both the schemes.

The results are:

T̂ ∗(P, P ′) = T ∗(P, P ′)
f(P, P ′) +

∫
dP”C∗(P ′, P ′′)M1(P

′′)

M1(P )
(3.58)

Ĉ∗(P ′, P ′′) =
∞∑
n=1

nĉ∗n(P
′)Ĉ∗

n(P
′, P ′′) (3.59)

=

∞∑
n=1

nc∗n(P
′)C∗

n(P
′, P ′′)

M1(P
′′)∫

dP ′′ C∗(P ′, P ′′)M1(P ′′)
(3.60)

Q̂∗(P ) = Q(P )
M1(P )∫

dP Q(P )M1(P )
(3.61)

And the weight correction after a collision is defined as:

Wn” =W ′ c
∗
n(P

′)C∗
n(P

′, P”)

ĉ∗n(P
′)Ĉ∗

n(P
′, P”)

(3.62)
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3.4.3 From a forced fission game

The forced fission game is fundamentally different than any other game, since the event
that a particle can experience are not mutually exclusive anymore: it is in fact possible
for a particle to undergo scattering and fission at the same collision. The final sampling
procedure must take into account also for this difference. To derive the zero-variance
scheme for a game of this type it was necessary to derive new expressions for the moments
equations since the ones used up until now were derived under the assumption of mutually
exclusives events (namely scattering, fission and absorption). To the best of our knowledge,
this result is novel. It will appear in Comparison of Branching and Branchless Zero-
Variance Games (T. Gomes Ferreira, F. Rossi, A. Jinaphanh, D. Mancusi, A. Zoia) in
Proc. of the M&C2025 conference. The full derivation can be found into the Appendix C
of this work, and the final results are:

T̂FF (P, P ′) = T (P, P ′)
f(P, P ′) +

∫
dP”CFF (P ′, P ′′)M1(P

′′)

M1(P )
(3.63)

ĈFFs (P ′) = Cs(P
′, P ′′)

M1(P
′′)∫

dP ′′Cs(P ′, P ′′)M1(P ′′)
(3.64)

ĈFFn (P ′) = Cn(P
′, P ′′)

M1(P
′′)∫

dP ′′Cn(P ′, P ′′)M1(P ′′)
(3.65)

And the weight correction rules for a collision event are:

W ′′ =W ′ cs(P
′)Cs(P

′, P ′′)

ĈFFs (P ′, P ′′)
(3.66)

W
′′
n =W ′ cf (P

′)qn(P
′)Cn(P

′, P ′′)

q̂FFn (P ′)ĈFFn (P ′, P ′′)
(3.67)

3.4.4 On the final variance

As seen, the condition for a Monte Carlo game to be zero variance is:

M̂2(P )

M̂1(P )
= M̂1(P ) (3.68)

but the first order moment will be conserved regardless of the original game. So it
follows that:

M1(P ) =M∗
1 (P ) =MFF

1 (P ) = M̂1(P ) = M̂∗
1(P ) =

ˆMFF
1(P ) (3.69)

where we used the symbol ∗ to indicate an implicit capture game, FF to indicate a forced
fission game and ˆ to indicate the associated zero variance moment. It follows directly
that the second order moment will also be the same, since the zero variance condition is
always the same.

M̂2(P ) = M̂∗
2(P ) =

ˆMFF
2(P ) (3.70)

The moment equations and the resulting zero-variance schemes hold true if no popula-
tion control methods are present: in other words the weight cutoff of the Russian roulette
has to be zero. In the case of non-negligible population control, the scheme implemented
will not be a zero-variance scheme. Practically speaking, however, population control is
highly recommended, or even mandatory when immortal particles can be produced in zero-
variance schemes. Thus, the said threshold can be thought as a ”convergence” parameter
and the different games can have a different ”convergence” trend toward the zero-variance
regime with respect to the weight cutoff of the Russian roulette [13].



Chapter 4

The MGMC code

4.1 General description

MGMC is the name for a 3D, multi-group Monte Carlo transport code which solves the
Boltzmann neutron transport equation for fixed-source, k-eigenvalue, and neutron-noise
problems with different particle tracking method like Surface tracking, Delta tracking, and
Carter tracking. This code is being developed by the CEA in order to investigate the
usefulness of branchless schemes for Monte Carlo simulations. The geometry, the physical
parameters and the simulations setup are all controlled by a single YAML input file and
parsed by the code. Some of the most basic inputs are the number of particles and the
number of replicas (or batches) used during the simulation. Various tallies can also be
added to the input file to score different physical quantities, such as neutron flux, reaction
rates and more.
It is possible also to use the code in a parallel thread mode: using the OpenMP shared
memory setting it is possible to use computational threads, then letting all of them run
independently and at the end of all the simulations assemble the results. The advantage
of doing so lies in the fact that it is possible to run several particle histories in parallel,
tracking each one of them and obtain the results faster.
Compared to the branchless simulation which are possible inside MGMC, the branching
one require a bit more care for some peculiar aspects. In the next section these aspects
will be better investigated without explaining in an excessive way in the coding part, in
order to not weight too much this work and to respect the industrial property of the CEA.

4.2 Population and weighted population tallies

The branching Monte Carlo simulations are characterized by an increase in the total pop-
ulation due to the presence of multiplicative phenomena. Even with the thread parallelism
added by OpenMP it is very much possible that inside each one of the threads the popula-
tion can grow so much the total run time increases exponentially to very high numbers. In
the following sections the relevance of this aspect will be better explained, but for now it
should be understood that tracking the total population evolution is of utmost relevance
in this type of games. To do so two new tallies have been implemented: the population and
weighted population tallies which make use of some new attributes added to the particle in-
formation. Every particle is in fact characterized by some basic information, like its phase
space coordinate, and by some other secondary information, e.g the spatial coordinate
of the previous collision, the Boolean variable that defines its state. The new secondary
information added concern the generation and the death of the particle and they can be
summed up as:

33
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• Birth generation: it is the generation in which a particle was born. All the source
particle will have a birth generation of 0.

• Type of birth: it is used to determine the type of reaction that generate the particle.
Thanks to it is possible to differentiate between a source particle, a particle born
from a fission event and a particle born from a splitting event.

• Survived generations: it is the number of collision a particle has survived. Every
particle starts with 0 and if they are alive at the end of the collision routine this
number is increased.

• Type of death: it is used to determine the type of reaction that terminated the
particle history. Thanks to this it was possible to know if a particle was captured,
was the parent of a fission reaction or if its history was terminated by a Russian
roulette.

With these new information, at the end of every collision routine it is possible to keep
track of the particle still alive in two different ways: counting the total absolute number
of particle alive (using the Population tally) or counting the total weight of the particle
alive (using the Weighted Population tally). To have a more clear idea of the structure of
the routine implemented by MGMC it is possible to look at the Figure 4.1.

4.3 Additions to the input files

With MGMC every aspect of the simulation is controlled by the input file so it necessary
to provide all the simulation setups inside it. Some of the already existing inputs are:

• Simulation type

• Number of particles per batch

• Number of batches

• Setups for the Russian roulette

• Setups for the biasing

• Sources and physical media position and properties

In order to be able to control even more aspects of the simulation, some more inputs were
implemented:

• Implicit capture input flag: if set to True the simulation will use an implicit capture
scheme

• Forced fission input flag: if set to True the simulation will use an forced fission
scheme

• Maximum length of the population tally vector: it is used to pre-allocate the memory
for the population and weighted population tallies

• Type of fission children probability density function: by default this function is set
to a 2-bins distribution but i is possible to change it to a Poisson distribution or a
different one.
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Figure 4.1: Routine followed by MGMC with focus on the branching collisions
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Chapter 5

Simulations and results

After implementing the zero-variance branching schemes, we aimed to evaluate their per-
formance across a series of benchmark configurations. This chapter outlines the selected
configurations and presents the simulation results obtained for each case.

5.1 Case A

The first geometrical configuration under investigation incudes a single fissile medium with
a neutron source surrounded on every side by non fissile media. To simplify the derivation
of the analytical solutions it was also supposed:

• to have a 1-D bi-directional problem;

• to have a mono-energetic problem;

• to have a stationary problem.

The problem under these assumptions becomes rather simple, but this was done in order
to have a straightforward derivation of the analytical solutions, which are necessary both
for the zero-variance kernels and as benchmarks for the Monte Carlo results. In the Figure
5.1 the geometrical configuration is depicted.

x

Source

Medium 1Medium 2 Medium 2

Detector

2D

−a a xd

Figure 5.1: Case A geometry: the fissile Medium 1, the absorbing Medium 2, as well as
the source and the detector are highlighted

The coordinates of the different planes in the figure are:

• a = 5 cm;

• xd = 15.5 cm;
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• 2D = 1 cm

To see the effect of a single physical parameter, in the following simulations, the most
relevant ones were changed one at a time keeping the other parameters constant.

5.1.1 Analytical results

The analytical solution is derived with a deterministic method that approximates the
direction of flight with two discrete directions, one positive one negative, along the same
axis. This simplification allows the total flux to be represented as the sum of the positive
and negative angular fluxes, while their difference corresponds to the net neutron current.
Although reliant on simplifying assumptions (mono-dimensional, stationary and mono-
energetic problem) this solution is able to describe anisotropic scattering processes. Under
these assumptions, the Boltzmann equation for the flux ϕ(x, µ) with the two directions
being µ = ±1 takes the form of:

µ
d

dx
ϕ(x, µ) + Σt(x)ϕ(x, µ) = Σs(x)

∑
µ′=(−1,1)

ϕ(x, µ′)fs(x, µ
′ → µ) (5.1)

+ νf (x)Σf (x)
∑

µ′=(−1,1)

ϕ(x, µ′)ff (x, µ
′ → µ) +Q(x, µ)

Where ϕ(x, µ) is the angular flux.
After some manipulation the equation for the scalar flux ϕ(x) is:

− 1

Σtr(x)

d2ϕ(x)

dx2
+Σe(x)ϕ(x) = q(x) (5.2)

where:

Σtr(x) = Σt(x)− νcd(x)µ̂cd(x)Σcd(x) (5.3)

νcd(x) =
Σs(x) + νf (x)Σf (x)

Σs(x) + Σf (x)
(5.4)

µ̂cd(x) =
µs(x)Σs(x) + µf (x)Σf (x)νf (x)

Σs(x) + νf (x)Σf (x)
(5.5)

Σcd(x) = Σs(x) + Σf (x) (5.6)

Σe(x) = Σt(x)− νcd(x)Σcd(x) (5.7)

Then the solution can be found using the symmetry of along the x-axis for the multiplica-
tive media and the infinite boundary conditions for the second media. Using the same
notation as above, namely:

• x = −a→ left interface between the two media

• x = a→ right interface between the two media

• x = Dbegin → left coordinate of the detector

• x = Dend → right coordinate of the detector



5.1. CASE A 39

then:

ϕ(x) =


1

2aΣe,1
+ C1 cos(βx) if |x| < a

C2 exp
(
−
√

Σtr,2Σe,2|x|
)

if |x| ≥ a

(5.8)

The constants C1 and C2 can be found by imposing the continuity of the neutron flux and
current at the interface.
The detector response is:

R =

∫
dxηϕϕ(x) =

∫
dx

1

Dend −Dbeginning
ϕ(x) (5.9)

The expression of the importance equation is:

− 1

Σtr(x)

d2χ†(x)

dx2
+Σe(x)χ

†(x) = ηϕ(x) (5.10)

χ†(x) =



B1 exp
(√

Σtr,2Σe,2x
)

if x < −a

A2 cos(βx) +B2 sin(βx) if |x| < a

A3 exp
(
−
√

Σtr,2Σe,2x
)
+B3 exp

(√
Σtr,2Σe,2x

)
if x > a

∧
x < Dbeginning

1

Σe,2(Dend −Dbeginning)
+A4 exp

(
−
√
Σtr,2Σe,2x

)
+B4 exp

(√
Σtr,2Σe,2x

)
if x > Dbeginning

∧
x < Dend

A5 exp
(
−
√
Σtr,2Σe,2x)

)
if x > Dend

(5.11)
In the Figures 5.2 and 5.3 the analytical solutions of the flux and importance for varying
fission cross section of the first media are represented. The most remarkable effect of
increasing the fission cross section is the increase in the peak of the flux inside the fissile
media; increasing the fission cross section has instead a smaller effect for the importance
shape primarily because the detector region has such a high importance compared to the
fissile media (notice that the importance plot is in log scale).
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Figure 5.2: Case A: Analytical scalar flux

Figure 5.3: Case A: Analytical scalar importance
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5.1.2 Analog and branchless zero variance

The purely analog and branchless zero-variance simulations are used as references for the
branching zero variance simulations. In Table 5.1 the simulation parameters of Case A
have been summed up.

Σt[cm
−1] Σs[cm

−1] Σa[cm
−1] Σf [cm

−1] νf [−] νs[−] µs[−] µf [−]

Medium 1 1.0 0.45 0.55 0.10/0.15/0.20 2.25 1.0 0.75 0.0

Medium 2 3.0 2.4 0.6 0.0 0.0 1.0 0.5 0.0

Table 5.1: Case A physical parameters

Important is to notice that by increasing the fission cross section also the keff of the sys-
tem is changing, creating much more particles from fission phenomena and thus moving
toward a critical system. As seen later on, the degree of criticality of the system will play a
big role in determining the efficiency of the zero variance branching methods. The keff of
the system for the different simulations setups were derived with the same code used, but
changing the simulation mode from fixed source (or branchless fixed source when running
the branchless simulations) to branchless k eigenvalue. Table 5.2 sums up the values of
the keff of the system in the three different simulation runs considered.

Simulation Σf,1[cm
−1] keff

Run 1 0.10 0.363942 ± 0.000219

Run 2 0.15 0.545823 ± 0.000285

Run 3 0.20 0.727533 ± 0.000319

Table 5.2: Case A keff of the system in the different simulations

We now present the results of the simulations aimed at estimating the detector response
using the zero-variance branchless approach. Table 5.3 summarizes these results, obtained
by varying key parameters such as the number of particles, batches, and cutoff values.
For each configuration, three independent runs with three different values of keff were
performed, to better investigate how the schemes behaves when the particle production
due to fission is increased. The table reports the Student t-test (STT) values, which
evaluate the consistency between runs, and the associated detector error. The Student
t-test checks the statistical significance of the results, with values near zero indicating
consistency across runs, while deviations outside the acceptable range of ±3 highlight
potential issues in the simulation stability or accuracy [7].

STT =
Raverage −Ranalytical

σ/
√
N

(5.12)

Red-highlighted rows mark the first cutoff where the test fails, along with additional
exploratory runs.
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Branchless zero-variance

Cutoff N° particles N° batches STT Detector error

RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3

10−1 10000 10000 10000 500 500 500 9.51× 10−1 6.30× 10−1 −1.40 1.85× 10−10 2.25× 10−10 3.86× 10−10

10−2 10000 10000 10000 500 500 500 6.86× 10−1 −7.54× 10−1 −1.74 1.66× 10−11 2.28× 10−11 3.84× 10−11

10−3 10000 10000 10000 500 500 500 −8.23× 10−1 −5.94× 10−1 −3.29× 10−1 1.77× 10−12 2.43× 10−12 3.81× 10−12

10−4 10000 10000 10000 500 500 500 −8.26× 10−1 −8.64× 10−1 −5.96× 10−1 1.74× 10−13 2.39× 10−13 3.80× 10−13

10−5 10000 10000 10000 500 500 500 −2.26× 10−1 −3.61× 10−1 2.59× 10−2 1.79× 10−14 2.34× 10−14 3.65× 10−14

10−6 10000 10000 10000 500 500 500 −3.47× 10−1 −3.54× 10−1 −9.61× 10−1 1.79× 10−15 2.43× 10−15 3.72× 10−15

10−7 10000 10000 10000 500 500 500 −1.46 −1.18 1.73× 10−1 1.74× 10−16 2.52× 10−16 3.70× 10−16

10−8 10000 10000 10000 500 500 500 −1.52 −5.12× 10−1 −4.91× 10−1 1.78× 10−17 2.35× 10−17 3.80× 10−17

10−9 10000 10000 10000 500 500 500 1.38× 10−1 −3.64× 10−1 −9.22× 10−1 1.75× 10−18 2.32× 10−18 3.82× 10−18

10−10 10000 10000 10000 500 500 500 −7.66× 10−1 −1.07× 10−2 2.99× 10−1 1.76× 10−19 2.38× 10−19 3.77× 10−19

10−11 10000 10000 10000 500 500 500 −1.30× 101 −5.89 6.76 1.65× 10−20 2.43× 10−20 3.71× 10−20

10−12 10000 10000 10000 500 500 500 −1.37× 10−1 3.80× 101 2.65 3.10× 10−21 4.55× 10−21 6.72× 10−21

10−13 10000 10000 10000 500 500 500 6.10× 102 5.88× 102 6.22× 102 2.72× 10−21 3.89× 10−21 5.61× 10−21

Table 5.3: Case A1: Detector error and Student t-test of the detector response for the zero variance branchless simulations. In red are highlighted
the first run in which the test fails and eventually some extra runs.
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It can be observed that by decreasing the weight cutoff in population control algo-
rithms, the detector error effectively reduces to the level of machine precision (approxi-
mately 10−16 for the system used in these simulations). This precision is achieved with
a weight cutoff of at least 10−7. Notably, for the lowest weight cutoffs, the Student’s
t-test yields values significantly outside the typically accepted range of ±3. This anomaly
occurs because the denominator in the t-test calculation is the detector response error,
which can approach machine precision due to the zero-variance scheme implemented. As
the error becomes exceedingly small, the test fails, resulting in excessively large values.
This indicates that the zero-variance scheme has been highly effective, limited only by the
machine’s precision. The following Figures offer a comprehensive view of the scalar neu-
tron flux in the region of interest and the evolution of the total population weight across
generations: Figure 5.4 compares the scalar flux from zero-variance branchless schemes
with the purely analog and analytical solutions, Figure 5.6 shows the STT values for the
Monte Carlo flux estimates across the domain, with an acceptable range of ±3, Figure 5.5
illustrates the relative variance of the flux estimates while Figure 5.7 tracks the evolution
of the weighted population over generations for each scheme.

Figure 5.4: Case A1: scalar neutron flux comparison

Figure 5.5: Case A1: scalar neutron flux relative variance comparison
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Figure 5.6: Case A1: Student t-test of the scalar neutron flux comparison

Figure 5.7: Case A1: weighted population evolution comparison

5.1.3 Branching zero variance: analog game

In this section, a comparison is made between the branching zero-variance schemes de-
rived from analog simulations and the reference branchless zero-variance simulations. In
the following figures, the branching scheme under investigation is referred to as ”2-bins
Branching”. This specification is necessary, as the performance of the branching scheme
depends on the fission children probability density function—specifically, the probability
of generating n outgoing fission particles (previously denoted by qn). For the simulations
discussed here, the fission children probability density function was constructed in the
simplest form as depicted in Table 5.4:
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n outgoing particles qn

⌊νf⌋ = 2 ⌈νf⌉ − νf = 0.75

⌈νf⌉ = 3 νf − ⌊νf⌋ = 0.25

Table 5.4: 2-bins branching scheme fission children probabilities

The advantage of using the integer part of the average number of fission neutrons is that
this formulation is valid regardless of the actual numerical value of νf . In a similar way to
what was done previously for the zero-variance branchless and purely analog simulations,
Figures 5.8, 5.9, 5.10 and 5.11 offer a general overview of the scalar neutron flux across
the domain and of the evolution of the total weighted population of the system.

Figure 5.8: Case A2: scalar neutron flux comparison

Figure 5.9: Case A2: scalar neutron flux relative variance comparison



46 CHAPTER 5. SIMULATIONS AND RESULTS

Figure 5.10: Case A2: Student t-test of the scalar neutron flux comparison

Figure 5.11: Case A2: weighted population evolution comparison

In the simulation called RUN 3 in order to speed up the calculations, it was decided to
reduce the number of particles and batches for the runs with a lower value of weight cutoff.
This decision was deemed necessary since the time spent to finish each run grows greatly
with the number of particles present in the system, and this effect has proven to be greatly
dependent on the keff of the system. For this reason the results of the second half of the
simulations for the RUN 3 set have a different number of particles and batches. If the
games are unbiased, this choice should not affect the Student t-test results but it will affect
the detector error trend towards the zero-variance. To account for this practical limitation
and to still have a complete trend, even for the simulations with a lower number of source
particles and batches it was decided to rescale the error of the detector response to have
the same number of starting particles histories. Results of this type will be highlighted
with the * symbol in the Table 5.5 which sums up all the results: this Table follows what
has been done in Table 5.3 and depicts the detector error trend and the STT trend for
the different simulations runs with varying cutoff values.
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Branching analog zero-variance

Cutoff N° particles N° batches STT Detector error

RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3

10−1 10000 10000 10000 500 500 500 6.66× 10−1 −1.33 5.32× 10−1 2.66× 10−10 4.95× 10−10 1.30× 10−9

10−2 10000 10000 10000 500 500 500 −1.41× 10−1 1.45× 10−2 −7.77× 10−1 3.01× 10−11 7.56× 10−11 2.71× 10−10

10−3 10000 10000 10000 500 500 500 −1.48 −7.27× 10−1 1.78 2.92× 10−12 1.06× 10−11 5.31× 10−11

10−4 10000 10000 10000 500 500 500 2.12× 10−1 9.80× 10−2 −7.34× 10−1 3.20× 10−13 1.51× 10−12 1.12× 10−11

10−5 10000 10000 10000 500 500 500 −6.60× 10−1 −1.29 −1.24 3.21× 10−14 2.11× 10−13 2.61× 10−12

10−6 10000 10000 10000 500 500 500 3.03× 10−1 −1.46 −8.10× 10−1 3.26× 10−15 3.03× 10−14 6.92× 10−13

10−7 10000 10000 10000 500 500 5 −4.47× 10−2 7.85× 10−1 1.69× 10−1 3.29× 10−16 3.95× 10−15 3.37× 10−13 *

10−8 10000 10000 10000 500 500 5 −2.36 1.10 3.80× 10−3 3.15× 10−17 5.63× 10−16 1.42× 10−13 *

10−9 10000 10000 10000 500 500 5 6.66× 10−1 9.30× 10−1 −2.58× 10−1 3.30× 10−18 7.87× 10−17 5.08× 10−14 *

10−10 10000 10000 100 500 500 5 6.15× 10−1 −7.14 3.46 3.29× 10−19 1.12× 10−17 8.83× 10−16 *

10−11 10000 10000 10 500 500 5 −2.47× 101 −2.77× 102 1.02 3.38× 10−20 2.33× 10−18 1.29× 10−16 *

10−12 10000 10000 1 500 500 5 5.87 9.95× 101 −2.99× 10−1 6.20× 10−21 1.57× 10−17 3.80× 10−17 *

10−13 10000 - - 500 - - 5.28× 102 - - 1.24× 10−20 - -

Table 5.5: Case A2: Detector error and Student t-test of the detector response for the zero variance branching simulations. In red are highlighted
the first run in which the test fails and eventually some extra runs.
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Preliminary conclusions

It is possible to draw the following conclusions:

• By comparing the relative variance of the flux in Figure 5.5, it is evident that transi-
tioning from the purely analog scheme to the zero-variance scheme leads to a signifi-
cant change in the variance profile. In the analog simulations, the minimum relative
variance is observed in the fissile medium, where source particles originate and new
particles are produced. However, in the zero-variance scheme, the minimum relative
variance shifts to the region near the detector, as a result of the biasing process that
directs particles toward regions of higher importance.

• Comparing the flux estimates in Figure 5.8, both the zero-variance branchless and
branching schemes fail to provide accurate solutions in the region x ∈ [−15,−10] cm
and do not provide estimates for x < −15 cm. This behavior originates from the
importance-based biasing of the physical processes, which directs particles toward
regions of higher importance, leaving areas of lower importance sparsely sampled.

• In Figure 5.9, the region with the lowest variance for both the zero-variance branch-
less and branching schemes is located near the detector, consistent with the obser-
vations above. Furthermore, the branching scheme presents a slightly lower variance
than the branchless shceme due to the higher number of simulated particles, which
increases the overall statistical information.

• The evolution of the weighted particle population, as shown in Figure 5.11, is in-
dependent of the scheme employed and is solely influenced by the physical and
geometrical parameters of the system.

• A comparison of the detector response errors in Tables 5.3 and 5.5 reveals that
achieving zero variance becomes increasingly challenging for zero-variance branching
schemes as the fission cross-section increases. Also, the rate at which zero variance
is reached appears to be dependent on the system’s keff : in fact, as the criticality
increases, the convergence to zero variance slows in relation to the cutoff, while for
zero-variance branchless schemes, the ”convergence” speed remains nearly unaffected
by variations in keff .

• Finally, the results of the two Student t-tests on the flux and detector response,
shown in Figures 5.6, 5.10, and Tables 5.3, 5.5, confirm that the implemented schemes
are unbiased, at least in regions of higher importance.

An additional aspect worth considering is the computational time: from all of the
previous graphs, the computational cost of the two schemes was mentioned but not deeply
analyzed. In general, the branching schemes will always have a higher computational cost
than the branchless ones, since more particle to be simulated than the original source
particle are added to the system so the number of collisions and free flights will increase
exponentially. The total number of interactions will also depend on the keff of the system
and on the sampling strategy for the fission children probability density function. This
increase will however face a halt if the system is subcritical, so if keff < 1. The comparison
of the simulations times is presented in Figure 5.12 where it is possible to see the almost
exponential trend for the time increase of the branching simulations. For the simulations in
the RUN 3 set with a lower amount of source particles and batches, the total simulation
time has been rescaled in order to have a more faithful comparison. Doing this it is
also possible to see how much time the full simulations would have taken to complete:
with a quick calculation, the run with the lowest cutoff of the RUN 3 would have taken
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approximately 31 years if 10000 source particles and 500 batches were simulated (see
Figure 5.12).

Figure 5.12: Case A2: simulation times for the branching zero variance and branchless
zero variance simulations

In Figure 5.13 the population evolution has been depicted for both the zero-variance
branchless and branching simulations. While the branching simulations experience an
increase in the total population, the branchless ones, precisely because of how they were
built, do not see an increase in the population.
It is also interesting to observe how the maximum population value varies across the
different branching simulations. For this purpose, the graph in Figure 5.14 was created.
With the aid of this Figure the reader can also have a rough idea of the orders of magnitude
related to the population sizes: depending on the system configuration it is in fact possible
to increase the population from 1000 particles to 1011 particles.

Figure 5.13: Case A2: evolution of the population for the branching zero-variance and
branchless zero-variance simulations
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Figure 5.14: Case A2: three-dimensional plot of the maximum value of the population (on
the z-axis) with respect to Σf,1 (x-axis) and the weight cutoff (y-axis). The red crosses
are the numerical datas while the colored surface is obtained interpolating between these
datas.

Effect of different probability density functions

Having probed the relation between the degree of criticality of the system and the sim-
ulations results, the rules of the branching process were then modified by changing the
fission children probability density function. As a first step, two small variations to the
original function were implemented, increasing the number of possible cases to be sampling
process; in particular the two following probability density functions in Table 5.6 and 5.7
were used.

n outgoing particles qn

1 0.15

2 0.45

3 0.40

Table 5.6: 3-bins-low branching scheme
fission children probabilities

n outgoing particles qn

2 0.85

3 0.05

4 0.1

Table 5.7: 3-bins-high branching scheme
fission children probabilities

It is worth mentioning that the two probability density functions above were derived
for the case with νf = 2.25, so if this number changes the values of the qn for each of the
two functions will also need to change, in order to conserve the average number of fission
neutrons. Together with the previous two a more complex was also implemented, namely
the Poisson distribution:

qn = f(n|νf ) =
(νf )

n · exp(−νf )
n!

for n ∈ [0,+∞[ (5.13)

The immediate drawback of using this type of function is that it is defined in an infinite
interval, but for practical purposes a truncation to some upper limit is necessary. In all
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of the cases under investigation the value of νf will always be smaller, or at most around
3, so having to truncate the function will not pose a problem: as it is possible to see in
Figure 5.15 the qn for n > 15 have negligible relevance compared to the ones for n < 5.

Figure 5.15: Case A3: qn generated with a Poisson probability density function

Thanks to the formulation described in the previous chapters it is possible to compute
for a given point in the phase space the modified probability ĉn to get n outgoing particles,
as well as the expected number of particles coming out from the biased collisions. These
information are depicted in the Figures 5.16 and 5.17.

Figure 5.16: Case A3: comparison of the ĉn(P ) for different fission children probability
density functions (Σf,1 = 0.15, νf = 2.25) in the two direction of flight
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Figure 5.17: Case A3: average number of outgoing particles from the biased collision for
different fission children probability density function (Σf,1 = 0.15, νf = 2.25) in the two
direction of flight

The biasing affects differently the four functions as shown in the Figure 5.17: the
average number of particle coming out from a collision with the Poisson distribution is
almost 20% more than the same number but with the 2-bins distribution. This means that
every 5 collisions on average 1 additional particle that needs to be simulated is generated,
even though the non-biased distributions gave the exact same mean. The effect of this
is not trivial and it will result in much longer and expensive computations especially for
the higher values of keff . For the sake of simplicity, a smaller number of runs (all with
10000 particles and 500 batches) was simulated with respect to the previous cases: it was
in fact decided to fix the fission cross section of the first media to Σf,1 = 0.15 and to run
only three simulations with different cutoffs per case. The simulation results are shown in
Table 5.8.

Cutoff STT Detector error

3-bins-high 3-bins-low Poisson 3-bins-high 3-bins-low Poisson

10−1 4.65× 10−1 3.29× 10−1 −9.92× 10−1 5.29× 10−10 5.40× 10−10 6.15× 10−10

10−3 −1.08× 10−1 4.87× 10−1 9.87× 10−1 1.11× 10−11 1.14× 10−11 1.73× 10−11

10−6 1.27 −1.94× 10−1 1.23 3.51× 10−14 3.82× 10−14 9.19× 10−14

Table 5.8: Case A3: Detector error and Student t-test of the detector response for the zero
variance branching simulations with different fission children probability density functions

As expected, the total simulation times vary depending on the total number of particles
in the system: comparing the theoretical results of Figure 5.17 with the simulation’s results
of Figure 5.18 it is possible to see that the slowest scheme is the one that uses the Poisson
distribution and it is followed by the 3-bins-low distribution, then by the 3-bins-high
distribution and lastly by the 2-bins distribution. This same order was found just by
analyzing the expected average number of particles leaving a collision in Figure 5.17.
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Figure 5.18: Case A3: simulation times for different fission children probability density
function (Σf,1 = 0.15, νf = 2.25)

5.1.4 Branching zero variance: implicit capture game

The purpose of this section is to investigate the case where the starting game from which
the zero-variance scheme is derived is not the analog game but an implicit capture game.
As it was demonstrated easily in 3.4.4, the variance of the results does not depend on
the type of the starting game, since the condition to reach zero variance is unique: the
trend toward the zero-variance condition can, nevertheless, be different compared to the
previous cases. As done previously, a series of results is presented in the Figures 5.19, 5.20,
5.21 and 5.22 comparing the zero-variance implicit capture game with the zero-variance
analog game. In both cases, the chosen probability density function for fission children is
the 2-bins model.

Figure 5.19: Case A4: scalar neutron flux comparison
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Figure 5.20: Case A4: scalar neutron flux relative variance comparison

Figure 5.21: Case A4: Student t-test of the scalar neutron flux comparison

Figure 5.22: Case A4: weighted population evolution comparison
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Analyzing all the previous figures it is possible to note that there are no relevant
differences between the two zero variance schemes and in almost all the case the plots for
every quantity of interest overlaps: this can especially be seen in Figure 5.20 and 5.22.
From Figure 5.19 and 5.21 it is also possible to see that the new zero-variance game from
the implicit capture scheme gives unbiased results.
The reason of this many similarity can be found in the fact that the two theoretical
schemes have an almost identical formulation in the expression of the kernels, so these
results was to be expected. Even the total simulations time (not depicted in the current
work) shows the same trend. As usual, the simulation results for the detector error and
the STT associated are depicted in Table 5.9 for three different runs and for varying cutoff
values. Comparing Table 5.5 and Table 5.9 it is possible to see that the numerical values
of the detector error and even the Student t-test of it are similar.
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Branching implicit capture zero-variance

Cutoff N° particles N° batches STT Detector error

RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3

10−1 10000 10000 10000 500 500 500 7.70× 10−1 −7.34× 10−2 4.06× 10−1 2.63× 10−10 4.85× 10−10 1.31× 10−9

10−2 10000 10000 10000 500 500 500 −3.46× 10−1 −1.04 1.83 3.00× 10−11 7.42× 10−11 2.77× 10−10

10−3 10000 10000 10000 500 500 500 −1.70 −1.70 8.29× 10−1 2.87× 10−12 1.09× 10−11 5.46× 10−11

10−4 10000 10000 10000 500 500 500 −2.62× 10−1 −2.63× 10−2 −6.20× 10−1 3.15× 10−13 1.49× 10−12 1.11× 10−11

10−5 10000 10000 10000 500 500 500 −6.43× 10−1 −7.27× 10−1 2.16× 10−1 3.21× 10−14 1.99× 10−13 2.53× 10−12

10−6 10000 10000 10000 500 500 500 2.98× 10−1 1.14 −4.80× 10−1 3.25× 10−15 2.84× 10−14 7.11× 10−13

10−7 10000 10000 10000 500 500 5 1.76× 10−1 −2.69× 10−2 −2.68× 10−2 3.26× 10−16 4.17× 10−15 3.29× 10−13 *

10−8 10000 10000 5000 500 500 5 −2.66 9.54× 10−1 1.54 3.16× 10−17 5.65× 10−16 1.03× 10−13 *

10−9 10000 10000 500 500 500 5 9.68× 10−1 1.26 3.89 3.31× 10−18 7.67× 10−17 3.41× 10−15 *

10−10 10000 10000 50 500 500 2 5.17× 10−1 −7.75 1.59 3.30× 10−19 1.12× 10−17 3.43× 10−16 *

10−11 10000 10000 - 500 500 - −2.41× 101 −2.80× 102 - 3.42× 10−20 2.30× 10−18 -

10−12 10000 10000 - 500 500 - 8.09 1.00× 102 - 6.28× 10−21 1.57× 10−17 -

10−13 10000 - - 500 - - 5.29× 102 - - 1.23× 10−20 - -

Table 5.9: Case A4: Detector error and Student t-test of the detector response for the implicit capture zero variance branching simulations. In red
are highlighted the first run in which the test fails and eventually some extra runs.
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5.1.5 Branching zero variance: forced fission game

We compare now the zero-variance schemes from the branching analog game and from
the branching forced fission game. Unlike the previous comparison, the two schemes stem
from different hypothesis so some of the results are expected to be different, especially for
what concerns the trend toward the zero variance. As usual, the chosen fission children
probability density function is the 2-bins one.
From the Figures 5.23, 5.25 and 5.26 we note that the new zero-variance branching game
from a forced fission scheme gives unbiased results for the flux estimate, confirming that
our derivation was correct. It can be noted in Figure 5.24, that the flux relative variance
obtained with this new zero-variance game is lower than the previous one, and consequently
even lower than the branchless zero-variance one.
Figures 5.27 and 5.28 display the connection between population and total simulation time,
highlighting the fact that the new forced fission scheme has a much higher computational
cost than the original one.

Figure 5.23: Case A5: scalar neutron flux comparison

Figure 5.24: Case A5: scalar neutron flux relative variance comparison
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Figure 5.25: Case A5: Student t-test of the scalar neutron flux comparison

Figure 5.26: Case A5: weighted population evolution comparison

Figure 5.27: Case A5: maximum of the population comparison (some values were extrap-
olated)
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Figure 5.28: Case A5: simulation times comparison (some values were extrapolated)

It is necessary to say that the points at lower cutoffs for the two previous figures were
obtained through a rescaling process, since the simulation setup for those games was made
up of a lower amount of source particles and batches due to the high computational cost
of the zero-variance forced fission scheme. The curves shown in Figure 5.27 and 5.28
represent the expected trend that would be observed if sufficient time and computational
resources were available to perform simulations with a higher number of particles and
batches.
Similarly to the previous sections, the simulation results for the detector error and the
associated STT can be found within the sum-up Table 5.10.



6
0

C
H
A
P
T
E
R

5.
S
IM

U
L
A
T
IO

N
S
A
N
D

R
E
S
U
L
T
S

Branching forced fission zero-variance

Cutoff N° particles N° batches STT Detector error

RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3 RUN 1 RUN 2 RUN 3

10−1 10000 10000 10000 500 500 500 −4.43× 10−1 −9.26× 10−1 8.05× 10−1 4.48× 10−10 8.63× 10−10 2.07× 10−9

10−2 10000 10000 10000 500 500 500 6.46× 10−1 2.82× 10−1 −8.49× 10−1 7.97× 10−11 1.99× 10−10 5.63× 10−10

10−3 10000 10000 10000 500 500 500 8.77× 10−1 −9.72× 10−1 3.74× 10−2 1.61× 10−11 4.70× 10−11 1.51× 10−10

10−4 10000 200 100 500 100 50 −7.46× 10−1 −2.85× 10−1 6.32× 10−1 3.19× 10−12 * 1.07× 10−11 * 5.72× 10−11 *

10−5 10000 200 50 500 100 10 4.41× 10−1 5.48× 10−2 −3.55× 10−1 6.29× 10−13 * 2.54× 10−12 * 9.13× 10−12 *

10−6 10000 40 1 500 50 2 −1.70× 10−1 −7.23× 10−1 1.78× 10−1 1.38× 10−13 * 6.74× 10−13 * 1.41× 10−12 *

10−7 100 40 1 50 50 2 −4.32× 10−1 6.74× 10−1 −1.78× 10−1 2.77× 10−14 * 1.26× 10−13 * 1.36× 10−12 *

10−8 100 40 1 50 50 2 1.77 9.59× 10−2 3.08 4.79× 10−15 * 3.05× 10−14 * 1.26× 10−14 *

10−9 50 1 1 10 10 2 7.31× 10−1 −4.41× 10−1 1.68 1.51× 10−15 * 3.69× 10−15 * 3.15× 10−14 *

10−10 10 1 1 5 5 2 −7.29× 10−1 −2.20 −3.29 1.25× 10−16 * 9.69× 10−16 * 7.66× 10−15 *

10−11 10 1 - 5 2 - 1.23× 10−1 −1.41 - 4.20× 10−17 * 7.01× 10−17 * -

10−12 1 - - 2 - - 1.41 - - 1.81× 10−18 * - -*

10−13 1 - - 2 - - 1.42 - - 4.60× 10−20 * - -

Table 5.10: Case A5: Detector error and Student t-test of the detector response for the forced fission zero variance branching simulations. In red
are highlighted the first run in which the test fails and eventually some extra runs.
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5.2 Case B

In the second configuration the source was moved outside the fissile medium and the
position of the detector was also changed compared to Case A, all in order to create a
so called bi-modal configuration for the importance. By slightly changing the physical
parameters and the detector position it was possible, in fact, to change the shape of the
adjoint flux so that it had two peaks of approximately the same height, and then by
putting the source in the depression between those two peaks the bi-modal configuration
was created. The geometry used for this case is depicted in Figure 5.29.

x

Source

Medium 1Medium 2 Medium 2

Detector

2D

−a a Sb Se
xd

Figure 5.29: Case B geometry: the fissile Medium 1, the absorbing Medium 2, as well as
the source and the detector are highlighted

The coordinates of the different planes in the figure are:

• a = 5 cm;

• xd = 8 cm;

• 2D = 1 cm;

• Sb = 6.25 cm;

• Se = 6.5 cm;

5.2.1 Analytical results

Since the scalar importance does not depend on the position of the source, see Equation
5.10, the structure of the equation remains the same and only the numerical values of
certain parameters have been changed. In the plot in Figure 5.31 it is possible to see
the aforementioned bi-modal shape for the importance with two peaks respectively in the
fissile media and in the detector region.
Since the scalar flux instead depends on the source position 5 different regions can be
identified, similarly for the previous case. The final expression for the scalar flux is then
the one described by Equation 5.14.
Like the previous case, an increase in the value of the keff has the effect of increasing the
scalar neutron flux in the region of the fissile material, as it is possible to see from Figure
5.30. Differently from Case A, the parameter which is used to vary the criticality level of
the system in this case is the νf,1, ie the fission multiplicity: it was decided to do so in
order to see the effect of a different physical parameter on the final results.
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ϕ(x) =



B1 exp
(√

Σtr,2Σe,2x
)

if x < −a

A2 cos(βx) +B2 sin(βx) if |x| < a

A3 exp
(
−
√

Σtr,2Σe,2x
)
+B3 exp

(√
Σtr,2Σe,2x

)
if x ∈ (a, Sbeginning)

1
Σe,2(Send−Sbeginning)

+A4 exp
(
−
√

Σtr,2Σe,2x
)

+B4 exp
(√

Σtr,2Σe,2x
)

if x ∈ (Sbeginning, Send)

A5 exp
(
−
√
Σtr,2Σe,2x)

)
if x > Send

(5.14)

The values of the constants in Equation 5.14 can be found imposing the condition of
continuity of the neutron flux and neutron current at the interfaces.

Figure 5.30: Case B: Analytical scalar flux
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Figure 5.31: Case B: Analytical scalar importance

5.2.2 Analog and branchless zero variance

As it was done for the Case A, first the simulations setups for the different runs will
be summed up (see Table 5.11) and then keff of the system will be estimated with a
branchless k-eigenvalue simulation (see Table 5.12).

Σt[cm
−1] Σs[cm

−1] Σa[cm
−1] Σf [cm

−1] νf [−] νs[−] µs[−] µf [−]

Medium 1 1.0 0.45 0.55 0.27 2.05716/2.18988/2.20094 1.0 0.75 0.0

Medium 2 3.0 2.685 0.315 0.0 0.0 1.0 0.5 0.0

Table 5.11: Case B physical parameters

Simulation νf,1[−] keff

Tes 1 2.05716 0.914415± 0.000347

Tes 2 2.18988 0.973139± 0.000360

Tes 3 2.20094 0.977888± 0.000356

Table 5.12: Case B keff of the system in the different simulations

An immediate consequence of the fact that some physical parameter have been changed
is that the system has become much more critical: from the knowledge derived from the
previous case it is already possible to predict that this will negatively effect the branching
simulations.
The reference solutions for the flux and flux relative variance obtained with the purely
analog scheme and the zero-variance branchless scheme for the 3 new configurations of the
Case B are depicted in Figure 5.32 and 5.33.
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Figure 5.32: Case B1: scalar neutron flux comparison

Figure 5.33: Case B1: scalar neutron flux relative variance comparison

From the Student t-test on the flux in Figure 5.34 it is clear that the solution is unbi-
ased in the regions of higher importance and similar to the previous case it is affected by
the limited statistical information in the regions of lower importance. Looking also at the
Figure 5.35 and comparing it with the other weighted population evolutions it can be seen
how the total population is able to survive much longer through the generations, arriving
even at more than one thousand generations.
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Figure 5.34: Case B1: Student t-test of the scalar neutron flux comparison

Figure 5.35: Case B1: weighted population evolution comparison

Following the same procedure of the previous case, the results of the different simula-
tions in terms of detector error and related STT are summed up in the Table 5.13. From
this table it is possible to see that, with the limit of the population control even in this new
configuration the branchless scheme is able to attain the zero-variance condition, but it
does so with a slower speed compared to Case A. The reason of this slower ”convergence”
is not the higher degree criticality, since it was seen that the branchless schemes are not
influenced in a sensible manner by it, but the new shape the importance. At the beginning
of the simulation, a source particle can go towards either one of the two importance peaks;
if the particle randomly goes toward the Medium 1 region it will be trapped into a high
importance region far away from the detector, leaving less particles that can contribute to
the estimate of the detector response.
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Branchless zero-variance

Cutoff N° particles N° batches STT Detector error

TES 1 TES 2 TES 3 TES 1 TES 2 TES 3 TES 1 TES 2 TES 3 TES 1 TES 2 TES 3

10−1 10000 10000 10000 500 500 500 1.47 −9.05× 10−1 −7.13× 10−1 2.28× 10−5 2.83× 10−5 2.86× 10−5

10−2 10000 10000 10000 500 500 500 −1.66× 10−1 −9.45× 10−1 −4.82× 10−1 2.46× 10−6 2.81× 10−6 2.95× 10−6

10−3 10000 10000 10000 500 500 500 5.52× 10−1 −8.43× 10−2 −1.61 2.33× 10−7 2.80× 10−7 2.84× 10−7

10−4 10000 10000 10000 500 500 500 1.64 1.91× 10−1 1.05 2.24× 10−8 2.91× 10−8 2.90× 10−8

10−5 10000 10000 10000 500 500 500 −1.80 1.08× 10−1 −8.92× 10−1 2.20× 10−9 2.75× 10−9 2.95× 10−9

10−6 10000 10000 10000 500 500 500 −1.21 1.87 −4.36× 10−2 2.25× 10−10 2.70× 10−10 2.92× 10−10

10−7 10000 10000 10000 500 500 500 −1.29 −6.20× 10−1 −1.99× 10−1 2.29× 10−11 2.78× 10−11 2.92× 10−11

10−8 10000 10000 10000 500 500 500 −4.56× 10−2 −3.28× 10−1 −7.20× 10−1 2.25× 10−12 2.85× 10−12 2.93× 10−12

10−9 10000 10000 10000 500 500 500 1.08 3.82× 10−1 −1.10 2.20× 10−13 2.88× 10−13 2.79× 10−13

10−10 10000 10000 10000 500 500 500 −1.46× 10−1 9.27× 10−1 −9.33× 10−1 2.36× 10−14 2.74× 10−14 2.86× 10−14

10−11 10000 10000 10000 500 500 500 −2.87 −1.10× 101 −1.24× 101 2.40× 10−15 2.65× 10−15 2.96× 10−15

10−12 10000 10000 10000 500 500 500 3.26× 102 3.14× 102 2.79× 102 4.87× 10−16 5.31× 10−16 5.66× 10−16

10−13 10000 10000 10000 500 500 500 7.45× 102 7.72× 102 7.80× 102 4.32× 10−16 4.78× 10−16 4.95× 10−16

Table 5.13: Case B1: Detector error and Student t-test of the detector response for the zero variance branchless simulations. In red are highlighted
the first run in which the test fails and eventually some extra runs.
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5.2.3 Branching zero variance: analog game

As shown in Figure 5.36 and 5.38, using the zero-variance branching game derived from
the analog one gives once again unbiased results for the flux. The plot in Figure 5.39
confirms that also in this case the zero-variance branching scheme do not change the total
weighted population evolution. For the same reasons of Case A, the relative variance of
the flux of the branching games is lower than the corresponding one in the branchless
games, see Figure 5.37.

Figure 5.36: Case B2: scalar neutron flux comparison

Figure 5.37: Case B2: scalar neutron flux relative variance comparison
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Figure 5.38: Case B2: Student t-test of the scalar neutron flux comparison

Figure 5.39: Case B2: weighted population evolution comparison

For what concerns the trend to the zero-variance regime, it is evident from the sum-up
Table 5.14 how the branching game has a slower ”convergence” speed and even with a
relatively low cutoff of 10−10 the error can only be around the order of 10−9 − 10−10. The
computational cost of the branching scheme will be detailed in the next paragraph.
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Branching analog zero-variance

Cutoff N° particles N° batches STT Detector error

TES 1 TES 2 TES 3 TES 1 TES 2 TES 3 TES 1 TES 2 TES 3 TES 1 TES 2 TES 3

10−1 10000 10000 10000 500 500 500 1.95 −1.20 −1.12 5.64× 10−5 1.81× 10−4 2.31× 10−4

10−2 10000 10000 10000 500 500 500 2.44× 10−1 −1.21 −2.22 1.46× 10−5 5.77× 10−5 7.29× 10−5

10−3 10000 10000 10000 500 500 500 −8.76× 10−1 −5.04× 10−1 −1.53 3.94× 10−6 2.06× 10−5 2.92× 10−5

10−4 10000 10 1000 500 20 100 −1.54 1.76 −1.01 1.14× 10−6 3.97× 10−6 * 2.08× 10−5 *

10−5 10000 10 50 500 50 50 −1.06 5.39 1.46 4.24× 10−7 1.76× 10−6 * 4.17× 10−6 *

10−6 10000 1 10 500 10 5 −2.51× 10−1 7.58× 10−1 2.08 2.52× 10−7 5.13× 10−7 * 7.67× 10−7 *

10−7 100 1 1 50 10 2 7.33 4.02× 10−1 −3.04 2.06× 10−8 * 1.50× 10−7 * 1.91× 10−7 *

10−8 50 1 1 50 2 2 5.52 −3.39 3.56× 10−2 6.93× 10−9 * 4.79× 10−8 * 9.37× 10−8 *

10−9 10 1 - 25 2 - 6.81× 10−2 −7.07× 10−1 - 9.18× 10−10 * 2.58× 10−8 * -

10−10 1 - - 5 - - −6.61× 10−1 - - 6.84× 10−10 * - -

10−11 - - - - - - - - - - - -

10−12 - - - - - - - - - - - -

10−13 - - - - - - - - - - - -

Table 5.14: Case B2: Detector error and Student t-test of the detector response for the zero variance branching analog simulations. In red are
highlighted the first run in which the test fails and eventually some extra runs.
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5.2.4 Branching zero variance: forced fission game

From Case A it was seen how the implicit capture zero-variance game presents no differ-
ences with respect to the analog zero-variance game: for this reason it was decided to not
present a new comparison of the two for Case B. It was also decided not to show the flux
and weighted population plots, since they are similar to the already shown ones.
In Figure 5.41 it is apparent that how even the zero-variance forced fission scheme is unbi-
ased and the flux estimate is within the acceptable range, at least for the regions of higher
importance. As usual, the scheme that produces more particles is able to reach a lower
relative variance for the flux in the fissile medium, as shown in Figure 5.40.

Figure 5.40: Case B3: scalar neutron flux relative variance comparison

Figure 5.41: Case B3: Student t-test of the scalar neutron flux comparison

Using zero-variance branching schemes in a system with a keff > 0.9 has proven to be
extremely challenging from the computation time point of view, see Figure 5.43 (like for
Case A, the data at lower cutoffs value of Figures 5.42 and 5.43 were obtained through a
rescaling process). Comparing Figure 5.42 and 5.43 it is again possible to appreciate the
strong link of the total simulation time and the population size.
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Figure 5.42: Case B3: maximum of the population comparison

Figure 5.43: Case B3: simulation time comparison

Table 5.15 contains the simulation results for the zero-variance branching game derived
from a forced fission scheme for what concerns the detector error and the STT to it
associated. In this Table it is possible to appreciate how this new scheme tends towards
the zero variance regime with a much slower speed compared to any other tested before.
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Branching forced fission zero-variance

Cutoff N° particles N° batches STT Detector error

TES 1 TES 2 TES 3 TES 1 TES 2 TES 3 TES 1 TES 2 TES 3 TES 1 TES 2 TES 3

10−1 10000 10000 10000 500 500 500 −4.34× 10−1 5.19× 10−1 1.94× 10−1 7.86× 10−5 2.87× 10−4 3.47× 10−4

10−2 10000 10000 10000 500 500 500 2.87× 10−1 8.90× 10−1 2.04 2.19× 10−5 8.15× 10−5 1.07× 10−4

10−3 10000 10000 10000 500 500 500 −7.12× 10−2 1.73 1.10 7.08× 10−6 3.62× 10−5 4.87× 10−5

10−4 200 500 10 100 10 5 −6.39× 10−2 2.17 5.64× 10−1 2.65× 10−6 * 1.10× 10−5 *. 1.12× 10−5 *

10−5 200 10 10 100 50 5 5.50× 10−1 3.51 3.03 9.88× 10−7 * 2.25× 10−6 * 3.16× 10−6 *

10−6 100 1 10 100 10 5 2.56 7.69× 10−1 7.00× 10−1 2.86× 10−7 * 8.48× 10−7 * 1.19× 10−6 *

10−7 50 1 1 50 5 2 −8.01× 10−1 −1.82 1.41 4.27× 10−8 * 3.15× 10−7 * 5.99× 10−7 *

10−8 25 1 - 25 2 - −6.27 1.41 - 1.91× 10−8 * 1.01× 10−8 * -

10−9 5 1 - 5 2 - −1.05 1.41 - 3.84× 10−9 * 9.18× 10−9 * -

10−10 - - - - - - - - - - - -

10−11 - - - - - - - - - - - -

10−12 - - - - - - - - - - - -

10−13 - - - - - - - - - - - -

Table 5.15: Case B3: Detector error and Student t-test of the detector response for the zero variance branching forced fission simulations. In red
are highlighted the first run in which the test fails and eventually some extra runs.
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5.3 FOM comparison

As last, a comparison between all the schemes for the two cases is presented in this section.
To have a single and reliable parameter that can express the performance of the scheme
with respect to the others, it was defined the following Figure Of Merit (FOM):

FOM =
1

(Rerr
Ran

)2
∆t

(5.15)

the higher the FOM, the better the result achieved with the simulation considered the
time taken to complete it. In the two following Figures 5.44 and 5.45 the FOM trend for
all the simulations of RUN 2 and TES 2 are depicted: the branchless simulations have an
overall better FOM compared to all the others.

Figure 5.44: FOM comparison for Case A

Figure 5.45: FOM comparison for Case B
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Chapter 6

Conclusions

Monte Carlo methods are extensively applied to radiation shielding problems, but vari-
ance reduction techniques, such as importance sampling, are essential to enhance efficiency.
Zero-variance games, in particular, are of great interest due to their potential to provide
exact solutions with no statistical error, though they require knowledge of the solution to
the adjoint equation to be effective. In view of the prominent role that zero-variance games
play in inspiring practical importance sampling schemes such as the well-known CADIS
method, it is of utmost importance to fully characterize how zero-variance games would
behave in neutron transport problems involving neutron multiplication, which might occur
for instance for ex-core flux monitoring during reactor start-up, and how their performance
would be affected in these scenarios.

In this thesis, the theoretical foundation of branching zero-variance games was applied
to derive new zero-variance games, starting from implicit capture or forced fission games,
and the results were compared to the branchless zero-variance games. The new types of
games were implemented within the MGMC Monte Carlo transport code and compared
also with the purely analog simulation to test the efficacy of this particular importane
sampling schemes.
All the simulations gave unbiased results and, reducing gradually the population control
methods implemented, each scheme approached the zero variance regime. To probe the
behavior of the different schemes, various test were conducted with different levels of criti-
cality. For this purpose, we introduced also two distinct benchmark configurations to test
the performance of these games with different importance functions.

From the simulation results, it can be inferred that branching zero-variance Monte Carlo
games are suitable for multiplicative media, yielding unbiased solutions. However, the
practicality of using these games decreases as the number of branching histories increases.
We showed that the more particles are simulated by the code, the higher the computational
cost becomes and a longer time is needed for the completion of the run. Branchless zero-
variance games exhibit superior overall performance in terms of figure of merit (FOM).
Still, understanding the performance of branching games remains important, as they are
widely used in most production Monte Carlo codes.

[14], [15], [16], [17], [18], [19]
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Appendix A

Analog games derivation of the
moments

According to the definition of the transport kernel for a particle leaving a collision in P’
and entering a collision in P (”average number of particles having coordinates P given a
particle starting a flight with coordinates P’ ”):

T (P ′, P ) = Σ(r, E) exp

[
−
∫ |r−r′|

0
Σ(r′ + lΩ′, E′)dl

]
·
Ω′ − r−r′

|r−r′|

(r − r′)2
·δ(Ω−Ω′)δ(E−E′) (A.1)

And according to the definition of the collision kernel for the particles coming out
from a collision in P with coordinates before the collision equal to P’ (”average number
of particles having coordinates P given a particle having had a collision with coordinates
P’”):

C(P ′, P ) =
n∑
i=1

m∑
j=1

Σt,i(r
′, E)

Σt(r′, E)
· σi,j(E

′)

σt,i(E′)
νi,j(E

′)fi,j(Ω
′, E′ → Ω, E)δ(r − r′) (A.2)

In a simple game with capture, fission and scattering and only 1 type of nuclide :

C(P ′, P ) = Ccapture + Cscattering + Cfission (A.3)

=
σc(E

′)

σt(E′)
· 0 · δ(P ′) +

σs(E
′)

σt(E′)
· νs(E′) · fs(Ω′, E′ → Ω, E)δ(r − r′) (A.4)

+

∞∑
n=1

σf
σt

· qn · νf,n(E′) · ff (Ω′, E′ → Ω, E)δ(r − r′) (A.5)

First order moment:

M1(P ) =

∫
dP ′T (P, P ′)[f(P, P ′) + cc(P

′, )fc(P
′) (A.6)

+ cs(P
′)

∫
dP”Cs(P

′, P”)fs(P
′, P”)

+ cf (P
′)

∞∑
n=1

nqn(P
′)

∫
dP”Cn(P

′, P”)fn(P
′, P”)]

+

∫
dP ′T (P, P ′)

∫
dP”C(P ′, P”)M1(P”)
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To score the flux, it is necessary to consider a flight-based estimator, so fc(P
′) =

fs(P
′, P”) = fn(P

′, P”) = 0, and:

M1(P ) =

∫
dP ′T (P, P ′)f(P, P ′) +

∫
dP ′T (P, P ′)

∫
dP”C(P ′, P”)M1(P”) (A.7)

Regardless of the type of game being simulated, the first order moment needs to be pre-
served.
Second order moment is instead:

M2(P ) =

∫
dP ′T (P, P ′)cc(P

′)[f(P, P ′) + fc(P
′)]2 (A.8)

+

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)[f(P, P ′) + fs(P
′, P”)]2

]
+

[
2

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)[f(P, P ′) + fs(P
′, P”)]M1(P”)

]
+

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)M2(P”)

]
+

[
1

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

nqn ·
(∫

dP”Cn(P
′, P”)(f(P, P ′) + fn(P

′, P”))2
)]

+

[
2

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

nqn ·
(∫

dP”Cn(P
′, P”)(f(P, P ′) + fn(P

′, P”))M1(P”)

)]

+

[
1

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

nqn ·
(∫

dP”Cn(P
′, P”)M2(P”)

)]

+

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

n(n− 1)qn ·
[∫

dP”Cn(P
′, P”)(fn(P

′, P”) +M1(P”))

]2
−
∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

(n− 1)qnf
2(P, P ′)
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Similarly, to score the flux, the second order moment becomes:

M2(P ) =

∫
dP ′T (P, P ′)cc(P

′)[f(P, P ′)]2 (A.9)

+

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)[f(P, P ′)]2
]

+

[
2

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)[f(P, P ′)]M1(P”)

]
+

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP”Cs(P

′, P”)M2(P”)

]
+

[
1

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

nqn ·
(∫

dP”Cn(P
′, P”)(f(P, P ′))2

)]

+

[
2

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

nqn ·
(∫

dP”Cn(P
′, P”)(f(P, P ′))M1(P”)

)]

+

[
1

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

nqn ·
(∫

dP”Cn(P
′, P”)M2(P”)

)]

+

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

n(n− 1)qn ·
[∫

dP”Cn(P
′, P”)(M1(P”))

]2
−
∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

(n− 1)qnf
2(P, P ′)

The expressions of the first and second order moment were derived by Lux [1] in the
case of a particle with general weight W ; if the game is a purely analog game it is possible
to derive these expressions by putting the particle weight equal to unity. An example of
the full derivation of the moments equation will be given in Appendix C of this current
work.
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Appendix B

Implicit capture games derivation
of the moments

The transport kernel is the same as the one in Appendix A, since this game does not affect
it.

T (P ′, P ) = T ∗(P ′, P ) (B.1)

The collision kernel is obtained with modified probabilities that are going to be indi-
cated with the symbol ∗:

C∗(P ′, P ) =

n∑
i=1

m∑
j=1

Σ∗
t,i(r

′, E)

Σ∗
t (r

′, E)
·
σ∗i,j(E

′)

σ∗t,i(E
′)
νi,j(E

′)fi,j(Ω
′, E′ → Ω, E)δ(r − r′) (B.2)

And in the same simple case as Appendix A:

C∗(P ′, P ) =
σ∗s(E

′)

σ∗t (E
′)
· νs(E′) · fs(Ω′, E′ → Ω, E)δ(r − r′) (B.3)

+
∞∑
n=1

σ∗f
σ∗t

· qn · νf,n(E′) · ff (Ω′, E′ → Ω, E)δ(r − r′)

= c∗s(P
′) · νs(E′) · fs(Ω′, E′ → Ω, E)δ(r − r′) (B.4)

+
∞∑
n=1

c∗f (P
′) · qn · νf,n(E′) · ff (Ω′, E′ → Ω, E)δ(r − r′)

Where:

c∗s(P
′) =

σs(P
′)

σt(P ′)
/

(
1− σc

σt

)
=

cs(P
′)

1− cc(P ′)
(B.5)

c∗f (P
′) =

σf (P
′)

σt(P ′)
/

(
1− σc

σt

)
=

cf (P
′)

1− cc(P ′)
(B.6)

Introducing a biasing in the collision kernel it is necessary to introduce a weight cor-
rection in the particles.

The first order moment is then:
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M∗
1 (P ) =

∫
dP ′T ∗(P, P )

[
W ′

W
f∗(P, P ′) + c∗c(P

′)
W c

W
f∗c (P

′) (B.7)

+ c∗s(P
′)

∫
dP ′′C∗

s (P
′, P ′′)

W ′′

W
f∗s (P

′, P ′′)

+ c∗f (P
′)

∞∑
n=1

nqn

∫
dP ′′C∗

n(P
′, P ′′)

W ′′
n

W
f∗n(P

′, P ′′)

]

+

∫
dP ′T ∗(P, P ′)

[
c∗s(P

′)

∫
dP ′′C∗

s (P
′, P ′′)

W ′′

W
M∗

1 (P
′′)

]
+

∫
dP ′T ∗(P, P ′)

[
c∗f (P

′)

∞∑
n=1

nqn

∫
dP ′′C∗

n(P
′, P ′′)

W ′′
n

W
M∗

1 (P
′′)

]
Then substituting:

W ′ =W (B.8)

W ′′ =W (1− cc(P
′)) (B.9)

W ′′
n =W (1− cc(P

′)) (B.10)

c∗c(P
′) = 0 (B.11)

c∗s(P
′) =

cs(P
′)

1− cc(P ′)
(B.12)

c∗f (P
′) =

cf (P
′)

1− cc(P ′)
(B.13)

f∗(P, P ′) = f(P, P ′) (B.14)

It is possible to obtain:

M∗
1 (P ) =

∫
dP ′T (P, P )[f(P, P ′) (B.15)

+
cs(P

′)

1− cc(P ′)

∫
dP ′′Cs(P

′, P ′′)
W (1− cc(P

′))

W
f∗s (P

′, P ′′)

+
cf (P

′)

1− cc(P ′)

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)
W (1− cc(P

′))

W
f∗n(P

′, P ′′)]

+

∫
dP ′T (P, P ′)

[
cs(P

′)

1− cc(P ′)

∫
dP ′′Cs(P

′, P ′′)
W (1− cc(P

′))

W
M1

1 ∗ (P ′′)

]
+

∫
dP ′T (P, P ′)

[
cf (P

′)

1− cc(P ′)

∞∑
n=1

nqn(P
′)

∫
dP ′′Cn(P

′, P ′′)
W (1− cc(P

′))

W
M∗

1 (P
′′))

]
Then by simplifying the common terms and looking to a flight based estimator:

M∗
1 (P ) =

∫
dP ′T (P, P )f(P, P ′) (B.16)

+

∫
dP ′T (P, P ′)

∫
dP ′′

[
cs(P

′)Cs(P
′, P ′′) + cf (P

′)
∞∑
n=1

nqn(P
′)Cn(P

′, P ′′)

]
M∗

1 (P
′′)

=

∫
dP ′T (P, P ′)f(P, P ′) +

∫
dP ′T (P, P ′)

∫
dP ′′C(P ′, P ′′)M∗

1 (P
′′)

=M1(P ) (B.17)
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And the second order moment is:

M∗
2 (P ) =

1

W 2
·
[∫

dP ′T ∗(P, P ′)c∗c(P
′)[W ′f∗(P, P ′) +W cf∗c (P

′)]2
]

+
1

W 2
·
[
1

∫
dP ′T ∗(P, P ′)c∗s(P

′)

∫
dP ′′C∗

s (P
′, P ′′)[W ′f∗(P, P ′) +W ′′f∗s (P

′, P ′′)]2
]

+
1

W 2
·
[
2

∫
dP ′T ∗(P, P ′)c∗s(P

′)

∫
dP ′′C∗

s (P
′, P ′′)[W ′f∗(P, P ′) +W ′′f∗s (P

′, P ′′)](W ′′)M∗
1 (P

′′)

]
+

1

W 2
·
[
1

∫
dP ′T ∗(P, P ′)c∗s(P

′)

∫
dP ′′C∗

s (P
′, P ′′)(W ′′)2M∗

2 (P
′′)

]
+

1

W 2
·

[
1

∫
dP ′T ∗(P, P ′)c∗f (P

′)

∞∑
n=1

nqn

·
∫
dP ′′C∗

n(P
′, P ′′)

(
W ′f∗(P, P ′) +W ∗

nf
∗
n(P

′, P ′′)
)2]

+
1

W 2
·

[
2

∫
dP ′T ∗(P, P ′)c∗f (P

′)
∞∑
n=1

nqn

·
∫
dP ′′C∗

n(P
′, P ′′)

(
W ′f∗(P, P ′) +W ∗

nf
∗
n(P

′, P ′′)
)
W ′′
nM

∗
1 (P

′′)

]
+

1

W 2
·

[
1

∫
dP ′T ∗(P, P ′)c∗f (P

′)
∞∑
n=1

nqn

·
∫
dP ′′C∗

n(P
′, P ′′)(W ′′

n )
2M∗

2 (P
′′)

]
+

1

W 2

∫
dP ′T ∗(P, P ′)c∗f (P

′)

∞∑
n=1

n(n− 1)qn

·
[∫

dP ′′C∗
n(P

′, P ′′)W ′′
n [f

∗
n(P

′, P ′′) +M∗
1 (P

′′)]

]2
− 1

W 2

∫
dP ′T ∗(P, P ′)c∗f (P

′)

∞∑
n=1

(n− 1)qnW
2(f∗(P, P ′))2

= Z+ A+ B+ C+ D · E+ F ·G+H · I+ J ·K− L (B.18)

Z =
1

W 2
·
[∫

dP ′T ∗(P, P ′)c∗c(P
′)[W ′f∗(P, P ′) +W cf∗c (P

′)]2
]

=
1

W 2
·
[∫

dP ′T (P, P ′) · 0 · [Wf(P, P ′) +W cf∗c (P
′)]2
]

= 0 (B.19)

A =
1

W 2
·
[
1

∫
dP ′T ∗(P, P ′)c∗s(P

′)

∫
dP ′′C∗

s (P
′, P ′′)[W ′f∗(P, P ′) +W ′′f∗s (P

′, P ′′)]2
]

=
1

W 2
·
[
1

∫
dP ′T (P, P ′)

cs(P
′)

1− cc(P ′)

∫
dP ′′Cs(P

′, P ′′)[Wf(P, P ′) +W (1− cc(P
′))fs(P

′, P ′′)]2
]

=
1

W 2
·
[
1

∫
dP ′T (P, P ′)

cs(P
′)

1− cc(P ′)

∫
dP ′′Cs(P

′, P ′′)W 2f2(P, P ′)

]
=

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP ′′Cs(P

′, P ′′)
f2(P, P ′)

1− cc(P ′)

]
(B.20)
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B =
1

W 2
·
[
2

∫
dP ′T ∗(P, P ′)c∗s(P

′)

∫
dP ′′C∗

s (P
′, P ′′)[W ′f∗(P, P ′) +W ′′f∗s (P

′, P ′′)](W ′′)M∗
1 (P

′′)

]
=

1

W 2
·
[
2

∫
dP ′T (P, P ′)

cs(P
′)

1− cc(P ′)

∫
dP ′′Cs(P

′, P ′′)[Wf(P, P ′) +W (1− cc(P
′))fs(P

′, P ′′)]W (1− cc(P
′))M1(P

′′)

]
=

1

W 2
·
[
2

∫
dP ′T (P, P ′)

cs(P
′)

1− cc(P ′)

∫
dP ′′Cs(P

′, P ′′)W 2f(P, P ′)(1− cc(P
′))M1(P

′′)

]
=

[
2

∫
dP ′T (P, P ′)cs(P

′)

∫
dP ′′Cs(P

′, P ′′)f(P, P ′)M1(P
′′)

]
(B.21)

C =
1

W 2
·
[
1

∫
dP ′T ∗(P, P ′)c∗s(P

′)

∫
dP ′′C∗

s (P
′, P ′′)(W ′′)2M∗

2 (P
′′)

]
=

1

W 2
·
[
1

∫
dP ′T (P, P ′)

cs(P
′)

1− cc(P ′)

∫
dP ′′Cs(P

′, P ′′)(W (1− cc(P
′)))2M∗

2 (P
′′)

]
=

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP ′′Cs(P

′, P ′′)(1− cc(P
′)))M∗

2 (P
′′)

]
(B.22)

D =
1

W 2
·
∫
dP ′T ∗(P, P ′)c∗f (P

′)

=
1

W 2
·
∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)
(B.23)

E =

∞∑
n=1

nqn

∫
dP ′′C∗

n(P
′, P ′′)

(
W ′f∗(P, P ′) +W ∗

nf
∗
n(P

′, P ′′)
)2

=

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)
(
Wf(P, P ′) +Wn(1− cc(P

′))fn(P
′, P ′′)

)2
=

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)W 2f2(P, P ′) (B.24)

D · E =
1

W 2
·

[∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)W 2f2(P, P ′)

]

=

[∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)
f2(P, P ′)

1− cc(P ′)

]
(B.25)

F =
1

W 2
· 2 ·

∫
dP ′T ∗(P, P ′)c∗f (P

′)

=
1

W 2
· 2 ·

∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)
(B.26)

G =
∞∑
n=1

nqn

∫
dP ′′C∗

n(P
′, P ′′)

(
W ′f∗(P, P ′) +W ∗

nf
∗
n(P

′, P ′′)
)
W ′′
nM

∗
1 (P

′′)

=

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)
(
Wf(P, P ′) +Wn(1− cc(P

′))fn(P
′, P ′′)

)
W (1− cc(P

′))M1(P
′′)

=
∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)W 2f(P, P ′)(1− cc(P
′))M1(P

′′) (B.27)
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F ·G =
1

W 2
·

[
2

∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)W 2f(P, P ′)(1− cc(P
′))M1(P

′′)

]

=

[
2

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)f(P, P ′)M1(P
′′)

]
(B.28)

H =
1

W 2
·
∫
dP ′T ∗(P, P ′)c∗f (P

′)

=
1

W 2
·
∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)
(B.29)

I =
∞∑
n=1

nqn

∫
dP ′′C∗

n(P
′, P ′′)(W ′′

n )
2M∗

2 (P
′′)

=
∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)(W (1− cc(P
′)))2M∗

2 (P
′′)

=

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)W 2(1− cc(P
′))2M∗

2 (P
′′) (B.30)

H · I = 1

W 2
·

[∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)W 2(1− cc(P
′))2M∗

2 (P
′′)

]

=

[∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)(1− cc(P
′))M∗

2 (P
′′)

]
(B.31)

J =
1

W 2

∫
dP ′T ∗(P, P ′)c∗f (P

′)

=
1

W 2

∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)
(B.32)

K =

∞∑
n=1

n(n− 1)qn

[∫
dP ′′C∗

n(P
′, P ′′)W ′′

n [f
∗
n(P

′, P ′′) +M∗
1 (P

′′)]

]2
=

∞∑
n=1

n(n− 1)qn

[∫
dP ′′Cn(P

′, P ′′)W (1− cc(P
′))[fn(P

′, P ′′) +M1(P
′′)]

]2
=

∞∑
n=1

n(n− 1)qn

[∫
dP ′′Cn(P

′, P ′′)W (1− cc(P
′))M1(P

′′)

]2
(B.33)

J ·K =
1

W 2

∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)

∞∑
n=1

n(n− 1)qn

[∫
dP ′′Cn(P

′, P ′′)W (1− cc(P
′))M1(P

′′)

]2
=

1

W 2

∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)

∞∑
n=1

n(n− 1)qnW
2(1− cc(P

′))2
[∫

dP ′′Cn(P
′, P ′′)M1(P

′′)

]2
=

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

n(n− 1)qn(1− cc(P
′))

[∫
dP ′′Cn(P

′, P ′′)M1(P
′′)

]2
(B.34)
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L =
1

W 2

∫
dP ′T ∗(P, P ′)c∗f (P

′)
∞∑
n=1

(n− 1)qnW
2(f∗(P, P ′))2

=
1

W 2

∫
dP ′T (P, P ′)

cf (P
′)

1− cc(P ′)

∞∑
n=1

(n− 1)qnW
2f2(P, P ′)

=

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

(n− 1)qn
f2(P, P ′)

1− cc(P ′)
(B.35)

So, in the case of a flight-based estimator:

M∗
2 (P ) = 0 (B.36)

+

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP ′′Cs(P

′, P ′′)
f2(P, P ′)

1− cc(P ′)

]
+

[
2

∫
dP ′T (P, P ′)cs(P

′)

∫
dP ′′Cs(P

′, P ′′)f(P, P ′)M1(P
′′)

]
+

[
1

∫
dP ′T (P, P ′)cs(P

′)

∫
dP ′′Cs(P

′, P ′′)(1− cc(P
′)))M∗

2 (P
′′)

]
+

[
1

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)
f2(P, P ′)

1− cc(P ′)

]

+

[
2

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)f(P, P ′)M1(P
′′)

]

+

[
1

∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

nqn

∫
dP ′′Cn(P

′, P ′′)(1− cc(P
′))M∗

2 (P
′′)

]

+

∫
dP ′T (P, P ′)cf (P

′)

∞∑
n=1

n(n− 1)qn(1− cc(P
′))

[∫
dP ′′Cn(P

′, P ′′)M1(P
′′)

]2
−
∫
dP ′T (P, P ′)cf (P

′)
∞∑
n=1

(n− 1)qn
f2(P, P ′)

1− cc(P ′)

For which the dependency on the particle weight was removed.



Appendix C

Forced fission games derivation of
the moments

Due to the different hypothesis at the foundation of the game, a new formulation of the
moments equation is necessary. In the following pages the expressions for the firs and
second order moment of the estimator f will be derived and from them the new zero-
variance scheme will follow.
Using the symbol ”∧” to indicate a general non-analog game (particle weightW ̸= 1), it is
possible to write the expression for the quantity θ(P ′,W ′, s)ds, i.e. the probability that a
particle entering a collision P ′ with weight W ′ will yield, along with its progenies, a total
score in ds about s.

θ(P ′,W ′, s) = ĉc(P
′)

+

∫
dP ′′Ĉs(P

′, P ′′)π(P ′′,W ′′, s)

∗
∞∑
n=1

q̂n(P
′)

n∏
i=1

∗
∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))× π(P
′′

(i),W
′′

n(i), s)

(C.1)

From this quantity, a new probability is defined: π(P,W, s)ds is the probability that a
particle leaving a collision (or entering a flight), in P with weight W will yield, along with
its progenies, a total score in ds about s. The symbol ∗ indicates a convolution product.

π(P,W, s) =

∫
dP ′T̂ (P, P ′)δ[s− f̂(P, P ′,W ′)] ∗ θ(P ′,W ′, s) (C.2)

The aim is now elaborating the previous equation by splitting it into the different
contribution of the reaction channels. For the absorption part:

→
∫
dP ′T̂ (P, P ′)ĉc(P

′) ∗ δ(s− f̂(P, P ′,W ′)∫
dP ′T̂ (P, P ′)ĉc(P

′)δ(s− f̂(P, P ′,W ′))

(C.3)

For the scattering and fission part:

→
∫
dP ′T̂ (P, P ′)δ(s− f̂(P, P ′,W ′)) ∗

{∫
dP ′′Ĉs(P

′, P ′′)δ(s)π(P ′′,W ′′, s)

}
∗

∞∑
n=1

q̂n(P
′)

{∫
dP

′′

(1)

∫
ds(1)...

∫
dP

′′

(n)

∫
ds(n)

n∏
i=1

Ĉn(P
′, P

′′

(i))δ(s)π(P
′′

(i),W
′′

n(i), s)

}
(C.4)
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So:

π(P,W, s) =

∫
dP ′T̂ (P, P ′)ĉc(P

′)δ(s− f̂(P, P ′,W ′))

+

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{[∫
dP ′′Ĉs(P

′, P ′′)

∫
dssπ(P

′′,W ′′, ss)·(∫
dP

′′

(1)

∫
ds(1)...

∫
dP

′′

(n)

∫
ds(n)

n∏
i=1

Ĉn(P
′, P

′′

(i))π(P
′′

(i),W
′′

n(i), si)

)]

× δ(s− ss −
n∑
k=1

sk − f̂(P, P ′,W ′))

}
(C.5)

Using the notation where the scattering is the n+ 1 of the product and using the fact
that ĉc(P

′) = 0:

π(P,W, s) =

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{[(∫
dP

′′

(1)

∫
ds(1)...

∫
dP

′′

(n+1)

∫
ds(n+1)

n+1∏
i=1

Ĉn(P
′, P

′′

(i))

π(P
′′

(i),W
′′

n(i), si)

)]
× δ(s−

n+1∑
k=1

sk − f̂(P, P ′,W ′))

}
(C.6)

Now the j-th moment of the score s can be found by:

M̂j(P ) =

∫ +∞

−∞
ds sjπ(P,W, s) (C.7)

The first order moment is:

M̂1(P,W ) =

∫ +∞

−∞
ds s π(P,W, s)

=

∫ +∞

−∞
ds s

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′){[(∫

dP
′′

(1)

∫
ds(1)...

∫
dP

′′

(n+1)

∫
ds(n+1)

n+1∏
i=1

Ĉn(P
′, P

′′

(i))

π(P
′′

(i),W
′′

n(i), si)

)]
× δ(s−

n+1∑
k=1

sk − f̂(P, P ′,W ′))

}

=

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{[(
n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
ds(i)π(P

′′

(i),W
′′

n(i), si)

)]

×
∫ +∞

−∞
ds s δ(s−

n+1∑
k=1

sk − f̂(P, P ′,W ′))

}

=

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{[(
n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
ds(i)π(P

′′

(i),W
′′

n(i), si)

)]

×

(
n+1∑
k=1

sk + f̂(P, P ′,W ′)

)}
(C.8)
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Splitting it into the terms:

M̂1(P,W ) =

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{[(
n+1∑
k=1

sk

n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
ds(i)π(P

′′

(i),W
′′

n(i), si)

)]}

+

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{[(
f̂(P, P ′,W ′)

n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
ds(i)π(P

′′

(i),W
′′

n(i), si)

)]}
= I1(P,W ) + I2(P,W )

(C.9)

I1(P,W ) =

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{
n+1∑
k=1

sk

n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
ds(i)π(P

′′

(i),W
′′

n(i), si)

}

=

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{
G1

}
(C.10)

G1 =

(
s1 + s2 + ...+ sn+1

)

·

(∫
dP

′′

(1)Ĉn(P
′, P

′′

(1))

∫
dP

′′

(2)Ĉn(P
′, P

′′

(2))...

∫
dP

′′

(n+1)Ĉn(P
′, P

′′

(n+1))

)

·

(∫
ds(1)π(P

′′

(1),W
′′

n(1), s1)

∫
ds(2)π(P

′′

(2),W
′′

n(2), s2)...

∫
ds(n+1)π(P

′′

(n+1),W
′′

n(n+1), sn+1)

)
(C.11)

Which is:

G1 =

n+1∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i),W
′′

n(i))

=

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′ +

n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

(C.12)

And:
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I1(P,W ) =

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′){∫

dP ′′Ĉs(P
′, P ′′)M̂1(P

′′)W ′′ +
n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

}

=

∫
dP ′T̂ (P, P ′)

{[∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)

]
W ′′

∞∑
n=1

q̂n(P
′)

}

+

∫
dP ′T̂ (P, P ′)

{ ∞∑
n=1

q̂n(P
′)

[
n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

]}

=

∫
dP ′T̂ (P, P ′)

{[∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)

]
W ′′

}

+

∫
dP ′T̂ (P, P ′)

{ ∞∑
n=1

q̂n(P
′)

[
n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

]}
(C.13)

The other term is instead:

I2(P,W ) =

∫
dP ′T̂ (P, P ′)f̂(P, P ′,W ′)

{ ∞∑
n=1

q̂n(P
′)

[
n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
ds(i)π(P

′′

(i),W
′′

n(i), si)

]}

=

∫
dP ′T̂ (P, P ′)f̂(P, P ′,W ′)

{ ∞∑
n=1

q̂n(P
′)

}

=

∫
dP ′T̂ (P, P ′)f̂(P, P ′)W ′

(C.14)

So the first order moment is:

WM̂1(P ) =

∫
dP ′T̂ (P, P ′)f̂(P, P ′)W ′

+

∫
dP ′T̂ (P, P ′)

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

+

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

(C.15)

Or, alternately it is possible to make the equation look more like the original one
derived from the analog game by slightly changing the weight definitions:

M̂1(P ) =

∫
dP ′T̂ (P, P ′)f̂(P, P ′)W ′

+

∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)Ŵ ′′

+

∫
dP ′T̂ (P, P ′)ĉf (P

′)

∞∑
n=1

q̂n(P
′)

n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))Ŵ
′′
n(i)

(C.16)
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Assuming a starting weightW = 1, the weight generation rules that conserves the first
order moment are:

W ′ =
T (P, P ′)

T̂ (P, P ′)

Ŵ ′′ =W ′ cs(P
′)Cs(P

′, P ′′)

ĉs(P ′)Ĉs(P ′, P ′′)
→W ′′ =W ′ cs(P

′)Cs(P
′, P ′′)

Ĉs(P ′, P ′′)

Ŵ ′′
n (i) =W ′ cf,n(P

′)Cn(P
′, P ′′)

ĉf,n(P ′)Ĉn(P ′, P ′′)
→W

′′

n(i) =W ′ cf (P
′)qn(P

′)Cn(P
′, P ′′)

q̂n(P ′)Ĉn(P ′, P ′′)

(C.17)

The second order moment is instead:

M̂2(P,W ) =

∫ +∞

−∞
ds s2π(P,W, s)

=

∫ +∞

−∞
ds s2

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′){[(∫

dP
′′

(1)

∫
ds(1)...

∫
dP

′′

(n+1)

∫
ds(n+1)

n+1∏
i=1

Ĉn(P
′, P

′′

(i))

π(P
′′

(i),W
′′

n(i), si)

)]
× δ(s−

n+1∑
k=1

sk − f̂(P, P ′,W ′))

}

=

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{[(∫
dP

′′

(1)

∫
ds(1)...

∫
dP

′′

(n+1)

∫
ds(n+1)

n+1∏
i=1

Ĉn(P
′, P

′′

(i))

π(P
′′

(i),W
′′

n(i), si)

)]
×

(
n+1∑
k=1

sk + f̂(P, P ′,W ′)

)2}

=

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

{[
G2

]
×

(
n+1∑
k=1

sk + f̂(P, P ′,W ′)

)2}
(C.18)

Using the identity:

(∑
i

si + b

)2

=

[∑
i

(si − ai)
2

]
+

[∑
i

∑
k,k ̸=i

(si − ai)(sk − ak)

]

+

[
2
∑
i

(si − ai)

(∑
k

ak + b

)]
+

[∑
i

ai + b

]2 (C.19)

In this case all the ai and ak are null, so:(∑
i

si + b

)2

=

[∑
i

s2i

]
+

[∑
i

∑
k,k ̸=i

si sk

]
+

[
2
∑
i

si b

]
+

[
b

]2
(C.20)

Renaming each of the terms I3(P,W ), I4(P,W ), I5(P,W ) and I6(P,W ) and multiply-
ing each one by the G2 factor:



92 APPENDIX C. FORCED FISSION GAMES DERIVATION OF THE MOMENTS

I3(P,W ) = G2 ×

(
n+1∑
k=1

s2k

)

=

[(∫
dP

′′

(1)

∫
ds(1)...

∫
dP

′′

(n+1)

∫
ds(n+1)

n+1∏
i=1

Ĉn(P
′, P

′′

(i))π(P
′′

(i),W
′′

n(i), si)

)]
×

(
n+1∑
k=1

s2k

)

=

[
n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
dsiπ(P

′′

(i),W
′′

n(i), si)

]
×

(
n+1∑
k=1

s2k

)

=
n+1∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂2(P
′′

(i),W
′′

n(i))

=

∫
dP ′′Ĉs(P

′, P ′′)M̂2(P
′′)W ′′ +

n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂2(P
′′

(i))W
′′

n(i)

(C.21)

I4(P,W ) = G2 ×

[
n+1∑
k=1

n+1∑
j,j ̸=k

sk sj

]

=

[
n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
dsiπ(P

′′

(i),W
′′

n(i), si)

]
×

[
n+1∑
k=1

n+1∑
j,j ̸=k

sk sj

]

=

n+1∑
k=1

n+1∑
j,j ̸=k

∫
dP

′′

(k)Ĉn(P
′, P

′′

(k))M̂1(P
′′

(k),W
′′

n(k))

∫
dP

′′

(j)Ĉn(P
′, P

′′

(j))M̂1(P
′′

(j),W
′′

n(j))

= 2

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

n∑
k=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

+
n∑
k=1

n∑
j,j ̸=k

∫
dP

′′

(k)Ĉn(P
′, P

′′

(k))M̂1(P
′′

(k),W
′′

n(k))

∫
dP

′′

(j)Ĉn(P
′, P

′′

(j))M̂1(P
′′

(j),W
′′

n(j))

(C.22)

I5(P,W ) =

[
n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
dsiπ(P

′′

(i),W
′′

n(i), si)

]
×

[
2
n+1∑
k=1

sk f̂(P, P
′,W ′)

]

= 2f̂(P, P ′,W ′)

n+1∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i),W
′′

n(i))

= 2f̂(P, P ′,W ′)

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

+ 2f̂(P, P ′,W ′)
n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

(C.23)

I6(P,W ) =

[
n+1∏
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))

∫
dsiπ(P

′′

(i),W
′′

n(i), si)

]
×

[
f̂(P, P ′,W ′)

]2

= 1 ·
(
f̂(P, P ′,W ′)

)2
(C.24)
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So the second order moment is:

W 2M̂2(P ) =

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

[
f̂(P, P ′,W ′)

]2

+

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

[
2f̂(P, P ′,W ′)

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

+ 2f̂(P, P ′,W ′)
n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

]

+

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)[

2

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

n∑
k=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

+

n∑
k=1

n∑
j,j ̸=k

∫
dP

′′

(k)Ĉn(P
′, P

′′

(k))M̂1(P
′′

(k),W
′′

n(k))

∫
dP

′′

(j)Ĉn(P
′, P

′′

(j))M̂1(P
′′

(j),W
′′

n(j))

]

+

∫
dP ′T̂ (P, P ′)

∞∑
n=1

q̂n(P
′)

[∫
dP ′′Ĉs(P

′, P ′′)M̂2(P
′′)(W

′′
)2+

n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂2(P
′′

(i))(W
′′

n(i))
2

]
(C.25)

W 2M̂2(P ) =

∫
dP ′T̂ (P, P ′)(f̂(P, P ′))2(W ′)2

+ 2

∫
dP ′T̂ (P, P ′)f̂(P, P ′)W ′

[∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

+
∞∑
n=1

q̂n(P
′)

n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

]

+

∫
dP ′T̂ (P, P ′)

[
2

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

∞∑
n=1

q̂n(P
′)

n∑
k=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂1(P
′′

(i))W
′′

n(i)

+

∞∑
n=1

q̂n(P
′)

n∑
k=1

n∑
j,j ̸=k

∫
dP

′′

(k)Ĉn(P
′, P

′′

(k))M̂1(P
′′

(k))W
′′

n(k)

∫
dP

′′

(j)Ĉn(P
′, P

′′

(j))M̂1(P
′′

(j))W
′′

n(j)

]

+

∫
dP ′T̂ (P, P ′)

[∫
dP ′′Ĉs(P

′, P ′′)M̂2(P
′′)W ′′2+

∞∑
n=1

q̂n(P
′)

n∑
i=1

∫
dP

′′

(i)Ĉn(P
′, P

′′

(i))M̂2(P
′′

(i))(W
′′

n(i))
2

]
(C.26)

If all the outgoing fission particles are emitted with the same weight:
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W 2M̂2(P ) =

∫
dP ′T̂ (P, P ′)(f̂(P, P ′))2(W ′)2

+ 2

∫
dP ′T̂ (P, P ′)f̂(P, P ′)W ′

[∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′+

∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂1(P
′′)W

′′
n

]

+

∫
dP ′T̂ (P, P ′)

[
2

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂1(P
′′)W

′′
n

+

∞∑
n=1

q̂n(P
′)n(n− 1)

(∫
dP

′′

(k)Ĉn(P
′, P ′′)M̂1(P

′′)W
′′
n

)2]

+

∫
dP ′T̂ (P, P ′)

[∫
dP ′′Ĉs(P

′, P ′′)M̂2(P
′′)W ′′2+

∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂2(P
′′)(W

′′
n )

2

]
(C.27)

W 2M̂2(P ) =

∫
dP ′T̂ (P, P ′)(f̂(P, P ′))2(W ′)2

+ 2

∫
dP ′T̂ (P, P ′)f̂(P, P ′)W ′

[∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

]

+ 2

∫
dP ′T̂ (P, P ′)f̂(P, P ′)W ′

[ ∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂1(P
′′)W

′′
n

]

+

∫
dP ′T̂ (P, P ′)

[∫
dP ′′Ĉs(P

′, P ′′)M̂2(P
′′)W ′′2

]

+

∫
dP ′T̂ (P, P ′)

[ ∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂2(P
′′)(W

′′
n )

2

]

+

∫
dP ′T̂ (P, P ′)

[
2

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂1(P
′′)W

′′
n

]

+

∫
dP ′T̂ (P, P ′)

[ ∞∑
n=1

q̂n(P
′)n(n− 1)

(∫
dP ′′Ĉn(P

′, P ′′)M̂1(P
′′)W

′′
n

)2]
(C.28)

To be compared with the original expression for the second order moment of a non-
analog game (the one derived under the hypothesis that scattering and fission are mutually
exclusives), which is:
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W 2M̂2(P ) =

∫
dP ′T̂ (P, P ′)ĉa(P

′)
[
W ′f̂(P, P ′) +W af̂a(P

′)
]2

+
2∑
r=0

(
2

r

)∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)

[
W ′f̂(P, P ′) +W ′′f̂s(P

′, P ′′)
]2−r

(W ′′)rM̂r(P
′′)

+
2∑
r=0

(
2

r

)∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

nq̂n(P
′)∫

dP ′′Ĉn(P
′, P ′′)

[
W ′f̂(P, P ′) +W

′′
n f̂n(P

′, P ′′)
]2−r

(W
′′
n )

rM̂r(P
′′)

+

∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

n(n− 1)q̂n(P
′)

{∫
dP ′′Ĉn(P

′, P ′′)W
′′
n

[
f̂n(P

′, P ′′) + M̂1(P
′′)
]}2

−
∫
dP ′T̂ (P, P ′)ĉf (P

′)

∞∑
n=1

(n− 1)q̂n(P
′)(W ′)2(f̂(P, P ′))2

(C.29)

A slight reworking will be done on the previous equation; putting f̂a(P
′) = f̂s(P

′, P ′′) =
f̂n(P

′, P ′′) = 0 and W = 1:

M̂2(P ) =

∫
dP ′T̂ (P, P ′)ĉa(P

′)
[
W ′f̂(P, P ′)

]2
+

2∑
r=0

(
2

r

)∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)
[
W ′f̂(P, P ′)

]2−r
(W ′′)rM̂r(P

′′)

+
2∑
r=0

(
2

r

)∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)
[
W ′f̂(P, P ′)

]2−r
(W

′′
n )

rM̂r(P
′′)

+

∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

n(n− 1)q̂n(P
′)

{∫
dP ′′Ĉn(P

′, P ′′)W
′′
n

[
M̂1(P

′′)
]}2

−
∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

(n− 1)q̂n(P
′)(W ′)2(f̂(P, P ′))2

(C.30)

Explicating now the binomial coefficients and the sum over r:
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M̂2(P ) =

∫
dP ′T̂ (P, P ′)ĉa(P

′)
[
W ′f̂(P, P ′)

]2
+ 1 ·

∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)
[
W ′f̂(P, P ′)

]2
+ 2 ·

∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)
[
W ′f̂(P, P ′)

]
(W ′′)M̂1(P

′′)

+ 1 ·
∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)(W ′′)2M̂2(P
′′)

+ 1 ·
∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)
[
W ′f̂(P, P ′)

]2
+ 2 ·

∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)
[
W ′f̂(P, P ′)

]
(W

′′
n )M̂1(P

′′)

+ 1 ·
∫
dP ′T̂ (P, P ′)ĉf (P

′)

∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)(W
′′
n )

2M̂2(P
′′)

+

∫
dP ′T̂ (P, P ′)ĉf (P

′)

∞∑
n=1

n(n− 1)q̂n(P
′)

{∫
dP ′′Ĉn(P

′, P ′′)W
′′
n

[
M̂1(P

′′)
]}2

−
∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

(n− 1)q̂n(P
′)(W ′)2(f̂(P, P ′))2

(C.31)

Grouping together the terms with
[
W ′f̂(P, P ′)

]2
:

M̂2(P ) =

∫
dP ′T̂ (P, P ′)

[
W ′f̂(P, P ′)

]2
·
[
ĉa(P

′) + ĉs(P
′)

∫
dP ′′Ĉs(P

′, P ′′)+

ĉf (P
′)

∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)− ĉf (P
′)

∞∑
n=1

(n− 1)q̂n(P
′)
]

+ 2 ·
∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)
[
W ′f̂(P, P ′)

]
(W ′′)M̂1(P

′′)

+ 1 ·
∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)(W ′′)2M̂2(P
′′)

+ 2 ·
∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)
[
W ′f̂(P, P ′)

]
(W

′′
n )M̂1(P

′′)

+ 1 ·
∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)(W
′′
n )

2M̂2(P
′′)

+

∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

n(n− 1)q̂n(P
′)

{∫
dP ′′Ĉn(P

′, P ′′)W
′′
n

[
M̂1(P

′′)
]}2

(C.32)

Knowing also the fact that
∫
dP ′′Ĉi(P

′, P ′′) = 1:
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M̂2(P ) =

∫
dP ′T̂ (P, P ′)

[
W ′f̂(P, P ′)

]2
·
[
ĉa(P

′) + ĉs(P
′) + ĉf (P

′)
]

+ 2 ·
∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)
[
W ′f̂(P, P ′)

]
(W ′′)M̂1(P

′′)

+ 1 ·
∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)(W ′′)2M̂2(P
′′)

+ 2 ·
∫
dP ′T̂ (P, P ′)ĉf (P

′)
∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)
[
W ′f̂(P, P ′)

]
(W

′′
n )M̂1(P

′′)

+ 1 ·
∫
dP ′T̂ (P, P ′)ĉf (P

′)

∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)(W
′′
n )

2M̂2(P
′′)

+

∫
dP ′T̂ (P, P ′)ĉf (P

′)

∞∑
n=1

n(n− 1)q̂n(P
′)

{∫
dP ′′Ĉn(P

′, P ′′)W
′′
n

[
M̂1(P

′′)
]}2

(C.33)

After all of this, it is possible to write the original equation in a way more similar to
the one of the equation founded previously for the forced fission scheme:

M̂2(P ) =

∫
dP ′T̂ (P, P ′)

[
W ′f̂(P, P ′)

]2
+

∫
dP ′T̂ (P, P ′)ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)(W ′′)2M̂2(P
′′)

+

∫
dP ′T̂ (P, P ′)ĉf (P

′)

∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)(W
′′
n )

2M̂2(P
′′)

+ 2

∫
dP ′T̂ (P, P ′)

{[
ĉs(P

′)

∫
dP ′′Ĉs(P

′, P ′′)(W ′′)M̂1(P
′′)

+ ĉf (P
′)

∞∑
n=1

nq̂n(P
′)

∫
dP ′′Ĉn(P

′, P ′′)(W
′′
n )M̂1(P

′′)

]
W ′f̂(P, P ′)

}

+

∫
dP ′T̂ (P, P ′)ĉf (P

′)

∞∑
n=1

n(n− 1)q̂n(P
′)

{∫
dP ′′Ĉn(P

′, P ′′)W
′′
n

[
M̂1(P

′′)
]}2

(C.34)

The equation of the second order moment for the forced fission scheme was instead:
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M̂2(P ) =

∫
dP ′T̂ (P, P ′)(f̂(P, P ′))2(W ′)2

+

∫
dP ′T̂ (P, P ′)

[∫
dP ′′Ĉs(P

′, P ′′)M̂2(P
′′)W ′′2

]

+

∫
dP ′T̂ (P, P ′)

[ ∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂2(P
′′)(W

′′
n )

2

]

+ 2

∫
dP ′T̂ (P, P ′)f̂(P, P ′)W ′

[∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

+
∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂1(P
′′)W

′′
n

]

+

∫
dP ′T̂ (P, P ′)

[
2

∫
dP ′′Ĉs(P

′, P ′′)M̂1(P
′′)W ′′

∞∑
n=1

q̂n(P
′)n

∫
dP ′′Ĉn(P

′, P ′′)M̂1(P
′′)W

′′
n

]

+

∫
dP ′T̂ (P, P ′)

[ ∞∑
n=1

q̂n(P
′)n(n− 1)

(∫
dP

′′

(k)Ĉn(P
′, P ′′)M̂1(P

′′)W
′′
n

)2]
(C.35)

It is possible to note the following:

• No multiplicative terms ĉs(P
′) and ĉf (P

′) in front of every scattering and fission post
collision density, which are present in the ”analog” version, appear in the ”forced
fission” version.

• Different definition of the weight correction W ′′ and W
′′
n .

• One more term (the fifth one of C.35) which symbolize the interference between
scattering particle and fission particle/s appears in the forced fission version (it is
similar in structure to term which is the interference between fission particles)

Using the just derived expressions of the first order moment (C.15 and C.16) and of the
second order moment (C.35) it is possible to impose:

M̂2(P )

M̂1(P )
= M̂1(P ) (C.36)

Or,knowing that the first order moment needs to be preserved, regardless of the game:

M̂2(P )

M1(P )
=M1(P ) (C.37)

Using the original analog game instead of the non-analog starting game will in fact
help with the derivation.
From now on the ”hat” symbol will be used to refer to the non-analog starting game (forced
fission game), and the ”hat” and ”asterisk” symbol to the non-analog zero-variance game
(zero variance forced fission game), while if no symbols are present it will indicate the
original game (purely analog game).
The first order moment can be rewritten as:
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M1(P ) =

∫
dP ′T (P, P ′)f(P, P ′) +

∫
dP ′T (P, P ′)

∞∑
n=1

ncn(P
′)

∫
dP ′′Cn(P

′, P ′′)M1(P
′′)

(C.38)

Where for the case of n = 1:

c1(P
′) = cs(P

′) + cf (P
′)q1(P

′)

C1(P
′, P ′′) =

cs(P
′)Cs(P

′, P ′′) + cf (P
′)q1(P

′)C1(P
′, P ′′)

c1(P ′)

(C.39)

Then, by defining:

mn(P
′) =

∫
dP ′′Cn(P

′, P ′′)M1(P
′′) (C.40)

The first order moment is:

M1(P ) =

∫
dP ′T (P, P ′)

{
f(P, P ′) +

∞∑
n=1

ncn(P
′)

[
1−H(P, P ′)Hn(P

′)

]
mn(P

′)

}

+

∫
dP ′T (P, P ′)H(P, P ′)

∞∑
n=1

ncn(P
′)Hn(P

′)mn(P
′)

(C.41)

Finally the ratio to be estimated is:

M̂∗
2 (P )

M1(P )
=

∫
dP ′T̂ ∗(P, P ′)

{
(f̂(P, P ′))2(W ′∗)2 +

[∫
dP ′′Ĉ∗

s (P
′, P ′′)M̂∗

2 (P
′′)(W ′′∗)2

]

+

[ ∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M̂∗

2 (P
′′)((W

′′
n )

∗)2

]

+ 2f̂(P, P ′)W ′∗

[∫
dP ′′Ĉ∗

s (P
′, P ′′)M1(P

′′)W ′′∗ +
∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)(W
′′
n )

∗

]

+

[
2

∫
dP ′′Ĉ∗

s (P
′, P ′′)M1(P

′′)W ′′∗
∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)(W
′′
n )

∗

]

+

[ ∞∑
n=1

q̂∗n(P
′)n(n− 1)

(∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)(W
′′
n )

∗

)2]}/
M1(P )

(C.42)

With weight generation rules defined by:

W ′∗ =
T (P, P ′)

T̂ ∗(P, P ′)

W ′′∗ =W ′∗ cs(P
′)Cs(P

′, P ′′)

Ĉ∗
s (P

′, P ′′)

(W
′′
n )

∗ =W ′∗ cf (P
′)qn(P

′)Cn(P
′, P ′′)

q̂∗n(P
′)Ĉ∗

n(P
′, P ′′)

(C.43)
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The ratio can be split into:

M̂∗
2 (P )

M1(P )
=

∫
dP ′T̂ ∗(P, P ′)

{
X1 +X2 +X3 +X4

}/
M1(P )

+

∫
dP ′T̂ ∗(P, P ′)

{
X5 +X6

}/
M1(P )

(C.44)

Where the second term is:

{
X5 +X6

}/
M1(P ) =

{[∫
dP ′′Ĉ∗

s (P
′, P ′′)M̂∗

2 (P
′′)(W ′′∗)2

]}/
M1(P )

+

{[ ∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M̂∗

2 (P
′′)((W

′′
n )

∗)2

]}/
M1(P )

(C.45)

{
X5 +X6

}/
M1(P ) =

∫
dP ′′Ĉ∗

s (P
′, P ′′)M̂∗

2 (P
′′)(W ′′∗)2

Θ(P ′)M1(P
′′)

Θ(P ′)M1(P ′′)

1

M1(P )

+
∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M̂∗

2 (P
′′)((W

′′
n )

∗)2
Θ(P ′)M1(P

′′)

Θ(P ′)M1(P ′′)

1

M1(P )

(C.46)

{
X5 +X6

}/
M1(P ) =

Θ(P ′)

M1(P )

{∫
dP ′′Ĉ∗

s (P
′, P ′′)

M1(P
′′)

Θ(P ′)
(W ′′∗)2

[
M̂∗

2 (P
′′)

M1(P ′′)

]

+
∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)

M1(P
′′)

Θ(P ′)
((W

′′
n )

∗)2
[
M̂∗

2 (P
′′)

M1(P ′′)

]}
(C.47)

{
X5 +X6

}/
M1(P ) =

Θ(P ′)

M1(P )

{∫
dP ′′M1(P

′′)

Θ(P ′)

[
M̂∗

2 (P
′′)

M1(P ′′)

]

·

[
Ĉ∗
s (P

′, P ′′)(W ′′∗)2 +
∞∑
n=1

q̂∗n(P
′)nĈ∗

n(P
′, P ′′)((W

′′
n )

∗)2

]} (C.48)

So:∫
dP ′′T̂ ∗(P ′, P ′′)

{
X5 +X6

}/
M1(P ) =

∫
dP ′′T̂ ∗(P ′, P ′′)

Θ(P ′)

M1(P )

{∫
dP ′′M1(P

′′)

Θ(P ′)

[
M̂∗

2 (P
′′)

M1(P ′′)

]

·

[
Ĉ∗
s (P

′, P ′′)(W ′′∗)2 +

∞∑
n=1

q̂∗n(P
′)nĈ∗

n(P
′, P ′′)((W

′′
n )

∗)2

]}
(C.49)

Where Θ(P ′) is for known arbitrary function. Now it is required to compare:∫
dP ′T (P, P ′)H(P, P ′)

∞∑
n=1

n cn(P
′)Hn(P

′)mn(P
′) (C.50)
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and:∫
dP ′T̂ ∗(P ′, P ′′)

Θ(P ′)

M1(P )

{∫
dP ′′M1(P

′′)

Θ(P ′)

[
M̂∗

2 (P
′′)

M1(P ′′)

]
·

[
Ĉ∗
s (P

′, P ′′)(W ′′∗)2

+
∞∑
n=1

q̂∗n(P
′)nĈ∗

n(P
′, P ′′)((W

′′
n )

∗)2

]} (C.51)

Reorganizing the two terms a little, for the first one the result is:

∫
dP ′

∫
dP ′′M1(P

′′)

{
T (P, P ′)H(P, P ′)

∞∑
n=1

n Hn(P
′)cn(P

′)Cn(P
′, P ′′)

}
(C.52)

And expanding the term for n = 1:

→ H1(P
′)c1(P

′)C1(P
′, P ′′) = H1(P

′)

(
cs(P

′)Cs(P
′, P ′′) + cf (P

′)q1(P
′)C1(P

′, P ′′)

)
(C.53)

The final first term to be compared is then:

∫
dP ′

∫
dP ′′M1(P

′′)

{
T (P, P ′)H(P, P ′)

[
H1(P

′)cs(P
′)Cs(P

′, P ′′)+
∞∑
n=1

ncf (P
′)qn(P

′)Hn(P
′)Cn(P

′, P ′′)

]}
(C.54)

While the second one after some manipulation becomes:

∫
dP ′

∫
dP ′′

[
M̂∗

2 (P
′′)

M1(P ′′)

]{
T̂ ∗(P ′, P ′′)

Θ(P ′)

M1(P )

M1(P
′′)

Θ(P ′)

·

[
Ĉ∗
s (P

′, P ′′)(W ′′∗)2 +

∞∑
n=1

q̂∗n(P
′)nĈ∗

n(P
′, P ′′)((W

′′
n )

∗)2

]} (C.55)

And the two terms inside the curly brackets needs to be same. Substituting the weight
generation rules for W ′′∗ and (W

′′
n )

∗ into the last equation:

... =

{
T̂ ∗(P ′, P ′′)

Θ(P ′)

M1(P )

M1(P
′′)

Θ(P ′)

·

[
Ĉ∗
s (P

′, P ′′)

(
W ′∗ cs(P

′)Cs(P
′, P ′′)

Ĉ∗
s (P

′, P ′′)

)2

+

∞∑
n=1

q̂∗n(P
′)nĈ∗

n(P
′, P ′′)

(
W ′∗ cf (P

′)qn(P
′)Cn(P

′, P ′′)

q̂∗n(P
′)Ĉ∗

n(P
′, P ′′)

)2]}
(C.56)

... =

{
T̂ ∗(P ′, P ′′)

Θ(P ′)

M1(P )

M1(P
′′)

Θ(P ′)

(
T (P, P ′)

T̂ ∗(P, P ′)

)2

·

[
Ĉ∗
s (P

′, P ′′)

(
cs(P

′)Cs(P
′, P ′′)

Ĉ∗
s (P

′, P ′′)

)2

+
∞∑
n=1

q̂∗n(P
′)nĈ∗

n(P
′, P ′′)

(
cf (P

′)qn(P
′)Cn(P

′, P ′′)

q̂∗n(P
′)Ĉ∗

n(P
′, P ′′)

)2]}
(C.57)
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... =

{
Θ(P ′)

M1(P )

M1(P
′′)

Θ(P ′)

(T (P, P ′))2

T̂ ∗(P, P ′)

·

[
(cs(P

′)Cs(P
′, P ′′))2

Ĉ∗
s (P

′, P ′′)
+

∞∑
n=1

n
(cf (P

′)qn(P
′)Cn(P

′, P ′′))2

q̂∗n(P
′)Ĉ∗

n(P
′, P ′′)

]} (C.58)

... =

{
T (P, P ′) · Θ(P ′)

M1(P )

T (P, P ′)

T̂ ∗(P, P ′)

· M1(P
′′)

Θ(P ′)
·

[
cs(P

′)Cs(P
′, P ′′)

cs(P
′)Cs(P

′, P ′′)

Ĉ∗
s (P

′, P ′′)

+
∞∑
n=1

ncf (P
′)qn(P

′)Cn(P
′, P ′′)

cf (P
′)qn(P

′)Cn(P
′, P ′′)

q̂∗n(P
′)Ĉ∗

n(P
′, P ′′)

]} (C.59)

Then imposing to the equality of C.54 and C.59, the first result obtained is:

Θ(P ′)

M1(P )

T (P, P ′)

T̂ ∗(P, P ′)
= H(P, P ′) (C.60)

Or:

T̂ ∗(P, P ′) =
Θ(P ′)

M1(P )

T (P, P ′)

H(P, P ′)
(C.61)

Which is the same result found by Lux for the zero-variance flight kernel [1]. Still, to
finish first first equality it is also necessary to impose the equivalence between the second
line of C.59 and the collision part of the corresponding term. In particular:


H1(P

′) =
M1(P

′′)

Θ(P ′)

cs(P
′)Cs(P

′, P ′′)

Ĉs∗(P ′,P ′′)

→ Ĉ∗
s (P

′, P ′′) =
M1(P

′′)

Θ(P ′)

cs(P
′)Cs(P

′, P ′′)

H1(P ′)

Hn(P
′) =

M1(P
′′)

Θ(P ′)

cf (P
′)qn(P

′)Cn(P
′, P ′′)

q̂∗n(P
′)Ĉn∗(P ′,P ′′)

→ q̂∗n(P
′)Ĉ∗

n(P
′, P ′′) =

M1(P
′′)

Θ(P ′)

cf (P
′)qn(P

′)Cn(P
′, P ′′)

Hn(P ′)

(C.62)

Integrating over dP ′′ the left and right side of the equations will result in:{
cs(P

′)ms(P
′) = Θ(P ′)H1(P

′)

cf (P
′)qn(P

′)mn(P
′) = q̂∗n(P

′)Θ(P ′)Hn(P
′)

(C.63)

All of this for Θ(P ′), H(P, P ′), Hn(P
′) arbitrary functions.

The constraint is on those function can be for example the normalization condition on
T̂ ∗(P, P ′), so:

∫
dP ′ Θ(P ′)

M1(P )

T (P, P ′)

H(P, P ′)
= 1∫

dP ′T (P, P ′)
Θ(P ′)

H(P, P ′)
=M1(P )

(C.64)
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Comparing this last expression with the first order moment:

Θ(P ′)

H(P, P ′)
= f(P, P ′) +M1(P

′) (C.65)

Where:

M1(P
′) =

∫
dP ′′C(P ′, P ′)M1(P

′′) (C.66)

So, from the condition on X5 and X6 it is possible to derive the expression for the
zero-variance flight kernel in a closed form, such as:

T̂ ∗(P, P ′) = T (P, P ′)
f(P, P ′) +M1(P

′)

M1(P )
(C.67)

The equality of the others terms of the ratio M̂∗
2 (P )

/
M1(P ) is still missing; in par-

ticular the equality between:

∫
dP ′T̂ ∗(P, P ′)

{
X1 +X2 +X3 +X4

}/
M1(P ) (C.68)

and

∫
dP ′T (P, P ′)

{
f(P, P ′) +

∞∑
n=1

ncn(P
′)

[
1−H(P, P ′)Hn(P

′)

]
mn(P

′)

}
(C.69)

Trying to write the first of these two terms in a different way by substituting the weight
generation rules:

∫
dP ′T̂ ∗(P, P ′)

{
X1

}/
M1(P ) =

∫
dP ′T̂ ∗(P, P ′)(f̂(P, P ′))2(W ′∗)2

/
M1(P )

=

∫
dP ′T̂ ∗(P, P ′)(f̂(P, P ′))2

(
T (P, P ′)

T̂ ∗(P, P ′)

)2
/
M1(P )

=

∫
dP ′T (P, P ′)(f(P, P ′))2

T (P, P ′)

T̂ ∗(P, P ′)M1(P )

=

∫
dP ′T (P, P ′)f(P, P ′)

f(P, P ′)H(P, P ′)

Θ(P ′)
(C.70)
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∫
dP ′T̂ ∗(P, P ′)

{
X2

}/
M1(P ) =

∫
dP ′T̂ ∗(P, P ′)2f̂(P, P ′)W ′∗

[∫
dP ′′Ĉ∗

s (P
′, P ′′)M1(P

′′)W ′′∗

+

∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)(W
′′
n )

∗

]/
M1(P )

= 2

∫
dP ′T̂ ∗(P, P ′)f(P, P ′)W ′∗ ·

[∫
dP ′′Ĉ∗

s (P
′, P ′′)M1(P

′′)W ′∗ cs(P
′)Cs(P

′, P ′′)

Ĉ∗
s (P

′, P ′′)

+
∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)W ′∗ cf (P
′)qn(P

′)Cn(P
′, P ′′)

q̂∗n(P
′)Ĉ∗

n(P
′, P ′′)

]/
M1(P )

= 2

∫
dP ′T̂ ∗(P, P ′)f(P, P ′)

(W ′∗)2

M1(P )
·

[
cs(P

′)

∫
dP ′′Cs(P

′, P ′′)M1(P
′′)

+
∞∑
n=1

cf (P
′)n qn(P

′)

∫
dP ′′Cn(P

′, P ′′)M1(P
′′)

]

= 2

∫
dP ′T (P, P ′)f(P, P ′)

H(P, P ′)

Θ(P ′)
·

∞∑
n=1

n cn(P
′)mn(P

′)

(C.71)

∫
dP ′T̂ ∗(P, P ′)

{
X3

}/
M1(P ) =

∫
dP ′T̂ ∗(P, P ′)

[ ∞∑
n=1

q̂∗n(P
′)n(n− 1)

(∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)W ′′∗
n

)2]/
M1(P )

=

∫
dP ′T̂ ∗(P, P ′)

[ ∞∑
n=1

q̂∗n(P
′)n(n− 1)

·

(∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)W ′∗ cf (P
′)qn(P

′)Cn(P
′, P ′′)

q̂∗n(P
′)Ĉ∗

n(P
′, P ′′)

)2]/
M1(P )

=

∫
dP ′T̂ ∗(P, P ′)

(W ′∗)2

M1(P )

[ ∞∑
n=1

q̂∗n(P
′)n(n− 1) ·

(∫
dP ′′Cn(P

′, P ′′)M1(P
′′)
cf (P

′)qn(P
′)

q̂∗n(P
′)

)2]

=

∫
dP ′T (P, P ′)

H(P, P ′)

Θ(P ′)

[ ∞∑
n=1

q̂∗n(P
′)n(n− 1)

(
cf (P

′)qn(P
′)

q̂∗n(P
′)

)2

· (mn(P
′))2

]

=

∫
dP ′T (P, P ′)

H(P, P ′)

Θ(P ′)

[ ∞∑
n=1

cf (P
′)qn(P

′)n(n− 1)(mn(P
′))2

(
cf (P

′)qn(P
′)

q̂∗n(P
′)

)]
(C.72)
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∫
dP ′T̂ ∗(P, P ′)

{
X4

}/
M1(P ) =

∫
dP ′T̂ ∗(P, P ′)

[
2

∫
dP ′′Ĉ∗

s (P
′, P ′′)M1(P

′′)W ′′∗

·
∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)(W
′′
n )

∗

]/
M1(P )

= 2

∫
dP ′T̂ ∗(P, P ′)

[∫
dP ′′Ĉ∗

s (P
′, P ′′)M1(P

′′)W ′∗ cs(P
′)Cs(P

′, P ′′)

Ĉ∗
s (P

′, P ′′)

·
∞∑
n=1

q̂∗n(P
′)n

∫
dP ′′Ĉ∗

n(P
′, P ′′)M1(P

′′)W ′∗ cf (P
′)qn(P

′)Cn(P
′, P ′′)

q̂∗n(P
′)Ĉ∗

n(P
′, P ′′)

]/
M1(P )

= 2

∫
dP ′T̂ ∗(P, P ′)

(W ′∗)2

M1(P )

[
cs(P

′)

∫
dP ′′Cs(P

′, P ′′)M1(P
′′)

·
∞∑
n=1

cf (P
′) n qn(P

′)

∫
dP ′′Cn(P

′, P ′′)M1(P
′′)

]

= 2

∫
dP ′T (P, P ′)

H(P, P ′)

Θ(P ′)

[
cs(P

′)ms(P
′) ·

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

]
(C.73)

So:

∫
dP ′T̂ ∗(P, P ′)

{
X1 +X2 +X3 +X4

}/
M1(P ) =

∫
dP ′T (P, P ′)

H(P, P ′)

Θ(P ′)

{
(f(P, P ′))2

+ 2f(P, P ′)
∞∑
n=1

ncn(P
′)mn(P

′)

+

∞∑
n=1

n(n− 1)cf (P
′)qn(P

′)(mn(P
′))2

cf (P
′)qn(P

′)

q̂∗n(P
′)

+2

[
cs(P

′)ms(P
′) ·

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

]}
(C.74)

Taking the last two terms it is possible to write:

... =

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

[
(n− 1)mn(P

′)
cf (P

′)qn(P
′)

q̂∗n(P
′)

+ 2cs(P
′)ms(P

′)

]
(C.75)

Once again, all of this needs to be compared with:

∫
dP ′T (P, P ′)

{
f(P, P ′) +

∞∑
n=1

ncn(P
′)

[
1−H(P, P ′)Hn(P

′)

]
mn(P

′)

}
(C.76)

At the end, the equality which needs to be satisfied is:
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H(P, P ′)

Θ(P ′)

{
(f(P, P ′))2 + 2f(P, P ′)

∞∑
n=1

ncn(P
′)mn(P

′)

+
∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

[
(n− 1)mn(P

′)
cf (P

′)qn(P
′)

q̂∗n(P
′)

+ 2cs(P
′)ms(P

′)

]}
={
f(P, P ′) +

∞∑
n=1

ncn(P
′)

[
1−H(P, P ′)Hn(P

′)

]
mn(P

′)

}
(C.77)

f(P, P ′)

{
H(P, P ′)

Θ(P ′)

[
(f(P, P ′)) +

∞∑
n=1

ncn(P
′)mn(P

′)

]}

+
H(P, P ′)

Θ(P ′)

{
f(P, P ′)

∞∑
n=1

ncn(P
′)mn(P

′) +
∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)[

(n− 1)mn(P
′)
cf (P

′)qn(P
′)

q̂∗n(P
′)

+ 2cs(P
′)ms(P

′)

]}
={
f(P, P ′) +

∞∑
n=1

ncn(P
′)

[
1−H(P, P ′)Hn(P

′)

]
mn(P

′)

}
(C.78)

Substituting
∑∞

n=1 ncn(P
′)mn(P

′) in the first and second line with M1(P
′):

f(P, P ′)

{
H(P, P ′)

Θ(P ′)

[
(f(P, P ′)) +M1(P

′)

]}

+
H(P, P ′)

Θ(P ′)

{
f(P, P ′)M1(P

′) +
∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

[
(n− 1)mn(P

′)
cf (P

′)qn(P
′)

q̂∗n(P
′)

+ 2cs(P
′)ms(P

′)

]}
={
f(P, P ′) +

∞∑
n=1

ncn(P
′)

[
1−H(P, P ′)Hn(P

′)

]
mn(P

′)

}
(C.79)

Knowing that Θ(P ′)
H(P,P ′) = f(P, P ′) +M1(P

′), it is possible to eliminate the equal terms

f(P, P ′) on both sides:
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H(P, P ′)

Θ(P ′)

{
f(P, P ′)

∞∑
n=1

n cn(P
′)mn(P

′) +

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

[

(n− 1)mn(P
′)
cf (P

′)qn(P
′)

q̂∗n(P
′)

+ 2cs(P
′)ms(P

′)

]}
={ ∞∑
n=1

ncn(P
′)

[
1−H(P, P ′)Hn(P

′)

]
mn(P

′)

}
(C.80)

Which is a different equation compared to the one found by Lux, since the hypothesis
were different. Explicating the term for n = 1 into its fission and scattering part:

H(P, P ′)

Θ(P ′)

{
f(P, P ′)

[
cs(P

′)ms(P
′)

]
+ f(P, P ′)

[ ∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

]

+
∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

[
(n− 1)mn(P

′)
cf (P

′)qn(P
′)

q̂∗n(P
′)

]

+

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

[
2cs(P

′)ms(P
′)

]}
=

cs(P
′)ms(P

′) +
∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

− cs(P
′)ms(P

′)H(P, P ′)H1(P
′)−

∞∑
n=1

cf (P
′) n qn(P

′)H(P, P ′)Hn(P
′)mn(P

′)

(C.81)

[
cs(P

′)ms(P
′)

]
·

{
H(P, P ′)

Θ(P ′)

[
f(P, P ′) +

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

]}

+

∞∑
n=1

[
cf (P

′) n qn(P
′)mn(P

′)

]
·

{
H(P, P ′)

Θ(P ′)

[
f(P, P ′) + (n− 1)mn(P

′)
cf (P

′)qn(P
′)

q̂∗n(P
′)

+ cs(P
′)ms(P

′)

]}
=[
cs(P

′)ms(P
′)

]
·

{
1−H(P, P ′)H1(P

′)

}

+
∞∑
n=1

[
cf (P

′) n qn(P
′)mn(P

′)

]
·

{
1−H(P, P ′)Hn(P

′)

}
(C.82)

It is possible to substitute the q̂∗n(P
′) and obtain:
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[
cs(P

′)ms(P
′)

]
·

{
H(P, P ′)

Θ(P ′)

[
f(P, P ′) +

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

]}

+
∞∑
n=1

[
cf (P

′) n qn(P
′)mn(P

′)

]
·

{
H(P, P ′)

Θ(P ′)

[
f(P, P ′) + (n− 1)Θ(P ′)Hn(P

′) + cs(P
′)ms(P

′)

]}
=[
cs(P

′)ms(P
′)

]
·

{
1−H(P, P ′)H1(P

′)

}

+

∞∑
n=1

[
cf (P

′) n qn(P
′)mn(P

′)

]
·

{
1−H(P, P ′)Hn(P

′)

}
(C.83)

For the second term of each side:

H(P, P ′)

Θ(P ′)

[
f(P, P ′) + (n− 1)Θ(P ′)Hn(P

′) + cs(P
′)ms(P

′)

]
= 1−H(P, P ′)Hn(P

′)

H(P, P ′)

Θ(P ′)

[
f(P, P ′) + nΘ(P ′)Hn(P

′) + cs(P
′)ms(P

′)

]
= 1[

f(P, P ′) + ncf (P
′)
qn(P

′)

q̂∗n(P
′)
mn(P

′) + cs(P
′)ms(P

′)

]
=

Θ(P ′)

H(P, P ′)

(C.84)

f(P, P ′) + ncf (P
′)
qn(P

′)

q̂∗n(P
′)
mn(P

′) + cs(P
′)ms(P

′) = f(P, P ′) +M1(P
′)

ncf (P
′)
qn(P

′)

q̂∗n(P
′)
mn(P

′) + cs(P
′)ms(P

′) =M1(P
′)

ncf (P
′)
qn(P

′)

q̂∗n(P
′)
mn(P

′) =M1(P
′)− cs(P

′)ms(P
′)

(C.85)

q̂∗n(P
′) =

ncf (P
′)qn(P

′)mn(P
′)

M1(P ′)− cs(P ′)ms(P ′)
(C.86)

Which is a second result, once again different from the one derived from an analog zero-
variance game. Regarding the first terms of each side of equation C.83:
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H(P, P ′)

Θ(P ′)

[
f(P, P ′) +

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′)

]
= 1−H(P, P ′)H1(P

′)

H(P, P ′)

Θ(P ′)

[
f(P, P ′) +

∞∑
n=1

cf (P
′) n qn(P

′)mn(P
′) + cs(P

′)ms(P
′)− cs(P

′)ms(P
′)

]
= 1−H(P, P ′)H1(P

′)

H(P, P ′)

Θ(P ′)

[
f(P, P ′) +M1(P

′)− cs(P
′)ms(P

′)

]
= 1−H(P, P ′)H1(P

′)

f(P, P ′) +M1(P
′)− cs(P

′)ms(P
′) =

Θ(P ′)

H(P, P ′)
−H(P, P ′)H1(P

′) · Θ(P ′)

H(P, P ′)

− cs(P
′)ms(P

′) = −H1(P
′)Θ(P ′)

(C.87)

Which is true in view of a previous equation. Then the post-collision densities are fi-
nally:

Ĉ∗
s (P

′) =
Cs(P

′, P ′′)M1(P
′′)

ms(P ′)
(C.88)

Ĉ∗
n(P

′) =
Cn(P

′, P ′′)M1(P
′′)

mn(P ′)
(C.89)

If Ĉn(P
′, P ′′) does not depend on n, q̂∗n(P

′) could be rewritten as:

q̂∗n(P
′) =

ncf (P
′)qn(P

′)mn(P
′)

M1(P ′)− cs(P ′)ms(P ′)

=
ncf (P

′)qn(P
′)
∫
dP ′′Cf (P

′, P ′′)M1(P
′′)∑∞

n=1 ncf (P
′)qn(P ′)

∫
dP ′′Cf (P ′, P ′′)M1(P ′′)

=
nqn(P

′)∑∞
n=1 nqn(P

′)
=
nqn(P

′)

νf (P ′)

(C.90)

Where no reaction channel probability is present. But also:

q̂∗n(P
′) =

ncf (P
′)qn(P

′)
∫
dP ′′Cf (P

′, P ′′)M1(P
′′)∫

dP ′′C(P ′, P ′′)M1(P ′′)− cs(P ′)
∫
dP ′′Cs(P ′, P ′′)M1(P ′′)

=
ncf (P

′)qn(P
′)
∫
dP ′′Cf (P

′, P ′′)M1(P
′′)∫

dP ′′C(P ′, P ′′)M1(P ′′)
·

(
1−

cs(P
′)
∫
dP ′′Cs(P

′, P ′′)M1(P
′′)∫

dP ′′C(P ′, P ′′)M1(P ′′)

)−1

(C.91)

The expressions for the biased probabilities for the zero variance game derived from an
analog game can be derived as:

ĉf (P
′)q̂n(P

′) =
ncf (P

′)qn(P
′)
∫
dP ′′Cf (P

′, P ′′)M1(P
′′)∫

dP ′′C(P ′, P ′′)M1(P ′′)
(C.92)
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ĉs(P
′) =

cs(P
′)
∫
dP ′′Cs(P

′, P ′′)M1(P
′′)∫

dP ′′C(P ′, P ′′)M1(P ′′)
(C.93)

So:

q̂∗n(P
′) =

ĉf (P
′)q̂n(P

′)

1− ĉs(P ′)
→ q̂∗n(P

′)

q̂n(P ′)
=

ĉf (P
′)

1− ĉs(P ′)
(C.94)

But since ĉf (P
′) + ĉs(P

′) + ĉa(P
′) = 1 and ĉa(P

′) = 0, then:

q̂∗n(P
′)

q̂n(P ′)
= 1 (C.95)
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