
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Autonomous Navigation for Quadruped Robots:
Development and Optimization on

the Unitree Go1 Platform

Supervisor Candidate
Prof. Elisa Capello Gabriele Caruso

Advisor at LINKS Foundation 307974
Dott. Francesco Aglieco
Dott. Gianluca Prato

December 2024

Abstract

The growing adoption of service robotics in complex environments such as hospitals, indus-
trial facilities, and public spaces highlights the need for versatile autonomous navigation.
While some studies have addressed this challenge for specific robotic platforms, the ap-
plication of such capabilities to different forms, like quadruped robots, remains relatively
unexplored.

This thesis, developed in collaboration with the LINKS Foundation, aims to integrate an
autonomous navigation system for Unitree Robotics’ Go1 quadruped platform, using ROS
2 (Robot Operating System) and its Navigation 2 stack.

The project was structured in two main phases. The first phase focused on the general
setup of the platform, with the aim of enabling communication between the different com-
puters on board the robot and externally, allowing the remote execution of the software
on external devices or in the cloud. Subsequently, the installation and configuration of
the ROS 2 operating system was carried out on the robot, thus enabling the control of
the robot itself and the readout from on-board sensors, including lidar, video camera and
inertial sensors (IMU).
In the second phase, the installation and configuration of the Navigation 2 stack was per-
formed to enable autonomous robot navigation. Therefore, the system was implemented
on the real robot to empirically evaluate its performance and autonomous navigation
capabilities under real operating conditions.

The results obtained confirm the achievement of the set objectives, laying the groundwork
for future applications of quadruped robots in complex environments.

Three Laws of Robotics:

1. A robot may not injure a human being
or, through inaction, allow a human
being to come to harm.

2. A robot must obey any orders given to
it by human beings, except where such
orders would conflict with the First
Law.

3. A robot must protect its own existence
as long as such protection does not
conflict with the First or Second Law.

Handbook of Robotics, 56th Edition, 2058 A.D.

Acknowledgements

Here we are. This thesis represents not only the culmination of two years of intense
work and dedication, but also the conclusion of an important academic chapter at the
Polytechnic University of Turin."

My first and most heartfelt thanks go to my wonderful fiancée, Margherita, who has
supported and patiently endured me for years. To her I owe the strength and motivation
that pushed me to achieve my goals. Thank you for always being by my side, sharing
with me not only the joys but also the defeats.

Special thanks go to my family. To my parents, who never stopped encouraging me every
day to give my best and continue my studies until the end, helping me with difficult and
decisive choices. To my brothers who have always cheered for me all these years.

A heartfelt thank you to my fellow travellers, Jiahao and Iris. With you I have shared
challenges, successes and countless moments of complicity. Your companionship, support
and many laughs together have made this journey so much richer and more meaningful.

Special thanks to my academic supervisor, Prof. Elisa Capello, for the guidance, support,
helpfulness and valuable advice that helped me grow during this project.

A heartfelt thanks also to Dr. Francesco Aglieco and Dr. Gianluca Prato, who have
followed me with professionalism and availability, helping me to successfully face every
challenge of this work.

Finally, a big thank you to Links Foundation, for offering me the opportunity to work on
this thesis project and for providing me with the robotic platform that was the heart of
it.

To everyone who stood by me, whether mentioned or not, goes my deepest and most
sincere thanks: your support made all the difference.

3

Contents

List of Figures 8

List of Tables 10

1 Introduction 11
1.1 What is a robot? . 11
1.2 Mobile robots . 13

1.2.1 Localization . 13
1.2.2 Path planning . 14
1.2.3 Motion control . 15
1.2.4 Locomotion methods for mobile robots 16

1.3 Quadruped robots . 17
1.3.1 Unitree Go1 Edu . 17

1.4 Uncanny Valley . 20
1.4.1 Importance of movement . 20
1.4.2 Application of the Uncanny Valley to robot dogs 21

2 Background Technologies 23
2.1 Docker . 23

2.1.1 Docker platform . 23
2.1.2 Usage benefits . 23
2.1.3 Docker architectures . 24

2.2 ROS 2 . 26
2.2.1 History of ROS . 26
2.2.2 Introduction to ROS 2 . 27
2.2.3 Computational Graph . 29

2.3 FastDDS . 31
2.3.1 DCPS . 31
2.3.2 Discovery . 33

2.4 Zenoh . 33
2.4.1 Protocol and abstractions . 33
2.4.2 Discovery . 34
2.4.3 Deployment . 35
2.4.4 rmw_zenoh . 36

2.5 VPN and Husarnet . 39

5

2.5.1 Husarnet . 39
2.6 Navigation 2 . 40

2.6.1 Behavior Trees . 40
2.6.2 Navigation Servers . 41
2.6.3 Robot Footprints . 43
2.6.4 State Estimation . 43
2.6.5 Environmental Representation . 43

2.7 TF Tree . 44
2.8 Hardware . 46

2.8.1 Robotic platform . 46
2.8.2 Intel NUC . 47
2.8.3 Raspberry Pi 4 . 48
2.8.4 NVIDIA Jetson . 48
2.8.5 LiDAR 2D . 51

3 Network Configuration 53
3.1 Problem analysis . 53
3.2 Network configuration on Raspberry Pi 4 55

3.2.1 Netplan configuration . 55
3.2.2 Dnsmasq . 56
3.2.3 IP Forwarding and Firewall . 57
3.2.4 Testing . 58

3.3 Implementation of communication via FastDDS middleware 59
3.3.1 Container Creation . 59
3.3.2 First communication test . 59
3.3.3 Second communication test . 61

3.4 Networking with Zenoh middleware . 62
3.4.1 Dockerfile changes . 62
3.4.2 Use of Zenoh . 63
3.4.3 Achievements . 64

4 Robot implementation 65
4.1 Robotic platform preparation . 65

4.1.1 Assembly of the support structure and positioning of electronic com-
ponents . 65

4.1.2 Creating robot networks . 66
4.2 Moving the robot via PC . 68

4.2.1 Installation and execution of the nodes required for communication
with the robot . 69

4.2.2 Test driving the robot with the computer keyboard 72
4.3 Robot Control with Navigation 2 . 72

4.3.1 2D LiDAR and Odometry node execution 73
4.3.2 Nav2 execution . 74
4.3.3 Achievements . 76

Appendix 79
A Dockerfile ARM architecture - Humble . 79

6

B Dockerfile PC - Jazzy . 82
C Dockerfile ARM architecture - Jazzy . 85
D docker-compose.yaml - Husarnet . 88
E docker-compose.yaml - Jazzy . 90
F nav2_param.yaml . 92

7

List of Figures

1.1 Comparison of the three algorithms. [14] 15
1.2 Chebyshev Mechanism. [3] . 17
1.3 Profile view of Unitree Go1. [19] . 17
1.4 Robot sensor location. [19] . 18
1.5 Uncanny Valley of a stationary robot. [13] 20
1.6 Uncanny Valley of a moving robot. [13] . 21

2.1 Docker architecture. [5] . 24
2.2 Time spent by robotics in reinventing the wheel (slide from Eric and Keenan

pitch deck) [24] . 26
2.3 ROS Distros (REP-2000) [15] . 27
2.4 ROS 2 software layers . 29
2.5 ROS 2 Graph . 30
2.6 DCPS model entities in the DDS Domain.[6] 32
2.7 Zenoh protocol stack positioning . 34
2.8 Discovery types . 35
2.9 Design . 36
2.10 Running node without router on . 37
2.11 Testing the performance of talker and listener on the same machine 38
2.12 Testing the performance of talker and listener via Husarnet 39
2.13 Behavior tree of a specific application . 40
2.14 Nav2 architecture. 41
2.15 Frame reference scheme base_link and base_laser 45
2.16 Transformation from base_link to base_laser 45
2.17 LiDAR operating diagram . 51
2.18 LiDAR dimensions . 51

3.1 System diagram . 53
3.2 Schematic diagram of the back interface Go1 [18] 54
3.3 Raspberry bridge scheme . 55
3.4 Netplan operation . 55
3.5 Jetson ping google.com . 58
3.6 Communication scheme . 59
3.7 First communication test . 60
3.8 Graphical user interface of the Husarnet site. 61

8

3.9 Communication scheme via Husarnet. 61
3.10 Communication scheme using Zenoh. 63
3.11 Communication between Jetson and PC. 64

4.1 Photos of assembled structure . 66
4.2 LiDAR position scheme . 66
4.3 List of connected boards . 67
4.4 Pub/Sub communication test . 68
4.5 Schema esecuzione nodo udp_high . 70
4.6 Node Execution Diagram cmd_processor 71
4.7 Topic list . 72
4.8 Nav2 Rviz view . 75
4.9 Set of photos of navigation to goal . 76

9

List of Tables

2.1 Unitree Go1 Edu technical specifications [19][16] 46
2.2 Intel NUC8i7BEH Datasheet . 47
2.3 Technical Specifications of the Raspberry Pi 4 48
2.4 Technical specifications of the NVIDIA Jetson Nano 49
2.5 Technical Specifications of the NVIDIA Jetson Xavier NX 50
2.6 Technical Specifications of the RPLIDAR A3 52

10

Chapter 1

Introduction

In this first chapter, the concept of robotics is introduced, with a detailed analysis of mobile
robots. The key issues of mobile robotics are considered and the different categories of
mobile robots are listed, with particular emphasis on quadrupedal robots. In addition,
the technical specifications of the platform used in this project are outlined. Finally,
the Uncanny Valley theory, an interesting hypothesis formulated by Japanese engineer
Masahiro Mori, is discussed.

1.1 What is a robot?
Robotics aims to create machines that can replace humans in performing tasks, both
physically and in decision-making.
The term ‘robot’ was coined in 1920 by Czech writer Karel Capek, however, the concept of
the anthropomorphic machine has much deeper and older cultural roots. Man has always
sought to bring his creations to life, creating myths such as the legend of the gigant Talo,
a living statue created by Hephaestus to defend the island of Crete, or the Golem, an
imaginary figure from Jewish and medieval mythology. A clay giant with no intellectual
faculties, the Golem was endowed with extraordinary stamina and strength, employed to
perform heavy labour, carried out his creator’s orders to the letter, but was incapable of
thinking, speaking and feeling any kind of emotion because he had no soul.
In the modern Hebrew language Golem also means robot.

Moreover, in more recent times, a great number of science fiction literary and film nar-
ratives have conceived of humanoids or androids capable of autonomous interaction with
humans.
The most important text is recognised in the narrative of Isaac Asimov, who conceived
the robot as an automaton programmed to process information and organise certain rules
of behaviour.
Asimov is acknowledged for the fundamental ethical principles for determining the be-
haviour of robots in their relationship with human beings aimed at ensuring their safety
and well-being in human/machine interactions.

11

Introduction

Famous is his enunciation of the Three Laws of Robotics, formulated as follows: [2]

1. A robot may not injure a human being or, through inaction, allow a human being
to come to harm.

2. A robot must obey any orders given to it by human beings, except where such orders
would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict
with the First or Second Law.

These laws, taken as the cornerstone of science-fiction literature, have also helped to define
the relationship between man and machine, inspiring ethical and philosophical postulates
that go far beyond the boundaries of fiction, and have also become a fundamental reference
for the development of artificial intelligence.

However, robots are not just a literary or fictional concept. The first practical applications
date back to the 1950s and 1960s, when the first industrial robots were designed, such as
the Unimate, a robotic arm used in the automotive industry’s assembly lines. In the years
that followed, technological progress enabled the creation of increasingly sophisticated
machines capable of performing complex tasks and adapting to changing situations.

Two advanced humanoid robotics prototypes are now attracting great interest: ASIMO
from Honda and Atlas from Boston Dynamics. They are designed to mimic the move-
ments and movement capabilities of human beings. These robots are able to walk, run,
jump and even perform complex actions such as climbing stairs.
The development of humanoid robots is not only of scientific value, it also serves to study
and improve the understanding of human movement by designing machines that can assist
people in domestic or care settings.

Moreover, with the advent of artificial intelligence, modern robots are able to make com-
plex decisions autonomously, thanks to advanced neural learning and computer vision
systems. This has led to the emergence of robots capable of interacting with humans in a
more natural way, interpreting voice commands and responding to their emotions through
facial recognition and other sophisticated technologies.

Nowadays, robots are not only a common topic for stories and tales, but also find appli-
cations in many civil and industrial sectors, improving efficiency, safety and quality.
In industry, for example, robots are used to perform repetitive and dangerous tasks,
achieving accuracies that often exceed human precision and significantly improving safety
and productivity levels; also used for logistics and warehouse management, they are able
to speed up the internal transport of goods and reduce delivery times.
Agriculture also benefits, with the introduction of robots for sowing, weeding and har-
vesting, using drones to monitor crops and plantations from above, allowing less labour
to be used and targeted and intelligent action to be taken where it is most needed.
There are applications in the healthcare sector, revolutionising surgery (such as the famous
da Vinci system), transportation of medicines, rehabilitation and prostheses for patients.
Robots find applications in everyday services and assistance, in the transport sector, in
exploration and research, in the energy sector and in construction, always improving,
speeding up and helping humans even in extremely delicate operations.
The aim of robot automation is not to replace humans by taking away their work, but

12

1.2 – Mobile robots

to help and collaborate by reducing, if not eliminating, risks and accidents at work and
allowing human qualities to be used in other areas.

As can be imagined, the variety of applications has led to the development of different
types of robots, such as conventional manipulators or mobile robots.
Manipulators usually have a fixed base, so they work in a fixed, defined space. In contrast,
mobile robots are able to move in their surroundings and thus have multiple applications.

1.2 Mobile robots
This type of robot today represents the category that is developing with the most speed
and interest. In contrast to manipulators, which have less control complexity and which
initially diffused more quickly, mobile robots are receiving more trust and attention; this is
because, over time, new programming methods and navigation tools have been developed
that have facilitated their use.
Nowadays, efforts are being made to give this category a greater ability to move au-
tonomously and react to the changing environment.

Mobile robots have to answer three important questions 1:

1. where am I?

2. how am I supposed to get to the goal?

3. how do I actually move?

1.2.1 Localization
In order to answer the first question, it must first be taken into account that the environ-
ment is dynamic and therefore the state - the set of all aspects of the robot and environment
that may have an impact on the future - is uncertain. There is uncertainty because not
all environmental information can be detected directly, sensors are imperfect and there-
fore have noise and the robot can influence the environment with its actions. Talk about
probabilistic robotics where the idea is to estimate the state from sensor data.[23]

In order to be able to obtain a good approximation of the robot’s current state, the concept
of belif was introduced, which represents the robot’s estimation of its actual state, based
on the data at its disposal.

bel(xt) = p(xt|z1:t, u1:t) (1.1)

Where xt is the state of the robot at time t, and depends on past measurements z1:t and
past actions u1:t.

The robot’s belif can be estimated using mathematical filters such as the Bayes filter,
the Kalman filter, the EKF (extended Kalman filter) and the UKF (unscented Kalman
filter).
The former is a general method for updating probabilistic state estimation based on

1Durrant-Whyte 1991; slightly revised

13

Introduction

observations, but is computationally too heavy for continuous or complex systems, so it is
rarely used. The Kalman Filter is an efficient approach for linear systems with Gaussian
noise; it works well in simple contexts, but is not suitable for non-linear systems. The
problem of non-linearity is solved with the EKF, which is an extension of the Kalman filter;
it is more accurate in the presence of non-linearity, but does not handle highly non-linear
dynamics well. For this we have the UKF, an advanced variant that uses sigma points
to represent the state distribution without linearising, improving accuracy in non-linear
systems compared to the EKF.

AMCL

AMCL (Adaptive Monte-Carlo Localiser) is a probabilistic localization system that uses
a particle sampling and resampling-based filter to trace, against the map, the 2D pose
of the robot. The algorithm works by representing the robot pose as a distribution of
particles representing possible robot poses.

The robot starts with an approximate and sparse localisation, but this improves dramati-
cally as it measures with its sensors at each time step and compares the results with a map
of the environment, in order to calculate the probability that each particle represents the
robot’s actual location. Then, a new set of particles is created for the next time step by
resampling those with high probability, while those with low probability are eliminated.

Although the robot’s movement is unpredictable or the surroundings are only partially
visible, the resampling procedure ensures that the particles remain dispersed around the
robot’s actual posture.

Position Tracking and SLAM

The robot localization can be done given an a prior known map, where the pose of the
robot with respect to the map frame at time t has to be determined. The case where the
initial pose of the robot is known (Position Tracking) can be had, so the uncertainty
will only be confined to the local region around the true robot pose. However, if the initial
pose of the robot is unknown (Global localisation), the situation will be more complex.

In the scenario where the map is not known a prior, the robot has to construct a repre-
sentation of the environment while simultaneously estimating its own position within it.
This process is known as SLAM (Simultaneous Localisation and Mapping), and consists
of creating a map of the unknown area as the robot moves, continuously updating its own
location in relation to the detected features. SLAM is essential for autonomous movement
in unmapped or dynamic environments. It is a difficult approach because a map is needed
to locate the robot and a good pose estimation is necessary for proper mapping.

1.2.2 Path planning
The second question is answered by Motion Planning. This involves finding the best
trajectory to reach the target as quickly as possible without colliding with fixed or moving
obstacles.
First of all, to proceed with path planning, the map must be discretized, and there are
two general approaches: the combinatorial planning technique, which subdivides the

14

1.2 – Mobile robots

space into a finite set of cells, representing the planning problem as a search on a graph of
these connected cells, allowing search algorithms to be applied to find optimal paths, and
the sampling-based planning technique, which uses sampling techniques to explore the
space of configurations, generating random nodes in the domain and constructing a graph
of connections between these nodes to find valid trajectories.[14]

Once the map has been discretized and all possible paths, that can be executed by the
robot, have been found, it is necessary to choose which path is the best. To achieve this,
there are several methods and algorithms to choose from, which differ according to their
effectiveness in finding the best path and the computing power required by the machine.
The best path is defined as the path that allows the robot to reach the target in the shortest
time possible while paying a low cost of movement. The movement cost depends on
environmental factors such as slope and road conditions, which affect the robot’s battery
life, movement speed and platform integrity.
The Dijkstra’s algorithm works well to find the fastest route, but consumes a lot of time
exploring all directions, even the not promising ones, and thus consumes much more CPU
power. Whereas the Gready Best-First Search explores heuristic-driven directions,
which usually results in not finding the shortest path, but consumes less CPU power.
The A* algorithm proposes a middle way between the two algorithms outlined above,
combining the path cost (as in Dijkstra) with a heuristic function (as in Gready Best-First
Search) to guide the path to the destination; this approach reduces the computational
consumption by prioritising explorations in promising directions, while at the same time
increasing the probability of finding the best path.

Figure 1.1. Comparison of the three algorithms. [14]

1.2.3 Motion control
To answer the last question, it is necessary to work in hardware and low-level program-
ming, controlling the robot’s actuators and motors. Motion control deals with the problem
of determining a sequence of input controls (motor voltages or currents) in order to obtain
a motion that allows the robot to reach desired positions and orientations.
These positions are typically provided by path planning and then the motion control goes
to manage the forces and velocities required to reach the goal.

15

Introduction

Motion control in a mobile robotics system is divided into three stages:

• Speed and position control: controls the activation of motors to achieve and
maintain required speeds and positions.

• Feedback loop: uses sensors, such as LiDAR, ultrasonic or encoders, to constantly
monitor the status and, if necessary, correct deviations from commands.

• Dynamics management: to improve the accuracy and stability of movement,
consider the physical characteristics of the robot (mass, inertia) and how it interacts
with the environment (friction, slopes).

1.2.4 Locomotion methods for mobile robots
Mobile robots can be classified according to their capabilities and modes of movement,
including different types of means of locomotion that make them suitable for various
environments and specific tasks. The main types of mobile robots include:

• Wheeled robots: are among the most common and easiest to control. They are
used for ground movements, adapting well to smooth, well-defined surfaces such as
industrial floors or roads. Examples can be found in robots for autonomous deliveries,
robots for logistics and robots for domestic cleaning.

• Tracked robots: Robots similar in control to wheeled robots, but with the use of
tracks that allow them to have a better grip on difficult and uneven terrain such as
gravel, sand or slippery surfaces. They are robots often used for search and rescue
missions.

• Underwater robots: designed for underwater navigation, they are able to move
using propellers or other propulsion systems. They are used for environmental mon-
itoring, underwater maintenance or scientific exploration.

• Aerial robots: known as drones or UAVs (Unmanned Aerial Vehicles), they fly and
move by means of propellers or fixed wings. They find applications in a variety of
situations, from agricultural monitoring to parcel deliveries.

• Legged robots: Designed to emulate animal and human movement, they are able
to walk over rough and uneven terrain where wheels or tracks would fail. They are
robots with significantly greater control complexity. They are in turn subdivided
into bipedal, quadrupedal or multi-legged robots.

16

1.3 – Quadruped robots

1.3 Quadruped robots
With regard to stability and mobility, four-legged robots are the best choice; robots with
two or more legs are more difficult to control than four-legged robots. Since the early 1900s,
many scientists have dedicated themselves to the development of four-legged locomotion.
In 1870, Chebyshev developed the first mechanism capable of moving by converting rota-
tional motion into translational motion at constant speed, as shown in Figure 1.2. This
device was only able to move on level ground and the legs were not independent.[3]

Figure 1.2. Chebyshev Mechanism. [3]

Nowadays, things have changed a lot, leading to much more complex robots, such as Spot
from Boston Dynamics or Go1 from Unitree.

1.3.1 Unitree Go1 Edu
The Unitree Go1 Edu is an advanced mid-sized quadruped robot model presented in 2021
by the Chinese company Unitree. It is a model designed for educational, research and
development applications that offers more advanced customisation than other models in
the Unitree Go1 line.

Figure 1.3. Profile view of Unitree Go1. [19]

17

Introduction

Design and Mobility

The Unitree Go1 Edu was developed to mimic the stability and walk of a quadrupedal
animal, enabling it to move with ease across different terrains. Its robust and compact
mechanical structure allows the robot to easily perform complex movements such as walk-
ing, running and turning around. It is able to tackle moderate slopes and reach speeds of
around 3.5 m/s thanks to its highly efficient brushless motors and advanced stabilisation.

Advanced sensor system

The Go1 Edu is equipped with many sensors that ensure safe navigation and accurate
spatial perception. These include:

• Wide-angle stereo cameras: useful for providing a view of the surroundings.
They are distributed on all sides of the robot (front, side and rear).

• Motion and position sensors: help keep the robot balanced and stabilise its
movements on uneven surfaces, providing continuous information to the controller.
They consist of proximity sensors and inertia measurement units (IMU).

• Sonar sensors: useful for identifying potential nearby obstacles and increasing
safety when moving in enclosed spaces.

Figure 1.4. Robot sensor location. [19]

Computational power and load capacity

In contrast to the other versions of the Go1, which are more oriented towards the non-
professional consumer, the Go1 Edu includes more powerful computers inside, capable
of achieving considerable computing power, such as the NVIDIA Jetson Nano and
Jetson Xavier NX, which are ideal for real-time artificial intelligence and computer
vision applications. This allows the programmer to implement complex algorithms such
as visual recognition, tracking and autonomous navigation.
The Go1 Edu is able to carry loads of up to 5 kg, allowing it to transport additional
thinking sensors such as 3D LiDAR.

18

1.3 – Quadruped robots

Programming skills and SDK

The Edu model allows low-level access to all hardware components and sensor data
through Unitree’s software development kit (SDK), making it fully programmable and
customisable. This gives more freedom in being able to modify the motion control of the
quadruped robot, abandoning the default walk used by Unitree. This SDK is optimised
for programming environments such as ROS, allowing developers to integrate the robot
platform into more complex development projects.

The SDK developed by Unitree Robotics for the Go1 can be found in the package
unitree_legged_sdk.

19

Introduction

1.4 Uncanny Valley
In 1970, Masahiro Mori, a Japanese robotics researcher, published an article in the journal
Energy in which he explored the possible reactions of people to robots with near-human
appearance and behaviour. Mori suggested that as a robot became more and more human-
like, people’s emotional response would quickly shift from empathy to discomfort. This
phenomenon is known as the "uncanny valley". Although his work initially received little
attention, it has gained increasing interest in recent years, both in the field of robotics and
in popular culture, thanks to technological advances that allow the creation of increasingly
realistic-looking robots.[13]

Uncanny Valley describes a negative emotional response that humans experience when
they observe a robot that closely, but not completely, resembles a human being or an
animal. The more similar the robot is to a living being, the more comfortable we feel
with it - up to a certain point. A resemblance that is too close, but imperfect, triggers a
feeling of unease or repulsion. This is the moment when one finds oneself in the "uncanny
valley".
The Uncanny Valley is a two-axis graph:

• On the X-axis is the level of similarity to the human (or animal),

• On the Y-axis is the level of emotional affinity we feel for that object or robot.

Figure 1.5. Uncanny Valley of a stationary robot. [13]

As can be seen from the Figure 1.5, at first, as a robot becomes more like a living being,
our empathy increases. But when it reaches a point where it is almost perfect, but not
quite, it collapses dramatically, causing a feeling of unease. This is the uncanny valley.
If the resemblance continues to increase until it becomes indistinguishable from a living
being, the emotional affinity rises again.

1.4.1 Importance of movement
Movement is a crucial element for animals, including humans, and is also of significant
importance for robotics. Its presence alters the shape of the disturbance valley graph, as
illustrated in the Figure 1.6, amplifying the peaks and valleys. In particular, an idle indus-
trial robot is perceived as a featureless machine, while the implementation of movements

20

1.4 – Uncanny Valley

that mimic those of a human hand generates such an affinity that it elicits empathy from
observers. For this positive effect to manifest itself, it is crucial that the robot’s kinetic
characteristics - such as speed, acceleration and deceleration - are designed to approximate
human movement parameters.

Figure 1.6. Uncanny Valley of a moving robot. [13]

1.4.2 Application of the Uncanny Valley to robot dogs
In the specific case of robot dogs, the Uncanny Valley concept can be applied in the same
way. A robot dog that has clearly robotic features, such as the Unitree (GO1) robotic
dogs, might be perceived as nice or interesting because we are not trying to compare
it with a real dog: it is clearly a technological device. However, if a robot dog had
very realistic features - synthetic fur, fluid movements, realistic eyes - but was not able to
behave exactly like a real dog (for example, if its movements were slightly out of synchrony
or its reactions were not natural), it might cause a feeling of unease.

Why is this happening?

• Unfulfilled expectations: If we see a robot dog with very realistic traits, we expect
it to behave exactly like a real dog. When these behaviours are imperfect, our brain
perceives an inconsistency that generates unease.

• "Almost" natural signals: When we see something similar to a real dog, our brain
activates the same circuits that we use to interpret real animals. If these signals are
inconsistent (perhaps an unnatural movement or facial expression), the result is a
feeling of perturbation.

• Emotional ambiguity: We are naturally programmed to react empathetically to
animals, especially dogs. A robot dog that seems "almost real" can trigger confused
emotions: we do not know whether we should feel affection or detachment.

Unitree’s Go1 robot has a clearly mechanical appearance, so it does not fit into the
Uncanny Valley. It does not try to look like a real dog, but is designed to perform useful
tasks and has a utilitarian design. It does not provoke an uncomfortable reaction because
it does not try to imitate a real dog.

21

Chapter 2

Background Technologies

This chapter describes and explains the primary software tools that will be used in the
remaining chapters of this project.
The following tools have been chosen based on specific needs of the project to make sure we
end up with a stable, flexible and scalable environment for development and executions.

2.1 Docker
Docker is an open platform that helps to develop and deploy apps easily. It enables rapid
software delivery through its ability to isolate applications from the infrastructure.[5]
As a result, developers can build software much more quickly. Infrastructure can be treated
similarly to applications: it can be packaged, published, made available, controlled and
distributed. This allows companies to minimize the interval between when code is written
and when it is deployed.

2.1.1 Docker platform
Docker allows an application to be packaged and run in a container, a free and independent
environment. These features provide security and isolation for multiple containers on a
given host.
They are lightweight and contain everything you need to run the application contained
within them (no dependency on what is packed on the host). You can share the container
as you work and know that it always runs the same way, regardless of where you run the
application.

2.1.2 Usage benefits
The use of Docker has been a definite advantage in that it has facilitated the use of
ROS 2 on machines running older versions of Ubuntu, thanks to the isolation offered
by containers. This allowed the creation of an environment compatible with the ROS 2
release, greatly limiting the complexity of processes and configuration time.

23

Background Technologies

Docker offers the advantage of simplifying development by isolating environments, avoid-
ing conflicts between dependencies and adapting to any system. The portability of con-
tainers allows the migration of applications between different platforms, the lightness of
containers favours the execution of multiple operations on the same hardware, improving
productivity.

Docker also makes the automation of continuous integration and deployment (CI/CD)
flows more effective by optimising the release of applications and reducing error margins.
The management and reliability of processes is ensured by the container’s isolation, and its
scalability allows applications to be quickly adapted to load requirements, making them
effective for architectures and micro-services.
Systems such as Docker Compose and Kubernetes make it easier to manage complex
applications. Docker in particular lends itself as a versatile platform that ensures efficient
and reliable developments, which favour its use by developers.

2.1.3 Docker architectures
Docker uses a client-server architecture, where the client communicates with the Docker
daemon using a communication via a REST API, using a UNIX socket. Both can be run
on the same system, or by connecting the client to a remote daemon.

Figure 2.1. Docker architecture. [5]

Docker daemon

The Docker Daemon is the core of the architecture. It receives and processes requests from
the client, managing the creation, execution and stopping of containers. It also handles
the management of images, volumes and networks.

24

2.1 – Docker

Docker client

The Docker Client is the main interface through which users can interact with Docker.
When executing commands such as docker run, the client sends this command to the
daemon which executes it. This separation of client and daemon allows Docker to be
managed on remote machines, making the architecture flexible.

Registries

These are repositories containing Docker images. They can be public, like Docker Hub,
or private, which companies can configure independently.

Docker objects

These are fundamental elements that Docker uses. Among the main ones are:

• Images: are read-only templates that contain what is needed to create containers.
Images often originate from other images, but with additions. For example, a ROS
2 Humble image will be based on a Ubuntu 22.04 LTS image with Humble installed.
Images can be downloaded from the Registries or created via Dockerfile, so as to
have a more personal customisation.

• Containers: are active instances of images. They can be created, executed, stopped,
transferred or deleted easily. Containers by default are isolated from other containers
and the host machine, but this can change according to your needs, connecting the
container to different networks, storage or allowing it access to hardware such as
USB inputs to manage external devices.

25

Background Technologies

2.2 ROS 2
Robot Operative System (ROS)[12], contrary to what the name might suggest, is not an
operating system, but a set of software frameworks for robot software development.

Definition taken from the official ROS website:

"The Robot Operating System (ROS) is a set of software libraries and tools for building
robot applications. From drivers and state-of-the-art algorithms to powerful developer

tools, ROS has the open source tools you need for your next robotics project."

2.2.1 History of ROS
It was born in the early 2000s as a personal project of two Stanford University students,
looking for a solution to the problem of having to ‘reinvent the wheel’ that robotics was suf-
fering from. Too much time was being wasted re-implementing the software infrastructure
needed to build complex robotic algorithms (drivers for sensors and actuators, commu-
nications between different programmes within the robot) and too little time building
intelligent robotic programmes based on that infrastructure.[22]

Figure 2.2. Time spent by robotics in reinventing the wheel (slide from Eric
and Keenan pitch deck) [24]

In an attempt to remedy this situation, the two students set out to create a basic system
that would provide an open source starting point on which others in academia could build.

Initially under the name Stanford Personal Robotics Program (SPRP), the system evolved
year by year until it reached its first ROS distribution in 2009: ROS Mango Tango (ROS
0.4). With subsequent versions, ROS has been considered the standard in robotics since
2013.

26

2.2 – ROS 2

But ROS carried with it important limitations, due in part to the strictly academic nature
that had characterised its birth; limitations that became important when it wanted to
proceed to industrial applications. For this reason, the first distribution of ROS 2.0 was
released in 2017, with the aim of exploiting the potential of ROS 1 and implementing it.

Like its progenitor, ROS 2 continues to evolve year after year, always releasing new dis-
tros (distributions) with an end-of-life (EOL) date. This approach ensures continuous
evolution in terms of security, resource management and compatibility with the original
operating system. EOL implies that, after that date, the distro will no longer receive
updates from the community on bugs, security and stability improvements, and new tools
useful for robotics programming will no longer be released. A clear example is Navigation
2, a navigation system compatible only with ROS 2, or Zenoh, a middleware protocol
compatible only from the Jazzy distro.

Figure 2.3. ROS Distros (REP-2000) [15]

For this project, the Humble distro was initially used. It then had to migrate to Jazzy
for reasons that will be explained in more detail in Chapter 4.

2.2.2 Introduction to ROS 2
ROS 1 reached its last version with ROS Noetic (2020) and will reach its EOL (end of life)
in 2025; this is one of the reasons why ROS 2 is the preferred choice for new long-term
projects.

ROS 2 represents a significant advance in the field of software development for robotics.
It meets modern requirements for security, scalability and interoperability. It is an open-
source middleware designed to ensure a reliable and modular structure that meets the
complex requirements of robotics engineering, from industrial automation to autonomous
transport systems.

ROS 2 not only retains the ease of development and management of robotic systems
of its predecessor, but at the same time overcomes many of the limitations previously
encountered.

27

Background Technologies

Main innovations

• Multi-Threaded Execution: ROS 2 supports multiple nodes running in parallel,
allowing modern multi-core processors to be fully utilised.

• ROS API: In ROS 1, two specific independent libraries are used to provide an
API to develop ROS nodes, roscpp is used for programming in Cpp, and rospy for
Python. In ROS 2 you have multiple layers (see Figure 2.4). You have a single base
library, called rcl and implemented in C, which contains all the main functions of
ROS 2. In ROS 2, when writing a programme, you do not use the rcl library directly,
but use another built on top of rcl. For programming in Cpp one uses rclcpp, for
Python rclpy and so on. The advantage of ROS 2’s layer structure lies in the fact
that for each new feature you only have to implement it with rcl, and then only
provide blinding for the client libraries.

• Middleware Changes: ROS 1 employs a Master-Slave architecture and XML-RPC
middleware, which includes a customised serialisation format, a specific transport
protocol and a centralised discovery mechanism. In contrast, ROS2 employs the
Data Distribution Service (DDS), an abstracted middleware interface that manages
serialisation, transport and discovery, designed for greater efficiency, reliability, low
latency and scalability, with configurable Quality of Service (QoS) parameters. XML-
RPC is suitable for simple remote procedure calls, while DDS better supports real-
time systems and eliminates single points of failure in ROS2 communications.

• Communication: In ROS 1, in order for nodes to communicate with each other,
they need the ROS master, which acts as a DNS server so that nodes can call each
other. In ROS 2 you no longer have a centralised system, each node can discover
the other nodes without a central DNS. With ROS 2 you have a distributed system
where each node is independent.

• QoS: ROS 2 introduces quality of service, which allows the user to configure the way
data is sent and received, affecting the flow of data. Among the available options
are settings for reliability, expiry times and message priority. These configurations
help ensure that crucial messages are delivered on time.

• Security: With the use of DDS, in addition to the above benefits, one has a protocol
that provides security guarantees not present in ROS 1, which allows robots to com-
municate over unsecured networks (such as the Internet). You have authentication
mechanisms that allow nodes to verify the identity of the communicating process so
that unauthorised access and loss or tampering of data is not possible.

28

2.2 – ROS 2

Figure 2.4. ROS 2 software layers

2.2.3 Computational Graph
The ROS 2 framework is a middleware architecture composed of a series of distributed
nodes that communicate with each other by means of messages. The ROS 2 Computational
Graph represents this network of interconnected nodes, which interact with each other
using different communication paradigms to decompose complex problems into simpler
ones.

Nodes

The nodes are the primary execution elements in ROS 2, within which code is developed
following an object data structure. They perform several essential tasks in the ROS
2 system: they manage sensor drivers, receiving and analysing data; they implement
high-level decision control algorithms, allowing the robot to plan and make decisions
autonomously; they allow the control of external actuators and components, such as
robotic arms, wheels and grippers.

The discovery of nodes occurs automatically: when a node is started, it signals its presence
to the other nodes in the network that share the same ROS domain (configured via
the environment variable ROS_DOMAIN_ID); the nodes respond to this signal by providing
information about themselves, thus allowing connections to be established. Periodically,

29

Background Technologies

the nodes continue to communicate their presence in the domain.

Nodes in ROS can be started and stopped individually, facilitating the addition, removal
or replacement of nodes without affecting the rest of the system. This allows various
nodes to be distributed across multiple machines, optimising performance and scalability.

Messages

I messaggi sono il mezzo con cui i nodi comunicano tra di loro. Sono dati strutturati che
consentono di inviare più Messages are the means by which nodes communicate with each
other. They are structured data that allow several pieces of information to be sent in the
same ‘packet’. The type of information that is sent can be described and defined within
the .msg files. Messages are used to send information such as numbers, strings, images,
sensor data.
ROS provides standard messages such as geometry_msgs/Twist to send angular and
linear velocity information.

Topic

In ROS 2, topic topics are communication channels through which nodes can exchange
messages. Each topic only allows one specific type of message. For example, the topic
cmd_vel, used to send and receive commands related to linear and angular velocity, is
configured to only allow messages containing data of type geometry_msgs/Twist.

Figure 2.5. ROS 2 Graph

30

2.3 – FastDDS

Nodes can communicate with each other using different communication paradigms:

• Publisher / Subscriber: this communication system consists of two types of nodes:
a publisher and a subscriber. The first subscribes to a specific Topic and publishes a
message periodically (asynchronous communication), which can be read by multiple
subscriber nodes subscribing to the same Topic. A node may post in multiple Topics
and simultaneously be a subscriber in multiple Topics.

• Services: is a communication system based on call-and-response (synchronous com-
munication). There are two types of nodes, the client service and the server service.
The first makes a request to the server, which immediately responds with a result.

• Actions: is a communication system built on topics and services. It functions similar
to services, but unlike services, actions can be cancelled and provide immediate
steady feedback to the node that called it. There are two types of nodes, the action
client and the action server. The first sends a goal to the action server, which returns
a feedback stream to it, using a Topic, until the requested result is achieved.

As shown in the figure 2.4, in ROS 2 is possible to choose which middleware to implement
in the architecture. In more recent versions of ROS, the default middleware is FastDDS.
However, the latter showed some limitations, which have been overcome by Zenoh in the
last year.

2.3 FastDDS
FastDDS is an open-source implementation of DDS, developed by eProssima and opti-
mised for ROS 2. It has been chosen as the default middleware for the latest versions of
ROS 2.[6]
DDS (Data Distribution Service) is a communication protocol created for distributed sys-
tems, i.e. for applications consisting of several modules or services on different devices.
This characteristic makes it the ideal middleware for communication in robots, where
latency and precision in data exchange are essential requirements.

DDS is based on a model called Data-Centric Publish-Subscribe (DCPS).

2.3.1 DCPS
The DCPS model places the focus on the data itself. There are some applications (pub-
lishers) that transmit data via a certain topic and others (subscribers) that subscribe to
the same topic and receive the published data. This allows DDS to have flexible commu-
nication in which you can have independent publishers and subscribers even on a large
scale.

Four basic elements are defined in the DCPS model:

1. Publisher: are responsible for creating and configuring the DataWriter. DataWrit-
ers are entities that publish data and send it into the topic; they define the data that
they publish and their publication properties, such as frequency or priority.

31

Background Technologies

2. Subscriber: is the DCPS entity that receives the data of the topics it is subscribed
to. There are one or more DataReader that read and use the data, defining their
needs and the type of data they want to receive (i.e. only values exceeding a certain
threshold).

3. Topic: is the channel that connects Publishers with Subscribers. Thanks to the
TopicDescription, the topic can guarantee uniformity of data, ensuring that what is
sent is compatible with what is requested.

4. Domain: is a concept that brings together all publishers and subscribers exchang-
ing data in the various topics. An application participating in a domain is called
DomainParticipant. Each domain is identified by its own ID. DomainParticipants
are only able to see topics within their own Domain ID and therefore only commu-
nicate with other participants of the same ID. This separation is useful when you
have several applications that must work separately without interference.

Figure 2.6. DCPS model entities in the DDS Domain.[6]

It is important to specify that communication via the FastDDS protocol is only allowed
between DomainParticipants connected to the same subnetwork. Should we have one
application contained in a machine connected to a home network and a second application
contained in a machine connected to a different network (office network), even though they
set the same Domain ID, they will not be able to communicate with each other.

32

2.4 – Zenoh

2.3.2 Discovery
The discovery mechanisms provided by FastDDS enable the automatic search and match-
ing of DataWriter and DataReader among domain participants.

Discovery occurs in two stages:

1. Participant Discovery Phase (PDP): domain members identify themselves by
periodically sending announcement messages that include the unicast addresses (IP
and port) at which the domain participant listens to data traffic. Announcement
messages are sent using multicast addresses and ports calculated from the Domain
ID.

2. Endpoint Discovery Phase (EDP): In this phase, the DataWriters and DataRead-
ers identify each other, using the communication channels created during the PDP
and sharing information about the topic and type of data.

The default discovery mechanism is Simple Discovery and is based on two independent
protocols:

• Simple Participant Discovery Protocol (SPDP): is concerned with identifying
the DomainParticipant within a DDS domain.

• Simple Endpoint Discovery Protocol (SEDP): once a DomainParticipant has
been identified via SPDP, the SEDP protocol intervenes by initiating a data exchange
to discover the relevant DataWriter and DataReader.

With this method, the amount of discovery data increases quadratically as the number
of nodes increases. Specifically, in a system with n domain participants, each having r
readers and w writers, the amount of discovery traffic increases by n × (n − 1) × (r + w).

2.4 Zenoh
Zenoh [4] was born with the aim of solving the problems of existing protocols, which were
designed for specific use cases, creating ‘islands of connectivity’ that make interaction
between cloud, edge devices and microcontrollers difficult, if not impossible. An example
can be found in DDS, which was developed to offer an optimised pub/sub protocol for
applications operating on hardware connected via multicast (UDP/IP) to the same local
area network (LAN).

2.4.1 Protocol and abstractions
Zenoh is a Pub/Sub/Query protocol that allows working with moving data, static data
and calculations, while maintaining efficiency even on limited hardware and complex net-
works. Zenoh supports peer-to-peer as well as routed and brokered communication. As
a communication protocol, it is designed to operate flexibly on different layers of the
ISO/OSI model. Specifically, it can work with:

• Data Link Layer: is the layer responsible for the creation of data packets and
their direct transmission over physical connections such as Ethernet cables or Wi-
Fi. When Zenoh operates on this layer it does not require more complex network

33

Background Technologies

protocols, such as IP, reducing the data load.

• Network Layer: is responsible for routing, which is the choice of the best network
path to use to reach the destination. It enables data transmission using protocols
such as IP. Zenoh can exploit this layer to extend communication beyond the direct
link, adapting to more complex networks.

• Transport Layer: In this layer, the goal is to ensure that packets arrive in the
correct order without loss or error. Protocols such as TCP and UDP are used in this
layer, protocols also taken up and used by Zenoh.

Figure 2.7. Zenoh protocol stack positioning

Zenoh uses some key abstractions:

• Resources and Selectors: Zenoh operates with resources. A resource is a key-
value pair where the key is an array of feature arrays. A set of keys can be expressed
by a key selector.

• Publisher, Subscriber and Queryable: As mentioned earlier, Zenoh defines three
types of entities in the network:

– Publisher: is the origin of the resources corresponding to the key expression.

– Subscriber: is the destination of the resources corresponding to the key ex-
pression.

– Queryable: is a passive store of resources corresponding to the key expression.
It does not actively generate resources like the publisher, but stores them and
makes them available.

2.4.2 Discovery
While DDS uses discovery protocols in which the number of active nodes significantly
affects discovery traffic, since every time a publisher connects, it has to communicate its

34

2.4 – Zenoh

presence to all readers.
A lighter approach is used with Zenoh: nodes only advertise resource interests and connect
only with compatible readers, without wasting time with detailed notifications for each
individual node or connection. In this way, good performance can be achieved even with
a large number of active nodes. [7]

2.4.3 Deployment
As already mentioned in this section, Zenoh can handle different types of deployments.

• Peer-to-peer: default setting of Zenoh, in which , as with DDS, all nodes in the
local network can exchange data directly with each other without the need for cen-
tralized configurations. Applications in this mode perform both multicast and gossip
scouting:

– Multicast scouting: to find nearby applications and routers, applications join
the multicast group 224.0.0.224 - UDP port 7446 by broadcasting scouting
messages at this address. When they find a router or application in peer mode,
they immediately connect to it.

– Gossip scouting: in case multicast communications are not available, zenoh
forwards all discovered nodes and routers to the newly discovered applications.

• Client: Peer-to-peer communication may be undesirable for scalability reasons. So
the node can be configured to work in client mode, going to create a single session
with a router which will connect it with the rest of the system. Scouting is performed
in multicast mode.
Communication can be:

– Broked: there is a central broker who acts as an intermediary between the
nodes.

– Routed: in which data are routed directly by routers without the need for a
central broker.

Routed, compared to Broked, is more scalable and distributed, since it does not
depend on a single point of management.

Figure 2.8. Discovery types

35

Background Technologies

2.4.4 rmw_zenoh

It is an rmw (ROS 2 middleware) implementation based on Zenoh. It is compatible with
ROS 2 Rolling, Jazzy and Iron distros.

Design

The package rmw_zenoh_cpp maps the RMW API of ROS 2 to the Zenoh API, so that
users can use ROS 2 to send and receive data on Zenoh using APIs they already know.

• There is a Zenoh router running on the local system, which is used for discovery
and communication with other routers. This router is not used for communication
between clients, which is done through peer-to-peer connections.

• Each node, or group of nodes communicating with each other, is mapped to a single
Zenoh session. In this way one can have many different clients sharing the same
session.

• Data are sent and received via the zenoh API when the corresponding rmw API is
called.

Figure 2.9. Design

36

2.4 – Zenoh

For peer-to-peer discovery, rmw_zenoh_cpp needs a router to discover peers and forward
discovery information to other peers (gossip scouting). So there is a need for the Zenoh
router to be running.

Figure 2.10. Running node without router on

Setup and test

In order to have rmw_zenoh_cpp executable on our machine, a workspace has to be created,
the project downloaded and installed in ROS 2.

$ mkdir ~/ ws_rmw_zenoh /src -p && cd ~/ ws_rmw_zenoh /src
$ git clone https :// github.com/ros2/ rmw_zenoh .git
$ cd ~/ ws_rmw_zenoh
$ rosdep install --from -paths src --ignore -src --rosdistro <

DISTRO > -y # replace <DISTRO > with ROS 2 distro of choice
$ source /opt/ros/<DISTRO >/ setup.bash # replace <DISTRO > with

ROS 2 distro of choice
$ colcon build --cmake -args -DCMAKE_BUILD_TYPE = Release

With the goal of choosing rmw_zenoh_cpp as middleware, the file “.bashrc” is to be
edited with the following command:

$ echo "export RMW_IMPLEMENTATION = rmw_zenoh_cpp " >> ~/. bashrc

At present, the router must be launched by hand by the user, using the command:

terminal 1
$ source ~/ ws_rmw_zenoh / install /setup.bash

37

Background Technologies

$ ros2 run rmw_zenoh_cpp rmw_zenohd

Now, in two separate terminals on the same machine, the talker and listener can be run,
so that Zenoh’s operation can be verified:

terminal 2
$ ros2 run demo_nodes_cpp talker

terminal 3
$ ros2 run demo_nodes_cpp listener

Figure 2.11. Testing the performance of talker and listener on the same machine

If router crashes, peer-to-peer communications remain.

Configuration

rmw_zenoh uses two different configuration files to configure the Zenoh router and Zenoh
session. To set up a custom configuration file, the following command can be executed:

$ echo "export ZENOH_ROUTER_CONFIG_URI =$HOME/ routerconfig .
json5" >> ~/. bashrc

In order to establish a communication bridge between two hosts, it is possible to modify
the routerconfig.json5 of one of the hosts so that it connects to the other zenoh router
at startup. This configuration will be done in Chapter 3.4.

38

2.5 – VPN and Husarnet

2.5 VPN and Husarnet
A VPN (Virtual Private Network) is a network technology based on a secure, encrypted
connection through the public network. It is a virtual contact point that offers users
the advantage of sending and receiving data from other clients as if they were actually
connecting directly to the same private network.

2.5.1 Husarnet
During the development of this project, use was made of Husarnet, a peer-to-peer VPN
that aims to enable secure and direct communication between IoT devices or robots.
With having Husarnet connected devices can talk to each other without need for central-
ized servers and complex network configurations like port forwarding.

Since robotic applications demand some superior level of security as part of it, then
Husarnet is an ideal contender because the enlisted benefits using encryption protocols
makes Husarnet ideal cloud-based VPN used to secure the data. It works on multiple OS
and easy to configure with Docker, where an out of box image is available.

Setup and test

First of all, Husarnet is installed inside the machines that are to be connected.[10]

• In order to use this VPN you must create an account and log on to
https://app.husarnet.com/.

• Once inside create a network and give it a name.

• Once the network is created, it is possible to connect the elements that will become
part of the network.

As seen from Figure 2.12, communication via Husarnet occurs correctly between two
devices connected to two different networks.

Figure 2.12. Testing the performance of talker and listener via Husarnet

39

Background Technologies

2.6 Navigation 2
Nav2 represents a standard for autonomous navigation of mobile robots, and uses ROS
2 as the basic middleware. Conceptually, the Nav2 stack is simple; it guarantees the
movement of a mobile robot from a starting position to a goal position. It consists of
numerous packages, plugins, and libraries that provide the robot with the ability to move
autonomously even uncertain and dynamic environments, using advanced algorithms for
localization, planning, and motion control.[11]
Navigation tasks use a Behavior tree (BT) structure in which some nodes use ROS 2
action servers to perform tasks required by the tree condition.

2.6.1 Behavior Trees
Nowadays, decision trees are assuming a key role in the management of complex controls
for robots, enabling them to organize and simplify decision-making processes, thanks to
their ability to structure complex behaviors in a hierarchical and modular manner, making
the structure more scalable and understandable for humans.

A clear application example is given in Figure 2.13, in which the diagram represents a BT
for a robotic task in which one has to find the ball, catch it and place it.
As can be seen, there is a main structure, with a root node from which everything starts.
This is a sequence node, which means that its children must be completed in the order
specified by the arrow (in this case from left to right). Find Ball represents the first task,
in which the robot searches for the ball, while Place ball the last task, in which it places
the ball in a defined area.

Figure 2.13. Behavior tree of a specific application

The node Pick Ball represents a complex sub-diagram, in which you have another se-
quence node under which its children are also executed this time from left to right. It can

40

2.6 – Navigation 2

be seen that in this sub-diagram there are two nodes represented by a question mark “?”
which represent conditional checks that verify whether the previous action was successful
or not; e.g. it checks whether the ball was caught otherwise it tries to catch it and checks
again whether the computation was performed correctly; it repeats the process until the
ball is successfully caught.

2.6.2 Navigation Servers

As mentioned before, Nav2 has a modular structure, consisting of a number of packages
and algorithms that cooperate with the purpose of having autonomous navigation. The
BT Navigation Server loads, executes and monitors predefined Behavior trees, which, as
mentioned earlier, execute a series of Action Servers that allow the robot to move toward
a destination, avoid obstacles, and interact with environment and objects.

Figure 2.14. Nav2 architecture.

The main action servers used are: Planner Server, Controller Server, Behavior Server and
Smoother Server. These servers execute actions that are called by plugins present in the
Behavior Tree (BT) nodes. The action server callback invokes the selected algorithm,
identifying it by its name, which is associated with a specific algorithm configured in the
system.

41

Background Technologies

Planner Server

The task of this server is to calculate a valid and optimal path to reach from the current
pose to a target pose. Having access to the Global Costmap, it uses Path Planning algo-
rithms such as the Dijkstra’s Algorithm or the A* algorithm (previously explained
in Chapter 1.2.2). The modularity of the system allows developers to choose the global
planning algorithm best suited to their scenario, or to implement a custom one.

Controller Server

The Controller Server is tasked with ensuring that the robot follows the path calculated
by the Planner Server, translating the global path into high-level commands that enable
precise robot movement. With the help of sensors such as LiDAR, this Server can identify
and avoid dynamic obstacles.
The main controller servers used by Nav2 are:

• DWB Controller: DWA (Dynamic Window Approach) successor. Based on the
dynamic window, it optimizes speed and trajectory to ensure the robot avoids ob-
stacles and follows the path. It takes into account the robot’s dynamics (inertial
masses and speed limits) to ensure safe commands.

• Graceful Motion Controller: is designed for smooth and natural robot move-
ments, even in situations where sudden changes in direction or speed are required.
Useful for service or social robot applications, as it makes movement more “pleasant.”

• MPPI (Model Predictive Path Integral) Controller: is based on predictive
model optimization. It simulates several possible trajectories and selects the optimal
one considering robot dynamics, obstacles, and global path.

• RPP (Regulated Pure Pursuit) Controller: is based on the Pure Pursuit al-
gorithm, in which it follows a landmark (which updates us continuously) on the
planned path by adjusting speed and direction to have smooth movement. It is very
simple to set up and effective in non-complex environments.

• Rotation Shim Controller: it is responsible for handling precise rotations of the
robot to properly align it with the desired direction before moving. It is often used
by combining it with other controllers so as to ensure that the robot always starts
in the right direction.

• Waypoint Follower Controller: is ideal for following a sequence of predefined
waypoints. Useful in applications where the robot must follow very specific or pre-
determined trajectories.

Behavior Server

The purpose of this server is to make the system fault tolerant so that the robot can
use Recovery to recover from unknown faults/circumstances while navigating (dynamic
objects, transient obstacles). Unlike the Server Planner and Controller which only help
with local navigation within the known environment, the Recovery Server deals with any
unforeseen events to allow the robot to return to the route plan as soon as the problem is

42

2.6 – Navigation 2

removed. This may mean going in another direction or moving away from the target to
avoid blockage.

Smoother Server

This server aims to reduce trajectory inconsistency, so that for sudden turns, a smoother
path is achieved, while maximizing trajectory distance from obstacles and high-cost areas.

2.6.3 Robot Footprints
In Nav2, a robot footprint basically the geometrical representation of your robot i.e.
More precisely, the robot footprint is a geometric figure (typically circular or rectangular,
though it could also be any other complicated polygon) that defines an area of space in
its environment occupied by the physical geometry of the robot. It plays a crucial role
in planning the trajectory and movement of the robot to avoid or predict any potential
contact with obstacles.

2.6.4 State Estimation
Nav2 needs two main transformations to be provided in order to work: the from map
to odom transformation, which is done by a positioning system (localization, mapping,
SLAM). The second is the from odom to base_link transformation, which comes from
the robot’s odometry system.

Global Positioning: Localization and SLAM

This is the part of Navigation 2 that deals with locating the robot with respect to the
map. It therefore provides the system with the transformation map -> odom.
Nav2 uses the Monte-Carlo algorithm (AMCL) seen in Chapter 1.2.1 for localization with
a given map. In the case of not having an a priori map, this stack also provides a SLAM
Toolbox, which is useful for mapping unknown environments.

Odometry

The transform odom -> base_link is obtained using odometry provided by the robot.
Odometry is a technique used in robotics that estimates the robot’s position based on
data collected from its motion sensors (such as encoders or IMUs) or sensing sensors
(such as LiDAR or Sonar). Using the speed, angle of motion, and position of objects
over time, it calculates the change in the robot’s position relative to the global reference
system. However, while odometry helps provide a snapshot of the distance travelled, this
information can accumulate errors over time due to sensor drift. To reduce these errors,
filters, such as EKF (Chapter 1.2.1), are often integrated to improve the accuracy of
position estimation.

2.6.5 Environmental Representation
Environmental representation describes how a robot perceives and interprets its sur-
roundings, and is commonly implemented in the form of a cost map. A costmap is a

43

Background Technologies

two-dimensional grid in which each cell represents a cost that can indicate an unknown,
vacant, occupied or inflated state. This map is used to plan routes globally or to calculate
local control strategies through sampling.

Several layers of the costmap are implemented as modules that can be used through the
pluginlib framework, enabling the integration of data from sensors such as LiDAR. The
costmap layers are designed to detect and track obstacles in the environment, facilitating
collision avoidance through devices such as depth sensors or cameras.

In Navigation2 (Nav2), the costmap implementation is handled by a dedicated package
called nav2_costmap_2d. Unlike traditional costmaps, which are often monolithic, Nav2’s
is modular and divided into several layers. This layer structure allows various types of
obstacles in the environment to be represented.

The main layers of the costmap are three:

• Static layer: stores costs associated with fixed obstacles, such as walls or furniture,
that do not change over time.

• Obstacle layer: dynamically updates map cells as vacant or occupied, based on
data from sensors.

• Inflation layere: creates a safety zone around obstacles, preventing the robot from
getting too close. This layer generates a buffer area to reduce the risk of collisions.

This layered structure improves the flexibility and reliability of the system, allowing more
effective management of obstacles and safe navigation zones.

2.7 TF Tree
Many ROS packages require defining a robot transformation tree using the TF2 ROS
package. This tree establishes relationships between coordinate systems, considering
translations, rotations, and relative motions. For example, as seen in Figure 2.15, a
mobile robot with a laser sensor has two distinct frames: one at the center of the robot’s
base, called base_link, and one at the center of the mounted laser, called base_laser.
This configuration allows for proper integration and localization of data between robot
and sensors.

It is supposed to receive data from the laser, indicating the distance there is between the
wall and the base_laser frame. However, as evidenced by Figure 2.15, this information
does not correspond to the actual distance between the base_link frame and the wall,
making it inssufficient for proper robot navigation.

To solve this problem, it is necessary to transform this data, moving from the base_laser
frame to the base_link frame. This requires knowledge of the Cartesian distance between
the two frames, allowing for correct translation of the distance values (as can be seen from
Figure 2.16).

Therefore, it is essential to construct a correct structure of the TF tree, using information
about the position of the base_laser frame, obtained from the .xacro file in which the
robot model is defined.

44

2.7 – TF Tree

Figure 2.15. Frame reference scheme base_link and base_laser

Figure 2.16. Transformation from base_link to base_laser

In ROS 2, the TF diagram can be displayed using the following command:

$ ros2 run tf2_tools view_frames

A PDF file containing the graph of TF transformations active in the system is generated.
For the command to work properly, the tf2 node must be running.

45

Background Technologies

2.8 Hardware
This section provides technical details about the hardware components used in the project,
describing the fundamental devices for operating and controlling the robot, as well as the
sensors used for data collection.

2.8.1 Robotic platform
For this project, use was made of the Unitree Go1 Edu robotic platform, which has already
been described in Chapter 1.3.1.

The table with technical specifications is given below:

Feature Technical specifications

Dimensions
LxWxH (Stand) 0.645 * 0.28 * 0.4 m

LxWxH (Folded) 0.54 * 0.29 * 0.13 m

Weight 12 kg (with battery)

Playload 5 kg

Speed 0-3,7 m/s

Operating time 1-2 h

Maximum angle 35 deg

DOF Total 12, one leg 3

Power input 24 V, 4 A

Knee joint C1-8 x 1,5 ratio - 35,5 Nm

Body/thigh joints C1-8: 520 g, 23,70 Nm

Stereo depth camera 5 sets

Ultrasonic Sensor 4 sets

Processor 1 Nano + (2 Nano o 2 Nx)

Table 2.1. Unitree Go1 Edu technical specifications [19][16]

46

2.8 – Hardware

2.8.2 Intel NUC
The Intel NUC (Next Unit of Computing) is a compact and powerful mini-PC used as a
central processing unit to manage robot control and data flow from sensors. In the course
of this project, this mini-PC will be named “Computer” or “PC”.

The following is the Table 2.2 with the main features:

Feature Details

Model Intel NUC8i7BEH

CPU Intel Core i7-8559U

CPU Frequency Base: 2.7 GHz, Turbo: 4.5 GHz

Core/Thread 4 core, 8 thread

Architecture x86-64 (64-bit)

Cache L1: 256 KiB, L2: 1 MiB, L3: 8 MiB

RAM 32 GB DDR4 (2 x 16 GB Kingston, 2400 MHz)

Graphics Intel Iris Plus Graphics 655 (Integrated GPU)

Storage SSD NVMe Samsung 970 PRO 512 GB

Network Ports Gigabit Ethernet

Operating System Ubuntu 22.04.5 LTS

Ports I/O 1 USB-C (Thunderbolt 3), 4 USB 3.1,

1 HDMI 2.0a, 1 Ethernet, 1 SDXC slot

Audio Stereo output via audio jack 3.5mm

Dimension 117 x 112 x 51 mm

Power Consumption Fino a 28W (TDP CPU)

Table 2.2. Intel NUC8i7BEH Datasheet

47

Background Technologies

2.8.3 Raspberry Pi 4

The Raspberry Pi 4 is a low-cost, small microcomputer developed by the Raspberry Pi
Foundation. Its small size makes it ideal for use in this project, as it can be conveniently
placed on the back of the robot and used as a communication bridge between the robot
platform and the office network. It also handles the acquisition and processing of data
collected by the 2D LiDAR sensor.

Feature Details

Model Raspberry Pi 4 (4 GB RAM)

Processor Broadcom BCM2711, Quad-core Cortex-A72 (ARMv8) 64-bit

CPU Frequency 1.5 GHz

Cores/Threads 4 cores, 4 threads

Architecture ARMv8 (64-bit)

Cache L1: 32 KiB (per core), L2: 512 MiB (shared)

RAM Memory 4 GB LPDDR4-3200 SDRAM

Graphics Broadcom VideoCore VI (integrated GPU)

Storage Kingston 128 GB SD card (SDXC)

Network Ports Gigabit Ethernet, Wi-Fi 802.11ac (2.4 GHz and 5 GHz)

Operating System Ubuntu Server 22.04 LTS

I/O Ports 2 USB 3.0, 2 USB 2.0, 2 micro-HDMI, 1 Gb Ethernet, 40 GPIO

Audio Audio output via HDMI or 3.5mm audio jack

Table 2.3. Technical Specifications of the Raspberry Pi 4

2.8.4 NVIDIA Jetson

The NVIDIA Jetson series is one of the most powerful platforms for parallel computing
and real-time processing, particularly suitable for artificial intelligence and robotics ap-
plications. Two models of the series were used in the project: the Jetson Nano and the
Jetson Xavier.

48

2.8 – Hardware

Jetson Nano

The Jetson Nano is used in Chapter 3 to externally simulate the Jetson present inside the
robot.

The following is the Table 2.4 with the main features:

Feature Description

Model NVIDIA Jetson Nano (P3450)

Processor Quad-Core ARM Cortex-A57 MPCore

CPU Core/Thread 4 Cores / 4 Threads

CPU Frequency 1.43 GHz

GPU 128-core NVIDIA Maxwell

RAM 4 GB LPDDR4

Storage 64 GB Kingston MicroSD

Supported Operating Systems Ubuntu 18.04 (Jetpack base)

I/O Interfaces - 1x USB 3.0, 3x USB 2.0

- HDMI 2.0 and DisplayPort 1.2

- Gigabit Ethernet

- GPIO, I2C, I2S, SPI, UART

Connectivity Ethernet 10/100/1000 Mbps

Hardware Accelerators - AI acceleration with TensorRT

- Multimedia acceleration (H.264/H.265)

- Support for deep neural networks

Dimensions 100 mm x 80 mm x 29 mm

Power Consumption - Low-power mode: 5W

- Maximum mode: 10W

Software Compatibility - NVIDIA JetPack SDK

- Support for TensorFlow, PyTorch, OpenCV

Table 2.4. Technical specifications of the NVIDIA Jetson Nano

49

Background Technologies

Jetson Xavier

The Jetson Xavier is an advanced processing platform that offers higher performance than
the Jetson Nano.

Feature Description

Model NVIDIA Jetson Xavier NX

Processor Hexa-Core ARM v8.2 64-bit Carmel CPU

CPU Cores/Threads 6 Cores / 6 Threads

CPU Frequency Up to 1.9 GHz

GPU 384-core NVIDIA Volta with 48 Tensor Cores

RAM Memory 8 GB LPDDR4x (128-bit bus)

Storage 64 GB Kingston MicroSD

Supported Operating Systems Ubuntu 18.04 (Jetpack-based)

I/O Interfaces - 2x USB 3.1, 4x USB 2.0

- HDMI 2.0 and DisplayPort 1.4

- Gigabit Ethernet

- GPIO, I2C, I2S, SPI, UART

Connectivity Ethernet 10/100/1000 Mbps

Hardware Accelerators - AI acceleration with TensorRT

- Multimedia acceleration (H.264/H.265)

- Support for deep neural networks

Dimensions 70 mm x 45 mm

Power Consumption - Low power mode: 10W

- Maximum mode: 15W

Software Compatibility - NVIDIA JetPack SDK

- Support for TensorFlow, PyTorch, OpenCV

Table 2.5. Technical Specifications of the NVIDIA Jetson Xavier NX

50

2.8 – Hardware

2.8.5 LiDAR 2D
The LiDAR (Light Detection and Ranging) sensor is one of the most widely used sensors
in robotic applications, useful for mapping and navigation.

Its operation is similar to sonar, except that instead of using sound waves, it uses laser
pulses to calculate distances between the LiDAR and possible obstacles.
Distances are calculated based on the Time of Flight (ToF) principle, which is how long
it takes the laser pulse to leave and return from the LiDAR.

Specifically, as seen in Figure 2.17, a laser pulse is emitted and projected into the envi-
ronment. When the light beam hits a surface, some of its energy is reflected back (the
amount of reflected light depends on the properties of the surface, such as color, material,
and angle of incidence). Once the light beam returns to the sensor, the time it takes for
the light to return is calculated, using the formula d = c×t

2 , where d is the distance to the
object, c the speed of light and t the time of flight.

Figure 2.17. LiDAR operating diagram

RPLIDAR A3 is used in this project, Figure 2.18 .

Figure 2.18. LiDAR dimensions

51

Background Technologies

The following is the Table 2.6 with the main features:

Feature Details

Model RPLIDAR A3

Scanner Type Laser Range Scanner

Communication Interface TTL UART

Communication Speed 256000 bps

System Voltage 5V

System Current 450mA - 600mA

Power Consumption 2.25W - 3W

Angular Range 360°

Angular Resolution 0.225°

Sampling Rate 16000 samples/s (Advanced Mode)

Measurement Range (White Object) 25m (Advanced Mode), 20m (Outdoor Mode)

Measurement Range (Dark Object) 10m

Operating Temperature Range 0℃ - 40℃

Accuracy 1% of distance (≤ 3m)

2% of distance (3 - 5m)

2.5% of distance (5-25m)

Scanning Rate 15 Hz (Adjustable between 10 Hz and 20 Hz)

Distance Resolution ≤ 1% (≤ 12m), ≤ 2% (12m ∼ 25m)

Output Interface UART Serial (3.3V)

Operation Mode Advanced Mode (Indoor Use)

Outdoor Mode (For outdoor use)

Weight 190g

Dimensions (H x W) 41 mm x 76 mm

Table 2.6. Technical Specifications of the RPLIDAR A3

52

Chapter 3

Network Configuration

This chapter approached the problem of getting the computer to communicate with the
robotic platform. It proceeded in five stages, a first one in which the problem is analysed
and possible solutions are sought. In a second phase, the robotic platform is configured by
making it accessible to the office network and the computer. In a third phase, the network
configuration of ROS 2 is tested using FastDDS, a solution, however, that presented quite
a few problems. In the fourth phase, better communication performance is achieved using
Zenoh.
Then, in the fifth and final phase, the best solution is applied to the robotic platform and
the proper functioning of the communication is finally tested.

3.1 Problem analysis
As seen in Chapter 2, in ROS 2 communication between nodes only takes place if the
nodes are within the same ROS_DOMAIN_ID and in the same subnetwork. Go1 robot, as
seen in Figure 3.1 provided by the manufacturer, has its own subnet 192.168.123.xx.

Figure 3.1. System diagram

53

Network Configuration

Therefore, in order to communicate with the robot, the producer gives instructions to
connect the computer via cable to the gigabit ethernet port on the back of the robot (port
7 in Figure 3.2) in order to proceed with programming. Uncomfortable and discarded
solution.

Figure 3.2. Schematic diagram of the back interface Go1 [18]

Thus, for more convenient programming and navigation, it is preferable not to have the
PC directly connected to the robot; for this purpose, we chose to use a Raspberry Pi 4,
connecting it via cable to the GO1’s Ethernet port and via wi-fi to the laboratory network.
This makes the robot’s internal boards visible to the computer.

This problem was addressed and solved in section 3.2 of this chapter, where the connection
was initially tested with a Jetson Nano instead of the robot, in order to ensure correct
operation of the bridge without jeopardising the software integrity of the robot. The entire
configuration is then applied to the robotic platform.

However, in this way, the Jetson and the computer are in two different subnets, so com-
munication of ROS nodes is not possible unless appropriate measures are taken.

Initially, communication in ROS was tested using a VPN (Husarnet) and the FastDDS
middleware - section 3.3 of this chapter.

Finally, ROS communication was chosen using the Zenoh middelware - section 3.4 - to
overcome the problems present in FastDDS.

54

3.2 – Network configuration on Raspberry Pi 4

3.2 Network configuration on Raspberry Pi 4
The purpose of this configuration is to connect the Jetson with the office network and
share the Internet connection that comes through Raspberry pi 4 from the wi-fi wlan0
interface to the eth0 Ethernet port.

Figure 3.3. Raspberry bridge scheme

Tests were carried out to verify the functioning of the bridge, using a Jetson Nano instead
of the robot. Once the configuration was found to be working properly, it was applied to
the robot.

3.2.1 Netplan configuration
Netplan is a framework for declaratively configuring the network through YAML files. It
acts as an intermediary between user configuration and network backends, such as Net-
work Manager or systemd-networkd, applying these configurations to the underlying ser-
vices. Netplan reads network configurations from “/etc/netplan*.yaml” and during
boot-loading processes them by generating configuration files specific to the config back-
end and then passing control of the devices to a particular networking daemon.

Figure 3.4. Netplan operation

/etc/netplan/01-LinksWifi.yaml

1 network :
2 version : 2
3 renderer : NetworkManager
4 wifis:
5 wlan0:

55

Network Configuration

6 dhcp4: no
7 addresses : [192.168.50.244/24]
8 access -points:
9 " wifi_ssid ":

10 password : " ********** "

Listing 3.1. Wi-Fi Netplan configuration

In this first Netplan configuration (Listing 3.1), wi-fi credentials are entered to allow the
Raspberry pi 4 internet access.

/etc/netplan/20-Ethernet.yaml

1 network :
2 version : 2
3 renderer : NetworkManager
4 ethernets :
5 eth0:
6 dhcp4: no
7 addresses : [192.168.123.1/24]
8 nameservers :
9 addresses : [8.8.8.8 , 8.8.4.4]

Listing 3.2. Ethernet Netplan configuration

In this Netplan configuration (Listing 3.2), the router IP of the subnetwork that the
raspberry is going to create is set in row 7.

3.2.2 Dnsmasq
To proceed with the creation of the subnetwork on Raspberry Pi 4, it is chosen to use
Dsnmasq.

sudo apt -get install -y dnsmasq

Dnsmasq is an opensource software developed to provide network infrastructure: DNS,
DHCP, router advertisement and network boot.

• DNS: can behave as a DNS caching server and forwarder. It means that it caches
DNS responses, speeding up subsequent resolutions of the same domain names and
reducing the load on upstream DNS servers.

• DHCP: Offers DHCP services, dynamically assigning IP addresses to devices within
the local network.

• Router Advertisement: Dnsmasq supports router advertisement for IPv6 net-
works, helping devices automatically configure their IPv6 network settings.

• Network Boot: Supports booting devices on the local network via PXE (Preboot
Execution Environment), useful for operating system installations or booting devices
without local media.

56

3.2 – Network configuration on Raspberry Pi 4

Below is the configuration created for Dnsmasq (Listing 3.3)

/etc/dnsmasq.conf

1 interface =eth0
2 listen - address =192.168.123.1
3 bind - interfaces
4 server =8.8.8.8
5 domain -needed
6 bogus -priv
7 dhcp -range =192.168.123.24 ,192.168.123.49 ,12 h

Listing 3.3. Subnet dnsmasq configuration

3.2.3 IP Forwarding and Firewall
In order to enable package forwarding between interfaces, the file "/etc/sysctl.conf" is
modified by removing the “#” from the beginning of the line with net.ipv4.ip_forward=1,
and the machine needs to be restarted.

The following terminal commands are executed:

$ sudo iptables -t nat -A POSTROUTING -o wlan0 -j MASQUERADE
$ sudo iptables -A FORWARD -i wlan0 -o eth0 -m state --state

RELATED , ESTABLISHED -j ACCEPT
$ sudo iptables -A FORWARD -i eth0 -o wlan0 -j ACCEPT

1. The first command adds a rule to the iptables NAT table that applies to packets
that are going to leave the wlan0 interface. This rule changes the source IP address
of the packets to match the IP address of the wlan0 interface (using masquerading).

2. The second command adds a rule to the FORWARD chain of iptables that applies
to packets entering from the wlan0 interface and exiting from the eth0 interface.
This rule accepts packets that are part of already established connections or related
to existing connections.

3. The last command adds a rule to the FORWARD chain of iptables that allows
packets to pass through the system from eth0 interface to wlan0 interface. In other
words, packets that arrive from the eth0 interface and are destined for the wlan0
interface will be accepted and then forwarded.

With the purpose of saving this configuration by making it always active on the next
reboots of the machine, the following command is executed:

$ sudo apt -get install iptables - persistent
$ sudo iptables -save > /etc/ iptables /rules.v4
$ sudo netfilter - persistent save

This command is executed whenever adding iptables rules that want to be always active
on every reboot.

57

Network Configuration

3.2.4 Testing
Once the configurations on the Raspberry are complete, the Jetson Nano is connected
(as in the diagram in Figure 3.3) and it is verified that it can actually be read by the
Raspberry using the command: arp -n -i eth0.
When the IP of the Jetson is identified, it is accessed via SSH and it is verified that the
board is actually connected to the Internet by executing the command: ping google.com.

Figure 3.5. Jetson ping google.com

58

3.3 – Implementation of communication via FastDDS middleware

3.3 Implementation of communication via FastDDS
middleware

As seen in Chapter 2, FastDDS is a middleware standard for real-time communication
used by ROS2. Therefore, this solution was initially used.

3.3.1 Container Creation
A container was set up inside the Jetson Nano and on the computer. The reason for this
is that the robotic platform has computers with old Ubuntu operating systems inside, so
they cannot support the recent versions of ROS2. Using docker solves this problem and
makes it possible to work more cleanly, which is the reason why docker is also used on
computers.

A custom container was built using using the Dockerfile in the Appendix A, without
making any project-specific changes, just to test how the communication between nodes
works. The cpp_pubsub node from the ROS2 tutorials was built inside the container,
which is an ideal tool for testing.

It is specified that the Dockerfile for AMD64 platforms is identical except for the first
line, which specifies the source image as FROM_IMAGE=osrf/ros:humble-desktop.

3.3.2 First communication test
With the containers ready on Jetson and computer, the ROS_DOMAIN_ID in channel 4 is
set on both devices and the talker and listener nodes are launched respectively, as seen in
the Figure 3.6.

Figure 3.6. Communication scheme

59

Network Configuration

As expected, the two nodes are unable to communicate with each other, as they are
in two different subnets. In the first instance, an attempt was made to forward the
ROS_DOMAIN_ID traffic via the specific port in which FastDDS communicates. After several
failed attempts, communication could not be established.

However, it was observed that when launching a talker node in the bridging Raspberry
Pi 4, its topic is visible from both devices (Jetson and PC). Various communication tests
are carried out and the following results are obtained:

1. Jetson talker: Raspberry reads and listens the topic. PC cannot read and listen
the topic.

2. PC talker: Raspberry reads and listens the topic. Jetson cannot read and listen
the topic.

3. Raspberry talker: Jetson reads and listens the topic. PC reads and listens to the
topic.

Figure 3.7. First communication test

This result shows that the Raspberry can listen to both subnets, but cannot forward and
unify them.

60

3.3 – Implementation of communication via FastDDS middleware

3.3.3 Second communication test
Since a direct port-forward connection is not feasible, an attempt was made to proceed
using the Husarnet VPN. Chapter 2.6 explains specifically what VPNs are.

In order to use Husarnet, configuration changes had to be made to the Dockerfile and
docker-compose, so that a husarnet container could be pulled up in parallel, through
which the main container takes the service for the network configuration.

The Dockerfile is the same in the Appendix A and docker-compose is in the Appendix D.

In addition to configuring the machines, Husarnet requires configuration on the site, going
to create an account and creating a network - in this specific case called go1_network. On
this page all devices that connect to the network are visible, showing their name, status
and address.

Figure 3.8. Graphical user interface of the Husarnet site.

With this new configuration, as can be seen from the Figure 3.9, the Jetson was able to
communicate with the computer.

Figure 3.9. Communication scheme via Husarnet.

61

Network Configuration

Communications problems began to emerge from the outset: the domain did not syn-
chronise immediately, and it was necessary to change channels several times before proper
communication was established.
Communication does not remain stable and, as the number of topics increases, it is not
possible to see all the topics in the domain. Probably, FastDDS loses packets when passing
through the VPN.

This solution was discarded due to the low reliability of the results.

3.4 Networking with Zenoh middleware
As mentioned in Chapter 2, FastDDS is the standard for ROS2, so Zenoh was not ini-
tially considered as a possible solution. But, on analysis of the GitHub repository
rmw_zenoh, it was seen that the latter specifically addresses and solves the problem
with this configuration.

3.4.1 Dockerfile changes
In order to apply this configuration, changes must be made to the Dockerfile to install the
repository under consideration and to change the middleware protocol used by ROS2 for
communication.

The fastdds.xml file has been replaced by the routerconfig.json5 file, the latter of
which is needed within the PC and Jestson in order to define a communication bridge
between them and the Raspberry, by entering the raspberry’s ip address and the relevant
port used by zenoh on line 18.
The configuration used was taken from the rmw_zenoh repository, in the directory:
rmw_zenoh/rmw_zenoh_cpp/config/DEFAULT_RMW_ZENOH_ROUTER_CONFIG.json5 and re-
named to routerconfig.json5.
Lines 14 to 20 of the routerconfig.json5 of the PC and the Jetson are shown in list-
ing 3.4 and listing 3.5.

16 connect : {
17 endpoints : [
18 "tcp /192.168.50.244:7447 "
19],
20 },

Listing 3.4. PC’s routerconfig.json5

16 connect : {
17 endpoints : [
18 "tcp /192.168.123.1:7447 "
19],
20 },

Listing 3.5. Jetson’s routerconfig.json5

62

3.4 – Networking with Zenoh middleware

3.4.2 Use of Zenoh
In contrast to previous network configurations, in this setup the Raspberry Pi assumes a
more active role, functioning as a ’bridge’ that that connects the client router inside the
container_pc with the client router inside the container_jetson.

Figure 3.10. Communication scheme using Zenoh.

Below are the operating commands for ROS2 running through zenoh.

1. A terminal is opened on the container_raspberry and the following command is
executed:

$ ros2 run rmw_zenoh_cpp rmw_zenohd

This node is used to run the client router zenoh, which is essential for discovering
nodes, and which turns on the router - considered to be the main router - to connect
client routers. As mentioned in Chapter 2.4.4, without this node active, any ROS2
command would produce the error shown in Figure 2.10.

2. Step 1 is also repeated in container_pc and container_jetson.

3. Next, the talker node is executed on a new terminal of the container_jetson and
the listener node on a new terminal of the container_pc.

As can be seen from Figure 3.11, the two nodes communicate correctly.

63

Network Configuration

Figure 3.11. Communication between Jetson and PC.

3.4.3 Achievements
The results obtained with this middleware meet the requirements of the project, managing
to overcome the limitations encountered with FastDDS, achieving stable and efficient
communication between the devices involved.
Configuration through client routers, deployed in the various containers, consolidated the
Raspberry Pi as a bridging node, facilitating a distributed network in which Jetson and
PC devices communicate without errors. Therefore, Zenoh was confirmed as the best
choice for rmw in this context.

64

Chapter 4

Robot implementation

In this chapter, the implementation of the project on the robot platform will be described
and explained, up to the achievement of the project purpose.

In the first part, the networking configuration developed in the previous chapter is carried
out, testing and verifying the effective communication between the PC and the robot.
Next, the packages required to control the robot with ROS 2 are installed and executed,
allowing the platform to be controlled from the computer.
Finally, NAV 2 is implemented and configured, successfully testing autonomous naviga-
tion.

4.1 Robotic platform preparation
In order to apply the configuration tested in the previous chapter, the robot hardware
must initially be prepared, proceeding with the connections and networking.

4.1.1 Assembly of the support structure and positioning of elec-
tronic components

In order to allow the robot’s navigation to function correctly, it is necessary to place the
Raspberry on the back of the robot, along with a 2D LiDAR and a battery to power both.
Therefore, a structure built on three levels is set up: on the first level the Raspberry is
placed, on the upper level the battery with the surplus of cables is placed, and on the last
level the 2D LiDAR is placed.

Figure 4.1 shows the picture of the structure on the robot.

Figure 4.2 shows the configuration created with the position coordinates of the 2D LiDAR
with respect to the robot’s reference system. These coordinates will then be used in
Chapter 4.3.

65

Robot implementation

Figure 4.1. Photos of assembled structure

Figure 4.2. LiDAR position scheme

4.1.2 Creating robot networks

In order to connect the robot platform to the office network, the configuration developed
in Chapter 3 is used, choosing Zenoh as the middleware.
Then, the Raspberry Pi 4 is connected to the robot’s Ethernet port (shown in Figure 3.2)
allowing access to the robot’s internal subnet.

For the configuration of the robot, the containers drawn in Chapter 3 for the Jetson, the
Raspberry and the PC will be reused.

66

4.1 – Robotic platform preparation

Access to internal robot boards and docker activation

With all devices switched on, access is gained from the computer via SSH to the Raspberry
Pi, previously configured in Chapter 3. The command arp -n -i eth0 is executed, in
order to see the visible boards connected to the eth0 interface.

Figure 4.3. List of connected boards

As can be seen from Figure 4.3, all the boards of the Unitree Go1 were connected to the
network created by the Raspberry. In order to create a connection between robot and PC,
one of these 4 boards must be selected. The Jetson Xavier Series - IP 192.168.123.15 -
was chosen as it offers more computing power and storage space than the others.

To make this board accessible to the computer without having to go through the Rasp-
berry’s terminal each time, port forwarding is carried out by executing the following
command on the Raspberry:

$ sudo iptables -t nat -A PREROUTING -p tcp --dport 4015 -j
DNAT --to - destination 192.168.123.15:22

$ sudo iptables -t nat -A POSTROUTING -d 192.168.123.15 -j
MASQUERADE

Then the board can be accessed directly by typing in the chosen port and the IP of the
Raspberry:

$ ssh -p 4015 unitree@192 .168.50.244

Inside the Jetson, to access the Internet, it is necessary to configure the Raspberry’s IP
as the default gateway, as it routes the network’s data traffic.

$ sudo ip route add default via 192.168.123.1 dev eth0

Since this board, as mentioned in Chapter 2.8.4, provides an outdated operating system,
it is not possible to install the latest version of ROS 2 Jazzy on it. Therefore, Docker is
installed and a container is created, using the Dockerfile previously used in Chapter 3.4.1.

67

Robot implementation

ROS communication test between PC and robot

Once all the required containers have been activated, the Chapter 3.4.2 test is performed.
Figure 4.4 shows the results obtained.

Figure 4.4. Pub/Sub communication test

Having established a communication connection between the PC and the robot, the next
step can now be taken.

4.2 Moving the robot via PC

The establishment of communication between the PC and the robot allows the platform’s
movements to be controlled by accessing the unitree_legged_sdk[17].

The Unitree Go1 robot has a software architecture that includes native support for ROS
1. Subsequently, Unitree Robotics made the unitree_ros2_to_real repository available
on GitHub [20], which allows the robot to be controlled via ROS 2 by sending UDP
commands. This solution allows both low-level control, giving access to all the robot’s
joints, and high-level control, coordinating the robot’s direction and speed of travel.
In this project, only high-level control will be used.

68

4.2 – Moving the robot via PC

4.2.1 Installation and execution of the nodes required for com-
munication with the robot

The GitHub repository of katie-hughes unitree_ros2 [9], folk from Unitree’s unitree_ros2
package with some modifications that make it easier to add custom controls.

Below are the commands used to install the unitree_ros2 package inside the robot’s
Jetson board container.

$ git clone https :// github.com/ GabrieleCesare /lcm -1.4.0. git
$ cd lcm -1.4.0
$ mkdir build
$ cd build
$ sudo cmake ..
$ sudo make
$ sudo make install # this will install lcm
$ sudo ldconfig -v # updates the shared library cache
$ cd ../..

$ mkdir -p unitree_ws /src
$ cd unitree_ws /src
$ git clone https :// github.com/katie -hughes/ unitree_ros2 .git
$ cd ..
$ colcon build

Errors were encountered during the installation of lcm. Errors resolved by editing the file
lcm-python/module.c replacing lines 46, 47 and 48 with:

46 pylcmeventlog_type . tp_base = & PyType_Type ;
47 pylcm_type . tp_base = & PyType_Type ;
48 pylcm_subscription_type . tp_base = & PyType_Type ;

With this package, the udp_high node can be launched. This is a C++ node designed
for passing high-level UDP commands and states. It subscribes to the high_cmd topic,
converts the commands into a UDP message and sends it to Go1. It publishes the state
(received via UDP from Go1) in the topic high_state.

$ ros2 launch unitree_legged_real high.launch.py

The diagram of the Figure 4.5 shows how it works.

The execution of this launch also allows the activation of the launch load_go1.launch.py,
responsible for the publication of the robot’s TF Tree through the topics /tf and
/tf_static. It is therefore necessary to define, within the robot.xacro file, the structure
of the parent-child relationships between the frames of the robot. As seen in Chapter 2.7,
in the TF Tree it is essential to specify the Cartesian position of the LiDAR (base_laser)
with respect to the robot’s main reference system (base_link). Therefore, with reference
to the LiDAR mounting position shown in Figure 4.1, we modify the robot.xacro in lines

69

Robot implementation

Figure 4.5. Schema esecuzione nodo udp_high

6, 7, 8 and 9 by activating the condition for Nav2 and defining the Cartesian coordinates
of the LiDAR position:

6 <xacro:arg name=" use_nav2_links " default ="true"/>
7 <xacro:arg name=" lidar_x_offset " default ="0.085"/>
8 <xacro:arg name=" lidar_y_offset " default ="0.0"/>
9 <xacro:arg name=" lidar_z_offset " default ="0.20"/>

unitree_nav

In order to control the robot’s movements, one needs to install a further package, again
developed by katie-hughes, which allows navigation. The unitree_nav repository from
GitHub [8] is installed in the same workspace that was previously created.

$ cd unitree_ws /src
$ git clone https :// github.com/ngmor/ unitree_nav .git
$ cd ..
$ sudo apt install python3 - vcstool
$ vcs import < src/ unitree_nav /nav.repos
$ cd src/ rslidar_sdk_ros2
$ git submodule init
$ git submodule update
$ cd ../..
$ sudo apt -get install -y libpcap -dev
$ sudo apt install ros -jazzy -nav2 -msgs
$ sudo apt install python3 -colcon -common - extensions
$ colcon build

70

4.2 – Moving the robot via PC

This package launches the cmd_processor node, which is responsible for handling com-
mands and converting them into HighCmd messages that can be read by the high-level
UDP node udp_high and then sent to Go1 for motion control. This node processes the
messages geometry_msgs/Twist sent in the topic cmd_vel to make the robot move. It
also provides various services to activate functions built into Go1. The most important
services include lay_down to command the robot to the rest position (lying down) and
stand_up to raise the robot to a condition that allows it to move. This node is essential
in order to work with the Nav 2 stack.

$ ros2 run unitree_nav cmd_processor

The diagram of the Figure 4.6 shows how it works.

Figure 4.6. Node Execution Diagram cmd_processor

Both nodes can be activated with the launch file control.launch.py inside the project
unitree_nav, specifying that Rviz is not needed.

$ ros2 launch unitree_nav control .launch.py use_rviz := false

Important consideration: when the robot platform is switched on, it always has the date
and time of its last switch-off. It is therefore necessary to align its time with the other
devices by running a sudo apt-get update from the terminal each time the robot is
powered up.
Without this, communication errors would occur when trying to run Nav2.

71

Robot implementation

4.2.2 Test driving the robot with the computer keyboard
Once the robotics platform is ready and all nodes and topics are switched on and active,
the control can be performed from the computer.
From the container on the PC it is firstly checked that all topics are active. The list of
topics is shown in Figure 4.7.

Figure 4.7. Topic list

From the computer, the teleop_twist_keyboard node is executed, allowing the user to
drive the robot via the computer keyboard.
$ ros2 run teleop_twist_keyboard teleop_twist_keyboard

The objectives of this section were fully achieved, allowing the robot to be controlled via
the keyboard.

4.3 Robot Control with Navigation 2
The final phase of the project, in which autonomous navigation using the Navigation 2
stack is configured and enabled, is carried out.

First of all, changes must be made to the Dockerfile used to build the container on the PC,
since the version for the Jazzy distro of NAV 2 must be installed. The updated Dockerfile
is listed in Appendix B.

The container is run and a first step is to create a nav2_param.yaml file in which to
customise the values of the parameters that Nav2 needs to function. The corrected

72

4.3 – Robot Control with Navigation 2

nav2_param.yaml is listed in the Appendix F.
The main customised parameters are:

• all definitions of use_simple_time are set to False.

• Row 29: it is defined as OmniMotionModel as a type of robot model. This is because
the Unitree Go1 robot is able to move in any direction in the plane (x, y) and rotate
around its axis (yaw) simultaneously.

• Row 111: the DWWBLocalPlanner is set as the FollowPath plugin, this is because
the robot is currently unable to move using the MPPIController.

• row 164 and 213: The shape and size of the robot footprint is defined: "[[0.410,
0.350], [0.410, -0.350], [-0.410, -0.350], [-0.410, 0.350]]".

• row 179 and 220: the observation resource scan is defined. The alternative scan3d
is chosen in case a 3D LiDAR is fitted.

4.3.1 2D LiDAR and Odometry node execution
As mentioned in Chapter 2.6.2, navigation needs a source of information about the ex-
ternal environment. This information comes from the 2D LiDAR previously presented in
Chapter 2.8.5. This sensor was connected to the Raspberry Pi, so it was chosen to run
the node in the container inside the Raspberry.

In order to make the USB port where the sensor is connected accessible to the container, it
was necessary to modify the docker-compose.yaml by specifying which device to connect.
This specification can be seen in row 53 of the Apendix E.
Having made this change, the container is rebuilt and the user is given permissions to
access this interface with the following command:
$ sudo chmod 777 /dev/ ttyUSB0

Now the node responsible for activating LiDAR must be installed and then executed. The
package sllidar_ros2 from the GitHub [21] repository is downloaded and installed.

The node is executed with the following command:
$ ros2 launch sllidar_ros2 sllidar_a3_launch .py frame_id :=

base_laser

As can be seen from the command, it defined the frame_id by calling it base_laser.
This is because within the BT located in the robot.xacro file, in lines between 67 and
72 below, the link name is defined as base_laser.

67 <link name=" base_laser " />
68 <joint name=" base_link_to_lidar " type="fixed">
69 <origin rpy="0 0 0" xyz="$(arg lidar_x_offset) $(arg

lidar_y_offset) $(arg lidar_z_offset)"/>
70 <parent link=" base_link "/>
71 <child link=" base_laser "/>
72 </joint >

73

Robot implementation

Odometry

However, the navigation needs information regarding odometry in order to work. The
robotics platform does not give access to this information, so a repository from GitHub [1]
that estimates of 2D odometry based on planar laser scans was chosen. It is decided to
download and install this package inside the PC container, though it going to modify the
file launch rf2o_laser_odometry.launch.py line 26 in the following way ’odom_topic’
: ’/odom’. This will make sure that when the node is launched it will create a topic
named /odom, a nomenclature recognized by Nav2.
The node is run with the following command:

$ ros2 launch rf2o_laser_odometry rf2o_laser_odometry .launch.
py

4.3.2 Nav2 execution
All the necessary packages are installed and all the nodes have been launched. Now it is
possible to proceed by going to run Nav2 with the following command:

$ ros2 launch nav2_bringup bringup_launch .py params_file :=/
home/demo -csc/ nav2_params .yaml map :=/ home/demo -csc/
csc_office .yaml use_sim_time := False autostart := False

It can be seen that along with the execution of bringup_launch.py is specified the
directory of the file nav2_params.yaml, previously created and reported in Appendix F,
and the directory where to find the map in which the robot is to navigate.

Running this launcher allows to apply the parameters set by going to call all the key nodes
for autonomous robot navigation.

Now, in order to run Nav2, Rviz is used as the visualization and command tools. It is run
with the command:

ros2 run rviz2 rviz2 -d install / nav2_bringup /share/
nav2_bringup /rviz/ nav2_default_view .rviz

Running this command, the option “-d” allows to specify an Rviz2 configuration file set
to have an interface to Nav2. If no changes were made, the configuration would have
errors, so lines 28 and 29 should be deleted.

So, as seen from Figure 4.8, the office map has opened and everything is ready to start
autonomous navigation.

74

4.3 – Robot Control with Navigation 2

Figure 4.8. Nav2 Rviz view

Autonomous navigation test

After providing the initial 2D Pose Estimate of the robot, the costmap layers are
activated and the LiDAR scans become visible on Rviz. Then the Navigation2 Goal is
defined and immediately the planned path appears on the map. The robot starts to move
following that path.

However, it is noticed that the robot’s movements are not smooth, but are rather uncertain
and jerky. This occurs because Nav2’s frequency of issuing motion commands is too low
to ensure smooth movement. In the case of the TurtleBot, this does not happen because
the robot executes the first movement command (e.g., in a straight line) until it receives
a new command to stop or change direction. In the case of the Unitree Go1 control, the
situation is different: the platform moves in the indicated direction until it receives a new
motion command. The instant the command ceases, the robot stops instantly.

In order to minimize this inconvenience, we went to change the command frequency pa-
rameter in the :

navigation2 / nav2_bt_navigator / behavior_trees /
navigate_to_pose_w_replanning_and_recovery .xml

It goes to modify the RateController in line 13 by setting it to 30 Hz.

This modification improved the motion of the robot, but did not achieve an optimal result.

75

Robot implementation

4.3.3 Achievements
As can be seen from the Figures 4.9, the robot reaches the goal; however, once it arrives
at the destination point, the inaccuracy of the odometry node of the actual position
calculation causes the robot to keep moving and rotating to align with the position and
pose defined in the Navigation2 Goal.

Figure 4.9. Set of photos of navigation to goal

76

Conclusions

The project reached its conclusion by hitting its intended goal of integrating an au-
tonomous navigation system on the Unitree Go1 robotic platform through the use of
the Navigation 2 stack.

Although the path was also characterized by difficulties and unsuccessful attempts, each
obstacle faced helped to identify the optimal solution, allowing all the problems encoun-
tered to be successfully overcome.

This study consisted of several phases, going first to address and solve the communication
problem between the robotic platform and the computer. At this stage, important limita-
tions in the ROS 2 FastDDS communication protocol emerged, which required time and
effort to find appropriate solutions. An optimal solution was found with the rmw Zenoh.
In the second phase, the Nav2 stack was installed and configured, allowing the robot
to have its own autonomous navigation. Even at this stage the work was not without
obstacles, but in the end the goal was achieved.

Although the results obtained demonstrate the effectiveness of integrating the autonomous
navigation system, some operational limitations have emerged that need further improve-
ment. Currently, the robot does not move completely smoothly; having received irregular
motion commands these resulted in jerky movement. In addition, inaccuracies about
the robot’s actual position calculated by the odometer node meant that even though the
robot had reached the target point, it continued to move as the odometer values varied
continuously, not reassuring it that it had reached the target.

To address the first problem, one possible solution that can be adopted is to create a dedi-
cated node that sends in the topic cmd_vel constant motion commands. In this way, even
if the frequency of directions received by Nav2 turns out to be relatively low, the robot
would still receive regular and continuous movement instructions, improving its smooth-
ness in movement. Regarding the behavior to be adopted when reaching the destination,
a possible solution could be achieved by increasing the tolerance of the target point ra-
dius and pose angle, thus including possible corrections related to odometric inaccuracies.
These interventions are prospectively effective solutions that could be implemented for
the purpose.

This thesis leads the way for other possible developments and future applications, from
multiplane autonomous navigation to the integration of advanced artificial intelligence
systems. Now that remote control of the robotic platform is enabled, more freedom can

77

Conclusions

be acted upon in integrating IoT devices that will allow the robot to interact with the
environment.

The robotic platform will practically be able to be used to operate in complex environ-
ments such as hospitals, industrial facilities or public spaces, increasing logistical efficiency
and safety. In areas such as emergency and civil defense, four-legged robots could be vital
in reaching dangerous or difficult-to-access areas, offering help during search and rescue
operations.

In conclusion, the results of this study are an important starting point for exploring new
challenges in autonomous robotics, with potential impacts on robot applications in real-
world complex environments.

78

Appendix

A Dockerfile ARM architecture - Humble
1 ARG FROM_IMAGE =ros:humble -ros -core -jammy
2 ARG PKG_NAME = pkg_image_name
3 ARG PKG_WS =/ws
4

5 # ######## CLONING and INSTALLING #################
6 FROM $FROM_IMAGE AS base
7 SHELL ["/bin/bash", "-c"]
8

9 # Install the main dependences
10 ARG PKG_WS
11 WORKDIR $PKG_WS /src/ $PKG_NAME
12 COPY ./ .
13 RUN apt -get update && \
14 apt -get install -y build - essential git cmake libasio -dev

&& \
15 apt -get install -y ros -humble - geometry2 && \
16 apt -get install -y ros -humble -geometry -msgs && \
17 apt -get install -y ros -humble -tf2* && \
18 apt -get install -y ros -humble -robot -state - publisher && \
19 apt -get install -y ros -humble -xacro && \
20 rm -rf /var/lib/apt/lists /*
21

22 RUN apt -get update && apt -get install --no -install - recommends
-y \

23 build - essential \
24 git \
25 python3 -colcon -common - extensions \
26 python3 -colcon -mixin \
27 python3 -rosdep \
28 python3 - vcstool \
29 && rm -rf /var/lib/apt/lists /*
30

31

79

Appendix

32 # bootstrap rosdep
33 RUN rosdep init && \
34 rosdep update --rosdistro $ROS\ _DISTRO
35

36 # setup colcon mixin and metadata
37 RUN colcon mixin add default \
38 https :// raw. githubusercontent .com/colcon/colcon -mixin -

repository /master/index.yaml && \
39 colcon mixin update && \
40 colcon metadata add default \
41 https :// raw. githubusercontent .com/colcon/colcon -

metadata - repository /master/index.yaml && \
42 colcon metadata update
43

44 # install ros2 packages
45 RUN apt -get update && apt -get install -y --no -install -

recommends \
46 ros -humble -ros -base =0.10.0 -1* \
47 && rm -rf /var/lib/apt/lists /*
48

49 # ######## BUILDING #################
50 FROM base AS overlay
51

52 # Build all the packages
53 ARG PKG_WS
54 WORKDIR $PKG_WS
55 COPY --from=base $PKG_WS/src $PKG_WS /src
56 RUN source /opt/ros/humble/setup.bash && \
57 colcon build --cmake -args -DCMAKE_CXX_FLAGS ="-w"
58

59 # Setup the entry point and config file
60 ARG pkg_image_name
61 COPY docker/ entrypoint .sh /
62 COPY docker/ fastdds .xml /root /. ros
63

64 # Set the entrypoint
65 RUN chmod 777 / entrypoint .sh
66 ENTRYPOINT ["/ entrypoint .sh"]
67

68 # ######## DEV ######################
69 FROM overlay as dev
70

71 # Set the dev arguments
72 ARG USERNAME = devuser
73 ARG UID =1000
74 ARG GID=${UID}
75

80

A – Dockerfile ARM architecture - Humble

76 # Add dev dependences
77 RUN apt -get update && \
78 apt -get install -y --no -install - recommends && \
79 apt -get install -y --no -install - recommends gdb && \
80 apt -get install -y --no -install - recommends gdbserver && \
81 apt -get install -y --no -install - recommends nano && \
82 apt -get install -y --no -install - recommends bash -

completion && \
83 # apt -get install -y --no -install - recommends terminator

&& \
84 rm -rf /var/lib/apt/lists /*
85

86 # Create new user and home directory
87 RUN groupadd --gid $GID $USERNAME && \
88 useradd --uid ${GID} --gid ${UID} --create -home ${

USERNAME } && \
89 echo ${ USERNAME } ALL =\(root \) NOPASSWD :ALL > /etc/ sudoers

.d/${ USERNAME } && \
90 chmod 0440 /etc/ sudoers .d/${ USERNAME } && \
91 mkdir -p /home/${ USERNAME } && \
92 chown -R ${UID }:${GID} /home/${ USERNAME }
93

94 # Setup the access right
95 ARG PKG_WS
96 RUN chown -R ${UID }:${GID} ${PKG_WS}
97

98 # Create the fastdds .xml configuration
99 ARG PKG_NAME

100 RUN mkdir /home/${ USERNAME }/. ros
101 COPY docker/ fastdds .xml /home/${ USERNAME }/. ros
102 RUN chown -R ${UID }:${GID} /home/${ USERNAME }/. ros
103

104 USER ${ USERNAME }
105 RUN echo "source / entrypoint .sh && source /etc/

bash_completion " >> /home/${ USERNAME }/. bashrc

Listing 4.1. Dockerfile to build the container in arm64 device with Humble distro

81

Appendix

B Dockerfile PC - Jazzy
1 ARG FROM_IMAGE =osrf/ros:jazzy - desktop
2 ARG PKG_NAME = pkg_image_name
3 ARG PKG_WS =/ws
4

5 # ######## CLONING and INSTALLING #################
6 FROM $FROM_IMAGE AS base
7 SHELL ["/bin/bash", "-c"]
8

9 # Install the main dependences
10 ARG PKG_WS
11 WORKDIR $PKG_WS /src/ $PKG_NAME
12 COPY ./ .
13 RUN apt -get update && \
14 apt -get install -y build - essential git cmake libasio -dev

&& \
15 apt -get install -y ros -jazzy - geometry2 && \
16 apt -get install -y ros -jazzy -geometry -msgs && \
17 apt -get install -y ros -jazzy -tf2* && \
18 apt -get install -y ros -jazzy -robot -state - publisher && \
19 apt -get install -y ros -jazzy -xacro && \
20 apt -get install -y wget unzip openjdk -8-jdk python3 -

vcstool libpcap -dev ros -jazzy -nav2 -msgs python3 -rosdep
python3 -colcon -common - extensions && \

21 apt -get install -y ros -jazzy -bond && \
22 apt -get install -y ros -jazzy - bondcpp && \
23 apt -get install -y ros -jazzy -test -msgs && \
24 apt -get install -y libgraphicsmagick ++-dev && \
25 apt -get install -y ros -jazzy -diagnostic - updater && \
26 apt -get install -y ros -jazzy -behaviortree -cpp && \
27 apt -get install -y libceres -dev && \
28 apt -get install -y libxsimd -dev && \
29 apt -get install -y libxtensor -dev && \
30 apt -get install -y ros -jazzy -ament -cmake -core && \
31 rm -rf /var/lib/apt/lists /*
32

33 # ######## BUILDING #################
34 FROM base AS overlay
35

36 # Build all the packages
37 ARG PKG_WS
38 WORKDIR $PKG_WS
39 COPY --from=base $PKG_WS /src $PKG_WS /src
40 COPY docker/ entrypoint .sh /
41 COPY docker/ routerconfig .json5 /root /. ros
42 RUN source /opt/ros/jazzy/setup.bash

82

B – Dockerfile PC - Jazzy

43

44 WORKDIR $PKG_WS /src
45

46 # Clone the navigation2 repository
47 RUN mkdir -p nav2_ws /src && \
48 cd nav2_ws /src && \
49 git clone -b jazzy https :// github.com/ros - navigation /

navigation2 .git
50

51 # Build the packages
52 WORKDIR $PKG_WS
53

54 # Source ROS environment and build dependencies
55 RUN source /opt/ros/jazzy/setup.bash && \
56 apt -get update && \
57 rosdep install --from -paths src --ignore -src -r -y && \
58 colcon build --parallel - workers 2
59

60 WORKDIR $PKG_WS
61 # # Setup the entry point and config file
62 ARG pkg_image_name
63

64 # Set the entrypoint
65 RUN chmod 777 / entrypoint .sh
66 ENTRYPOINT ["/ entrypoint .sh"]
67

68 # ######## DEV ######################
69 FROM overlay as dev
70

71 # Set the dev arguments
72 ARG USERNAME = devuser
73 ARG UID =1001
74 ARG GID=${UID}
75

76 # Add dev dependences
77 RUN apt -get update && \
78 apt -get install -y --no -install - recommends && \
79 apt -get install -y --no -install - recommends gdb && \
80 apt -get install -y --no -install - recommends gdbserver && \
81 apt -get install -y --no -install - recommends nano && \
82 apt -get install -y --no -install - recommends bash -

completion && \
83 apt -get install -y --no -install - recommends terminator &&

\
84 rm -rf /var/lib/apt/lists /*
85

86 # Create new user and home directory ?

83

Appendix

87 RUN groupadd --gid $GID $USERNAME && \
88 useradd --uid ${GID} --gid ${UID} --create -home ${

USERNAME } && \
89 echo ${ USERNAME } ALL =\(root \) NOPASSWD :ALL > /etc/ sudoers

.d/${ USERNAME } && \
90 chmod 0440 /etc/ sudoers .d/${ USERNAME } && \
91 mkdir -p /home/${ USERNAME } && \
92 chown -R ${UID }:${GID} /home/${ USERNAME }
93

94 # Setup the access right
95 ARG PKG_WS
96 RUN chown -R ${UID }:${GID} ${PKG_WS}
97

98 # Create the routerconfig .json5 configuration
99 ARG PKG_NAME

100 RUN mkdir /home/${ USERNAME }/. ros
101 COPY docker/ routerconfig .json5 /home/${ USERNAME }/. ros
102 RUN chown -R ${UID }:${GID} /home/${ USERNAME }/. ros
103

104 # Configuration for terminator
105 COPY tools/ terminator_config /home/${ USERNAME }/. config/

terminator /config
106

107 WORKDIR /home/${ USERNAME }
108 COPY docker/zenoh.sh /home/${ USERNAME }/
109 RUN chmod +x /home/${ USERNAME }/ zenoh.sh
110 RUN /home/${ USERNAME }/ zenoh.sh
111 RUN chown -R ${ USERNAME }:${ USERNAME } / ws_rmw_zenoh
112

113 USER ${ USERNAME }
114

115 RUN echo "source / entrypoint .sh && source /etc/
bash_completion " >> /home/${ USERNAME }/. bashrc

Listing 4.2. Dockerfile to build the container with Jazzy distro in the PC

84

C – Dockerfile ARM architecture - Jazzy

C Dockerfile ARM architecture - Jazzy
1 ARG FROM_IMAGE = arm64v8 /ros:jazzy -ros -core -noble
2 ARG PKG_NAME = pkg_image_name
3 ARG PKG_WS =/ws
4

5 # ######## CLONING and INSTALLING #################
6 FROM $FROM_IMAGE AS base
7 SHELL ["/bin/bash", "-c"]
8

9 # Install the main dependences
10 ARG PKG_WS
11 WORKDIR $PKG_WS /src/ $PKG_NAME
12 COPY ./ .
13 RUN apt -get update && \
14 apt -get install -y build - essential git cmake libasio -dev

&& \
15 apt -get install -y ros -jazzy - geometry2 && \
16 apt -get install -y ros -jazzy -geometry -msgs && \
17 apt -get install -y ros -jazzy -tf2* && \
18 apt -get install -y ros -jazzy -robot -state - publisher && \
19 apt -get install -y ros -jazzy -xacro && \
20 apt -get install -y wget unzip openjdk -8-jdk python3 -

vcstool libpcap -dev ros -jazzy -nav2 -msgs python3 -rosdep
python3 -colcon -common - extensions && \

21 rm -rf /var/lib/apt/lists /*
22

23 # ######## BUILDING #################
24 FROM base AS overlay
25

26 # Build all the packages
27 ARG PKG_WS
28 WORKDIR $PKG_WS
29 COPY --from=base $PKG_WS /src $PKG_WS /src
30 RUN source /opt/ros/jazzy/setup.bash
31

32 ARG pkg_image_name
33 COPY docker/ entrypoint .sh /
34 COPY docker/ routerconfig .json5 /root /. ros
35

36 # Set the entrypoint
37 RUN chmod 777 / entrypoint .sh
38 ENTRYPOINT ["/ entrypoint .sh"]
39

40 # ######## DEV ######################
41 FROM overlay as dev
42

85

Appendix

43 # Set the dev arguments
44 ARG USERNAME = devuser
45 ARG UID =1001
46 ARG GID=${UID}
47

48 # Add dev dependences
49 RUN apt -get update && \
50 apt -get install -y --no -install - recommends && \
51 apt -get install -y --no -install - recommends gdb && \
52 apt -get install -y --no -install - recommends gdbserver && \
53 apt -get install -y --no -install - recommends nano && \
54 apt -get install -y --no -install - recommends bash -

completion && \
55 apt -get install -y --no -install - recommends terminator &&

\
56 rm -rf /var/lib/apt/lists /*
57

58 # Create new user and home directory ?
59 RUN groupadd --gid $GID $USERNAME && \
60 useradd --uid ${GID} --gid ${UID} --create -home ${

USERNAME } && \
61 echo ${ USERNAME } ALL =\(root \) NOPASSWD :ALL > /etc/ sudoers

.d/${ USERNAME } && \
62 chmod 0440 /etc/ sudoers .d/${ USERNAME } && \
63 mkdir -p /home/${ USERNAME } && \
64 chown -R ${UID }:${GID} /home/${ USERNAME }
65

66 # Setup the access right
67 ARG PKG_WS
68 RUN chown -R ${UID }:${GID} ${PKG_WS}
69

70 # Create the routerconfig .json5 configuration
71 ARG PKG_NAME
72 RUN mkdir /home/${ USERNAME }/. ros
73 COPY docker/ routerconfig .json5 /home/${ USERNAME }/. ros
74 RUN chown -R ${UID }:${GID} /home/${ USERNAME }/. ros
75

76 # Configuration for terminator
77 COPY tools/ terminator_config /home/${ USERNAME }/. config/

terminator /config
78

79 WORKDIR /home/${ USERNAME }
80 COPY docker/zenoh.sh /home/${ USERNAME }/
81 RUN chmod +x /home/${ USERNAME }/ zenoh.sh
82 RUN rosdep init
83 USER ${ USERNAME }
84 RUN rosdep update

86

C – Dockerfile ARM architecture - Jazzy

85 USER root
86 RUN /home/${ USERNAME }/ zenoh.sh
87

88 USER ${ USERNAME }
89 RUN echo "source / entrypoint .sh && source /etc/

bash_completion " >> /home/${ USERNAME }/. bashrc

Listing 4.3. Dockerfile to build the container with Jazzy distro in arm64 device

87

Appendix

D docker-compose.yaml - Husarnet
1 services :
2 # Base image containing dependencies .
3 base:
4 image: husarnet_image :base
5 build:
6 context : .
7 dockerfile : docker/ Dockerfile
8 target: base
9 # Interactive shell

10 stdin_open : true
11 tty: true
12 # Networking and IPC for ROS 2
13 network_mode : service : husarnet
14 ipc: service : husarnet
15 privileged : true
16 # Allows graphical programs in the container .
17 environment :
18 - DISPLAY =${ DISPLAY }
19 - QT_X11_NO_MITSHM =1
20 - ROS_DOMAIN_ID =${ ROS_DOMAIN_ID : -12}
21 - QT_X11_NO_MITSHM =1
22 - NVIDIA_DRIVER_CAPABILITIES =all
23 volumes :
24 # Allows graphical programs in the container .
25 - /tmp /.X11 -unix :/ tmp /.X11 -unix:rw
26 - /dev/dri :/ dev/dri
27 - ${ XAUTHORITY :-$HOME /. Xauthority }:/ root /. Xauthority
28

29 overlay :
30 extends : base
31 network_mode : service : husarnet
32 image: husarnet_image : overlay
33 build:
34 context : .
35 dockerfile : docker/ Dockerfile
36 target: overlay
37

38 dev:
39 extends : overlay
40 image: husarnet_image :dev
41 build:
42 context : .
43 dockerfile : docker/ Dockerfile
44 target: dev
45 args:

88

D – docker-compose.yaml - Husarnet

46 - UID=${UID : -1000}
47 - GID=${UID : -1000}
48 - USERNAME =${ USERNAME :- devuser }
49 volumes :
50 - ./:/ ws/src/
51 user: ${ USERNAME :- devuser }
52 environment :
53 - SHELL =/ bin/bash
54 command : sleep infinity
55

56 husarnet :
57 image: husarnet / husarnet :latest
58 volumes :
59 - /var/lib/ husarnet
60 sysctls :
61 - net.ipv6.conf.all. disable_ipv6 =0
62 cap_add :
63 - NET_ADMIN
64 devices :
65 - /dev/net/tun
66 environment :
67 - HOSTNAME =container -nano_1
68 - JOINCODE =fc94:b01d :1803:8 dd8:b243 :5 c7d :9465:497 b

/**********************
69 - HUSARNET_DEBUG =1

Listing 4.4. docker-compose used for Husarnet Build

89

Appendix

E docker-compose.yaml - Jazzy
1 services :
2 # Base image containing dependencies .
3 base:
4 image: jazzy:base
5 build:
6 context : .
7 dockerfile : docker/ Dockerfile
8 target: base
9 # Interactive shell

10 stdin_open: true
11 tty: true
12 # Networking and IPC for ROS 2
13 network _mode: "host"
14 ipc: host
15 privileged : true
16 # Allows graphical programs in the container .
17 environment :
18 - DISPLAY =${ DISPLAY }
19 - QT_X11_NO\ _MITSHM =1
20 - ROS\ _DOMAIN _ID=${ROS\ _DOMAIN _ID : -12}
21 - QT_X11_NO\ _MITSHM =1
22 - NVIDIA\ _DRIVER \ _CAPABILITIES =all
23 volumes :
24 # Allows graphical programs in the container .
25 - /tmp /.X11 -unix :/ tmp /.X11 -unix:rw
26 - /dev/dri :/ dev/dri
27 - ${ XAUTHORITY :-$HOME /. Xauthority }:/ root /. Xauthority
28

29 overlay :
30 extends : base
31 network _mode: "host"
32 image: jazzy: overlay
33 build:
34 context : .
35 dockerfile : docker/ Dockerfile
36 target: overlay
37

38 dev:
39 extends : overlay
40 image: jazzy:dev
41 build:
42 context : .
43 dockerfile : docker/ Dockerfile
44 target: dev
45 args:

90

E – docker-compose.yaml - Jazzy

46 - UID=${UID : -1001}
47 - GID=${UID : -1001}
48 - USERNAME =${ USERNAME :- devuser }
49 privileged : true
50 volumes :
51 - ./:/ ws/src/
52 devices :
53 - /dev/ ttyUSB0 :/ dev/ ttyUSB0
54 user: ${ USERNAME :- devuser }
55 environment :
56 - SHELL =/ bin/bash
57 command : sleep infinity

Listing 4.5. docker-compose used in Raspberry

91

Appendix

F nav2_param.yaml
1 amcl:
2 ros__parameters :
3 use_sim_time : False
4 alpha1: 0.2
5 alpha2: 0.2
6 alpha3: 0.2
7 alpha4: 0.2
8 alpha5: 0.2
9 base_frame_id : " base_footprint "

10 beam_skip_distance : 0.5
11 beam_skip_error_threshold : 0.9
12 beam_skip_threshold : 0.3
13 do_beamskip : false
14 global_frame_id : "map"
15 lambda_short : 0.1
16 laser_likelihood_max_dist : 2.0
17 laser_max_range : 100.0
18 laser_min_range : -1.0
19 laser_model_type : " likelihood_field "
20 max_beams : 60
21 max_particles : 2000
22 min_particles : 500
23 odom_frame_id : "odom"
24 pf_err: 0.05
25 pf_z: 0.99
26 recovery_alpha_fast : 0.0
27 recovery_alpha_slow : 0.0
28 resample_interval : 1
29 robot_model_type : " nav2_amcl :: OmniMotionModel "
30 save_pose_rate : 0.5
31 sigma_hit : 0.2
32 tf_broadcast : true
33 transform_tolerance : 1.0
34 update_min_a : 0.2
35 update_min_d : 0.25
36 z_hit: 0.5
37 z_max: 0.05
38 z_rand: 0.5
39 z_short : 0.05
40 scan_topic : scan
41

42 bt_navigator :
43 ros__parameters :
44 global_frame : map
45 robot_base_frame : base_link

92

F – nav2_param.yaml

46 odom_topic : /odom
47 bt_loop_duration : 10
48 default_server_timeout : 20
49 wait_for_service_timeout : 1000
50 action_server_result_timeout : 900.0
51 navigators : [" navigate_to_pose ", " navigate_through_poses "

]
52 navigate_to_pose :
53 plugin: " nav2_bt_navigator :: NavigateToPoseNavigator "
54 navigate_through_poses :
55 plugin: " nav2_bt_navigator ::

NavigateThroughPosesNavigator "
56

57 error_code_names :
58 - compute_path_error_code
59 - follow_path_error_code
60

61 bt_navigator_navigate_through_poses_rclcpp_node :
62 ros__parameters :
63 use_sim_time : False
64

65 bt_navigator_navigate_to_pose_rclcpp_node :
66 ros__parameters :
67 use_sim_time : False
68

69 controller_server :
70 ros__parameters :
71 use_sim_time : False
72 controller_frequency : 20.0
73 min_x_velocity_threshold : 0.001
74 min_y_velocity_threshold : 0.001
75 min_theta_velocity_threshold : 0.001
76 failure_tolerance : 0.3
77 progress_checker_plugin : " progress_checker "
78 goal_checker_plugins : [" general_goal_checker "] # "

precise_goal_checker "
79 controller_plugins : [" FollowPath "]
80 use_realtime_priority : false
81

82 # Progress checker parameters
83 progress_checker :
84 plugin: " nav2_controller :: SimpleProgressChecker "
85 required_movement_radius : 0.5
86 movement_time_allowance : 10.0
87 general_goal_checker :
88 stateful : True
89 plugin: " nav2_controller :: SimpleGoalChecker "

93

Appendix

90 xy_goal_tolerance : 0.1
91 yaw_goal_tolerance : 0.25
92 # DWB parameters
93 FollowPath :
94 plugin: " dwb_core :: DWBLocalPlanner "
95 debug_trajectory_details : True
96 min_vel_x : -0.15
97 min_vel_y : -0.15
98 max_vel_x : 0.15
99 max_vel_y : 0.15

100 max_vel_theta : 1.0
101 min_speed_xy : 0.0
102 max_speed_xy : 0.15
103 min_speed_theta : 0.0
104 acc_lim_x : 2.5
105 acc_lim_y : 2.5
106 acc_lim_theta : 3.2
107 decel_lim_x : -2.5
108 decel_lim_y : -2.5
109 decel_lim_theta : -3.2
110 vx_samples : 20
111 vy_samples : 20
112 vtheta_samples : 20
113 sim_time : 1.7
114 linear_granularity : 0.05
115 angular_granularity : 0.025
116 transform_tolerance : 0.2
117 xy_goal_tolerance : 0.1
118 trans_stopped_velocity : 0.25
119 short_circuit_trajectory_evaluation : True
120 stateful : True
121 critics : [" RotateToGoal ", " Oscillation ", " BaseObstacle "

, " GoalAlign ", " PathAlign ", " PathDist ", " GoalDist "]
122 BaseObstacle .scale: 0.02
123 PathAlign .scale: 32.0
124 PathAlign . forward_point_distance : 0.1
125 GoalAlign .scale: 24.0
126 GoalAlign . forward_point_distance : 0.1
127 PathDist .scale: 32.0
128 GoalDist .scale: 24.0
129 RotateToGoal .scale: 32.0
130 RotateToGoal . slowing_factor : 5.0
131 RotateToGoal . lookahead_time : -1.0
132

133 local_costmap :
134 local_costmap :
135 ros__parameters :

94

F – nav2_param.yaml

136 update_frequency : 5.0
137 publish_frequency : 2.0
138 global_frame : odom
139 robot_base_frame : base_link
140 use_sim_time : False
141 rolling_window : true
142 width: 3
143 height: 3
144 resolution : 0.05
145 footprint : "[[0.410 , 0.350] , [0.410 , -0.350] , [-0.410 ,

-0.350] , [-0.410 , 0.350]]"
146 plugins : [" voxel_layer ", " inflation_layer "]
147 inflation_layer :
148 plugin: " nav2_costmap_2d :: InflationLayer "
149 cost_scaling_factor : 3.0
150 inflation_radius : 0.55
151 voxel_layer :
152 plugin: " nav2_costmap_2d :: VoxelLayer "
153 enabled : True
154 publish_voxel_map : True
155 origin_z : 0.0
156 z_resolution : 0.05
157 z_voxels : 16
158 max_obstacle_height : 2.0
159 mark_threshold : 0
160 observation_sources : scan
161 scan:
162 topic: /scan
163 max_obstacle_height : 2.0
164 clearing : True
165 marking : True
166 data_type : " LaserScan "
167 raytrace_max_range : 3.0
168 raytrace_min_range : 0.0
169 obstacle_max_range : 2.5
170 obstacle_min_range : 0.0
171 scan3d:
172 topic: / rslidar_points
173 max_obstacle_height : 2.0
174 clearing : True
175 marking : True
176 data_type : " PointCloud2 "
177 raytrace_max_range : 3.0
178 raytrace_min_range : 0.0
179 obstacle_max_range : 2.5
180 obstacle_min_range : 0.0
181 static_layer :

95

Appendix

182 plugin: " nav2_costmap_2d :: StaticLayer "
183 map_subscribe_transient_local : True
184 always_send_full_costmap : True
185

186 global_costmap :
187 global_costmap :
188 ros__parameters :
189 update_frequency : 1.0
190 publish_frequency : 1.0
191 global_frame : map
192 robot_base_frame : base_link
193 use_sim_time : False
194 footprint : "[[0.410 , 0.350] , [0.410 , -0.350] , [-0.410 ,

-0.350] , [-0.410 , 0.350]]"
195 resolution : 0.05
196 track_unknown_space : true
197 plugins : [" static_layer ", " obstacle_layer ", "

inflation_layer "]
198 obstacle_layer :
199 plugin: " nav2_costmap_2d :: ObstacleLayer "
200 enabled : True
201 observation_sources : scan
202 scan:
203 topic: /scan
204 max_obstacle_height : 2.0
205 clearing : True
206 marking : True
207 data_type : " LaserScan "
208 raytrace_max_range : 3.0
209 raytrace_min_range : 0.0
210 obstacle_max_range : 2.5
211 obstacle_min_range : 0.0
212 scan3d:
213 topic: / rslidar_points
214 max_obstacle_height : 2.0
215 clearing : True
216 marking : True
217 data_type : " PointCloud2 "
218 raytrace_max_range : 3.0
219 raytrace_min_range : 0.0
220 obstacle_max_range : 2.5
221 obstacle_min_range : 0.0
222 static_layer :
223 plugin: " nav2_costmap_2d :: StaticLayer "
224 map_subscribe_transient_local : True
225 inflation_layer :
226 plugin: " nav2_costmap_2d :: InflationLayer "

96

F – nav2_param.yaml

227 cost_scaling_factor : 3.0
228 inflation_radius : 0.55
229 always_send_full_costmap : True
230

231 map_server :
232 ros__parameters :
233 use_sim_time : False
234 yaml_filename : ""
235

236 map_saver :
237 ros__parameters :
238 use_sim_time : False
239 save_map_timeout : 5.0
240 free_thresh_default : 0.25
241 occupied_thresh_default : 0.65
242 map_subscribe_transient_local : True
243

244 planner_server :
245 ros__parameters :
246 expected_planner_frequency : 20.0
247 use_sim_time : False
248 planner_plugins : [" GridBased "]
249 GridBased :
250 plugin: " nav2_navfn_planner :: NavfnPlanner "
251 tolerance : 0.5
252 use_astar : false
253 allow_unknown : true
254

255 smoother_server :
256 ros__parameters :
257 use_sim_time : False
258 smoother_plugins : [" simple_smoother "]
259 simple_smoother :
260 plugin: " nav2_smoother :: SimpleSmoother "
261 tolerance : 1.0e -10
262 max_its : 1000
263 do_refinement : True
264

265 behavior_server :
266 ros__parameters :
267 local_costmap_topic : local_costmap / costmap_raw
268 global_costmap_topic : global_costmap / costmap_raw
269 local_footprint_topic : local_costmap / published_footprint
270 global_footprint_topic : global_costmap /

published_footprint
271 cycle_frequency : 10.0

97

Appendix

272 behavior_plugins : ["spin", "backup", " drive_on_heading ",
" assisted_teleop ", "wait"]

273 spin:
274 plugin: " nav2_behaviors :: Spin"
275 backup:
276 plugin: " nav2_behaviors :: BackUp"
277 drive_on_heading :
278 plugin: " nav2_behaviors :: DriveOnHeading "
279 wait:
280 plugin: " nav2_behaviors :: Wait"
281 assisted_teleop :
282 plugin: " nav2_behaviors :: AssistedTeleop "
283 local_frame : odom
284 global_frame : map
285 robot_base_frame : base_link
286 transform_tolerance : 0.1
287 simulate_ahead_time : 2.0
288 max_rotational_vel : 0.6
289 min_rotational_vel : 0.4
290 rotational_acc_lim : 3.2
291

292 waypoint_follower :
293 ros__parameters :
294 use_sim_time : False
295 loop_rate : 20
296 stop_on_failure : false
297 waypoint_task_executor_plugin : " wait_at_waypoint "
298 wait_at_waypoint :
299 plugin: " nav2_waypoint_follower :: WaitAtWaypoint "
300 enabled : True
301 waypoint_pause_duration : 200
302

303 velocity_smoother :
304 ros__parameters :
305 use_sim_time : False
306 smoothing_frequency : 20.0
307 scale_velocities : False
308 feedback : " OPEN_LOOP "
309 max_velocity : [0.15 , 0.15 , 0.6]
310 min_velocity : [-0.15 , -0.15, -0.6]
311 max_accel : [2.5 , 2.5, 3.2]
312 max_decel : [-2.5, -2.5, -3.2]
313 odom_topic : "odom"
314 odom_duration : 0.1
315 deadband_velocity : [0.0 , 0.0, 0.0]
316 velocity_timeout : 1.0
317

98

F – nav2_param.yaml

318 collision_monitor :
319 ros__parameters :
320 base_frame_id : " base_footprint "
321 odom_frame_id : "odom"
322 cmd_vel_in_topic : " cmd_vel_smoothed "
323 cmd_vel_out_topic : " cmd_vel "
324 state_topic : " collision_monitor_state "
325 transform_tolerance : 0.2
326 source_timeout : 1.0
327 base_shift_correction : True
328 stop_pub_timeout : 2.0
329 polygons : [" FootprintApproach "]
330 FootprintApproach :
331 type: " polygon "
332 action_type : " approach "
333 footprint_topic : "/ local_costmap / published_footprint "
334 time_before_collision : 1.2
335 simulation_time_step : 0.1
336 min_points : 6
337 visualize : False
338 enabled : True
339 observation_sources : ["scan"]
340 scan:
341 type: "scan"
342 topic: "scan"
343 min_height : 0.15
344 max_height : 2.0
345 enabled : True
346

347 docking_server :
348 ros__parameters :
349 controller_frequency : 50.0
350 initial_perception_timeout : 5.0
351 wait_charge_timeout : 5.0
352 dock_approach_timeout : 30.0
353 undock_linear_tolerance : 0.05
354 undock_angular_tolerance : 0.1
355 max_retries : 3
356 base_frame : " base_link "
357 fixed_frame : "odom"
358 dock_backwards : false
359 dock_prestaging_tolerance : 0.5
360

361 # Types of docks
362 dock_plugins : [’simple_charging_dock ’]
363 simple_charging_dock :
364 plugin: ’opennav_docking :: SimpleChargingDock ’

99

Appendix

365 docking_threshold : 0.05
366 staging_x_offset : -0.7
367 use_external_detection_pose : true
368 use_battery_status : false # true
369 use_stall_detection : false # true
370

371 external_detection_timeout : 1.0
372 external_detection_translation_x : -0.18
373 external_detection_translation_y : 0.0
374 external_detection_rotation_roll : -1.57
375 external_detection_rotation_pitch : -1.57
376 external_detection_rotation_yaw : 0.0
377 filter_coef : 0.1
378

379 controller :
380 k_phi: 3.0
381 k_delta : 2.0
382 v_linear_min : 0.15
383 v_linear_max : 0.15
384

385 loopback_simulator :
386 ros__parameters :
387 base_frame_id : " base_footprint "
388 odom_frame_id : "odom"
389 map_frame_id : "map"
390 scan_frame_id : " base_scan " # tb4_loopback_simulator .

launch.py remaps to ’rplidar_link ’
391 update_duration : 0.02

Listing 4.6. Parameters for Nav2 execution

100

Bibliography

[1] Adlink-ROS. rf2o_laser_odometry. https://github.com/Adlink-ROS/rf2o_
laser_odometry, 2024. Accessed: 2024-11-23.

[2] Isaac Asimov. I, Robot. Gnome Press, New York, 1950.

[3] Priyaranjan Biswal and Prases K. Mohanty. Development of quadruped walk-
ing robots: A review. Ain Shams Engineering Journal, 12(2):2017–2031, 2021.
ISSN 2090-4479. doi: https://doi.org/10.1016/j.asej.2020.11.005. URL https:
//www.sciencedirect.com/science/article/pii/S2090447920302501.

[4] Angelo Corsaro, Luca Cominardi, Olivier Hecart, Gabriele Baldoni, Julien Enoch,
Pierre Avital, Julien Loudet, Carlos Guimares, Michael Ilyin, and Dmitrii Bannov.
Zenoh: Unifying communication, storage and computation from the cloud to the
microcontroller. https://zettascale.tech, 2022.

[5] Docker, Inc. Docker Documentation: Overview, 2024. URL https://docs.docker.
com/get-started/docker-overview/. Accessed: Nov. 5, 2024.

[6] eProsima. Definitions - fast dds. https://fast-dds.docs.eprosima.com/en/
latest/fastdds/getting_started/definitions.html, 2024. Accessed: 2024-11-
08.

[7] Eclipse Foundation. Minimizing discovery overhead in ros2, 2021. URL https:
//zenoh.io/blog/2021-03-23-discovery/. Accessed: 2024-11-13.

[8] Katie Hughes. unitree_nav. https://github.com/katie-hughes/unitree_nav,
2024. Accessed: 2024-11-15.

[9] Katie Hughes and Nick Morales. unitree_ros2. https://github.com/
katie-hughes/unitree_ros2, 2023. Accessed: 2024-11-15.

[10] Husarnet. Husarnet documentation: Linux installation, 2024. URL https://
husarnet.com/docs/platform-linux-install/. Accessed: 2024-11-22.

[11] Steven Macenski, Francisco Martin, Ruffin White, and Jonatan Ginés Clavero. The
marathon 2: A navigation system. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[12] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall.
Robot operating system 2: Design, architecture, and uses in the wild. Science

101

https://github.com/Adlink-ROS/rf2o_laser_odometry
https://github.com/Adlink-ROS/rf2o_laser_odometry
https://www.sciencedirect.com/science/article/pii/S2090447920302501
https://www.sciencedirect.com/science/article/pii/S2090447920302501
https://zettascale.tech
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/definitions.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/definitions.html
https://zenoh.io/blog/2021-03-23-discovery/
https://zenoh.io/blog/2021-03-23-discovery/
https://github.com/katie-hughes/unitree_nav
https://github.com/katie-hughes/unitree_ros2
https://github.com/katie-hughes/unitree_ros2
https://husarnet.com/docs/platform-linux-install/
https://husarnet.com/docs/platform-linux-install/

BIBLIOGRAPHY

Robotics, 7(66):eabm6074, 2022. doi: 10.1126/scirobotics.abm6074. URL https:
//www.science.org/doi/abs/10.1126/scirobotics.abm6074.

[13] Masahiro Mori. The uncanny valley: The original essay by masahiro mori, 2012.
URL https://spectrum.ieee.org/the-uncanny-valley#_ftn2.

[14] Amit Patel. Introduction to a* pathfinding, 2023. URL https://www.
redblobgames.com/pathfinding/a-star/introduction.html. Accessed: 2024-11-
03.

[15] Open Robotics, editor. Proceedings of ROSCon 2024, October 2024. Open Robotics.
Held from October 21 to 23, 2024.

[16] Quadruped Robotics. Go1 Technical Datasheet. Quadruped, 2021. URL https:
//www.mybotshop.de/Datasheet/Datasheet_QUADRUPED_Go1.pdf.

[17] Unitree Robotics. unitree_legged_sdk. https://github.com/unitreerobotics/
unitree_legged_sdk, 2020. Accessed: 2024-11-15.

[18] Unitree Robotics. Go1 Software Manual. Unitree, 2021. URL
https://docs.trossenrobotics.com/unitree_go1_docs/_downloads/
23a15b8ec933927ef4ee1ba8f70abba6/go1_software_manual.pdf.

[19] Unitree Robotics. Go1 Where You Will Go. Unitree, 2021. URL https://www.
generationrobots.com/media/unitree/Go1%20Datasheet_EN%20v3.0.pdf.

[20] Unitree Robotics. unitree_ros2_to_real. https://github.com/unitreerobotics/
unitree_ros2_to_real, 2022. Accessed: 2024-11-15.

[21] Slamtec. sllidar_ros2: Ros 2 package for sllidar devices, 2024. URL https://github.
com/Slamtec/sllidar_ros2. Accessed: 2024-11-21.

[22] Ricardo Tellez. A history of ros (robot operating system), 2023. URL https://www.
theconstruct.ai/history-ros/. Accessed: 2024-11-06.

[23] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
MIT Press, Cambridge, Mass., 2005. ISBN 0262201623 9780262201629.
URL http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=
glance&n=283155&n=507846&s=books&v=glance.

[24] Keenan Wyrobek and Eric Berger. Personal robotics program fund fundrais-
ing deck, 2006. URL https://www.slideshare.net/KeenanWyrobek/
personal-robotics-program-fund-fundraising-deck-from-2006.

102

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://spectrum.ieee.org/the-uncanny-valley#_ftn2
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.mybotshop.de/Datasheet/Datasheet_QUADRUPED_Go1.pdf
https://www.mybotshop.de/Datasheet/Datasheet_QUADRUPED_Go1.pdf
https://github.com/unitreerobotics/unitree_legged_sdk
https://github.com/unitreerobotics/unitree_legged_sdk
https://docs.trossenrobotics.com/unitree_go1_docs/_downloads/23a15b8ec933927ef4ee1ba8f70abba6/go1_software_manual.pdf
https://docs.trossenrobotics.com/unitree_go1_docs/_downloads/23a15b8ec933927ef4ee1ba8f70abba6/go1_software_manual.pdf
https://www.generationrobots.com/media/unitree/Go1%20Datasheet_EN%20v3.0.pdf
https://www.generationrobots.com/media/unitree/Go1%20Datasheet_EN%20v3.0.pdf
https://github.com/unitreerobotics/unitree_ros2_to_real
https://github.com/unitreerobotics/unitree_ros2_to_real
https://github.com/Slamtec/sllidar_ros2
https://github.com/Slamtec/sllidar_ros2
https://www.theconstruct.ai/history-ros/
https://www.theconstruct.ai/history-ros/
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
https://www.slideshare.net/KeenanWyrobek/personal-robotics-program-fund-fundraising-deck-from-2006
https://www.slideshare.net/KeenanWyrobek/personal-robotics-program-fund-fundraising-deck-from-2006

	List of Figures
	List of Tables
	Introduction
	What is a robot?
	Mobile robots
	Localization
	Path planning
	Motion control
	Locomotion methods for mobile robots

	Quadruped robots
	Unitree Go1 Edu

	Uncanny Valley
	Importance of movement
	Application of the Uncanny Valley to robot dogs

	Background Technologies
	Docker
	Docker platform
	Usage benefits
	Docker architectures

	ROS 2
	History of ROS
	Introduction to ROS 2
	Computational Graph

	FastDDS
	DCPS
	Discovery

	Zenoh
	Protocol and abstractions
	Discovery
	Deployment
	rmw_zenoh

	VPN and Husarnet
	Husarnet

	Navigation 2
	Behavior Trees
	Navigation Servers
	Robot Footprints
	State Estimation
	Environmental Representation

	TF Tree
	Hardware
	Robotic platform
	Intel NUC
	Raspberry Pi 4
	NVIDIA Jetson
	LiDAR 2D

	Network Configuration
	Problem analysis
	Network configuration on Raspberry Pi 4
	Netplan configuration
	Dnsmasq
	IP Forwarding and Firewall
	Testing

	Implementation of communication via FastDDS middleware
	Container Creation
	First communication test
	Second communication test

	Networking with Zenoh middleware
	Dockerfile changes
	Use of Zenoh
	Achievements

	Robot implementation
	Robotic platform preparation
	Assembly of the support structure and positioning of electronic components
	Creating robot networks

	Moving the robot via PC
	Installation and execution of the nodes required for communication with the robot
	Test driving the robot with the computer keyboard

	Robot Control with Navigation 2
	2D LiDAR and Odometry node execution
	Nav2 execution
	Achievements

	Appendix
	Dockerfile ARM architecture - Humble
	Dockerfile PC - Jazzy
	Dockerfile ARM architecture - Jazzy
	docker-compose.yaml - Husarnet
	docker-compose.yaml - Jazzy
	nav2_param.yaml

