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Abstract

The increasing demand for capacity in Passive Optical Networks (PONs) is
driving operators and vendors to explore new solutions, including the adop-
tion of unamplified coherent technologies. In this study, we investigate a
novel approach to enhance transmitted power in coherent PON systems. Our
focus is on the Mach-Zehnder Modulator (MZM) and the process of electrical-
to-optical signal conversion, introducing a parameter called the modulation
index. We explore how the system can operate closer to the nonlinear region
of the MZM’s transfer function while maintaining performance. Key per-
formance metrics, including Bit Error Rate (BER) and Optical Distribution
Network (ODN) loss, are used to evaluate the system’s behavior. Addition-
ally, we examine the effects of filtering and bandwidth limitations, utilizing
a technique called pre-emphasis to compensate for these impacts. We have
also considered Digital Pre-Emphasis to mitigate the electrical bandwidth
limitations at the transmitter (TX). Furthermore, we study two Digital Pre-
Distortion (DPD) methods, Polynomial DPD and Neural Network DPD to
address the nonlinearities caused by the MZM. Our findings suggest that by
reconsidering MZM modulation and accounting for the nonlinear character-
istics of the transfer function, it is possible to increase transmitted power in
coherent PONs while maintaining the system’s performance. Since amplifica-
tion is not typically used in PONs, these approaches could be a viable solution
for next-generation coherent PON systems.
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Abbreviations

This specification uses the following abbreviations.

PON Passive Optical Network
CPON Coherent Passive Optical Network
BER Bit Error Rate
ODN Optical Distribution Network
ONU Optical Network Unit
MZM Mach-Zehnder Modulator
PM-QPSK Polarization Multiplexed Quadrature Phase Shift Keying
PM-16QAM Polarization Multiplexed 16 Quadrature Amplitude Modulation
FEC Forward Error Correction
DAC Digital-to-Analog Converter
ONU Optical Network Unit
OLT Optical Line Terminal
EPON Ethernet Passive Optical Network
GPON Gigabit Passive Optical Network
P2P Point-to-Point
P2MP Point-to-Multipoint
FTTH Fiber to the Home
IM-DD Intensity Modulation Direct Detection
TDM Time Division Multiplexing
TWDM Time-and-Wavelength-Division Multiplexing
50G-PON 50-Gigabit-Capable Passive Optical Network
DPE Digital Pre-Emphasis
DPD Digital Pre-Distortion
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"Nothing in life is to be feared, it is only to be understood. Now is the time
to understand more, so that we may fear less." - Marie Curie
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Chapter 1

Introduction

A communication system is designed to transmit information from one location to an-
other, whether over a few kilometers or across vast transoceanic distances. This is
achieved by encoding information onto an electromagnetic carrier wave, which can range
in frequency from a few megahertz to several hundred terahertz. Optical communica-
tion systems utilize high-frequency waves ( 200 THz) in the near-infrared region of the
electromagnetic spectrum. These systems are commonly referred to as lightwave sys-
tems, distinguishing them from microwave systems, which operate at significantly lower
frequencies ( 1 GHz).

Fiber-optic communication systems are a type of lightwave system that employ op-
tical fibers to transmit information. Since their widespread deployment in the 1980s,
fiber-optic systems have revolutionized telecommunications and played a pivotal role in
the development of the “information age” in the 1990s, alongside advancements in micro-
electronics[1].

This thesis focuses on Coherent Passive Optical Network (PON) systems, a next-
generation technology for broadband access. While coherent transmission has tradition-
ally been used for long-haul communication systems, this work investigates the feasibility
of using coherent transmission in access networks. Specifically, the research explores tech-
niques at the transmitter side to simplify coherent PON (CPON) systems and make them
viable for access networks, which require cost-effective and scalable solutions.

1.1 Thesis Structure

This thesis is organized as follows:

• Chapter 2 provides an overview of Passive Optical Networks (PONs), their stan-
dards, and the motivation for transitioning to Coherent PON technology.

• Chapter 3 focuses on coherent transmission systems in optical networks, with
an emphasis on the transmitter and a brief review of coherent receiver. It covers
the theoretical background of Quadrature Amplitude Modulation (QAM) and the
Mach-Zehnder Modulator (MZM), exploring how information is modulated into the
optical signal.

• Chapter 4 defines the modulation index parameter for the MZM and explores how
the roll-off factor influences the determination of optimal modulation index values.

2



• Chapter 5 introduces the Optical Distribution Network (ODN) loss concept and
examines how optimizing the modulation index and roll-off factor affects achievable
ODN loss values. It also discusses whether these values are feasible for Coherent
PONs in access networks.

• Chapter 6 discusses the mathematical modeling of non-ideal MZMs, focusing on
the Extinction Ratio (ER). This chapter explores how the nonlinearity of the MZM
impacts performance and how ER affects ODN loss.

• Chapter 7 investigates the filtering effects at the transmitter, bandwidth limi-
tations, and introduces the Digital Pre-Emphasis (DPE) technique. The chapter
evaluates how DPE can improve the performance of PONs and compensate for
bandwidth limitations at the transmitter.

• Chapter 8 introduces a concept called Polynomial Digital Pre-Distortion(DPD)
and Neural Network DPD, aimed at pre-distorting the input electrical signal to the
MZM to mitigate the nonlinearities in its transfer function.

• Chapter 9 concludes the thesis, summarizing the findings and offering an outlook
on potential areas for further research and improvement.

3



Chapter 2

Passive Optical Networks (PONs)

In this chapter, we review the architecture and standards of Passive Optical Networks
(PONs). We examine the PON standards established by the International Telecom-
munication Union Telecommunication Standardization Sector (ITU-T), as discussed in
references [2] and [3].

2.1 What is PON?

PONs are crucial technology for delivering point-to-multipoint broadband access via pas-
sive optical fiber infrastructure. As illustrated in Figure 2.1, the optical network architec-
ture is divided into three key segments: long-haul (backbone/core nodes), metropolitan
(metro nodes), and access (access nodes). Passive Optical Networks (PONs) are predom-
inantly utilized within the access network segment to provide high-speed connectivity to
end users, such as residential, business, and mobile users. PON technology plays a cru-
cial role in bridging the gap between metropolitan networks and individual user access,
ensuring efficient delivery of broadband services in a cost-effective manner.

Introduced in the early 1990s, PONs have been deployed globally to serve residen-
tial (Fiber-to-the-Home), business (Fiber-to-the-Office), and mobile (Fiber-to-the-Cell)
users. A PON system comprises an Optical Line Terminal (OLT) at the provider’s cen-
tral office and multiple Optical Network Units (ONUs) at customer sites, interconnected
by an Optical Distribution Network (ODN). PON systems are categorized mainly into
Time-Division Multiplexed (TDM) and Wavelength-Division Multiplexed (WDM) PONs.
TDM-PONs share a single wavelength among users, while WDM-PONs assign individual
wavelengths to each user, enhancing bandwidth allocation. Over the years, various PON
standards, such as ITU-T G.983 for APON/BPON, IEEE 802.3ah for EPON, and ITU-
T G.984 for GPON, have been established to ensure interoperability and performance,
supporting the increasing demand for higher bandwidth and advanced services like 5G
and high-definition video. Standardization continues to evolve, addressing new challenges
such as latency, synchronization, and security to meet future network requirements.

Figure 2.2 shows a typical architecture of a PON. The transmission in the PON Starts
from an OLT situated at the CO. It is connected to an optical splitter with single-mode
optical fiber.

A passive optical power splitter divides the incoming optical power into N separate
paths, directing the signal to multiple clients. In an ideal splitter without excess loss,
each client receives P/N of the original power P. The splitting ratio, determined by the
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Figure 2.1: Overview of the optical network architecture illustrating the long-haul (back-
bone/core nodes), metropolitan (metro nodes), and access (access nodes) segments, en-
abling connectivity for cloud and edge infrastructures, including data centers[4].

specific application, can vary between 2 to 64, but typically values are 8, 16, or 32. After
the splitter, individual single-mode fibers are connected to ONUs.

2.1.1 PON architectures

Time Division Multiplexing-Passive Optical Network (TDM-PON) and Wavelength Di-
vision Multiplexing-Passive Optical Network (WDM-PON) [6] are both passive optical
network architectures, as shown in Figure 2.3. In TDM-PON, a passive power splitter
broadcasts the same signal from the OLT to multiple Optical Network Terminals (ONTs),
with ONTs identifying their data through embedded address labels.

In contrast, WDM-PON utilizes a passive WDM coupler, which routes different wave-
length channels to specific ONTs, enhancing privacy and scalability. Each ONT receives
only its designated wavelength, and hybrid WDM-TDMA PONs further increase scala-
bility by supporting higher splitting ratios[7].

2.2 Passive Optical Network (PON) Standards

Passive Optical Networks (PONs) are fiber-optic telecommunications technology that im-
plements a point-to-multipoint architecture. A PON consists of an Optical Line Terminal
(OLT) at the service provider’s central office and multiple Optical Network Units (ONUs)
near end-users. PON standards define the specifications for these systems, ensuring in-
teroperability and performance across different vendors and implementations.
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Figure 2.2: A typical architecture for PON systems [5].

2.3 PON standards

In Table 2.1, an overview of the key PON standards is provided, highlighting their re-
spective data rates and typical applications. This table outlines the evolution of PON
technologies, starting with APON/BPON, which offered up to 622 Mbps downstream
and was primarily used for ATM-based services. As the demand for higher bandwidth
grew, standards like EPON and GPON were introduced, with EPON reaching up to
10 Gbps and GPON supporting broadband internet, voice, and IPTV. The progression
continues with XG-PON, offering 10 Gbps downstream for next-generation broadband,
and NG-PON2, which achieves an aggregate data rate of 40 Gbps by combining mul-
tiple wavelengths, paving the way for future-proof broadband infrastructure capable of
supporting significantly higher bandwidth requirements.

Figure 2.4 [9] illustrates the evolution of PON standardization, starting from G-PON
and its IEEE counterpart, Ethernet PON (E-PON), along with potential future develop-
ments. The next system after G-PON was 10 Gbps PON, which was standardized in two
versions: asymmetric XG-PON (ITU-T G.987 series) and symmetric XGS-PON.

Although the XG-PON standard was published in 2010, widespread deployment only
began around 2016. This delay was due to the time required for operators to adopt new
technologies into their networks. As a result, a 10-year cycle has emerged, where the
deployment of a new system occurs a decade after its predecessor. This trend can also
be observed in the wireless access market, where similar timelines apply for technology
transitions.

2.4 ODN Standards for Different PON Classes

ODNs in PON systems involve passive optical components such as splitters and com-
biners, which distribute optical signals from the OLT to the ONUs. In Figure 2.5 the
schematic for ODN loss is shown. Different classes of PONs have specific requirements
for the ODN to ensure signal integrity and system performance.

2.4.1 Parameters for ODN Standards

• Loss Budget
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Figure 2.3: Architecture of (a) TDM-PON and (b) hybrid WDM(TDM-PON).[8]

– The total allowable loss from the OLT to the ONU, accounting for fiber, con-
nectors, splices, and splitters.

• Reach

– The maximum physical distance between the OLT and the ONU.

• Split Ratio

– The number of ONUs that can be supported by a single OLT.

Figure 2.4: ITU and IEEE PON standards evolution.
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Figure 2.5: ODN loss in PON systems from transmitter at Central Office to ONU.

2.5 ODN Standards for Different PON Classes

In Table 2.2, the current loss budgets for various PON standards across different classes
are presented. This table highlights the range of ODN standards, showing the different
reach and loss budgets required for each PON class. For instance, APON/BPON stan-
dards offer up to 20 km reach with a maximum loss budget of 25 dB, while more advanced
standards like GPON and NG-PON2 can extend the reach up to 60 km and accommodate
loss budgets as high as 35 dB. These variations underscore the evolving requirements of
PON technologies to meet the demands of increasing data rates and extended network
reach.

Coherent Passive Optical Networks (CPONs)

PONs are the leading solution for fiber-based access networks, with evolving standards
that increase data rates over existing optical distribution networks (ODN). Following ITU-
T’s standardization of the 50 Gb/s Higher Speed PON (HS-PON) by 2021, research is
now focusing on the next generation: Very High Speed PON (VHSP). VHSP is expected
to follow a similar progression in bitrate as previous generations, likely reaching 200
Gb/s [10]. All PON technologies have traditionally used IM/DD because of their simple
and cheap implementations. However, the chromatic dispersion (CD), which increases
with the baud rate, can be a significant challenge for IM/DD at 200 Gb/s. Due to the
limitations of IM/DD, coherent PON is gaining interest as a potential solution for VHSP.
However, full coherent links have significantly higher complexity and cost, particularly
on the optical network unit (ONU) side.

2.5.1 Motivation for CPON

The primary motivation for developing CPON lies in addressing the growing demand for
higher data rates and better network performance. Traditional IM-DD-based PONs are
nearing their limits, especially as data rates per wavelength exceed 25 Gbps. Coherent
optics, which have already transformed long-haul and metro networks, present a viable
solution for access networks by offering improved optical power distribution, enhanced
power budgets, and the ability to support higher split ratios over longer distances.
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PON Standard Standard Data Rates Applications
APON/BPON
(ATM/Broadband
PON)

ITU-T G.983 Up to 622 Mbps
downstream,
155 Mbps
upstream

Early applications,
primarily ATM-based
services

EPON (Ethernet
PON)

IEEE 802.3ah
(EPON), IEEE
802.3av (10G-EPON)

1.25 Gbps
(EPON), 10
Gbps
(10G-EPON)

Ethernet-based
services, widely used
in Asia

GPON (Gigabit
PON)

ITU-T G.984 2.488 Gbps
downstream,
1.244 Gbps
upstream

Broadband internet,
voice, and IPTV

XG-PON (10
Gigabit-capable
PON)

ITU-T G.987 10 Gbps
downstream, 2.5
Gbps upstream

Next-generation
broadband services

NG-PON2
(Next-Generation
PON 2)

ITU-T G.989 40 Gbps
aggregate
(combining
multiple
wavelengths)

Future-proofing
broadband
infrastructure,
supporting higher
bandwidth
requirements

Table 2.1: PON Standards Overview

Moreover, CPONs enable a more efficient use of spectral resources, potentially sup-
porting data rates of 100 Gbps and higher per wavelength. This capability makes CPON
attractive for operators aiming to expand their network coverage and capacity without
incurring the high costs associated with deploying new fiber infrastructure.

2.6 Evolution of Passive Optical Networks (PON)

Passive Optical Networks (PON) have evolved significantly over the past few decades,
with each generation bringing substantial advancements in data rate capabilities, stan-
dardization, and deployment scope. The recent development of Coherent Passive Optical
Networks (Coh-PON) represents the next leap in this evolution, integrating coherent op-
tical technology into TDM-PON systems. Figure 2.6 illustrates a hypothetical timeline
for Coh-PON based on past PON standardization and deployment history. Here, we
review the evolution of PON based on the study conducted in [11]

2.6.1 50G PON Standardization and Deployment

In 2021, the 50G PON standard was finalized, marking the latest generation in high-
speed PON technology. Following the standardization phase, deployment of 50G PON
began in 2023, allowing network operators to implement and expand this technology in
real-world applications. Historically, each PON generation takes several years to move
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PON
Standard

Class Reach Loss Budget

APON/BPON Class A Up to 10 km 20 dB
Class B Up to 20 km 25 dB

EPON Standard EPON Up to 20 km 29 dB
10G-EPON Up to 20 km 29 dB

GPON Class B+ Up to 20 km 28 dB
Class C Up to 60 km 35 dB

XG-PON Class N1 Up to 20 km 29 dB
Class N2 Up to 40 km 31 dB

NG-PON2 Class N1 Up to 20 km 29 dB
Class N2 Up to 40 km 31 dB

Table 2.2: ODN Standards for Different PON Classes

Figure 2.6: Hypothetical timeline for Coh-PON development and deployment based on
historical PON evolution [11].

from standardization to widespread deployment, typically around eight years.

2.6.2 Initiation of Coh-PON Studies

Building on the advancements in 50G PON, researchers in academia began studies for
the next generation of PON, known as Coh-PON, in 2024. These studies aim to explore
the feasibility and technical requirements for incorporating coherent optical transmission
techniques into TDM-PON systems, potentially offering enhanced performance for high-
capacity and long-reach applications.

2.6.3 Coh-PON Standardization and Initial Deployment

According to the timeline, standardization of Coh-PON is anticipated around 2026, ap-
proximately two years after the study phase. This timeline follows the typical cycle seen
in previous PON generations, where a new standard is developed approximately every five
to ten years. By 2028, Coh-PON systems are expected to be commercially available, with
initial deployments likely targeting lower-volume applications, such as business services.

2.6.4 Expansion of Coh-PON Applications

The deployment of Coh-PON will gradually expand to medium- and high-volume appli-
cations. Around 2029, Coh-PON technology could support 6G xHaul networks, which
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involve high-capacity transport networks for the upcoming 6G mobile networks. By 2030,
Coh-PON is projected to be viable for Fiber-to-the-Home (FTTH) applications, bringing
high-speed, reliable fiber connectivity to residential customers.

2.6.5 Challenges in CPON

Coherent Passive Optical Networks (CPON) present a promising solution for meeting the
increasing demand for higher data rates in access networks. However, several challenges
must be addressed to make CPONs viable for widespread adoption, especially considering
the unique constraints of access network environments.

One of the primary challenges in CPON implementation is the cost and complexity
associated with coherent systems. Traditionally used in long-haul networks, coherent
systems rely on Erbium-Doped Fiber Amplifiers (EDFAs) to compensate for signal at-
tenuation over long distances. However, in access networks, which typically follow a
point-to-multipoint (P2MP) architecture, the use of EDFAs is not feasible due to their
high cost and complexity. This necessitates the exploration of alternative solutions that
can enhance the transmitted power at the transmitter side without significantly increasing
system nonlinearities or costs.

Moreover, CPON systems face challenges in both upstream and downstream transmis-
sion. In the downstream direction, simplifying the optical network unit (ONU) to reduce
costs can increase the bandwidth requirements of the components, complicating the re-
ceiver design. In the upstream direction, achieving high transmission power is crucial,
yet without the use of EDFAs, this becomes difficult. As such, innovative approaches,
such as the use of roll-off pulse shaping filters and pre-emphasis techniques, are being
explored to optimize system performance while managing power levels and minimizing
nonlinearity. These challenges highlight the need for careful design and optimization of
CPON systems to balance performance, cost, and complexity, ensuring they meet the
demands of future access networks.

2.6.6 Recent progress of CPON

Recent advancements in CPON have been driven by the need to address the increasing
demand for higher data rates while maintaining cost-efficiency in access networks. The
transition towards coherent technology in PONs, especially for very-high-speed PON
(VHSP) applications, is being actively explored by researchers and industry players. One
of the major contributions in this field is the work on simplified coherent optical network
units (ONUs) for time-division multiplexed PON (TDM-PON) [12]. This approach uses a
single polarization heterodyne receiver and an electro-absorption modulated laser (EML)-
based transmitter. Recent experiments demonstrated successful bidirectional transmis-
sion over distances of 20 km and 40 km with power budgets exceeding 29 dB, showcasing
the viability of coherent technology for VHSP.

Moreover, digital signal processing (DSP) has become a key enabler for coherent op-
tical systems in PONs, allowing advanced modulation formats and increased spectral
efficiency. This study [13] explored the role of DSP in various receiver architectures, in-
cluding Kramers-Kronig (KK) and coherent receivers. They highlighted the importance
of DSP for addressing challenges like burst-mode operation and forward error correction
(FEC) in PON systems. Additionally, the integration of simplified analog coherent re-
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ceivers was discussed as a potential pathway for reducing system costs while maintaining
high performance.

CableLabs [5] has also made significant progress in coherent PON development by
releasing the CPON architecture specification, which outlines the framework for 100 Gbps
single-wavelength coherent PON. This specification highlights the need for coexistence
with legacy PON technologies and point-to-point coherent transmissions, focusing on
optimizing the link budget and achieving a balance between split ratio and reach. The
specification describes scenarios such as a 512:1 split ratio at 20 km and an 80 km reach
for rural deployments, with a target link budget of 35 dB. These advancements underscore
the potential of CPON to revolutionize access networks by enabling high-capacity, cost-
effective, and scalable solutions.

2.7 Conclusion

In conclusion, this chapter has provided an essential overview of the evolution of commu-
nication systems, specifically within the realm of optical and fiber-optic technologies. The
chapter highlighted the foundational principles of optical communication, the develop-
ment of Passive Optical Networks (PONs), and the role of fiber-optic systems in shaping
the information age. As demands for higher data rates and efficient broadband access
continue to grow, the transition from traditional Intensity Modulation/Direct Detection
(IM/DD) systems to Coherent Passive Optical Networks (CPON) offers a promising
pathway for next-generation access networks.

The need for coherent technology in access networks is driven by the limitations of
current IM/DD-based PONs, particularly as data rates and split ratios increase. CPONs
hold the potential to meet these demands by leveraging coherent detection techniques that
enhance spectral efficiency and optical power budgets, thus extending the feasible reach
and performance of the network. Despite the benefits, several challenges remain, including
the high cost and complexity of coherent systems, which are traditionally reserved for
long-haul applications, and the need for innovative solutions to simplify and optimize the
CPON architecture for access network requirements.
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Chapter 3

Fundamentals of Coherent
Transmission

3.1 Introduction

In the evolving field of optical communications, coherent transmission has become a
fundamental technology essential for modern high-capacity networks. As the demand
for faster and more reliable data transmission grows, coherent transmission techniques
offer significant advantages in terms of spectral efficiency, sensitivity, and robustness
against impairments [14]. These qualities make them indispensable for long-haul and
high-capacity optical communication systems.

3.2 Intensity Modulation with Direct Detection (IMDD)

Before delving into coherent transmission, it is important to understand Intensity Modula-
tion with Direct Detection (IMDD), a traditional method used in optical communication.
In IMDD systems, the primary parameter modulated is the optical power. Here’s a closer
look at its characteristics and limitations:

3.2.1 Spectral Efficiency in IMDD

• Modulation: IMDD systems modulate the optical power, typically using binary
modulation schemes like on-off keying (OOK), where the presence or absence of
light represents binary 1 or 0, respectively.

• Bit Rate and Symbol Rate: In IMDD systems using binary modulation, 1 bit
is transmitted per symbol. Therefore, the bit rate (Rb) is equal to the symbol rate
(Rs), i.e., Rb = Rs.

• Occupied Spectrum: Assuming the minimum possible occupied spectrum, the
bandwidth (B) is equal to the symbol rate, B = Rs = Rb.

This implies that the spectral efficiency of IMDD systems is severely limited. Even
though higher-order modulation schemes like Pulse Amplitude Modulation (PAM-4 or
PAM-8) can theoretically increase the spectral efficiency to 2 or 3 bits/s/Hz, these schemes
suffer from poor noise tolerance and limited transmission distance, making them imprac-
tical for long-haul, high-capacity systems.
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3.3 Coherent Transmission Fundamentals

Coherent transmission offers a solution to the limitations of IMDD by leveraging the full
potential of the optical field. Light, being an electromagnetic wave, has an electric field
that can be described analytically as:

E(t) = A(t) · ejϕ(t) · ej2πf0t

Where:

• A(t) represents the amplitude of the electric field.

• ϕ(t) is the phase of the electric field.

• f0 is the carrier frequency.

• ej2πf0t represents the carrier wave.

In coherent transmission, both the amplitude A(t) and phase ϕ(t) can be modulated
to encode information, significantly enhancing the data-carrying capacity and spectral
efficiency of the system. Here’s how it works:

3.3.1 I/Q Modulation

I/Q modulation is a cornerstone of coherent transmission, involving the modulation of
in-phase (I) and quadrature (Q) components. Mathematically, this can be described as:

In-phase (I) Component : I(t) = AI cos(ωt+ ϕI)

Quadrature (Q) Component : Q(t) = AQ sin(ωt+ ϕQ)

The combined signal S(t) is then:

S(t) = I(t) + jQ(t) = AI cos(ωt+ ϕI) + jAQ sin(ωt+ ϕQ)

3.3.2 PM-QPSK Modulation

PM-QPSK is an advanced modulation format used in coherent transmission. It involves
encoding data onto the phase of the optical carrier, with two orthogonal polarization
states:

• Phase Modulation: In QPSK, each symbol represents two bits, resulting in four
possible phase states: 0, π/2, π, 3π/2.

• Polarization Multiplexing: The modulated signal is split into two orthogonal
polarization states, X and Y. Each polarization carries a QPSK signal, doubling
the data rate.

The transmitted PM-QPSK signal can be expressed as:

S(t) = SX(t) + SY (t)

Where:

SX(t) = AXe
j(ωt+θX) and SY (t) = AY e

j(ωt+θY )
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Figure 3.1: PM-16QAM Constellation Signal shape

3.3.3 PM-16QAM Modulation

PM-16QAM offers even higher spectral efficiency by utilizing both amplitude and phase:

• Amplitude and Phase Modulation: In 16QAM, each symbol represents four
bits, with 16 possible states defined by different amplitude and phase combinations.

• Polarization Multiplexing: Similar to PM-QPSK, the signal is split into two
orthogonal polarization states, each carrying a 16QAM signal.

The transmitted PM-16QAM signal is:

E(t) = EX(t) + EY (t)

Where each polarization component is:

EX(t) = AXe
j(ωt+θX) and EY (t) = AY e

j(ωt+θY )

In PM-16QAM, the amplitudes AX and AY and phases θX and θY correspond to the
16QAM constellation points, allowing for a higher bit rate per symbol. In Figure 3.1, the
shape of the constellation of PM-16QAM is shown in both x and y polarizations.

This diagram 3.2 illustrates the setup for generating a PM-16QAM signal using MZMs.
The setup includes two laser sources, each driving a pair of MZMs for both in-phase (I)
and quadrature (Q) components in x and y polarizations. The output from each pair
is combined with a π/2 phase shift and then combined via a polarization beam splitter
(PBS) to form the PM-16QAM signal. The electric field components are represented as
ERx(t), jEIx(t), ERy(t), and jEIy(t) in the x and y polarizations, respectively.

3.4 Mach-Zehnder Modulator (MZM)

A Mach-Zehnder Modulator (MZM) is an optical device used in fiber-optic communica-
tion systems to modulate the amplitude and/or phase of an input light signal. It operates
based on the principle of interference, splitting the input light into two arms, applying a
voltage-induced phase shift in each arm, and then recombining the light. The resulting
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Figure 3.2: Configuration for Generating PM-16QAM Constellation Signal

Figure 3.3: Mach-Zehnder modulator [4]

interference pattern at the output depends on the relative phase shifts introduced in the
two arms. As shown in Figure 3.3, the MZM can operate in two distinct modes: push-
push and push-pull. In push-push mode, where u1(t) = u2(t), an identical phase shift
is induced in both arms, resulting in pure phase modulation. Conversely, in push-pull
mode, where u1(t) = −u2(t), one arm experiences a phase shift opposite to that of the
other, leading to chirp-free amplitude modulation[15].

Key Parameters

• Ein(t): Input electric field.

• Eout(t): Output electric field.

• vp: Voltage applied to the first arm of the MZM.
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Figure 3.4: Schematic of Electrical Signal Modulation onto Optical Signal Using a MZM

• vq: Voltage applied to the second arm of the MZM.

• vπ: Half-wave voltage of the MZM. This is the voltage required to induce a phase
shift of π radians.

• ER: Extinction ratio. This parameter indicates the efficiency of the modulator in
suppressing the light in the off state.

Transfer Function

The transfer function of a Mach-Zehnder Modulator (MZM) defines the relationship be-
tween the output optical field and the input electrical signal, accounting for factors such
as the voltages applied to the modulator’s arms and the extinction ratio. In Figure 3.4,
we illustrate how the peak and trough values of a two-level electrical signal are mapped
onto the optical signal output. The maximum amplitude of the resulting optical signal
is influenced by the modulation scheme applied to the electrical input, which determines
how the electrical signal translates into the optical field.

General Case

Eout(t) = Ein(t)
1

2

{
sin

(
πvp
2vπ

)
− j√

ER
cos

(
πvp
2vπ

)
+ j

[
sin

(
πvq
2vπ

)
− j√

ER
cos

(
πvq
2vπ

)]}

Ideal Case (ER = ∞)

In the ideal case where the extinction ratio is infinite, the modulator perfectly suppresses
the off-state light. The transfer function simplifies to:

Eout(t) = Ein(t)
1

2

{
sin

(
πvp
2vπ

)
+ j sin

(
πvq
2vπ

)}
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Detailed Explanation

1. Input Electric Field (Ein(t)): This is the electric field of the light entering the
MZM. It can be represented as a sinusoidal wave with a certain amplitude and
frequency.

2. Sinusoidal and Cosine Terms:

• sin
(

πvp
2vπ

)
and sin

(
πvq
2vπ

)
: These terms represent the modulation effect of the

applied voltages (vp and vq) on the light’s phase. The sine function indicates
how the phase shift depends on the applied voltage relative to the half-wave
voltage (vπ).

• cos
(

πvp
2vπ

)
and cos

(
πvq
2vπ

)
: These terms also relate to the phase modulation but

are scaled by the extinction ratio. They represent the residual light that is not
fully suppressed due to a finite extinction ratio.

3. Extinction Ratio (ER):

• The term 1√
ER

indicates the efficiency of the modulator. Higher ER values
mean better suppression of the off-state light. In the ideal case where ER →
∞, this term goes to zero, simplifying the expression.

4. Imaginary Unit (j):

• The presence of j (the imaginary unit) indicates a phase shift of 90 degrees,
corresponding to a quarter-wavelength shift. This is characteristic of the out-
put field in an MZM.

3.5 Defenition of Modulation Index

The modulation index is a critical parameter in optical communication systems, partic-
ularly when dealing with coherent receivers and advanced modulation formats such as
PM-QPSK (Polarization-Multiplexed Quadrature Phase Shift Keying) and PM-16QAM
(Polarization-Multiplexed 16-Quadrature Amplitude Modulation). The modulation in-
dex is defined as follows [16]:

mindex =
vpp

vπ

Parameters of MZM:

The parameters of MZM vpp and vπ are shown based on the 4-level signal in Figure 3.5.

1. Peak-to-Peak Voltage (vpp):

• This is the difference between the maximum and minimum voltages applied
to the modulator. It represents the full range of the voltage swing that drives
the modulator.

2. Half-Wave Voltage (vπ):
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Figure 3.5: MZM Transfer Function - Electrical Signal vs. Optical Signal.

• The half-wave voltage is the voltage required to induce a phase shift of π radi-
ans in the modulator. This is a key characteristic of the modulator, indicating
its sensitivity to the applied voltage.

3. Modulation Index (mindex):

• The modulation index is a dimensionless parameter that quantifies the effec-
tiveness of the modulation. It is the ratio of the peak-to-peak voltage to the
half-wave voltage.

• A higher modulation index indicates a stronger modulation effect, meaning
the modulator is driven more strongly relative to its half-wave voltage.

3.6 Coherent Receiver

The coherent receiver is a component in optical communication systems, designed to
detect all four transmitted signal components. These components include the real and
imaginary parts of the electric field in both x- and y-polarizations. In this section, we
explain how the coherent receiver operates.

3.6.1 Signal Components

A typical optical signal can be represented as:

ETx(t) = [ERx(t) + jEIx(t)] x̂+ [ERy(t) + jEIy(t)] ŷ (3.1)

where ERx(t) and EIx(t) are the real and imaginary components of the signal in the
x-polarization, and ERy(t) and EIy(t) are the real and imaginary components in the
y-polarization.
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3.6.2 Basic Photodetection

In a basic photodiode, the optical signal is converted into an electrical current propor-
tional to the square of the electric field magnitude:

i(t) ∝ E(t) · E(t)∗ (3.2)

Substituting for ETx(t):

E(t) · E(t)∗ = {[ERx(t) + jEIx(t)] x̂+ [ERy(t) + jEIy(t)] ŷ}
· {[ERx(t)− jEIx(t)] x̂+ [ERy(t)− jEIy(t)] ŷ}
= |ERx(t)|2 + |EIx(t)|2 + |ERy(t)|2 + |EIy(t)|2 ∝ P (t)

(3.3)

In this case, all phase and polarization information is lost because the photodiode
only detects the total power P (t).

3.6.3 Detection by Interference

To recover the phase and polarization information, a local oscillator (LO) signal is in-
troduced at the receiver. The resulting photocurrent is proportional to the interference
between the received signal E⃗ph(t) and the LO E⃗LO:

i(t) ∝
∣∣∣E⃗ph(t) + E⃗LO

∣∣∣2 = [E⃗ph(t) + E⃗LO

]
·
[
E⃗ph(t) + E⃗LO

]∗
(3.4)

To detect a specific component, we align the LO with that component. For example,
to detect the real part of the x-polarization, we use:

E⃗LO(t) = ELOxx̂ (3.5)

The resulting photocurrent becomes:

i(t) ∝
∣∣∣E⃗ph(t) + ELOxx̂

∣∣∣2 = [E⃗ph(t) + ELOxx̂
]
·
[
E⃗ph(t) + ELOxx̂

]∗
= |ERx(t)|2 + |EIx(t)|2 + |ERy(t)|2 + |EIy(t)|2 + |ELOx|2

+ 2ELOxERx(t)

= Pph(t) + PLOx + 2ELOxERx(t)

In this equation, the term 2ELOxERx(t) represents the desired real part of the x-
polarization, while the terms Pph(t) and PLOx are unwanted power components.

3.6.4 Eliminating Unwanted Power Components

To eliminate the unwanted power components, balanced detection is used. The idea is
to launch opposite-sign LO signals and subtract the resulting photocurrents. For an LO
with opposite sign:

ī(t) ∝
∣∣∣E⃗ph(t)− ELOxx̂

∣∣∣2
= Pph(t) + PLOx − 2ELOxERx(t)
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By subtracting the two photocurrents:

i(t)− ī(t) ∝ 4ELOxERx(t) (3.6)

This eliminates the unwanted squared terms and amplifies the signal component of
interest. This setup is known as a balanced detector.

3.6.5 Detecting All Components

To detect all four components (real and imaginary parts of both x- and y-polarizations),
four balanced detectors are used, each aligned with one of the components. A special
optical device called a 90-degree hybrid is used to split the LO into multiple copies,
with each copy phase-shifted by 90 degrees. This allows for the extraction of all four
components.

3.7 DSP in Coherent Receivers

After the photodiodes detect the optical signal, the receiver processes the electrical signals
using Digital Signal Processing (DSP) [17] to correct impairments, recover the transmitted
data, and compensate for system imperfections. The DSP chain involves several key steps,
which are detailed below.

Amplification and Analog-to-Digital Conversion (ADC)

Once the signals are detected by the photodiodes, they are first amplified by Trans-
impedance Amplifiers (TIAs) to strengthen the weak electrical signals resulting from pho-
todetection. The amplified signals are then digitized using Analog-to-Digital Converters
(ADCs) to enable further processing in the digital domain. The four signals—representing
the real and imaginary components of both x- and y-polarizations—are now prepared for
digital processing.

IQ Imbalance Compensation

The first DSP operation is IQ imbalance compensation, which corrects any amplitude,
phase, or timing mismatches between the in-phase (I) and quadrature (Q) components.
These mismatches can occur due to imperfections in the IQ modulator or receiver com-
ponents. The IQ imbalance can lead to significant performance degradation, especially in
advanced modulation formats, if left uncompensated. Compensation algorithms restore
the proper alignment between the I and Q components, ensuring orthogonality. Tech-
niques such as Gram-Schmidt orthogonalization or Lowdin orthogonalization may be used
to achieve this.

Digital Equalization

The next step in the DSP chain is digital equalization, which compensates for the linear
impairments introduced by the optical fiber channel, such as Chromatic Dispersion (CD)
and Polarization Mode Dispersion (PMD). These impairments can cause pulse spreading
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and intersymbol interference (ISI), especially over long distances. Equalization is divided
into two stages:

• Static Equalization: This compensates for constant, predictable distortions such
as CD.

• Dynamic Equalization: Adaptive filters are used to track and compensate for
time-varying phenomena like PMD, which can change over time due to temperature
fluctuations or fiber movement.

Adaptive equalization adjusts in real-time to the changing channel conditions using al-
gorithms like the Least-Mean-Square (LMS) method.

Timing Recovery

Precise synchronization between the transmitter and receiver is critical in optical com-
munications. The DSP performs timing recovery to correct any timing errors, which may
result from clock drift or jitter. Incorrect timing can lead to misalignment of data sam-
ples, causing significant errors in data recovery. DSP algorithms estimate and correct the
symbol timing to ensure proper alignment with the transmitted symbols.

Frequency and Phase Recovery

The next step is frequency and phase recovery, which compensates for the frequency
mismatch between the transmitting laser and the local oscillator (LO) at the receiver.
Additionally, phase recovery compensates for phase noise introduced by both the trans-
mitter and receiver lasers. These steps are essential for ensuring accurate coherent detec-
tion. Common techniques used for this purpose include Phase-Locked Loops (PLLs) and
Maximum Likelihood Phase Estimation (MLPE).

Symbol Estimation and Decoding

After compensating for the various impairments, the DSP estimates the transmitted
symbols and performs Forward Error Correction (FEC), is applied to detect and correct
any errors that occurred during transmission. This step is crucial in improving the Bit
Error Rate (BER) performance of the system, especially in the presence of noise and
channel impairments.

Nonlinear Impairment Compensation

In long-haul optical systems, the transmitted signal is affected by nonlinear effects such as
Self-Phase Modulation (SPM) and Cross-Phase Modulation (XPM). These nonlinearities
can degrade the signal quality over extended distances. Advanced DSP algorithms are
employed to compensate for these nonlinear impairments, further improving the received
signal quality.
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3.8 Conclusion

In this chapter, we reviewed the core components of coherent transceivers, focusing on
the transmitter and receiver. At the transmitter, the Mach-Zehnder Modulator (MZM)
modulates the optical signal, enabling advanced modulation formats like QAM to improve
spectral efficiency. At the receiver, coherent detection, with the help of a local oscillator
(LO), allows for the recovery of the signal’s amplitude and phase, ensuring full extraction
of polarization information.

Digital Signal Processing (DSP) is essential in compensating for transmission impair-
ments such as chromatic dispersion (CD), polarization mode dispersion (PMD), and laser
phase noise. It also corrects hardware imperfections like IQ imbalance and timing errors,
enabling accurate data recovery.

While DSP-based coherent transceivers have revolutionized long-haul networks, ex-
tending this technology to shorter-reach systems faces challenges due to power consump-
tion and cost constraints. However, with ongoing advancements, DSP is anticipated to
play a crucial role in future optical networks, particularly in Coherent PON technology,
where designing low-cost, low-complexity DSP receivers will be essential for widespread
adoption.
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Chapter 4

Impact of Modulation Index and
Roll-Off on BER

In this chapter, we examine the impact of the modulation index, a parameter previously
discussed for modulating electrical signals onto optical signals using a Mach-Zehnder
Modulator (MZM). Additionally, we perform simulations for pulse shaping with a raised-
cosine (RC) filter using different roll-off factors. The main goal of this chapter is to see
how the parameters mentioned can effect on the BER and find the optimum values of
the modulation index and roll-off which leads to the best performance in transmission for
different modulation formats.

4.1 Problem Statement

In optical communication systems, Mach-Zehnder Modulators (MZM) is used for
converting electrical signals into optical signals. However, the challenge arises from the
nonlinear transfer function of the MZM which we have seen in the previous chapter,
it follows a sinusoidal response. The transfer function is typically represented as:

Eout ∝ sin(
πvp
2Vπ

)

This sinusoidal transfer function creates linear and nonlinear regions. The lin-
ear region of the MZM’s response is near the center of the transfer curve, where the
input-output relationship is approximately linear. In contrast, the nonlinear region
is encountered when the MZM is driven with higher modulation levels, which results in
increased transmitted power but also introduces signal distortion.

The challenge is to balance the trade-off between higher transmitted power
and nonlinear distortion. Increasing the modulation index boosts the transmitted
optical power, but it also causes more distortion due to the nonlinearity. The focus of
this work is to determine the optimum modulation index mindex = Vpp

Vπ
that maximizes

transmitted power while keeping distortion under acceptable limits.
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4.2 Balancing Nonlinearity and Transmitted Power

Low Modulation Index

When the modulation index is low, the MZM operates primarily within the linear region
of its transfer function. This results in lower nonlinearity and thus less signal distortion.
However, transmitted power is also lower, as the modulation index is not fully utilizing
the MZM’s capability.

High Modulation Index

As the modulation index increases, the MZM is driven into its nonlinear region. This
results in higher transmitted power, which is advantageous for longer-distance transmis-
sions and higher signal strength at the receiver. The downside is that the signal suffers
from distortion, including harmonic distortion and intermodulation, which can de-
grade signal integrity and lead to higher BER. The optimization is based on determining
the point where increasing the modulation index leads to diminishing returns in terms
of signal quality. This point, defined as mopt, is the modulation index where the system
achieves the maximum transmitted power with minimal nonlinearity.

Thus, the problem lies in finding an optimum modulation index that provides
sufficient power without introducing excessive distortion. This trade-off between power
and nonlinearity is the focus of our work.

In Figure 4.1, we illustrate the 16QAM constellation of the signal after passing through
the MZM for various modulation indices. As the modulation index increases, the signal
encounters the nonlinear region of the MZM’s transfer function, causing unequal spacing
between neighboring constellation points and resulting in a distorted constellation shape.

In Figure 4.2, we show one quadrant of the 16QAM constellation for three different
modulation indices, alongside the MZM transfer function for reference.

4.3 Novel Idea: Optimizing the Modulation Index

Our approach introduces a novel method for finding the optimal modulation index
that balances nonlinearity and transmitted power. By treating both the modula-
tion index and the roll-off factor of the pulse shaping filter as variable parameters in
our simulations, we achieve this optimization.

Main parameters of transmission

• Modulation Index (mindex): We vary the modulation index to observe how it
impacts both transmitted power and signal distortion.

• Roll-Off Factor: The roll-off factor of the pulse shaping filter is another variable
that influences the bandwidth efficiency and inter-symbol interference (ISI).
By adjusting the roll-off factor, we can control the signal bandwidth, which helps
mitigate the nonlinear effects of the MZM.
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Figure 4.1: 16QAM constellation for different modulation indices.

Figure 4.2: One quadrant of the 16QAM constellation displayed for different modulation
indices.
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• Objective: The goal is to find the optimal modulation index (mopt) that
maximizes the transmitted optical power while maintaining an acceptable level
of distortion.

Impact of Roll-Off Factor

• The roll-off factor controls the bandwidth of the transmitted signal and the degree
of inter-symbol interference (ISI). A lower roll-off can help reduce ISI, but
it may also introduce bandwidth inefficiencies.

• By optimizing both the modulation index and the roll-off factor, we can
achieve better signal quality while maintaining higher transmitted power, even when
operating near the nonlinear region of the MZM.

4.4 Simulation Setup

The simulation setup 4.3 includes components for a simplified coherent transmission
system with a fixed value of AWG noise power and common ODN loss values. At the
transmitter, we generate a PM-QPSK or PM-16QAM sequence and apply a Raised Cosine
(RC) FIR pulse-shaping filter. RC filter delay is fixed to 60 (samples). The signal is then
modulated using an IQ-MZM, with the laser power fixed at 12 dBm.

The channel includes impairments such as attenuation and AWG noise. At the re-
ceiver, we have an ADC and a coherent DSP receiver. The main component of the
coherent DSP receiver is its equalizer. Since PON distances do not introduce significant
fiber nonlinearity or chromatic dispersion, the DSP focuses on equalization and demodu-
lation of the received signal. The baud rate is set to 28 Gbaud and the noise bandwidth
is equal to the baud rate, and the noise density is 2 ∗ 10−17W/Hz.

The equalizer used in the DSP implementation is an LMS Decision-Aided (LMS-DA)
equalizer operating in complex mode. The equalizer has 80 taps, providing the necessary
filter length to address channel impairments. Additionally, the equalizer uses 50 symbols
for its carrier phase estimation (CPE) memory, ensuring accurate phase recovery and
signal demodulation.

We have used a raised cosine (RC) pulse shaping filter at the transmitter (TX) and
an identical matching filter at the receiver (RX). The roll-off factor, a crucial parameter
in our simulations, influences the system’s behavior. In Figure 4.4, we plotted the RC
pulse shaping in both the time and frequency domains.

When we increase the roll-off factor, the time-domain pulse becomes less compact,
resulting in a broader pulse width. This increased roll-off reduces the risk of inter-symbol
interference (ISI) since the pulse tails decay more gradually, leading to less temporal
overlap between adjacent symbols.

On the contrary, in the frequency domain, as the roll-off factor increases, the fre-
quency response of the RC filter becomes more spread out, with a wider main lobe. This
means that the transition between the passband and stopband becomes smoother but
at the expense of increased bandwidth occupancy. A higher roll-off factor allows the fil-
ter to more effectively suppress out-of-band frequencies, which reduces adjacent channel
interference, but it also requires a larger bandwidth, which can be a limiting factor in
bandwidth-constrained systems.
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Figure 4.3: Simplified scheme of a coherent PON

4.4.1 DSP Receiver Overview

The DSP receiver in this simulation setup is designed to handle various signal impairments
encountered in coherent optical communication systems, including chromatic dispersion
(CD), phase noise, and signal alignment. The key components and processing steps in
the DSP receiver are outlined below:

• Chromatic Dispersion (CD) Compensation: If applicable, CD compensation
is applied to counteract dispersion effects from long fiber transmission.

• Matched Filtering: A matched filter is applied to maximize the signal-to-noise
ratio (SNR) by aligning the filter characteristics to the transmitted signal.

• Adaptive Equalization: An adaptive equalizer is employed to mitigate channel
impairments such as residual CD and polarization mode dispersion (PMD).

• Carrier Phase Estimation (CPE): CPE is crucial in coherent optical systems
for correcting phase noise from lasers, aligning the signal phase to reduce phase
distortions.

• Bit Error Rate (BER) Calculation: Finally, the receiver calculates the BER
to evaluate the system’s performance.

Each of these steps involves parameters that define the receiver’s behavior and impact
the overall performance. The parameters used in the simulation are explained in detail
below.

Explanation of DSP Parameters

4.4.2 General Parameters

• nsps_comp (Number of Samples Per Symbol for Compensation): Defines the over-
sampling ratio. With nsps_comp = 2, the signal is processed at twice the symbol
rate, which is common in coherent receivers for more accurate timing and phase
adjustments.
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Figure 4.4: RC pulse shaping filter in the time and frequency domain for different values
of roll-off factors.

• ber_pp (Pattern Periods for BER Calculation): Set to 4, this indicates the number
of pattern periods over which the BER is calculated.

Equalizer Parameters

The equalizer corrects channel distortions and mitigates residual impairments from dis-
persion or PMD. The key parameters are as follows:

• eq_methods (Equalizer Methods): Defined as {’lms-da’; ’lms-da’}, this spec-
ifies that a Least Mean Squares (LMS) Decision-Aided equalizer is used for both
polarizations.

• eq_mode (Equalizer Mode): Set to ’complex’, indicating that the equalizer is op-
erating in complex mode, which is suitable for complex signals in coherent systems.

• eq_mus (Step Sizes): Defined as [1e-3; 1e-4], these values are the step sizes for
the LMS algorithm in the two polarizations, determining the convergence speed of
the equalizer.

• eq_Ntaps (Number of Taps): Set to 80 taps, providing the equalizer with a sufficient
number of taps to address channel distortions.

• eq_Mlms (Equalizer Memory): Specifies the equalizer’s memory depth, set to 50.
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• eq_Ks (Symbol Rate): Set to [120e3; Inf], defining the cutoff rates for each
polarization.

Carrier Phase Estimation (CPE) Parameters

The CPE is responsible for correcting the phase noise of the signal and operates based
on various strategies. The parameters governing its behavior are:

• cpe_strategy: Set to ’da’, which indicates a Data-Aided CPE approach. Other
common strategies include ’bps’ (Blind Phase Search) and ’vv’ (Viterbi & Viterbi).

• cpe_conj: A logical array set to false for both polarizations, indicating that
conjugate operations are not applied in phase correction.

• cpe_memory: Set to 0, meaning that no additional memory is applied for the CPE,
useful in low-phase-noise conditions.

• cpe_blocksize: Specifies the block size for CPE at 512, affecting the block pro-
cessing of phase recovery.

• cpe_sym (Constellation Rotation Symmetry): Set to π/2, this parameter defines
the rotational symmetry for QAM constellations, where a rotation of π/2 is typical.

Chromatic Dispersion (CD) and Center Frequency Parameters

• CD: Set to 0 in this simulation setup, indicating that no chromatic dispersion com-
pensation is applied (for example, in a back-to-back scenario where dispersion is
minimal).

• f0 (Central Frequency): Specifies the absolute central frequency of the optical
carrier in Hz, necessary for spectral alignment and filtering.

Additional DSP Settings

• Ntx (Number of Transmit Waveforms): Indicates the number of transmit wave-
forms, used for separating different polarizations during signal alignment.

• only_eq: If set to false, this means the DSP does not only perform equalization
but includes phase correction, filtering, and other processes as well.

4.4.3 Step-by-Step Workflow in the Simulation

The DSP receiver in the simulation follows these steps with the specified parameters:

1. Pre-filtering: If required, a pre-filter (e.g., root-raised-cosine filter) is applied to
the received signal.

2. Chromatic Dispersion (CD) Compensation: This optional step compensates
for any accumulated CD in the transmission link.

3. Downsampling: After compensation, the received signal is downsampled to reduce
the sample rate to twice the symbol rate (nsps_comp = 2).
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4. Matched Filtering: A Raised Cosine (RC) filter is applied to match the receiver
filter to the transmit filter.

5. Adaptive Equalization: An LMS Decision-Aided equalizer is employed with the
specified taps and step size parameters to mitigate channel impairments.

6. Carrier Phase Estimation (CPE): A Data-Aided CPE strategy is used to cor-
rect phase noise, aligned to the QAM constellation with π/2 symmetry.

7. BER Calculation: Finally, the receiver calculates the BER over the specified
number of pattern periods (ber_pp).

4.5 Results

Here we present the simulation results for PM-16QAM and PM-QPSK with a symbol rate
of 28 Gbaud. The ODN loss is fixed at 33 dB for PM-QPSK and 25 dB for PM-16QAM.
Figure 4.5 shows the results for PM-16QAM. We have plotted BER versus Modulation
Index for different roll-off factors. The optimal modulation index is around 1.5 for roll-off
factors of [0.7, 0.8, 0.9]. This indicates that up to this point, we can achieve maximum
transmitted power while maintaining a low BER.

The simulation results for the PM-QPSK modulation format are plotted in 4.6. In this
case, due to the presence of only two points per quadrature, we were able to extend the
modulation index further. The optimal modulation index was found to be approximately
1.6 when the roll-off factor was set to 0.6. For roll-off factors of 0.7 and higher, the
optimal modulation index increased, ranging between 1.8 and 2.

Figure 4.5: BER vs. Modulation Index for different Roll-Off Factors in PM-16QAM
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Figure 4.6: BER vs. Modulation Index for different Roll-Off Factors in PM-QPSK

In Figure 4.7, we have plotted the transmitted power, which is the signal’s power
at the output of the MZM, versus the modulation index for a roll-off factor of 0.4. By
comparing the QPSK and 16QAM curves, we observe that the maximum transmitted
power for 16QAM occurs at a modulation index greater than 2, while for the QPSK
constellation, it occurs around a modulation index of 1.7. This difference arises because
QPSK has only 2 constellation points per quadrature, whereas 16QAM has 4 constellation
points per quadrature.

Figure 4.7: Transmitted optical power vs modulation index
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4.6 Conclusion

In this chapter, we provided a systematic method for optimizing the modulation index
in optical communication systems using MZM. By carefully balancing the modulation
index and roll-off factor, we find an optimal point mopt that maximizes transmitted
power without causing excessive nonlinear distortion. This optimization is important for
improving the performance of modern optical communication systems, especially in high-
data-rate, long-distance applications where both power efficiency and signal integrity are
crucial. In the following chapters, we will use ODN loss as a key evaluation parameter,
as commonly referenced in the literature on PON systems.
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Chapter 5

Introducing the parameter ODN loss

In this section, we introduce the concept of ODN (Optical Distribution Network) loss, a
key parameter commonly used in evaluating the performance of Passive Optical Networks
(PONs). ODN loss refers to the total optical signal attenuation that occurs as light
travels through the network’s fiber, splitters, and connectors, making it a critical metric
for benchmarking PON technologies. We will also define the maximum ODN loss, which
is typically specified for a target bit error rate (BER). Since PON systems use forward
error correction (FEC), they can tolerate BER values, in the range 10−2, 10−3, before
correction, while still maintaining reliable performance.

Throughout this study, we will use maximum ODN loss as a core evaluation metric.
To optimize system performance, we will focus on two key variables: the modulation
index and the roll-off factor. By exploring the relationship between these parameters
and the maximum ODN loss, we aim to identify their optimal values, ensuring that the
system performs effectively within the given ODN loss constraints.

5.1 Optical Distribution Network (ODN)

The Passive Optical Networks (PON) structure, based on an optical Point-to-Multipoint
(P2MP) architecture, is illustrated in Figure 5.1. A PON consists of an Optical Line
Terminal (OLT) located at the Central Office (CO) of the operators, a set of Optical
Network Units (ONU) close to end customers, and an Optical Distribution Network
(ODN) connecting the CO and end customers. The P2MP connection is accomplished
by exploiting passive splitters. Moreover, there are only passive devices, such as optical
fibers, connectors, and optical splitters, in the PON outside the plant.

Definition of ODN Loss

ODNloss = PTX − PRX (5.1)

Definition of Maximum ODN Loss

Max ODN Loss (dB) = PTX − RROP (5.2)

where PTX is the transmitted optical power at the output of the MZM, and RROP is
the Required Receiver Optical Power [dBm], typically defined at a specific target BER.
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Figure 5.1: ODN loss in PON systems from transmitter at OLT to ONU.

5.2 Results

In Figure 5.2, we present the results of our simulation for a PM-QPSK constellation,
where the BER is evaluated for a given range of ODN loss values. A threshold for the
target BER, which can be corrected by FEC, is set at 2 × 10−2. We present results for
two different roll-off factors: 0.1 (left figure) and 0.5 (right figure).

For the roll-off factor of 0.1, we observe that even at a modulation index of 2.4, the
maximum ODN loss that achieves the target BER of 2× 10−2 is around 30 dB. However,
for a stricter target BER of 10−3, the system is unable to reach the maximum ODN loss.
In contrast, when the roll-off factor is increased to 0.5, the target BER of 2 × 10−2 is
achievable at a higher modulation index of 2.4, with the maximum ODN loss reaching
around 34 dB—an improvement of approximately 4 dB. This demonstrates that increasing
the roll-off factor can enhance the maximum ODN loss, albeit at the cost of increased
bandwidth usage.

In Figure 5.3, we present the BER results for a given ODN loss vector across multiple
modulation indexes. It is evident from these results that starting mi = 1.2, the behavior
of the BER curve undergoes a significant change. As the modulation index increases,
the nonlinearity of the sinusoidal characteristic of the MZM begins to show its influence,
impacting system performance.

As shown in Figure 5.4, For PM-QPSK modulation we conducted simulations using a
range of ODN loss values, roll-off factors, and modulation indexes. For each combination
of roll-off and modulation index, we determined the maximum ODN loss that can be
achieved while maintaining a specific target BER. Based on these simulation results, we
generated a contour plot illustrating the relationship between modulation index, roll-off
factor, and maximum ODN loss.

In Figure 5.4 (left plot), we present results for a target BER of 10−3. The optimal max-
imum ODN loss is observed at roll-off factors greater than 0.7, with modulation indices in
the range of 1.65 to 2. A secondary maximum ODN loss occurs over a wider modulation
index range, from approximately 1.2 up to 2.2, at roll-off values above 0.6. The ability
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Figure 5.2: BER versus ODN loss [dB] for different modulation indexes and PM-QPSK
signal. The dotted line is for target BER = 2 ∗ 10−2 for finding the maximum ODN loss.
The left figure is for roll-off=0.1 and the right figure is for roll-off=0.5

to exceed a modulation index of 2 without substantial performance degradation is due to
the QPSK constellation’s simplicity, which has only two points per quadrant, reducing
the impact of MZM nonlinearity at higher modulation indices.

In the middle plot of Figure 5.4, which corresponds to a target BER of 10−2, we observe
an interesting trend: the secondary maximum ODN loss occurs across a broad range of
modulation indices, from 0.1 to 0.9. This indicates that, at this target BER, QPSK can
operate effectively with lower roll-off factors, allowing for more efficient bandwidth usage
while minimizing spectral occupancy. In the right plot, we present the results for a target
BER of 2×10−2. In this case, the optimal maximum ODN loss is achieved at modulation
indices around 1.4 and above 2.2, with roll-off factors greater than 0.65.

We have repeated the same simulation for PM-16QAM modulation, as shown in Figure
5.5. A key observation is that, for PM-QPSK, we can use a higher modulation index,
up to approximately 2.4, without significant degradation in performance. However, in
the case of PM-16QAM, system performance begins to degrade when the modulation
index exceeds 1.8. This is because PM-QPSK only has two points per arm of the MZM,
whereas PM-16QAM has four. If we attempt to use higher-order modulation schemes like
64QAM, which involves eight points per quadrant of the MZM, the optimum modulation
index becomes even lower. As a result, we are limited in increasing the transmit power
to achieve higher maximum ODN loss when using higher-order modulation formats.

In the left plot of Figure 5.5, we present results for a PM-16QAM signal with a target
BER of 10−3. Here, the optimal maximum ODN loss is 24 dB, which occurs for roll-
off values greater than 0.7 and modulation indices between 1.3 and 1.6. A secondary
maximum ODN loss is observed for roll-off values above 0.55 and modulation indices
between 1.0 and 1.9. It’s noteworthy that, for modulation indices between 1.5 and 2.0,
no maximum ODN loss is achieved, indicating that the system could not meet the target
BER in this range.

In the middle plot, which corresponds to a target BER of 10−2, the optimum maximum
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Figure 5.3: BER versus ODN loss [dB] for different modulation indexes and PM-16QAM
signal. The dotted line is for target BER = 10−2 for finding the maximum ODN loss

ODN loss occurs over a broader range of modulation indices compared to the previous
plot, although the range of roll-off values remains consistent. Additionally, we observe a
third maximum ODN loss of 25 dB, which can be achieved across all roll-off values.

Finally, in the right plot, we display results for a target BER of 2 × 10−2. Here,
the optimal maximum ODN loss reaches 29 dB, but it is limited to modulation indices
between 1.4 and 1.6 at a roll-off factor of 0.9. The third maximum ODN loss, with a
value of 26 dB, can be achieved across all roll-off values and modulation indices ranging
from 0.9 to 2.0.
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Figure 5.4: Contour plot of modulation index versus roll-off factor, showing the maximum
ODN loss [dB] for various target BERs using a PM-QPSK signal.

Figure 5.5: Contour plot of modulation index versus roll-off factor, showing the maximum
ODN loss [dB] for various target BERs using a PM-16QAM signal.
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5.3 Conclusion

In this chapter, we introduced the concept of Optical Distribution Network (ODN) loss,
an essential metric for evaluating the performance of Passive Optical Networks (PONs).
Through simulations, we examined the impact of two primary parameters—modulation
index and roll-off factor—on the maximum achievable ODN loss, while maintaining target
Bit Error Rates (BER) in PON systems. We demonstrated that increasing the roll-off
factor can enhance the maximum tolerable ODN loss, although this comes with a trade-off
in bandwidth efficiency.

Our results for PM-QPSK modulation show that, with an optimized modulation in-
dex and roll-off factor, the system can support a relatively high maximum ODN loss.
These findings indicate that PM-QPSK modulation benefits from increased tolerance to
ODN loss due to its lower susceptibility to nonlinearity effects, allowing higher mod-
ulation indices without significant performance degradation. In contrast, PM-16QAM
modulation, with its more complex constellation, shows sensitivity to modulation index
increases, limiting its achievable ODN loss at high BER targets. For PM-16QAM, the
optimum modulation index for achieving high maximum ODN loss is lower, especially as
we aim to maintain acceptable BER values.

Overall, our analysis highlights the interplay between modulation index, roll-off factor,
and maximum ODN loss in determining the optimal configuration for PON systems.
For PON designs focused on minimizing BER, using PM-QPSK modulation with higher
roll-off factors and moderate modulation indices offers a robust solution with increased
tolerance to ODN loss. On the other hand, achieving comparable performance with PM-
16QAM requires a careful balance, as it is more sensitive to increases in the modulation
index.

This study provides a framework for selecting modulation parameters in PON systems
to optimize ODN loss tolerance, contributing to more efficient and reliable PON deploy-
ment strategies. In the next chapter, we will consider Extinction Ratio and modulation
index at TX to see how they can effect on the ODN loss.
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Chapter 6

Impact of Extinction Ratio on ODN
loss

In this chapter, we investigate the impact of the extinction ratio (ER) on optical distri-
bution network (ODN) loss and CPON performance. Specifically, we examine whether
adding a bias voltage can address the nonlinearity terms in the MZM transfer function.

What is Extinction Ratio?

In optical communications, the extinction ratio (ER) of an MZM refers to the ratio of
the optical power output in the "on" state (when the modulator allows maximum light
transmission) to the optical power output in the "off" state (when the modulator blocks
or minimizes light transmission). It is a critical parameter that measures how effectively
the modulator can distinguish between the "on" and "off" states, which correspond to
the binary data (1s and 0s) in digital optical signals.

The extinction ratio can be expressed in terms of optical power as:

ER =
Pon

Poff

where:

• Pon is the power transmitted in the "on" state,

• Poff is the power transmitted in the "off" state.

A high extinction ratio indicates a clearer distinction between the "on" and "off"
states, which improves signal clarity and reduces bit errors. However, a low extinction
ratio implies that the "off" state is not fully suppressed, leading to potential signal degra-
dation.

In practical terms:

• Higher extinction ratios are desirable in optical communication systems, espe-
cially for long-distance or high-data-rate applications, as they contribute to better
signal quality.

• Lower extinction ratios can lead to more noise and signal errors due to insuffi-
cient contrast between light and dark states.

The extinction ratio is usually measured in decibels (dB), where a higher dB value
indicates a more effective modulator.
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6.1 Mathematical model for ER

In this chapter, we investigate the impact of the extinction ratio (ER) on ODN loss and
CPON performance. Specifically, we examine whether adding a bias voltage can address
the nonlinearity terms in the MZM transfer function. To do this, we first analyze how
the nonlinear terms affect the constellation diagram. We rewrite the equation by defining
ϕq =

πvq
2Vπ

and ϕp = πvp
2Vπ

, as shown in equation 6.1. In equation 6.1, we separate the real
and imaginary parts of the transfer function and plot them in Fig. 6.1.

Eout(t) = Ein(t)
1

2

{
sin

(
πvp
2Vπ

)
− j√

ER
cos

(
πvp
2Vπ

)
+j

[
sin

(
πvq
2Vπ

)
− j√

ER
cos

(
πvq
2Vπ

)]}
(6.1)

Figure 6.1: MZM transfer function with nonlinearity terms for ER = 20 dB. The left plot
shows the real part, and the right plot shows the imaginary part.

Figure 6.2: The constellation points of the signal for low ER and low modulation in-
dex(left); Maximum ODN loss vs Modulation Index vs Extinction Ratio(ER) for Target
BER 10−2 (right).
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6.2 Results

In this section, we evaluate the impact of our proposed mathematical model on the
maximum ODN loss for transmission. The simulation setup remains consistent with
previous chapters; however, in this case, the MZM is modeled as non-ideal. While the
previous chapter assumed an ideal MZM, here we present results based on a non-ideal
MZM to examine the effects of a low ER and its nonlinearities on the maximum ODN loss.
In Figure 6.2 (left), we show an example constellation for a low modulation index and
low extinction ratio. On the right, we present a contour plot of maximum ODN loss as a
function of modulation index and ER. In Figure 6.3, Part (a), we examine the MZM with
a bias voltage, while in Part (b), we consider the MZM without bias voltage. As shown,
the bias voltage helps reduce the constellation’s offset; however, the nonlinearity resulting
from the sinusoidal nature of the MZM remains unaffected. Typically, the coherent DSP
receiver can easily compensate for the constellation offset. Therefore, adding a bias
voltage does not mitigate the nonlinearity effect.

We consider four scenarios in our evaluation:

• Low ER and low modulation index: As shown in Figure 6.5 part (a), in this
scenario, we observe a constant shift for all points in the constellation. Importantly,
the shift vector for all points is identical. This behavior is consistent with operating
in the linear region (low modulation index), where both the real and imaginary
components of the constellation points exhibit equal changes. The coherent DSP
receiver can easily handle and compensate for this uniform shift, as confirmed by
the results in Figure 6.5 part (a).

• Low ER and high modulation index: In Figure 6.5 part (b), we enter the
nonlinear region due to the higher modulation index, which corresponds to increased
transmitted power but with a low ER. In this case, we observe different effects of
nonlinearity across the constellation points. For the two points near the center of
the quadrature, the error vector magnitude is larger, while for the two points on the
outer edges, the error vector magnitude is smaller. This effect is shown in Figure
6.4. This behavior is explained by the cosine nonlinearity term of the ER model, as
depicted in Figure 6.1. Near the center, the cosine term is relatively constant, but
as we move further from the center, the term changes significantly for constellation
points further away from the center.

• High ER and low modulation index: This scenario, shown in Figure 6.5 part
(c), is quite similar to the low ER and low modulation index scenario in part (a).
At low modulation indexes, increasing the ER does not provide any noticeable
improvement in ODN loss when compared to the low ER case. This is because the
effect of ER in this situation is simply a constant shift in the constellation. Even
with a higher ER, the shift remains uniform across all constellation points. The
coherent DSP receiver can easily detect and compensate for this constant shift,
regardless of its magnitude, allowing it to accurately reconstruct the signal.

• High ER and high modulation index: This represents the ideal scenario, where
a higher ER ensures better separation between signal levels, and a high modulation
index (near the optimum) indicates that the MZM is operating at a point that
maximizes transmission power while minimizing overshoot.
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(a) Without bias voltage (b) With bias voltage

Figure 6.3: Comparison of images with and without bias voltage.

Figure 6.4: The constellation points of the signal for low ER and high modulation in-
dex(left); Maximum ODN loss vs Modulation Index vs ER for Target BER 10−2 (right).
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Figure 6.5: Maximum ODN loss vs Modulation Index vs ER for Target BER 10−2. Figure
a shows the 16QAM constellation for low ER and low mi, Figure b shows the 16QAM
constellation for low ER and high mi, Figure c shows the 16QAM constellation for high
ER and low mi and Figure d shows the 16QAM constellation for low ER and high mi

6.3 Conclusion

In this chapter, we explored the impact of the ER on ODNloss in CPONs and analyzed
how modulator nonlinearity, particularly in a non-ideal MZM, affects system performance.
By introducing a bias voltage, we investigated whether the nonlinearity inherent to the
MZM’s transfer function could be mitigated, specifically focusing on ER’s effect on con-
stellation stability and the maximum ODN loss achievable within acceptable BER limits.

Our results indicate that a higher ER leads to better signal clarity by improving the
distinction between the "on" and "off" states of the MZM, especially when combined
with a high modulation index. This configuration provides superior separation between
constellation points, which enhances system resilience to ODN loss while maintaining the
target BER. However, for lower ER values, nonlinear effects are more noticeable, partic-
ularly at higher modulation indices. This manifests as varying error vector magnitudes
across the constellation, with points near the origin of the quadrature showing greater
error vectors due to cosine nonlinearity.

Overall, our findings underscore that increasing the extinction ratio while optimizing
the modulation index enhances CPON performance by minimizing nonlinear distortions
and maximizing ODN loss tolerance. This chapter contributes to understanding the trade-
offs associated with ER in CPON systems and serves as a guide for choosing modulation
parameters that balance performance and reliability under realistic, non-ideal operating
conditions.
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Chapter 7

Advanced Topics in Coherent
Transmission

This chapter discusses advanced topics in CPON. First, we study the filtering effect on
the transmitter side, by considering an optical filter after MZM, and in the second part,
we review techniques such as pre-emphasis to compensate for the bandwidth limitation
at the transmitter.

7.1 Filtering Effect

In high-speed PON systems, the transceivers’ electrical components (e.g., amplifiers and
modulators) have inherent bandwidth constraints. These components, designed for lower
bit rates, are often reused for higher data rates to reduce costs. However, this results in
electrical bandwidth limitations, where the bandwidth of the components at the transmit-
ter (TX) side becomes insufficient for handling the higher bit rates without performance
degradation.

In this simulation setup similar to what we had in the previous chapters we have a
signal with Rs = 16 Gbaud and with PM-16QAM modulation format. We considered
a Super Gaussian filter directly after MZM. We considered the AWG noise source after
the filter. The reason for this is that we wanted to focus exclusively on the bandwidth
limitation of SG filtering. After AWGN block we have fiber’s loss and at RX we have
ADC and a coherent DSP receiver. In this simulation setup, the AWG noise is added
after the filter, representing a worst-case scenario. This approach is taken because the
impact of unfiltered noise is more severe compared to the situation where both the noise
and the signal are equally filtered [18].

The simulation setup shown in Figure 7.1 represents a Coherent Passive Optical Net-
work (CPON) system with a Super-Gaussian (SG) filter applied at the transmitter (TX)
side. The setup can be described as follows:

• CW-Laser: A Continuous Wave (CW) laser source generates a stable optical car-
rier signal, serving as the starting point of the transmission. This provides the
coherent optical signal necessary for the coherent transmission setup.

• Data-Pulse Shaping: The data signal undergoes pulse shaping to adjust its spec-
trum, reducing Inter-Symbol Interference (ISI) and aligning with the system’s band-
width requirements. This pulse-shaped data is subsequently modulated.
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• DP-IQ-MZM: This block represents a Dual-Polarization In-Phase and Quadrature
Mach-Zehnder Modulator (DP-IQ-MZM). The modulator takes the pulse-shaped
data and modulates it onto the optical carrier signal, creating an optical signal
with In-Phase (I) and Quadrature (Q) components, enabling complex modulation
schemes like QAM (Quadrature Amplitude Modulation) for coherent optical sys-
tems.

• SG Filter: A Super-Gaussian (SG) optical filter is applied after modulation to
simulate the optical filtering effect at the transmitter (TX) side. This filter imposes
a bandwidth limitation on the transmitted signal by attenuating higher frequency
components, which helps in shaping the spectrum of the transmitted signal to match
the channel requirements.

• AWGN: Additive White Gaussian Noise (AWGN) is introduced to simulate noise
during transmission. This noise degrades signal quality and increases the Bit Error
Rate (BER), providing a realistic assessment of the system’s performance.

• Optical Fiber Link: The filtered signal with added AWGN is transmitted through
an optical fiber link, represented by loops in Figure 7.1. The fiber link introduces
attenuation.

• ADC (Analog-to-Digital Converter): The received optical signal is converted
to an electrical signal by a photodetector and subsequently digitized by an ADC.
The ADC samples the received signal at high speed, enabling further digital signal
processing. Here we do not have considered a model for photodetector and we
assumed it is ideal.

• Coherent DSP (Digital Signal Processing): The digitized signal undergoes
digital processing, which includes:

– Equalization: This compensates for signal impairments such as dispersion
and filtering effects introduced by the SG filter, aiming to correct distortions
and improve signal quality.

– Decoding: The equalized signal is demodulated and decoded to recover the
original transmitted data bits.

– BER Evaluation: Finally, the system’s performance is evaluated by calcu-
lating the Bit Error Rate (BER), which quantifies the error rate in the received
signal compared to the original transmitted signal.

Super Gaussian Function

The filter transfer function is modeled with a Super Gaussian profile with variable order,
3dB-bandwidth (BW). Here is the transfer function of the SG filter in the frequency
domain:

DDAC,REAL(f) = exp

(
−0.5

(
f

f0

)2n
)

where:
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Figure 7.1: Simulation setup for CPON with SG filtering effect at TX.

• B is the 3 dB bandwidth.

• n is the order of the Super Gaussian filter.

• apass is the linear attenuation for 3 dB attenuation.

• f0 =
B

(−2 log(apass))1/(2n) is the central frequency.

In Figure 7.2, we have plotted the frequency response of the SG filter for various orders
n. The figure demonstrates that as the order n increases, the filter’s roll-off becomes
steeper, resulting in more abrupt attenuation at the cutoff frequency. This means that
higher-order SG filters have a more defined transition between the passband and the
stopband. In other words, increasing the filter’s order sharpens the frequency response,
making the filter more selective. It allows the filter to more effectively distinguish between
frequencies that are just inside the passband and those that are just outside it, thereby
improving its ability to suppress unwanted frequencies. This characteristic is particularly
advantageous in applications requiring precise filtering where minimal overlap between
passband and stopband is critical.

In Figure 7.3 , we present the frequency response of the SG filter for three different
3dB bandwidths: 0.3, 0.5, and 1.2 times the baudrate Rs. As shown, the bandwidth
significantly influences the filter’s performance, particularly in terms of selectivity and
attenuation characteristics.

• For the smallest bandwidth, 0.3×Rs, the filter exhibits a narrow passband with a
steep roll-off, effectively limiting the range of frequencies that pass through. This
configuration is ideal for applications where strict control over the passband is
required, and unwanted frequencies need to be strongly suppressed.

• As the bandwidth increases to 0.5 × Rs, the passband widens, allowing a broader
range of frequencies to pass. The roll-off becomes slightly less steep, indicating
a trade-off between passband width and frequency selectivity. This configuration
balances the need for filtering with a broader frequency range.

• For the largest bandwidth, 1.2 × Rs, the filter’s passband is significantly wider,
with a much gentler roll-off. While this allows for a larger range of frequencies to
pass through, the filter becomes less effective at distinguishing between frequencies
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Figure 7.2: Frequency response of SG filter for different orders

near the cutoff point. As a result, the ability to suppress frequencies outside the
passband diminishes, which may not be suitable for applications requiring high
selectivity.

In summary, 7.3 demonstrates how adjusting the 3dB bandwidth affects the SG filter’s
frequency response. A smaller bandwidth provides greater selectivity with a sharper roll-
off, while a larger bandwidth increases the passband at the cost of reduced filtering
precision.

Figure 7.4: Filtering effect on the Power Spectral Density (PSD) of the PM-16QAM
signal for different 3 dB bandwidths of the SG filter. The left plot shows a stricter
filter with a 3 dB bandwidth of B3dB = 0.3 × Rs, which significantly attenuates higher
frequencies outside the passband. In contrast, the right plot shows a more relaxed filter
with a 3 dB bandwidth of B3dB = 0.7×Rs, allowing more high-frequency components to
pass through. we will see in the next section evaluate its impact on Optical Distribution
Network (ODN) loss at the receiver.

Counter plots of maximum ODN loss in dB at different target BERs is shown in
Figures [ 7.5 7.6 7.7 ] as a function of the roll-off factor and modulation index. Here we
have used the SG filter for 3 different 3dB bandwidths.

In Figure 7.5, we examine three scenarios for optical bandwidth filtering. It is im-
portant to note that, by convention in the literature, the optical bandwidth of a filter is
typically considered twice the filter’s specified bandwidth.

In the Figure 7.5 left plot, with a 3 dB bandwidth of 2× 1.2Rs, we observe that the
maximum ODN loss occurs at a roll-off factor greater than 0.7 and a modulation index
between 1.4 and 1.8. When the roll-off factor is reduced to 0.67, the optimal maximum
ODN loss can be achieved over a broader range of modulation indices, approximately
between 1.2 and 2. Finally, at a minimum roll-off factor of 0.4, the third peak in maximum
ODN loss reaches 27 dB, occurring again across a higher range of modulation indices.

In the middle plot of Figure 7.5, we consider a 3 dB bandwidth of 2×0.7Rs. Compared
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Figure 7.3: Frequency response of SG filter for different 3dB bandwidths

Figure 7.4: Filtering effect on the PSD of the PM-16QAM signal for different 3dB band-
width of SG filter.
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to the previous scenario, we observe that the optimal maximum ODN loss occurs at a
lower range of the modulation index. However, the second optimal maximum ODN loss
remains similar in terms of both roll-off factor and modulation index range. The third
optimal maximum ODN loss, while occurring at the same modulation index as before,
now requires a roll-off factor greater than 0.6, whereas in the previous scenario, it was
achievable with a roll-off factor greater than 0.4.

In the right plot of Figure 7.5, we examine a scenario with a severe bandwidth limi-
tation, where the 3 dB bandwidth is 2× 0.4Rs. In this case, the optimal maximum ODN
loss is approximately 1 dB lower than in the previous two scenarios. The highest ODN
loss is achieved with a roll-off factor above 0.7 and a modulation index range between
approximately 1.25 and 1.94. Notably, in the roll-off range of 0.6 to 0.73, the maximum
ODN loss demonstrates a high sensitivity to changes in the roll-off factor. Additionally,
secondary and subsequent optimal ODN loss points occur over a broader modulation
index range compared to the primary optimal value, highlighting a trade-off between
bandwidth limitations and modulation efficiency.

In Figure 7.6, we present results for a target BER of 10−2. In the left plot, we consider
a relatively large 3 dB bandwidth for the filter, set to 2×1.2Rs. Under this configuration,
the optimal maximum ODN loss of 27 dB occurs with a roll-off factor above 0.68 and
a modulation index range of 1.22 to 1.85. A second local maximum for ODN loss is
observed for a higher modulation index range and a lower roll-off factor. Specifically, for
roll-off values above 0.6 and modulation indices between 1.05 and 2, the second highest
ODN loss can be achieved. Interestingly, the third optimal ODN loss remains achievable
across a broad range of roll-off factors from 0.1 to 0.9, indicating a degree of robustness.

In the middle plot of Figure 7.6, we reduce the 3 dB bandwidth to 2× 0.7Rs. The re-
sults indicate minimal penalty in terms of ODN loss compared to the left plot, suggesting
that performance is maintained under moderate bandwidth constraints.

In the Figure 7.6, right plot, we examine a more restrictive 3 dB bandwidth of 2 ×
0.4Rs. Here, we observe a 1 dB penalty in the first optimal ODN loss compared to the
wider bandwidth cases. The corresponding range for the modulation index is between
1.1 and 2, with the optimal ODN loss achievable at roll-off factors above 0.7. These
findings underscore the trade-offs between filter bandwidth limitations and ODN loss
performance, as stricter bandwidth constraints lead to higher sensitivity in modulation
and roll-off parameters.
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Figure 7.5: Filtering effect on the PSD of the PM-16QAM signal for different 3dB band-
width of SG filter @ BER = 2 ∗ 10−2.

Figure 7.6: Filtering effect on the PSD of the PM-16QAM signal for different 3dB band-
width of SG filter @ BER = 10−2.

Figure 7.7: Filtering effect on the PSD of the PM-16QAM signal for different 3dB band-
width of SG filter @ BER = 10−3.
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Figure 7.8: Simulation setup of applying DPE for compensating bandwidth limitations
of DAC at TX.

7.2 Digital Pre-Emphasis (DPE)

7.2.1 Simulation Setup

In this section, we study the techniques which are used for pre-distortion of the signal at
TX. In high-frequency electronic systems, the bandwidth limitations of electronic devices,
such as Digital-to-Analog Converters (DACs), can degrade the signal quality. These
limitations often manifest as a frequency-dependent attenuation, where higher frequencies
experience more significant loss compared to lower frequencies. To counteract this effect
and maintain signal fidelity, a technique called pre-emphasis is employed. Figure 7.8
illustrates the simulation setup incorporating Digital Pre-Emphasis (DPE) in the system.
As shown, the DPE block is placed before the DAC to predistort the signal prior to DAC
processing. This configuration allows the DPE filter to pre-compensate for anticipated
signal distortions, improving overall system performance.

Digital Pre-Emphasis (DPE)

Digital Pre-Emphasis [19] involves modifying the signal in the digital domain before it is
converted to an analog signal by the DAC. The goal is to apply a frequency-dependent gain
that compensates for the expected losses in the analog components, effectively flattening
the overall system response. In the equation below, the original signal after the Pulse
Shaping Filter is S(f), P (f) is the DPE filter and the DACREAL is a low pass filter which
in the continue of this chapter we see how we implement it.

D(f) = P (f)× DACREAL × S(f)

The pre-emphasis filter P (f) is designed based on the transfer functions of the real
DAC DDAC,REAL(f) and the desired DAC response DDAC,DESIRED(f). The formula for the
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Figure 7.9: The proposed DPE scheme, based on the work in [19], selects the parameters
of P (f) using BER feedback from the RX.

pre-emphasis filter is:

P (f) =
DDAC,DESIRED(f)

DDAC,REAL(f) + n0

where:

• f is the frequency.

• DDAC,REAL(f) is the transfer function of the real DAC.

• DDAC,DESIRED(f) is the transfer function of the desired DAC response.

• n0 is a noise adjustment term that ensures stability and prevents division by zero.

As illustrated in Figure 7.9, the filter’s 3dB bandwidth is determined using BER
feedback from the receiver (RX). Note that this optimization is performed only at the
start of transmission and remains fixed thereafter.

Real DAC Transfer Function

The real DAC transfer function DDAC,REAL(f) can be modeled using different functions,
such as a third-order Bessel function or a Super Gaussian function.

Third-Order Bessel Function

DDAC,REAL(f) =
1√

1 +
(

f
fc,real

)6
where fc,real is the cutoff frequency of the real DAC.
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Figure 7.10: Transfer Functions of real and desired DAC and Pre-Emphasis Filter

Super Gaussian Function

DDAC,REAL(f) = exp

(
−0.5

(
f

f0

)2n
)

where:

• B is the 3 dB bandwidth.

• n is the order of the Super Gaussian filter.

• apass is the linear attenuation for 3 dB attenuation.

• f0 =
B

(−2 log(apass))1/(2n) is the central frequency.

Desired DAC Transfer Function

The desired DAC transfer function DDAC,DESIRED(f) is often modeled as a Gaussian
function:

DDAC,DESIRED(f) = exp

(
−
(

f

fc,desired

)2
)

where fc,desired is the cutoff frequency of the desired DAC.
Figure 7.10 shows the transfer functions of the real DAC DDAC,REAL(f), desired DAC

DDAC,DESIRED(f), and the pre-emphasis filter P (f). The real DAC exhibits bandwidth
limitations, causing significant high-frequency attenuation. The desired DAC has a flatter
response, aiming to preserve higher frequencies. The pre-emphasis filter compensates for
these limitations by amplifying high frequencies, effectively flattening the system response
and preserving signal fidelity across the frequency spectrum. This approach helps to
counteract DAC-induced losses, enhancing overall transmission quality. In Figure 7.11, we
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Figure 7.11: Transfer functions of the DAC, Pre-Emphasis Filter, and the desired DAC
transfer function. The left plot shows the DAC transfer function with a real third-order
Bessel function, and the right plot shows the DAC transfer function with a Super Gaussian
(SG) filter.

see the difference between the third-order Bessel and Super Gaussian (SG) filters in their
attenuation behavior. The Bessel filter (left plot) attenuates the signal more gradually,
maintaining a smoother roll-off, while the SG filter (right plot) exhibits a much sharper
attenuation, particularly in the transition band. This distinction is especially noticeable
in how quickly each filter suppresses higher frequencies.

In the Figure 7.12, we present a joint optimization process for determining the param-
eters of the DPE filter. The contour plots represent the BER, showing that with a real
DAC 3dB bandwidth of 11.2 GHz, a minimum of 15 GHz is required for DAC,DESIRED
in order to design the P(f) to compensate the DAC bandwidth limitations accordingly.
The parameter n0 is not so much relevant, we just have to consider that choose a reason-
able value for it, because if we choose a very low value (10−6) for higher frequencies the
filter’s transfer function goes to infinite.

7.3 Results

Here, we have analyzed two different scenarios for bandwidth limitations. In the first sce-
nario, we assumed a 3 dB bandwidth of B3dB = 0.5, representing a moderate bandwidth
limitation. In the second scenario, we imposed a stricter limitation with B3dB = 0.35. For
both cases, we plotted the maximum ODN loss against the roll-off and modulation index
under two conditions: first, by considering only the bandwidth limitations of the DAC,
and second, by employing digital pre-emphasis (DPE) techniques at the transmitter side
for three different target BERs.

Figure 7.13 illustrates that the use of DPE enables a wider range of modulation indices
to achieve maximum ODN loss. In the scenario with moderate bandwidth limitations,
we observe no significant improvement in the maximum ODN loss. However, with the
stricter bandwidth limitation and a target BER of 10−2 which is shown in Figure 7.14(b)
and (e), we observe an approximate 1 dB improvement in the maximum achievable ODN
loss when DPE is applied.

In Figure 7.14, with severe bandwidth limitations, the effectiveness of DPE is clearly
demonstrated. For a target BER of 10−3, as shown in Figure 7.14 (a), when DPE is
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Figure 7.12: Optimization of pre-emphasis filter response through joint tuning of DAC
bandwidth and noise adjustment coefficient. Applied to PM-16QAM (28 Gbaud) with
real DAC parameters of 16 GHz bandwidth with real DAC 11.2 GHz.

disabled, the system cannot achieve the target BER across a wide range of roll-off factors
and modulation indices. However, once DPE is applied, it effectively compensates for the
bandwidth limitations, enabling the system to achieve the target BER of 10−3.
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Figure 7.13: Maximum ODN loss as a function of roll-off and modulation index with
DPE and without DPE for different target BER with BW = 0.5 ∗Rs.

Figure 7.14: Maximum ODN loss as a function of roll-off and modulation index with
DPE and without DPE for different target BER with BW = 0.35 ∗Rs.
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7.4 Conclusion

This chapter explored advanced techniques for addressing bandwidth limitations in CPON
with a focus on mitigating transmitter-side constraints through filtering and pre-emphasis.
The first part examined the impact of bandwidth limitations on high-speed transceivers,
especially when reusing electrical components originally designed for lower data rates. We
studied the use of Super Gaussian (SG) filters at the transmitter to address bandwidth
constraints, analyzing the filter’s response with different 3 dB bandwidths to understand
their influence on our main evaluation metric ODN loss.

The second part of the chapter focused on digital pre-emphasis (DPE) as a pre-
distortion technique to mitigate DAC bandwidth limitations. DPE compensates for
frequency-dependent attenuation, allowing the signal to maintain fidelity through a frequency-
dependent gain. The simulation results indicate that implementing DPE at the transmit-
ter improves system robustness by countering the effects of bandwidth limitations prior
to DAC processing, which is particularly beneficial in high-frequency CPON systems.
Joint optimization of DPE parameters using BER feedback from the receiver underscores
the need for adaptive parameter tuning to achieve optimal performance.

In summary, the findings of this chapter highlight the filtering effect and pre-emphasis
techniques in CPON systems. The optimization of SG filter parameters and the strategic
use of DPE can substantially improve system performance by compensating for inherent
bandwidth limitations in high-speed optical networks. In the next chapter we will intro-
duce another method to predistort the signal befor entering MZM in order to remove the
nonlinearity caused by MZM.
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Chapter 8

Compensation of Nonlinearities in
MZM Using DPD

8.1 Introduction

The MZM is a key component in optical communication systems, and it is used to mod-
ulate optical signals with data carried by electrical signals. The main challenge of MZM
comes from inherent nonlinearities due to its sinusoidal transfer function. As the mod-
ulation index increases, these nonlinearities become more pronounced, leading to signal
distortions that degrade the system’s performance.

In recent years, the use of digital pre-distortion (DPD) has emerged as an effective
technique for mitigating the nonlinear distortions introduced by optical modulators in
high-speed communication systems. Zhalehpour et al. proposed a DPD method based
on a memory polynomial model to linearize the output of silicon photonic Mach-Zehnder
modulators (SiP MZMs) used in short-range applications and data centers. The SiP
MZMs experience both amplitude and phase nonlinearity, which can degrade system per-
formance, particularly with higher-order modulation formats such as 64-QAM. Their work
demonstrates how DPD can significantly reduce the bit error rate (BER) by compensat-
ing for these nonlinearities at the transmitter side, improving overall system efficiency
[20].

Similarly, Bao et al. explored the application of DPD for mitigating nonlinear dis-
tortions in high-speed Optical Orthogonal Frequency Division Multiplexing (OOFDM)
systems, particularly in Mach-Zehnder modulators (MZMs) and Electro-Absorption Mod-
ulated Lasers (EMLs). They implemented a polynomial-based DPD algorithm to linearize
modulators in OOFDM transmitters with bit rates up to 30 Gb/s. This approach, which
considers memory effects, was shown to enhance the performance of OOFDM signals in
various optical network applications [21].

One of the most effective methods for compensating for the nonlinear behavior of the
MZM is Polynomial Digital Pre-Distortion (PDPD). This technique applies a compen-
sating function to the input signal before it is modulated, ensuring that the combined
response of the pre-distorted signal and the MZM produces a linear output. In this
chapter, we explore the implementation of PDPD, its mathematical principles, and its
practical application in compensating MZM nonlinearities.
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8.2 The Nonlinear Transfer Function of MZM

The MZM operates based on interference between two optical waves. The transfer func-
tion for an ideal MZM without any impairments can be expressed as:

Eout ∝ sin(
πvp
2Vπ

)

Where:

• Eout(t) is the optical output field.

• vp is the electrical signal.

• Vπ is the voltage required for a phase shift of π.

This transfer function introduces significant nonlinearities, especially when large mod-
ulation indix is considered. These nonlinearities appear as distortion of the signal con-
stellation, reducing the system’s performance and increasing the BER.

8.3 Polynomial Digital Pre-Distortion (PDPD)

The main idea behind PDPD is to pre-distort the input signal in such a way that the non-
linear transfer function of the MZM effectively linearizes the output. The pre-distortion
function compensates for the MZM’s nonlinearity, making the output signal appear as if
the MZM were linear.

The pre-distortion function is represented as a polynomial that adjusts both the real
and imaginary parts of the input signal. Mathematically, the process involves fitting a
polynomial to the output of the MZM for a given input signal and then applying the
inverse of this polynomial to pre-distort future input signals.

Polynomial Fitting for Predistortion

In order to compensate for the nonlinearities introduced by the Mach-Zehnder Modulator
(MZM), polynomial fitting techniques can be employed. Specifically, we use the polyfit
and polyval functions in MATLAB to model the nonlinear relationship between the
modulated signal and the ideal 16-QAM constellation. The fitted polynomial is used to
apply pre-distortion to the input signal, ensuring that the output resembles the original
signal after passing through the MZM.

8.3.1 Polynomial Fitting Using polyfit

The polyfit function in MATLAB fits a polynomial of a specified degree to the given data
in a least-squares sense. For a set of data points {xi, yi}, the goal is to find a polynomial
P (x) of degree n such that the sum of the squared residuals between the actual values
yi and the polynomial’s predicted values P (xi) is minimized. The polynomial can be
expressed as:

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (8.1)
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where an, an−1, . . . , a0 are the polynomial coefficients determined by the polyfit func-
tion.

The syntax for fitting a polynomial of degree n to the data points is given by:

p = polyfit(x, y, n);

Here, x represents the input data, y represents the target data, and n is the degree of
the polynomial.

The polyfit function minimizes the least-squares error:

min
N∑
i=1

(yi − P (xi))
2 (8.2)

where P (x) is the fitted polynomial and {(xi, yi)} are the data points.

8.3.2 Polynomial Evaluation Using polyval

Once the polynomial coefficients are determined using polyfit, we use the polyval
function to evaluate the polynomial at any new input values. This allows us to predict the
pre-distorted values based on the fitted model. The syntax for evaluating the polynomial
is:

y_fit = polyval(p, x_new);

Here, p contains the coefficients obtained from polyfit, and x_new represents the
new input data for which we want to predict the corresponding output values.

The polynomial evaluation at a new data point xnew is computed as follows:

P (xnew) = anx
n
new + an−1x

n−1
new + · · ·+ a1xnew + a0 (8.3)

8.3.3 Application to Digital Predistortion

In the context of our work, we apply polynomial fitting and evaluation separately to the
real and imaginary components of the modulated signal. The aim is to pre-distort the
input signal in such a way that after passing through the MZM, the output signal closely
resembles the ideal 16-QAM constellation.

Let Re(s) and Im(s) represent the real and imaginary components of the modulated
signal, and let Re(sideal) and Im(sideal) denote the real and imaginary parts of the ideal
signal. We fit a 5th-degree polynomial to both the real and imaginary components of the
signal using polyfit:

real_poly = polyfit(inputData(:,1), targetData(:,1), 5);
imag_poly = polyfit(inputData(:,2), targetData(:,2), 5);

The fitted polynomials can be expressed as:

Preal(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 (8.4)

Pimag(x) = b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 (8.5)
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where a5, a4, . . . , a0 and b5, b4, . . . , b0 are the polynomial coefficients for the real and
imaginary components, respectively.

Once the polynomials are fitted, we evaluate them using polyval to obtain the pre-
distorted real and imaginary parts of the signal:

preDistorted_real = polyval(real_poly, real(modulatedData));
preDistorted_imag = polyval(imag_poly, imag(modulatedData));

Thus, the pre-distorted signal is given by:

sdpd(t) = Preal(Re(s(t))) + jPimag(Im(s(t))) (8.6)

where j is the imaginary unit. The pre-distorted signal sdpd(t) is then applied to
the MZM, and the nonlinearity of the modulator is compensated, resulting in an output
signal that more closely resembles the ideal 16-QAM constellation.

8.3.4 Applying PDPD

The key steps for applying PDPD are as follows:

1. Normalize the Input Signal: The input signal sig is first normalized to ensure
that both the input and output are on comparable scales.

2. Nonlinear MZM Output: The normalized input signal is passed through the
MZM’s nonlinear transfer function, simulating the modulator’s output.

3. Polynomial Fitting: Polynomial models of a specified degree (typically between 2
and 6) are fitted to the real and imaginary parts of the MZM output using polyfit.
The input data corresponds to the MZM’s nonlinear output, while the target data
is the original linear signal.

4. Pre-Distortion: The fitted polynomial coefficients are then used to compute the
pre-distorted signal using polyval. This pre-distorted signal compensates for the
MZM’s nonlinearity.

5. Signal Transmission: The pre-distorted signal is transmitted through the MZM.
After modulation, the output of the MZM closely approximates a linear response,
mitigating the nonlinear distortions.

The algorithm is executed for a range of modulation indices and polynomial degrees
to identify the optimal parameters that minimize BER while maintaining linearity at the
output.

8.4 Simulation Setup

We have shown the simulation setup in Figure 8.1. The parameters of transmission and
DSP receiver is the same as in previous chapters but we have removed filters and digital
pre-emphasis in order to focus exclusively on the distortion of the signal before MZM.
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Figure 8.1: Simulation setup of applying DPD for compensating bandwidth limitations
of DAC at TX.

8.5 Results and Performance Evaluation

In this section, we first introduce the definition of Error Vector Magnitude (EVM) and
analyze the MZM output in both cases— with and without DPD. EVM serves as a
key performance metric, indicating the effectiveness of predistortion in compensating
for the nonlinear distortion introduced by the sinusoidal transfer function of the MZM.
Following the EVM analysis, we compare the transmitted power for both scenarios (with
and without DPD) to evaluate how predistortion impacts power efficiency. Lastly, we
assess theBER performance of the system for different polynomial degrees used in the
predistortion process, providing a comprehensive evaluation of the method’s effectiveness.

8.5.1 Error Vector Magnitude (EVM)

Error Vector Magnitude (EVM) is a measure used to quantify the performance of a
communication system, particularly the accuracy of a received signal compared to the
ideal transmitted signal. It is commonly used in optical communications and modulation
schemes such as Quadrature Amplitude Modulation (QAM). EVM is defined as the ratio
of the root-mean-square (RMS) error vector to the RMS magnitude of the ideal reference
vector, expressed as a percentage:

EVM(%) =

√
1
N

∑N
i=1 |si − ŝi|2√

1
N

∑N
i=1 |si|2

× 100

where:

• si is the ideal reference symbol (expected constellation point),

• ŝi is the received symbol (actual received constellation point),

• N is the total number of symbols (constellation points).
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Figure 8.2: 16-QAM constellation diagram with and without pre-distortion applied before
entering the MZM

The error vector ei is the difference between the transmitted symbol and the received
symbol:

ei = si − ŝi

Discussion on the results

For the first step we look at the EVM to see the perofrmance of the proposed method.
EVM measures how far the received constellation points are from their ideal positions.
A lower EVM value indicates that the received signal is closer to the ideal transmitted
signal, implying better signal quality.

Figures 8.2 and 8.3 show the constellation scatter plots of the 16-QAM signal before
and after the MZM, with and without Digital Pre-Distortion (DPD). As observed, DPD
slightly penalizes the four inner points of the constellation before entering the MZM.
However, the nonlinearity of the MZM is effectively compensated by the DPD, result-
ing in a more symmetric constellation at the output. The neighboring points are more
equidistant compared to the scenario without DPD, indicating improved signal quality.

In Figure 8.4, we present the modulation index versus EVM for the signal after the
MZM, both with and without DPD. As shown, incorporating the DPD block before the
MZM significantly reduces the EVM compared to the system without the DPD block,
indicating that the job of DSP receiver would be simpler.

We have also plotted the transmitted power versus the modulation index. As shown
in the Figure 8.5, in the linear region, the DPD does not affect the constellation shape.
However, beyond m = 1, where nonlinearity begins to become noticeable, a penalty is ob-
served for the signal with DPD. As the nonlinearity increases, the penalty in transmitted
power becomes more extreme.

We found that the degree of the DPD polynomial is a critical factor in determining
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Figure 8.3: 16-QAM constellation diagram with and without pre-distortion applied after
entering the MZM

Figure 8.4: EVM vs Modulation Index for 16-QAM
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Figure 8.5: Transmitted Power(the power of the signal at the output of MZM).

system performance, in terms of BER. Figure 8.6 shows the modulation index versus
BER for various polynomial degrees of DPD, as well as the case without DPD. The
results indicate that the effectiveness of DPD varies with different modulation indexes.
For instance, a sixth-degree DPD performs poorly in the range 1.2 < mi < 1.9, but shows
good performance at mi = 2. Additionally, for the linear region (0.4 < mi < 1.2), lower-
degree DPD models work well, but as the modulation index increases, their performance
degrades. Therefore, the optimal degree of DPD should be selected based on the MZM
design and other system parameters. To provide further insight, Figure 8.7 presents a
contour plot similar to Figure 8.6, providing a clearer illustration of how the polynomial
degree impacts DPD performance across different modulation indexes.

8.5.2 Maximum ODN Loss

In this section, we focus on the key performance metric of maximum ODN loss for different
target BERs, which are within the correction capability of current FEC codes. We
evaluate a PM-16QAM signal while accounting for bandwidth limitations imposed by the
DAC, modeled as a super-Gaussian filter with a B3dB bandwidth of 0.6× the baud rate,
where the baud rate is set to 28 Gbaud.

The simulation was conducted in two scenarios: first, without DPD, and then with
the DPD technique, to see whether DPD can improve the maximum ODN loss for various
target BERs. It is important to note that the performance of Polynomial DPD is highly
sensitive to the modulation index. Based on the findings from the previous section, we
selected a third-degree Polynomial DPD, as it is an odd function and symmetrical to the
coordinate center, making it well-suited to the sinusoidal transfer function of the MZM.
Figure 8.8 presents the results without DPD, and Figure 8.9 shows the results with DPD.

Based on the results in Figure 8.6, we expect Polynomial DPD to improve performance
for modulation indexes between 0.8 and 1.5. However, beyond a modulation index of 1.5,
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Figure 8.6: BER v.s. modulation index with different degrees of PDPDs and without
DPD.

Figure 8.7: BER v.s. modulation index with different degrees of PDPDs.
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Figure 8.8: Maximum ODN vs. roll-off factor and modulation index under bandwidth
limitations, with 3 dB bandwidth equal to 0.6× symbol rate (Rs), without DPD.

Figure 8.9: Maximum ODN vs. roll-off factor and modulation index under bandwidth
limitations, with 3 dB bandwidth equal to 0.6× symbol rate (Rs), with DPD.

the performance begins to degrade. This is also evident in Figure 8.9, where, for low roll-
off factors and high modulation indexes (greater than 1.5), the system fails to achieve
the target ODN loss for a BER of 10−3.

8.6 Neural Network for MZM Nonlinearity Compen-
sation

Neural networks (NNs) are a class of machine learning models inspired by the structure
and function of biological neural networks in the human brain. Fundamentally, an NN
consists of interconnected layers of nodes, or neurons, where each layer applies mathe-
matical transformations to the input data. Typically, an NN is organized into an input
layer, one or more hidden layers, and an output layer as it is shown in the Figure 8.10.
Each neuron in a layer receives inputs from the neurons in the previous layer, applies
a weighted sum followed by a non-linear activation function, and passes the result to
the next layer. Through training, NNs learn the optimal weights and biases that best
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Figure 8.10: Diagram of a generic neural network architecture .

approximate the relationship between inputs and outputs in the given dataset.
Neural networks have gained significant attention as digital predistortion (DPD) tech-

niques to mitigate nonlinearities in Mach-Zehnder modulators (MZMs) in high-speed
optical communication systems. In [22], Imtiaz et al. propose an NN-based DPD ap-
proach designed to reduce quantization and bandwidth-limited impairments introduced
by digital-to-analog converters (DACs) in high-bandwidth systems. Their work compares
NN-DPD with traditional methods, such as Volterra series, look-up tables (LUT), and lin-
ear DPD, showing that NN-DPD, particularly when trained with direct learning, achieves
superior signal-to-noise ratio (SNR) gains. They demonstrate that an indirect learning
architecture with a recurrent NN offers a favorable trade-off between performance and
complexity, which is advantageous in high-symbol-rate optical systems.

Schaedler et al. [23] focus on a low-complexity DPD using an extreme learning ma-
chine (ELM) to compensate for MZM nonlinearities in 400ZR systems over a 40 km
unamplified link. Their results indicate that the ELM-based DPD achieves comparable
performance to the more complex Volterra-based methods. Similarly, Bajaj et al. [24]
explore an NN-based DPD trained via both direct and indirect learning architectures,
specifically for a 128 GBaud coherent optical transmission. Their findings highlight the
superior performance of NN-DPD in reducing transmitter-induced nonlinearities, espe-
cially at higher symbol rates and with complex modulation formats like 64-QAM and
256-QAM, achieving substantial SNR gains and setting a new record transmission rate
of 1.61 Tb/s over 80 km of single-mode fiber.

In this section, we employ a neural network to learn the nonlinearity of the MZM.
The network is trained to output a pre-distorted signal that, after passing through the
MZM, results in an output signal as close as possible to the ideal signal. This adaptive
model is structured as follows:

8.6.1 Neural Network Architecture

A fully connected neural network is used, consisting of an input layer, two hidden layers
with ReLU activation functions, and an output layer. The network takes the distorted
signal (from the MZM output) and learns to map it to the target ideal signal (16-QAM).
The architecture is detailed below:

• Input Layer: Accepts the real and imaginary components of the distorted signal
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Figure 8.11: Simulation setup with NN-DPD block before DP-IQ-MZM.

from the MZM.

• Hidden Layers: Two hidden layers, each containing 64 neurons with ReLU ac-
tivation functions. These layers are designed to capture the complex nonlinear
transformations necessary for effective predistortion.

• Output Layer: Outputs the real and imaginary components of the predistorted
signal, which will then serve as the input to the MZM.

8.6.2 Cost Function

To train the network, we minimize the mean squared error (MSE) between the neural
network’s predistorted output and the ideal signal. This cost function allows the network
to iteratively adjust its weights, reducing the error caused by MZM nonlinearity. The
cost function L is defined as:

L =
1

N

N∑
i=1

∥ŷi − yi∥2 (8.7)

where ŷi is the predistorted output from the neural network, yi is the ideal signal, and
N is the number of training samples.

8.7 Steps for NN-Based Predistortion

In Figure 8.11 we have shown the simulation setup with the blcok for NN-DPD before
MZM and in Figure 8.12, we present the block diagram of the neural network architecture
designed for signal pre-distortion. This model includes an input layer that processes the
real and imaginary components of the signal, followed by two fully connected hidden
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Figure 8.12: Neural network architecture for pre-distortion, showing input, hidden layers,
ReLU activations, and MSE loss calculation.

layers with ReLU activations, and an output layer. The MSE loss function calculates the
error, guiding the model’s optimization during training.

To implement neural network (NN)-based predistortion for an MZM system, the fol-
lowing steps are followed:

8.7.1 Data Preparation

To train the neural network model effectively, two datasets are required:

1. Distorted Signal (Input Data): This dataset consists of the MZM output signal,
which has been distorted due to nonlinearities introduced by the modulator.

2. Ideal Signal (Target Data): This is the original, undistorted signal that we aim
to achieve post-modulation.

Training data generation involves:

• Sampling a sequence of points from the distorted MZM output for the input dataset.

• Sampling the corresponding points from the undistorted modulated data for the
target dataset.

Both the input and target data are complex signals. To facilitate neural network
training, each signal is decomposed into its real and imaginary components, effectively
doubling the feature space while allowing the network to handle complex data in a struc-
tured form.

8.7.2 Neural Network Architecture

The architecture of the neural network is designed to predict the real and imaginary
components of the predistorted signal, and it comprises the following layers:

• Feature Input Layer: This initial layer has 2 nodes, one each for the real and
imaginary parts of the input signal.

• Hidden Layers: Two fully connected layers with 64 neurons each, interleaved
with ReLU activation layers. These hidden layers enable the network to learn
complex, nonlinear relationships between the distorted input signal and the desired
predistorted output.

• Output Layer: This layer has 2 nodes, corresponding to the real and imaginary
components of the output signal.
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• Regression Layer: The final layer uses Mean Squared Error (MSE) as the loss
function, which is suitable for regression tasks. The network minimizes this loss
function to reduce the error between the predicted and target signals.

This architecture enables the neural network to learn a mapping that effectively com-
pensates for MZM-induced nonlinearities.

8.7.3 Training Process

The neural network is trained using the Adam optimizer, which adjusts the network’s
weights to minimize the MSE between the predicted predistorted signal and the ideal
target signal. The training is carried out over 50 epochs, using mini-batches of size 128.
The initial learning rate is set to 10−3 a small value to ensure gradual, stable updates
to the network’s weights. For training, the dataset consists of the first 4000 symbols,
empirically chosen to balance convergence and computational efficiency.

During training, the neural network iteratively refines its parameters to learn the
optimal transformation that maps the distorted input to the ideal target signal. By the
end of this process, the network is capable of generating a predistorted signal that, once
processed by the MZM, closely approximates the ideal undistorted output.

8.7.4 Applying Predistortion

After training, the neural network is used to apply predistortion to any modulated signal
before it undergoes modulation by the MZM. For a given modulated signal, we separate
its real and imaginary components, feed them through the trained neural network, and
obtain the corresponding predistorted values. These values are then combined back into
a complex signal, which serves as the predistorted input to the MZM.

Root Mean Square Error (RMSE) vs. Iterations

The Root Mean Square Error (RMSE) is a measure of the difference between the
predistorted signal (output of the neural network or polynomial DPD) and the ideal target
signal. In this context, RMSE provides a quantitative assessment of how effectively the
DPD method minimizes the distortion caused by MZM nonlinearities.

Mathematically, RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(ypred,i − yideal,i)
2

where ypred,i represents the output from the DPD model for the i-th sample, and yideal,i

is the corresponding ideal (distortion-free) signal sample.
In the RMSE vs. Iterations plot, the RMSE is plotted as a function of training

iterations, indicating the model’s ability to reduce distortion. A downward trend in RMSE
suggests that the model is successfully minimizing the error between the predistorted and
ideal signals, thus improving signal quality. Ideally, the RMSE should converge to the
lowest possible value, indicating optimal compensation for MZM nonlinearity.
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Figure 8.13: Training process for Neural Network pre distortion for DP-16QAM signal
using Matlab.

Loss vs. Iterations

The Loss function serves as the cost function that the neural network minimizes during
training. This loss function quantifies the error between the predistorted and ideal signals,
guiding the model to adjust its parameters to achieve better predistortion. Typically, the
Mean Squared Error (MSE) is used as the loss function, defined as:

Loss =
1

n

n∑
i=1

(ypred,i − yideal,i)
2

In the Loss vs. Iterations plot, the loss value is plotted against the number of
training iterations. A decreasing loss indicates that the model is progressively learning
to minimize the distortion, and convergence to a low loss value suggests effective training
and optimal predistortion.

In Figure 8.13, we observe the RMSE and Loss plots against the number of iterations
during the neural network training process.

• The top plot shows the Root Mean Square Error (RMSE), which represents
the error between the predicted output from the digital predistortion (DPD) model
and the ideal signal. The RMSE quickly decreases within the first few hundred
iterations and converges to a very low value, indicating that the neural network is
effectively minimizing the signal distortion and learning an optimal mapping.

• The bottom plot displays the Loss (Mean Squared Error), which is used as the cost
function guiding the neural network training. Similar to RMSE, the Loss also drops
sharply in the initial iterations and stabilizes around a low value as the training
progresses. This rapid convergence reflects the model’s efficiency in minimizing the
error and achieving a near-optimal pre-distortion performance.
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Overall, the plots demonstrate fast convergence of both RMSE and Loss, indicating
effective training of the neural network for signal predistortion with minimal distortion
remaining by the end of the process. The low values achieved in both metrics suggest
that the neural network model is well-suited for compensating nonlinearities in the MZM
system.

8.7.5 Results and Performance Evaluation

To evaluate the performance of the NN-based DPD, we first consider the EVM versus
modulation index 8.14. In the plot, the green curve represents the NN-DPD. As shown,
the NN-DPD closely aligns with the Polynomial DPD in the linear region (modulation
index between 1 and 1.6) and achieves lower EVM than the Polynomial DPD in the non-
linear region (modulation index greater than 1.6). This demonstrates that the NN-DPD
significantly outperforms the case without DPD, especially under nonlinear conditions.

To evaluate the impact of neural network digital predistortion (NN-DPD) on the con-
stellation of a DP-16QAM signal at the receiver, we present the constellation diagrams
for a modulation index of 1.8 (representing the nonlinear operating region of the MZM) in
Figure 8.15. The simulations assume an AWGN channel with no bandwidth limitations,
and the constellations are normalized. Without NN-DPD, we observe significant distor-
tion in the constellation, demonstrating the nonlinear effects introduced by the MZM
at the transmitter. As expected, and consistent with EVM analysis, these nonlinear
distortions are effectively mitigated when NN-DPD is applied.

Figure 8.16 shows the same setup, but with additional bandwidth limitations at the
transmitter, simulated using a super-Gaussian filter with a 3 dB bandwidth of B = 0.5Rs.
Under these conditions, we observe that the outer constellation points experience greater
distortion compared to the inner points, highlighting the combined effect of bandwidth
constraints and MZM nonlinearity.

In Figure 8.17, we present the BER vs. modulation index for two scenarios: with
and without neural network-based digital pre-distortion (NN-DPD). The simulation is
conducted using a DP-16QAM signal without any bandwidth constraints. As shown,
across the entire nonlinear operating range of theMZM, the BER performance with NN-
DPD is consistently superior to that without DPD. This improvement highlights the
effectiveness of NN-DPD in mitigating the nonlinear distortions inherent in the MZM,
resulting in a more robust signal transmission over all modulation index values.

To further evaluate the effectiveness of NN-DPD, we focus on our primary performance
metric: the maximum Optical Distribution Network (ODN) loss for various target BER
levels. In this analysis, we also consider the impact of electrical bandwidth limitations
at the transmitter (TX), modeled by a super-Gaussian filter with a 3 dB bandwidth of
B3dB = 0.6 × RS, replicating the same simulation setup used in the previous section for
Polynomial DPD.

In Figure 8.18, we present the maximum ODN loss results for target BERs of 10−2

and 10−3 with NN-DPD applied.
Figure 8.19 provides a comparison of system performance with and without NN-DPD

for a target BER of 10−2, where the left side shows results with NN-DPD and the right
side shows results without DPD. As observed, employing NN-DPD results in a 1 dB
improvement in the achievable maximum ODN loss compared to the case without NN-
DPD. Additionally, NN-DPD extends the system’s capability to achieve the target BER
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Figure 8.14: EVM vs. Modulation Index for Three Scenarios: No DPD, Polynomial
DPD, and NN-DPD.

Figure 8.15: Predistorted signal output with and without NN-DPD for a signal with a
modulation index of 1.8, observed at the receiver side after passing through an AWGN
channel, without bandwidth limitations.

75



Figure 8.16: Predistorted signal output with and without NN-DPD for a signal with a
modulation index of 1.8, observed at the receiver side after passing through an AWGN
channel, with bandwidth limitations B = 0.5Rs.

Figure 8.17: BER vs Modulation Index for DP-16QAM signal, comparison of NN-DPD
and No DPD without bandwidth limitations
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of 10−2 within the region of lower roll-off factors (0.2 to 0.4). In this region, characterized
by low roll-off and high modulation indices, the system without NN-DPD fails to reach the
target BER, whereas NN-DPD enables the system to meet the performance requirements
for these conditions.

Figure 8.20 repeats this comparison but with a target BER of 10−3, with NN-DPD
results on the left and no-DPD results on the right. From these results, we observe a
consistent 1 dB improvement in the maximum achievable ODN loss when utilizing NN-
DPD. However, in regions with low roll-off values and high modulation indices, NN-DPD
does not show improvement, as for both cases with NN-DPD or without tit is not possible
to achieve the target BER of 10−3. Additionally, for very high roll-off values (greater than
0.8) with high modulation indices, NN-DPD appears to result in slight degradation, as
the system without NN-DPD is able to meet the target BER. Nevertheless, across most
modulation index and roll-off factor ranges, NN-DPD provides a 1 dB improvement in
maximum ODN loss.

To compare the performance of Polynomial DPD and NN-DPD, we include results
for a target BER of 10−2 in Figure 8.21, with Polynomial DPD shown on the left and
NN-DPD on the right. Similarly, Figure 8.22 presents the results for a target BER of
10−3, with Polynomial DPD on the left and NN-DPD on the right.

The observations from Figure 8.14 regarding EVM are consistent with those for max-
imum ODN loss. In Figure 8.14, we noted that for modulation indices mindex greater
than 1.6, NN-DPD achieves a lower EVM compared to Poly-DPD. Similarly, in Figure
8.21, we see that Poly-DPD fails to meet the target BER of 10−2 for mindex values above
1.6 in regions of low roll-off. In contrast, NN-DPD successfully reaches the target BER
across all tested modulation indices and roll-off values, demonstrating its robustness in
compensating for nonlinearities at higher modulation indices. A similar observation is
evident in Figure D, where Poly-DPD fails to achieve the target BER of 10−3 for modu-
lation indices greater than 1.2 with low roll-off values. In contrast, NN-DPD reaches the
target BER for modulation indices up to 1.6 in the same low roll-off regions.

This set of figures provides a comprehensive assessment of NN-DPD’s potential to im-
prove ODN loss tolerance in comparison to Polynomial DPD, particularly under stringent
BER requirements.
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Figure 8.18: Maximum ODN vs. roll-off factor and modulation index under bandwidth
limitations, with 3 dB bandwidth equal to 0.6× symbol rate (Rs), with NN-DPD for
target BER=10−2(left) and BER=10−3(right) .

Figure 8.19: Maximum ODN vs. roll-off factor and modulation index under bandwidth
limitations, with 3 dB bandwidth equal to 0.6× symbol rate (Rs), for target BER=10−2

with NN-DPD(left) without NN-DPD(right).
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Figure 8.20: Maximum ODN vs. roll-off factor and modulation index under bandwidth
limitations, with 3 dB bandwidth equal to 0.6× symbol rate (Rs), for target BER=10−3

with NN-DPD(left) without NN-DPD(right).

Figure 8.21: Maximum ODN vs. roll-off factor and modulation index under bandwidth
limitations, with 3 dB bandwidth equal to 0.6× symbol rate (Rs), for target BER=10−2

with Poly-DPD(left) NN-DPD(right).
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Figure 8.22: Maximum ODN vs. roll-off factor and modulation index under bandwidth
limitations, with 3 dB bandwidth equal to 0.6× symbol rate (Rs), for target BER=10−3

with Poly-DPD(left) and NN-DPD(right).

8.8 NN-DPD for Mitigating Nonlinearity Due to Low
Extinction Ratio

In previous sections, we assumed an ideal MZM with an extinction ratio (ER) of 100,
effectively neglecting nonlinear effects due to ER. In this section, however, we examine
a more realistic scenario with a non-ideal MZM operating at a low ER. Our goal is to
evaluate whether NN-DPD can learn and compensate for this type of nonlinearity at the
transmitter by predistorting the signal prior to entering the MZM, thereby mitigating
the impact of the reduced ER.

In [25], Napoli et al. proposed a DPD method using arcsin predistortion and gradient
descent optimization to mitigate ER nonlinearity, while here we propose an NN-DPD
approach to achieve similar compensation.

To begin, we use Error Vector Magnitude (EVM) as our evaluation metric. We calcu-
late the EVM between the ideal constellation and the constellation after the MZM over a
range of ER values, starting from a very low ER of around 5 and increasing up to 30. It
is worth noting that most high-quality commercial MZMs typically have an ER between
20 and 30. In Figures 8.23, 8.24, we present the EVM vs. ER for three scenarios: with
3rd degree Polynomial DPD, NN-DPD, and without DPD, for a modulation index range
of mindex = [1, 1.5, 1.7, 2]. As observed, NN-DPD outperforms Polynomial DPD at lower
ER values, while at higher ER values, both methods show similar performance. In both
cases, DPD significantly improves performance compared to the scenario without DPD.
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Figure 8.23: EVM vs. ER for systems with Polynomial DPD, NN-DPD, and without
DPD for mindex = [1, 1.5].

Figure 8.24: EVM vs. ER for systems with Polynomial DPD, NN-DPD, and without
DPD for mindex = [1.7, 2].

Metric Polynomial-DPD NN-DPD
Computational
Complexity

Low
(fixed number of multiplications)

High
(multiple layers of operations)

Memory
Requirements

Low
(few coefficients)

High
(many weights and biases)

Latency Low Higher
(depends on network size)

Table 8.1: Comparison of Complexity, Memory Requirements, Latency for Polynomial-
DPD and NN-DPD in Digital Predistortion of MZM.
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8.9 Complexity Comparison

In terms of complexity, Polynomial-DPD and NN-DPD differ significantly in terms of
computational complexity and resource requirements, which can impact their feasibility
and efficiency for deployment on Digital Signal Processing (DSP) hardware. In Table
8.1we compare the computational complexity, memory usage, and latency of both meth-
ods.

8.9.1 Polynomial-DPD

• Computational Complexity: Polynomial-DPD is computationally less intensive
compared to neural networks. Once the polynomial coefficients are computed (e.g.,
using polyfit in MATLAB), applying the polynomial pre-distortion to each input
sample involves a fixed number of multiplications and additions, determined by the
polynomial degree. This makes it relatively simple to implement on DSP hardware,
as polynomial evaluations are straightforward and can be efficiently parallelized.

• Memory Requirements: Polynomial-DPD requires storage for a small set of
coefficients (one for each polynomial term), making it memory-efficient.

• Latency: The latency for Polynomial-DPD is low, as the polynomial operations
are quick to execute on DSPs, especially when the degree of the polynomial is small.

8.9.2 Neural Network DPD (NN-DPD)

• Computational Complexity: NN-DPD is inherently more complex, involving
a sequence of matrix multiplications, activation functions, and potentially more
parameters across several layers. For a fully connected network with two hidden
layers of 64 neurons, there are thousands of weights and biases that must be stored
and processed for each inference. This complexity translates to significantly higher
computational demands on DSP hardware, especially when considering the forward
pass through multiple layers and non-linear activations.

• Memory Requirements: NN-DPD requires substantial memory to store the net-
work’s weights and biases, as well as intermediate values for each layer. This is
particularly impactful when the network has a large number of layers or neurons,
as these parameters must be stored and accessed during each inference step.

• Latency: Neural networks generally have higher latency compared to polynomial
operations, as they require multiple layers of computation for each input sample.
However, this latency can be mitigated if implemented on hardware accelerators
designed for neural network operations (e.g., using GPUs or FPGAs), though DSPs
alone may struggle with the speed requirements of real-time processing.
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8.10 Conclusion

In this work, we explored the application of Polynomial Digital Pre-Distortion(DPD)
to mitigate the nonlinearities introduced by the Mach-Zehnder Modulator (MZM). Our
findings demonstrate that the Polynomial DPD technique effectively compensates for the
MZM’s nonlinear transfer function, resulting in significant performance improvements,
particularly in terms of ODN loss and Error Vector Magnitude (EVM). By pre-distorting
the input signal, PDPD linearizes the MZM output, leading to enhanced signal quality
and reducing the complexity of the digital signal processing at the receiver.

The performance of Polynomial DPD was shown to be highly sensitive to the mod-
ulation index, with optimal results achieved for modulation indexes between 0.8 and
1.5. While the effectiveness of DPD diminishes beyond this range, the technique still
provides considerable improvements in the linear region. Additionally, we demonstrated
that selecting the appropriate polynomial degree is critical, with a third-degree polyno-
mial offering a good balance between performance and simplicity. We have also considered
a Neural Network based DPD and we observed that it improve the system performance
in terms of EVM, BER, and maximum ODN loss. We have also noted that Polynomial-
DPD cannot be effective in high modulation index values near 2, but NN-DPD can also
improve the system’s performance in that region.

In conclusion, NN-DPD and Polynomial-DPD offers a solution for addressing MZM
nonlinearities in optical communication systems, improving key metrics such as ODN
loss, EVM, and BER. These techniques enable better system performance and greater
efficiency, making it viable for use in advanced coherent PONs and other high-speed
optical networks. Future work may explore further optimization of the polynomial degree
or using low-complexity Neural Networks.
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Chapter 9

Conclusions and open research lines

9.1 Conclusion

In this thesis, we began by reviewing the current status and standards of passive optical
networks (PONs), with a focus on the evolving interest in coherent solutions for access
networks. Coherent PON systems face several challenges, one of the major issues being
the inability to use EDFAs or other optical amplifications due to the high number of
ONUs, which would result in prohibitive costs. To address this, we explored optimizing
parameters such as the optical modulation index and roll-off factor.

Initially, we developed a detailed model of the Mach-Zehnder Modulator (MZM) to
understand its operational characteristics and investigated the limits of increasing the
modulation index while maintaining system performance. While a higher modulation in-
dex increases transmitted optical power, it also introduces distortions due to the nonlinear
behavior of the MZM’s transfer function. We identified the optimum modulation index
for PM-QPSK and PM-16QAM modulations, which could serve as a potential guideline
for future implementations of next-generation coherent PON systems.

Additionally, while low roll-off factors are commonly used in long-haul transceivers
to optimize bandwidth usage, we suggest that for access networks, increasing the roll-off
factor might enhance the performance of unamplified coherent systems. This could be
another avenue for improving system performance in coherent PON deployments.

In the next chapter, we studied the impact of bandwidth limitations on system perfor-
mance and proposed the use of digital pre-emphasis (DPE) as a compensatory technique.
DPE acts as a filter to counter the low-pass filtering effects of the DAC, amplifying higher
frequencies while smoothing the lower frequencies. This technique proved to be effective
in mitigating bandwidth constraints, offering a practical solution to improve system per-
formance in coherent PONs.

In the final chapter, we reviewed techniques for mitigating the nonlinearity of the
MZM by predistorting the signal before it enters the modulator. Specifically, we examined
two methods: Polynomial Digital Predistortion (Polynomial-DPD) and Neural Network
Digital Predistortion (NN-DPD). Our simulations demonstrated that both approaches
can effectively improve the achievable Optical Distribution Network (ODN) loss.
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9.2 Future Work

While this thesis has addressed several key aspects of coherent PONs, numerous chal-
lenges and opportunities for further research remain. One significant area of focus is the
optimization of coherent transceivers for cost-effective deployment in access networks.
Unlike long-haul systems, PONs are highly cost-sensitive, particularly on the optical net-
work unit (ONU) side, where the use of expensive components, such as EDFAs, is not
feasible. Researchers and vendors need to explore innovative methods to enhance the per-
formance of unamplified coherent systems, such as refining modulation techniques and
optimizing transceiver designs. The balance between complexity, cost, and performance
continues to be a central theme in coherent PON research.

One key challenge is the development of low-cost coherent receivers and transmitters
that can operate efficiently without EDFAs while maintaining high optical power budgets.
Simplified coherent architectures, including reduced-complexity modulation schemes and
low-power DSP solutions, need further exploration. The integration of components, par-
ticularly through photonic integrated circuits (PICs), could also be a potential area of
innovation. Such integration would enable compact, low-power, and high-performance
transceivers suitable for cost-sensitive access networks. In particular, ongoing work on
coherent DSP technology [4] could further reduce the complexity and cost of coherent
PON deployments, making them more feasible for operators.

While this thesis explored the potential of modulation index optimization and the use
of roll-off factors in pulse-shaping filters, further investigation is required into the robust-
ness of these parameters under varying channel conditions and network architectures.
Issues such as chromatic dispersion and polarization mode dispersion (PMD) in access
environments remain critical challenges. There is a need for adaptive DSP algorithms
capable of handling these impairments in burst-mode traffic and low-complexity equaliza-
tion, which are essential for point-to-multipoint (P2MP) architectures. Advanced FEC
schemes, such as soft-decision FEC, should also be explored to improve performance at
higher data rates and under harsher transmission conditions.

To further enhance the performance of the proposed Neural Network Digital Pre-
Distortion (NN-DPD) system, future research will focus on compensating for both band-
width limitations and MZM nonlinearities. A novel approach will involve modifying the
neural network architecture to incorporate memory effects by using three consecutive
symbols as input and predicting one symbol as output. This extension will enable the
NN-DPD to account for temporal dependencies, improving its ability to mitigate distor-
tion more effectively.

Additionally, future investigations will explore the application of probabilistic modula-
tion formats specifically designed for CPON. This will aim to improve spectral efficiency
and adaptability in dynamic network conditions. Efforts will also be directed toward
optimizing the NN-DPD model for real-time implementation, ensuring its feasibility in
high-speed optical communication systems while maintaining low latency and computa-
tional efficiency.

Bandwidth limitations at both the transmitter and receiver sides also present sig-
nificant challenges. While digital pre-emphasis (DPE) techniques have shown promise
in mitigating bandwidth limitations, more research into adaptive filtering and machine
learning-based dynamic bandwidth allocation could transform system efficiency. Such
innovations could enable greater spectral efficiency and system scalability, particularly as
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networks evolve to support 100 Gbps and beyond.
Another crucial challenge is the coexistence with legacy systems. Operators seek

to deploy next-generation coherent PONs over existing optical distribution networks
(ODNs), and ensuring seamless coexistence while maximizing the benefits of coherent
technology will require careful consideration of wavelength planning, signal processing,
and coexistence elements. Recent work in this area, such as the introduction of colorless
phase-retrieval full-field recovery techniques and frequency-comb lasers, suggests promis-
ing directions for future PON research. Additionally, organizations like CableLabs are
working on coherent PON specifications that enable the coexistence of new coherent sys-
tems with legacy IM/DD networks, which would allow for smooth transitions without
significant infrastructure changes.

In summary, while coherent PONs offer significant potential for future access net-
works, considerable work remains in optimizing transceiver designs, handling system
impairments, addressing bandwidth constraints, and ensuring coexistence with legacy
systems. With continued research in these areas, coherent PONs could become a key
enabler of future high-speed, cost-effective access networks.
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