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Summary

Cloud Computing is fundamentally changing how software is developed and deployed, offering
users on-demand and scalable access to computing resources and services. However, this shift also
brings substantial challenges related to security, privacy, and trust; largely due to its reliance
on multi-tenant third-party infrastructure. To address these new arising problems, Trusted
Computing and Remote Attestation have become essential.

Trusted Computing is a set of principles and standardized technologies, promoted by the
Trusted Computing Group, in order to build trust on a platform. Among the most significant
results of this effort is the Trusted Platform Module (TPM), a crypto-processor that provides
hardware-based security to the platform on which it is installed. The TPM specifically enables
Remote Attestation, a process in which a remote party (verifier) verifies the integrity of a platform
(attester) by evaluating cryptographic measurements that the TPM protects and signs, thereby
ensuring their authenticity and integrity.

While remote attestation is a well-established method for validating the integrity of phys-
ical nodes through the direct use of the TPM, its implementation becomes significantly more
complex in cloud environments. These environments rely heavily on virtualization, particularly
containerization, for which no consolidated or standardized attestation framework currently ex-
ists. Container-based virtualization has become widely used in cloud environments due to its
greater flexibility and resource optimisation, especially compared to full virtualization.

Building on the preceding discussion, this thesis aims to propose a novel framework, designed
and developed from the ground up, to integrate seamlessly within Kubernetes, the de facto
standard for the deployment, scaling, and management of cloud infrastructures.

The proposed solution introduces a new architecture that adheres to the guidelines established
by the Trusted Computing Group and other relevant standards, whose primary objective is
to provide attestation capabilities over Pods, which represent the smallest execution units in
Kubernetes, each corresponding to a set of one or more containers.

The development emphasizes creating a modular and flexible system to accommodate future
enhancements and broader validation.
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Chapter 1

Introduction

Cloud Computing is transforming the way software is created and implemented, giving users
flexible and immediate access to computing resources and services. IT assets are delivered and
consumed through the as-a-Service model, which is specialized according to the different types
of asset provided and the extent of user interaction with the underlying infrastructure managed
by the cloud provider.

Among these models, the Infrastructure-as-a-Service (IaaS) model grants the highest level
of interaction and access to the cloud provider’s system and resources. Users are provided with
essential computing infrastructure, such as servers, storage, and network resources, mainly ac-
cessed through virtualization. IaaS enables users to utilise the provider’s infrastructure as though
it were a traditional on-premises IT system. This approach offers several key advantages, includ-
ing: leveraging the inherent flexibility and scalability of the cloud; enabling users to build and
customise their systems and applications on top of the provided infrastructure; and simplifying
management by transferring the responsibility for physical infrastructure maintenance to the
cloud provider.

However, delegating responsibilities for the management and administration of infrastructure,
while not absolute, introduces new challenges concerning security, privacy, and trust. These
concepts encompass and relate to various aspects of the IaaS model and are of critical importance
to both the cloud provider and the cloud customer. IaaS, and the cloud computing paradigm more
broadly, is founded on core architectural principles such as multi-tenancy. This approach enables
the sharing of computing resources among multiple tenants while ensuring logical separation in
their utilisation. Multi-tenancy, however, raises reliability concerns for both parties involved.
Cloud providers must trust the operations performed by users, as they interact with the provider’s
hardware infrastructure through their own software. Conversely, users must place trust in the
cloud provider, as they define and configure software systems upon third-party infrastructure
over which they have limited control and visibility.

The challenge lies in the necessity of establishing robust methods and security practices that
ensure the continuous renewal of the initial trust established between the two parties. This re-
newal must rely on the validation of genuine and tamper-proof evidence, with mechanisms in
place to reliably verify the authenticity and accuracy of the attested information at all times.
Trusted Computing and Remote Attestation provide the necessary tools to establish this proce-
dure, ensuring the integrity and authenticity of the exchanged information.

Trusted Computing is a set of principles and standardized technologies, promoted by the
Trusted Computing Group, in order to build trust on a platform. Trusted Computing, among
the various functionalities it offers, enables the establishment of strong system identification and
the verification of integrity by leveraging the robust security and protection properties provided
by the use of a hardware-based Root of Trust installed on the systems themselves.

Among the most significant results of this effort is the Trusted Platform Module (TPM), a
crypto-processor that implements hardware-based security to the platform on which it is installed,
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by providing hardware-based cryptographic functions and secure key and data storage. The TPM
specifically enables Remote Attestation, a process in which a remote party (verifier) verifies
the integrity of a platform (attester) by evaluating cryptographic measurements that the TPM
protects and signs, thereby ensuring their authenticity and integrity.

While remote attestation is a well-established method for validating the integrity of phys-
ical nodes through the direct use of the TPM, its implementation becomes significantly more
complex in cloud environments. These environments rely heavily on virtualization, particularly
containerization, for which no consolidated or standardized attestation framework currently ex-
ists. Container-based virtualization has become widely used in cloud environments due to its
greater flexibility and resource optimisation, especially compared to full virtualization.

Building on the preceding discussion, this thesis aims to integrate integrity verification pro-
cedures in the Kubernetes framework which is the de facto standard for the deployment, scaling,
and management of cloud infrastructures.

The proposed solution introduces a new architecture that adheres to the guidelines established
by the Trusted Computing Group and other relevant standards, whose primary objective is
to provide attestation capabilities over Pods, which represent the smallest execution units in
Kubernetes, each corresponding to a set of one or more containers sharing storage and network
resources. Since the pod is the target of the attestation process, the proposed architecture must
be designed to address all the requirements and operations necessary to establish its validity
and trustworthiness. The proposed design addresses all the identified aspects deemed necessary
for the implementation of the attestation system, including the creation of components, the
arrangement of their internal structure, and the definition of protocols essential to provide the
core functionalities underpinning the security and integrity of pod attestation.

The design is assessed through the implementation of a Proof-of-Concept (PoC), which
demonstrates its robustness and applicability. This is further subjected to functional testing
to verify its effectiveness, as well as performance testing to evaluate the overhead introduced on
the normal cluster operation required to support the additional security functionalities.

The desired level of integration aims to seamlessly align the attestation system with the core
components of Kubernetes, leveraging their functionalities where possible, while also incorpo-
rating autonomous mechanisms that extend the security properties of the cluster on which it
operates. This approach motivates the development of modular and flexible components and
interactions, enabling future extensions, developments, and broader validation.
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Chapter 2

Cloud Computing Concepts

Cloud Computing represents a significant evolution in Computing Technology, based on the
definition and administration of large-scale, multiple-dimensional computing resources. These
resources are managed exclusively by infrastructure administrators, usually referred to as Cloud
Providers, and delivered to users via Internet Services.

Fundamental to the establishment of cloud computing has been the great advances achieved
in computing hardware and the improvements obtained in software architecture, web technology,
and network communication fields over the past decades. This highlights that cloud computing is
not a stand-alone technology but the culmination of advancements across multiple technologies,
which jointly define the attributes of an entirely new computing paradigm.

This new pattern of organization and provisioning of computing resources is contributing to
a radical change in the landscape of computation. Cloud computing has allowed the definition
of new business methods, resulting in streamlining operations and overall efficiency increase [1].

Cloud Computing has revolutionized software development and deployment by providing on-
demand and scalable access to computing resources. This significantly reduces, depending on the
specific needs of users, the overhead and investment costs associated with procuring computing
resources and configuring the overall infrastructure. In return, users pay a nominal fee based on
their direct usage of these resources.

This chapter briefly introduces concepts, paradigms and approaches to software development,
testing, and application deployment that have emerged as a direct consequence of the new op-
portunities offered by the cloud model, to fully leverage its potential. Particular attention will
be given to lightweight virtualization and Kubernetes, as they represent the starting point and
foundational elements upon which this thesis work is based.

2.1 Cloud Native

Cloud-native computing is a software development and deployment paradigm built on top of the
properties offered by the cloud model, as it focuses on the creation and execution of scalable
applications that take full advantage of dynamic cloud infrastructures. Cloud-native computing
is based on a set of technologies, in particular containers and microservices, defined and adminis-
tered using declarative approaches and task automation. These components are decoupled from
each other and interact in a secure, resilient, controllable and observable manner [2]. Systems
that adhere to this approach are simpler to control and supervise due to their modular design,
making it easier to monitor performance and detect problems.

Cloud-native computing nature can be expressed through the following key principles:

• Microservice architecture: it is an architectural style based on the founding idea of
dividing an application into a subset of two or more autonomous, self-sufficient and loosely
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coupled units that are defined, launched and managed independently of each other, but
which collaborate and contribute to the definition of the overall functioning of the system;
each microservice is defined as a response to a business capability of the original application;

• Containerization: it is a software deployment process consisting of packaging software
code with just the operating system libraries and dependencies required to run the code
strictly needed to create a single lightweight executable, named container, that inherits the
capability of running consistently on any target infrastructure;

• Dynamic orchestration: orchestration is the process of automating deployment, man-
agement, and scaling of containerized applications; it is dynamic since it is automated
based on predefined rules and policies, ensuring that they are enforced throughout the
entire lifecycle of applications;

• Declarative APIs: declarative APIs are employed in cloud-native systems to define and
manage infrastructure and application configurations; by specifying the desired state or
properties, these APIs abstract away the complexities of how the system achieves that
state, allowing the underlying platform to handle the necessary operations to meet the
defined requirements while, at the same time, having certainty about their attainment.

Established in 2015 by the Linux Foundation, the Cloud Native Computing Foundation
(CNCF) [2] is responsible for supporting and progressing cloud-native technologies and continu-
ously enhancing the adoption of Cloud-native computing standardized practices and frameworks.
The main goal of the CNCF is to guide the shift arising from Cloud-native computing on how ap-
plications are developed and infrastructures are managed, relying on the concepts of modularity,
portability, and automation.

2.2 Containers

Containers are isolated executable units of software that encapsulate application code along with
all needed libraries and dependencies. Each container is defined from a given Container Image,
which is an immutable read-only template containing files, binaries, libraries, and configurations
necessary for its creation. A container image is a list of layers, where each represents a set of
modifications made to the file system that contribute to adding, modifying or removing files from
it.

When a container is defined and executed from a given image, the individual layers are
coherently grouped to form a single filesystem; a new writable layer named Container Layer is
also defined, which records all runtime data-writing operations.

When the container is removed, the container layer is deleted and the original layers derived
from the image used are unchanged: this mechanism allows the same image to be employed to
define multiple containers from it, each characterised by a different data state. As a result, a
container can be briefly defined as an executable instance of an image [3].

2.2.1 Underlying Concepts

Containers represent the main implementation of Operating System (OS) level virtualization,
a paradigm that allows the simultaneous existence of separate isolated user-space instances,
without any hardware emulation or hardware requirements, on top of the same underlying OS.

Isolation is one of the fundamental characteristics of containers, resulting from the resource
administration mechanisms provided by the Linux Kernel such as namespaces and control groups
(cgroups).

A Linux namespace is an abstraction of a specific type of global system resource, designed to
control and limit the visibility of that resource. It creates an isolated environment for processes,
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Figure 2.1. Container layer defined on top of image base layers (source: [3])

providing them with a unique view of the resource. From the perspective of the processes within
the same namespace, their view appears to be the entire system, even though it’s confined to the
specific namespace they belong to. Definitions of namespaces are specified for all fundamental
system resources, such as filesystem, networking, user management and Process IDs (PIDs).

Instead, cgroups limit, account for, and isolate computing resources’ usage for a given set of
processes.

Figure 2.2. Deployment schemas evolution through virtualization (source: [4])

2.2.2 Properties

Containers have revolutionized how applications are developed, deployed, and managed, offering
a range of benefits enabling developers and operators to deliver applications with greater speed,
consistency, and efficiency.
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The key properties and traits that characterise containers and contribute to their increasing
adoption are briefly described below:

• Isolation: containers leverage Kernel functionalities to implement a restricted execution
environment, separated from other system processes;

• Lightweight: containers are more efficient in terms of CPU Performance, Memory through-
put, Disk I/O, Load test, and operation speed measurement if compared to traditional
virtualization artefacts such as Virtual Machines (VMs) mainly due to the fact they all
share the same host’s OS kernel instead of having a separate OS instance deployed upon
an additional virtualization layer (hypervisor) [5]. As a consequence, more containers can
run on a single host than VMs;

• Consistency: since containers encapsulate all necessary dependencies within a single exe-
cutable instance, runtime behaviours are reliably maintained across different environments;

• Portability: containers can run on any system that supports a container runtime, making
it easy to move applications between different environments;

• Scalability: containers can be easily scaled up or down based on demand to handle varying
loads, resulting in high availability and fault tolerance.

2.2.3 Container Software Stack

Container use experience is positively affected by the employment of additional tools, such as
Container Engines. A container engine is a platform that provides a higher-level interface to
simplify the process of creating, deploying and managing containers. Starting from user input, it
performs lower-level interactions, such as retrieving container images, defining containers based
on them, and preparing the mount points, necessary for their execution.

A typical container engine consists of three main sub-components:

1. Daemon: background service that manages container operations and resources, effectively
handling container lifecycle;

2. Client: Command Line Interface (CLI) permitting the user to interact with the Daemon,
by issuing specific commands; it translates user commands into actions for the daemon to
execute;

3. Container runtime: the component responsible for container execution; it creates and
manages container processes by interfacing with OS to manage Kernel features, such as
namespaces, cgroups, union file systems, and networking capabilities, hiding their complex-
ity.

Among the most significant and well-known examples of container engines is Docker, an open-
source project released in 2013, which has contributed substantially to the growth in popularity
and interest in container technology [3].

Docker uses Containerd as its container runtime, which became an autonomous project do-
nated to the CNCF in March 2017. Containerd is a widely recognized tool as it is designed to
be compliant by default with the guidelines defined by the Open Container Initiative (OCI) [6].

2.2.4 Security Considerations

Despite their benefits, containers also must deal with significant challenges. Security is a main
concern as containers share the host OS’s kernel which can lead to security vulnerabilities if
not managed properly. Although the latter is the main element that contributes to the best
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optimisation of resources, it does not allow full exploitation by containers of the security features
offered by the Kernel nominally available to hosts, as well as to traditional VMs.

By default, a container cannot apply local security policies, precisely defined according to
the risks posed by the container as a well-identified system process, and by the attack surface
uniquely determined by operations and specific characteristics of the containerized application
itself [7]. The summarised problem is that security measures are mainly specified on a global
system level, from which there is a limited view of the specific criticalities of individual containers,
leaving little room for autonomous policy definition and enforcement.

Another security concern arises from the administration of container images. An image is
considered secure if it includes only the libraries strictly necessary for the container created from
it and is free from known vulnerabilities. The container-based software development model is
strongly characterized by the creation of new, additional layers built on top of a base image taken
from a given registry. This process results in a new image built on the initial one, a process that
is inherently easy to iterate. As a result, existing vulnerabilities tend to propagate, and there is
also the risk of introducing new ones, which, in turn, are propagated and become increasingly
insidious and challenging to identify as the number of layers grows. It becomes progressively
more complex to trace, verify, and ensure the origin and security of each image. Finally, further
vulnerabilities can arise from misconfigurations provided during the container creation phase, as
well as from manual and automatic updates performed on executed applications [8].

2.3 Orchestrators

Container Orchestration is the set of practices and processes to automate containerized applica-
tions’ creation, deployment, management, provisioning and scaling.

Orchestrators sit between the containers and the execution infrastructure, providing a higher-
level abstraction layer over the low-level configurations and implementation details required for
container planning and execution.

Their use is extremely convenient in cloud environments, where the overall infrastructure
consists of several nodes jointly working to distribute user workloads. In such contexts, or-
chestrators allow the achievement of full exploitation of the capabilities offered by the cloud
computing paradigm, automating the processes of allocation and configuration of resources (i.e.,
CPUs, memory, network, storage), monitoring of container lifecycle and scaling according to
constraints imposed by the user and incoming workloads.

2.3.1 Properties

The use of Orchestrators complements the already described benefits of containerization by
providing complementary services that enhance the overall user experience.

The main functionalities offered by an orchestrator are briefly listed below:

• Resource Management:

– Provisioning and Allocation: the orchestrator allocates resources such as comput-
ing, storage, and networking based on predefined policies and demand; this approach
ensures that the right types and amounts of resources are available for applications to
run efficiently;

– Scaling: the orchestrator automatically scales resources up or down based on the
current load and metrics resulting in performance optimization and cost-efficiency.

• Service Management:
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– Deployment: the orchestrator automates the deployment of applications and ser-
vices, including tasks such as setting up the environment, installing software, config-
uring services, and deploying code;

– Configuration: the orchestrator manages the lower-level configuration details of
applications and infrastructure, ensuring correct and consistent set-up across different
environments.

• Workflow Automation:

– Task Automation: the orchestrator automates repetitive tasks and processes, such
as backups, updates, and monitoring reducing the need for manual intervention thus
minimizing human error;

– Orchestration of Workflows: the orchestrator coordinates complex workflows in-
volving multiple services and components ensuring that tasks are executed in the
correct sequence and dependencies are managed properly.

• Monitoring and Management:

– Monitoring: the orchestrator continuously monitors the health and performance
of applications and infrastructure by collecting metrics and logs employed to make
informed decisions about resource allocation and scaling;

– Self-Healing: self-healing mechanisms allow to automatically detect and resolve is-
sues without human intervention, such as restarting failed services, reallocating re-
sources, and applying patches.

• Security and Compliance:

– Access Control: the orchestrator implements access control policies that secure ac-
cess to resources and services, ensuring only authorized users and applications interact
with the system;

– Secrets management: the orchestrator provides user and application secrets secure
storage, enabling protection of sensitive needed material within the system.

The underlying complexity of these services remains hidden from the user, who can potentially
interact with them solely through declarative configuration files, specifying only the desired state
for each resource.

2.3.2 Container Orchestration

In a containerized environment, the orchestrator communicates with the container runtime and
requests for the creation, start, stop, and deletion of containers. To do so, the orchestrator
leverages the container engine’s API to deploy and manage containers across multiple nodes
handling tasks such as image retrieval, network configuration, and storage setup.

When deploying a new container, the container runtime automatically schedules it to the
most suitable node, factoring in any specific requirements or constraints.

The orchestration tool then manages the container’s lifecycle based on the specifications
previously defined by the user, ensuring that the container’s state aligns with the desired config-
uration.

2.4 Kubernetes

Kubernetes is an open-source platform for container orchestration, designed to automate the
deployment, management, and scaling of containerized applications [4]. It aggregates multiple
computers, whether virtual machines or physical nodes, into a unified cluster capable of running
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containerized workloads. Created by Google and released in 2015, Kubernetes is now maintained
by the CNCF.

Two keywords that concisely describe Kubernetes are:

• Declarative: Kubernetes adopts a declarative model for managing applications and re-
sources;

– users define the desired state of the system through configuration files (typically
YAML), known as Manifests;

– Kubernetes continuously monitors the current state and compares it against the de-
sired state described in the Manifests;

– if dissimilarities are detected, corrective actions are taken to bring the system back to
the desired state.

• Extensible: Kubernetes is designed to be highly extensible, allowing users to be capable by
default of introducing new resources and functionalities into the system without modifying
its core.

The core of Kubernetes is built on the foundation of the REST API [4]. Kubernetes API
Server manages all interactions and communications, as well as user commands, through REST
API calls. As a result, all components within Kubernetes are viewed as API objects with a
corresponding presence in the API.

Given that Kubernetes is a broad and complex project, the following sections will briefly
describe its key aspects, providing a sufficient introduction for understanding the proposed solu-
tion in the subsequent chapters of this thesis: special attention will be given to the elements and
features that influenced its design and implementation. For a more comprehensive and detailed
description of each component and protocol, please refer to the official documentation [4].

2.4.1 Main Concepts

By abstracting the architecture of Kubernetes to the maximum and neglecting the details and
relationships among the individual components involved, a preliminary description of Kubernetes
operations can be derived from the following three key concepts:

• Control Loop: it is a continuous cyclic process used by controllers to maintain the desired
state of the system as defined in Manifests;

– controllers implement the Control Loop and make decisions to ensure that the current
state matches the desired state defined by users;

– each type of controller is responsible for monitoring (at least) a specific resource type.

• Resources: a Resource is an abstraction representing an element or concept necessary for
the operation of containerized applications and cluster management;

• Pods: it represents the smallest unit of execution in Kubernetes, which consists of one or
more containers that share the same network namespace and storage;

– pods abstract containers to simplify their management and orchestration, allowing
interaction with those as an individual entity.
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2.4.2 Cluster Overview

A Kubernetes Cluster consists of a set of VMs or physical nodes which collaborate to manage
and deploy containerized applications [4]. Kubernetes classifies the nodes in the cluster into two
main types:

• Worker Node: it is responsible for running application workloads; each worker node hosts
pods, made of one or more containers representing application components;

• Control Plane Node: it manages the worker nodes and pods in the cluster; it makes
global decisions about the cluster, by monitoring, detecting and responding to cluster
events.
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Figure 2.3. Example of a Kubernetes Cluster (source: [4])

A typical Kubernetes cluster is characterized by a small number of Control Plane nodes and
a larger number of Worker nodes.

In Kubernetes, the hub-and-spoke model organizes communication between the control plane
and worker nodes, where the control plane acts as the central hub and each worker node as a
spoke. In this setup, workers do not directly communicate with each other; instead, they securely
communicate with the control plane to receive instructions, report status, and share necessary
information about pods and workloads.

Each type of node is distinguished by its role and so by a different set of components running
on top of it. Control plane nodes run the core components responsible for cluster management,
such as API server, scheduler, etcd, and controller manager, while worker nodes run pri-
marily kubelet, kube-proxy, and a container runtime necessary for managing and executing
pods.

2.4.3 Role Based Access Control (RBAC)

Authorization of API requests in Kubernetes occurs within the API server [4]. The API server

reviews request attributes with all policies, possibly utilizing external services, before granting
or denying the request. To move forward, all components of an API request must be authorized
by an authorization mechanism. Access is not permitted as a standard practice.
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Authorization within Kubernetes plays a crucial role in safeguarding cluster resources and
managing access control across all of them. In a multi-tenant environment, ensuring cluster
security becomes a more complicated task. It is essential to have strong authorization systems in
place to guarantee that only approved individuals and sub-systems can access certain resources
or carry out specific actions, to avoid inadvertent modifications and potential security breaches
which will result in overall cluster security disruption.

Among the various authorization solutions supported by Kubernetes, there is in particular
Role Based Access Control (RBAC) [9]. Access authorization is granted to entities based on
specific roles they assume. Role permissions represent the necessary consent for carrying out
specified tasks in the cluster. One role can be assigned to multiple entities if those have common
authorization demands to fulfil their responsabilities.

Kubernetes RBAC relies on two concepts:

1. Role: a Role contains rules that represent a set of purely additive permissions; every
operation that is not explicitly allowed is denied by default;

2. Role binding: a Role binding gives the user or a group of users the permissions specified
in a Role; it contains a list of subjects (i.e., users, groups, or service accounts), along with
a reference to the role being authorized.

In addition, Kubernetes provides the capability to further restrict the permissions defined
by roles and associated with a user via binding. Specifically, permissions characterizing a role
can be limited to certain namespaces, rather than being universally applied across the cluster.
This flexibility ranges from restricting permissions to a single namespace to granting cluster-wide
access, depending on the scope described in the role binding. This capability enhances security
by ensuring that users and services only have the necessary permissions within the designated
areas of the cluster.

2.4.4 Extensibility

Kubernetes is designed with extensibility at its core, allowing users to introduce new functional-
ities and adapt the platform to their specific needs without modifying its core components. The
need to fork the project code or submit patches is thus significantly reduced [4]. Extensibility is
a fundamental concept for this thesis work.

Custom Resource Definition (CRD)

In Kubernetes, a resource is an endpoint in the Kubernetes API that manages a collection of API
objects of a specific type [4]. For instance, the built-in resource for pods manages a collection of
pod objects.

Custom Resources, on the other hand, extends the Kubernetes API beyond what is available
in a standard Kubernetes installation. These resources allow for customization within a specific
Kubernetes setup. Notably, many core and third-party functionalities in Kubernetes are now
implemented using custom resources, enhancing the modularity of the system.

Custom resources can be dynamically registered and unregistered within a running cluster.
Cluster administrators can update custom resources independently of the cluster’s core compo-
nents. After a custom resource is installed, users can manage its objects just as they would with
other common built-in resources such as pods.

Custom Controller

Custom resources, on their own, allow storage and retrieval of structured data. However, when
a custom resource is paired with a Custom Controller, a true Declarative API is achieved [4].
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The declarative API in Kubernetes enforces a clear separation of responsibilities. The user
just declares the desired state of the resource, and the Kubernetes controller ensures that the cur-
rent state of Kubernetes objects aligns with this declared desired state. This approach contrasts
with an imperative API, where direct instructions must be given to the server.

Custom controllers can be deployed and updated on a running cluster independently of the
cluster’s lifecycle. While custom controllers can manage any type of resource, they are partic-
ularly powerful when used with custom resources. Custom controllers, allow the encoding of
domain-specific knowledge for particular applications as an extension of the Kubernetes API.

When this approach is extensively leveraged, it enables the creation of additional functional-
ities within the cluster, gradually erasing the boundary between the original application and the
cluster itself.

2.5 Cybersecurity issues

The main criticality of cloud computing, which is at the root of the existence of numerous vulner-
abilities, is the lack of visibility and direct control by the organizations using the functionalities
offered by Cloud computing itself:

• Control: in the context of cloud computing, Control refers to an organization’s capa-
bility to manage, oversee, and regulate its cloud infrastructure, services, and data; this
involves the enforcement of access restrictions, the verification of adherence to governance
regulations, and the efficient application of security protocols;

• Visibility: Visibility in the cloud environment means having a clear understanding and
insight into the cloud’s operations; monitoring in real-time, analyzing data, and detecting
and fixing security weaknesses in the cloud system are all part of this procedure.

As depicted in Figure 2.4, we distinguish the different classes of criticality and vulnerability
according to the Deployment Model (i.e., Private, Public, Hybrid), Service model (i.e., IaaS,
PaaS, SaaS), and network communication.

2.5.1 Deployment Model Issues

Deployment models define the visibility of cloud infrastructure and, as a direct consequence, sets
of users of equally different sizes and distinct access and restriction policies.

The classes of vulnerabilities under this classification relate primarily to issues of unautho-
rized access to data and resources, sharing of the same set of resources by the provider with
a heterogeneous group of users, and the multi-tenant nature of cloud computing, which allows
multiple users to run their applications on the same physical infrastructure while hiding the
corresponding data from each other [10].

2.5.2 Service Model Issues

Service models determine the level of control that users can exercise, as well as the methods and
depth of interaction of users with the underlying infrastructure. In general, the level of control
increases as the user assumes more configuration and management responsibilities, rather than
delegating them to the cloud provider. The reasons determining the main critical issues relate
to reduced user control over the cloud provider, failure in the processes of isolation of resources,
whether physical or virtual, which simultaneously affects different levels of service and users
involved, as an example all the vulnerabilities related to virtualization of resources can be cited
[10].
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Figure 2.4. Classification of security challenges [10]
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2.5.3 Network Issues

Cloud computing relies mainly on the Internet and remote servers to maintain data and run
various applications. The network is essential for uploading and exchanging all necessary infor-
mation [10]. This is the main reason why among the various classes of vulnerabilities enumerated
those related to network issues are listed and considered separately.
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Chapter 3

Trusted Computing

Trusted Computing (TC) is a set of technologies standardised and promoted by the Trusted
Computing Group (TCG) [11] to enhance the security, privacy, and dependability of various
computing devices. The foundation of TC involves utilizing a hardware Root of Trust (RoT)
to protect computing systems and various endpoints. The TCG describes different methods
for building trust on a platform. These plans rely on recognizing the hardware and software
components of the platform. Through the precise identification and verification of these elements,
a base of confidence is established, guaranteeing the safety and reliability of the platform as a
whole. This method relies heavily on the Trusted Platform Module (TPM) to implement security
measures and protect against malicious software execution and unreliable system usage.

This chapter explores the fundamental concepts of TC, emphasizing the importance of the
RoT and TPM. It discusses how these components are employed to implement integrity and
correctness verification architectures, such as Remote Attestation (RA). RA is a critically impor-
tant protocol and one of the foundational enabling concepts in TC. Furthermore, RA workflow is
defined in detail according to current standards with an additional focus on its implementation
in cloud environments.

3.1 Trust

In the context of TCG specifications [12], trust refers to an expectation of behaviour. However,
predictable conduct does not necessarily equate to behaviour worthy of trust: establishing the
identity of a platform is crucial in determining its expected behaviour. Physically different
platforms may exhibit identical behaviour if they are composed of components (both hardware
and software) that act identically. Therefore, if the behaviour of their components is identical,
their trust properties should also be similar.

3.2 Trusted Computing Base (TCB)

The Trusted Computing Base (TCB) comprises system resources (hardware and software) re-
sponsible for enforcing the security policy of the system. A crucial characteristic of the TCB is
its capability to protect itself from compromise by any hardware or software which is not part
of the TCB itself [12].

3.3 Root of Trust (RoT)

As described in the TCG Glossary [12], a Root of Trust (RoT) is a component that carries
out various security-specific tasks such as measurement, storage, reporting, verification, and
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updates. A RoT is inherently trusted to act correctly, as any deviation in its behaviour cannot
be detected through attestation or observation. This makes a RoT a fundamental building block
for establishing trust within a platform. While it is impossible to determine if a RoT is behaving
properly, it is possible to know how roots are implemented. Certificates provide assurances that
the root has been implemented in a way that renders it trustworthy (e.g., a certificate can identify
the manufacturer and Evaluated Assurance Level (EAL) of a hardware component).

To maintain their integrity, Roots of Trust must be safeguarded against unauthorized changes
or interference during operation. There are different types of RoT: those that operate during
the boot process, such as a BIOS-based Root of Trust for Measurement, and those that function
during normal system operation, such as a TPM.

The TCG requires three Roots of Trust to jointly collaborate in a trusted platform:

• Root of Trust for Storage (RTS): the component responsible for securely storing both
integrity measurements and the cryptographic keys utilized by the Trusted Platform for
cryptographic functions; this embodies the concept of Shielded Locations ; a shielded loca-
tion can store either sensitive data, like the private portion of a key pair, or non-sensitive
data that does not need protection from disclosure, such as integrity digests; notably, only
the non-sensitive information can be reported through the Root of Trust for Reporting
(RTR) which will be introduced below;

• Root of Trust for Measurement (RTM): it is responsible for collecting and transmit-
ting integrity-related information, referred to as measurements, to the RTS; typically, the
RTM is implemented within the CPU, which operates under the direction of the Core Root
of Trust for Measurement (CRTM). the CRTM consists of the initial instructions executed
when a new chain of trust is initiated; when the system undergoes a reset, the CPU starts
by executing the CRTM; these initial instructions include sending specific values that es-
tablish the identity of the CRTM to the RTS; this process is crucial because it sets the
foundational link in the chain of trust, ensuring that the subsequent operations are based
on a secure and verified starting point;

• Root of Trust for Reporting (RTR): component tasked with reporting the data stored
in the RTS; the interaction between the RTR and the RTS must be designed with security in
mind to prevent tampering or any malicious activities that could compromise the accuracy
and integrity of the reported information; this ensures that the information relayed by the
RTR is trustworthy and reflects the true state of the system’s security.

By providing these essential security features, the RoT establishes a secure foundation for
the system. This basis is vital for maintaining secure operations and guaranteeing that all
processes and communications within the system are based on verified and trusted information
thus establishing a robust source of security that the system can rely on for subsequent secure
operations.

3.3.1 Static and Dynamic Root of Trust for Measurement (S-RTM/D-
RTM)

TCG specifications define two types of RTM, depending on when and how they intervene to
establish trust during system execution [13]:

1. Static RTM (S-RTM): measurements are collected throughout the boot process to show,
using Platform Configuration Registers (PCRs), which software was executed during system
startup; this underlines that each software component in the boot process could alter the
TCB of the OS that has been loaded; the trust chain begins with the first code that
executes after power-on (usually the BIOS or firmware) measuring the next piece of code
before passing control to it; this process continues in sequence until the OS is, in the end,
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fully loaded. Since S-RTM is tied to the early boot process, it cannot be altered or restarted
without rebooting the system; the previous denotes the main property of a S-RTM, where
the entire chain of trust is static and relies on the sequence in which components are
measured;

2. Dynamic RTM (D-RTM): D-RTM, in contrast, can be initiated at any point after the
system has already been booted, typically by a special instruction or event; this implies
that it does not depend on the initial boot process, serving as a complementary component;
a new chain of trust can be initiated by ensuring all processors are in a known state, a
processor starts executing code that has been measured, and the measured code running on
the processor must be followed without any modifications [13]; the previous three conditions
are achieved without the need for a full system reboot.

A key distinction between the D-RTM chain and the S-RTM chain is that the D-RTM chain
can begin with the platform hardware already set up and the memory already filled with an OS.
Therefore, there is no need to re-execute all of the software/firmware that was employed to set
up the hardware or install the OS itself. If the code remains unexecuted, it will be kept out of
the TCB provided any potential impact on the TCB can be nullified.

However, it is easy to see the relationship between the two types of components, and in
particular the dependence of D-RTM on S-RTM as the former could not exist without the
foundations established by the latter. The trust chain defined by the S-RTM represents the
starting point for that which is then initiated by the D-RTM, which is anchored to it. As a
direct consequence compromising trust in the former would affect the linkage connecting it to
the dynamic chain.

3.3.2 Transitive Trust

Transitive Trust refers to the method by which RoT validates the trustworthiness of an executable
function [12]. This verified trust is then extended to establish the trustworthiness of the next
function in the sequence.

This process can be achieved in two main ways:

• by ensuring a function enforces a specific trust policy before permitting the subsequent
function to assume control of the TCB;

• by taking measurements of subsequent functions, enabling an independent evaluation to
confirm their trustworthiness.

Through these methods trust is propagated from a valid starting point, ensuring the integrity
and security of all next operations executed within the system, and the possibility of identify-
ing an untrustworthy behaviour, which would result, as soon as it is performed, in the loss of
confidence in the trust transacted up to that point.

The notion of transitive trust is preparatory and foundational to the definition of the chain
of trust.

3.3.3 Establishing a Chain of Trust

In a Chain of Trust, each component must be measured and verified by the previous one before
its execution. The process assumes trust in the last chain element, which acts as the verifier
after having been previously verified itself. Overall trust is transitively achieved starting from
the first element of the chain, which cannot be verified and must be trusted by default, thus
serving as the RoT.
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The RoT initiates a chain of trust by ensuring that a computer or device only begins the boot
process after confirming the absence of malicious code. Through a trusted boot process, the RoT
guarantees that any software running on the device is legit and has not been compromised by
an attacker, thereby maintaining the device’s security. In doing so, the RoT indirectly ensures
the trustworthiness of all subsequent components initialized after it in a process in which trust
is passed on thanks to the solid security base established and offered by the RoT itself.

3.4 Trusted Platform Module (TPM 2.0)

A Trusted Platform Module (TPM) is a system component that maintains a state separate from
the host system on which it reports [12]. The interaction between the TPM and the host system
occurs solely through the interface defined in the TCG specifications.

TPMs can be implemented using physical resources either directly or indirectly. These re-
sources may be permanently and exclusively dedicated to the TPM or temporarily assigned to
it and they can reside within the same physical boundary or across different boundaries.

Some TPMs are implemented as single-chip components attached to systems (typically PCs)
via a low-performance interface such as the Low Pin Count (LPC) bus. Such TPMs contain a
CPU, RAM, ROM, and Flash memory, and interact with the host system exclusively through
the LPC bus. The host system cannot directly modify TPM memory values except through the
interface I/O Buffer.

Alternatively, a TPM can be implemented with code running on the host processor in a special
execution mode. In this setup, system memory is partitioned by hardware to restrict access to
the TPM’s memory unless the processor is in the special mode. Mode-switching schemes and
processor virtualization can facilitate this.

The primary design objective is to properly define the interaction between the host and the
TPM. Prescribed commands enable the TPM to perform specific actions on its internal data,
thereby allowing the determination of the platform’s trust state. The effectiveness of a TPM
relies on the proper implementation of RoT.

The focus of the information given is only on TPM version 2.0, the latest one introduced
in 2014, utilized in the implementation of the proposed solution for this thesis work. TPM 2.0
provides additional features when compared to its predecessor TPM 1.2, like support for a wider
range of cryptographic algorithms and primitives, and enhanced flexibility and security measures
through the addition of separate hierarchies each characterized by its root key and authorization
process.

3.4.1 Architecture

The TCG defines the TPM standard specifications by breaking down its design into separate
components, each detailed to clarify the specific role assumed and its distinct functionality within
the overall architecture [12]. Documentation of TPM implementation details is a key resource
and represents the starting point for designers and manufacturers.

An exemplification of the entire architecture is reported in Figure 3.1, presenting a higher-
level overview of individual components and their interrelationships.

The main constituent elements of the TPM are listed and briefly outlined below:

• I/O Buffer: this component facilitates communication between the TPM and the host
system; the system places command data into the I/O buffer, and response data is retrieved
from it; the I/O buffer does not need to be physically separated from other system compo-
nents and can be implemented as a shared memory; nevertheless, the implementation must
ensure that the TPM processes the correct values from the I/O buffer during command
execution;
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Figure 3.1. TPM architectural overview (source: [12])

• Cryptography Subsystem: this subsystem encompasses the Asymmetric Engine(s),
Hash Engine(s), Symmetric Engine(s), and Key Generation functions, collectively
responsible for executing the cryptographic operations of the TPM;

these operations include:

– hash functions;

– asymmetric encryption and decryption;

– asymmetric signing and signature verification;

– symmetric encryption and decryption;

– symmetric signing (HMAC and SMAC) and signature verification;

– Key generation.

• Random Number Generator (RNG): it serves as the source of randomness within the
TPM, crucial for generating nonces, key creation, and ensuring randomness in signatures;
tt is a Protected Capability without access control, comprising:

– an entropy source and collector ;

– a state register ;

– a mixing function (typically an approved hash function).

the entropy collector gathers entropy from various sources, removes biases, and updates
the state register; this state then feeds the mixing function to produce random numbers;

a Pseudo-Random Number Generator (PRNG) can implement the mixing function, com-
bining non-random inputs (like counters) with high-entropy sources to enhance randomness;
the RNG must meet certification standards for its intended market; each RNG access yields
a new value, with no distinction between internal and external requests;
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• Authorization Subsystem: it is invoked at the start and end of each command execution
within the TPM; its primary responsibilities include verifying proper authorization for
accessing shielded locations:

– some shielded locations require no authorization;

– access to other locations may necessitate single-factor authorization;

– certain shielded locations may demand complex authorization policies.

the Authorization Subsystem relies solely on hash and HMAC cryptographic functions but
asymmetric algorithms can also be used;

• Non-Volatile (NV) Memory: it stores persistent state crucial to TPM operations and
includes:

– Shielded Locations: as previously mentioned, these contain Protected Objects which
are accessible only through Protected Capabilities ;

∗ Protected Capability: any operation that must be reliably performed, as trust
in the TPM relies on its correct and successful execution;

∗ Protected Object: any data, including keys, that must be safeguarded to ensure
the trustworthiness of a TPM operation.

Ã¨rotected capabilities represent the only means of exporting data from a shielded
location since, by default, the content of a shielded location cannot be disclosed;

however, not all protected objects are stored within the shielded locations of the
TPM, as this would limit the TPM’s functionality due to its limited memory capacity;
instead, by employing cryptographic object protection strategies, it is possible to
safeguard and ensure the integrity of a protected object even if stored externally to
the TPM;

– Allocation: some NV memory is available for allocation and usage by the platform
and entities authorized by the TPM Owner.

if the specification does not explicitly specify the storage location of a parameter, vendors
may store it in either RAM or NV based on their preferences;

• Power Detection: this module manages TPM power states in conjunction with platform
power states and is characterized by the following aspects:

– the TPM supports only the ON and OFF power states;

– all platform-specific TCG specifications must ensure that the TPM is informed of all
power state changes;

– any system power transition necessitating the RTM reset also triggers a TPM reset.

the Power Detection module ensures synchronized power state management between the
TPM and the platform, contributing to maintaining system integrity and security;

• Random Access Memory (RAM): it holds transient data, which may be lost when
TPM power is removed; despite potential data loss, TCG specification terms them volatile,
though actual loss can vary by implementation; when TCG specification mentions a value
with both volatile and non-volatile copies, they may reside in a single location; this location
must support random access and possess unlimited endurance.

not all TPM RAM values are in shielded locations, a segment of TPM RAM serves as the
I/O buffer;

the TPM’s RAM supports three primary types of storage operations and sub-components,
each requiring the handle of its specific associated data:

– Object store: consisting of keys and data loaded from external memory; in most
cases, an object cannot be used or modified unless it was first loaded into TPM RAM
thus making the latter indispensable;
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– Session store: sessions are utilised to manage and control a sequence of TPM oper-
ations, establishing authorization mechanisms and preserving state across consecutive
commands; they can also be used to define attributes for each command, such as
enabling encryption and decryption of command and response parameters and sup-
porting auditing for security assurance [14];

– Platform Configuration Registers (PCRs): PCRs are specialized registers de-
signed to hold cryptographic hashes of system states, configurations, and measure-
ments; they play a critical role in attesting to the integrity of the target system and
for this reason, they will be separately analysed in more detail in Section 3.4.2.

3.4.2 Platform Configuration Registers (PCRs)

Platform Configuration Register (PCR) is a hardware register of the TPM embodying a Shielded
Location used to store contents of a log of measurements [12]. A trusted platform must maintain
a log of events affecting the security state, especially during the boot process while establishing
the TCB. When an entry is added to the log, the TPM receives a copy or digest of the log data.
This data is included in an accumulative hash in a PCR. The TPM can then attest the value in
the PCR, which allows the integrity of the log content to be verified.

The TPM supports two primary operations on PCRs:

• Reset: reset operation initializes a PCR to a specific value, typically zero; this is usually
done at the start of a boot process to ensure that previous measurements do not affect the
current measurement cycle;

• Extend: extend operation updates a PCR by appending a new hash to the existing value
and then hashing the intermediate result; this creates an accumulative hash representing
the sequence of all measurements thus ensuring that any alteration in the sequence will
produce a different final hash value:

PCRnew = hash(PCRold ∥ hash(new data))

A TPM can maintain multiple PCR banks each using a different hash algorithm. A PCR
bank is identified by the hash algorithm used for extensions within that bank. Multiple banks are
useful for maintaining compatibility with different applications that may require distinct hash
algorithms. Each bank may have a different number of PCRs, but all PCRs with the same index
across different banks share the same attributes, except for the hash algorithm.

PCRs can also gate access to objects within the TPM by denying access if PCR values do
not match the required values. Reporting on a PCR’s value can be done through simple reading,
inclusion in an attestation, or use in a policy.

PCRs may be stored in either RAM or NV memory. If stored in NV memory, it’s important
to consider the potential impact on TPM performance during critical boot phases when many
measurements are recorded. A TPM must implement a PCR bank for each supported algorithm,
although a bank may be defined to contain no PCRs.

The TPM stores different measurements inside the PCRs depending on the specific use case.
TCG standards [15] define how these measurements are used. Typically, 24 PCRs are employed.
Note that some PCRs (17-22) have not yet been specified and are available for other uses.

As stated in the standard shown in Table 3.1, each PCR is typically associated with a spe-
cific set of elements to measure because, although it is possible to exploit a single PCR for the
extension of all log entries, this is not very convenient for keeping track of intermediate states of
system evolution. An example in which the latter is extremely convenient is the boot process.
This association ensures that various aspects of the platform’s configuration and state are inde-
pendently verified. A PCR extension is always associated with an entry in the TCG event log.
This logging allows a challenger to see how the final PCR digests were constructed.
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PCR Index PCR Usage
0 SRTM, BIOS, Host Platform Extensions, Embedded Option

ROMs and PI Drivers
1 Host Platform Configuration
2 UEFI driver and application Code
3 UEFI driver and application Configuration and Data
4 UEFI Boot Manager Code (usually the MBR) and Boot Attempts
5 Boot Manager Code Configuration and Data (for use by the Boot

Manager Code) and GPT/Partition Table
6 Host Platform Manufacturer Specific
7 Secure Boot Policy

8-15 Defined for use by the Static OS
16 Debug
23 Application Support

Table 3.1. PCR assignments on a PC Client Platform compliant with TCG guidelines (source: [15])

3.4.3 TPM Keys and Credentials

The TPM possesses and exploits a wide range of keys to perform its internal operations and
support others performed externally. These are mainly asymmetric keys (i.e., RSA, ECC), which
can be associated with certificates attesting their reliability and binding to the originating TPM
or platform on which that TPM is deployed.

Base Terminology

In TCG-defined terminology [16], credential refers to the combination of a private key, created
to support a specific purpose and the corresponding X.509v3 certificate that binds the respective
public key to an exact Identity. Identity is defined as the pair of Subject and subjectAltName

fields of a certificate issued for a precise device by a Certificate Authority (CA) [16]. Moreover,
identities must be unique in the context of the same CA.

TCG-provided definitions in such context rely on the the IEEE 802.1AR standard [17] which
specifies the structure and properties of a device identifier DevID. It is defined as a secure
authentication credential cryptographically bound to a device comprising:

1. a private signing key representing the device’s secret and creating a bind with the device
with its identity;

2. an X.509 certificate containing the corresponding public key and a subject name that
uniquely identifies the device;

In addition, the 802.1AR standard specifies two types of DevIDs based on the CA signing
the certificates issued and the expected duration of the latter:

1. Initially installed Identity: represented by an Initial DevID (IDevID). The use of the
term initial is motivated by the nature of the aforementioned item, which is installed by
the Original Equipment Manufacturer (OEM) at the time of device creation and for which
a lifetime coinciding with the life of the device is expected. The latter aspect is crucial in
defining security restrictions regarding the usage of its key in the TPM context.

2. Owner-created and signed Identity: designated as Local DevID (LDevID). LDevID
credentials can either replace IDevID credentials or be used for separate purposes. LDevID
certificates are anticipated to have a shorter lifespan, especially if compared to IDevID.
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TCG Key Terminology

The management and classification of TPM keys, together with the consequent restriction policies
applied, are strongly compliant with the guidelines defined by the 802.1AR standard. The
initially supplied keys are inherently secure, as the TPM implements a RTS that safeguards
them, preventing access from external entities and thus ensuring binding between the device and
its identity. Moreover, TPM’s Authorization and Policy control can strengthen key security by
further restricting their access.

However, it is important to emphasise that the standard does not cover all TPM use cases,
many of which require keys with stricter constraints than standard signing keys. Additional
keys and certificates are essential to enable TCG-specific operations, such as attestation and
verification that a key is securely stored and protected by the TPM.

The TCG provides a precise set of definitions and properties for TPM-based keys that reflect
the more typical TCG requirements [16]:

• Attestation Key (AK): it is a non-duplicable restricted signing key, the meaning of which
terms are as follows:

– Restricted: a key with this characteristic imposes limitations on the sign and decrypt
actions, limiting them only to data generated by the TPM;

– Non-Duplicable: a key generated by a TPM that cannot be used beyond that
specific TPM.

each AK can be associated with a respective AK Certificate;

• Signing Key: a key that can only be used for signing operations, thus serving as DevID;
since it is not restricted, it can be used for general device authentication purposes; it is
fundamental for this intent to be provided together with a certificate, referred to as Signing
Certificate;

• Storage Key: a restricted key that is created for encryption and decryption only, never
used in device identification contexts; storage keys are usually used to protect other keys;

• Endorsement Key (EK): relative to the TPM alone, i.e., not considering the platform
on which it is installed, the EK represents the most important key, which enables the
authentication of all operations performed by the TPM under consideration [18];

the EK is an asymmetric keypair, requiring the private part to be housed in a shielded
location; the TPM can access the EK’s public part, but the private part should always
remain confidential;

EK is accompanied by a unique Endorsement Key Credential, which is a certificate issued
for the EK comprising additional statements about the security features and origin of the
TPM; the EK Credential is generally given out by a TPM or Platform manufacturer while
the manufacturing is ongoing;

TCG standards offer flexibility by not mandating specific attributes for the EK; however,
it is strongly recommended to declare it as a non-duplicable, restricted decryption key; this
approach is advised because the EK certificate or public EK can act as a privacy-sensitive
cryptographic identifier unique to a given platform.

Keys Enrolment and Relationships

Depending on the specific user needs and application requirements, the platform manufacturer
and the platform owner can define additional keys needed to cover them.

The process improves the flexibility of use cases and scenarios of TPM-based platforms while
continuing to guarantee the security of the entire key certification and administration system in
general.
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The TCG standardizes the entire process of generating and provisioning newly created keys
by defining precise enrolment use cases, each distinguished based on individual requirements and
preconditions [16].

What underpins and transcends the specific registration scenarios is the need to establish a
trust chain. This process requires starting from a consolidated trust anchor, always provided
by the TPM serving as RoT, and then extending this initial trust through a series of sequential
binding operations. In these operations, each subsequent element can in turn serve as the primary
trust anchor for those that are derived from it.

To prove that a new key is associated with a specific device, the process begins by binding
the TPM to the OEM device and then linking an AK to the TPM using the TPM’s EK. The AK
certificate becomes the foundational trust anchor for any certificates created subsequently, as it
attests that a new key, generated after the AK, is bound to the same TPM containing both keys.
By signing an IAK Certificate, the OEM CA establishes a core security assurance essential for
later IDevID or LDevID certificate issuance. An OEM-provided IAK Certificate serves as a clear
indication for applications that need confirmation that the IAK is bound to a specific device.

The most widely adopted enrolment model is depicted in Figure 3.2. In this model, the Proof
of Residency process for certifying the LAK directly leverages the EK and its corresponding EK
Certificate, which are embedded within the TPM by the manufacturer to ensure a unique tie
to that specific TPM. The standard further allows for enhancing the reliability of this process
through the use of a Platform Certificate issued by the OEM CA, establishing a formal binding
of the TPM to the specific platform for which this certificate is issued. Consequently, the Owner
CA can utilise the trust chain originating from the EK Certificate’s trust anchor and the verified
residency of the LAK within the same TPM to reliably issue the LAK Certificate.

TPM Manufacturer Installed (Box 1)

EK

EK Certificate

Chain of Trust

Proof of Residency

Inclusion

Device Manufacturer Installed (Box 2)

Platform Certificate

Owner / Administrator Installed (Box 3)

LAK

LAK Certificate

G

A

 

•

•

•

Figure 3.2. Creating LAK Certificate using the Platform Certificate (source: [16])

The existing nominal relationship between the key types involved is shown in Figure 3.3.
The initial binding operation associates the IAK with the same TPM where the reference EK
is located. Following this, once the IAK has been verified by the OEM CA, it becomes the
designated trust anchor for all keys created and certified by the OEM CA that are installed
on the platform, i.e., IDevIDs. As the chain progresses, the LAK, generated for the user level,
must successfully pass the proof of residency on the same TPM where the IAK is instantiated.
This enables the LAK to assume similar functions as those previously defined but now produces
LDevIDs certified by the user CA.
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Figure 3.3. Summary of Relationships of IDevID/IAK Keys and Certificates (source: [16])

Key hierarchies

The TPM is characterized by three key hierarchies, under which new keys can be created under
a parent-child relationship [14]:

1. Endorsement Hierarchy: it represents the privacy-sensitive tree since it is used to create
additional keys that will be used for identification of the device;

2. Platform Hierarchy: the platform manufacturer is in control of the platform hierarchy
through the early boot code included with the platform;

3. Storage (”user”) Hierarchy: it is designed for use by the platform owner, whether it’s
the enterprise IT department or the end user; it is meant for operations that do not require
privacy sensitivity, and this is the reason why general-purpose keys intended for use by
common applications fall within this hierarchy.

The choice of hierarchy impacts the authorizations and policies available for the lifecycle
of keys under it [16]. The seed, a large random number generated by the TPM, serves as the
cryptographic foundation for each hierarchy and is kept confidential within its secure boundary.
The seed is utilized by the TPM to generate primary objects like Storage Root Keys (SRKs).
The keys act as the root in a hierarchy and are employed to encrypt its descendants [12].

3.4.4 Features Summary

The TPM is an extremely articulated standard characterised by numerous specifications defining
its structure and implementation aspects. The extensive documentation produced by the TCG
reflects the complexity and number of operations supported by the TPM.

Below is a concise high-level overview of TPM’s primary features, useful for both users and
developers of TPM-based solutions, including functionalities not covered in detail within this
thesis:
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• Secure key generation and protection: as extensively described in Section 3.4.3, the
TPM can securely generate and store cryptographic keys, protecting them from unautho-
rised access;

• Data Binding: Binding allows data to be encrypted with a key internal to the TPM,
descended from the SRK, guaranteeing that such data can only be decrypted by the same
TPM that possesses the binding key itself;

• Data Sealing: analogously to binding, Sealing involves encrypting data using an internal
key of the TPM, along with the TPM’s state at the time of encryption; the sealed data
can only be decrypted if the current values of the PCRs match the TPM state that existed
during the encryption process;

• Platform Integrity Measurement and Reporting: PCRs enable the recording of
cryptographic hashes of system states, configurations, and measurements via the extend

operation, providing a robust mechanism for tracking system evolution and subsequently
verifying its integrity over time;

• Device Identification: each EK and EK Certificate pair is unique to the TPM, thereby
providing a reliable trust anchor for identifying the TPM itself and the platform on which
it is deployed;

• Privacy and anonymity: the secure key enrolment process enables the possibility to
derive LDevIDs enabling device authentication without directly revealing sensitive infor-
mation about the device itself;

• Remote Attestation (RA): TPM allows remote verification of a platform’s trustworthi-
ness by providing signed attestations of the system’s configuration; RA will be thoroughly
examined in Section 3.5, as it constitutes a foundational theoretical element of this thesis
work.

3.5 Remote Attestation (RA)

Remote Attestation (RA) is an activity conducted to verify specific properties of a target system,
called the Attester, by presenting Evidence to an external appraiser over a network, termed the
Verifier [19].

In TCG terminology, Attestation generally refers to the action of having the TPM sign internal
TPM data [12]. Trusted platform properties are supported by a hierarchy of attestations, with
RA being a critical element. A trusted platform can attest to a measurement, confirming that a
particular software or firmware state exists. This attestation is achieved by generating a signature
over a measurement stored in a PCR (or set of PCRs) using a certified AK protected by the TPM.
This type of attestation is commonly known as a Quote [12]. The result is attested information
received by the verifier, which directly performs its validation by comparing the received PCR
values against a set of trusted reference values.

RA separates the creation of proof from its authentication and validation, enabling a verifier
to adapt to changing circumstances, like finding new vulnerabilities thus rejecting a configuration
that was previously accepted.

An Attestation Architecture regardless of the specific implementation choices must respect a
set of commonly valid principles [19]:

1. Fresh Information: attestation responses received by the verifier should reflect the dy-
namic nature of the attester, i.e., must be computed on information up to the time the
attestation request has been issued;

2. Comprehensive Information: the attester must be able to provide the verifier with a
comprehensive description of its internal state;
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3. Constrained Disclosure: the attester must be able to authenticate the verifier to enforce
policies about internal measurement disclosure;

4. Semantic Explicitness: attester identity and properties should be derivable from the
semantic content of attestations;

5. Trustworthy Mechanism: the verifier must receive proof about the reliability of the
attestation mechanisms on which they rely; an important consequence of the latter is the
capability for the attester to deliver correct results even if it is corrupted.

3.5.1 Logical Execution Flow

The general attestation flow, independent from specific implementation choices, comprises in
order the following operations:

1. the verifier initiates the attestation by sending a challenge request to the attester; this
request specifies the PCRs to be validated and includes a nonce to protect the RA process
from replay attacks, ensuring the request’s uniqueness;

2. the attester accesses the RTR to read the specified PCRs within the RTS, supplying the
received nonce; assuming TPM usage, access to the RTS is secured via a protected capa-
bility; The PCR content is then signed with a certified AK, along with the nonce, and
returned to the attester;

3. the attester retrieves the Measurement Log (ML) from the RTM, which contains a record
of all operations performed on the target system up to the time of the request;

4. the attester sends the attestation response to the verifier, which includes both the signed
PCR measurements from the RTS and the ML.

5. the verifier proceeds with the evaluation process:

(a) it verifies the signature over the target measurements, confirming they originate from
the system’s authentic RoT;

(b) it checks the integrity of the ML and replicates all PCR extend operations recorded,
verifying that the ML extension results match the received PCR values;

(c) the ML is further analyzed to ensure that all entries comply with the verifier’s appraisal
policy, confirming that only authorized operations have been executed.

RA process is summarized in Figure 3.4.

3.5.2 IETF Remote ATtestation procedureS (RATS)

Remote ATtestation ProcedureS (RATS) [20] is the RFC-9334 document [21] which provides a
formal architecture defining the Roles involved in the RA, the interactions between them, and
the conceptual messages exchanged and received. RATS framework is agnostic to processor ar-
chitectures, the subject matter of Claims, and protocols. During RATS, an Attester provides
credible information about themselves, referred to as Evidence, for a Relying Party to determine
their trustworthiness. A Relying Party relies on the validity of received Evidence to enforce
application-specific actions reliably. An extra crucial participant, the Verifier helps to simplify
remote attestation processes. The Verifier assesses Evidence using evaluation criteria and pro-
duces verification outcomes to assist Relying Parties in making decisions.

RATS describes a versatile and agile framework in which each involved Entity can assume
one or more of the individually defined Roles, depending on specific implementation choices and
infrastructures. Entities are allocated Roles, corresponding to system parts and devices.
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Verifier Attester RTR RTS

1. chall_req(nonce, PCRs)

2. values_req(nonce, PCRs)

2. PCRs content

2. sigAK(nonce, PCRs)

3. ML_request()

2. prot_cap(PCRs)

RTM

3. ML
4. chall_resp =
    ( sigAK(nonce, PCRs), ML )

5. chall_resp 
evaluation

TPM

Figure 3.4. Remote Attestation workflow

Figure 3.5. RATS conceptual Data flow (source: [20])

Figure 3.5 illustrates the data flow between various Roles, regardless of the specific protocol
or use case.

The Verifier represents to some extent the point where most of the messages flow, since
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exchanging information directly supports attestation evaluation in an RA architecture. These
include in particular the Endorser and the Reference Value Provider. The former helps the
Verifier to validate received Evidence, defining further properties of the Attester, typically a
Manufacturer; the latter provides the Verifier with a set of reference values used in the comparison
with those of the Claims received in the Evidence. In RATS terminology, a Claim is a name-value
pair indicating a type of information and its found value. A set of Claims defines the Evidence.

RATS gives a more in-depth definition of the Attester, which consists of, at least, one At-
testing Environment and one Target Environment located in the same domain. The Attesting
Environment is an execution environment capable to collect Claims from the Target Environment
and format them appropriately. Claims are defined from measurements of relevant assets of the
Target Environment such as system registers, variables, memory and executed code.

The TPM alone does not qualify as an Attesting Environment, as it lacks an active component
that can autonomously collect and store measurements within its shielded locations. However,
when combined with a RTM, the TPM forms a complete Attesting Environment.

RATS attestation highly relies on evaluation against Appraisal Policies. An Appraisal Policy
consists of a series of predefined operations that an entity executes sequentially to assess whether
an incoming message aligns with specified standards and correctness criteria. Different Entities
define and enforce Appraisal Policies using varied methods, each tailored to handle specific types
of messages.

Figure 3.6. Two Types of Environments within an Attester (source: [20])

RATS mainly defines two interaction patterns between the Attester, the Verifier and the
Relying Party, which in turn can be compounded with each other to generate new ones.

• Passport Model: an Attester passes on Evidence to a Verifier that compares the Evidence
against its Appraisal Policy; the Verifier at that point gives back an Attestation Result that
the Attester treats as opaque data; the Attester does not expend the Attestation Result,
but it might cache it; the Attester can at that point show the Attestation Result (and
conceivably extra Claims) to a Relying Party, which at that point compares this data
against its Appraisal Policy; the Attester may moreover show the same Attestation Result
to other Relying Parties;

• Background-check Model: an Attester passes on Evidence to a Relying Party, which
treats it as opaque and advances it onto a Verifier; the latter checks the Evidence with its
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Appraisal Policy and sends an Attestation Result to the Relying Party; the Relying Party
at that point compares the Attestation Result against its Appraisal Policy.

Figure 3.7. Passport model (source: [20])

Figure 3.8. Background-check model (source: [20])

3.5.3 Remote Attestation in Cloud Environments

As previously discussed in Section 2.5, the lack of user control and visibility over the infrastructure
arranged by providers is the main reason generating critical security issues in cloud computing.
The evolution and increasing adoption of cloud-based solutions means a rise in the amount
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of sensitive, confidential and business-critical data hosted on cloud infrastructures, which are
generally managed by major third-party organizations.

On the other hand, the provider must entrust its infrastructure to the customer, who interacts
with it using software that may pose security risks. This highlights the mutual challenge of
establishing and maintaining trust. Developing mechanisms that enable the user to ensure the
security and integrity of their systems would not only benefit the customer but also enhance the
provider’s confidence in the overall infrastructure’s safety.

The focus will be more on IaaS-type services, as these represent the type of model with the
lowest level of abstraction, thus characterized by a greater need and capability to exercise control
and visibility over the infrastructure itself. Primarily concerning IaaS, which is the service model
requiring the most configuration and management effort on the part of the user, also referred
to as Tenant, cloud service providers currently do not offer the fundamental elements needed to
create a reliable environment for hosting sensitive resources. Tenants face challenges in verifying
the integrity of the underlying platform upon deployment in the cloud and ensuring that it
remains secure during their computing activities.

In addition, current practices limit the ability of tenants to establish distinct, non-falsifiable
identities for individual nodes rooted in hardware trust mechanisms. Typically, identity verifi-
cation relies solely on software-based cryptographic solutions or unverified trust in the provider.
For example, tenants often transmit unprotected secrets to their IaaS nodes through the cloud
provider [22].

Commodity-trusted hardware, such as the TPM, has long been advocated as a solution for
establishing trust, detecting system state changes that could indicate compromise, and creating
cryptographic identities. However, the deployment of TPMs in IaaS cloud environments has
been limited due to several challenges.

Firstly, the TPM and its associated standards are complex and challenging to implement.

Secondly, since the TPM functions as a cryptographic co-processor rather than an accelerator,
it can cause significant performance bottlenecks, e.g., taking over 500 milliseconds to generate a
single digital signature.

Finally, as the TPM is inherently a physical device, and most IaaS services are built on
virtualization, which intentionally abstracts cloud nodes from the underlying hardware, this
creates further complications. The reliance on physical platforms means that, at best, only the
cloud provider, not the tenant, would have access to the trusted hardware.

According to N. Schear, P. T. Cable II, et al. [22], the following are desirable properties for
an IaaS trusted computing system:

• Secure Bootstrapping:

– the system must enable tenants to securely install an initial root secret into each
cloud node; typically, this root secret serves as the node’s long-term cryptographic
identity, which tenants can use as a foundation to secure other secrets and enable
secure services;

• System Integrity Monitoring:

– the system should provide tenants with the ability to continuously monitor the in-
tegrity of cloud nodes during operation and react to any integrity deviations within
one second;

• Secure Layering (Virtualization Support):

– the system must support tenant-controlled bootstrapping and integrity monitoring
within VMs using a TPM provided by the infrastructure; this process should be carried
out in collaboration with the provider, adhering to the principle of least privilege;

• Compatibility:
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– the system should allow tenants to leverage hardware-rooted cryptographic keys in
their software, thereby securing services they already use, such as disk encryption or
configuration management;

• Scalability:

– the system must scale efficiently to support the secure bootstrapping and monitoring
of thousands of IaaS resources, accommodating their elastic instantiation and termi-
nation.

3.5.4 Keylime Framework

One of the most interesting solutions to the problem outlined so far isKeylime, a project originally
started in MIT’s Lincoln Lab through the efforts of the cybersecurity research group. Keylime
is a CNCF-hosted project that provides a highly scalable remote boot attestation and runtime
integrity measurement solution. It enables users to monitor remote nodes using a hardware-based
cryptographic RoT [23].

Keylime’s Threat Model [22] mainly defines the following assumptions:

• cloud provider is semi-trusted:

– it is considered an honest entity though always subject to the risk that it could be
compromised, i.e. there is a possibility that part of the provider’s resources may fall
under the control of the adversary, e.g., network and storage;

– the adversary is unable to physically jeopardize the provider’s resources;

– the provider is unable to obtain access to the contents of the memory allocated to the
tenant.

• the proper functioning of the TPMs involved, and the ability to verify their correctness
and integrity is assumed;

• the adversary’s goal is to infiltrate the provider’s system and compromise the tenant’s data
and services, instantiated on it; the latter result is achieved by the creation of new malicious
processes or modifications to existing ones.

Figure 3.9. Physical node registration protocol (source: [22])

Keylime consists of the following types of components [23]:

• Agent: the service Agent must run on the operating system that is required to be verified;
it interacts with the TPM to register the AK and create quotes, while also gathering
essential data such as UEFI and IMA Measurement Logs for state attestation to occur;
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• Registrar: the Agent enrols in the Registrar ; the Registrar oversees the Agent enrolment
process by obtaining a UUID for the Agent, gathering the EKpub, EK certificate, and
AKpub from the Agent, and confirming that the AK satisfies the proof of residency on
the TPM on which the EK belongs, leveraging MakeCredential and ActivateCredential

TPM commands;

• Verifier: the Verifier conducts the official attestation of an Agent and issues revocation
messages if the Agent strays from the trusted status; after registering for attestation, the
Agent provides the necessary data to the Verifier by either using the Tenant or the API
directly;

• Tenant: the Tenant is a management tool for handling Agents via the command line;
this involves including or excluding the Agent from validation, verifying the EK certificate
against a certificate store, and retrieving the Agent’s status; it additionally offers the
essential equipment for the payload system and cancellation procedures.

At the core of Keylime’s operation is the Registration Protocol, at the end of which the system
on which the Agent is instantiated is identified and becomes the subject of attestation by the
Verifier. The Registration Protocol is summarized in the following steps [22]:

1. the Agent sends its UUID along with the public parts of the EK and Attestation Identity
Key (AIK) to the Registrar; the EK X.509 certificate is sent; the EK is unchangeable and
verifies a genuine TPM, whereas the AIK is utilized for signing the quote; an AIK is a
unique RSA key that resides in a TPM and is utilized for platform authentication using
the TPM’s attestation capability;

2. the Registrar checks the validity of the EK certificate, verifying that it was issued by a
TPM manufacturer; it then forwards to the Agent an ephemeral key Ke encrypted using
the public part of the EK;

3. the Agent decrypts the challenge proposed by the Registrar and returns to the latter the
keyed-hash message authentication code (HMAC) calculated on the UUID with Ke;

4. on completion, the Registrar retains the AIK of the registered Agent, which will be used
later to validate remote attestation responses.

The above is exemplified by the Figure 3.9.
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Chapter 4

Virtual Entities Remote
Attestation

Virtualization has emerged as a key technology in modern computing landscapes, enabling effi-
cient utilization of resources and flexible deployment of services across cloud and edge environ-
ments. However, this shift towards virtualized infrastructure introduces significant challenges
in maintaining the security and integrity of systems. Security mechanisms such as Remote At-
testation (RA), traditionally designed for physical hosts, are not directly employable for virtual
entities such as Virtual Machines (VMs) and Containers.

This chapter delves into the problem of Remote Attestation within virtualized environments,
exploring the inherent difficulties in applying traditional attestation methods to virtual enti-
ties, and possible solutions to this problem. Additionally, it reviews various proposed solutions
designed to address these challenges, including Deep Attestation and Container Attestation.

4.1 Problems of Attestation in Virtualized Environments

As seen so far by focusing on cloud environments, although not addressing it explicitly, the
practice of Attestation presents numerous caveats and complexities when performed to verify
the correctness of virtualized systems. The latter is still an open challenge, although some
solutions with an interesting degree of maturity have already been proposed e.g., the Keylime
framework.

The main obstacle to the attestation process in virtualized environments is the increased
difficulty accessing the underlying hardware RoT.

Taking as a reference the case of VMs instantiated on top of the same hypervisor, as these
represent a practical exemplification of virtualization widely employed (even in Cloud environ-
ments) several considerations can be drawn. To talk about RA, it is assumed that the machine,
above which the hypervisor is running, is equipped with a TPM; the goal of the process is to
ensure the correctness of the individual VMs, before enabling their data processing.

Virtualization software such as KVM can enable VMs to access the physical TPM (pTPM)
through pass-through functionality. This enables the same attestation technologies to be utilized
for both VMs and hypervisor. Nevertheless, distributing the identical pTPM across multiple
VMs causes the TPM to become a bottleneck and leads to race conditions.

Virtual TPMs (vTPMs) are software versions of a TPM that can be allocated to VMs, giving
the VM the sense of having a physical TPM. Using vTPMs allows for each VM to have its
own securely embedded software TPM that is anchored in a pTPM. The same authentication
technologies can be utilized for VMs as well. Yet, the integrity of virtual machines relies on the
integrity of the hypervisor underneath [24].
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Different is the situation in the case of lightweight virtualization. In such a context another
option is achievable because the container is not fully separate from the host OS and has shared
hardware, including the pTPM. Like how the host OS can allocate a network card to multiple
containers, it can also allocate the same pTPM. However, the sharing process must be carefully
executed, as each container cannot have its vTPM instance anchored to the system pTPM;
instead, a method must be found to use the pTPM to attest the various containers.

In general, the portability and migrability afforded by the decoupling of virtual resources
from the underlying hardware on which they run, pose a significant problem in the process of
verifying the integrity of those resources: it is necessary to identify, at the time the attestation
is requested and implemented as part of that process, the physical machine on which the virtual
resource is effectively running, to trace it back to the pTPM indeed involved and validate that
the virtual resource is bound to it, e.g., via a vTPM.

4.2 Deep Attestation

Virtualization allows for effective, flexible remote network setup and management; nevertheless,
security risks can arise due to shared resources among multiple virtual processes. It is desirable
to define a process capable of achieving the same level of security as would be present in non-
virtualized systems. As previously explained, this may require the virtualization of the RoT and
its coupling with the underlying hardware RoT, e.g., pTPM and vTPM case.

Deep Attestation refers to the comprehensive process of verifying and establishing trust across
all layers of a computing system, including both hardware and virtualized components. This
involves creating secure bindings between the pTPM and vTPM instances to ensure integrity
and trustworthiness throughout the entire system stack. At a high level, two primary approaches
to Deep Attestation can be distinguished [25]:

1. Single-channel: in single-channel Deep Attestation, the process is conducted solely be-
tween the remote verifier and the VMs; during each attestation, the VM, by querying its
associated vTPM, provides an attestation not only for itself but also for the hypervisor
it operates on; specifically, the VM’s response to the remote verifier includes a separate
attestation of the hypervisor, as well as a layer-binding attestation that links the VM to
its hypervisor; notably, both attestation quotes are produced by the (slow) pTPM; al-
though this method provides robust security, it suffers from scalability issues, as each VM
attestation request also triggers an attestation of the hypervisor [25];

2. Multi-channel: in multi-channel Deep Attestation, VMs are attested separately and inde-
pendently from the hypervisor; the VMs provide attestation directly to the remote verifier,
demonstrating that they have not been tampered with; meanwhile, the hypervisor is also
attested by the remote verifier; although this method is highly efficient, it lacks a strong
binding between the VMs and the hypervisor; as a result, there is no assurance that the
VMs are genuinely being managed by the claimed hypervisor; an attacker could exploit
this gap to mislead a party, such as the infrastructure owner, into believing that a VM still
resides on a particular physical machine when it has been removed [25].

4.3 Linux Integrity Measurement Architecture (IMA)

After system integrity has been statically measured during the boot process, criteria must be
established to ensure that the system remains reliable and trusted. This is crucial because a
system, initially trusted, may later lose that trust if it is compromised by malicious software
injected by an attacker.
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Figure 4.1. Single vs multi-channel Deep Attestation (source: [25])

Achieving this is not trivial, as any solution must develop methods for measuring binaries
and verifying that they are authorized and unaltered. This requires predefining the applications
that are allowed to run on a given system.

Additionally, the order in which these applications are executed is unpredictable, as it depends
on the actions performed by the end-user. Thus, the validation of these applications must be
independent of any previously launched applications and must not interfere with those executed
afterwards.

In practice, the objective is to modify the OS so that, whenever an executable is started,
it is measured and the measurement is stored in specific PCRs (PCR8-to-PCR15 are intended
for use by the OS, as reported in Table 3.1); however, an application might recursively launch
another application, creating a problem due to the limited number of PCRs. With only eight
PCRs available, it is impractical to assign a distinct PCR to each application, as this would
quickly deplete the available PCRs.

The solution is to use just one PCR. By employing the extend operation, we can compute
the measurements of multiple applications and store them in a single PCR.

However, this approach introduces a dependency on the execution order of applications, which
can vary depending on user preferences. To address this issue the Linux Integrity Measurement
Architecture (IMA) subsystem was introduced. IMA aims to identify any unauthorized changes
made to files, whether done intentionally or not, from both remote and local sources. It compares
a file’s measurement to a stored reference value as an extended attribute and ensures the integrity
of local files.

IMA is composed of several modules which provide specific integrity functionalities [26]:

• Collect: measure a file before it is accessed;
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• Store: add the measurement to a kernel resident Measurement Log (ML) and, if a pTPM
is present, extend the IMA PCR (usually PCR 10 is chosen);

• Attest: if present, use the TPM to sign the IMA PCR value, allowing remote validation
of the ML;

• Appraise: enforce local validation of a measurement against a reference value stored in
an extended attribute of the file;

• Protect: protect a file’s security extended attributes (including appraisal hash) against
offline attacks;

• Audit: includes file hashes in the audit log, which can be used to augment existing system
security analytics/forensics.

The format and content of each entry collected and stored in the ML are defined by IMA
Templates. The template currently in use by default is ima-ng (next generation):

PCR template-hash template-name file-hash file-path
10 dc3a7[...]ad84a ima-ng sha1:1ba[...]0af51 /usr/bin/kmod

Table 4.1. Example of an IMA entry with the ima-ng template

Where the fields have the following meaning:

• PCR: indicates which PCR is used to store the extended hash values;

• template-hash: contains the digest computed from the template fields of the current
entry, which is extended into the PCR indicated in the first field;

• template-name: indicates which IMA template was applied during the measurement;

• file-hash: ensures the file’s integrity by providing a cryptographic hash of the file’s con-
tents; it so represents the digest of the actual event occurring;

• file-path: specifies the location of the file on the system for tracking and verification.

The verification process has two main stages:

1. ML validation: the extend operation is carried out entry by entry until the ML is
completely verified; each entry’s template hash is recomputed from the other fields and
compared against the stored template-hash value to ensure its integrity; the template
hash is extended with the accumulative hash computed so far over all previous entries to
reproduce the actual extend operation performed over IMA PCR; the first value extended
is the boot aggregate result with initial PCR configuration, which is a zero-byte sequence
whose size depends on the specific hash algorithm implemented by the PCR bank;

the extend result computed with template-hash thi of i-th ML entry is computed as
follows:

extendi = hash(extendi−1 ∥ thi) = hash(hash(...hash(0 ∥ th0)... ∥ thi−1) ∥ thi)

assuming n entries, extend operation computed over all ML entries result in the IMA
aggregate:

IMA aggregate ≡ extendn

The outcome of this process can be compared with the PCR storing the IMA aggregate
(typically PCR 10);
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2. Single Entry Validation: each entry in the ML corresponds to a specific file or event
and is validated against a whitelist of acceptable hash values.

In light of its verification process, IMA can be regarded as both a S-RTM and a D-RTM: it
acts as a S-RTM because the ML validation is based on measurements taken at system boot,
while also functioning as a dynamic D-RTM by enabling verification of any application executed
during normal system operation.

ng          sha256:127cb40…e61a431          

ng          sha256:a13ce32…a452aff            /

ng          sha256:214aeaf…3112834          /

ng          sha256:561afe1…118a93e          /

ng          sha256:994ac0d…f122ae6         /bin/

ng          sha256:ffa32187…78f31f1         /

ng           sha256:c3a57e0…eaa43c1         /bin/sh

ng           sha256:431abe6…aea4329          /

…

Figure 4.2. IMA individual entries integrity verification

ng   …   

ng   …   /

ng   …   /

ng   …    /

ng   …   /bin/

ng   …    /

ng   …   /bin/sh

ng   …   /

…

00000000…00000000

…

Figure 4.3. IMA verification process (sources: [27] [28])
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4.4 Container Remote Attestation

Containers share the same underlying kernel and resources, making it difficult to establish clear
boundaries for attestation. Additionally, the rapid lifecycle of containers, characterized by fre-
quent creation, scaling, and termination, challenges traditional attestation models that rely on
static, long-lived systems. Furthermore, the shared kernel and the potential for container escapes
or kernel-level attacks increase the difficulty of ensuring that a container’s state is trustworthy.

Regarding cloud environments, it is appropriate that the proposed solutions take into account
the concept of multi-tenancy so that only the containerized services owned by the specific tenant
that is performing the verification itself are involved in the integrity check processes, avoiding
the leakage of information and data from entities not involved.

At the same time, to maintain an acceptable level of efficiency, criteria should be established
to isolate the verification exclusively to the specific target container and, in the event of a neg-
ative outcome, implement corrective actions directed exclusively to the container itself without
involving the system on which it is running, unless strictly necessary.

4.4.1 IMA Namespace Approach

Traditional RA solutions are designed to validate the integrity of an entire host system by ensur-
ing that all components, including the operating system, kernel, and applications, are unaltered
and trustworthy. However, these classical approaches typically do not distinguish between ap-
plications running directly on the host and those executing within containers.

As a result, conventional RA methods treat the host and its containers as a single, mono-
lithic entity. This means that the attestation process cannot provide granular visibility into the
integrity of individual containers or their applications.

A possible solution is achieved by taking advantage of the flexibility offered by IMA of defining
new template formats, creating one that has among the fields, attributes that allow discerning
an entry related to the host from those of individual container files. Acting at the level of the
RTM framework, it is possible with this approach to direct attestation requests to consider when
generating proofs of correctness, only entries related to the container subject to the integrity
check.

The template ima-dep-cgn [28] gives a practical example of such an approach. An ML defined
according to such a template has the format expressed in Figure 4.4.

Using Docker as the reference container engine [3], a corresponding control group (cgroup) is
created for each instantiated container; cgroups allow the clustering and organization of assets
and their future descendants into hierarchical groups with defined behaviours. The cgroup ID
associated with a container matches the full ID of the container itself.

The ima-dep-cgn template utilizes the cgroup ID stored in the cgn field, along with the dep
field, containing the container runtime service that generated the container itself, to distinguish
different container entries in the IMA ML. This concept is illustrated in Figure 4.4, where the
specific container runtime service and container ID are highlighted in red.

4.4.2 Docker Integrity Verification Engine (DIVE)

Docker Integrity Verification Engine (DIVE) is an attestation solution designed within the Poly-
technic University of Turin [27]. The solution can be implemented on each compute node
equipped with a single TPM, allowing for the integrity verification of the host, the container
engine, and the running containers. The TPM authenticates the integrity evidence of the ser-
vices within these containers, making it directly usable for verification during the RA phase.

Additionally, DIVE offers the advantage of identifying which specific container is compro-
mised. This is a crucial feature, as a compromised container can be immediately stopped and
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PCR template-hash template-name dependencies cgroup-name filedata-hash filename-hint
10 sha256:ea99f9d4

0d63[…]
ima-dep-cg swapper/0:swapper/0 / sha256:7b6[...]d61 boot_aggregate

10 sha256:1590da57
18a7[...]

ima-dep-cg kworker/u8:3:kthreadd:s
wapper/0

/ sha256:b053785f
6308[...]

/usr/bin/kmod

10 sha256:8af8cfc4c
aa3b66d[...]

ima-dep-cg runc:/usr/bin/containerd-
shim-runc-

v2:/usr/lib/systemd/syst
em

d:swapper/0

8b2ad985209b
510bfd466aea

87c11[...]

sha256:04a484f2
7a4b[...]

/usr/bin/bash

10 sha256:01c73d70f
2

4cabd[...]

ima-dep-cg /usr/bin/bash:/usr/bin/co
ntainerd-shim-runc-

v2:/usr/lib/systemd/syst
em

d:swapper/0

8b2ad985209b
510bfd466aea

87c11 [...]

sha256:69ba80c7
1bff[...]

/usr/lib/x86_64-
linux-gnu/ld-

2.31.so

10 sha256:7bb4c6ce
48f4c3[...]

ima-dep-cg /usr/bin/bash:/usr/bin/co
ntainerd-shim-runc-

v2:/usr/lib/systemd/syst
em

d:swapper/0

8b2ad985209b
510bfd466aea

87c11 [...]

sha256:425378a0
c71b[...]

/usr/lib/x86_64-
linux-

gnu/lbtinfo.so.6.2

… … … … … … …

Figure 4.4. Example of IMA ML with ima-dep-cgn and template-hash computed with the
SHA-256 algorithm (source: [28])

replaced with a newly created one, without resetting the entire platform. This approach sig-
nificantly enhances the efficiency of RA, making it more practical and feasible for real-world
applications.

The architecture consists of the following components and is summed up by Figure 4.5:

• Attester: the Attester, equipped with a TPM and running IMA, is the focus of the RA
process; it also includes the RA agent, responsible for initiating the attestation process on
the Attester’s end by sending instructions to the TPM, obtaining the list of measurements
from the IMA module, and communicating with the Verifier ;

• Verifier: the Verifier plays a central role in the architecture by determining the integrity
status of every Attester and the containers it runs;

• Infrastructure Manager: it manages the creation of containers and keeps track of their
UUID and the node on which they are instantiated.

DIVE’s Attestation process is characterized by the following steps [27]:

1. the Verifier issues an RA request, intercepted by the RA Agent;

2. the Agent collects the needed PCR values from the target TPM (quote);

3. the previously obtained PCR values are combined with the IMA ML to form the Integrity
Report (IR);

4. IR is transmitted from the Attester to the Verifier;

5. upon receiving the IR, the Verifier will validate the digital signature of the quote output
with the public-key certificate of the Attester that was saved during the registration of the
host machine; afterwards, the IMA ML is verified for consistency with the PCR values;
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Figure 4.5. The DIVE architecture (source: [27])

6. a shortened list of measures, containing only elements of interest, is sent to the IMA
verification logic to be checked against the reference database;

7. the Verifier sends the integrity verification outcome back to the Infrastructure Manager.

Figure 4.6. DIVE Remote Attestation work-flow (source: [27])
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4.5 Kubernetes Pods Remote Attestation

A Pod is a higher-level abstraction that builds upon and extends the concept of container. It
serves as a wrapper that enables multiple containers to function together as a cohesive unit within
Kubernetes. While best practices typically involve deploying a primary application container
alongside a secondary container (often referred to as a sidecar [4]) that provides additional
services like logging, monitoring, and synchronization without modifying the main container’s
codebase, it’s important to recognize that a pod can theoretically consist of a larger set of
containers.

This consideration becomes especially crucial when designing RA solutions, as accurately
identifying and verifying all containers within a pod is essential for ensuring the overall integrity
and security of applications deployed in the system.

The complexity of attesting to multiple containers within an individual pod highlights the
need for robust mechanisms that account for the entire set of containers involved in the process.

However, it’s important to consider that since the pod is an abstraction derived from the
concept of containers, many attestation principles, with careful adaptation, remain applicable and
can be seamlessly extended to develop specifically tailored approaches to pod-level attestation.

4.5.1 IMA Control Group Approach

The challenge of distinguishing between node-level and pod-level entries in the ML mirrors
the issues encountered with container entries. At the operating system level, a container is
represented as a process, with dependencies that include information about the container runtime
engine that created it. Based on this information, it is possible to identify whether an entry comes
from a node or a container in the ML. However, this approach is insufficient for pods, as it lacks
a linking element to identify entries produced by containers within the same pod.

As an orchestration platform, Kubernetes manages and creates various objects necessary for
handling containerized applications. Each instantiated object is assigned a Universal Unique
IDentifier (UUID), which ensures its distinctive identification within the cluster. This infor-
mation is included in the Control Group Path of the resource, clearly specifying the type of
Kubernetes object, such as a pod [4].

As shown in Figure 4.7, the cgroup path related to a pod in Kubernetes adheres to the
following format: /kubepods/<QoS Class>/pod<Pod UUID>/<Container ID>. However, it is
important to note that depending on the particular Container Runtime Engine employed, the
formatting of the cgroup parts may vary. The meaning of the terms in this format is listed
below:

/kubepods/: it specifies that the cgroup path being considered is related to pods;

QoS Class/: represents the Quality of Service (QoS) class assigned to the pod; it can be one of
the following:

• guaranteed: ensures that the pod’s resource requests and limits are the same;

• burstable: the pod has a minimum amount (lower bound) of requested resources but
can use more if available;

• besteffort: the pod has no resource requests or limits, meaning it only uses resources
when available.

pod<Pod UUID>/: pod’s UUID;

<Container ID>: the unique identifier for the container within the pod; this is usually a hash
value or a container ID generated by the container runtime engine.
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Control Group Path Pod UUID
/kubepods/burstable/pod35dff828-7fe0-4cb6-
b498-c4320fb061ff/
841f62eabfdc59a14626dad33395714aea4ee7482
b00ced12088d1ad046767b0

35dff828-7fe0-4cb6-b498-c4320fb061ff

/kubepods/besteffort/pod785da7e9-8892-4aac-
8588-982a051e41cb/
281f69d88e5025e27cf95ce72e8fae54b768dd3ab3
73188b6ee67a84cf4f78ce

785da7e9-8892-4aac-8588-982a051e41cb

kubepods/besteffort/pod2eb8cc34-dc20-4832-
8a3c-3bad06824f3e/
879ec8fd57e4fb749172c609b6e6ca486d966df0fb
06c9bd10ec5e2db8d4fdb9

2eb8cc34-dc20-4832-8a3c-3bad06824f3e

/kubepods/besteffort/pod5f5e4ef5-22f0-4ff5-a693-
0497e43e58a9/8f2dcd659173cf3453856cf5fce98d
82ad309637ec951593bf7cb65babad43a1

5f5e4ef5-22f0-4ff5-a693-0497e43e58a9

Figure 4.7. Control Group Paths and corresponding pod UUIDs [29]

4.5.2 IMA Template for Pod Distinction

Integrating the previous considerations enables the development of a new template that can
differentiate entries not associated with the node itself, specifically identifying those generated
by containers related to the pod under verification. Developed through internal research by
the TORSEC group at the Polytechnic University of Turin, the resulting template is named
ima-cgpath [28] [29].

PCR template-hash template-name dependencies cgroup-path file-hash 
10 fea[...]b59 ima-cgpath swapper/0:swapper/0 / sha256:7b6[...]d61 boot_aggregate

... ... ... ... ... ... ...

10 7ef5[...]c38 ima-cgpath /usr/local/bin/redis-

server

:/usr/bin/containerd-shim-

runc-v2

:/usr/lib/systemd/system

d

:swapper/0

/kubepods.slice

/kubepods-besteffort.slice

/kubepods-besteffort-

poda00d22c4_3bfb_41d5_a

bad_493937e6ce50.slice

/cri-containerd-

45b9356be09e2a4283a414

ab7aefe3aa212dda8632043

a764361a32717763643.sco

pe 

sha256:4d1[...]0f2 /usr/lib/

x86_64-linux-

gnu/libcrypto.so.3

10 d26[...]4ac ima-cgpath /usr/bin/dash

:/usr/bin/dash

:/usr/bin/udevadm

:/usr/bin/udevadm

:/usr/lib/systemd/system

d:swapper/0

/system.slice

/systemd-udevd.service 

sha256:5e0[...]2e8 /usr/sbin/ethtool

Figure 4.8. Example of host and pod entry distinction with ima-cgpath template

The format string ’dep|cg-path|d-ng|n-ng’ defines this template, introducing the following
additional fields compared to the default IMA-supported templates:

• dependencies: it includes the chain of dependencies related to the measured process;
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• cgroup-path: it represents the control group path name of the measured process.

Figure 4.8 presents a partial view of the IMA ML generated with the ima-cgpath template.

The figure highlights both the structure of a host-related entry and a pod-specific entry,
illustrating the distinctions leveraged to differentiate between them. Similarly to identifying a
standalone container, the inclusion of the container runtime among an entry’s dependencies,
highlighted in green, enables distinguishing it from entries associated with the underlying host.
Additionally, the cgroup path, which follows the previously defined structure, further refines this
identification. It accurately determines whether an entry pertains to a specific pod, with its
UID highlighted in blue, and allows analysis to extend to the specific container related to the
measured process, marked by the runtime container’s UID, in yellow in the figure.

51



Chapter 5

Design

Remote Attestation (RA) in modern, complex computing environments presents significant chal-
lenges and new opportunities. Although Trusted Computing Group (TCG) contribute to RA
standardization by defining the capabilities of the RoT provided by the TPM and how it should
be used for this purpose, their implementation can vary widely depending on the specific environ-
ment and the unique requirements of the verification process. The latter is further demonstrated
by Remote ATtestation procedureS (RATS) RFC-9334 which provides a flexible and application-
independent framework for RA, focused on the interactions of the entities involved, highlighting
the characterising properties of each of these rather than how they are actually to be imple-
mented.

RATS emerges due to the broad range of computing environments, from cloud infrastruc-
tures to IoT devices which complicates the definition and straightforward application of more
constrained standards. Each environment’s distinctive characteristics may require the customiza-
tion or extension of standard protocols to achieve effective RA.

Moreover, as already extensively addressed in Chapter 4, virtualization opens up new con-
siderations regarding the implementation of RA that go beyond the RA architecture itself.

The reference domain considered in this thesis work is the Kubernetes cluster, where con-
tainerized applications are executed on Worker nodes through pods. Kubernetes is the de facto
standard for container orchestration, so developing an extension that allows the cluster admin-
istrator to verify the integrity of pod deployment and execution represents a significant result.
This enhancement greatly improves the security of tenants and the applications running on the
cloud provider’s infrastructure.

This chapter will define the proposed solution to the previous scenario. The focus will be
on the specific challenge of designing a RA system to verify the correctness and integrity of
pods running within a Kubernetes cluster. This analysis will explore the underlying principles,
architectural framework, and implementation details in depth.

5.1 Problem Statement

The starting point of the design is the final result achieved by the previous thesis work related to
this topic, also developed within the TORSEC research group of the Polytechnic University of
Turin, TPM 2.0-based attestation of a Kubernetes cluster [29]. The obtained result is based on
the Keylime framework adapted to include a new IMA template, specifically defined to identify
entries related to pods and allow their continuous attestation. Keylime components related to
the administration of the attestation process are instantiated on the Control-Plane node of the
cluster, while the Agent, which by its nature identifies the Attester, is deployed on the Worker
nodes. The architecture is summarized in Figure 5.1.
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This solution is effective; however, it relies on the use of two different software stacks running
in parallel (Keylime, Kubernetes) defining an overall system that is inflexible and lowly portable.
In other words, the proposed architecture does not allow the integration of the RA functionality
and its definition among the other features exposed by the Kubernetes-defined cluster, making
the interaction of the APIs of the framework with the attestation policies defined by the user
and the management of the results obtained, to automate the corrective actions that must be
performed on the examined pods, impractical.

Moreover, Keylime is a framework created to perform the attestation of cluster nodes and
then adapted to provide this functionality for pods. Implementing a new solution specifically
designed for the latter purpose represents an opportunity to obtain a result that reflects the
actual requirements of the starting problem and in the end, is more flexible and easier to extend
in future developments.

Kubeletkubelet Kube
Proxy

k-proxy CRI

pod

pod

pod

pod

pod

pod

IMA
ML

TPM 2.0
Keylime
Agent

Attester
Node

Etcd Controller
Manager Scheduler

Keylime
Tenant

Verifier
Node

etcd

Kubernetes Worker Node

API Server

Kubernetes Master Node

Keylime
Verifier

Keylime
Registrar

pod

Figure 5.1. Achitecture of the previously developed solution (source: [29])

However, it is worth noting how extremely valuable and fundamental the core ideas and
concepts are in defining a solution that nonetheless takes into account the problems outlined so
far. Equally relevant are the problems already identified, reported as follows:

1. attestation of a pod is different from attestation of a container:

(a) in the Kubernetes framework, a pod is an abstraction that encloses a set of one or
more containers and allows them to interact as if they were a single entity;
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(b) a pod represents the smallest deployment unit; accessing the individual containers
underneath is possible, although discouraged.

2. in a Kubernetes-managed cloud environment, numerous nodes are present for creating
pods:

(a) every node is responsible for running pods that belong to various tenants’ applications;

(b) it is important to ensure privacy during the attestation process, making it possible
to ascertain that only the data necessary to verify the pods held by the tenant who
requested the attestation itself are accessed.

3. it is necessary, for efficiency reasons, to separate the attestation of the pod from that of
the specific node hosting it:

(a) this allows a node to remain trusted even if one or more of its pods fail integrity
verification.

5.2 Proposed Solution

The proposed solution involves designing new specific components for the attestation of pods,
which will be integrated directly into Kubernetes. These components will operate alongside the
core Kubernetes ones, communicating with each other and the platform through the Kubernetes
API server.

Another important aspect to consider is that by designing components specifically for the
attestation of pods and integrating them among other cluster management features these com-
ponents will be tailored precisely to meet this particular condition. This approach differs signif-
icantly from the adaption of an existing framework to address a specific requirement, ensuring
a more efficient and targeted solution. By focusing exclusively on the attestation of pods, the
components will be optimized for this purpose, resulting in a more reliable and effective system.

The desired situation is exemplified by Figure 5.2, which underlines the architectural shift
from the previous result.

Employing Kubernetes’ extensibility features, such as Custom Resource Definitions (CRDs)
and Custom Controllers, along with containerization, will facilitate the integration of the attes-
tation components.

CRDs enable the creation of new data structures, that can be registered alongside the native
resources within the cluster, supporting the introduction of new functionalities and interactions
without requiring direct modifications to the Kubernetes codebase. Custom Controllers, in turn,
allow for the monitoring and management of changes applied to these new resources, which are
handled through standard CRUD (Create, Read, Update, Delete) operations.

The containerization of components facilitates the initialisation process of the attestation
system, supports the process of continuous integration and development, and enables the ex-
ploitation of the orchestration properties provided by Kubernetes.

This approach ensures that the attestation components are seamlessly integrated and effec-
tively managed within the Kubernetes environment, allowing their execution as privileged pods.

However, particular caution is required for the Agent component. Before enabling attestation
for individual pods, the Worker node itself must undergo a validation process during its registra-
tion within the cluster. This step ensures that the Worker node is trustworthy before any pod
is deployed over it and its attestation can be performed.

The proposed solution similarly to the previous result is based on and exploits the TPM as
a hardware RTS and RTR, and on IMA as RTM.
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Figure 5.2. Desired result overview

5.3 Threat Scenario

It is essential to properly identify the risks of the environment where the proposed solution
will be deployed to accurately define its capabilities and limitations in mitigating potential is-
sues. Understanding the threat landscape enables a more effective design, ensuring the solution
addresses relevant security challenges while acknowledging areas where mitigation may be less
comprehensive.

As demonstrated in other projects, the primary challenge in cloud security arises from the
lack of complete control and visibility over the infrastructure, and the incapacity to fully trust
the cloud provider, which is regarded as semi-trusted [22].

The cloud provider is seen as semi-trusted, indicating that although they are trustworthy at
the organizational level, they are still at risk of being compromised by outsiders or malicious
insiders. It is believed that the provider enforces procedures, technological safeguards, and
policies to prevent the escalation of such breaches throughout their entire system. Nevertheless,
in this partially trusted setup, it is recognized that some of the cloud provider’s assets could
potentially be under the control of a malicious entity, introducing a potential security threat to
the entire environment.

Restrictions and constraints are imposed on the attacker’s capabilities: the attacker is as-
sumed to lack the ability to physically compromise or directly interact with the cloud provider’s
resources, such as hosts, CPUs, memory, and TPMs. The likelihood of compromising completely
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a Control-Plane node is considered negligible. However, the same cannot be said for Worker
nodes, which are more vulnerable to compromise since they run user workloads and thus could
be manipulated to undermine the integrity of the attestation scheme.

The attacker’s objective is to exploit vulnerabilities in the cluster’s configuration, communi-
cation channels, or the applications deployed within it, to compromise Worker nodes. By doing
so, the attacker seeks to disrupt the execution of tenant applications, thereby impacting the
business operations of organizations that depend on the cloud provider’s services. This involves
undermining system integrity and leveraging weaknesses in the cloud infrastructure for malicious
purposes.

5.4 Background

As outlined earlier, the primary objective is to design a subsystem capable of integrating seam-
lessly into Kubernetes to enhance its core operations and functionality. The designed architecture
and its components must adhere to the constraints and possibilities provided by the Kubernetes
API.

It is essential to clearly define the possibilities and limitations offered by the framework, as it
serves as the foundational environment for the implementation and deployment of the proposed
solution. Understanding these factors is critical to ensuring the solution is feasible and effectively
integrated within the framework’s constraints.

Inter-component communication should be facilitated through Kubernetes’ extensibility mech-
anisms. Information exchange occurs by updating attributes associated with cluster objects, with
the relevant components intercepting these updates and responding proactively based on the de-
tected changes. Such modifications can pertain to core objects, e.g., pods, often taking the
form of implicit changes triggered by other Kubernetes components as part of the standard clus-
ter execution flow. In contrast, explicit changes are introduced by the attestation components,
informed by the results, whether intermediate or final, of the attestation process, particularly
concerning objects specifically created to support the remote attestation system.
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Figure 5.3. Inter-component communication: workflow
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Communication between components in Kubernetes is inherently indirect, as it is mediated
through the API Server, which functions as the central hub for managing the cluster. The API
server serves as the primary interface for all interactions, whether from internal components
like controllers, schedulers, and kubelets or from external users and applications. Figure 5.3
visually illustrates this concept, depicting the update and detection process. In each case, a
single component acting as the writer, to avoid race conditions, is responsible for performing
the update to a resource instance monitored by one or more readers which respond to changes
accordingly.

This approach is highly efficient allowing each component to be individually developed accord-
ing to its unique requirements while seamlessly integrating with the Kubernetes infrastructure
and other component-provided functionalities.

By enabling this modular creation and interfacing, components can interact in a non-invasive
manner, preserving the overall system’s flexibility and stability. This ensures that the components
remain independent, adaptable, and easily maintainable without disrupting the larger system
architecture or other existing elements.

5.5 Architecture Overview

The design process is heavily influenced by the concepts of entities, roles, and interactions out-
lined in RATS RFC-9334 [20] and by ideas and protocols upon which Keylime is based [22].
Driving the architecture and components design to align with the standard’s guidelines from the
first phase is crucial for producing a robust, coherent, and easily assessable solution. This early
adherence to RATS principles ensures consistency and strengthens the security and integrity of
the RA system. Furthermore, this approach helps to simplify implementation and validation
processes.

The key components required to define the desired architecture are now presented together
and outlined at a high level; each component will be then described more in detail and analysed
in Section 5.7:

Registrar: the Registrar is deployed on the Control-Plane node and manages asymmetric keys
and certificates required to ensure the secure execution of system operations; Specifically,
the Registrar:

− registers Worker nodes in the cluster by storing their respective Attestation Identity
Key (AIK), enabling validation of Evidence instances submitted by the Agent deployed
on that Worker;

− it provides a service that other components can leverage to interact with tenants’ and
workers’ keys to validate signatures computed with their corresponding private parts;

− it stores TPM manufacturers’ information, including intermediate and root Certifi-
cate Authority (CA) certificates thus enabling the validation of TPM EK Certificates
provisioned by new Workers during their registration;

− identifies the tenants involved and stores a public key provisioned by them during
their enrolment process within the cloud infrastructure; the latter is used to validate
signatures computed over requested actions thereby preserving privacy and preventing
unauthorized access to cloud resources; how tenant identification is accomplished is
outside the scope of this work.

Worker Handler: the Worker Handler is deployed on the Control-Plane node and manages
the registration process for Workers joining the cluster, culminating in the storage of a
UUID that uniquely identifies each Worker and bounds it to its associated AIK within the
Registrar.

− Worker registration process includes, TPM EK Certificate validation, proof of resi-
dency of received AIK demonstration, and trusted boot validation;
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− Worker registration within the attestation system is performed above the node joining
process within the cluster, as it is necessary to instantiate the Agent upon it to interact
with its TPM;

− once registration is complete, the Worker Handler communicates with the Registrar
to store newly added node information and associates to it an instance of Agent CRD ;

− it distributes to newly registered Worker nodes the Verifier public key, needed to
authenticate attestation requests.

Agent: the Agent is automatically deployed on each Worker node and is responsible for manag-
ing interactions with the TPM, the IMA Measurement Log (ML) and the attestation Target
Environment [20]; its primary role is to create the AIK and solve activation challenges for
the latter during Worker node registration, collect Claims, generate the corresponding Ev-
idence, and submit this data to the Verifier for assessment;

Agent CRD: a custom resource that tracks the trust state of the tenants’ pods and the Worker
on which those are executed; an instance of this resource is created for each Worker node
to accurately associate each pod with the node on which it is deployed;

− it acts as a centralized registry of trust information, updated exclusively by the Verifier
in response to the outcome of Evidence validation;

− the modifiable trust state associated with the Worker and each pod deployed over it
is used to persist the latest attestation outcome and provide its reference to other
components.

Cluster Status Controller: deployed on the Control-Plane node, the Cluster Status Con-
troller runs a Control Loop to monitor the status of the Worker and pods recorded in each
Agent CRD;

− it detects changes that may necessitate corrective actions, such as deleting a pod or
removing a Worker if flagged as untrusted by the Verifier;

− the controller behaves as an attestation Relying Party [20] ensuring that appropriate
actions are taken to maintain the integrity of the cluster, based on the varying trust
status of Workers and pods.

Pod Handler: it is deployed on the Control-Plane node and provides tenants with an interface
to issue authenticated pod deployment and attestation requests;

− the Pod Handler verifies the tenant’s request signature with the Registrar to ensure
it is authentic and unaltered and then processes it;

− it deploys pods within namespaces enabled for attestation;

− it verifies that the pod for which attestation was requested is owned by the requesting
tenant and then issues an Attestation Request CRD instance to trigger the Verifier
into starting the attestation process with the involved Agent.

Attestation Request CRD: it is a custom resource which defines all information needed to
start attestation over a target pod, consumed by the Verifier;

− it provides information to contact the Agent of the Worker on which the pod is
running;

− it includes an HMAC computed over the request parameters with a secret shared with
the Verifier, to prevent the latter from processing unauthentic attestation requests.

Verifier: the Verifier is deployed on the Control-Plane node and is responsible for conducting
pod attestation according to incoming Attestation Request CRD instances;

− it runs a Control Loop to monitor incoming attestation requests;

− it uses the secret shared with the Pod Handler to validate received HMAC thus en-
suring the integrity of the attestation request;
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− it starts the attestation process with the Agent of the Worker node hosting the target
pod;

− it implements the Appraisal Policy for evaluating the received Evidence [20] and up-
dates the target Worker’s Agent CRD attributes accordingly to reflect the validation
outcome.

Whitelist Provider: the Whitelist Provider is deployed on the Control-Plane node and defines
the repository for approved and trusted Reference Values for all services, configurations of
Workers, and containerized applications running in pods;

− it provides the Verifier with a service for comparing trusted measurements against the
Claims of the Evidence submitted by the Agent [28];

− it centralizes the management of approved software and configurations in a single
component, ensuring that each entry is stored along with its corresponding reference
measurements.

Pod Watcher: the Pod Watcher is deployed in the Control-Plane node and detects the creation
and deletion of pods within the cluster;

− it implements a Control Loop to monitor pods deployed or removed from all Workers
of the cluster;

− it appropriately updates the corresponding Agent CRD instance of the involvedWorker
to keep track of running pods that can be subject of attestation.

Figure 5.4 provides an overview of each component and their integration within the Kuber-
netes cluster, showcasing the complete RA system.
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5.6 Protocols and Operations

Together with the architecture, a complete set of procedures and operations is defined that sup-
port the various phases and determine the attestation system’s overall behaviour, guaranteeing
its effectiveness and coherence.

In the following sections, these interactions will be explored in detail, focusing on the enti-
ties involved, communication methods and the format of the messages exchanged between the
components.

5.6.1 Worker Registration

The RA of pods can only proceed after the Worker node hosting the pods has undergone a
preliminary registration. This registration step is essential for authenticating the Worker and
establishing trust, a fundamental prerequisite for all subsequent operations performed. The
Worker node is registered upon successful completion; in particular, its AIK is stored.

The registration process builds a chain of trust for the Worker starting with the RoT provided
by his TPM and culminating in the validation of the AIK by the Control-Plane node. The AIK
represents the means of trust establishment. It is provisioned from the Worker’s internal RoT
to external entities, in this case, the Control-Plane and the attestation components instantiated
on it.

The Worker Registration protocol is initiated when the Worker Handler, leveraging the Con-
trol Loop watching for nodes, detects a new Worker entering the cluster. Registration is thus
built on top of the Kubernetes cluster joining [4] process after the latter is terminated with
success.

The Registration protocol involves not only the new Worker and the Worker Handler but also
engages the Registrar and Whitelist Provider for intermediate registration material evaluation.

The registration process, in the end, ensures that the Worker is properly authenticated and
registered, allowing for its participation in the RA process.

The protocol consists of the following actions and operations:

1. the Worker Handler continuously monitors Worker nodes bootstrap via the Control Loop
and Kubernetes API;

(a) upon detecting a new Worker, the Worker Handler schedules the deployment of the
Agent on it; the Agent manages interactions with the TPM to provide credentials to
the Worker Handler during this initial phase; moreover it provides the new Worker
with its Agent CRD instance;

(b) the Worker Handler initiates the registration process by requesting identifying data
from the Worker node.

2. the Worker node responds by retrieving and generating the following information then sent
to the Worker Handler:

(a) UUID: an identifier that uniquely refers to the Worker in the Registrar;

(b) EKcert: certificate of the EK securely stored in the Worker TPM;

(c) EKpub: public part of the EK of the Worker TPM;

(d) AIKpublic area: Public Area of the AIK [12]; it defines the properties of the AIK and
in particular includes the public key AIKpub;

(e) hash(AIKpublic area): it corresponds to the AIK’s Name [12].

3. the Worker Handler contacts the Registrar to verify the received EK Certificate with the
stored TPM manufacturers’ CA certificates, ensuring the authenticity of the Worker’s
TPM.

60



Design

Worker
Node

Worker
Handler Registrar Whitelist

Provider

1. detect new Worker, request identification

2. UUID, EKcert, EKpub, AIKpublic_area, hash(AIKpublic_area)

3. validate EKcert

3. OK

4. validate AIK
5. encKe(AIKcredential), encEK(Ke)

6. HMACKe(UUID), quoteAIK(boot_PCRs)

7. verify HMAC

7. verify boot integrity

7. OK

8. OK
9. acknowledge registration

8. enrol Worker

Figure 5.5. Worker Registration protocol: workflow

4. the received AIK is validated;

(a) AIK Public Area is hashed to ensure that it matches with the received AIK Name;

(b) AIK Public Area is validated by verifying that it has the same attributes and param-
eters as a standard accepted RSA key enabled for attestation.

5. the Worker Handler generates a 32-byte ephemeral key Ke and uses it to perform a
TPM2 MakeCredential() [12] [30];

(a) Ke is used to encrypt the AIK Name; the outcome represents the encrypted credential
of the TPM key;

(b) Ke is encrypted with EKpub; the resulting ciphertext forms the credential activation
challenge, allowing the sender to verify the AIK’s proof of residency within the same
TPM that holds the received EK, thereby establishing trust in the AIK;

(c) both the encrypted credential and activation challenge are sent to the Worker.

6. the Worker performs a TPM2 ActivateCredential() with received data, to decrypt Ke

and use it to recover the credential and validate it with AIK parameters [12] [30]; this
process results in the binding of the obtained credential with AIK;

(a) recovered challenge secret i.e., Ke, is used to compute a HMAC over Worker UUID
which serves as proof of possession of the EK and residency of AIK in the same TPM
of the latter;

(b) first 8 bytes of Ke are used as a nonce to compute the quote over PCRs 0-to-9, which
corresponds to the boot aggregate; the quote is signed with the newly activated AIK,
that in next steps is going to be trusted by the Worker Handler;

(c) HMAC is sent with the quote to the Worker Handler.
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7. the Worker Handler verifies the integrity of the received HMAC and validates the received
quote against the reference values stored by the Whitelist Provider;

(a) HMAC validation establishes trust in AIK, which is needed to validate the received
quote;

(b) the Whitelist Provider securely stores the trusted value of boot aggregates according
to the OS run by the Worker; it is assumed for simplicity that Workers’ underlying
hardware and platform is standardized and thus the only modification to the boot
measurements comes from running a different OS.

8. upon successful verification of the boot aggregate, the Worker node demonstrates its trust-
worthiness to the Worker Handler which enrols it in the attestation system;

(a) UUID, hostname and AIKpub are stored within the Registrar ensuring these values
are persisted as long as the Worker remains trusted and belongs to the underlying
Kubernetes cluster;

(b) the Registrar acknowledges Worker’s registration.

9. the Worker Handler acknowledges the completion of registration to the Worker and dis-
tributes to the latter the Verifier public key, which is used to validate and authenticate
signed attestation requests; the Worker node is now ready to participate in attestation
processes.

If any of the steps outlined above fails, the registration process terminates with an error, and
the Worker is removed from the Kubernetes cluster. This action is taken because the Worker has
not proven its trustworthiness, making it unsuitable for deploying tenants’ workloads reliably
and attest them.

Figure 5.6 illustrates at high-level registration steps and actions.

5.6.2 Secure Pod Deployment

Preliminary to the possibility of providing a pod RA system is the need to establish a process
for checking and authenticating pod creation and deployment requests. This set of features is
provided by the Secure Pod Deployment protocol, which is necessary for two reasons:

1. to allow only tenants registered in the attestation system to define pod manifests and
request for their deployment;

(a) the overall security of the cluster is enhanced, as only properly signed requests from
the tenant organizations can initiate pod creation;

(b) tenants’ private keys remain external to the cluster or can be securely generated by
the Control-Plane’s TPM, if present, minimizing the risk of compromise from internal
attacks and reducing exposure.

2. to associate the UUID of the requesting tenant with the pod at the time of creation,
ensuring that the pod can always be traced back to its owner throughout its lifecycle;

(a) the UUID is generated without incorporating any tenant-specific information, ensuring
the preservation of their privacy;

(b) because it is shared across all pods requested by the tenant, it enables the identification
of all currently running pods owned by that tenant;

(c) the UUID is essential to ensure that attestation is performed on a pod owned by the
requesting tenant; the latter concept will be further explained in Section 5.6.3.
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Figure 5.6. Worker Registration protocol: interactions between involved components

For identifying and authenticating tenants and their deployment requests, it is assumed that
the Registrar holds a public key for each tenant, provided by the latter to the cloud provider.
The key exchange method between the provider and tenant lies beyond the scope of this work,
as various secure approaches could be employed. The effectiveness and security of the exchange
depend on the cloud provider’s policies. For consistency with this thesis, it is assumed that the
key is shared out-of-band as part of the service agreement process.

The operations related to the deployment process are listed below:

1. the tenant invokes the Pod Handler by sending a signed Manifest;

2. the Pod Handler requests verification of the Manifest to the Registrar, which manages and
owns the tenants’ public keys; the signature verification outcome is then returned;

3. if the signature is valid, the Pod Handler checks if the namespace defined in the Manifest
is enabled for attestation; attestation-enabled namespaces are the only ones where tenants’
pods can be deployed;

4. lastly, the Pod Handler schedules the requested pod according to all other specifications
defined in the Manifest;

5. the Pod Watcher detects the newly instantiated pod and updates the Agent CRD instance
of the node where the pod is deployed, enabling the latter from now on to be attested.

5.6.3 Pod Attestation

Within the system, a central role is played by the designed Pod Attestation protocol. This protocol
represents the core of the entire architecture, not only due to the critical and sensitive nature of
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Figure 5.7. Secure Pod deployment protocol: workflow

its functionality but also because it requires the participation of all attestation components.

This protocol must be carefully designed to ensure it is free from vulnerabilities and unin-
tended behaviours as errors or deviations in its operation would jeopardize the integrity of the
attestation system and compromise the security of the cluster it safeguards.

The following provides a detailed description of each interaction within the Pod Attestation
protocol:

1. the Pod Handler receives a signed attestation request from a registered tenant, targeting
one of its deployed pods;

(a) the integrity of the attestation request is validated by the Registrar which verifies its
digital signature thus ensuring that unauthorized parties cannot access the attestation
system or extract sensitive information about pods running in the cluster;

(b) the Pod Handler retrieves pods details from the cluster, including the Worker node
on which it is deployed thus discovering also the Agent to contact, and the pod
Kubernetes UID;

(c) the Pod Handler then verifies that the pod to be attested is listed in the Worker’s
Agent CRD instance and is associated with the requesting tenant via its UUID;

(d) finally, the Pod Handler generates an Attestation Request CRD instance, incorporat-
ing information gathered from previous steps along with an HMAC computed over
this data using its secret shared with the Verifier.

2. the Verifier implements a Control Loop over the Attestation Request custom resource type;

(a) it detects the newly issued Attestation Request CRD instance and authenticates it by
validating the received HMAC;
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(b) it generates a nonce to avoid replay attacks and ensure the uniqueness of the attesta-
tion process;

(c) it creates and signs an attestation request object from the received Attestation Request
CRD and forwards it to the target Agent.

3. the Agent receives the attestation request from the Verifier and starts to process it;

(a) it validates the signature thus ensuring it comes from the Verifier;

(b) it uses the received nonce to generate a univocal quote over PCR 10, extended by IMA
with user application measurements; the quote is signed using the Worker’s registered
AIK;

(c) it retrieves the IMA ML;

(d) finally, the Agent combines these pieces of information to produce the attestation
Evidence, signs it with the AIK and returns it to the Verifier.

4. the Verifier starts the evaluation of the pod attestation Evidence;

(a) it validates the Evidence signature using the AIK, ensuring that no malicious Evidence
or Evidence generated by other Agents is processed;

(b) IMA ML is read and each entry’s integrity is evaluated; entries associated with the pod
being attested and related to the underlying Worker container runtime are extracted
in a separate data structure;

(c) the complete IMA aggregate is computed and compared with the value of PCR 10
received from the quote;

(d) IMA extracted entries are compared against the reference values stored by theWhitelist
Provider; each file executed by the pod is validated, along with the container image
it was created from, and Worker dependencies related to the container runtime.
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5. if all the aforementioned operations are completed, the pod’s trustworthiness is confirmed,
resulting in a successful attestation process; on the other hand, if any step fails, the Worker
or the specific pod should be deemed untrusted, depending on the nature of the failure;

(a) the Verifier updates the Worker’s Agent CRD instance to reflect the attestation out-
come;

(b) the Cluster Status Controller detects the update, enforces its Appraisal Policy for
Attestation Results and initiates corrective actions accordingly to maintain cluster
security.
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Figure 5.9. Pod Attestation protocol: reduced workflow

More details regarding the structure of the exchanged messages and the specific implementa-
tion choices regarding policies and how individual operations and checks are carried out will be
set out in the following sections and Chapter 6.

The ability to request pod attestations externally from the cluster aligns effectively and
efficiently with cloud-based interactions. This approach enhances flexibility and reduces the
complexity that would otherwise arise from defining tenant identification protocols on each node
within the cluster. Instead, this process is confined to the identification and integrity verification
of the nodes themselves. Furthermore, this method allows for the partial return of control and
visibility over the infrastructure to the tenant though not entirely, which would be unrealistic,
despite the infrastructure being fully managed by third-party cloud providers, as is the case in
purely public cloud environments.

5.7 Components

This section will provide a detailed breakdown of the components previously introduced, focusing
on their internal structure, the specific functionality each one delivers, the format of exchanged
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Figure 5.10. Pod Attestation: interactions between involved components

messages, and how they interact with other components and resources in the system.

These elements will provide deeper insights into each component’s role in the RA architecture
and how it is integrated within the underlying Kubernetes cluster.

5.7.1 Registrar

The Registrar is a key component responsible for securely storing cryptographic materials and
supplementary information needed to authenticate and verify the integrity of entities involved
and messages exchanged within the attestation system. It handles four types of data:

1. Tenant: entity corresponding to a given tenant registered within the cluster; each tenant
is characterized by the following pieces of information:

UUID: tenant’s unique identifier, used to bind each pod to its respective owning tenant;

name: tenant’s common name;

public key: tenant’s key registered with the cloud provider for authentication purposes.

2. Worker: entity representing trusted Worker nodes of the cluster, registered in the attes-
tation system; each Worker is identified by these subsequent elements:

UUID: Worker’s unique identifier, provided by the latter during the Registration process;

name: Worker’s node hostname;

AIK: Attestation Key demonstrated to be possessed by the Worker’s TPM during the
Registration process, used to authenticate each Evidence and quote.
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3. TPM Manufacturers: TCG recognized TPM vendors and manufacturers, each associ-
ated with a standard and unique identifier [31]. The Registrar stores the whole list of
accepted manufacturers, each entity represented by:

Company Name: commercial name of the TPM manufacturer;

TCG Identifier: it is a 4-byte sequence that is returned by the TPM together with its
properties and capabilities. Moreover, it is included in the subjectAltName of the
TPM EK certificate, thus it is needed in the certificate chain validation process.

4. TPM Manufacturer Certificates: it stores TPM manufacturer CAs’ certificates; man-
ufacturers generally define a root CA that signs certificates for intermediate CAs, each of
which, in turn, issues certificates for devices within the same model family; each entity
consists of:

Common Name: it corresponds to the CN sub-field of the certificate Subject; the latter
can represent either an intermediate CA or a root CA;

Certificate: the certificate issued for the target CA.

The Registrar offers a centralized service that allows other attestation components to forward
received signatures and obtain verification results, eliminating the need for each component to
independently handle key management, signature verification, and certificate chain validation.
This centralized approach ensures secure storage of keys, certificates, and authentication infor-
mation, while also preventing the need to exchange public keys with requesting components,
thereby mitigating the risk of man-in-the-middle attacks that could replace valid keys with ma-
licious ones.

5.7.2 Pod Handler

The Pod Handler offers an interface between tenants and the protected cluster, allowing them
to request pod deployment and attestation requests securely. Tenants must sign their requests
to establish authenticity and enable the Pod Handler to authenticate them. This mechanism
ensures that only authorized tenants can issue pod deployments and attestation requests, thereby
reinforcing the security, privacy and operational integrity of the cluster.

The Pod Handler can interact directly with the cluster via the Kubernetes API, enabling it
to schedule validated pod deployments and issue Attestation Request CRD instances. This setup
streamlines communication with the Verifier, as the Pod Handler manages all preliminary tasks,
including verifying the pod’s validity for attestation and gathering essential information for the
Verifier to initiate the attestation process with the target Agent.

5.7.3 Attestation Request CRD

The Attestation Request CRD is a Kubernetes custom resource that encapsulates a Verifier-
compatible attestation request detailing all essential information about the pod to be attested,
the Worker node on which it is deployed, and, by extension, the Agent responsible for gathering
the Claims needed for pod attestation.

Attestation Request CRD comprises the following fields:

podName: it denotes the name of the pod undergoing attestation and serves as a human-
readable property, enabling the administrator to identify the specific pod being attested;
Kubernetes guarantees each pod name is unique within the same namespace [4];

podUID: it is the identifier set at the moment of pod creation by Kubernetes API, ensured to
be unique at cluster scope [4]; its presence is fundamental to enable the Verifier to fulfil its
operations overall contributing to pod attestation;
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− it is necessary to identify IMAMeasurement Log (ML) entries specific to the pod under
attestation, as the pod name is included in the cgroup field of the IMA template in
use; this enables the static integrity verification of applications executed within the
pod’s containers against the Whitelist Provider;

− it allows the Verifier to retrieve additional details, e.g., the base container image, to
verify its integrity and ensure compliance with the pods’ whitelist.

tenantID: it serves as the unique identifier the Registrar stores to distinctly recognize each
tenant within the cluster; as previously discussed, this identifier is essential for securely
associating each pod with its respective owner; this ensures that attestation requests are
genuinely initiated by the pod’s rightful owner while preserving their privacy;

agentName: it is the unique name assigned to each Agent within the attestation system; this
name corresponds to the Agent CRD instance associated with that Agent, allowing it to
be easily retrieved and updated via the Kubernetes API to reflect the attestation outcome;

agentIP: each Agent is deployed on a specific Worker and exposed as a Kubernetes service;
agentIP is the cluster-internal IP address of the Worker, required for the Verifier to com-
municate with the Agent to request attestation Evidence generation;

issued: timestamp corresponding to the moment in which the attestation request has been
issued by the Pod Handler;

hmac: it is a keyed-digest computed over all previous fields with the secret shared between the
Pod Handler and the Verifier.

5.7.4 Agent CRD

The Agent CRD is a custom resource designed to represent, at the cluster level, the trustwor-
thiness state of each Worker and the individual pods running on them. It plays a key role in
recording and tracking the results of attestation processes, ensuring that changes in Workers’ or
pods’ trust state can be detected and consequent corrective and compensatory actions can be
scheduled to maintain the security of the cluster. A dedicated instance of this resource is created
for each Worker.

Each Agent CRD instance must be kept continuously up-to-date by tracking any changes to
pods within the cluster, such as deployment, re-scheduling to a different Worker, or removal. This
ensures it accurately represents the current state of all running pods on its referenced Worker.
Moreover, it provides a view of the cluster’s operational state accessible to the attestation system,
enabling real-time tracking and verification of pod deployments across the cluster.

The Agent CRD structure is defined as follows:

agentName: name of the Agent representing the unique identifier of the custom resource; it
contains the hostname of the Worker to which it is associated;

nodeStatus: variable representing the trustworthiness of the Worker to which the Agent CRD
instance is bound; its value reflects the latest executed attestation outcome:

− TRUSTED: the most recent pod attestation outcome did not result in any Worker-related
trust failures e.g., IMA integrity verification failure or a mismatch between the IMA
aggregate and the PCR 10 value;

− it is important to note that this alone is a necessary but not sufficient condition
for the pod to be deemed trustworthy;

− furthermore, since the attestation system only partially assesses node trustwor-
thiness, it is important to emphasize that the node is regarded as trusted solely
in terms of pod security and container runtime dependencies integrity, as a full
node attestation falls outside the scope of this work.
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− UNTRUSTED: if the latest pod attestation outcome reveals a Worker-related trust failure,
the Worker should be promptly removed from the attestation system and deleted from
the cluster, as it can no longer be considered a secure environment for deploying user
workloads.

podStatus: it is an array that stores an object for each pod running on the associated Worker,
capturing each pod’s status and relevant details, allowing efficient monitoring of its security
and reliability; each object, in turn, is defined by the following attribute types:

podName: name of the deployed pod;

tenantID: identifier of the tenant owning the pod;

status: variable representing the trustworthiness of the pod; its value echoes the latest
outcome of attestation performed on the pod itself:

− TRUSTED: the pod has already been deployed or its attestation ended with success;

− UNTRUSTED: pod attestation failed due to non-compliance with theWhitelist Provider
stored reference values of the pod’s executed applications or a failure in the in-
tegrity of the base container image; the pod must be deleted as it is running
unrecognized code, which could potentially execute malicious or unintended op-
erations that may harm or tamper with the cluster’s integrity.

reason: a brief explanation motivating the attestation outcome;

lastCheck: timestamp of the latest executed attestation over the pod being considered;

lastUpdate: timestamp of the most recent modification to the resource, whether resulting
from the addition or removal of a pod, or an update reflecting the attestation outcome.

The use of a custom resource allows for flexibility, as the attributes associated with each
pod can be extended, and the podStatus representation can be adapted to meet the specific
attestation requirements of a given environment.

Each Agent CRD instance is updated directly by the Verifier to reflect attestation results and
the corresponding changes in the trust status of the target Worker and pod. Additionally, the
Pod Watcher ensures coherence by synchronizing the attestation system’s tracking of deployed
pods with the actual pods deployed in the cluster.

5.7.5 Cluster Status Controller

The Cluster Status Controller is tasked with enforcing the management policy for pods and
Worker nodes deemed compromised after a failed attestation request. It operates a Control
Loop on the Agent CRD instances within the attestation system, constantly monitoring the
status of the Worker and its deployed pods whenever modifications occur.

The controller checks the nodeStatus of the Worker and the status of each pod within
the podStatus array to ensure they remain trusted. If the Worker or any of its pods are now
considered untrusted, the controller applies the appropriate remediation policy.

A loss of trust in the node necessarily requires its removal from the cluster while a pod failure
may leave room for a wider set of possible compensatory operations e.g., re-scheduling after the
removal of the compromised pod.

The corrective actions form depend on the security requirement constraints and preferences
set by the infrastructure and cluster administrator.

5.7.6 Pod Watcher

The Pod Watcher continuously monitors the pod resources within the cluster, ensuring that the
deployment and removal of pods are accurately reflected in the podStatus entries of the Agent
CRD associated with the Worker hosting the involved pods.
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Its primary purpose is to keep each Agent CRD instance up to date, ensuring that the
attestation system maintains an accurate view of the pods currently deployed in the cluster. This
helps guarantee that attestation processes are performed on active pods and prevents unnecessary
or erroneous attestation requests for pods no longer running.

5.7.7 Worker Handler

The Worker Handler manages the lifecycle of nodes entering and leaving the cluster by leveraging
a Control Loop on Kubernetes nodes.

When a new worker is added, it intercepts the event and initiates the Worker Registration
protocol to enrol the node into the attestation system. Conversely, when a Worker is removed
from the cluster, either by the administrator or due to a loss of trust, the Worker Handler removes
the Worker node from the attestation system and ensures that the Registrar is updated to reflect
this change.

During the Registration process, the Worker Handler temporarily acts as the Verifier, man-
aging the validation process autonomously. It uses the AIK activated by the node’s TPM to
validate the received quote signature, as the Registrar does not recognize the new node until the
registration is completed. Additionally, the Worker Handler interacts directly with the Whitelist
Provider to evaluate received boot measurements and compare them against the stored reference
values.

5.7.8 Agent

The Agent is a process whose lifecycle follows that of the Worker node on which it is instantiated.

It is responsible for interacting directly with the node’s TPM to collect Claims and generate
the corresponding Evidence, which is then submitted to the Verifier along with the IMA ML.

The Agent deployment is scheduled by the Worker Handler on the Worker from the moment
it is added to the cluster as a first step prior to its registration with the attestation system. This
deployment is necessary because, even though the Worker is not yet considered trustworthy, a
communication channel must be established between the Worker Handler and the Worker to
exchange registration details, the result of the AIK activation challenge, and the initial quote of
boot-related PCRs.

After the Registration process, the Agent receives the Verifier’s public key, enabling it to
authenticate pod attestation requests. This ensures that within the system, attestation requests
can only be generated by the Verifier and are processed only if they meet this authentication
condition.

Each Agent’s produced Evidence comprises the following information:

podName: name of the pod for which the attestation has been requested;

podUID: the unique identifier of the pod;

tenantID: the unique identifier of the tenant owning the pod;

workerQuote: quote computed over PCR 10, the one extended with IMA ML entries; it uses
the nonce received from the Verifier’s attestation request and is signed with the AIK;

workerIMA: a snapshot of the IMA ML at the time the attestation request was received; the
Agent is granted read-only access to the IMA ML.

The Agent then signs this structure with the AIK to ensure the integrity of all the reported
information, which is subsequently sent back to the Verifier for evaluation.
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5.7.9 Verifier

The Verifier is the central component of the RA architecture. It is responsible for interacting
with Agents and processing each received Evidence. The verification process involves assessing
the overall integrity and authenticity of the Evidence, validating the quote, ensuring that PCR
10 matches the computed IMA aggregate, and comparing both the container runtime and the
target pod’s IMA ML entry measurements with the reference values stored by the Whitelist
Provider.

The Verifier continuously monitors Attestation Request CRD instances issued by the Pod
Handler. Upon detecting a new request, the Verifier begins the attestation process with the
corresponding target Agent.

The Verifier is responsible for extracting the IMAML entries related to the pod being attested,
recognised via the Kubernetes UID of the pod in the cgroup of the IMA template in use. The
file-path and file-hash of such entries are extracted and saved as a whole in a separate array.
This information is then combined with the name of the image executed by the pod containers
and the image digest and provided to the Whitelist Provider for it to compare with the reference
values.

The Verifier additionally extracts from the IMA ML entries associated with the container
runtime running on the Worker, including its entire dependency chain. Again, file-path and
file-hash of each involved entry are combined together and stored in a separate array to be
evaluated. This process ensures that pod attestation comprehensively verifies the integrity and
reliability of the underlying node software responsible for enabling pod execution, comparing
each entry against the reference values stored by the Whitelist Provider.

The Verifier reports attestation outcomes by updating the target Agent CRD instance, making
the results accessible across the attestation system.

5.7.10 Whitelist Provider

The Whitelist Provider is a complementary service that supports and in particular, performs the
last validation action in the attestation processes performed by the system. It co-operates with:

• the Worker Handler to validate the boot aggregate measurement received from the new
Worker during registration;

• the Verifier to compare the node’s runtime container and its dependencies, the container
image and applications executed by the attested pod, with its stored reference values.

The Whitelist Provider defines and manipulates three main types of whitelisted objects,
each corresponding to a type of system resource for which a validation policy is required to be
implemented:

OS Whitelist: this object binds each allowed OS for deployment on Worker nodes to a variable-
length map of reference boot aggregate measurements, indexed by the hash algorithm used
for calculation;

− the binding between the OS and the boot aggregate is assumed to be consistent, as
the IMA boot aggregate is derived from PCRs 0 through 9, with PCR 8 and PCR
9 uniquely influenced by the OS, thus establishing a strong correlation between the
boot result and the OS in use;

− the reliability is further supported by the assumption that, in a cloud environment,
the cloud provider employs standardized underlying hardware.

each OS Whitelist comprises:
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osName: the identifying name of the OS and version;

validDigests: the map of trusted boot aggregate values, discerned by the hash algorithm
used to compute it.

Image Whitelist: it represents an image approved to be used to create containers; it stores
for each image:

imageName: the container image’s application name and unique tag, to further refine
the trust policy on images of the same base application;

imageDigest: each image is associated with a digest calculated over its configuration
and layers [3];

− if the current digest does not match the stored reference, the image and conse-
quently any pod running containers based on it must be deemed untrusted;

− this difference indicates that the contents of the base layers have changed, ren-
dering the image unverified and potentially compromised.

validFiles: it is a list of objects representing allowed executables within pods’ containers;
each object in turn consists of:

filePath: it corresponds to the complete executable path;

validDigests: map of trusted executable measured values, discerned by the hash
algorithm used to compute it.

Container Runtime Whitelist: it is an object storing trusted container runtimes together
with their enabling dependencies; it stores for each container runtime the following infor-
mation:

containerRuntimeName: it corresponds to the container runtime executable complete
path;

validFiles: it is a list of objects representing valid container runtime dependencies, in-
cluding the container runtime itself; each object in turn consists of:

filePath: it corresponds to the complete dependency executable path;

validDigests: map of trusted dependency executable measured values, discerned by
the hash algorithm used to compute it.

The Whitelist Provider returns a positive response if all provided measurements match any
reference value for the specific data type according to the supplied data hash algorithm.
This default, permissive validation policy can be further constrained by defining a single
accepted value per measurement type.

5.8 RATS Compliance

Compliance with the RFC-9334 RATS standard is fundamental to validating the proposed de-
sign, as it provides the primary guidelines established by the IETF for defining a RA system. In
previous sections, RATS terminology was deliberately applied to assist the reader in identifying
and understanding the correspondences between the proposed system and the generalized stan-
dard. The relationships between the main system components involved in the pods’ attestation
process and their related roles within the RATS architecture are now explicitly presented:

Agent: combined with the Worker on which it is hosted it acts as the Attester; going into more
detail:

− the Attesting Environment is represented by the Agent which interacts with the IMA
ML and the TPM to produce the corresponding Evidence;

− the Target Environment is represented by pods and host-related container dependen-
cies.
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Verifier: there is an exact match of the RATS Verifier with the one defined in the proposed
solution;

− its task is to appraise the validity of received Evidence and produce the consequent
Attestation Result to be used by the Relying Party.

Cluster Status Controller: its role corresponds to that of the RATS Relying Party Owner;

− it configures the Appraisal Policy for Attestation Results in the Relying Party and
applies it to guarantee its security.

Whitelist Provider: its role matches with RATS Reference Value Provider;

− it handles Reference Values for pods, Workers and container runtime dependencies;

− it supports the Verifier in determining if Claims provided in the Evidence and recorded
by the Attester are acceptable.

Registrar: it acts as the Endorser because it handles Worker nodes’ authentication-related
information and crypto material;

− the Registrar assists the Verifier in the appraisal process by providing Endorsements
that verify the authenticity of the received Evidence;

− Endorsements prove Attester capabilities and effectiveness.

Kubernetes (cluster): it acts as the Relying Party;

− it relies on the trustworthiness of the information about an Attester to reliably deploy
tenants’ workload on them;

− cluster security and integrity depend on the correctness of operation performed by the
attestation system and in particular pod attestations.
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Implementation

The goal of the implementation phase is to create a usable version of the proposed Remote
Attestation (RA) system. This implementation closely adheres to the design specifications for
components and protocols outlined in Chapter 5. While the result is a Proof-of-Concept (PoC),
subject to assumptions and simplifications, it effectively demonstrates the designed components
and their interactions.

The Proof of Concept (PoC) is shaped by a series of implementation choices aligned with the
proposed design, with each decision guided by two core principles:

1. achieving a high level of integration with Kubernetes operations, minimizing overhead and
reliance on completely external components;

2. ensuring secure development of component interactions to maintain the security and cor-
rectness of the attestation system’s operations.

Implementation choices may take the form of a practical approach to achieve a development
objective or the selection of a specific software component that provides the required functionality.

This chapter provides an overview of the operations performed to implement the pod attes-
tation system, detailing the underlying assumptions, enabling third-party components, develop-
ment and deployment decisions, and the achieved system’s capabilities.

6.1 IMA Template

As already addressed in Chapter 4, IMA by default does not support an exploitable template to
distinguish executables associated with the host rather than the pod but allows new templates
to be defined from the natively supported fields [32].

The PoC realised is based on the use of the template ima-cgpath already presented in Section
4.5.2. The ML resulting from this template has the shape and structure exemplified in Figure
6.1.

This template was specifically tailored to identify Kubernetes pods, making it a natural
choice for the solution’s implementation. Figure 6.1 clearly distinguishes between host-related
entries and pod-specific entries, highlighting in particular the unique container identifiers of two
containers within the same pod.

6.2 Components Considerations

The components are developed in Golang (Go) for two main reasons:
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PCR template-hash template-name dependencies cgroup-path file-hash 
10 fea[...]b59 ima-cgpath swapper/0:swapper/0 / sha256:7b6[...]d61 boot_aggregate

... ... ... ... ... ... ...

10 7ef5[...]c38 ima-cgpath /usr/local/bin/redis-

server

:/usr/bin/containerd-

shim-runc-v2

:/usr/lib/systemd/system

d

:swapper/0

/kubepods.slice

/kubepods-besteffort.slice

/kubepods-besteffort-

poda00d22c4_3bfb_41d5_a

bad_493937e6ce50.slice

/cri-containerd-

45b9356be09e2a4283a414

ab7aefe3aa212dda8632043

a764361a32717763643.sco

pe 

sha256:4d1[...]0f2 /usr/lib/

x86_64-linux-

gnu/libcrypto.so.3

... ... ... ... ... ... ...

10 2f2[...]5b1 ima-cgpath runc:/usr/bin/containerd-

shim-runc-

v2:/usr/lib/systemd/syste

md

:swapper/0

/kubepods.slice

/kubepods-besteffort.slice

/kubepods-besteffort-

podc2cec21e_a96a_463f_b

cec_f3166aeb29b7.slice

/cri-containerd-

da1813abbe6009b3ae0d28

7c1669600c0b3c09a88a0f6

a589b64b267cc2e379b.sco

pe

sha256:c21[...]091 /usr/local/

bin/docker-

entrypoint.sh

10 8cf[...]371 ima-cgpath /usr/local/bin/redis-

server

:/usr/bin/containerd-

shim-runc-v2

:/usr/lib/systemd/system

d

:swapper/0

/kubepods.slice

/kubepods-besteffort.slice

/kubepods-besteffort-

podc2cec21e_a96a_463f_b

cec_f3166aeb29b7.slice

/cri-containerd-

05ff251ff7b8fea9231740f2d

b9ee23c1caedc107944c2bc

529a9f5910540611.scope

sha256:14a[...]bc3 /usr/lib/

x86_64-linux-

gnu/libssl.so.3

... ... ... ... ... ... ...

Figure 6.1. Worker node ML example with ima-cgpath template

1. Go is the primary language for the Kubernetes codebase, which enhances the integration
of the components and opens the possibility for future adaptation into the Kubernetes
codebase;

2. Google provides a Go library named go-tpm-tools, which includes various packages of dif-
fering abstraction levels, facilitating efficient implementation of interactions with TPM
2.0.

The following sections explain the implementation choices made for the development of the
components, and the technologies used and show how these are in line with the design realised.

6.2.1 TPM Interactions

Interactions with the TPM are carefully implemented in full compliance with the standardised
guidelines established by the TCG [12] [18]. Particular attention is given to the critical attestation
key activation process, ensuring that each step adheres to TCG recommendations. The creation
of the attestation key on the Agent side, the generation of the activation challenge on the Worker
Handler side, and the corresponding credential activation back on the Agent side all follow TCG
compliance standards. This ensures a secure, standardised approach to key management and
credential handling across each phase of the Registration protocol.
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6.2.2 Data Storage

The components responsible for persisting data and materials in the attestation system are the
Registrar and the Whitelist Provider.

The Registrar, which stores Worker details, certificates, TPM manufacturer CA identifiers,
and Tenant information, uses a relational database, handled through SQLite Database Manage-
ment System (DBMS).

On the other hand, the Whitelist Provider utilizes a non-relational database, managed via
MongoDB DBMS, to accommodate the nested structure of reference values, which includes
variable-length lists linking each executable to its lists of valid digests by hash algorithm:

• this approach enables the storage of a single, comprehensive record that consolidates all
verification data for a particular request and entity;

• this design improves attestation speed by reducing the overhead that would otherwise arise
from joining multiple partial records in a relational setup, thus expediting the formation
of a complete whitelist for the entity under attestation; this assumption is reasonable, as
the number of write transactions in the database is expected to be negligible, making the
cost of the loss of database normalization acceptable.

Basic CRUD operations are defined for both databases, which expose their functionality to the
other components of the system via REST APIs. The Registrar exposes endpoints for validating
EK certificate chains and signatures on messages, either using tenant keys or AIKs saved for
registered Workers. The Whitelist Provider provides endpoints for verification of individual
attestation entities, container images and files executed by pods, boot measures and container-
runtime-related dependencies of Workers.

Regarding the use of whitelists, it is important to note that MongoDB may present size
limitations. A MongoDB document can only be 16 megabytes. While the PoC currently uses
only a negligible fraction of this limit, it is essential to consider the full-scale requirements in a
real-world scenario. This will help to effectively assess whether MongoDB is the right choice as
the DBMS for managing whitelist data at scale.

6.2.3 Deployment

For each developed component, a container image and a manifest are created. The manifest spec-
ifies the various configuration parameters required by the containerized application, streamlining
the deployment and removal of the entire attestation system within the cluster.

Component manifests are defined by default to be complementary, each taking into account
the necessary dependencies of the components with which it interacts, i.e., IP addresses and
ports. Components belong to one of the following two categories:

1. REST API Server: it exposes its capabilities through REST API endpoints, enabling
other components to interact with it efficiently; this is crucial when one component needs to
communicate with another promptly to utilize its services, or in protocols as Registration
and Pod Attestation, where execution relies on a sequence of alternating messages being
exchanged and received;

2. Kubernetes Custom Controller: it performs a series of operations triggered not by
direct requests from other entities in the cluster, but as a result of events occurring within
the cluster itself, leveraging the Kubernetes API:

− the type of resource being observed cyclically and the specific operation, i.e., addition,
modification, or deletion, define the event;
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− each event initiates a corresponding operation of the observing component, which may
involve the event resource itself or an entirely unrelated resource.

Components are assigned ports starting from 30000 within the range up to 31000. To guar-
antee the security and integrity of the operations performed, the necessary permissions for in-
teraction with the cluster are defined for each component’s manifest, exploiting the Kubernetes
RBAC. Each component is paired with a Kubernetes ServiceAccount bound to a ClusterRole,
each defining only the cluster interaction rules strictly necessary for the target component to
fulfil its tasks, according to the Principle of Least Privilege (PoLP) [9].

6.3 Interactions and APIs

All implemented attestation system functionalities and protocols consist of a series of operations
and processes which are triggered sequentially, either by direct requests to a specific API endpoint
exposed by a component or indirectly by the creation, modification, or deletion of a particular
cluster resource observed through a Control Loop. The following sections now describe the
endpoints and interfaces exposed by each PoC component.

6.3.1 Registrar

The Registrar provides REST endpoints to retrieve information on registered tenants and Work-
ers, validate signatures received from them, and verify the integrity of the certificate chain,
starting from the received TPM EK certificates:

/tenant/create: POST endpoint to enrol a new tenant in the attestation system;

/tenant/verify: POST endpoint to validate a signature computed over a message with the
target tenant stored public key;

/tenant/getIdByName: GET endpoint to retrieve the tenant UUID through its common name,
passed as a query parameter in the request;

/tenant/deleteByName: DELETE endpoint to remove a tenant from the attestation system
via its common name;

/worker/create: POST endpoint to enrol a new Worker in the attestation system;

/worker/verify: POST endpoint to validate a signature computed over a message with the
target Worker’s stored AIK;

/worker/verifyEKCertificate: POST endpoint to validate worker-provided TPM EK certifi-
cate by rebuilding and verifying the whole certificate chain with stored intermediate and
root TPM Manufacturer’s CA certificates;

/worker/getIdByName: GET endpoint to retrieve the Worker UUID through its hostname,
passed as a query parameter in the request;

/worker/deleteByName: DELETE endpoint to remove a Worker from the attestation system
by its hostname.

6.3.2 Pod Handler

The Pod Handler provides REST endpoints that enable tenants to interface with the cluster,
with interactions mediated by the attestation system. It exposes the following endpoints:
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/pod/deploy: POST endpoint used by the tenant to request a secure pod deployment; the
request includes a signed manifest, and if the signature is validated as authentic, the Pod
Handler utilizes the Kubernetes APIs to schedule a pod according to the details specified
in the manifest;

/pod/attest: POST endpoint used by the tenant to request attestation of one of its pods
in the cluster; the request includes the signature computed over the pod name to ensure
authenticity and, if valid, the Pod Handler gets pod details and issues an Attestation
Request CRD instance for the Verifier.

6.3.3 Cluster Status Controller

The Cluster Status Controller implements a control loop over the Agent CRD resource type,
logging the addition and removal of individual instances and responding to modifications. The
checkAgentStatus() function handles this by assessing whether the status of the Worker or its
running pods has changed following an update:

• if nodeStatus is set to UNTRUSTED, the function uses the Kubernetes API to delete the
Worker from the cluster, first removing all its deployed pods;

• if nodeStatus is set to TRUSTED, the function scans the podStatus array and uses the
Kubernetes API to delete each pod whose individual status is flagged as UNTRUSTED.

In practice, at the end of each pod attestation process, in the event of a failure, the corre-
sponding Agent CRD instance is updated to reflect the failure. During this process, no more
than one pod will be deleted at a time.

6.3.4 Pod Watcher

The Pod Watcher implements a Control Loop over the cluster’s pods. When a pod is created or
deleted, it is responsible for updating the Agent CRD instance of the affected Worker through the
updateAgentCRDWithPodStatus() function. Specifically, it updates the podStatus by adding
or removing the relevant pod from the Agent CRD.

6.3.5 Worker Handler

The Worker Handler implements a Control Loop over the cluster’s nodes. When a Worker node
is added, it initiates the registration process for that node. As a preliminary step, the Worker
Handler deploys the Agent on the new node using a Kubernetes Deployment and exposes it
within the cluster via a NodePort service using the deployAgent() function. The ports are
assigned incrementally starting from 31000, as Kubernetes allows service exposure via NodePort

within the port range of 30000 to 32767 [4].

Subsequently, the Worker Handler invokes the createAgentCRDInstance() function to create
the Agent CRD instance for the new Worker and begins the registration process by communi-
cating with the newly instantiated Agent through the workerRegistration() function.

In the event of a registration failure or the removal of the Worker from the cluster, the Worker
Handler intercepts the removal, requests its deletion from the Registrar, and proceeds to delete
the previously allocated Agent and Agent CRD instance.
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6.3.6 Agent

The Agent interacts with the TPM and provides the Worker Handler and the Verifier with an
interface to leverage the TPM respectively for the registration of the Worker on which it is
instantiated and for the attestation of the pods it manages.

The Agent exposes its functionality through the following REST endpoints:

/agent/worker/registration/identify: GET endpoint that creates an AIK and returns it
along with all relevant TPM and Worker identifying data, as described in Section 5.6.1;

/agent/worker/registration/challenge: POST endpoint that processes a credential activa-
tion request for the Worker’s AIK, then uses the latter to compute a quote over boot-related
PCRs; the quote is returned along with an HMAC computed over the Worker UUID, prov-
ing the correct activation of the AIK and retrieval of the challenge secret, as outlined in
Section 5.6.1;

/agent/worker/registration/acknowledge: POST endpoint that is invoked by the Worker
Handler to acknowledge the outcome of the Worker registration process within the Regis-
trar; if successful, the Agent is provided with the Verifier public key needed to authenticate
lately received attestation requests; there is no acknowledgement in case of registration fail-
ure because the Worker node is immediately removed from the cluster;

/agent/pod/attest: POST endpoint invoked by the Verifier to initiate the pod attestation
process; the Agent processes the request as described in Section 5.6.3.

6.3.7 Verifier

The Verifier implements a Control Loop over the Attestation Request CRD custom type.

In particular, it reacts to the creation of instances of this type of resource, as corresponding
to a new request to be processed by the podAttestation() function. The result obtained from
the invocation of this function, which manages the entire evaluation process on the Verifier side,
is used to update the target Agent CRD instance of the Worker on which the pod is executed,
through the function updateAgentCRDWithAttestationResult().

6.3.8 Whitelist Provider

The Whitelist Provider provides REST endpoints for the validation of claims extracted from a
specific Evidence. Validation consists of a fairness check against the saved reference values that
must be satisfied for each claim provided. The implementation allows multiple accepted values
to be specified in the whitelist for a given measurement such that the claim is validated if it is
equal to at least one of the reference values.

The Whitelist Provider exposes the following endpoints:

/whitelist/worker/os/check: POST endpoint to validate the boot aggregate according to
the OS run by the Worker;

/whitelist/worker/os/add: POST endpoint to add a new OS with its reference value for the
boot aggregate in the Worker whitelist;

/whitelist/worker/os/delete: DELETE endpoint to remove an OS entry from the Worker
whitelist;

/whitelist/worker/drop: DELETE endpoint to completely erase the Worker whitelist con-
tent;
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/whitelist/pod/image/check: POST endpoint to validate pod container image and executed
files against the reference values stored by the pod whitelist;

/whitelist/pod/image/add: POST endpoint to add a new image with its related reference
values, including image digest and executables’ measurements;

/whitelist/pod/image/file/add: POST endpoint to add a list of new executables with their
measurements, associated with a given image in the pod whitelist;

/whitelist/pod/image/file/delete: DELETE endpoint to remove an executable measure-
ment from the pod whitelist under a specified image; the executable and image names are
provided as query parameters;

/whitelist/pod/drop: DELETE endpoint to completely erase the pod whitelist content;

/whitelist/container/runtime/check: POST endpoint to validate Worker container run-
time engine and all related dependencies against the reference values stored by the container
runtime whitelist;

/whitelist/container/runtime/add: POST endpoint to add a new container runtime and
its related dependencies in the container runtime whitelist;

/whitelist/container/runtime/delete: DELETE endpoint to remove a container runtime
with its dependencies from the container runtime whitelist according to the container run-
time name, passed as a query parameter;

/whitelist/container/runtime/drop: DELETE endpoint to completely erase the container
runtime whitelist.

6.4 Attestation System Provisioning

The deployment of the complete attestation system is controlled by a single script, from which
it can be instantiated and deleted. This script defines the necessary system-wide configurations
and automates individual components’ deployment process by exploiting their manifest. The
components are created over a separate namespace of the cluster, named attestation-system.
This approach makes the PoC easily usable, minimising configuration and deployment tasks and
simplifying the health check of the components and, thus, of the system.

6.5 Assumptions

The system realised by representing a PoC incorporates some simplifications and assumptions
now outlined below.

6.5.1 Sensitive Cryptographic Material Management

The design remains generic concerning:

• the distribution of the secret shared between the Pod Handler and the Verifier, in the
implementation referred to as attestationSecret, to authenticate the Attestation Request
CRD instances;

• the insertion of the private key in the Verifier and its public part in the Worker Handler so
that it may be distributed to the Workers’ Agents at the end of their Registration.
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This assumption allows the system administrator to implement the management and distri-
bution mechanisms best suited to specific needs. An interesting approach may be to generate
the Verifier keys using, if available, the TPM of the Control-Plane node.

The PoC uses a Kubernetes Secret object [4] that defines and distributes the Verifier key pair
and the value of the attestationSecret to the target components.

The storage of sensitive cryptographic material is deliberately excluded from the Registrar
to maintain a clear separation of concerns. The Registrar is designed specifically for managing
non-sensitive cryptographic material, i.e., public keys and certificates, ensuring its authenticity
and integrity. This is essential to properly support registration and attestation operations.

6.5.2 Secure Channels

Communication between components occurs over plain HTTP. Secure channels configuration
is not implemented, as this would require establishing a dedicated Public Key Infrastructure
(PKI) specific to the attestation system, along with secure key management and distribution.
This would necessitate an additional set of components solely dedicated to PKI and falls outside
the scope of the current design. However, it is important to note that the implemented design
accounts for the integrity of exchanged messages, allowing for the seamless integration of secure
channels as an additional feature.

6.5.3 Pods Deployment and Attestation

A newly deployed pod is considered reliable by default. This behaviour can be modified by
implementing an automatic attestation process that begins as soon as the pod is ready to run,
or by adding a component to the architecture that validates the image information on which
the pod’s containers are based. The Appraisal Policy for Attestation Results, implemented by
the Cluster Status Controller, does not involve re-scheduling the pod if it is removed due to a
failed attestation. However, the ability to recreate a pod with the same configuration could be
integrated into the system; this would require introducing a component that securely records
tenant manifests so they can be reused to deploy new trusted instances.

The attestation process outlined in the PoC effectively handles pods with any number of
containers, as long as all containers are derived from the same image. This is because the pod
measurement validation requests sent to the Whitelist Provider are based on the concept of
an image and its execution dependencies. This design is generally acceptable, as typical usage
involves a single container per pod, sometimes accompanied by a sidecar container that often
shares the same base image. However, if the need arises to support pods with containers based on
different images, the system can be extended to include the necessary management logic without
significant changes.
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Test and Validation

Comprehensive testing to ensure the system meets the defined requirements and functions as
designed is crucial to this work. Equally significant is evaluating the efficiency of the attestation
system to confirm that it does not degrade overall cluster performance.

This chapter outlines the approach and methodology used to test the developed system, de-
tailing the hardware setup, specific test types designed for this purpose, the results obtained,
and estimations of the overhead introduced compared to a standard, non-attested cluster con-
figuration.

7.1 Testbed

The test environment consists of two Intel NUC devices, each equipped with an Intel Core i5-
5300U processor, 16 GB of RAM, and an integrated TPM 2.0 chip. These two machines form
the foundation of the Kubernetes cluster, configured as follows:

1. A Control-Plane node running Ubuntu 22.04 LTS, which hosts all attestation components
except the Agent;

2. A Worker node on which the Agent is run; the underlying OS is Debian GNU/Linux 12
(Bookworm) with the base kernel version 6.1.0 patched to extend the IMA module to
support the ima-cgpath template used by the attestation system.

The Kubernetes version used is v1.29 stable.

7.2 Functional Tests

The functional tests outlined below aim to verify the correct functioning of the attestation system,
across the various operational states that the cluster may assume, and its provided protocols.

7.2.1 Worker Registration

The registration of a new Worker in the attestation system is started from the moment it is
added to the underlying Kubernetes cluster. To conduct this test, it is necessary to register
the OS and store a value for its boot aggregate measurement with the Whitelist Provider, on
the Control-Plane node side, and join the Worker in the cluster. The registration process can
be tracked through the logs of the involved components, i.e., the Worker Handler, Whitelist
Provider, Registrar and Agent running on the Worker.

This test is further divided into two main cases:
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1. successful registration of the Worker;

2. failed registration of the Worker, caused by a mismatch between the boot aggregate stored
by the Whitelist Provider and the one provided in the Worker’s quote.

Trusted Worker

To successfully run this test, it is essential to store the correct boot aggregate measurement,
paired with the OS running on the Worker, in the Worker whitelist of the Whitelist Provider.
The boot aggregate value can be directly extracted from the file-hash field of the first entry
in the IMA ML.

The Worker whitelist configuration can be achieved by sending a POST request to the
Whitelist Provider endpoint /whitelist/worker/os/add with the following syntax:

{

"osName": "Debian GNU/Linux 12 (bookworm)",

"validDigests": {

"sha1": [],

"sha256": [

"6341e...05 af2"

]

}

}

Listing 7.1. Example of Valid measured boot aggregate for Worker node

The Worker is then added to the cluster by executing the Kubernetes join command. Upon
successful addition, the attestation components begin communicating to initiate the Worker
Registration protocol.

The following logs from the involved components display the endpoints that were called, along
with the execution times of individual operations, confirming the successful completion of the
registration process.

[11-11-2024 11:20:59] Worker Node 'worker' joined the cluster

[11-11-2024 11:20:59] Agent Deployment and Service successfully created

[11-11-2024 11:20:59] Agent CRD instance created for Node 'worker'

[11-11-2024 11:21:09] Successfully registered Worker Node ’worker’:

7a5cd66f-027e-40b2-ad6a-e88cdec9d597

Listing 7.2. Worker Handler logs: successful registration

[GIN] 2024/11/11 - 11:20:59 | 404 | 258.585µs | 192.168.0.103 | GET

"/worker/getIdByName?name=worker"

[GIN] 2024/11/11 - 11:21:07 | 200 | 2.852893ms | 192.168.0.103 | POST

"/worker/verifyEKCertificate"

[GIN] 2024/11/11 - 11:21:09 | 201 | 19.637389ms | 192.168.0.103 | POST

"/worker/create"

Listing 7.3. Registrar logs: successful registration

[GIN] 2024/11/11 - 11:21:09 | 200 | 948.379µs | 192.168.0.103 | POST

"/whitelist/worker/os/check"

Listing 7.4. Whitelist Provider logs: successful registration

[GIN] 2024/11/11 - 11:21:07 | 200 | 168.002308ms | 192.168.0.122 | GET

"/agent/worker/registration/identify"

[GIN] 2024/11/11 - 11:21:09 | 200 | 1.444632259s | 192.168.0.122 | POST

"/agent/worker/registration/challenge"
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[GIN] 2024/11/11 - 11:21:09 | 201 | 145.783µs | 192.168.0.122 | POST

"/agent/worker/registration/acknowledge"

Listing 7.5. Agent logs: successful registration

Untrusted Worker

To perform this test, it is necessary to define in the Worker whitelist of the Whitelist Provider
an incorrect value for the boot aggregate measurement of the added node paired with its OS.
Similar to the previous case, it is necessary to send a POST request to the Whitelist provider’s
/whitelist/worker/os/add endpoint as follows:

{

"osName": "Debian GNU/Linux 12 (bookworm)",

"validDigests": {

"sha1": [],

"sha256": [

"942d4...0 ff7c"

]

}

}

Listing 7.6. Example of invalid measured boot aggregate for Worker node

In this scenario, the Whitelist Provider detects a mismatch between the provided boot aggre-
gate value and the previously stored reference value. In response, the Worker Handler terminates
the Registration protocol due to the validation failure and schedules the node removal from the
cluster. The logs from the involved components detailing these operations are shown below.

[11-11-2024 14:52:24] Worker node 'worker' joined the cluster

[11-11-2024 14:52:24] Agent Deployment and Service successfully created

[11-11-2024 14:52:24] Agent CRD instance created for Node 'worker'

[11-11-2024 14:52:31] Worker Boot validation failed: Whitelist Provider

failed to process check request: "message":"Boot Aggregate does not

match the stored whitelist","status":"error" (status: 401)

[11-11-2024 14:52:31] Worker node 'worker' deleted from the cluster

[11-11-2024 14:52:31] Agent Service 'agent-worker-service' successfully

deleted

[11-11-2024 14:52:31] Agent Deployment 'agent-worker-deployment'

successfully deleted

[11-11-2024 14:52:31] Agent CRD instance deleted: agent-worker

[11-11-2024 14:52:31] Worker Node: ’worker’ removed from Registrar with

success

Listing 7.7. Worker Handler logs: failed registration, removed invalid Worker from the cluster

[GIN] 2024/11/11 - 14:52:24 | 404 | 265.527µs | 192.168.0.103 | GET

"/worker/getIdByName?name=worker"

[GIN] 2024/11/11 - 14:52:29 | 200 | 3.053279ms | 192.168.0.103 | POST

"/worker/verifyEKCertificate"

[GIN] 2024/11/11 - 14:52:31 | 200 | 280.081µs | 192.168.0.103 | DELETE

"/worker/deleteByName?name=worker"

Listing 7.8. Registrar logs: removed invalid Worker

[GIN] 2024/11/11 - 14:52:31 | 401 | 677.229µs | 192.168.0.103 | POST

"/whitelist/worker/os/check"

Listing 7.9. Whitelist Provider logs: failed boot aggregate validation
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[GIN] 2024/11/11 - 14:52:29 | 200 | 227.925223ms | 192.168.0.122 | GET

"/agent/worker/registration/identify"

[GIN] 2024/11/11 - 14:52:31 | 200 | 1.513989939s | 192.168.0.122 | POST

"/agent/worker/registration/challenge"

Listing 7.10. Agent logs: failed registration, missing acknowledgement

7.2.2 Secure Pod Deployment

The Secure Pod Deployment is explicitly initiated by the tenant via the Pod Handler. To conduct
this test, the following prerequisites must be met:

1. a tenant must be created;

2. a valid pod manifest must be provided, which should explicitly include:

(a) the nodeName field, which should match the Worker’s hostname;

(b) the namespace in which the pod is to be deployed; this must be a valid cluster names-
pace that is enabled for pod attestation. By default, the attestation system will only
accept pods deployed within the default namespace, unless configured otherwise.

The progress of the Secure Pod Deployment process can be tracked by reviewing the logs
of the involved components, i.e., the Pod Handler, Registrar, Pod Watcher and Cluster Status
Controller.

This test is divided into two main scenarios:

1. successful deployment of the tenant pod;

2. failed deployment due to an invalid manifest signature verification error.

Valid Manifest Signature

To create a tenant it is necessary to contact the Registrar and perform a POST request to
endpoint /tenant/create and include in the body the following data:

{

"name": "Tenant -76",

"publicKey": "-----BEGIN PUBLIC KEY -----...-----END PUBLIC

KEY -----"

}

Listing 7.11. Example of a tenant registration request content

Then, to correctly execute this test is necessary to send a POST request addressed to the
Pod Handler’s endpoint /pod/deploy, the body of which is structured as follows and includes
the valid manifest signature, computed with the tenant key previously registered:

{

"tenantName": "Tenant -76",

"manifest": "apiVersion: v1...- containerPort: 6381" ,

"signature": "Y3LeV ...9 Gl1I1QigIKfg ="

}

Listing 7.12. Example of a valid Secure Pod Deployment request content
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Once the tenant is successfully registered and its signature validated, the pod is deployed in
the cluster and tracked by the attestation system to ensure the deployment process is completed.
The following logs display the activity of the components involved in the Secure Pod Deployment
protocol. These logs include the endpoints called, and the execution times of each operation,
demonstrating the successful completion of the deployment process.

[11-11-2024 16:42:05] Pod ’redis-pod’ created successfully in namespace

’default’: deployed on Worker node ’worker’

[GIN] 2024/11/11 - 16:42:05 | 200 | 26.870538ms | 192.168.0.103 | POST

"/pod/deploy"

Listing 7.13. Pod Handler logs: successful pod deployment

[GIN] 2024/11/11 - 16:42:05 | 201 | 13.561752ms | 192.168.0.103 | POST

"/tenant/create"

[GIN] 2024/11/11 - 16:42:05 | 200 | 418.579µs | 192.168.0.103 | POST

"/tenant/verify"

[GIN] 2024/11/11 - 16:42:05 | 200 | 138.682µs | 192.168.0.103 | GET

"/tenant/getIdByName?name=Tenant-483"

Listing 7.14. Registrar logs: successful tenant creation and pod deployment

[11-11-2024 16:42:05] Pod ’redis-pod’ added to node ’worker’

[11-11-2024 16:42:05] Agent CRD ’agent-worker’ updated. Involved Pod:

’redis-pod’

Listing 7.15. Pod Watcher logs: new pod is included into Worker’s Agent CRD instance

[11-11-2024 16:42:05] Agent CRD Modified:

map[agentName:agent-worker lastUpdate:2024-11-11T16:42:05Z

nodeStatus:TRUSTED podStatus:[map[lastCheck:2024-11-11T16:42:05Z

podName:redis-pod reason:Pod just created status:TRUSTED

tenantID:8fa5db38-0834-4161-8eae-ce6aa78981e3]]]

Listing 7.16. Cluster Status Controller logs: new pod is checked to be trusted

Invalid Manifest Signature

Similar to the previous test case, a tenant must be created. The deployment request is made
by executing a POST request invoking the Pod Handler’s endpoint /pod/deploy whose body
contains an incorrect value for the manifest signature:

{

"tenantName": "Tenant -76",

"manifest": "apiVersion: v1...- containerPort: 6381" ,

"signature": "<base64 -invalid_signature >"

}

Listing 7.17. Example of an invalid Secure Pod Deployment request content

Since the signature is invalid, the pod’s deployment process is terminated immediately by the
Pod Handler, and the other components responsible for including the pod in the resources to be
attested are not involved. The log results in such a scenario are depicted below.

[GIN] 2024/11/11 - 17:26:24 | 401 | 2.010664ms | 192.168.0.103 | POST

"/pod/deploy"

Listing 7.18. Pod Handler logs: failed pod deployment
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[GIN] 2024/11/11 - 17:26:24 | 201 | 14.527947ms | 192.168.0.103 | POST

"/tenant/create"

[GIN] 2024/11/11 - 17:26:24 | 401 | 289.053µs | 192.168.0.103 | POST

"/tenant/verify"

Listing 7.19. Registrar logs: failed manifest signature verification

7.2.3 Pod Attestation

The Pod Attestation protocol represents the main functionality of the system as well as the most
articulated and complex as almost the entire attestation system is involved. Since attestation is
a sensitive operation, many conditions can lead to its failure. To conduct this type of test, the
conditions defined for the previous ones must be fulfilled.

This test can be subdivided into three test cases:

1. successful pod attestation, as both the Worker node and the pod deployed on it are assessed
as trustworthy;

2. failed pod attestation due to pod unreliability, primarily caused by the execution of invalid
or unknown applications over a trustworthy Worker node;

3. failed pod attestation due to Worker node unreliability, primarily due to the detection of
invalid or unknown container runtime dependencies, the failure of integrity checks caused by
a mismatch between the IMA ML aggregate and the value of PCR 10 or invalid individual
entries in the IMA ML.

Trusted Worker and Pod

A prerequisite to perform this test is to identify the reference values required to define the
container runtime and pod image whitelists. These values can be identified through the Worker’s
IMA ML. To define the whitelists, it is necessary to send a POST request to the Whitelist
Provider for each whitelist. The endpoints involved are:

1. /whitelist/container/runtime/add: for container runtime dependencies with the body
is structured as follows:

{

"containerRuntimeName": "/usr/bin/containerd -shim -runc

-v2",

"validFiles": [

{

"filePath": "/opt/cni/bin/calico",

"validDigests": {

"sha1": [],

"sha256": [

"08eaf ...75304"

]

}

},

...

{

"filePath": "/opt/cni/bin/bandwidth",

"validDigests": {

"sha1": [],

"sha256": [
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"edcd3 ...708 c0"

]

}

}

]

}

Listing 7.20. Example of a container runtime whitelist

2. /whitelist/pod/image/add: for the pod image details and allowed executables, with the
following body:

"imageName": "redis:latest",

"imageDigest": "docker.io/.../ redis@sha256:a06cea ...

d6be5",

"validFiles": [

{

"filePath": "/usr/lib/x86_64 -linux -gnu/libc.so

.6",

"validDigests": {

"sha1": [],

"sha256": [

"88024...8 efba"

]

}

},

...

{

"filePath": "/usr/lib/x86_64 -linux -gnu/

libcrypto.so.3",

"validDigests": {

"sha1": [],

"sha256": [

"4d13a ...3 d0f2"

]

}

}

]

}

Listing 7.21. Example of a pod whitelist

Once the whitelists are in place, to start the test execution is necessary to make a POST
request to the /pod/attest endpoint, structuring the body as follows and particularly including
the signature calculated on the name of the pod to be attested:

{

"tenantName": "Tenant -76",

"podName": "redis -pod",

"signature": "YWFzY ...2 dnYWU ="

}

Listing 7.22. Example of a valid Pod Attestation request

The logs of the involved components document each transaction that contributes to the
successful outcome of the pod’s attestation. The process begins with the Pod Handler, which
creates an Attestation Request CRD instance that is then intercepted by the Verifier. The
Verifier communicates with the Agent to obtain the Evidence, verifies its authenticity through the
Registrar, and validates the Claims against the Whitelist Provider. Upon successful validation,
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the Verifier updates the Agent CRD instance to reflect a positive attestation result for the pod.
This update is intercepted by the Cluster Status Controller, which, given the successful outcome,
leaves the pod’s status in the cluster unchanged.

[11-11-2024 18:41:38] AttestationRequest for Pod: redis-pod created

successfully

[GIN] 2024/11/11 - 18:41:38 | 201 | 57.265879ms | 192.168.0.103 | POST

"/pod/attest"

Listing 7.23. Pod Handler logs: successful attestation request issuance

[11-11-2024 18:41:38] Attestation Request CRD Added:map[agentIP:192.168.0.122

agentName:agent-worker hmac:RB3BKPaWSuORezqKgxII8KInmQpeyfXBk55M29YuaF4=

issued:2024-11-11T18:41:38Z podName:redis-pod

podUID:d93bbf97-925e-41c2-92e7-99024880401f

tenantID:6f94a367-4cae-4369-b7a8-f46fee6936ba]

[11-11-2024 18:41:39] Attestation of Pod: redis-pod succeeded

[11-11-2024 18:41:39] Agent CRD ’agent-worker’ updated. Pod: redis-pod,

Status: TRUSTED

[11-11-2024 18:41:39] AttestationRequest: attestation-request-redis-pod

deleted successfully

[11-11-2024 18:41:39] Attestation Request CRD Deleted:

map[agentIP:192.168.0.122 agentName:agent-worker

hmac:RB3BKPaWSuORezqKgxII8KInmQpeyfXBk55M29YuaF4=

issued:2024-11-11T18:41:38Z podName:redis-pod

podUID:d93bbf97-925e-41c2-92e7-99024880401f

tenantID:6f94a367-4cae-4369-b7a8-f46fee6936ba]

Listing 7.24. Verifier logs: successful pod attestation

[GIN] 2024/11/11 - 18:41:39 | 200 | 1.288447125s | 192.168.0.122 | POST

"/agent/pod/attest"

Listing 7.25. Agent logs: Evidence submission

[GIN] 2024/11/11 - 18:41:39 | 200 | 417.947µs | 192.168.0.103 | POST

"/worker/verify"

[GIN] 2024/11/11 - 18:41:39 | 200 | 345.393µs | 192.168.0.103 | POST

"/worker/verify"

Listing 7.26. Registrar logs: successful Evidence and quote signature validation

[GIN] 2024/11/11 - 18:41:39 | 200 | 824.741µs | 192.168.0.103 | POST

"/whitelist/container/runtime/check"

[GIN] 2024/11/11 - 18:41:39 | 200 | 707.035µs | 192.168.0.103 | POST

"/whitelist/pod/image/check"

Listing 7.27. Whitelist Provider logs: successful Claims validation

[11-11-2024 18:41:39] Agent CRD Modified:

map[agentName:agent-worker lastUpdate:2024-11-11T18:41:39Z

nodeStatus:TRUSTED podStatus:[map[lastCheck:2024-11-11T18:41:39Z

podName:redis-pod reason:Attestation ended with success status:TRUSTED

tenantID:6f94a367-4cae-4369-b7a8-f46fee6936ba]]]

Listing 7.28. Cluster Status Controller logs: successful pod attestation
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Trusted Worker and Untrusted Pod

To perform a test that ends with such an outcome, it is sufficient to take the pod whitelist defined
in the previous test case and invalidate or omit one or more entries. In this case, the reference
value is changed to an invalid value for one of the executables in the whitelist pod.

The following are the logs of the components contributing to the invalidation and removal of
the pod, excluded are those of components which, regardless of the outcome in that test case,
have the same behaviour as the previous test case. Failure to validate the integrity of the pod
executables results in the overall failure of the attestation, including the update of the Agent
CRD instance and the immediate removal of the pod from the cluster by the Cluster Status
Controller, which intercepts the modification and the loss of trust in the pod.

[11-11-2024 23:09:47] Failed to verify integrity of files executed by Pod:

redis-pod: Whitelists Provider failed to process check request:

"message":"File hash does not match the stored

whitelist","status":"error" (status: 401)

[11-11-2024 23:09:47] Agent CRD ’agent-worker’ updated. Pod: redis-pod,

Status: UNTRUSTED

[11-11-2024 23:09:47] AttestationRequest: attestation-request-redis-pod

deleted successfully

[11-11-2024 23:09:47] Attestation Request CRD Deleted:

map[agentIP:192.168.0.122 agentName:agent-worker

hmac:HvPsspUYNgSceVh4hY/Dx84CS3+ljSJ2/jAfTRDKr9c=

issued:2024-11-11T23:09:46Z podName:redis-pod

podUID:0572e5ec-95d6-45a7-a2e6-16c71cb572f5

tenantID:e2ae1eb3-91c3-4ce5-8f62-0999db3d2de4]

Listing 7.29. Verifier logs: failed pod attestation

[GIN] 2024/11/11 - 23:09:47 | 200 | 984.832µs | 192.168.0.103 | POST

"/whitelist/container/runtime/check"

[GIN] 2024/11/11 - 23:09:47 | 401 | 840.36µs | 192.168.0.103 | POST

"/whitelist/pod/image/check"

Listing 7.30. Whitelist Provider logs: failed pod image integrity validation

[11-11-2024 23:09:47] Agent CRD Modified:map[agentName:agent-worker

lastUpdate:2024-11-11T23:09:47Z nodeStatus:TRUSTED

podStatus:[map[lastCheck:2024-11-11T23:09:47Z podName:redis-pod

reason:Failed to verify integrity of files executed by attested Pod

status:UNTRUSTED tenantID:e2ae1eb3-91c3-4ce5-8f62-0999db3d2de4]]]

[11-11-2024 23:09:47] Detected Untrusted Pod: redis-pod

[11-11-2024 23:09:47] Deleted untrusted Pod redis-pod from trusted node

[11-11-2024 23:09:47] Untrusted Pod: redis-pod deleted

[11-11-2024 23:09:48] Agent CRD Modified:

map[agentName:agent-worker lastUpdate:2024-11-11T23:09:48Z

nodeStatus:TRUSTED podStatus:[]]

Listing 7.31. Cluster Status Controller logs: delete untrusted pod after failed attestation

Untrusted Worker

The pod attestation process may fail, in the most serious case, due to a failure in the integrity
check of dependencies closely related to the Worker node. The main reasons for such an outcome
are failure of the integrity check of the IMAML entries, mismatch between the aggregate IMA and
the PCR 10 value, and error in checking the runtime container dependencies when compared to
the Whitelist Provider reference values. If one of the above cases occurs, the only way to preserve
the cluster’s integrity state is to remove the compromised node from the cluster.
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The following test demonstrates the system’s behaviour in this scenario, forced by invalidating
the IMA ML through the removal of an entry, thereby preventing the correct recalculation of the
value stored in PCR 10.

To achieve this test result, the IMAML provided to the agent must be modified. The IMAML
is located at the path /sys/kernel/security/integrity/ima/ascii runtime measurements.
As with many files in the sysfs pseudo-filesystem, it is read-only, providing a safe interface to
kernel data structures [32].

The approach taken is to copy the IMA ML contents to a user-accessible file, corrupt its
contents, and then mount this modified file in place of the actual IMA ML. This is configured
in the Worker Handler manifest, which is responsible for deploying the Agent, by specifying the
path to the corrupted IMA ML, as shown below:

---

apiVersion: v1

...

---

apiVersion: apps/v1

kind: Deployment

metadata:

name: worker -handler

namespace: attestation -system

...

- name: WHITELIST_HOST

value: "192.168.0.103"

- name: WHITELIST_PORT

value: "30002"

- name: IMA_MOUNT_PATH

value: "/root/ascii_runtime_measurements"

- name: IMA ML PATH

value: "/path/to/corrupted ima ml" # replace here

- name: TPM_PATH

value: "/dev/tpm0"

- name: VERIFIER_PUBLIC_KEY

valueFrom:

secretKeyRef:

name: attestation -secrets

key: verifier -public -key

ports:

- containerPort: 8080

nodeSelector:

node -role.kubernetes.io/control -plane: "true"

Listing 7.32. Worker Handler manifest modification: specify test IMA ML path

The Verifier failure in validating the IMA ML against the quote results in the overall failure
of the pod attestation and the immediate deletion of the pods executed on the Worker under
consideration and the removal of the Worker itself from the cluster, as depicted in the logs below.

[12-11-2024 11:34:17] Attestation Request CRD Added:

map[agentIP:192.168.0.122 agentName:agent-worker

hmac:XJg3Yld3prekooaQDon0cfzHne8eCKfoFgaNqZgEPUY=

issued:2024-11-12T11:34:17Z podName:redis-pod

podUID:f7555ff1-556e-40dc-b28d-ffe2ba63d162

tenantID:54f7afab-a4c1-4668-a364-5657183ebda0]

[12-11-2024 11:34:19] Failed to validate IMA measurement log: IMA

measurement log integrity check failed: computed hash does not match

quote value
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[12-11-2024 11:34:19] Agent CRD ’agent-worker’ updated. Node: ’worker’,

Status: UNTRUSTED

[12-11-2024 11:34:19] AttestationRequest: attestation-request-redis-pod

deleted successfully

[12-11-2024 11:34:19] Attestation Request CRD Deleted:

map[agentIP:192.168.0.122 agentName:agent-worker

hmac:XJg3Yld3prekooaQDon0cfzHne8eCKfoFgaNqZgEPUY=

issued:2024-11-12T11:34:17Z podName:redis-pod

podUID:f7555ff1-556e-40dc-b28d-ffe2ba63d162

tenantID:54f7afab-a4c1-4668-a364-5657183ebda0]

Listing 7.33. Verifier logs: failed pod attestation, PCR 10 does not match IMA aggregate

[12-11-2024 11:34:19] Agent CRD Modified:

map[agentName:agent-worker lastUpdate:2024-11-12T11:34:19Z

nodeStatus:UNTRUSTED podStatus:[map[lastCheck:2024-11-12T11:34:12Z

podName:redis-pod reason:Pod just created status:TRUSTED

tenantID:54f7afab-a4c1-4668-a364-5657183ebda0]]]

[12-11-2024 11:34:19] Deleted pod ’agent-worker-deployment-6588cb9c6c-hk5xk’

from untrusted node ’worker’

[12-11-2024 11:34:19] Deleted pod ’calico-node-xh2nm’ from untrusted node

’worker’

[12-11-2024 11:34:19] Deleted pod ’csi-node-driver-c46th’ from untrusted node

’worker’

[12-11-2024 11:34:19] Deleted pod ’redis-pod’ from untrusted node ’worker’

[12-11-2024 11:34:19] Deleted pod ’kube-proxy-j8n9q’ from untrusted node

’worker’

[12-11-2024 11:34:19] Deleted all pods from untrusted node ’worker’

[12-11-2024 11:34:19] Deleted untrusted node ’worker’

[12-11-2024 11:34:19] Agent CRD Deleted:

map[agentName:agent-worker lastUpdate:2024-11-12T11:34:19Z

nodeStatus:UNTRUSTED podStatus:[map[lastCheck:2024-11-12T11:34:12Z

podName:redis-pod reason:Pod just created status:TRUSTED

tenantID:54f7afab-a4c1-4668-a364-5657183ebda0]]]

Listing 7.34. Cluster Status Controller logs: pods deleted and Worker removed from the cluster

7.3 Performance Tests

The following proposed tests aim to evaluate the attestation system purely in terms of perfor-
mance, focusing on three primary objectives:

1. Efficiency assessment: to evaluate the efficiency of the attestation system in absolute
terms, specifically by assessing the resource usage and time required to execute the nec-
essary operations; this evaluation will determine if these factors remain within acceptable
limits;

2. Overhead estimation: to assess the penalty introduced by the attestation system on the
Kubernetes cluster and its operations; this involves comparing the attestation-enhanced
system against a nominal Kubernetes operation to ensure that the additional operations
required by the attestation system do not degrade standard performance, thereby confirm-
ing its feasibility for production environments;

3. Stress testing: to validate the system’s performance under stress by testing its response
to an increasing number of operations; this approach will identify limitations and establish
the maximum acceptable workload the attestation system can handle.
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For each protocol within the attestation system, one or more of the aforementioned types
of analysis are conducted. The specific selection of evaluation methods is influenced by the
structure and operational approach of the protocol itself; these represent the primary factors in
deciding which aspects are most relevant to assess and present in the results.

7.3.1 Worker Registration

The Worker Registration protocol introduces additional overheads compared to the Kubernetes
join process alone, as it operates as an added layer on top of the standard process. These
overheads manifest in two primary ways: resource consumption and execution time. Resource-
wise, the system incurs additional load to operate the attestation components. The time overhead
arises from secure registration procedures that necessitate inter-component communication to
establish the Worker’s integrity and trustworthiness and to activate its Attestation Identity Key
(AIK).

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (s)

8.75

9.00

9.25

9.50

9.75

CP
U

 U
sa

ge
 (

%
)

Kubernetes Join
Worker Registration

Figure 7.1. Worker Registration and Kubernetes Join: Control-Plane node CPU usage comparison

Figure 7.1 and 7.2 indicate minimal resource overhead introduced by the Worker Registration
protocol. However, the time required to register a Worker node within the attestation system
is notably extended. While this additional time is not negligible in the short term, it becomes
less impactful in the long term, as Worker nodes are generally stable and not frequently re-
joined. Moreover, given the enhanced security capabilities enabled by the registration process,
this overhead is reasonable and fully justified.

7.3.2 Secure Pod Deployment

Secure Pod Deployment introduces initial operations that inevitably increase the overall exe-
cution time of pod deployment within the cluster. These overheads stem from the verification
and validation steps required to ensure the authenticity of the secure deployment request; they
include the communication between the Pod Handler and the Registrar, as well as an additional
validation process conducted solely by the Pod Handler before scheduling the pod deployment.
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Figure 7.2. Worker Registration and Kubernetes Join: Control-Plane node memory usage comparison
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Figure 7.3. Secure Pod Deployment: performance when varying the number of pods to be deployed

Figure 7.3 compares the execution times of standard Kubernetes deployments with those of
Secure Pod Deployment, as the number of pods increases; each deployed pod runs two containers
in the background.

Although the time gap is noticeable, it should be contextualized: Kubernetes currently en-
sures optimal handling at most of 110 pods per node [4]. Deploying the maximum capacity on
a single node is unrealistic, as in production environments, workloads are typically distributed
across multiple nodes within the cluster rather than concentrated on a single one.
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In this context, a more typical scenario, i.e., 20 simultaneous deployment requests, incurs an
acceptable time penalty, justified by the enhanced security and control provided by the request
validation processes introduced with the Secure Pod Deployment protocol.

7.3.3 Pod Attestation

The Pod Attestation protocol, as the enabling security feature for the attestation system, must
meet strict efficiency requirements while ensuring the effectiveness of its constituent operations.
Its execution involves nearly the entire attestation system, which raises the potential for per-
formance degradation in both the attestation system and the underlying cluster. The tests
conducted focus on verifying these aspects, particularly assessing the system’s ability to manage
and complete with success pods attestations, as the number of pods to be attested increases.
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Figure 7.4. Pod Attestation: execution time when varying the number of pods to attest

As shown in Figures 7.4 and 7.5, the attestation system was tested under conditions ap-
proaching the maximum number of pods supported by Kubernetes [4], with each pod consisting
of two containers. The results highlight the robustness of both the protocol and the entire at-
testation system, as they successfully performed integrity verification for all pods within highly
acceptable timeframes and with controlled resource usage. When considering peak values in both
analyses, the observed times are well within acceptable limits, especially given that attestation
was conducted for the maximum number of pods allowed to run on a single node, and resource
usage remains well below thresholds that would risk degrading system performance.
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Figure 7.5. Pod Attestation: CPU usage when varying the number of pods to attest
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Chapter 8

Conclusions

This thesis aimed to define and validate a Remote Attestation (RA) architecture specifically
designed to integrate seamlessly within Kubernetes. This integration aims to enhance Kuber-
netes’s standard functionalities with RA security properties, enabling continuous verification of
applications’ reliability and integrity throughout the cluster’s lifecycle.

Given that Kubernetes is an orchestrator for containerized applications, the primary target for
attestation is the pod, i.e., the smallest unit of execution in Kubernetes, representing a cohesive
set of one or more containers. This focus makes the proposed solution an example of a RA
architecture for virtualized entities, an area lacking widely standardized solutions, particularly
for lightweight virtualization.

The solution contributes to ongoing research in this field, offering a foundation that can
inspire alternative designs or serve as a robust starting point for more comprehensive works,
potentially suitable for real production environments.

The design meets all functional requirements necessary for enabling pod attestation within a
Kubernetes cluster. While it is fully integrated into the cluster and leverages Kubernetes features,
the attestation system remains autonomous, equipped with its distinct components that define
its operations independently. These components collaborate to establish the system’s attesta-
tion behaviour throughout its lifecycle, enabling secure registration of Worker nodes with valid
Attestation Identity Keys (AIKs), facilitating secure application deployment, and implement-
ing attestation mechanisms that leverage TPM capabilities of Worker nodes to generate quotes
that can be externally verified by the Control-Plane node to assess individual pod integrity and
trustworthiness throughout the ongoing of normal cluster operations.

Validation of the proposed design is further demonstrated by its compliance with the RATS
standards defined in RFC-9334 [33]. The implementation provides a practical demonstration of
the design’s strengths, illustrating the functionality and interactions of the components and the
ease of creating and deploying the attestation system, and its effective integration within the
cluster.

It’s worth noting that the solution builds upon prior work conducted at Politecnico di Torino.
Results from previous projects served as a foundation for aspects of the design and implemen-
tation, particularly concerning Kubernetes integration [29] and the IMA template [28], which
enables individual attestation of pods and containers.

8.1 Future Works

Some aspects of the proposed solution, which were either omitted or only partially addressed,
primarily during the design phase, are briefly listed below. These were not fully considered as they
were beyond the project’s scope and therefore represent potential areas for future development.
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8.1.1 Whitelist Generation

The design regarding the creation of whitelists for entities involved in the attestation process
does not specify exact methods for this purpose, remaining relatively open-ended. The proposed
solution entrusts users with the task of defining whitelists via the Whitelist Provider, provided
these whitelists comply with the format defined by IMA. Specifically, each measured application
must include the IMA file-path and the file-hash values of its corresponding entry of the
IMA ML.

Since the structure of whitelists and the attestation process are dependent on IMA-measured
values, it should not be necessary for users to manually gather these measurements; their role
could ideally be limited to reviewing and validating pre-defined whitelists. Particularly relevant
here is the analysis of container images, as the boot measurements of Worker nodes and the
dependencies of the container runtime are generally more stable, with less frequent changes, and
simpler to manage due to their smaller dimensions.

In a Kubernetes cluster, each Worker node may handle pods based on different images, making
the configuration of whitelists a resource-intensive and complex task. To mitigate this, the
whitelist generation process for images could be fully automated by introducing a new component,
or set of components, tasked with analysing the layers and extracting all executable measurements
upon which the image depends.

The design of this functionality must be secure, as incorrect whitelist entries could lead to
false-positive attestation results or incomplete executable sets for images. In the latter case,
omitted applications could pose potential security risks, becoming an exploitable attack surface
in the cluster if left undetected by the attestation process.

8.1.2 Periodic Pod Attestation

The design has been specifically developed to meet pod attestation requirements, employing only
the essential dependencies needed to support this function. It remains open, however, to future
extensions with higher-level features that build upon its foundational elements.

One example is periodic pod attestation, which was not included in the design as it represents
a high-level feature that can be defined to suit tenant-specific needs and pod attestation policies.
This functionality is crucial for enhancing the overall security of applications running in the
cluster, enabling continuous renewal of the trust in these applications over time.

Implementing this feature would require a new set of components leveraging the Pod Handler’s
interface, allowing for periodic invocation in line with tenant-specific attestation requirements.

8.1.3 Tenants Registration

Similarly to periodic pod attestation, a full-featured tenant registration process could extend
the core capabilities of the proposed design. Realising this functionality would involve defining
a new set of components dedicated to authenticating and identifying tenants, validating their
stored keys to authorise deployment and attestation requests, and completing their registration
with the Registrar.

This feature would enable the cloud provider to exercise full control over entities using the
infrastructure and could be integrated as part of the contractual agreement phase with each
tenant, reinforcing security and compliance from the outset.

8.1.4 Attestation Encoding Formats

The components central to the attestation process, i.e., the Agent and the Verifier, were purpose-
built to facilitate pod attestation and integrate seamlessly into Kubernetes. This approach
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required defining interactions that leverage Kubernetes-specific features, resulting in the adoption
of some non-standard message encoding formats.

It’s important to emphasise that this departure from standard formats is limited to message
encoding and does not impact the security of the interactions or operations, which fully adhere
to the standards set by the Trusted Computing Group (TCG). Future refinements of this solu-
tion should prioritise transitioning to standardised encoding formats, particularly for encoding
the Evidence submitted by the Agent to the Verifier, to ensure broader interoperability and
consistency.
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The following appendix defines the sequence of operations required for the user to configure and
start the attestation system within a Kubernetes cluster, consisting of at least one Control-Plane
node and one Worker node.

A.1 Control-Plane Node

The following instructions define how to configure a Kubernetes cluster with a Control-Plane
Node and deploy attestation components on top of it.

A.1.1 Install Kubernetes

To create a Kubernetes cluster, you first need to install Kubeadm, Kubelet and Kubectl. 1

Reference is made to version v1.29 stable as this is the one on which the implementation was
tested.

A.1.2 Create the Cluster

Initialize a Kubernetes cluster with the following configuration arguments:

$ sudo kubeadm init --apiserver-advertise-address <control-plane-ip>

--control-plane-endpoint <control-plane-ip>

--pod-network-cidr 192.168.0.0/16

--upload-certs

• replace <control-plane-ip> with the actual IP address of the Control-Plane node;

• --pod-network-cidr flag specifies the Classless Inter-Domain Routing (CIDR) range for
pod IPs; in this case, it is configured to align with the default settings of the Calico CNI

plugin (192.168.0.0/16), which serves as the reference for the cluster configuration described
here; however, this setting may vary depending on the network plugin used.

Enable kubectl command to interact with the Kubernetes cluster:

1Refer to the official Kubernetes installation instructions: https://v1-29.docs.kubernetes.io/docs/setup/

production-environment/tools/kubeadm/install-kubeadm/
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$ mkdir -p $HOME/.kube

$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

Kubernetes clusters require a CNI plugin to implement the Kubernetes Network Model [4], en-
abling networking handling across nodes and pods.

Install the Calico CNI plugin and configure it in the cluster 2:

$ kubectl create -f https://raw.githubusercontent.com/projectcalico/calico/

v3.29.0/manifests/tigera-operator.yaml

$ kubectl create -f https://raw.githubusercontent.com/projectcalico/calico/

v3.29.0/manifests/custom-resources.yaml

Once the configuration of Calico is complete, the status of the Control-Plane node changes from
NotReady to Ready.

This can be checked using the command:

$ kubectl get nodes

which must return an output similar to the following:

NAME STATUS ROLES AGE VERSION

control-plane Ready control-plane 43s v1.29.10

A.1.3 Configure the Attestation System

Remove the taint on the Control-Plane node thus enabling the schedule of attestation components
upon it:

$ kubectl taint nodes --all node-role.kubernetes.io/control-plane-

Label the Control-Plane node with the following flag:

$ kubectl label nodes <control-plane-hostname>

node-role.kubernetes.io/control-plane=true --overwrite

• replace <control-plane-hostname> with the actual hostname of the Control-Plane node;

• this flag represents a selector to schedule and deploy attestation components on the Control-
Plane node.

Move into cluster-config/ directory and set the <control-plane-ip> in the following mani-
fests:

---

apiVersion: v1

...

---

apiVersion: rbac.authorization.k8s.io/v1

...

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

2Refer to the official Calico CNI installation instructions https://docs.tigera.io/calico/latest/

getting-started/kubernetes/quickstart
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...

---

apiVersion: apps/v1

kind: Deployment

metadata:

name: pod -handler

namespace: attestation -system

...

app: pod -handler

spec:

containers:

- name: pod -handler

image: franczar/k8s -attestation -pod -handler:latest

env:

- name: REGISTRAR HOST

value: "<control-plane-ip>" # set here IP address

- name: REGISTRAR_PORT

value: "30000"

- name: POD_HANDLER_PORT

value: "8080"

- name: ATTESTATION_SECRET

valueFrom:

secretKeyRef:

name: attestation -secrets

key: attestation -secret -hmac

...

nodeSelector:

node -role.kubernetes.io/control -plane: "true"

serviceAccountName: pod -handler -sa

---

...

Listing A.1. pod-handler-service.yaml

---

apiVersion: v1

...

---

apiVersion: rbac.authorization.k8s.io/v1

...

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

...

---

apiVersion: apps/v1

kind: Deployment

metadata:

name: verifier

namespace: attestation -system

...

app: verifier

template:

metadata:

labels:

app: verifier

spec:
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serviceAccountName: verifier -sa

containers:

- name: verifier

image: franczar/k8s -attestation -verifier:latest

env:

- name: REGISTRAR HOST

value: "<control-plane-ip>" # set here IP address

- name: REGISTRAR_PORT

value: "30000"

- name: WHITELIST HOST

value: "<control-plane-ip>" # set here IP address

- name: WHITELIST_PORT

value: "30002"

- name: VERIFIER_PRIVATE_KEY

valueFrom:

secretKeyRef:

name: attestation -secrets

key: verifier -private -key

- name: ATTESTATION_SECRET

valueFrom:

secretKeyRef:

name: attestation -secrets

key: attestation -secret -hmac

...

nodeSelector:

node -role.kubernetes.io/control -plane: "true"

Listing A.2. verifier.yaml

---

apiVersion: v1

...

---

apiVersion: rbac.authorization.k8s.io/v1

...

---

apiVersion: rbac.authorization.k8s.io/v1

...

---

apiVersion: apps/v1

kind: Deployment

metadata:

name: worker -handler

namespace: attestation -system

...

app: worker -handler

template:

metadata:

labels:

app: worker -handler

spec:

serviceAccountName: worker -handler -sa

containers:

- name: worker -handler

image: franczar/k8s -attestation -worker -handler:latest

env:

- name: REGISTRAR HOST
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value: "<control-plane-ip>" # set here IP address

- name: REGISTRAR_PORT

value: "30000"

- name: WHITELIST HOST

value: "<control-plane-ip>" # set here IP address

- name: WHITELIST_PORT

value: "30002"

- name: IMA_MOUNT_PATH

value: "/root/ascii_runtime_measurements"

- name: IMA_ML_PATH

value: "/sys /.../.../ ima/ascii_runtime_measurements"

- name: TPM_PATH

value: "/dev/tpm0"

- name: VERIFIER_PUBLIC_KEY

valueFrom:

secretKeyRef:

name: attestation -secrets

key: verifier -public -key

ports:

- containerPort: 8080

nodeSelector:

node -role.kubernetes.io/control -plane: "true"

Listing A.3. worker-handler.yaml

A.1.4 Deploy the Attestation System

Behind configuring the attestation system, it can be initialized with the attestation-setup.sh
script in the cluster-config/ directory.
This script deploys all necessary attestation components on the Control-Plane node, ensuring
the system is fully operational.

Create the attestation system inside the cluster:

$ ./attestation-setup.sh apply

After the command execution has terminated, it is possible to check if the attestation components
have been correctly deployed thus ensuring attestation system health by running the following
command:

$ kubectl get pods -n attestation-system

The output returned must be similar to the following:

NAME READY STATUS RESTARTS AGE

cluster-...-tgjx7 1/1 Running 0 42s

...

worker-...-7f2dv 1/1 Running 0 39s

A.2 Worker Node

The following instructions detail each step required for the Worker node to join the cluster
and be configured to enable interaction with the attestation system, specifically to assess the
trustworthiness of the pods running on it. A crucial prerequisite is the presence of a TPM 2.0
on the node.
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A.2.1 Linux Kernel Patch

It is necessary to patch the Linux kernel to enable the ima-cgpath template in the IMA mod-
ule, which is used by the attestation system to identify measurements associated with pods
individually.

Clone the git repository of a stable Linux Kernel:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/

linux-stable.git

Move into the newly created linux-stable/ directory and list git repository tags to find the
one corresponding to the kernel version to patch and checkout it:

$ git tag

$ git checkout tags/<version-tag>

It is suggested to patch the kernel whose version corresponds to the default version used by the
Linux distribution executed by the Worker node, to minimise the probability of inconsistencies
that could arise between two different versions.

Copy the patch enabling ima-cgpath template, provided in the directory patch/, into directory
linux-stable/ and apply it:

$ git apply ima-cgpath.patch

Install the required dependencies to compile the patched kernel:

$ sudo apt-get update

$ sudo apt-get install git fakeroot build-essential ncurses-dev

xz-utils libssl-dev bc flex libelf-dev bison dwarves

Copy the actual kernel configuration file:

$ cp -v /boot/config-$(uname -r) .config

Open the kernel configuration menu:

$ make menuconfig

Navigate the menu and enable the following settings to leverage the new IMA template:

Security Options ->

Integrity Measurement Architecture (IMA)

Default template (ima-cgpath) --->

Default integrity hash algorithm (SHA256) --->

Customize the kernel configuration to include only the modules and drivers currently in use on
your system:

$ sudo make localmodconfig

Compile and install the patched kernel:

$ sudo make -j 6

$ sudo make modules

$ sudo make modules_install

$ sudo make install

The default name of the patched kernel if not explicitly specified is "<kernel-version>+" and
it can be checked running the following command:

$ ls /boot | grep vmlinuz
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which should return a similar output:

vmlinuz-6.1.0+ --> patched kernel

vmlinuz-6.1.0-25-amd64

vmlinuz-6.1.0-26-amd64

Once the compilation and installation of the patched kernel are completed, define a custom IMA
policy in the file /etc/ima/ima-policy:

measure func=BPRM_CHECK mask=MAY_EXEC

measure func=FILE_MMAP mask=MAY_EXEC

Reboot the system and select in the boot menu the patched kernel.
Once the system has been started up, it is possible to verify that the patch has been correctly
applied and that the measurements recorded by IMA respect the ima-cgpath template by looking
at the Measurement Log content:

$ sudo cat /sys/kernel/security/ima/ascii_runtime_measurements

A.2.2 Join the Cluster

Now that the ima-cgpath template is in place, the Worker node is ready to respond to pod
attestation requests by providing measurements in the format compliant with the attestation
system.

To allow Workers to join the cluster, the Control-Plane node must generate a valid authentication
token:

$ sudo kubeadm token create --print-join-command

The previous command generates the token and prints the complete command Workers directly
use to join the cluster:

kubeadm join <control-plane-ip>:6443 --token 8goi2a.23l...4si --

discovery-token-ca-cert-hash sha256:31cfd...df425

After the node joins the cluster, the attestation system automatically handles the Worker Reg-
istration enabling it for attestation, which can be requested from the first moment a pod is
instantiated on that Worker.
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This appendix provides comprehensive documentation of the core functionalities exposed by the
components of the attestation system. These functionalities include:

• API endpoints: for components that expose their functionality as REST API Servers,
detailing their accessible operations;

• Controller reaction functions: for components implemented as Kubernetes Custom
Controllers, focusing on their handling of monitored events.

The information presented encompasses descriptions of the system’s internal operations, in-
cluding the formats of accepted requests and produced responses. The goal is to offer a practical
reference for understanding the system’s behaviour, facilitating its modification and extension.

B.1 Registrar

POST /tenant/create

Create a new tenant entity in the attestation system.

Request JSON object

• name (string): common name of the tenant;

• publicKey (string): tenant’s public key in PEM format;

Example request:

{

"name": "<tenant -name >",

"publicKey": "<pem -public -key >"

}

Response JSON object

• message (string): reason of the result outcome;

110



Developer’s Manual

• tenantId (string): UUID of the newly created tenant;

• status (string): outcome of the request;

Example response:

{

"message": "Tenant created successfully",

"tenantId": "<tenant -uuid >",

"status": "success"

}

POST /tenant/verify

Validate a signature computed over a message with tenant public key.

Request JSON object

• name (string): common name of the tenant;

• message (string): message to validate;

• signature (string): base64 encoded signature computed over the message;

Example request:

{

"name": "<tenant -common -name >",

"message": "<message -to-validate >",

"signature": "<base64 -message -signature >"

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"message": "Signature verification successful",

"status": "success"

}

GET /tenant/getIdByName?name=<tenant-name>

Retrieve the tenant UUID through its common name.

Request JSON object

• name (string): tenant’s common name;
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Response JSON object

• tenantId (string): tenant’s UUID;

• status (string): outcome of the request;

Example response:

{

"tenantId": "<tenant -uuid >",

"status": "success"

}

DELETE /tenant/deleteByName?name=<tenant-name>

Remove a tenant entity from the attestation system.

Request JSON object

• name (string): tenant’s common name;

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"message": "Tenant deleted successfully",

"status": "success"

}

POST /worker/create

Create a new worker entity in the attestation system.

Request JSON object

• workerId (string): worker UUID generated during Registration;

• name (string): worker’s hostname;

• AIK (string): Attestation Identity Key in PEM format;

Example request:

{

"workerId": "<worker -uuid >",

"name": "<worker -hostname >",

"AIK": "<pem -AIK >"

}
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Response JSON object

• message (string): reason of the result outcome;

• workerId (string): worker UUID provided in the request;

• status (string): outcome of the request;

Example response:

{

"message": "Worker created successfully",

"workerId": "<worker -uuid >",

"status": "success"

}

POST /worker/verify

Validate a signature computed over a message with the worker’s AIK.

Request JSON object

• name (string): worker’s hostname;

• message (string): message to validate;

• signature (string): base64 encoded signature computed over the message;

Example request:

{

"name": "<worker -hostname >",

"message": "<message -to-validate >",

"signature": "<base64 -message -signature >"

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"message": "Signature verification successful",

"status": "success"

}

POST /worker/verifyEKCertificate

Validate worker-provided TPM EK certificate by rebuilding and verifying the whole certificate
chain with stored intermediate and root TPM Manufacturer’s CA certificates.

Request JSON object
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• endorsementKey (string): TPM’s endorsement key paired to the certificate in PEM format;

• EKCertificate (string): TPM’s endorsement key certificate in PEM format;

Example request:

{

"endorsementKey": "<pem -ek >",

"EKCertificate": "<pem -ek-certificate >"

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"message": "TPM EK Certificate verification successful",

"status": "success"

}

GET /worker/getIdByName?name=<worker-name>

Retrieve the worker UUID.

Request JSON object

• name (string): worker’s hostname;

Response JSON object

• workerId (string): worker’s UUID;

• status (string): outcome of the request;

Example response:

{

"workerId": "<worker -uuid >",

"status": "success"

}

DELETE /worker/deleteByName?name=<worker-name>

Remove a worker from the attestation system.

Request JSON object

• name (string): worker’s hostname;
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Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"message": "Worker deleted successfully",

"status": "success"

}

B.2 Pod Handler

POST /pod/deploy

Request a secure pod deployment.

Request JSON object

• tenantName (string): common name of requesting tenant;

• manifest (string): deployment manifest;

• signature (string): base64 encoded signature computed by tenant over the manifest;

Example request:

{

"tenantName": "Worker deleted successfully",

"manifest": "<yaml -pod -manifest >",

"signature": "<base64 -signature >"

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Pod successfully deployed"

}

POST /pod/attest

Request attestation of a pod running in the cluster.

Request JSON object
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• tenantName (string): common name of requesting tenant;

• podName (string): name of the pod to attest;

• signature (string): base64 encoded signature computed by tenant over the pod’s name;

Example request:

{

"tenantName": "Worker deleted successfully",

"podName": "<pod -name >",

"signature": "<base64 -signature >"

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Attestation Request issued with success"

}

B.3 Cluster Status Controller

func checkAgentStatus(obj interface{})

The function is triggered automatically whenever an Agent CRD instance is updated. It scans
the modified instance to evaluate the nodeStatus and verifies if the status of any pod is set to
UNTRUSTED. If such cases are detected, the system schedules the removal of the affected entities
as follows:

• deletePod(): invoked to delete pods marked as UNTRUSTED;

• deleteAllPodsFromNode() and deleteNode(): the first function is called to remove all
pods from an untrusted node, followed by the second function to delete the node itself.

B.4 Pod Watcher

func updateAgentCRDWithPodStatus(nodeName, podName, tenantId, status string)

The function is triggered automatically whenever a pod is created or deleted within the clus-
ter. Its responsibility is to update the relevant Agent CRD instance by adding or removing the
corresponding pod from the podStatus array. This ensures the array remains accurate and
up-to-date, reflecting only valid pods, thereby enabling their attestation.
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B.5 Worker Handler

func workerRegistration(newWorker corev1.Node, agentHOST, agentPORT string)

The function is triggered automatically whenever a worker joins the cluster. It registers a new
worker node by interacting with the Agent and Registrar APIs within the attestation system.
The following internally invoked functions support its operation:

• waitForAgent(): ensures the Agent is reachable before proceeding;

• getWorkerRegistrationData(): retrieves worker-specific data from the Agent’s identifi-
cation endpoint;

• verifyEKCertificate(): verifies the EK certificate if provided by the Agent;

• decodePublicKeyFromPEM(): decodes the EK from its PEM representation;

• validateAIKPublicData(): validates the AIK public data received from the Agent;

• generateEphemeralKey(): generates an ephemeral key for the credential activation;

• generateCredentialActivation(): generates the credential activation challenge for the
AIK;

• sendChallengeRequest(): sends the attestation challenge to the Agent;

• verifyHMAC(): verifies the HMAC response from the Agent;

• validateWorkerQuote(): validates the worker’s TPM quote and extracts boot aggregate
information;

• verifyBootAggregate(): checks the worker’s boot aggregate and OS details against the
whitelist;

• encodePublicKeyToPEM(): encodes the AIK public key to PEM format for registration;

• createWorker(): registers the worker node in the Registrar service;

• workerRegistrationAcknowledge(): sends the registration acknowledgment to the Agent.

B.6 Agent

GET /agent/worker/registration/identify

Creates an AIK and returns it with all TPM and worker identifying data.

Response JSON object

• workerId (string): worker’s UUID;

• EK (string): worker’s TPM endorsement key in PEM format;

• EKCert (string): worker’s TPM Endorsement Key Certificate;

• AIKNameData (string): Attestation Identity Key Name data in TPM2B NAME format [34];
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• AIKPublicArea (string): Attestation Identity Key Public Area [34];

Example response:

{

"UUID": "<workerId >",

"EK": "<pem -ek >",

"EKCert": "<pem -ek -cert >",

"AIKNameData": "<aik -tpm -name >",

"AIKPublicArea": "<aik -tpm -public -area >"

}

POST /agent/worker/registration/challenge

Process the credential activation for the worker’s AIK, then use the latter to compute a quote
over boot-related PCRs. The quote is returned along with an HMAC computed over the Worker
UUID, proving the correct activation of the AIK and retrieval of the challenge secret.

Request JSON object

• AIKCredential (string): base64 encoded AIK credential in TPM2B ID OBJECT format [34],
encrypted with the challenge secret used as ephemeral key;

• AIKEncryptedSecret (string): base64 encoded EK-encrypted challenge secret in
TPM2B ENCRYPTED SECRET format [34];

Example request:

{

"AIKCredential": "<base64 -enc -aik -credential >",

"AIKEncryptedSecret": "<base64 -ek-enc -secret >"

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

• HMAC (string): base64 encoded hmac computed over worker’s UUID;

• workerBootQuote (string): TPM quote computed over worker’s boot PCRs (0-to-9);

Example response:

{

"message": "WorkerChallenge decrypted and verified

successfully",

"status": "success",

"HMAC": "<base64 -hmac >",

"workerBootQuote": "<tpm -pcr0 -9-quote >"

}
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POST /agent/worker/registration/acknowledge

Acknowledge the outcome of the Worker registration process within the Registrar. If successful,
the Agent receives the Verifier public key needed to authenticate attestation requests.

Request JSON object

• message (string): reason of worker registration outcome;

• status (string): worker registration outcome;

• verifierPublicKey (string): Verifier public key in PEM format;

Example request:

{

"message": "Worker created successfully",

"status": "success",

"verifierPublicKey": "<pem -verifier -public -key >"

}

Response JSON object

• message (string): reason of the acknowledgement outcome;

• status (string): acknowledgement outcome;

Example response:

{

"message": "Agent acknowledged success of registration and

obtained Verifier Public Key",

"status": "success",

}

POST /agent/pod/attest

Request attestation for a pod.

Request JSON object

• nonce (string): hex encoded nonce to be used in quote computation;

• podName (string): name of the pod to attest;

• podUID (string): pod’s identifier within the cluster;

• tenantId (string): tenant’s identifier;

• signature (string): base64 encoded signature computed over the attestation request;

Example request:
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{

"nonce": "<hex -nonce >",

"podName": "<pod -name >",

"podUID": "<pod -uuid >",

"tenantId": "<tenant -uuid >",

"signature": "<base64 -signature >",

}

Response JSON object

• attestationResponse (JSON object): attestation response object comprising:

– evidence (JSON object): object including details and Claims of attested pods:

∗ podName (string): name of the pod to attest;

∗ podUID (string): pod’s identifier within the cluster;

∗ tenantId (string): tenant’s identifier;

∗ workerQuote (tpm.Quote): quote computed over PCR 10 using request nonce;

∗ workerIMA (string): base64 encoded IMA ML;

– signature (string): base64 encoded signature computed over the Attestation Re-
sponse Evidence;

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"attestationResponse": {

"evidence": {

"podName": "<pod -name >",

"podUID": "<pod -uid >",

"tenantId": "<tenant -uuid >",

"workerQuote": "<worker -quote >",

"workerIMA": "<base64 -worker -ima -ml >"

}

"signature": "<base64 -signature -evidence >"

},

"message": "Attestation Request successfully processed",

"status": "success",

}

B.7 Verifier

func podAttestation(obj interface)

The function is triggered automatically whenever an Attestation Request CRD instance is cre-
ated. It handles the attestation process for a pod. It validates the integrity of the attestation
request, constructs and sends an attestation request to the specified Agent, and verifies the re-
turned Evidence, including the integrity of the IMA ML, container runtime, and pod files. It
returns an attestation result indicating whether the pod and associated resources are trusted. It
internally invokes the following functions:
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• formatCRD(): extracts and formats the CRD specification from the input object;

• verifyHMAC(): verifies the HMAC of the attestation request to ensure integrity;

• generateNonce(): generates a random nonce for the attestation process;

• signMessage(): signs the attestation request using Verifier’s private key;

• getAgentPort(): retrieves the Agent’s service port based on its name;

• sendAttestationRequestToAgent(): sends the Attestation Request to the Agent and
retrieves the response;

• extractNodeName(): extracts the node name from the Agent’s name for identification
purposes;

• computeEvidenceDigest(): computes a digest of the Evidence provided by the Agent;

• verifyWorkerSignature(): verifies the worker’s signature on the Evidence digest;

• validateWorkerQuote(): validates the worker’s TPM quote and extracts the PCR digest
and hash algorithm;

• IMAVerification(): verifies the IMA ML against the expected PCR digest and extracts
entries for the pod and container runtime;

• getPodImageDataByUID(): retrieves the image name and digest for a pod using its UID;

• verifyContainerRuntimeIntegrity(): checks the integrity of the container runtime de-
pendencies;

• verifyPodFilesIntegrity(): verifies the integrity of the files executed by the pod.

B.8 Whitelist Provider

POST /whitelist/worker/os/check

Validate the boot aggregate according to the OS run by the Worker.

Request JSON object

• osName (string): worker’s os identifying name;

• bootAggregate (string): worker boot aggregate;

• hashAlg (string): name of the hash algorithm used to compute (and needed to verify) the
quote;

Example request:

{

"osName": "<os -distro >",

"bootAggregate": "<hash -boot -aggregate >",

"hashAlg": "<hash -algorithm -name >"

}

Response JSON object
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• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Boot Aggregate matches the stored whitelist"

}

POST /whitelist/worker/os/add

Add a new OS with its reference values for the boot aggregate in the worker whitelist.

Request JSON object

• osName (string): worker’s os identifying name;

• validDigests (JSON object): JSON object including for each hash algorithm, a list of
accepted reference values for the boot aggregate;

Example request:

{

"osName": "<os -distro >",

"validDigests": {

"sha1": [

"<sha1 -boot -aggregate >",

...

],

...

"sha256": [

"<sha256 -boot -aggregate >",

...

]

}

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "OS whitelist added successfully"

}

DELETE /whitelist/worker/os/delete

Remove an OS entry from the Worker whitelist.

Request JSON object
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• osName (string): worker’s os identifying name;

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Worker whitelist record deleted successfully"

}

DELETE /whitelist/worker/drop

Erase the worker whitelist content.

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Worker whitelist dropped successfully"

}

POST /whitelist/pod/image/check

Validate pod container image and executed files against the reference values stored by the pod
whitelist.

Request JSON object

• podImageName (string): name and tag of the image from which pod’s containers are defined;

• podImageDigest (string): digest of the pod image;

• podFiles (JSON array): list of objects representing pod-executed files with their respective
measures. Each object comprises:

– filePath (string): complete path of the file executed by the pod;

– fileHash (string): executed file measurement;

• hashAlg (string): name of the hash algorithm used to compute file measurements;

Example request:
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{

"podImageName": "<pod -image -name >",

"imageDigest": "<image -digest >",

"podFiles": [

{

"filePath": "<file -path >",

"fileHash": "<file -hash >"

},

...

{

"filePath": "<file -path >",

"fileHash": "<file -hash >"

}

],

"hashalg": "<hash -algorithm -name >"

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "All pod files match the stored whitelist"

}

POST /whitelist/pod/image/add

Add a new image with its related reference values, including image digest and executables’
measurement.

Request JSON object

• imageName (string): name and tag of the image from which pod’s containers are defined;

• imageDigest (string): digest of the pod image;

• validFiles (JSON array): list of objects representing valid pod-executed files with their
respective measures. Each object comprises:

– filePath (string): complete path of the file executed by the pod;

– validDigest (JSON object): JSON object including for each hash algorithm, a list
of accepted reference values for the executable file;

Example request:

{

"imageName": "<pod -image -name >",

"imageDigest": "<image -digest >",

"validFiles": [

{

"filePath": "<file -path >",
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"validDigests": {

"sha1": [

"<sha1 -file -measure >",

...

],

"sha256": [

"<sha256 -file -measure >",

...

]

}

},

...

]

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "New image whitelist added successfully"

}

POST /whitelist/pod/image/file/add

Add a list of new valid executables with their measurements, associated with a given image in
the pod whitelist.

Request JSON object

• imageName (string): name and tag of the image from which pod’s containers are defined;

• newFiles (JSON array): list of objects representing new valid pod-executed files with their
respective measures. Each object comprises:

– filePath (string): complete path of the file executed by the pod;

– validDigest (JSON object): JSON object including for each hash algorithm, a list
of accepted reference values for the executable file;

Example request:

{

"imageName": "<pod -image -name >",

"newFiles": [

{

"filePath": "<file -path >",

"validDigests": {

"sha1": [

"<sha1 -file -measure >",

...

],
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"sha256": [

"<sha256 -file -measure >",

...

]

}

},

...

]

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Files added to Pod image whitelist successfully"

}

DELETE /whitelist/pod/image/file/delete

Remove an executable measurement from the pod whitelist under a specified image.

Request JSON object

• imageName (string): name and tag of the image from which pod’s containers are defined;

• filePath (string): path of the pod executable to delete;

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "File and associated digests removed from the

whitelist"

}

DELETE /whitelist/pod/drop

Erase the pod whitelist content.

Response JSON object
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• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Pod whitelist dropped successfully"

}

POST /whitelist/container/runtime/check

Validate worker container runtime engine and all related dependencies against the reference val-
ues stored by the container runtime whitelist.

Request JSON object

• containerRuntimeName (string): file path of the container runtime executable;

• containerRuntimeDependencies (JSON array): list of objects representing container run-
time dependencies executable files with their respective measures. Each object comprises:

– filePath (string): complete path of the file executed by the pod;

– fileHash (string): executed file measurement;

• hashAlg (string): name of the hash algorithm used to compute file measurements;

Example request:

{

"containerRuntimeName": "<container -runtime -name >",

"containerRuntimeDependencies": [

{

"filePath": "<file -path >",

"fileHash": "<file -hash >"

},

...

{

"filePath": "<file -path >",

"fileHash": "<file -hash >"

}

],

"hashAlg": "<hash -algorithm -name >"

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:
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{

"status": "success",

"message": "All Container Runtime depdencency files match the

stored whitelist"

}

POST /whitelist/container/runtime/add

Add a new container runtime and related dependencies in the container runtime whitelist.

Request JSON object

• containerRuntimeName (string): file path of the container runtime executable;

• validFiles (JSON array): list of objects representing container runtime dependencies
executable files with their respective measures. Each object comprises:

– filePath (string): complete path of the file executed by the pod;

– validDigest (JSON object): JSON object including for each hash algorithm, a list
of accepted reference values for the executable file;

Example request:

{

"containerRuntimeName": "<container -runtime -name >",

"validFiles": [

{

"filePath": "<file -path >",

"validDigests": {

"sha1": [

"<sha1 -file -measure >",

...

],

"sha256": [

"<sha256 -file -measure >",

...

]

}

},

...

]

}

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Container Runtime whitelist added successfully"

}
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DELETE /whitelist/container/runtime/delete

Remove a container runtime with its dependencies from the container runtime whitelist.

Request JSON object

• containerRuntimeName (string): file path of the container runtime executable;

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Container Runtime whitelist record deleted

successfully"

}

DELETE /whitelist/container/runtime/drop

Erase the container runtime whitelist content.

Response JSON object

• message (string): reason of the result outcome;

• status (string): outcome of the request;

Example response:

{

"status": "success",

"message": "Container Runtime whitelist dropped successfully"

}
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